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SUMMARY 

The unsteady cross-flow analogy allows us to reduce the steady three­
dimensional separation flow problem into an unsteady two-dimensional flow 
problem in which the section shape changes with time. The two-dimensional 
VORSEP code is extended to the case of arbitrary body qrowth rates in order 
to generate the initial vortex structures for the NASA-Lanaley/Boeing three-
dimensional Free-Vortex-Sheet (FVS) code. ' , 

Automatic procedures to reduce the wing geometry definintion to a 
set of cross-flow plane sections corresponding to the locations of the 
time-step solutions and to generate the effective source distribution on 
each cross-flow section to represent the section normal growth across the 
following steps are incorporated in the VORSEP code. Also, the wake shed­
ding model is improved by adopting a redistribution scheme which improves 
the stability of the free sheet development with time. The improved wake 
shedding model combined with the redistribution scheme alleviated the 
numerical instabilities associated with the vortex roll-up. 

The modified VORSEP is applied to several test cases: a thin delta 
wing, an ogee wing, and a bent plate. The preliminary results look very 
promising. 
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1.0 INTRODUCTION 

1.1 Background 

Flow separations are certain to occur on thin, highly swept wings at 
moderate to high angles of attack. The flow separations usually take the 
form of two free vortex layers joined to the leading edges of the wing 
which roll up to form spiral-shaped vortex sheets above the surface. These 
vortex separations lead to important nonlinear lift characteristics. A 
recent review (1) of the subject describes a number of inviscid fluid models 
which have been used in the past to predict the vortex characteristics. 

The suction analogy put forward by Polhamus (2) predicts the wing lift 
for a broad class of wing planforms, but does not provide flow-field details 
or surface pressure-distribution information. Various methods based on 
conical flow assumptions (3), (4) and (5), provide such details for a 
limited class of slender configurations, but fail towards the trailing-edge 
region because the trailing-edge Kutta condition is excluded. 

More recently, an improved panel method (Boeing FVS, (6)) has been 
applied to the problem. The approach is necessarily based on an iterative 
procedure in order to satisfy all the boundary conditions on the solid 
surface, the free vortex sheet, feeding sheet and vortex core. Although 
the calculations start with an initial vortex structure based on conical 
flow assumptions, the number of iterations required for convergence may be 
quite large. This poses a severe problem for the case of thick sections 
and other situations (e.g., general planforms) where the initial conical 
flow assumptions are not valid. 

Under an earlier contract from NASA Langley Research Center (NAS1-
15495), Analytical Methods, Inc. developed an analysis (7) and a pilot 
code (VORSEP, (8)) for the calculation of vortex/surface interference, 
adopting a singularity panel method. The analysis and the code include 
the development of a computational procedure for vortex separation from a 
sharp-edged plate as well as from a growing thick body using a time-step­
ping approach. 

1.2 Present Approach 

The main objective of the present work is to extend the present two­
dimensional VORSEP code for vortex separation to the case of arbitrary 
body growth rates in order to generate the initial vortex structures for 
the Boeing three-dimensional (FVS) code. A brief technical discussion 
and theoretical background are presented in Sections 3.0 and 4.0, respect­
ively. In Section 5.0, the body qrowth and free-sheet sheddinq models are 
described. Procedures to reduce the wing geometry definition to a set of 
cross-flow plane sections corresponding to the locations of the time-step 
solutions and to generate the effective source distribution on each cross­
flow section to represent the section normal growth across the following 
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step are developed. The free-sheet shedding model is improved by adoptinq 
a redistribution scheme which improved the stability of the free sheet 
development with time. In Section 6.0, the results for three test cases, 
a delta winq, ogee wing and a rectangular bent plate are presented. 
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2.0 NOMENCLATURE 

Except where dimensions are given, the variables listed below are 
regarded as dimensionless. 

A,B 

F 

G 

M 

N 

r 

y 

!:It 

a 

Influence coefficient 

Defined in Section 4.0 

Growth vector 

Number of wake panels 

Number of surface panels 

Radius vector 

Vorticity strength 

Time-step increment 

Angle beyond which vortices on the free sheet are merged with the 
vortex core in the vortex roll-up calculations 

Doublet strength 

Source strength 

Perturbation potential 

Onset flow potential 
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3.0 TECHNICAL DISCUSSION 

The initial vortex structure input to the three-dimensional code 
(BOEING FVS) is currently based on self-similar solutions in cross-flow 
planes proceeding chordwise across the swept winq. With general wing plan­
forms, and particularly with thick sections and leading-edge camber, self­
similarity no longer applies and the conditions for conical flow are lost. 
However, in priciple, an initial vortex structure can still be generated by 
using the unsteady cross-flow analogy. With this assumption, the steady 
three-dimensional flow problem is transformed into an unsteady two-dimen­
sional flow problem in which the section shape changes with time, Fiqure 1. 
An example of such an application is given in (9) for the separated flow 
over a body of revolution. 

