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FOREWORD

The Systems Technology Laboratory (STL) is a computational re-
search facility located at the Goddard Space Flight Center of the
National Aeronautics and Space Administration (NASA/GSFC). The
ST'a was established in 1978 to conduct research in the area of
flight dynamics systems development. The laboratory consists of a
VAX-11/780 and a PDP-11/70 computer system, along with an image-
processing device and some microprocessors. The operation of the
Laboratory is managed by NASA/GSFC (Systems Development and Anal-
ysis Branch) and is sup,,!=ted by SXSTEX, Inc., Computer Sciences
Corporation, and Genera?, Software Corporation.

The main goal of the STL is to investigate all aspects of systems
development of flight dynamics systems (software, firmware, and
hardware), with the intent of achieving system reliability while
reducing total system costs. The flight dynamics systems include
the following: (1) attitude determination and control, (2) orbit
determination and control, (3) mission analysis, (4) software en-
gineering, and (5) systems engineering. The activities, findings,
and recommendations of the STL are recorded in the Systems Tech-
nology Laboratory Series, a continuing series of reports that in-
cludes this document. A version of this document was also issued
as Computer Sciences Corporation document CSC/SD-81/6028.

The primary contributor to this document was

Joan B. Dunham	 (Computer Sciences Corporation)

Other contributors include

Anne C. Long	 (Computer Sciences Corporation)
William Wooden	 (Goddard Space Flight Center)

Single copies of this document can be obtained by writing to

Keiji Tasaki
Code 582.1
NASA/GSFC
Greenbelt, Maryland 20771
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This document, which is an update to Computer Sciences Corporation document

number CSC/SD-78/6002, describes the mathematical theory of the computa-

tional algorithms employed in the Onboard Navigation Package (ONPAC) System.

This system, which simulates an onboard navigation pAocessor, was developed

to aid in the design and evaluation of onboard navigation software. The mathe-

matical formulations presented include the factorized UDUT form of the extended

Kalman filter, the equations of motion of the user satellite, the user clock equa-

tions, the observation equations and their partial derivatives, the coordinate

transformations, and the matrix decomposition algorithms.

Use of the ONPAC system, with sample input and output, is described in a com-

panion document, the ONPAC User's Guide (Reference 1).
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SECTION 1 - INTRODUCTION

The Onboard Navigation Package (ONPAC) Simulator simulates an onboard nav-

igation processor assembly using a modified version of the design proposed in

r	 Reference 2. The pseudorange and delta pseudorange observations for the es-
7

timatior. of user spacecraft position and time will be measured by the onboard

receiver/processor assembly from information broadcast by the NAVSTAR/

Global Positioning System (GPS). The pseudorange observation is modeled as

the line of sight distance from the GPS to the user, and the delta pseudorange

is modeled as the change in theseudoran a over a period of time. The systemp	 g	 p	 Y

is currently being used for analysis and evaluation of the algorithms presented

in this document for premission studies.

The ONPAC system is being developed on a Digital Equipment Corporation

(DEC) PDP 11/70 computer which is similar to the DEC LSI 11 which the nav-

igation processor assembly will use. One proposed use of the processor as-

sembly is to be a part of an experimental package to be placed on Landsat-D

for onboard orbit determination using Phase I GPS. A sample case and sample

output for Landsat-D are presented in the appendixes of the user's guide (Ref-
k

G
erence 1).

1.1 OVERVIEW OF ONPAC CAPABILITIES
,a

The ONPAC system processes GPS pseudorange and delta pseudorange obser-

vations sequentially to estimate and apply corrections to a host vehicle state,

which includes the satellite position and velocity, two terms to describe cor-
n;

it	 sections to the host vehicle clock, and a satellite drag coefficient. The Inte-

grator used to predict the position and velocity from observation to observation

j	 is an Euler integrator; the force model used in this integrator may be varied
,a

by the user. The force model options are detailed in Section 3.2. The covari-

ance matrix is propagated with a state transition matrix which is a Taylor
^	 3series expansion of the analytical state transition matrix to At , At`^ or At

rt

ii
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as specified by the user. A state process noise covariance matrix is also com-

puted to allow for errors In the knowledge of the state and Is added to the co-

variance matrix. The variance of the state noise In position, in the drag

coefficient, and in the clock terms may be specified by the user.

