General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

ANALYSIS OF DEFECT STRUCTURE IN SILICON

Silicon Sheet Growth Development for the Large Area Silicon Sheet Task of the Low-Cost Solar Array Project.

FINAL REPORT

by
R. Natesh
M. Mena
M. Plichta
J. M. Smith
M. A. Sellani

April, 1982

JPL Contract No. 955676

The JPL Low-Cost Silicon Solar Array Project is sponsored by the U.S. Department of Energy and forms part of the Solar Photovoltaic Conversion Program to initiate a major effort toward the development of low-cost solar arrays. This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, by agreement between NASA and DOE.

TECHNICAL CONTENT STATEMENT

Thls report was prepared as an account of work sponsored by the Unlted States Government. Neither the United States nor the United States Department of Exergy, nor any of their employees, nor any of their contractors, subcontractors, or thelr employees, make any warranty, express or implled, or assumes any legal llabllity or responstbility for the accuracy, completeness, or usefulness of any Information, apparatus, product, or process disclosed, or represents that its use would not Infringe prlvately-owned rights.

CONTENTS

SECTION Page
LIST OF FIGURES 4
LIST OF TABLES 5
I SUMMARY 7
II INTRODUCTION 9
III TECHNICAL DISCUSSION 12
IV RESULTS 20
V CONCLUSIONS 30
VI REFERENCES 33
APPENDIX Page
I QTM 720 TELETYPE PRINTOUTS 65

LIST OF FIGURES

Flgure No. Title Page
1 Baslc Flowchart and Data Reduction 35
Used In Defect Analysis
2 Sllicon Carbide Precipltate Particles 36
in HEM Sample (250X)
3 Dislocation Pits \ln HEM Sample (500X) 36
4 Region of High Twin Denslty in EFG 37Sample (250 X)
Reglon of High Dislocation Pit Density 37 but no Twins in EFG Sample (250X)6 Twins free from Dislocation Plle-up,38
EFG Sample (500X)
7
Twins with Dislocation Pile-up, EFG 38Sample (500X)
8,9 Dendritic Growth In SOC Sample (50X) 39
10 Twins and Graln Boundarles in SOC 40Sample (75X)
11 Graln Boundarles and Heavy Twinning, 40 SOC Sample (100X)
12, 13 Dislocation Plle-up on Twins and Grain 41 Boundaries, SOC Samples (500X)

LIST OF TABLES

Table No. Tltle Page
1
Equations for Systems of Lines 42
In a Plane
2 Callbration of Video Display on 43the Olympus HBM Microscope
Analysis of HEM Single Crystal 44
("A") Samples, Wafer Numbers$4 \mathrm{~T}-20,4 \mathrm{~B}-20,3 \mathrm{~T}-20,3 \mathrm{~B}-20$,103, 5 and 534Analysis of HEM Polycrystalline45
("B") Samples, Wafer Numbers$4 \mathrm{~T}-20,4 \mathrm{~B}-20,3 \mathrm{~T}-20,3 \mathrm{~B}-20$;103, 5 and 53
Summary of Results for Seventy- 46
Two HEM Samples
6 Wafer Averages for Seventy-Two 49
HEM Samples
7 Analysis of Mobll Tyco EFG 50Samples8Batch Averages of Mobll Tyco51Sample Measurements
9 Summary of Dislocation Pit 52
Density, Twin Density, and Grain Boundary Length Measurements for the Mobll Tyco EFG Samples
10 Analysis of Honeywell Samples, 53 SOC Run 195 - Dislocation Density
Table No. Tltle Page
11 Analysis of Honeywell Samples, 54 SOC Run 195 - Twin Density
Analysis of Honeywell Samples 55V-00578-Grain Boundary Length
13 Analysis of Westinghouse Samples 56
14 Step-etching of Solar Cell EFG-3 57
15
Step-etching of Solar Cell EFG-13 58
16
Step-etching of Solar Cell EFG-31 59
17 Step-etching of Solar Cell EFG-33 60
18 Step-etching of Solar Cell 61 HAMCO 101-119Step-etching of Solar Cell62HAMCO 101-429Step-etching of Solar Cell63FAMCO 108-1
21 Analysis of Defects in Sllicon: 64
Summary

SECTION I

SUMMARY

The analyses of one hundred and ninety-three (193) sllicon sheet samples, approximately 880 square centimeters, for twin boundary density, dislocation pit density, precipitate density, and grain boundary length has been accomplished in the past contract period. One hundred and flfteen (115) of these samples were manufactured by Crystal Systems, Inc., using their Heat Exchanger Method (HEM), thirty-eight (38) by Mobil Tyco using Edge-defined Film - fed Growth (EFG), twenty-three (23) by Honeywell using the Silicon-on-Ceramics (SOC) process, and ten (10) by Westinghouse using the Dendritic Web process. Seven (7) solar cells were also step-etched to determine the internal defect distribution on these samples.

Procedures have been developed for the quantitative characterization of structural defects such as dislocation pits, precipitates, twin \& grain boundaries using a QTM 720 Quantitative Image Analyzing System interfaced with a PDP $11 / 03 \mathrm{mini}$-computer. These procedures were routinely applied to all the samples. Characterization of the grain boundary length per unit area for polyorystalline samples was done by using the "Intercept method" on an Olympus HBM Microscope.

This report describes the steps involved in the characterization of
structural defects in the various types of solar cell materials analyzed. A summary of results as well as discussions of the data are also presented,

SECTION II

INTRODUCTION

The maln objective of this program was to develop imaging techniques to subsequently allow rapld, reproducible, and accurate evaluation of sllicon sheet defect structure. Secondly, defect data accumulated for many samples would allow for potential cross correlation between structures revealed and specific sheet fabrication technique and/or efficlency. Structural defects that were quantified included grain and twin boundaries, precipitates, and dislocations. Quantitative characterization of these structural defects,. which have been revealed by etching the surface of silicon samples, can ther be performed using a Quantimet 720 Ima;e Analyzer.

The silicon sheet samples were originally obtalned by JPL from different manufacturers. Each of these manufacturers use their own crystal growth and fabrication techniques and, therefore, the various types of sllicon produced contain a variety of trace impurity elements and structurel defects. The most important criteria in evaluating the various sllicon types tor terrestrial solar cell applications are:
(1) cost and (ii) conversion efficiency. At present, the solar cells with highest conversion efficiency are made of high purlty silicon single crystals, which are free from structural defects such as dislocations,
twin boundaries, precipltate particles, etc. But these crystals and subsequent processing are very expenslve and milay not meet DOE technology requiraments. On the other hand, sllicon crystals such as Edge-deflred Film-fed Growth (EFG) ribbons, Sllicon-onCeramic (SOC), Wacker, etc, are MOT single crystals; but made of highly ordered crystals which contain large and differing numbers of dislocations, twin boundarles, grain joundaries, and precipitates compared to the premium grade or Czochralski grown sillicon.

The following important questions must be answered to evaluate low and high cost sillcon shstat (i) What effect do these defects have on conversion efflciency? (il) Of the various types of defects, which dafect/defects severely affects conversion effects conversion efficiency? (1il) At what concentrations does this effect become significant? (Iv) Is there a rapld, accurate, quantlative method that can be used routinely as a Quality Assurance tool?

Quantitative analysis of surface defects was developed and 1 s belng performed by using a Quantimet 720 Quantitative Image Analyzer, This system can difterentiate and count 64 shades of grey levels between black and white contrasts. In addition, it can characterize structural defects by measuring their length, perlmeter, area, density, spatial distribution, frequency distribution (In any preselected direction), and Is programmable in these measurements. However, the Quantitative

Image Analyzer 1 distremely sensitive to optical contrasts of varlous defects. Therefore, to obtaln reproduclble results, the contrasts produced by varlous defects must be similar and unlform for each defect types along the entire surface area of sampes to be analyzed. To achleve this, a chemical cleaning and pollshing technique has now beon perfected for sillcon samples from Mobll Tyco, Wacker, Motorola, and IBM. The cleaning and polishing peparation technique produces a very clean and even surface for sllicon crystals sultable for analyses by the QTM 720 Image Analyzer. We have now obtained quantitative information from a varlety of sillcon crystals.

SECTION III

TECHNICAL DISCUSSION

A. Chemical Pollshing:

The detalled procedures of crystal cleaning, chemical pollshing, and chemical etching have been thoroughly discussed in previous reports ${ }^{1,2}$ and only a summary of these procedures shall be presented in this report.

The sllicon samples recelved may be divided Into two groups: those that need mechanical pollshing prior to chemical pollshing, and those that can be chemically pollshed directly. Sllicon samples cut from ingots such as the HEM samples belong to the first group while samples grown using ribbon technology such as the EFG and the Dendritic Web belong to the second group.

The mechanical polishing consisted of hand lapping the samples using a 600 grit polishing paper followed by wheel lapping on a Jarrett Automatic Polishing machine using diamond paste abrasives of 30,7 , and 1 micron sizes. Each of the pollshing steps took approximately ten (10) minutes. Thus, forty (40) minutes was the mechanical polishing time for each sample.

