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ABSTRACT

A fast computer program, GP,ID3C, has been developed to generate multilevel

three-dimensional. C-type, periodic, boundary conforming grids for the calcu-

lation of realistic turbomachinery and propeller flow fields. The technique

is based on two analytic functions that conformally map a cascade of semi-

infinite slits to a cascade of doubly infinite strips on different Riemann

sheets. Up to four consecutively refined three-aimensional grids can be auto-

matically generated and permanently stored on four different computer tapes.

Grid nonorthogonality is introduced by a separate coordinate shearin g and

stretching performed in each of three coordinate directions. The grids can be

easily clustered closer to the blade surface, the trailing and leading edges

and the nub or shroud regions by changing appropriate input parameters. Hub

and duct (or outer free boundary) can have different axisymmetric shapes. A

vortex sheet of arbitrary thickness emanating smoothly from the blade trailing

edge is generated automatically by GRID3C. Blade cross-sectional shape, chord

length, twist angle, sweep angle, and dihedral angle can vary in an arbitrary

smooth fashion in the spanwise direction. Input coordinates must be Cartesian,

while the output grid coordinates can be Cartesian or cylindrical.

INTRODUCTION

When numerically solving partial differential equations governing the flow

of fluid through realistically shaped configurations, exact boundary condi-

tions must be applied at correct locations. This is especially important when

calculatinq internal flows and flows that are governed by nonlinear partial

differential equations. Seemingly negligible alterations of geometrical shape

or flow conditions at the boundary can drastically change the basic features

of the flow field, for example, chcking an originally unchoked flow or chang-

ing a shock-free flow into a shocked flow 
1. 

The most economical and accu-
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rate way to numerically apply exact boundary conditions on solid boundaries is

to generate and use a computational grid that conforms to these surfaces (fig.

1). Recent numerical techniques do not require orthogonal grids  because

they use locally isoparametric formulation when numerically determining deri-

vative, of geometric and flow variables. A widely accepted procedure for ac-

celerating an iterative solution process of the flow equations and for resol-

ving or capturing high flow gradients is to perform calculations on a sequence

of several successively refined grids. The multigrid technique 3 usually

requires four to six such grids. For realistic threedimensional configura-

tions the number of grid prints to be generated is prohibitively large even

for inviscid flow calculations. Computational grids for such configurations

should be easy to regenerate if shock waves and vortex sheets are to be better

resolved or if the configuration of the solid boundaries changes with time.

An H-type grid (fig. 1) provides excellent resolution of the flow field at

upstream and downstream infinity. It is also the simplest grid to generate.

At the same t-me, H-type grid does not provide for an accurate treatment of

rounded leading and trailing edges and wastes points in the flow domains away

from the boundaries. An 0-type grid represents the other extreme. It gives a

very poor resolution at infinities 4 , thus creating a problem when Cauchy-

type boundary conditions must be enforced at the supersonic inflow boundary

(fig. 2). A grid of the 0-type also does not provide desirable resolution in

the vicinity of the vortex sheet. An open trailin g edge simulation of the

boundary layer displaceTent thickness effect cannot be readily incorporated.

Nevertheless, an 0-type grid provides for accurate discretization of arbitrar-

ily blunt leading and trailing edges and requires a minimum number of grid

points. A combination of an 0-type grid in the upstream region and an H-type

grid in the downstream region creates a C-type grid. This type of grid pro-

vides for a good treatment of all boundary and periodicity conditions in-

cluding wake treatment and supersonic exit flow, although it lacks an adequate

resolution at upstream infinity (fig. 1).

In turbomachinery and rotorcraft flow field calculations the flow field is

periodic and a geometrically periodic grid provides for a simple and accurate

way to enforce the flow periodicity. The simplest and fastest way to generate

nonorthogonal periodic grids is to avoid time-consuming techniques based on

the numerical solution of sets of partial differential equations whenever pos-

sible. Instead, a basic knowledge of complex variables and conformal mapping

can be used together with a few additional nonorthogonal coordinate shearings

and stretchings. A three-dimensional, periodic, 0-type grid generator code

was already developed  by using this technique, which guarantees that the
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	 grid lines of the same family do not intersect because the basis of the tech-

nique is conformal mapping. Another view of a three-dimensional, periodic
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0-type grid is presented in figure 3.

The Computational Fluid Mechanics Branch of the NASA Lewis Research Center

provided computational Facilities used in this work. Dr. Charles Putt of NASA

Lewis Computer Services Division, Dr. Bharat Soni of Sverdrup Technology, Inc.,

and Mr. William Usab of MIT and United Technologies Research Center exercised

the computer codes and provided several grid displays.