+ The ONPAC system design is modular so that algorithms can be replaced or

added with minimal changes to the existing simulator. Procedures for malting

such changes are discussed in the user's guide (Ref erence 1).

1.2 SUMMARY

This document describes the basic mathematical algorithms used In ONPAC.

Derivations for most of the algorithms are available in standard tests and

sources are given in the references. Section 2 describes the extended Kalman

filter and gives a brief derivation of the UDU T filter. The step-by-step appli-
si	 F

cation of the UDUT filter in ONPAC is presented, with the points identified at

which editing and smoothing are performed. The state vector and the state
u 

propagation equations are given In Section 3. The mathematical models in	 {
ONPAC use four different coordinate systems. Transformations from the

inertial to the other three systems dre also given in Section 3. The pseudo-

range and delta pseudorange observation models and partial derivatives are

described in Section 4. The state process noise covariance matrix used in

ONPAC is given in Section 5. appendix A describes the matrix decomposition

algorithms. The data simulation which is performed using the Goddard Tra-

jectory Determination System (GTDS) is described in i ppendix B. The relation- 	 I

ship of these elements of the ONPAC program Is shown in Figure 1-1.

7
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DATA SIMULATION
(APPENDIX B)

INPUT
30CESSOR SELECTS
OBSERVATION AT

tk

PROPAGATESTATE
AND COVARIANCE

MATRIX FROM
N-1 TO tk

(SECTION 3)

ADD NOISE TO
COVARIANCE
(SECTION 5)

COMPUTE
OBSERVATION
AND PARTIALS

(SECTION 4)

UPDATE STATE AND
COVARIANCE
(SECTION 2)

OUTPUT PLOT
DATA ,8 ELEMENTS,

ETC,
(SECTION 3)

e DESCRIBED IN THE USER'S GUIDE (REFERENCE 1).

Figure 1-1. The ONPAC System
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SECTION 2 - ESTIMATION EgUATIONS

Matrix factorization techniques have been demonstrated to improve the stability

and accuracy of Kalman filters (Deference 3). 	 The factoring of the covariance

matrix, P, into square root

I
a

P=SST

or upper triangular, U, and diagonal, D, components

r

P = UDUT

reduces the occurrence of numerical problams by keeping thb covariance ma-

tri. positive definite. 	 The filter in OI^'PAt^ is an application of tiie U-D tor-

! mulation of an extended Kalman filter (EKF).

2.1 EXTENDED KALMAN FILTER

A derivation of the EKF, also known as the extended sequential filter, can be

C found in many sources (Reference 4 and 5)., The EKF equations are presented

in this section as a basis for the UDUT filter discussion which follows.

Given a state vector and covariance matrix at time t k ,	 the prediction-1

and update equations at timetip are as follows:

1.	 Given X(tk , the estimated n-dimensional state vector at tk-1)	
-1

and F t	 the covariance at t( is-1 ) '	 k-1 ,integrate the state equations of motion

r (, t)

iil_i •

X = P (X, t)	 (2-1)

2-1
s

#s^ r
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from ti{-1 to tic , with the initial conditions N(tk-1) ► This gives the pre-

dieted state X(tic, , The carets over X and P indicate the updated estimates

after processing an observation.
1

Compute the state transition matrix ,:) (tit, tic-1) , by integrating the differen-

tial equations

(t' tic-1) = A(t) P (t ' tk-1)	
(2-2)

r
l	 where A(t) is the matrix of partial derivatives

Fa r(x, t)	 (2 -3)A (t) a ax

evaluated at X = X(tk-1) . The initial conditions for the integration are

(D (t IC-1 1 ttc-1) - I , the identity matrix.

Propagate the covariance matrix using the state transition matrix to obtain the

predicted covariance matrix at time t ic (without process noise),

P (tk) = 'D (tk' tk-1 ) P (tk-1) -;^T (t k' tk-1)	 (2-4)

2.	 Obtain the observation at time tk' Y(tk) . Compute the predicted

observation, G(X(t l{), tic) , where G is a nonlinear function of the state pa-

rancmeters and time.