The silicon samples are then swabbed with trichloroethylene (TCE) to remove any organic substances on the sample surfaces. The remaining and then immersed in concentrated hydrofluoric acid at room temperature for 3 minutes. This removes any silicon oxide on the sample surface. The sample is rinsed in delonized water and washed in
ethyl alcohol. Freon gas is agaln used to dry the sample surface. All the steps discussed above are necessary prior to chemlcal polishing. The polishing solution belng used is a $1: 2: 3$ ratio by volume mixture of concentrated nitric, hydrofluoric, and acetic acids respectively. All aclds used are of Electronlc Grade, Low Sodium MOS quality. The polishing solution is heatca to $50^{\circ} \mathrm{C} \pm 3{ }^{\circ} \mathrm{C}$ in a teflon beaker on a hot plate. The sllicon sample is then immersed in this solution. Polishing times differ between sample types, and a test run is always performed on a new batch of samples recelved to determine the optimum polishing time. For the work included in this report, polishing times varied from 5 seconds for some Mobil - Tyco EFG samples to 90 secorids for some HEM samples. Also, the polishing solution was diluted to 1:2:7 ratio for the SOC samples. No chemical polishing was required for the Dendritic Web samples.

Polishing is done in increments of 15 - 20 seconds for samples that require extensive chemical polishing and the extent of polish is determined after each step by viewing the samples under an optical microscope. The sample is immediately immersed in deionized distilled water, after it is removed from the polishing solution; to stop the polishing reaction. After flve minutes, the sample is rinsed in ethyl alcohol and dried with freon gas. The sample is now ready for chemical etching.

B. Chomical Etching:

Several etching solutions have been tested in previous work and the one that was found sultable for revealing structural defects on several types of sllticon sheet matertals is a variation of the Sirtl etching solution, This varlation, labeled Etching Sol:ation III by MRI, consistsof 10 grams of CrO_{3} th 60 ml . of deionized distilled water and an equal volume of concentrated hydrofluoric acid.

The etching treatment by Etching Solution III resulted in an optical resolution of $10^{-4} \mathrm{~cm}$. for twin boundaries and an optical density resolution of 10^{7} dislocations par cm^{2}. at magnifleation of 803x and above. A higher resolution, however, can be achleved by using higher magnifications.

An average of 45 to 50 seconds of etching in Etching Solution III at room temperature has been found to distinctly reveal graln boundaries, twin boundarles, and dislocations. Etching Solution III was used on all the 193 sllicon sheet materlal analyzed with some modifleations and was found to produce high quallty defect structures wilth a minimum of overlapping and contrast varlations between each type of defect.
C. QTM 720 Measurement of Dislocation Plts, Twin Boundarles and

Precipltate Particles:
A quantltative Image Analyzer (Quantimet 720: Gambridge - Imanco,

Monsey, N. Y.) Ilnked to a Digital Equlpment Corporation PDP 11/03 computer ls belng used for the quantitative analysis of dislocation plt density, twin density, and preclpltate particle density in etched sllicon samples. The flow chart for the QTM Operation and Data Reduction used in the latest version of the computer program for defect analysis is glven in Flgure 1. The following data are collected and complled by the system: number of features and areal density, mean free path between features (measured in horizontal and vertical directions), and length of feature per unit area of the sample.

Before any measurements are made, the optical and electronlc systems of the QTM 720 are adjusted to provide for optimum detection of the structural defect beling analyzed. Then the PDP 11/03 computer is prepared for operation. Detalled discussions of these procedures have been given in prevlous reports. ${ }^{2,3}$

Vieasurements are then made for the average defect/feature area. This feature could be a dislocation pit, twin boundary, precipitate particle, etc. Five or slx fields in eaci sample are chosen and observed at the destred magnification, whlch is usually 800X. The average feature area is obtalned by dividing the total feature area as detected by the QTM 720 by the total number of features in these flve of slx flelds. Fields with a minimum overlap of features are chosen in the determination of the average feature area. The average
feature area is one of the required inputs into the "Defects \ln Silicon" computer program. I'his procedure allows for the calculation of the feature density even \ln flelds where extenslve feature overlap occure.

After the average feature area is obtained and fed into the computer, the number of flelds to be observed and the mode of scan are determined. MRI always takes the maximum number of fields that the sample surface and time limitations would allow.

T'wo modes of scanning are currently being used. For samples wherein a symmetrical distribution of defects is present, as in the Mobil Tyco samples, a single horizontal scan along the middle of the sample perpendicular to the growth direction is taken. Previous works 2,4 have shown that this procedure ylelds statistically sound results. For samples wherein the defects are distributed randomly on the sample surface, a square raster is used. The QTM 720 is equipped with an automatic stage control, and step sizes in the x-and y-directions can be pre - set. The step sizes are chosen so as to obtaln the desired number of fields and cover the entire su. iace of the sample. The square raster mode of scanning is used on the HEM, SOC, and HAMCO samples. The slze of the test field is chosen next. An attempt is always made to use the largest frame area of 500,000 plcture point, but the non-flatness of the sample surface may dictate the use of a smaller area if focusing on the entire 500,000 plcture point fleld becomes a problem. The quantitative characterization of the defects may now be
per $\mathrm{mm}^{2} \ln$ each fleld depending on the units being used. MFPV: denotes the mean free path in the vertical direction. Thls quantlty is the frame area divided by the vertical projection of all detected features in the field.

MFPH: denotes the mean free path in the horlontal direction. This is the horlizontal analogue of MFPV.

L/A: denotes the length of detected feature per unit area. Disregard for dislocations.
D. Grain Boundary Length Measurement:

The grain boundary lengths per unlt area of polycrystalline samples are measured using the intercept method which has been discussed previously. ${ }^{5,7}$ This method consists basically of determining the number of times a grain boundary is intersected by a test line. From this, P_{L}, which is the number of intersections per unit length of the test line is obtained. The grain boundary length per unit area, L_{A}, is then calculated using the approprlate formula in Table 1. These measurements are all done using an Olympus HBM Mlcroscope equipped with a video display. Table 2 gives a callbration of the video test grid for all the magnifications avallable on the microscope .

SECTION IV

RESULTS

A total of one hundred and ninety-three (193) samples have been quantltatlvely characterlzed in the past contract perlod. These samples were recelved from flve different manufacturers and are distributed as follows:

1. Heat Exchanger Method 115
2. Edge-defined Film-fed Growth 38
3. Stlicon-on-Ceramic 23
4 Dendrltic Web 10
4. Solar Cells 7
a) EFG-4
b) HAMCO - 3
Total 193

These sampes were analyned for twin boundaries, grain boundaries, dislocation pit, and precipitates. Twin boundary, dilslocation pit, and precipitate density measurements were done using the QTM 720 , whlle grain boundary length measurements were done using an Olympus HBM microscope. Data from these measurements are herein presented.

A. HEM Sllicon Samples:

The HEM samples were recelved after they have been wafered and cut Into approximately $2 \mathrm{~cm} \times 2 \mathrm{~cm}$ coupons. The samples have not undergone any type of polishing and the surfaces were dull. Saw marks were also vislble on the sample surfaces. Test samples were chemically pollshed to determine whether surfaces sultahle for QTM 720 analysis can be produced. The results showed that mechanlcal pollshing prior to chemical pollshing was necessary for QTM analysis. The mechanical polishing procedures have been discussed In the previous section. Chemical polishing times ranged from 60 to 90 seconds, and etching time was 50 seconds.

The one hundred and flfteen HEM samples were recelved in two batches. The first batch ${ }^{9}$ consisted of 24 single crystal and 19 polycrystalline samples cut from Wafer Numbers $4 \mathrm{~T}-20,4 \mathrm{~B}-20,3 \mathrm{~T}-20,3 \mathrm{~B}-20$, 103, 5 and 53. These samples were characteriged for sillcon carbide preclpitate density, twin density, and graln boundary length. A few dislocation pits were also observed but were not quantlatively characterized. The dislocation pit density for these samples would be in the order of 10^{2} pits per cm^{2}. This value was arrived at by comparison of these samples with other HEM samples in which the cilslocation pit density was measured. For the single crystals, only silicon carbide precipltates were observed and measured. The results are given in

Table 3 This table shows that precipltate density ranges from 1.159 E-03 preclpltates per $\mu \mathrm{m}^{2}$ for sample A-17 to $1.503 \mathrm{E}-02$ precipitates per $\mu \mathrm{m}^{2}$ for sampie $\mathrm{A}-25$. The average precipitate density of the single crystal samples is $5.149 \mathrm{E}-\Omega 3$ precipitates per $\mu \mathrm{m}^{2},\left(5 \times 10^{5}\right.$ precipitates per cm^{2}) with a standard deviation of $3.347 \mathrm{E}-03$. On the other hand, the polycrystalline samples were characterized for twin and graln boundaries, in addition to the sllicon carblde preclpitates, and the results are shown in Table 4. For the preclpitate density, the values ranged from 1.697 E-03 precipitates pr $\mu \mathrm{m}^{2}$ to $1.207 \mathrm{E}-\mathrm{S} 2$ prectptates per μ^{2} for samples B-8 and B-1, respectively. The average preclpitate density of the polycrystalline group is 4.384 E-03 precipitates per $\mu \mathrm{m}^{2},\left(4 \times 10^{5}\right.$ precipitates per $\left.\mathrm{cm}^{2}\right)$ with a standard devtation of 3.490 E-03. Comparing the average preclptate densities of the single crystal and polycrystalline groups, there seems to be no slgnificant difference between the values obtalned. This suggests thet no preferentlal precipltation of sllicon carbide occurs on the polycrystalilne samples. It was also observed that samples B-1, $\mathrm{B}-2, \mathrm{~B}-3$ and $\mathrm{A}-25$ which had the highest preciplate densities (10^{6} prectpltates per cm^{2}) were cut from the same wafer. (Wafer No. 53). This must have been influenced by the position of this partlcular wafer in the ingot. For the twin density, sample $\mathrm{B}-10$ has the highest with 0.174 lines per cm^{2} while sampe $\mathrm{B}-9$ has the lowest with no twin boundaries. There must have been some mistake in the inclusion af
sample B-9 In the plycrystalline group because it also showed no grain boundarles. The average twin density of the " B " samples is 0.051.