Most of the previous applications of the unsteady cross-flow analogy 
have used a transformation based on the flow about a circle. In the 
present investigation, a time-stepping procedure is applied for the compu­
tation of the development of the vortex core in the cross-flow plane using 
the two-dimensional panel method (VORSEP). 

The VORSEP code has demonstrated the feasibility of such an approach 
in a simple situation of uniform growth rate of an elliptical section, 
Figure 2 (from (7)). In the present investigation, the code is extended 
to the more general case by allowing arbitrary sections at each time step. 
The growth rate of each part of the section is then computed on a panel 
by panel basis rather than being a uniform overall growth factor. The 
details of the input and computational procedures for the time-dependent 
arbitrary sections are presented in Section 5.0. Also, the shedding model 
and the free vortex sheet calculation procedure are improved by adopting 
a redistributed vorticity with equal length panels alona the free sheet. 
The details of this refinement are also presented in Section 5.0. 
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Figure 1. Unsteady Cross-Flow Analogy. 
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4.0 THEORY 

A complete description of the panel method is presented in {7}. A 
brief outline of the panel method boundary condition equation is presented 
here as it pertains to the body IIgrowthll rate. 

The panel method in the VORSEP code is based on doublet and source 
sinqularities distributed on flat panels representing the section surface. 
The doublet distribution is continued onto the free sheet. At each time 
steo the boundary condition of zero total velocity potential is aoplied on 
the inside of the section at a control point (mid) on each panel. With 
this formulation the total tangential velocity on the exterior (wetted) 
surface is the doublet gradient and the source value there is proportional 
to (!TI) the total normal velocity. Clearly, in the steady case the source 
distribution is zero (unless boundary displacement effects are beinq rep­
resented by the transpiration technique). In the present case the source 
distribution represents the normal component of IIgrowthll rate, and since the 
latter is just a function of the geometry, the source distribution can be 
evaluated at each section. The boundary condition equation, therefore, 
has the following form: 

N 

L A· k llk/2TI + F. = 0 
k=l J J 

where 

N is the number of surface panels; 

Ajk is the perturbation potential influence coefficient on the jth 
control point due to unit doublet distribution on the kth panel. 
{Note: for the panel acting on its own control pOint, Ajj = -TI}; 

llk is the surface panel (kth) doublet value (unknown); and 

where 

~ooj is the onset flow potential at the jth control point; 

M is the number of free-sheet panels at this time step; 
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is the free-sheet panel (kth) doublet value (known); and 

is the perturbation potential influence coefficient on the jth 
control point due to a unit source distribution on the kth panel. 

Thus, Fj can be evaluated at each time step, leaving just the ~k 
values to be solved for. 

At each time step, the free sheet is moved according to the local 
calculated velocities and a new panel is formed from the prescribed sepa­
ration point, with its doublet value being related to the local vorticity 
value and rate of vorticity transport. Also, at each time step, the free 
vortex sheet is repaneled in such a way that panels are equally spaced and 
an appropriate vorticity distribution scheme, the details of which are 
presented in the next section, is evaluated. 
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5.0 DESCRIPTION OF BODY GROWTH AND FREE-SHEET SHEDDING ~10DELS 

5.1 Body Growth Computational Procedure 

The VORSEP pilot code is modified to incorporate the arbitrarily 
shaped growth of a wing geometry: the x,z coordinates, M, were read in 
at a preselected number of spanwise stations, N, as two-dimensional 
(N x M) arrays, Figure 3. This information is stored in the GEOMIN routine. 

The time-stepping procedure used in the present investigation adopts 
the following procedure. The first calculation starts at a cross section, 
xI, which is at a small distance (10% of the root chord, or so) from the 
apex of the wing. The initial time, (t), and the time plane, (N), are 
assumed to be 0 and 1, respectively. The time interval between two suc­
cessive time steps is assumed to be ~t and the axial coor~inate increme~t, 
~x = Ux~t where Ux is the x-component of the onset veloclty. At any tlme 
t (time piane N), xN = Uxt + xI' and the cross-sectional panel geometry 
is generated using the wing geometric data stored in GEOMIN. 

In the previous investigation, the growth rate over the entire section 
under consideration is assumed to be uniform. For the arbitrarily shaped 
bodies considered in the present investigaton, a systematic way is devised 
to take into account the growth rate distribution over the entire section. 
At each time plane, N, the panel geometry at the next time plane, N+l, is 
also computed and stored and from these the growth rates and, hence, the 
source distributions are computed as described below. 