SHEARING AND STRETCHING IN PHYSICAL SPACE

Conformal mapping can be applied only to two-dimensional plane surface

problems. A general procedure for creating such planes can be best described

in the case of a rotor mounted on a hub shaped like a doubly infinite circular

cylinder and confined inside a doubly infinite circular-cylinder-shaped duct.

The intermediate doubly infinite circular-cylinder-shaped surfaces intersec-

ting the blades can be viewed as planes when expressed in terms of (x,re) co-

ordinates. A standard procedure for creating three-dimensional blade shapes

is to specify local airfoil shapes on a number of input planes that are or-

thogonal to a straight radial line. This radial line (z axis in fig. 4) is

called a stacking axis, and local blade sweep and dihedral angles are measured

from that line (fig. 1). Input planes are defined by z = constant. Inter-

mediate cylindrical surfaces, which we seek for the next step in this grid

generation procedure are defined by r = constant. To obtain an intersection

contour between the blade surface and r = constant cylindrical surfaces, a

spline fitting and interpolation procedure is used along the blade. Input

airfoil (x i ,yi ) coordinates on z = constant planes are transformed into

cylindrical coordinates

X = xi
	

(1)

e = arc tan(yi/zi)
	

(2)

r = (y2+ zl)1/2
	

(3)

Cylindrical coordinates (x,re) are interpolated at r = constant spanwise loca-

tions, thus defining blade cross sections on r = constant cylindrical surfaces.

On the other hand, realistically shaped hubs and ducts are not doubly in-

finite circular cylinders but axisymmetric surfaces. Therefore, the inter-

mediate surfaces are also axisymmetric and not cylindrical. Nevertheless, the



same grid generation technique can be used if a simple nonorthogonal shearing

(or normalization) and stretching of the radial coordinate (fig. 3) is per-

formed. Nonorthogonal (unidirectional) shearing of the r coordinate converts

the axisymmetric surfaces into cylirdrical surfaces defined by R - constant.

Let subscripts H,T, and 0 designate R - constant surfaces corresponding to

hub,blade tip, and duct (or outer free boundary) location, respectively. Also

let the normalized radial coordinate be defined as

r (x i ) - rH(xi)

The radial coordinate in the hub-to-tip region is stretched and sheared with

the following function

R - R  + ( RT - RH)((R/RT ) + A sin(2 n '
Z
/RT ))	 (5)

The following value was obtained from experience

R  - N/50.0	 (6)

The stretching parameter, A, gives best results if

0.12 > A > 0.0	 (7)

When A = 0, the cylindrical cutting surfaces R = constant are equidistantly

spaced from hub to tip. Let the normalized, sheared radial coordinate in the

region between the blade tip and the duct (or outer radial boundary) surface

be

R = (R - RT )/(Rp- RT )	 (5)

The stretching function for the tip-to-duct domain is chosen to be

R = 1.0 + (
RH - q ) R + q R2	 (9)

This function must have the same slope, q, at the location R = 1 as the

stretching function in the domain between the hub an6 the tip (eq. 5).

q = (1 + A )(1 - RH )/RT	(10)

Combining the two stretching functions (eqs. 5 and 9) provides for a smooth

and continuous transformation from the physical r coordinate into the sheared

R coordinate (fig. 4). For a statur or rotor with no tip clearance, equation

9 is not needed.
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Frequently, the input points are not clustered in the same regions on each

input plane. Moreover, the number of input points defining the blade cross

section on each input plane can vary from one input plane to the next. To

accurately determine intersection contours between the blade surface and the

axisymmetric surfaces, the corresponding input points must be located at the

same percentage of the blade chord length on each input plane. Implicitly,

this means that the number of input points must be the same on all input

planes. Therefore, these input points must be appropriately redistributed on

each input plane. This redistribution can be performed with respect to the

input airfoil contour coordinate defined as

S = [( x i - x i-1 )2 + (yi - yi-1)21112

	

(11)

Then the input Cartesian coordinates can be expressed in terms of the input

airfoil contour coordinates. Coordinate s is measured clockwise around the

input airfoil contour, starting and ending at the trailing edge point. As it

was stated earlier, the number of contour points on the pressure surface must

be the same as the number of contour points on the suction surface. For non-

symmetric airfoils the lengths of these two contour lines are generally not

the same. Let ITS denote the trailing edge point on the suction side and ITP

denote the trailing eGge point on the pressure side of the input airfoil.