For the grain boundary length per unlt area, sample $B-10$ has the highest unlt 0.838 mm per mm^{2} while sample $B-9$ showed no grain boundarles. The average grain boundary length per unlt area is 0.312 mm per mm^{2} with a standard deviation of 0.222 .

The second batch ${ }^{11}$ of HEM samples consisted of seventy-two specimens whlch were cut from 14 wafers of Run 41-48C. A summary of the results of the measurements is shown \ln Table 5. The dislocation plt denslty ranges from 0.349 to 25.556 pits par mm^{2}, with an average of 3.752 pits per mm^{2} which is equivalent to 375 plts per cm^{2}. The dislocation pit density was obtained manually because the dislocation plts and preclpitate particles were of the same shade of contrast and size that the QTM 720 would not be able to distingutsh one from the other. Therefore, the dislocation pit density was measured using an Olympus HBM microscope with a total magnification of 1100X.,

The twin boundary denstty ranges from 0 to 124.943 lines per mm^{2} with an average of 16.437 lines per mm^{2}. Finally, the graln boundary length ranges from 0 to 0.937 mm per mm^{2}, with an average of 0.315 mm per mm^{2}.

An average of all the data obtained for each of the wafers was also calculated and the results are shown in Table 6. This

Information will be useful in plotting defect concentrations as a function of position in the ingot. The distribution of sllicon carbldes and lts concentration relative to the dislocation plts are shown \ln Figures 2 and 3 .

B. EFG Sllicon Samples:

The thirty-elght (38) EFG samples were recelved in two batches. The flrst batch ${ }^{8}$ conslsted of 25 samples and the second batch ${ }^{12}$ consisted of 13 samples. The as-received surfaces of the EFG samples were shiny and relatively flat so that 5 seconds of chemioal pollishiñ wās eñough, A 45-second etch in Etching Solution iII revealed the structural defects on the sample surface. These samples were characterlzed for dislocatlons, twin boundaries, and grain boundarles.

Table 7 shows a summary of the results for the twenty-five (25) samples the first batch which consisted of Runs 17-139, $\mathrm{CO}_{2} \mathrm{OFF}$; 17-139, CO_{2} ON; 17-143, CO_{2} OFF; 17-143 $\mathrm{CO}_{2} \mathrm{ON}$; and 17-143. The dislocation pit density varles from 4.632 E-03 pits per $u^{2}{ }^{2}$ $\left(4.6 \times 10^{5}\right.$ plts per $\left.\mathrm{cm}^{2}\right)$ to $3.503 \mathrm{E}-02$ pits per $\mathrm{um}^{2}\left(3.5 \times 10^{6} \mathrm{pts}\right.$ per cm^{2}). The twin density varies from 96.8 to 1192.7 lines per mm^{2} and the grain boundary length per unlt area varies from 0.112 to 1.326 mm per mm^{2}. The run averages were also calculated and the
results are shown in Table 8.
Run 17-139, CO_{2} OFF has the lowest average dislocation pl: denslty with $1.299 \mathrm{E}-02 \mathrm{p}$ pts per $\mu \mathrm{m}^{2}\left(1.3 \times 10^{6}\right.$ plts per $\left.\mathrm{cm}^{2}\right)$ whlle run 17-146 has the highest average dislocation pit density at 2.599 E-02 plts per $\mu \mathrm{m}^{2}\left(2.6 \times 10^{6}\right.$ plts per cm^{2}). Run $17-139, \mathrm{CO}_{2} \mathrm{ON}$ has the lowest average twin density with 212.8 Ines pr mm^{2} whlle run 17-139, CO_{2} OFF has the highest average twin density with 584.9 Ines per mm^{2}, With respect to the average grain boundary length, run 17-139, CO_{2} OFF has the lowest with 0.271 mm peir mm^{2} while run 17-139, CO_{2} ON has the hlghest at 9.568 mm per mm^{2}.

From the averages calculated in Table 8, the use of a CO_{2} atmosphere does not seem to have any effect on the denslty of structural defects, For run 17-139, the dislocation plt density is higher with CO_{2} ON than with CO_{2} OFF while the twin density is higher with CO_{2} OFF than with $\mathrm{CO}_{2} \mathrm{ON}$. The graln boundary length per unlt area is also higher in run 17-139 with CO_{2} ON than with CO_{2} OFF, For run 17-143, however, the results are reversed. The dislocation pt cienslity is higher with CO_{2} OFF while the twin density is higher with $\mathrm{CO}_{2} \mathrm{ON}$. There is no significant difference in the grain boundary length with or without CO_{2}. The various thermal and mechanical processes during
the solddification process determine the type and concentration of structural defects.

The second batch ${ }^{12}$ of EFG samples conslsted of 13 wafers and a summary of the characterization results is given In Table 9. The dislocation plt density ranges from 8.7 E-03 to 3.8 E-92 plts per $\mu \mathrm{m}^{2}$ with an average of 2.5 E-02 plts per $\mu^{2}\left(2.6 \times 10^{6}\right.$ plts per cm^{2}). The twin denslty ranges from 79.9 to 1441.1 lines per mm ${ }^{2}$ with an average of 740.8 lines per mm^{2}. Finally, the grain boundary longth ranges from 0.049 to $0.905 \mathrm{~mm}^{\mathrm{mm}} \mathrm{mm}^{2}$, wlth an average of 0.273 mm per mm^{2}. The second batch of EFG samples had higher dislocation pit densitles and twin densities than the first baten. Photomlcrograpts are shown in Flgures 4, 5, 6, and 7. These photomlcrographs show the inhomogeneous distribution of defects on the EFG sample surface wherein defects tend to concentrate in certaln areas, leaving large defect-free areas. They also show that many of the $t w \ln$ boundarles present are free from dislocation plle-up. According to Schwuttke ${ }^{13}$, this type of twins are not electrically active and do not affect the conversion efficlency.

Large area ($50 \mathrm{~cm}^{2}$) cells have been fabricated from Run 17-143 as reported in reference 17. A total of nine cells were processed and tested. The average conversion efficiency was found to be 9.6% for a ribbon with 0.2% to $0.33 \% \mathrm{CO}_{2}$ applied to the growth catridge. Reference 17 also lists conversion efficiency to be 5.4% for cells
fabricated from Run 17-139 without CO_{2} in growth ambient. Higher efficiency of 7.3% was oktained for Run 17.139 with $0.23 \% \mathrm{CO}_{2}$ in growith amblent.

C. SOC Sllicon Samples:

The twenty-three (23) sllicon-on-Ceramics ${ }^{7}$ samples consisted of 19 flat samples and 4 side mounted specimens. The sample surface topography was very uneven due to irregular dendritic growth extending deep from the surface. The photomiciographs in Figures 8 and 9 show ridges and valleys which correspond to the dendritic growth. Enormous amounts of grain boundaries are present in these samples as shown in Figures 10 and 11. Figures 12 and 13 also show interactions between structural defects in the form of dislocations plling-up against twin and grain boundaries. These samples were characterized for dislocation pit density, twin density, and grain boundary length, and the results are summarized in Tables 10, 11 and 12 , respectively،

This batch of SOC samples has a dislocation pit density that ranges from 5.9 E-03 to 7.0 E-02 pits per um ${ }^{2}$, with an ayerage of 1.8 E-02 pits per $\mu \mathrm{m}^{2}\left(1.9 \times 10^{6}\right.$ pits per $\left.\mathrm{cm}^{2}\right)$. It has an
average twin denslty of 778.3 lines per mm^{2}, with a range 533.2 to 1072.0 lines per mm^{2}. The average grain boundary length unit area is 11.84 mm per mm^{2}, with values ranging from 4.96 to 19.15 mm per mm^{2}.
D. Dendritic Web Silicon Samples:

Ten (10) Dendritic Web ${ }^{6}$ samples were also recetved for characterization. The as-recelved sample surfaces were observed to be well pollshed and the samples were chemically etched without any chemical polishing. Optical examination of the prepared surfaces revealed that the only structural defects present in the plane of polish were dislocation pits. Therefore, these samples were analyzed for dislocation pits only.

The results of the dislocation pit density measurements are given In Table 13. The dendritic web samples have an average dislocation pit denslty of 2.8 E-04 pits per $\mu^{2}\left(2.9 \times 10^{4}\right.$ plts per $\left.\mathrm{cm}^{2}\right)$, with a range of 1.8 E-04 to 5.7 E-04 pits per mm^{2}.

E. Step-Etching of Seven Samples:

MRI has also done step-etching ${ }^{10}$ on seven solar cells, 3 from HAMCO and 4 EFG solar cell materials, and the results are shown in Tables 14-18. It is felt that the results are inconclusive at this stage and that several sources of errors may be present in the procedure used.

MRI is proposing to JPL that more step-etching tests be done using an improved procedure to insure rellability of results.

SECTION V

CONCLUSIONS

 their conversion efficiencles are expected to be lower. Dislocationplt densities of the order of 10^{2} plts per cm^{2} have also been observed on the HEM samples.

The Mobll Tyco EFG samples have a relatively higher defect density compared to the HEM or Web samples. The thirty-elght (38) samples have an overall average dislocation pit density of 1.939 E-02 pits per $\mu \mathrm{m}^{2}\left(2 \times 10^{6}\right.$ pits per $\left.\mathrm{cm}^{2}\right)$. The average twin density is 461 lines per mm^{2} and the average grain boundary length is 0.426 mm per mm^{2}. In Table 21, thirty-eight samples are divided into three classifications, on whether a CO_{2} atmosphere was used. This information was not avallable on eighteen (18) samples. It is expected that slightly lower conversion effictenctes would be obtained from this type of solar cell material compared to either the Dendritic Web or the single crystal HEM samples, based only on the density of structural defects.