Compute the (1 x n) matrix of observation partial derivatives

IG(1, tic)

,h	 H(tk) r	 aX	 (2-5)
Y X( tic)

2-2
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The observation residual, or observed minus computed ni l servation (Q - C) is

given by

g(tk) = Y (tk) - O(	 (tk)	 tit)	 (2- )

3.	 The Kalman gain, K(tic) , is
n i

(tic) : PT(tit) " (tic)

	
if (tP(tk) 1°IT(t

it)	 an	
(2-7)

C
4

whereQ2	 is the measurement variance.
ni

The quantity within the brackets is a scalar and K(tk) is a vector with n com-

ponents.

The Nalman gain is use: to compute the updated state vector

X(tk) = x(tk) + K(tk) g (tk)	 (2-8)

and the updated covariance matrix

P(tic) - [I-I{(tic) 11 (tic)] P (tl{)	 (2-9)

The updat-d state vector and covariance matrix at time tk are then the input

for propagation to time tk*1 in the next step.

2.2 UDUT FILTER DERIVATION

The covariance matrix is a positive definite square matrix which may be factored

into a triangular matrix and its transpose.	 It may also be factored into a trian-

gular matrix with tuAty on the diagonal, its transpose, and a diagonal matrix.

r	 ^w

2-3
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	 The EKV equations can then be formulated using the component matrices instead

of the covariance matY , ^i. The covariance matrix is computed as sliotvii below.

fi

P UDUT 	(2-10)

'N where U is an upper triangular matrix and D is a diagonal matrix.

The Initial conditions for the t l{th step of the HILT' filter are

J^ Y

(tl{-^) t U (t l{_1) t D(tl{-1)

Propagating the covarianco matrix (Nvithout process noise) to timeti{ yields,

P (ti{)	 U(t1{^ D (tk) 

UT 
(t}{^

CD (t ► t	 ) U( t	 ) ^( t 	) U ( t	 ) 4)T (t	 t -)	 (2-11)

	

k k- 1 	 k-1	 I{-1	 k-1	 k k 1

	

(t, t ) U(t	 ) D(t ) CCD(t t . > ^u(t	 )^ Tk k-i	 k-1	 k-1	 k k i	 k-1

The covariance update equation is

	

P (tk)  	 l-K (tI{) H (tl{) ^ P (tl{)	 (2-12)

n

„
For the following equations, all quantities are evaluated at t  . Replacing

d
Ii in Equation (2-12) "Ith equation (2-7) gives

,r

P = P - PT HT cHPHT  + o' n - HP	 (2-13)

V.
r

2-4n^

dt
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Substituting Equation (2-10) Into Equation (2-13) gives

A
P UD9

2	
-I 

HUDU T
	

(2-14)UDU T - UDU 
T 

11 
T 
(HUDU 

T 
H 
T 

+ Cr

)M

LIU D - DU 
T 

1-1 
T 
(HUDU 

TfIT + 

am
I	

HUDI UT

For a single observation, the term

HUDU 
T 

H 
T+2

01m,

Is the scalar

2an = Crm +Ed Iii + E h U i	 (2-15)

M	 J=1

where n is the dimension of the state vector,	 di	 d j I	 the diagonal terms

of D t 11, = hl,	 the elements of the YT matrix and u i, j	 are the elements

of the U matrix.

Substituting this relationship into Equation (2-14) gives

T
I	 T T)	 UTIJ

^T	 U	 MU H	 T	 (2-16)
U	 D -	 Tj

(Xn

Equation (2-16) Is then premultiplied by U
-1 

and postmultiplied by U 
-T 

to

tM give

I p U-T	 U-1 ^ B eT U-T
U	 U	 (2-17)

2-5
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°-	 which is, substituting in (2-16)

T
U-1P U-T = D - (DU

T
 H 

T) 
(DU

T H T)
	 (2-18)

a
n

,
Because both P and U (and U-1) are positive definite matrices, U

_ 
'PC is

also positive definite (Deference 3). Therefore, the matrix (2-18) is a positive

rt	 definite matrix and can itself be decomposed into upper triangular and diagonal

component matrices.