Also, let LE denote the leading edge, that is, the point that is farthest from

the trailing edge. The normalized surface coordinate is defined as

S = -5--_-SITP-	 (12)
5 L SITP

The redestribution of input points is performed with the following stretching

function

S = 0 - S)S B + S[i - (I - S) B 1 	(13)

where the exponent B should satisfy
1.4 > B > 1.0	 (14)

When B = 1 the points are equidistantly spaced along the airfoil contour. The

points along the pressure surface are redistributed by using the formula

S = 
S(SLE 	 SITP)

	
(15)
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b	 = [3y w - x w (2c + d)]/x
2
	 (21)

xw = x
EX - xTE

6

(22)

where

and the points along the suction surface are redistributed by using the formula

S = S(s
ITS - sLE ) + (sLE	 slip)	

(16)

This redistribution of input coordinates x and y is performed with a cubic

spline fitting applied in the s direction. interpolation is performed at S

locations. Spline fitting and interpolation are also used with respect to the

R coordinate in order to find the points on intersection contours between the

blade surface and the intermediate axisymmetric surfaces. Locations of those

points in the physical space will not be altered with the subsequent mapping-

remapping procedure.

The exact shape of the wake of arbitrary thickness is not known a priori.

To eliminate the need for specifying the location of the wake in the prepara-

tion of the input, the shape of the wake centerline is automatically generated

by using the simple polynomial expression

Y = a(x -x T O 3 + b(x - xTO 2 + c(x - 
xTE ) + YTE (17)

Here the trailing edge point coordinates are

xTE = (x ITP + x ITS )/2
	 (18)

and

YTE = (YITP + Y ITS )/2
	 (19)

The point where the wake centerline intersects the downstream-infinity cutoff

boundary is defined with the subscript EX. Let c be the average slope of the

pressure and suction surfaces of the airfoil at the trailing edge , and let d

be the slope of the expected flow angle at the exit boundary. Then the con-

stants a and b in equation 17 are

a	 = [x w(c + d) - 2 y w]/x 3 	(20)

and



I	 and

yw = yEX - yTE
	

(23)

.	 Wake surface grid points are redistributed (stretched) with the formula

X* - (x - xTE )/x w - n sin(%(x - xTE )/x w )	 (24)

The stretching exponent, n, is determined from the continuity of the slope of

the stretching functions at the trailing edge (eqs. 13, 15, 16, 22, and 24)

n = 1.05(1.0 - B/2x w)/ R 	 (25)

If the wake has a finite thickness, that is, if the blade trailing edge is

open, coordinates of the points on the upper and lower surfaces of the wake

are determined by adding and subtracting the trailing edge half thickness.

The axial coordinate of the upper surface of the wake is determined from the

formula

x u = x + (x ITS-xITP)/2	 (26)

and that of the lower surface of the wake by the formula

1
x	 = x _ (x ITS-xITP)/2	 (21)

with similar expressions for the y coordinate. Supers:ripts u and 1 designate

the upper and lower surfaces of the wake, respectively.

CONFORMAL MAPPING AND REMAPPING

The conformal mapping portion of the present procedure for generating

three-dimensional, periodic C-type grids was originally used by Sockol 	 to

generate orthogonal, two-dimensional, cascade C-type grids. If the blades are

straight, semiinfinite twisted plates of zero thickness, their intersections

with circular cylinders generates doubly infinite cascades of semi-infinite

straight slits on each of the (x,Re) planes (fig. 5). Each of these R - con-

stant planes can be defined in terms of complex variables

w - x + iRe	 (28)

The goal is to generate a boundary-conforming, periodic C-type grid on each of

1	
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the planes. Th i I task iF -iccomplished by conformally mapping the w plane via

an intermediate "circle" ": lnplex plane (fig. 6)

v = & + in
	

(29)

into the interior of a "noubly :nFinite strip" plane (fig. 7)

u =X + iY
	

(30)

Uniform grid in ±ne u plane is then cnnformally remapped into the w plane,

thus generating tine desired C-type grid. As shown by Sockol 4 a single ana-

lytic function

a, _ .!LE + P	 —i{- (28 sin s	 2 cos s ln(2 cos s) )

e' is (':, v - in ) - 2 cos 8 In (1 - v)	 (31)

when	 N is the number- of blades and s is the local stagger angle on the R =

c,.)rstant surface, conformally maps the interior of the unit circle in the v

plane to the interior of a periodic strip enveloping a semi-infinite slit in

the w plane. The center of the circle (v = 0) maps into upstream infinity in

the w plane and the point v = -1 maps into downstream infinity in the w plane.

The zero-thickness slit between the points v = 0 and v = -1 maps into the up-

per and lower periodic boundary of a periodic strip in the w plane. The

circle in the v plane maps into a semi-infinite straight slit in the w plane.