The use of a CO_{2} atmosphere does not seem to have any significant effect on the .surface defect densities as shown In Table 21. However, reports ${ }^{14-17}$ show increased conversion efficiencles in runs with $\mathrm{CO}_{2} \mathrm{ON}$. This enhancement may then be due to another mechanism that is independent of structural defect concentration.

The silicon-on-Ceramics samples had the highest defect densities among all the samples. The samples have an average dislocation pit density of 1.86 E-02 pits per $\mu \mathrm{m}^{2}\left(2 \times 10^{6}\right.$ pits per $\left.\mathrm{cm}^{2}\right)$, an average twin density of 778.3 lines per mm^{2} which is much higher than the twin density
for the EFG samples, and a grain boundary length of 11.8 mm per mm^{2}. The grain boundary length of the SOC samples is approximately 28 times larger than the graln boundary length of the EFG samples. The high concentration of structural defects and the Interactions between these defects would result in lower convarsion efficlencies. It is suggested that all the above samples be processed Into solar cells and tested for their conversion efficlencles. Then, an empirical relationship may be developed between the type and density of the defects and the conversion efficiency.

SECTION VI

REFERENCES

1. R. Natesh, H. A. Qldwal: "Quantltative Analysis of Defects In Slitcon", One - Tlme Report on Crystal Etchlng Preparation Technlque, DOE/JPL 954977, Materlals Research, Inc,, Technical Report: MRI - 259, 1978.
2.. R. Natesh, J. M. Smlth, T. Bruce, H. A. Qidwal: "Quantltative Analysis of Defects in Silicon", Final Report, DOE/TPL 954977, Materials Research, Inc., Technlcal Report: MRI-276, 1980.
2. R. Natesh, J M. Smith: "Quantltative Analysis of Defects in Silicon", Monthly Technical Letter Progress Report No. 10, DOE/JPL 954977, Materlals Research, Inc., Technical Report: MRI - 270, 1979.
3. R. Natesh, J. M. Smith, H. A. Qldwal, T. Bruce: "Quantltatlve Analysis of Defects in Silicon", Quarterly Progress Report, DOE/ JPL 954977, Materlals Research, Inc., Technical Report: MRI 273, 1979.
4. E. Underwood, Quantitative Stereology, Addlson - Wesley Publishing Co., Mass., 1970.
5. R. Natesh, M. Plichta, J. M. Smith: "Analysls of Defect Structure in Sllicon", Informal Technical Report, DOE/JPL 955676, Materlals Research, Inc., Technical Report: MRI-280, 1980.
6. R. Natesh, M. Mena, J. M. Smith, M. A. Sellani: "Analysis of Defect Structure \ln Silicon", Characterization of Silicon - onCeramics Materlal, Informal Technical Report, DOE/JPL 955676, Materials Research, Inc., Technical Report: MRI-281, 1981.
7. R. Natesh, M. Mena, J. M. Smith, M. A. Sellant: "Analysis of Defect Structure in Sllicon", Mobll Tyco EFG Samples, Informal Technical Report, DOE/JPL 955676, Materials Research, Inc., Technlcal Report: MRI-282, 1981.
8. R. Natesh, M. Mena, M. A. Sellanl: "Analysis of Defect Structure In Silicon", Single Crystal and Polycrystalline HEM Materlal, Informal Technical Report, DOE/JPL 955676, Materials Research, Inc., Technical Report: MRI - 283., 1981.
9. R. Natesh" M. Mena, J. M. Smlth, M, A. Sellanl: "Analysis of Defect Structure in Sllicon", Characterlzation of HAMCO and EFG Solar Cells, Informal Technical Report DOE/TPL 955676, Materlals Research, Inc., Technical Report: MRI-284, 1981.
10. R. Natesh, M. Mena, J. M. Smlth, M. A. Sellant: "Analysis of Defect Structure \ln Sllicon", Characterization of HEM Solar Cell Materlal, Informal Technical Report, DOE/JPL 955676, Materials Research, Inc., Technical Report: MRI - 285, 1981,
11. R. Natesh, M. Mena, J, M. Smlth, M. A. Sellanl: "Analysis of Defect Structure in Sllicon", Characterization of Mobll Tyco EFG Sheet Materlal , Informal Technical Report, DOE/JPL 955676, Materlals Research, Inc., Technical Report: MRI-286, 1981.
12. G. H. Schwuttke, T. F. Clszek, A. Kron: "Sllicon Ribbon Growth by a Caplllary Action Shaping Technique", Final Report, DOE/JPL 954144, IBM Corporation, 1977.
13. H. I. Yoo, P. A. Iles., D. C. Leung: "Sllicon Solar Cell Process Development, Fabrication and Analysis", Seventh Quarterly Report DOE/JPL 955989, Optical Coating Laboratory, Inc., 1980.
14. F. V. Wald, et. al.: "Large Area Silicon Sheet by EFG", Fourth Quarterly Report, DOE/JPL 954355, Mobil Tyco Solar Energy Corporation, 1980.
15. J. P. Kalejs, et. al.; "Large Area Silicon Sheet by EFG", First Quarterly Report, DOE/JPL 954355, Mobil Tyco Solar Energy Corporation, 1981.
16. J.P. Kalejs: " Large Area Silicon Sheet by EFG ", Quarterly Report, January 1982, Mobil Tyco Solar Energy Corporation.

Figure 2. Silicon Carbide Precipitate Particles, HEM Sample (250X)

Figure 3. Dislocation Pits, HEM Sample (500X)

Figure 4. Region of High Twin Density, EFG Sample (200X)

Figure 5. Region of High Dislocation Pit Density but no Twins, EFG Sample (200X)

ORIGINAL PAGE
 BLACK AND WHITE PHOTOGRAPH

Figure 6. Twins Free from Dislocation Pile-up, EFG Sample (200x)

Figure 7. Twins with Dislocation Pile-up, EFG Sample (200X)

ORIGINAL' PAGE
BLACK AND WHITE PHOTOGRAPH

Figure 8. Dendritic Growth in SOC sample showing sharp changes in surface topography. (50 X)

Figure 9. Higher magnification view of a region inside dendrites. (500 X)

Figure 10. Twins and Grain Boundaries, SOC Sample (75X)

Figure 11. Grain Boundaries and Heavy Twinning, SOC Sample (100X)

Figures 12 and 13. Dislocation Pile-up on Twin and Grain Boundaries, SOC Sample (500X)

TABLE 1

EQUATIONS FOR SYSTEMS OF LINES IN A PLANE 5

Type of System	Isometric Llnes, $\left(L_{A}\right)_{i s}=$	Oriented Lines $\left(L_{A}\right)_{\text {or }}=$	Total Spectflc Line Length, $L_{A}=$
Isometric	$1.571 \mathrm{P}_{\mathrm{L}}$	-	$1.571 \mathrm{P}_{\mathrm{L}}$
Orlented	-	$\left(\mathrm{P}_{L}\right)_{\perp}$	$\left(P_{L}\right)_{\perp}$
Partlally Oriented	$1.571\left(\mathrm{P}_{\mathrm{L}}\right)_{1}$	$\left(P_{L}\right)_{\perp}-\left(P_{L}\right.$	$\left(\mathrm{P}_{\mathrm{L}}\right)_{\perp}+0.571$

TABLE 2

CALIBRATION OF VIDEO DISPLAY ON THE OLYMPUS HBM MICROSCOPE Grid Size is $11 \times 11 \mathrm{cms}$.

Microscope Objective	Total Magnification	Length of Test Line	Area of Grid
10 X	290 X	.380 mm	$.1444 \mathrm{~mm}^{2}$
20 X	580 X	.190 mm	$.0361 \mathrm{~mm}^{2}$
40 X	1100 X	.100 mm	$.0100 \mathrm{~mm}^{2}$

$4 T-20,4 \mathrm{~B}-20,3 \mathrm{~T}-20,3 \mathrm{~B}-20,103,5$ and 53

Sample Number	Precipitate Density precipitates per $\mu \mathrm{m}$
A1	$1.883 \mathrm{E}-03$
A2	$6.095 \mathrm{E}-03$
A3	$5.475 \mathrm{E}-03$
A5	$4.367 \mathrm{E}-03$
A6	$8.840 \mathrm{E}-03$
A7	$9.910 \mathrm{E}-03$
A8	$4.291 \mathrm{E}-03$
A9	$8.336 \mathrm{E}=03$
A10	$1.592 \mathrm{E}-03$
A11	$7.585 \mathrm{E}-03$
A12	$6.963 \mathrm{E}-03$
A13	$6.673 \mathrm{E}-03$
A14	$7.133 \mathrm{E}-03$
A15	$1.159 \mathrm{E}-03$
A16	$7.367 \mathrm{E}-03$
A17	$1.159 \mathrm{E}-03$
A18	$2.896 \mathrm{E}-03$
A19	$2.387 \mathrm{E}-03$
A20	$1.918 \mathrm{E}-03$
A21	$3.802 \mathrm{E}-03$
A22	$3.647 \mathrm{E}-03$
A23	$2.589 \mathrm{E}-03$
A24	$1.466 \mathrm{E}-03$
A25	$1.503 \mathrm{E}-02$
Batch Average	$5.149 \mathrm{E}-03$
SD	$3.347 \mathrm{E}-03$

TABLE 4
ANALYSIS OF HEM POLYCRYSTALLINE ("B") SAMPLES, WAFER NUMBERS:
$4 \mathrm{~T}-20,4 \mathrm{~B}-20,3 \mathrm{~T}-20,3 \mathrm{~B}-20,103,5$ and 53