Referring to Figure 4, the growth vector at any point, p, on a section 
at time plane N is given by 

-pG = ...r - r = d = i G + kG 2p -1 P -p - Y - z' 

where Gy = Y2p - Ylp and Gz = Z2p - zlp' 

Then the source distribution at point p is given by 

where Bp is the unit normal vector at point p. Thus at the time plane, 
N, from the known (stored) panel geometries at two consecutive cross sections 
(time planes Nand N+l), the growth rate distribution and, hence, the source 
distribution needed in the aerodynamic calculation at each panel center 
point is computed. 
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5.2 Free-Sheet Shedding and Redistribution Model 

The free-sheet routine in VORSEP introduces an additional panel and 
a point vortex (at the end of the panel) at each time step. While this 
simple technique yielded acceptable solutions for a thin flat plate and 
a thick elliptic section with carefully selected ~tls and merge angles for 
vortex roll-up, it is not able to handle the complex flow field associated 
with the separation near a sharp thick edge. The new free-sheet shedding 
and vorticity distribution model is described below. 

Fiqure 5 illustrates the free-sheet shedding model. The doublet values 
are associated with the panel corners rather than the panel centers and they 
remain constant with time. At each new time step, the doublet value at the 
separation (corner point) is computed by interpolating the doublet (~) and 
the vorticity (y) values on the upper and lower surfaces separately. The 
width of the first wake panel, sl = ~t Vse ' where Vse is the velocity at 
the separation point. The doublet values gt the begin~ing (separation point) 
and the end of the first free-sheet panel are given by 

and 

~ = ~ - ~ • 1 u ~ 

The doublet values at the other free-sheet corner points take the preceding 
values such as ~2 = ~lp (previous value at the end of the first free-sheet 
panel), etc. 

Additionally, the free-sheet panels and the doublet values are redis­
tributed after each time step in such a way that they are uniformly spaced 
alonq the free sheet. This scheme allows us to increase or decrease the 
number of free-sheetpanels, thereby providing the flexibility to adjust the 
free-sheet panel sizes to be compatible with the surface panels regardless of 
the time step size. The amalgamation procedure in VORSEP is kept (see (7». 

This new free-sheet model combined with the redistribution scheme has 
proven very successful. The free-sheet vortex roll-up for several emer e 
values on an 8.5% thick triangular-shaped cross section with a flat upp~r 
surface and with a prescribed separation location is presented in Figure 6. 
This fiqure demonstrates the success of the oresent redistribution scheme 
in alleviatinq the problem of numerical instabilities associated with the 
uneven distribution of wake panels. Good numerical stability is absolutely 
essential if the calculations are to reach the larqe times representing the 
traverse over a complete wing chord. 
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n9,' Y9, 

1, 2, 3, etc. - Panel Corner POlnts 
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Fiqure 5. Free-Sheet Sheddinq Model. 
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6.0 DISCUSSION OF RESULTS 

The three-dimensional wing geometry is reduced to a set of cross­
flow plane sections for the unsteady two-dimensional analysis. The re­
lationship between successive section shapes determines the growth rate 
which is represented by a source distribution in the two-dimensional cal­
culation. The onset flow at each cross-flow station is the vertical com­
ponent of the general onset flow. 

This model is incorporated in the VORSEP code along with a refined 
free-sheet sheddinq and redistribution model as discussed in the previous 
section. The code is applied to several test cases. 

6.1 Thin Triangular Delta Wing (10) 

Figure 7 shows the shape of the vortex free sheet at several cross 
sections. The calculation started at x/c = 0.1 (t = 0). The computed 
vortex core positions and the experimental suction peaks are compared in 
Figure 8 and they are in good agreement. The fluctuation in the computed 
vortex core position is due to the merging procedure and the finite vor­
ticity carried in the vortex sheet. Note that the actual vortex centroid 
may be slightly different from the vortex core location due to the merging 
process. 

The calculation used a emerge angle of 1800 which approximates 
current practice in the Boeing LEV code. However, calculations have been 
performed with emerge values as high as 720 0 with stable solutions (see 
Figure 6); the closer detail this gives for the first passage of the free 
sheet near the surface offers better definition of the surface pressure 
distribution than is given by the earlier amalgamation. 