Let
>f

^^T(DU THT) (DU THT)

an

and
F

M = BWB T	(2-20)

where B is an upper triangular matrix with unity on the diagonal and W is a

diagonal matrix.
rry

t Then,

UDUT =UBWBTUT

.nd the following can be identified:

U = U B

n
D=W

2-6

(2-21)
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r °	 The matrices B and W can be found by applying the factorization equations

i,
I	 given in AppendL% A.

The general terms for components of the matrix M are

 2

2	
t-1 

^f	 di hi	u^ i hi
r	 ,

m in i = d i -.	
e i

	
(2-22)

n

and for i j

	

di
dj lli+^ u^ i

hi 
h	

q

.
+u ih

=i	 '	 q	 q '	 (2-23)
^	 mi ^ j = _	 «n

After decomposition and some manipulation, the general term for 'W is

	

NY 

= di 
«i-1	

(2-24)
i	 Oti

where wi = 
r

wi i

2
i-1	 -X 

2 +	 d, h +	 hh u,(2-25)ly	

J	 =! .

b	 and	 1`

2	 ^;

	

1-^.	 # t

ti	 a<i = ai-1 + d
i h i +	 hl{ uk^ i	

(2-26)	
1 E J

II^

V G+
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The general off-diagonal term of the B matrix is 

Ldl_j 11	 +	
1lulc,i-^lli*i-^ ^ ulc,{..,1I

^.b
	 k

C1
i-1

j Then, the update equations for the U and D matrices are

^	 di «i-1
d 1 ai (2-28)

a

w
and

^	 d, S S,	 u
u	 _ 1. .? _	 1, k d1 Sc lc S

^ ui.^^i p j «_1	 it=I+1	 3-1
(2-29)

Where S is defined as

+	 11Auz,
(2-30)

,2 =1

I^

I

The Kalman gain is given by
3i

i^

-12K = UDUT HT HUDUTHT +
^	 m

_ UDUT HT

cxn (2-31)

2-8
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The components of the gain vector are

K=1

n

a1 d
1 S1 

+ E u1, J d3 Sj
n	 j=2

n
1
n d2 S2 +E u2 ^ J d

3 
SJ

(2-32)

1	 n
d S+	 u'jdjSj

d1 n i i jE i

1
_- d S
(X n nn

2.3 ONPAC FILTER
1

The filtering algorithm used to process each observation in ONPAC is discussed

r
below.

1. Enter with a state vector, X(tk-1) , and covariance matrix; compo-

nents, U(t ) and D(t ) , from the previous step. If this is the
w	 k-1	 k-1

initial step in tvae filter, (X(tk-1) , U(tk-1) , D(tk-1)) are initialized.

j(	 Sample initial conditions are given in the user's guide (Reference 1).

2. Retrieve tk , (the time of the next observation), and Y(tk) , (the

'	 observation). Correct the time tk with the previous estimate of the

user clock error (Section 3.3). Propagate the state to tk using the

Euler integrator (Section 3). If At = t - t	 is larger than theL	 k k-1

maximum allowable stepsize, the integration fromtk-1 to tk is

y	 clone in substeps no larger than 
At max

2-9
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3. Compute (D(til , t1S-1). (the state transition matrix) and Q(t l{) (the

^ v noise matrix).

4. Propagate the covariance matrix
U

t	 U 	 T + Q( t^)	 (2-33)P( c) -	( t'	 t-1 ) U( c-1 ) D( 1c-1 ) C^ ( c'	 -1 )

5. Decompose P(t) into U and D components using the method given

in Appendix A

P(^) - U(^,) D(i ) UT(^,) 	 (2-34)

x G. Fade the filter memory by multiplying; the D component of the fac-

tored covariance matrix

where

i 4
1

P	 p	 ( 1) + PAR (i)	 (pinin < p < pmax )	 (2-35)
$

I^
I

Fi

where PR and PAR are vectors of smoothed residuals from each of

f the GPS satellites in the current constellation, and p 	 and pmin	 max
are the minimum and maximum values allowed for p. 	 If there are

G; fewer than four GPS satellites in view, this step is not performed.

r 7. Compute the observation

G(Xlt,tll) = R(tl^)	 for pseudorange
(2-3G)

= AR(tk)	 for delta pseudorange

^j

2-10
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and the matrix of observation partial derivatives

H = DRI	 for range

4!
v FdAR1 	 for delta rangeII ax

These equations will be given in Section 4.