Sample Number	Precipltate Density, precipitates per $\mu \mathrm{m}^{2}$	Twin Density lines per mm^{2}	Grain Boundary Length, mm per mm^{2}
B1	$1.207 \mathrm{E}-02$	0.040	0.140
B2	$1.088 \mathrm{E}-02$	0.011	0.314
B3	$1.086 \mathrm{E}-02$	0.009	0.035
B4	8.741 E-03	0.011	0.070
B5	$5.433 \mathrm{E}-03$	0.045	0.524
B6	3.717 E-03	0.045	0.524
B7	2.867 E-03	0.107	0.489
B8	$1.697 \mathrm{E}-03$	0.027	0.175
B9	1.827 E-03	0	0
B10	$2.170 \mathrm{E}-03$	0.174	0.838
B11	$2.510 \mathrm{E}-03$	0.011	0.593
B12	$2.024 \mathrm{E}-03$	0.113	0.454
B13	$3.326 \mathrm{E}-03$	0.040	0.244
B14	$1.907 \mathrm{E}-03$	0.071	0.244
B1 6	$2.205 \mathrm{E}-03$	0.153	0.244
B17	$3.275 \mathrm{E}-03$	0.017	0.035
B1 8	$2.008 \mathrm{E}-03$	0.018	0.454
B19	2.575 E-03	0.061	0.279
B20	$2.441 \mathrm{E}-03$	0.085	0.279
Batch			
Average	$4.384 \mathrm{E}-03$	0.055	0.312
SD	$3.490 \mathrm{E}-03$	0.051	0.222

SUMMARY OF RESULTS FOR SEVENTY-TWO FEM SAMPLES

Sample Number	Dislocation Pit Density, plts per mm^{2}	Precipltate Density, precipitate per $\mu \mathrm{m}^{2}$	Twin Density, lines per mm^{2}	Grain Boundary Length, mm por mm^{2}
1A2-1	1.667	$1.990 \mathrm{E}-03$	0	0.022
1A2-2	1.951	$1.954 \mathrm{E}-03$	0	0
1A2-3	3.333	$3.102 \mathrm{E}-03$	3.059	0
2A2-5	1.442	$2.058 \mathrm{E}-03$	1.413	0.201
2A2-6	1.456	$2.480 \mathrm{E}-03$	39.716	0.254
1B4-1	2.691	$5.194 \mathrm{E}-03$	15.425	0.117
1B4-2	1.844	$2.615 \mathrm{E}-03$	0	0
1B4-L	0.997	$2.417 \mathrm{E}-03$	0	0.052
2B4-1	0.699	$3.700 \mathrm{E}-03$	2.454	0.419
2B4-2	3.320	$5.173 \mathrm{E}-03$	4.153	0.838
2B4-3	5.590	3.157 E-03	16.848	0.445
3B4-1	1.404	1.670 E-03	0	0.055
3B4-2	1.185	$2.919 \mathrm{E}-04$	0	0
4B10-1	1.361	1.329 E-03	8.105	0.150
4B10-2	1.014	$1.162 \mathrm{E}-02$	9.315	0.273
4B10-3	0.787	6.078 E-03	22.735	0.144
7B8-1	4.000	$3.231 \mathrm{E}-03$	16.286	0.489
7B8-2	6.444	$2.113 \mathrm{E}-03$	27.378	0.524
7B8-3	2.667	$1.417 \mathrm{E}-03$	23.449	0.419
7B8-5	2.000	9.775 E-0.4	38.777	0.349
7B8-6	4.222	$1.892 \mathrm{E}-03$	68.868	0.489
7B8-7	10.222	$1.914 \mathrm{E}-03$	0	0.070
7B8-9	4.889	$1.657 \mathrm{E}-03$	13.752	0.454
7B8-10	2.167	$4.135 \mathrm{E}-03$	1.539	0.131
7B8-11	5.882	$9.044 \mathrm{E-04}$	7.989	0.334

TABLE 5 CONTINUED

SUMMARY OF RESULTS FOR SEVENTY - TWO HEM SAMPLES

Sample	Dislocation Pit Density, pits per mm				
		Precipitate Density, precipitates per μ^{2}	Twin Density, lines per mm		Grain Boundary Length,
				mm per mm	

TABLE 5 CONTINUED

SUMMARY OF RESULTS FOR SEVENTY -TWO HEM SAMPLES

Sample Number	Dislocation Pit Density, pits per mm ${ }^{2}$	Precipltate Density, precipitates per $\mu \mathrm{m}^{2}$	Twin Density, lines per mm^{2}	Graln Boundary Length, mm per mm^{2}
7M2-12	8.889	3.373 E-03	6.117	0.454
7M2-14	25.556	$8.467 \mathrm{E}-03$	19.441	0.803
7M2-15	4.444	$6.644 \mathrm{E}-03$	12.595	0.384
7M2-16	3.556	$3.281 \mathrm{E}-03$	0	0.244
7M2-19	11.000	$3.407 \mathrm{E}-03$	17.745	0.244
7T7-1	4.127	$3.299 \mathrm{E}-03$	7.976	0.150
7T7-2	6.667	$2.434 \mathrm{E}-03$.11.208	0.224
7T7-3	3.167	4.571 E-03	31.734	0.340
7T7-4	2.857	$8.647 \mathrm{E}-03$	24.571	0.324
7T7-5	3.167	$4.389 \mathrm{E}-03$	50.215	0.419
7T7-6	1.789	$4.608 \mathrm{E}-03$	124.943	0.230
7T7-7	1.754	$3.854 \mathrm{E}-03$	23.412	0.138
7T7-8	5.200	$7.654 \mathrm{E}-03$	25.003	0.128
7T7-9	3.758	$3.507 \mathrm{E}-03$	49.668	0.282
7T7-10	3.454	4.818 E-03	28.845	0.217
7T7-11	4.615	$1.804 \mathrm{E}-03$	46.132	0.242
7T7-12	3.810	2.307 E-03	88.872	0.474
9A7-1	2.763	7.390 E-03	1.884	0.145
9A7-2	0.524	1.805 E-03	1.355	0.105
9A7-3	15.700	$3.060 \mathrm{E}-03$	39.560	0.663
9A7-4	4.540	1.879 E-03	6.869	0.419
9A7-5	1.750	6.101. E-03	10.195	0.079
Average	3.752	$3.482 \mathrm{E}-03$	16.437	0.315

TABLE 6

WAFER AVERAGES FOR SEVENTY-TWO HEM SAMPLES

Wafer Number	Dislocation Pit Density, pits per mm ${ }^{2}$	Precipitate Density, preciplates per $\mu \mathrm{m}^{2}$	Twin Density, llnes per mm ${ }^{2}$	Grain Boundary Length, mm per mm^{2}
1 A2	2.317	2.349 E-03	1.170	0.007
2A2	1.449	$2.269 \mathrm{E}-03$	20.565	0.228
1B4	1.844	$3.409 \mathrm{E}-03$	5.142	0.056
2B4	3.203	$4.010 \mathrm{E}-03$	7. 818	0.567
3B4	1.295	9.810 E-03	0	0.028
4B10	1.054	$2.856 \mathrm{E}-03$	13.385	0.189
7B8	3.929	$1.861 \mathrm{E}-03$	18.658	0.321
$1 \mathrm{C4}$	1.456	$5.469 \mathrm{E}-03$	16.564.	0.399
2 C 4	5.240	1.670 E-03	5.090	0.694
3 C 8	3.329	$2.065 \mathrm{E}-03$	14.049	0.466
4C4	0.641	$1.386 \mathrm{E}-03$	9.053	0.193
7 M 2	6.480	$5.841 \mathrm{E}-03$	7.779	0.392
7 T 7	3.697	$4.324 \mathrm{E}-03$	42.714	0.264
$9 \mathrm{A7}$	5.037	$4.047 \mathrm{E}-03$	11.973	0.282

TABLE 7

ANALYSIS OF MOBIL - TYCO EFG SAMPLES

Sample Number	Dislocation Pit Density, per $\mu^{2}{ }^{2}$	Twin Density, per mm^{2}	Grain Boundary Length, $\mathrm{mm} / \mathrm{mm}^{2}$
EFG 17-139-A	$1.545 \mathrm{E-} 02$	453.553	0.568
$\left(\mathrm{CO}_{2} \mathrm{OFF}\right) \mathrm{B}$	1.264 E-02	403.335	0.171
2 C	$7.337 \mathrm{E}-03$	1192.780	0.114
D	$2.490 \mathrm{E}-02$	179.962	0.229
E	$4.632 \mathrm{E}-03$	695.013	-
EFG 17-139-F	2.070E-02	144.057	0.514
$\left(\mathrm{CO}_{2} \mathrm{ON}\right) \mathrm{G}$	$3.292 \mathrm{E}-02$	204.798	0.600
H	$9.712 \mathrm{E}=03$	322.519	0.379
I	$7.616 \mathrm{E}-03$	96.891	0.400
J	1.597E-02	295.899	0.947
EFG 17-143-A	$3.022 \mathrm{E}-02$	499.521	0.189
$\left(\mathrm{CO}_{2} \mathrm{OFF}\right) \mathrm{B}$	$1.415 \mathrm{E}-02$	611.570	1.326
2 C	2, $219 \mathrm{E}-02$	289.859	0.253
D	$1.346 \mathrm{E}-02$	228.574	0.286
E	$1.530 \mathrm{E}-02$	368.774	0.540
EFG 17-143-F	$8.796 \mathrm{E}-03$	473.206	0.180
$\left(\mathrm{CO}_{2} \mathrm{ON}\right) \mathrm{G}$	$8.673 \mathrm{E}-03$	763.666	0.267
2 H	$1.773 \mathrm{E}-02$	349.726	0.293
I	1.887 E-02	331.244	0.706
J	$2.379 \mathrm{E}-02$	354.361	1.123
EFG 17-146-A	$2.824 \mathrm{E}-02$	229.454	0.960
B	$3.130 \mathrm{E}-02$	460.619	0.253
C	$3.503 \mathrm{E}-02$	165.054	0.424
D	$1.253 \mathrm{E}-02$	381.455	0.112
E	$2.283 \mathrm{E}-02$	218.708	0.884