A doubly infinite cascade of semi-infinite straight slits in the w plane is

thus created by conformally mapping a doubly infinite cascade of Riemann

sheets (v planes) that are interconnected through the slits between the paints

v = 0 and v = -1. Sockol 4 used a simple analytic function

v = tanh(u2 /2)	 (32)

to conformally map the interior of a doubly infinite straight strip in the u

- lane into the interior of a unit circle in the v plane. The lower strip

oundary (Y = - i,r 12) in the u plane maps into the circle in the v plane.

he upper strip boundary (Y = 0) maps into a zero-thickness slit between the

dints v = 0 and v = -1. Axial infinities (X = *—) map into a single point

v = -1). The origin (X = O;Y = 0) in the u plane maps into the origin (v =

) in the v plane.

8



Realistically shaped blade airfoils are not straight sem`f-infinite lines

of zero thickness. A C-type grid generated with the use of equations 31 and

32 alone will not conform to the actual airfoil cascade shapes on R . constant

surfaces. To generate a C-type grid that conforms to the shape of the airfoil

and wake , several nonorthogonal coordinate shearings and stretchings are used.

Airfoil surface points are conformally mapped from the w plane via the v

plane into the u plane. As a result, the circle in the v plane becomes de-

formed (fig. 7), and the corresponding lower wall in the u plane becomes an

irregular line (fig. 8). The inverse of equation 31 cannot be analytically

obtained for staggered cascades. Therefore, a Newton-Raphson procedure is

used to iteratively evaluate on a point-by-point basis the pairs of (t,n)

coordinates corresponding to the given pairs of (x,Re) coordinates. By using

an analytic inverse of equation 32, that is,

1/2
u - [In (I1_+_v 1/2	 (33)

the deformed circle is conformally mapped from the v plane into the u

plane.

SHEARING AND STRETCHING IN COMPUTATIONAL SPACE

It should be pointed out that with the increase in stagger angle in the w

plane the image of the leading edge point shifts along the deformed circle in

the v plane and along the deformed lower boundary in the u plane. To in-

sure that the corresponding points along the periodic boundaries in the w

plane have the common values of x coordinate, their images in the u plane are

placed symmetrically along the Y = 0 line (fig. 9). At the same time these

periodic points are distributed with a simple stretching function

X U = X U - e sin(?w XU/(X
ITS - XITP))
	 (34)

Superscript U denotes the upper wall (Y = 0) of the u plane and superscript

L denotes the lower irregular boundary of the u plane. The stretching

}
coefficient a is determined from experience as

e = 0.18 - 0.05 ln(2Rr/Nt)	 (35)

where t is the local blade chord. The periodic grid points located in the

wake region are redistributed by using the expression

9



10

XU = XU - f 5in(2n(iXiO- XITS)/ (XLMAXXP- XITS))	 (36)

where MAXXP denotes the last point on the upper surface of the wake. The

stretching coefficient, f, is determined also from the experience as

0.10>f >0.05	 (37)

Because only a finite length of the wake is conformally mapped from the w

plane into the u plane, the deformed strip in the u plane has a finite

length. The shape of the end wall boundaries in the u plane are determined so

that they meet the lower boundary of the strip in the u plane almost orthogo-

nally (fig. 8). Consequently, grid orthogonality is well preserved at the

wake. Coordinates of the grid points inside the strip in the u plane are de-

termined from

Y = Y L ((Y/Y L ) + 9 sin(nY/Y L ))	 (38)

and

X = X U + (X L - X
U
) ((Y/Y L ) + C sin(nY/Y L ))	 (39)

where

0.30 > C > 0.15	 (40)

g = C (1.0 -1.0/cosh h)	 (41)

h = 5 (XO/X
MAXXP )	

(42)

Stretching coefficients C, g, and h are determined from experience and from

tht? condition that C-type grid lines in the w plane closely follow the wake

contour. Larger values of C generate grids suitable for viscous flow calcula-

tio , is, because grid layers are positioned closer to the blade and wake

surface.

The resulting two-dimensional nororthogonal periodic grid in the u plane

is conformally mapped back into the w plane on a point-by-point basis. Final-

ly, determination of the physical r coordinates of the grid points on the

(x,Re) planes is obtained by reshearing the n coordinate (eqs. 4, 5, 8, and 9)

and fitting it with respect to the x coordinate with a cubic spline.