8.	 Compute the observation residual

3

g (tk) = Y (tk) - G(Xk , tk)

9.	 Compute the ci's and S's

2

^i = QZl	 E d	 h	 i, +	 h u^
j=1	 j 	 j

h

J-1

S. = hj +	 by uy

where am = cry for a pseudorange observation

= 0r2	for a delta pseudorange observation
AR

10.	 Test the residual for acceptability by computing the square-to-

variance ratio
4

_	 [ 11^
Y (ilc)J u

pl:	 a
dI

a

I7

ri.

wm

2-11

a

(2-38)

(2-39)

(2-40)

C

:1

(`A-41)
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I

j
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3

11. Test pic against Amax , a tunable parameter. If pk > Amax

the observation is rejected. In that case, set

X(tk_1) = X(tk)

U(tk-1) 
r 

U(tk)

^w	
D(tk-1) _ D(tk)

i
	

tk-1 - t 

t  ^ tk+1

and go back to st8p 1.

If plc < pmax and the observation is a range, compute the smoothed

residual

	

P M = P (1) + p (Pl{ - 9R(1))
	

(2-42a)

If the observation is a delta range, the smoothed residual is

	

PAR() PAR  + p (^k - QAR(i) )
	 (2-42b)

where (PR(')' PAR (')) is the smoothed square-to-variance ratio from

the previous observation of the ith GPS and p is a tunable parameter.

After (p R(')' QOR (i)) is computed, it is checked against a tunable

parameter p 2 and, if larger than P21 set equal to p2.

12. Update the U and D components of the covariance matrix and com-

u	 pute the Kalman gain, K, using Equations (2-25), (2-29), (2-30),

and (2-32).
i

2-12



r	 13,	 Update the state vector

X(tk)	 (tk) + L (tk) 9 (t1d	
(2-43)

If there ate more observations, go to step 1.

r
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SEMON 3 - STATE PARAMETER PROPAGATION EQUATIONS

The ONPAO simulator has nine state parameters, the position and velocity

components, two clock terms, and a drag coefficient. For satellites such as

Landsat, which are not highly drag perturbed, this can be reduced to eight by

leaving out the drag coefficient.

With the intention of reducing the computation time and storage needed, the

Taylor series expansion in the algorithms for the state propagation were trun-

cated to the minimum number of terms necessary for achieving the desired

accuraoy. Observations will be made very frequently at the rate of a pseudo-

range and delta pseudorange pair in every 6.6 seconds when possible. This

will reduce the impact of the neglected terms in the propagation algorithms on

the filter accuracy.

3.1 STATE VECTOR

The state vector, X , which is used in ONPAC is given by

j3

x

y

z

b
X= s

y

^z

b

d

(3-1)

3-1

n

max.
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r^
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R

^

P

^Q

^u

where (x, y, z, x, y, z) are the Cartesian position and velocity components

in Earth-centered Earth-,fixed (CCEF) rotating coordinates, (b , b) are the clock

bias and bias rate expressed in kilometers (km) and kilometers per second

(km/sec) (i. e. , the bias and bias rates are multiplied by the speed of light

yielding km and km/sec. This provides Immediate comparison with the errors

In pseudorange and delta pseudorange) and d Is the drag coefficient

d = CDA
cx
	3-2

2m

where A = the cross-sectional area of the satellite
cx

m = the mass of the satellite

CD = a constant coefficient

3.2 FORCE MODEL

The ONPAC force model is variable, to be set by the user at run time. The

equations of motion include the force terms due to the central body attraction

and the coriolis and centripetal terms. To this may be added the force terms

due to J2 , or to a 2 x 2, 3 x 3, 4 x 4, or 5 x 5 geopotential model and	 {

atmospheric drag. The gravity potential is a Pines model (Reference G). i

The gravity potential function uses a four parameter model. The potential
j

function is

nmax R n
VA [jn An 0 (u)

n=1	 '
(3-3)

n
4A(u) (C	 r (s, t) +S	 i (s, t)ll

M=1
n, m `` n, m m	 n, m m	 //^_ff

i

3-2	 4



where	 Re = mean radius of the Earth

µ = GNI t the gravitational parameter (the gravitational con-
stant times the mass of the Barth)