BATCH AVERAGSS OF MOBIL - TYCO SAMPLE MEASUREMENTIS

Batch Number	Dislocation Pit Density, per $\mu \mathrm{m}^{2}$	Twin Density, per mm 2	Grain Boundary Length, $\mathrm{mm} / \mathrm{mm}^{2}$

EFG 17-139 $\left(\mathrm{CO}_{2} \mathrm{OFF}\right)$
a) Average
$1.299 \mathrm{E}-02$
584.929
0.271
b) $S D$
$7.903 \mathrm{E}-03$
385.952
0.284

EFG 17-139
$\left(\mathrm{CO}_{2} \mathrm{ON}\right)$
a) Average
1.738 E-02
212.833
0.568
b) $S D$
$1.011 \mathrm{E}-02$
96.395
0.230

EFG 17-143
$\left(\mathrm{CO}_{2} \mathrm{OFF}\right)$
a) Average
$1.906 \mathrm{E}-02$
399.650
0.519
b) $S D$
$7.141 \mathrm{E}-03$
155.854
0.471

EFG 17-143 $\left(\mathrm{CO}_{2} \mathrm{ON}\right)$
a) Average

1. $557 \mathrm{E}-02$
2. 441
0.514
b) $S D$
$6.644 \mathrm{E}-03$
181.749
0.392

EFG 17-146
a) Average
$2.599 \mathrm{E}-02$
291.058
0.527
b) $S D$
8.748 E-03
124.327
0.378

TABLE 9

SUMMARY OF DISLOCATION PIT DENSITY, TWIN DENSITY, AND GRAIN BOUNDARY LENGTH MEASUREMENTS FOR THE MOBIL TYCO EFG SAMPLES
(Runs 17 - 090 and 217-4D)

Sample Number	Dislocation Pit Density, per $\mu^{2}{ }^{2}$	Twin Density per mm^{2}	Graln Boundary Length, $\mathrm{mm} / \mathrm{mm}^{2}$
JPL 5-1459-A1	$1.834 \mathrm{E}-02$	741.888	0.182
JPL 5-1459-Bl	$3.412 \mathrm{E}-02$	306.540	0.136
JPL 5-1459-Cl	$1.951 \mathrm{E}-02$	1142.460	0.143
JPL 5-1459-D1	8.777 E-03	750.317	0.190
JPL 5-1459-E1	$1.026 \mathrm{E}-02$	747.730	0.150
JPL 5-1459-Fl	$2.226 \mathrm{E}-02$	638.795	0.182
TPL 5-1459-G1	$2.692 \mathrm{E}-02$	464.212	0.087
JPL 5-1459-H1	1.275 E-02	1441.190	0.045
TPL 5-5459-I1	$7.798 \mathrm{E}-02$	1044.880	0.143
JPL 5-1459-T1	$2.617 \mathrm{E}-02$	850.496	0.571
JPL 5-1508-F	$2.005 \mathrm{E}-02$	864.541	0.905
JPL 5-1508-G	$1.609 \mathrm{E}-02$	558.001	0.409
JPL 5-1508-J	$3.865 \mathrm{E}-02$	79.940	0.400
Batch Average	$2.553 \mathrm{E}-02$	740.845	0.273

TABLE 10

ANALYSIS OF HONEYWELL SAMPI,ES, SOC RUN 195 - DISLOCATION

DENSITY

Sample Number	Number Of Flelds Taken	Average Dislocation Density, pits per $\mu \mathrm{m}^{2}$
B2	0^{b}	-
B3	10	$1.5013 \mathrm{E}-02$
B4	25	2.1918 E-02
D2	$3{ }^{\text {a }}$	$8.7300 \mathrm{E-03}$
D3	$5{ }^{\text {a }}$	1.3280 E-02
D4	25	1.2532 E-02
H1L	$5^{\text {a }}$	$7.0180 \mathrm{E}-02$
H1R	5	7.1800 E-03
H2L	25	$9.4530 \mathrm{E}-03$
H2R	25	$1.7050 \mathrm{E}-02$
H5L	25	$5.9459 \mathrm{E}-03$
H5R	36	$9.2352 \mathrm{E}-03$
T1L	10	1.2229 E-02
T1R	10	$2.4692 \mathrm{E}-02$
T2L	26	$7.6482 \mathrm{E}-03$
T2R	36	7.6761 E-03
T5L	25	7.8268 E-03
T5R	25	$1.0575 \mathrm{E}-02$
M	16	6.9893 E-03
B5E	$4^{\text {a }}$	3.8191 E-02
B1E	$3^{\text {a }}$	2.4200 E-02
D5E	$4^{\text {a }}$	3.4410 E-02
ME	$4^{\text {a }}$	$5.2938 \mathrm{E}-02$
Average		$1.864 \mathrm{E}-02$

a - Measured Manually
b-No Silicon on surface

TABLE 11

ANALYSIS OF HONEYWELL SAMPLES, SOC RUN 195-TWIN DENSITY

Sample Number	Number Of Flelds 'Jaken	Average Twin Density (per mm^{2})	Standard Deviation	Relative Error at 90\% Confidence (\%)
B2	$0^{\text {a }}$			
B3	$18^{\text {b }}$	909.5106	202.3057	9.12
B4	31	624.6091	319.2,008	15.10
D2	$5^{\text {b }}$	897.3880	166.5779	17.70
D3	$12^{\text {b }}$	978.7627	236.6235	12.53
D4	32	822.3684	317.5137	11.23
H1L	$10^{\text {b }}$	808.8643	427.8349	30.66
H1R	$10^{\text {b }}$	1072.0222	267.3229	14.45
H2L	32	568.7327	430,6487	22.02
H2N	32	801.0285	373.5975	$1 \overline{3} .56$
H5L	32	533.2410	192.1538	10.48
H5R	32	624.1343	244.1130	10.36
TIL	$32^{\text {b }}$	625.0000	304, 8766	14.19
T1R	$32^{\text {b }}$	1034.4529	269.6022	7.58
T2L	32	892.4861	432.0150	14.08
T2R	32	654.4321	306.0798	13.60
T5L	32	719.3560	315.9518	12.77
T5R	32	909.7992	430.8287	13.77
M	32	534.1066	336.8394	18.32
Average		778.3500		

a - All the sllicon has been etched out
b-Plenty of uncovered areas

ANALYSIS OF HONEYWELL SAMPLES V-00578-GRAIN BOUNDARY LENGTH

Sample Number	Number Of Fields Taken	Average Grain Boundary Length ($\mathrm{mm} / \mathrm{mm}^{2}$)	Standard Deviation	Relative Error at 90\% Confidence (\%)
B2	$0^{\text {a }}$	-	-	-
B3	$18^{\text {b }}$	16.7611	5.8463	14.31
B4	31	9.0151	4.9943	16.37
D2	$5^{\text {b }}$	15.8789	3.8895	23.35
D3	$12^{\text {b }}$	15.0850	2.7503	9.45
D4	32	13.5962	7.4908	16.02
H1L	$10^{\text {b }}$	10.4801	3.6823	20.37
H1R	$10^{\text {b }}$	13.9735	2.6781	11.11
H2L	32	6.5501	3.6910	16.39
H2R	32	6.4508	3.8250	17.24
H5L	32	7.9395	2.9084	10.65
H5R	32	9.4281	4.4537	13.74
TlL	$32^{\text {b }}$	19.1540	6.2214	9.45
TlR	32 b	17.2684	4.7680	8.03
T2L	32	13.3979	4.6152	10.02
T2R	32	10.7183	4.4731	12.14
T5L	32	9.3289	5.0335	15.69
25 R	32	13.1994	5.5366	12.20
M	32	4.9622	3.9466	23.13
Average		11.8440		

a - All the Silicon has been etched out
b - Plenty of uncovered areas

TABLE 13

ANALYSIS OF WESTINGHOUSE SAMPLES

JPL Sample Number	No. of Dislocations pits per fleld	No. of Dislocations pits per μ^{2}
J250-4.7-A	17.808	2.737×10^{-4}
J250-4.7-B	14.946	2.298×10^{-4}
J250-4.7-C	12.146	1.867×10^{-4}
J250-4.7-D	16.614	2.554×10^{-4}
J250-4.7-E	15.526	2.387×10^{-4}
J250-4.7-F	15.800	2.429×10^{-4}
J250-4.7-K	16.828	2.433×10^{-4}
J250-4.7-K	37.424	2.554×10^{-4}
J250-4.7-I	27.082	5.753×10^{-4}
J250-4.7-		

TABLE 14
STEP - ETCHING OF SOLAR CELL EFG - 3

Etch Number	Surface Analyzed	Distance from Original Surface mils	Dislocation Pit Density, pits per $\mu \mathrm{m}^{2}$	Twin Density, lines per mm	Grain Boundary Length, mm per mm
1	Top	0	-	71.982	0.240
2	Top	0.75	$1.315 \mathrm{E}-02$	317.080	0.240
	Bottom	0.75	$9.114 \mathrm{E}-02$	168.144	0.240
3	Top	1.55	$3.224 \mathrm{E}-0.2$	72.632	$0.2^{5} \mathrm{~J}$
	Bottom	1.55	$3.930 \mathrm{E}-02$	40.027	0.240