RESULTS

On the basis :f the preceding analysis, a computer program GRI03C was de-

veloped and tested6 . Program GRI03C consists of 1150 card statements and

requires approximately 500 K of computer memory Because of the analytical

character of most of the transformations used, GRID3C is very fast. To gener-

ate and permanently store x,y,z coordinates of a typical four-level grid se-

quence consisting of (33*8*6),(63*13*11),(123 *23*21),(243*43*41) grid points,
respectively, GRI03C requires between three and four minutes of CPU time on an

IBM 370/3033 computer. The Newton-•Raphson iterative point-by-point mapping

procedure of the airfoil and wake contour from the w plane into the v plane

consumes most of the computer time. But this procedure needs to be performed

only once on each axisymmetric surface.

Input to GRID3C must be provided in the x,y,z coordinate system, while the

output grid coordinates can be computed in the x,y,z or x,r,o coordinate

system. GRI03C can automatically generate up to four successively refined

three-dimensional grids and store them on four separate tapes. Computational

grids for the blades with closed trailing edge (fig. 10) and for the blades

with open trailing edge ( f ig. 11) can be generated with GRID3C code. For re-

petitive runs with different numbers of blades or different blade setting an-

gles, only one input parameter needs to be changed in the input deck. Clus-

tering of grid points closer to the leading and trailing edges and closer to

the blade and vortex sheet surface (fig. 12) can be easily achieved by varying

coordinate stretching parameters A, B, and C. Grid nonorthogonality is almost

entirely removed from the airfoil and wake surf act. Nevertheless, grid nonor-

thogonality can become intolerable if this grid generation technique is ap-

plied to closely spaced, highly staggered and cambered blades. Nonorthogo-

nality can become excessive in the leading edge region of any blade if the end

point of the semi-infinite slit in .he w plane is not positioned approximately

midway between the leading edge and its center of curvature.

An unsatisfactory grid resolution inherent to the C-type grids can be ob-

served in figure 13. This figure shows a rectangular wing - cylindrical fuse-

lage combination and two computational qrid surfaces: one corresponding to the

surface of the fuselage and the other being -„n intermediate surface located

•	 between the hub and the wing tip. Note that the wing extension beyond the tip

has linearly increasing cord length. The GRI3C code automatically calculates

wing (or blade) chord lengths at the off-tip locations based on the constraint

11



that gap-to-chord ratio at the tip should be retained at all outer spanwise

locations. Key elements of a three-dimensional C-type grid generated by the

GRI03C code for an advanced, eight-blade, transonic, NASA propeller is

presented in figures 14 and 15 with intersection contours between a blade and

the axisymmetric sur- faces shown. Note the large twist, sweep, and taper

variations and the fact that the propeller hub is axisymmetric.

With fainor modifications GRI03C can be used for generating computational

grids applicable to a midmounted wing-body combination or a finned missile in

free air or inside a wind tunnel having axisymmetric walls.
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Figure 1. - Three basic types of two-dimensional, conforming, computational

grids.
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Figure 2. - Axisymmetric View of a three-dimensional,	 " periodic bound-
ary conforming grid for NASA eight-blade transonic prop fan. Shown are the
hub surface grid and three neighboring blades with their Surface grids.
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Figure 3. - Frontal view of the 0-type grid for NASA eight-blade transonic

prop fan.
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Figure 7. - Intermediate ("circle") plane used in conformal mapping sequence.

Deformed circle corresponds to the realistic airfoil shape.
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Figure 8. - "Strip" plane obtained by conformally mapping "circle" plane.

Upper boundary corresponds to periodic boundaries, and lower boundary to air-

foil shape.
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Figure 9. - Nonorthogonal coordinate shearing and stretching concept applied
to X (eqs. 34, 36, and 39) and Y (eq. 38) coordinates results in a desired
rectangular computational surface.
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Figure 10. - An example of a two-dimensional (x,Re) surface discretized with a
coarse, C-type, periodic grid.
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F-igure 11. •- Two—dimensional (x,Re), C—type, periodic, boundary conforming
grid fcr a Cascade of blades with open trailing edges.

24



x
a.

12. - Effect of controlled grid clustering. Grid points can be easily

rated in the regions of leadinq and trailing edges as well as closer to
face of the airfoil and its wake.
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Figure 13. - Elements of a three-dimensional. C-type, periodic grid generated

by GRIU3C code for a geometry consisting of a rectangular u pswept wing M ach-
ed to a circular cylinder. Note deteriorating grid quality in the far u, ,-
stream region. Only every fourth cylindrical surface is shown.
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Figure 14. - Blade surface grid and one of the axisymmetric surfaces generated
by GRIM for an advanced, eight-blade NASA prop fan.
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Fiqure	 - Another view of the same prep fan grid generated by GRI03C shows

more clearly the axisyunetric shape of the propeller hub surface.
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