6.2 Ogee Wing (11) 

A series of vortex sheet shapes is shown in Figure 9 from the calculated 
set for 21 0 angle of attack. The calculation started at x/cR = .1, and a 
total of 90 time planes were calculated. It is interesting to observe the 
changes in the initial shape of the sheet as it leaves the surface at various 
stations; i.e., the influence of the leading-edge sweep of rate of growth 
in the two-dimensional calculation. Also, the ellipticity in the shape of 
the sheet is very pronounced in the region of smallest sweep (maximum growth 
rate). The amalgamation angle was set at 360 0 for these calculations in 
order to represent the first passage of the free sheet over the surface. 

A planform view is given in Figure 10, which compares the amalgamation 
poinq (not the vorticity centroid) with the surface flow features from experi­
ment. The path is somewhat outside the experimental location, but this 
is probably because we are not representing the secondary vortex. In 
principle, we could release a secondary vortex from a prescribed location at 
any of the time steps. 
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6.3 Bent Rectangular Wing (12) 

A rectangular wing of aspect ratio 1/4 and with a 20° mid-chord bend 
has been tested in order to demonstrate a strong camber effect. The model 
is set at 20° incidence giving a 40° angle of attack to the flow on the rear 
portion. The experimental observations clearly show a double vortex system-­
one from the leading edge, the other from the kink. The calculation started 
at x/c = 0.1 and a total of 81 time planes were calculated. Vortex struc­
tures are shown in Figure 11 at a number of stations downstream of the kink. 
Although a definite bulge has appeared in the free sheet, the detailed roll­
up of the second vortex has been smeared out by our redistribution scheme. 
A hiqher density of wake panels would improve the definition of the bulge 
and, hence, the local roll-up. Even so, the bulqe does migrate around the 
main vortex (Figure ll(c) through (g)) in a similar way to the experimentally 
observed second vortex (see Figure 5, Ref. 12). An intermediate amalgama­
tion scheme covering the second vortex would improve the numerical behavior 
of the calculation. 

The calculated doublet distribution along the free sheet is shown in 
Figure 12. Distance s is measured along the sheet from the separation 
point. The gradient of the doublet distribution (i.e., the vorticity value) 
takes a sudden increase at the point corresponding to the piece of free sheet 
shed from the bend in the plate. The kink in the doublet distribution cor­
responds to the location of the second vortex as it migrates alonq the free 
sheet. Figure l2(b) shows the condition at a later time plane: the dis­
tortion in the doublet distribution near the kink is caused by the secondary 
roll-Up. This secondary roll-Up is clearly being transported along the free 
sheet and will eventually be amalgamated in the main core. Although the 
results are preliminary, they look promising for this extreme case. 
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Figure 11. Bent Plate (a = 20°). 
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Fi gure 11. Conti nued. 

(c) x/c = 0.544; N = 40. 
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Figure 11. Continued. 

(d) x/c = 0.60; N = 45. 
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Figure 11. Continued. 

(e) x/c = 0.711; N = 55. 
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(f) x/c = 0.767; N = 60. 
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(g) x/c = 0.822; N = 65. 
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(b) x/c = 0.711; N = 55. 
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7.0 CONCLUSIONS 

An improved wake shedding model combined with a doublet distribution 
scheme alonq the free sheet alleviated the numerical instabilities associ­
ated with the free vortex sheet. Using this improved scheme, calculations 
have been performed with 6merge values as high as 720 0 with a stable and 
well defined rolled up vortex: 

An automatic procedure to define the geometry and the source distri­
bution over each cross section as a function of time is incorporated into 
the VORSEP program. The modified program is validated by successfully apply­
ing it to a few test cases. 
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8.0 RECOMMENDATIONS FOR FURTHER WORK 

In the present investigation. the calculations started at 1/10 of 
the semispan (see Figure 13); this means that this station is the commence­
ment of separation in the calculation. The growing body calculation must 
start with an actual shape. It is recommended that in future work the 
starting conditions will include the conical flow solution over the for­
ward part of the planform. Figure 13. 

Currently. the calculations cease at the trailing edge. and this must 
be unswept. Extensions of the coding are recommended which will allow 
the body to disappear from the calculation plane; i.e .• leaving just the 
free sheet and the vortex core together with the trailing sheet from the 
trailing edge. It is further proposed to extend this capability by allowing 
the body to disappear gradually from the calculation plane. This would 
allow both positive and negative sweepback on the trailing edge. Figure 14. 

The preprocessor code is currently an independent code. It is recom­
mended to develop interfacing routines with the Boeing LEV code so that 
the existing use definition of the LEV code is disturbed as little as 
possible. 

Finally. the coupled code should be exercised over a range of condi­
tions. The investigation should include convergence studies on pressures. 
forces and vortex location. 
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Fiqure 13. Recommended Chanqe to the Flow Model. 
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