STEP - ETCHING OF SOLAR CELL EFG - 13
STEP - ETCHING OF SOLAR CELL EFG-33

Etch Number	Surface Analyzed	Distance From Original Surface, mils	Dislocation Pit Density, pits per $\mu \mathrm{m}^{2}$	Twin Density, lines per mm ${ }^{2}$	Grain Boundary Length, mm per mm ${ }^{2}$
1	Top	0	-	207.833	0.180
2	Top	1.25	$2.227 \mathrm{E}-02$	386.874	0.180
	Bottom	1.25	$4.324 \mathrm{E}-02$	190.946	0.180
3	Top	2.50	$2.012 \mathrm{E}-02$	382.469	0.180
	Bottom	2.50	$1.425 \mathrm{E}-02$	339.582	0.180

TABLE 18
TABLE 19

Etch Number	Surface Analyzed	Distance from Original Surface, mils	Precipitate Density Z $_{2}$ precipltates per $\mu \mathrm{m}^{2}$	Twin Density lines per mm ${ }^{2}$	Grain Boundary Length, mm per mm^{2}
1	Top	0	0	10.145	0
2	Top	0.90	0	0	0
	Bottom	0.90	0	0	0
3	Top	1.80	3.438 E-03	0	0
	Bottom	1.80	3.965 E-03	0	9

TABLE 20

STEP-ETCHING OF SOLAR CELL HAMCO 108-1					
Etch Number	Surface Analyzed	Distance from Original Surface, mils	Precipitate Density, precipitates per $\mathrm{\mu m}^{2}$	Twin Density ${ }_{2}$ lines per mm	Grain Boundary Length, mm per mm^{2}
1	Top	0	0	0	0
2	Top	0.80	0	0	0
	Bottom	0.80	0	0	0
3	Top	1.55	$3.042 \mathrm{E}-03$	0	0
	Bottom	1.55	5.375 E-03	0	0

TABLE 21

APPENDIX I

QTM 720 TELETYPE PRINTOUTS

ONGINAL PAGE: IS OF POOR QUALITY

EFO-E 17-139 IISLOCATION PITS
OFEFATOF IS JMSJMS MAGNIFICATION=X800
UNITS = MICRONS CALIERATION FACTOR (UNITS/FFI) . 3407
FRAME AREAE 160000 QTM OUTFUT WAS IIIUILIEI BY 1 AND CORRECTEN AVERAGE FEATURE AREA (F'F)= 33.37

FLS	NO.	NO, / AREA	MFFV	MFFH	L/A
1	150.614	8.10965E-03	52.7195	42.6875	. 0349281
2	135.181	7.27868E-03	47.3194	49,5113	. 0335981
3	64.3093	$3.46266 \mathrm{E}-03$	100.022	93.5026	. 0164734
4	00	0	0	0	
5	00	0	0	0	
6	154.68	-32425E-03	45.4267	41.2033	. 037689
7	120.018	$6.46223 E-03$	58.1772	58.0532	. 0291312
8	26.401	1.42153E-03	365,852	375.945	4,46691E-03
9	92.4183	4,97616E-03	83.6074	82.845	. 01.95828
10	138.867	7.47714E-03	49,3321	47.8595	. 0339467
11	12.8259	6.90595E-04	432.635	412.97	3.83402E-03
12	44.9805	2.42192E-03	169.292	158.006	. 0100875
13	116.159	6.25408E-03	46.5526	46.1966	. 0347446
14	6.29308	3.38843E-04	851.75	825.939	1.94453E-03
15	1.16871	$6.29280 \mathrm{E}-05$	4542.67	2595.81	8,07162E-04
16	219.718	. 0118305	29.8369	28.3917	.0567673
17	128,019	6.89304E-03	71,8908	22.2135	. 0367185
18	46,9883	2.53003E-03	272.56	112.628	. 0122175
19	120.977	6.51386E-03	72.2971	57.9299	. 0262603
20	28,5886.	1,53932E-03	326.419	293.075	5.08145E-03
21	. 988912	5.32468E-05	3206.59	37.5169	5.26490E-03
22	3.86575	2.081.47E-04	2477.82	3634.13	5.31993E-04
23	23.674	1.27470E-03	1267.72	825.939	1.62350E-03
24	131.975	7,10603E-03	44.8289	46.9526	. 0363223
25	101.438	5.46183E-03	59.1236	58.8582	. 0288652
26	6.62272	3.56592E-04	370.83	336.494	1.96287E-03
27	223.254	- 0120209	28.9649	25.3662	. 0605188
28	46.6886	2,51389E-03	138.355	83.7358	. 0129421
29	77.8843	4.19359E-03	123.61	80,7585	. 0171614
30	356.278	. 0191834	28.5852	21.4953	. 0670953
********AVEFAGE********					
	NO.	NO, / AREA	MFFV	MFFFH	L/A
	86.0264	4.63199E-03	85.3662	66.2411	. 0210257
	81.9149	4.41061E-03			. 0189511
SE	14.9555	8.05264E-04			3.45999E-03

TT:EDXI:EFGET, DAT
DEFECTS IN SILICON(UERSION 3-日/1/79)

EFG-E 17-139 TWINS
OFERATOR IS JMS MAGNIFICATION=X800
UNITS= MM CALIERATION FACTOR (UNITS/FF)= 3.4O700E-O4 FFAME AREA= 160000 QTM OUTFUT WAS IIIUILEII EY 1 AND CORRECTED AVERAGE FEATURE AREA (FFF)=2804

FLD	NO.	NO, /AFEA	MFFV	MFFH	L/A
1	27.4686	1479.02	. 0223044	8.03064E-03	148.802
2	15.428	830.7	. 085442	. 0135636	79.0652
3	16.235	874.155	. 0765618	. 011198	96.6393
4	14.689	790.913	. 144979	. 0268136	41.5597
5	25.785	1388.36	. 0626575	. 0211205	61.8763
6	1.82703	98.3744	. 345013	. 0679701	15.7672
7	. 879101	47.3342	. 263343	. 142329	9.11726
8	3.65549	196.826	. 265912	. 0337954	31.25
9	42,5685	2292,05	. 0442467	8,95107E-03	116,451
10	5, 4005	290.783	. 109462	. 0323513	33.6898
11	5.76427	310.37	. 231966	. 0339005	31.195
12	22,939	1235.12	. 0287208	8.82357E-03	126.183
13	21.4654	1155.78	. 0521147	. 0130818	76.2676
14	9.73395	524.113	. 0707948	9,76393E-03	107.82
15	14.5649	784.23	. 0256165	. 0103047	126.202
1.6	5.98787	322.41	. 196086	. 017629	58.2991
17	5.84237	314.575	. 071005	- 022025	49.9064
18	4.35164	234.309	. 0916168	. 0254135	39.1657
19	6.91084	372,106	. 0570806	. 0149553	74.4882
20	1,37019	73.776	1.11249	. 13628	7.76893
21	4.9975	269,085	. 114281	. 0247557	43.6601
22	26.1002	1405.34	. 0607038	. 0128173	79,7347
23	11.7668	633.567	. 176414	. 027338	39,3767
24	20.7418	1116.82	. 0761341	. 0151886	71.232
25	6.07275	326.98	. 20727	. 0388262	27.8012
26	7,73395	416.425	. 0548963	.0143793	79.8173
27	11.408	614.25	. 0315646	. 01.82071	69.2416
28	8.99108	484.11.4	. 0779857	. 0255445	44.2013
29	4.07347	219.331	. 0574415	. 0271339	37.8082
30	32,4864	1749.19	. 0209581	8.47644E-03	144.941
********AUEFAGE********					
	NO.	NO. / AEEA	MFFV	MFFH	L / A
	12.908	695.013	.0640689	. 0171913	65.6443
	10.1934	548.851			38.5276
SE	1,86105	100.206			7.03415

TT: $\because D X 1: J P L H E R$, DAT [IEFECTS IN SILICON(UERSION 3-8/1/79)

JFLHER (LISL. FIT UENSITY) SIlicon-on-Ceramics
OFEFATOF IS JMS MAGNIFICATION $=X 800$
UNITSE MM CALIEFATION FACTOR (UNITS/FFF)=3.40700E-04
FRAME AFEA= 160000 QTM OUTFUT WAS IIIUIIEII EY 1 ANI CORRECTEII AUERAEE FEATURE AREA (FF)=13.01

FLII	NO.	NO. / AREA	MFFV	MFFH	L/A
1	450.961	24281,4	. 0484551	. 0454645	33,167
2	10.761	579.411	3.20659	. 50011	1.26578
3	249.116	13413.4	. 077322	. 0772125	20.8028
4	244.197	13148.5	. 0702474	. 0690025	22.1878
5	222.137	11960.7	. 0998388	. 0834793	23.5086
6	93.6203	5040.87	. 153555	. 149348	9,97946
7	132,821	7151.58	. 141223	. 108159	12,0524
8	96.618	5203.28	. 16321	. 17528	9,46581
9	249.5 1	13434.1	. 0704289	. 0708869	23.0316
10	242.198	813040.9	. 0631657	. 0618751	26.1777
11	154.573	3 8322.82	. 0853083	. 0581772	20.1148
12	104.919	9 5649,26	, 155305	. 0976917	17.464
13	135.895	57317.13	. 144979	. 0779857	15.0059
14	364.105	19604.8	. 0548963	. 0508507	30.8464
15	68,7164	43699.95	. 251207	. 209662	7.20942
16	274,251	1 14766.7	. 0593166	. 0957594	29.7549
17	79.1699	94262.81	. 186048	. 193993	8.88795
18	104.151	15607.87	. 13731	-178144	10.7408
19	132,052	27110.2	. 132956	. 121408	13.4558
20	235.665	12689.1	.0845147	. 0639062	20.5643
21	500.538	826950.9	. 0326224	. 0279692	53.5662
22	24.5196	61320.23	, 524154	. 56.1979	2,81589
23	83.4743	34494.57	. 208858	. 196794	7.96155
24	103.228	5558,21	. 194686	. 148534	8.99802
25	66.6411	13588.21	- 356288	. 334429	4.51277
26	31.2836	6 1684,43	. 767775	. 567833	2,36645
********AUEFAGE********					
	NO.	NO. / AFEA	MFFV	MFFH	L/A
	171.35	9226.16	.103749	. 0904763	16.7655
5 L 1	123.714	6661.23			11.5872
SE	24.2623	1306.37			2,27345
27	6.37971	1343.508	1.06886	1.11249	1.80694
28	219,985	11844,8	. 129175	. 101512	14.2996
29	151.806	8173.83	. 133608	. 162238	10.007
30	362.798	8 19534.4	. 0600352	. 0456549	31.782
31	464.412	25005.7	. 0465914	. 0420293	37.3221
32	101,845	5483.71	. 190601	. 0959718	12.5569
W3	133.205	7172,28	. 17526	. 0846459	15.9139
34	43.4281	12338.34	. 44682	. 450512	3,7423
35	109.685	5905,85	. 19127	+ 108374	12.2267
36	125.98	6783.24	.171421	. 0805199	19.0967
******がAVEFAGE********					
	No.	NO. AFEL	MFFU	MFFH	L/A
	171.518	9235.17	. 109376	. 0908912	16.5183
SI 1	126.814	6828.14			11,3362
SE 2	21.1357	1138.02			1.88936

250J－4，7－12
OFEFATOR IS MFF MAGNIFICATION＝32X
UNITS＝MICRONS CALIERATION FACTOR（UNITS／FF）＝．3607
FFAME AREA $=500000$ QTM OUTFUT WAS IIUIDEII EY X ANI COFRECTEI AUERAGE FEATURE AREA $\left(F^{\prime} F\right)=27.36$

FLII	NO．	NO．／AFEA	MFFV
1	101．17	1．55521E－03	335．847
2	48.4649	7．45015E－04	665．498
3	43．7632	6．57366E－04	733．13
4	32．6389	5．01734E－04	954.233
5	19．0424	2．92725E－04	1478.28
d	25.402	3，90487E－04	1235.27
7	28．8012	4．42739E－04	1024．72
8	19.1155	2．93848E－04	1568．26
9	11.8056	1．81478E－04	2540．14
10	8.66228	1．33159E－04	2774．62
11	10.4532	1．60690E－04	2282．91
1． 2	7.89474	1．21360E－04	4098．86
13	2.11988	3．25874E－05	10608．8
14	4.16667	6．40511E－05	5465．15
15	2.26608	3．48348E－05	8197.73
1.6	2．37573	3．65204E－05	10608．8
± 7	8．55263	1．31473E－04	2691．79
		＊＊＊＊＊＊＊＊AVEFA	＊＊＊＊＊＊＊
	NO．	NO，／AFEA	MFFV
	22.0997	3．39723E－04	1382．93
SII	24．0954	3．70400E－04	
SE 5	5.84398	8．98352E゙－05	
18	109．539	1．68387E－03	280.919
19	69.9927	1．07595E－03	444．212
20	51.6813	7．94458E－04	658.212
21	27.3757	4．20827E－04	1186.51
22	18.348	2．82050E－04	1768.14
23	21．3816	3．28683E－04	1442．8
24	20.3947	3．13513E－04	1326.1
25	29．2032	4．48920E－04	1030.57
犬゙号	14．3275	2．20246E－04	2226．54
27	6.259.	．60766E－05	4098．86
28	9.64912	1．48329E－04	3164.03
29	3.50877	$5.39378 \mathrm{E}-05$	7214
30	4．56871	7．02315E－05	3920．65
31	3.72807	5．73089E－05	4624.36
32	3.50877	5．39378E－05	6011.67
33	3.50877	5．39378E－05	5152．86

＊＊＊＊＊＊＊＊AVEFAGE＊＊＊＊＊＊＊＊
NO
23． 414
$5[126.3264$
NO．／AFEA
3．59926E－04
MFFU
1297．76

327．909
SE 4．58284
4．046965－04
7．04486E－05

34	96.4181
35	47.4415
36	51.8375
37	53.655
38	53.0336
39	19.9927
40	19.3348

1．48216E－03
648.741

565．36
533.58
445.309
1528.39
1596.02

MFFH	L／A
1324.33	$1.32360 \mathrm{E}-03$
	$1.39068 \mathrm{E}-03$
	$2.42086 \mathrm{E}-04$
333.364	$5.18159 \mathrm{E}-03$
626.215	$2.63100 \mathrm{E}-03$
589.379	$3.14943 \mathrm{E}-03$
561.838	$3.23260 \mathrm{E}-03$
568.927	$3.32964 \mathrm{E}-03$
1490.5	$1.10064 \mathrm{E}-03$
1654.59	$1.12559 \mathrm{E}-03$

ORIGINAL, PAEE R OF POOR QUALITY

41	12.6097	1.93839E-04	2470.55	2817.97	7.818:3E-04
42	22,5877	3.47224E-04	1270.07	1345.9	1.35570E-03
43	17.617	2,70813E-04	1554.74	1541.45	1.11173E-03
44	8.40643	1.29226E-04	4098.86	3402.83	4.82395E-04
45	8.36988	1.28664E-04	3402.83	3920.65	4.93485E-04
46	4,82456	7,41644E-05	5635.94	5465.15	2,88328E-04
47	$6.25 \quad 9$. $60766 \mathrm{E}-05$	3837.23	3005,83	4.99030E-04
48	3.80117	5,84326E-05	5465.15	8197.73	3.54866E-04
49	2.37573	3.65204E-05	9017.5	10608.8	2.16246E-04
50	2.88743	4,43863E-05	7514.58	9492, 1	2.05157E-04
********AUERAGE********					
	NO.	NO, /AREA	MFFV	MFF'H	L/A
	24.0819	3.70193E-04	1236.8	1276.9	1.38436E-03
	26.0289	4.00123E-04			$1.40161 \mathrm{E}-03$
SE	3.68104	5.65859E-05			1.98217E-04

OFEFATOK IS JMS MAGNIFICATION=X800
UNITS = MM CALIERATION FACTOR (UNITS/FF)=3.40700E-OA FFIANE AREA $=500000$ RTM OUTFUT WAS HIUITELI BY 1 ANI CORFECTEII AUERAGE FEATURE AREA (FF)=27.6

FL[I	NO
1	73.0797
2	167.754
3	172.717
4	54.6377
5	99.6377
6	222.391
7	98.9493
8	147.899
9	220.906
10	317.609
11	72.1015
12	59.3478
13	88.5507
14	157.572
15	413.696
16	98.0797
17	72.6087
18	193.116
19	130,036
20	101.558
21	73.6957
22	120.616
23	23.7319
24	235.471
25	119.13

$N O, / A F E A$
1259.16
2890.4
2975.92
941.408
1716.76
3831.81
1704.9
2548.3
3806.21
5472.4
1242.31
1022.56
1525.73
2714.98
7127.98
1689.92
1251.05
3327.39
2240.53
1749.85
1269.78
2078.22
408.901
4057.17
2052.22

MFFH	L/A
.599824	2.70619
165228	10.0969
.212937	8.00998
.788657	2.24831
.338668	4.76079
.13424	12.0869
.286303	5.98767
.214008	8.00411
.148518	11.0801
.0982411	16.8711
.448289	3.78926
.447113	3.68946
.328227	5.08659
.204012	8.44438
.0875385	18.9169
.33402	4.90167
.354896	4.49663
.197851	8.20957
.221521	7.48459
.275202	6.00822
.332715	4.85765
1215633	7.69886
1.00799	1.86968
.153884	10.6898
.241974	6.87702

NO.
141.396

SI 87,0243
SE 17.4049

26	110.109	1897.18
27	111.449	1920.27
28	308.732	5319.46
29	301.812	5200.22
30	258.659	4456.71
31	214.239	3691.34
32	139.275	2399.72
33	92.5725	1595.03
34	271.413	4676.45
35	175.109	3017.13
36	513.08	8840.37
37	196.522	3386.07
38	138.478	2385.98
39	117.754	2028.9
40	143.007	2464.02
41	178.478	3075.18
42	294.094	5067.25
43	377.174	6498.71
44	90.1812	1553.82
45	51.5942	888.969

.270827
.245108
.126372
.128566
.129053
.148259
.195132
.275202
.108711
.139403
.0711273
.143998
.184761
.235942
.180839
.155855
.0978461
.092481
.310858
.449472

46	69.6015	1199.23	. 371133	. 362447	4.57881
47	178.333	3072.69	. 153745	. 152917	10.7162
48	291.63	5024.8	. 113718	. 107953	14.8723
49	169.964	2928.48	. 144732	. 149692	11.0332
50	150258	4.5	. 179505	.176163	9.00206
********AVEFAGE********					
	No.	NO. /AFEA	MFFV	MFFH	L/A
	169.563	2921.57	.181362	.181212	. 0.05935
	100.744	1735.82			4.54443
SF	14.2473	245.482			. 642679

[^0]
[^0]: ORIGINAL PAEE RE
 OF POOR QUSLITY