J	 zonal harmonic coefficients
n

C	 S	 tesseral harmonic coefficients ( the values used are fromn, m n, m GTDS)

r = (v2 + y2 + 22 ) 1/2 = magnitude of the position vector

s = X/r

t y/r

u=z/r
Any m  = dm 'Pt1(u) /d û (where P11(u) = the Legendre polynomial

of the first kind of degree n)

nmax = a user specified input which = 0, 1 0 2 1 3 0 4, or 5
= 0 to produce a 2-body only geopotential
= 1 to produce a J, geopotential
= 2, 3, 1, or 5 giv4ng a 2 x 2, 3 x 3, 4 x 4, or

5 x 5 geopotential field, respectively

The functions rm(s, t) and im(s, t) , the real and complex portions of the

potential expansion, are defined by

(s + j 
t)m = rm(sIt) + j im(s ' t)

where j =

The gravitational acceleration is the frr; hdient of the potential function with re-

spect to the four parameters (r , s , t , u)

F = ar Ar + asAs 
+ at 

At 
+ou Au
	 (3-4)

3-3
^t
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The acceleration in Cartesian coordinates due to the gravitational potential is

ax a1 - sa4

ay a2 - ta4

az a3 - ua4

a1
1 Zv
r as

a2
1 av
r 8t

u3
_ i av
r 2u

a^ = ar - sal - ta2 - ua3

The equations of motion for the spacecraft position vector are

dx
dt x

dt ° y

dz _.
dt z

The equations of motion for the spacecraft velocity vector are

dt -: 
a
x 

+ MS + 62x - d?1vh

dt "ay - 2nx: 
+02 y  - d77vy

3-4

(3-5)

(3-G)

(3-7)
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dt ria2

where	 d	 the drag scale factor

C D satel lite area In knit
z x satellite mass in kg

C D a coefficient of drag

{1 v - (12 + 5	 + z2) 1/2
	

magnitude of velocity vector

S2 = Earth's rotation rate

I = the atmospheric density, computed as follows-,

The height of the satellite,	 h , above the reference ellipsoid is found from

1/2
h	 -(C zr - Re[,

where	 6 = Earth's ellipticity.

u Re v Semi-major axis of the reference ellipsoid.

The height is scaled with 	 .7

ro h

li s 	r,.,__11	 (3-9)

where r0	is a constant.

4f The scaled height li s	is compared against a series of heights

t,
611 = lis - ht(k) ,	 fork ^ 1, G	 (3-10)

f
s°

where h t Is a vector of threshold heights.

3-J
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When the first value of k Is found for which

All>0

the atmospheric density, is computed as

n Wa(k) [Wb(lt) 'd" + 11 Wc(k)

{	 where Wa , Wb , and ti'4' c are vectors of constants.

If

V^
hs ? lit(3)

then

n 0.

The equation to model the behavior of the drag coefficient is

d d 

where^d is an input parameter, the time constant of the drag.

3.3 CLOCX MODELING

The clock equations are as follows:

db r
r	 ^:^ t

db	
T 6

dt	 f

where Tf is the time constant of the clock.

3-0

(3-11)

(,3-12)

(3`13)
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`^^

For a step of At from tk-1 to t 

b(tk " 
b(tk+dt6(tk-1)	-1)

(3-14)

^! b(t) ^ ki(t	 )
k	 k-1

I

3.3. 1 Correction of the User Clock

The independent variable, t , is the user clock.	 The corrections to the user

} clock, (b , li), which are estimated in the filter, must be applied to this in-

1ti dependent variable.

{
N.

When an observation is received, the time at which it is received must be

corrected with the predicted offset and rate.	 The clock rate equation (Equa-

tion (3-9)) computes the correction in kilometers.	 To convert it to seconds,

it needs to be divided by the speed of light in kilometers per second (c).

(i
r

The true time, at the kth observation, is approximately

b 

ttrue	 fobs - c

1
t	 (b k-1 + 

(t	 - t	 ) bk-1
- trueobs	 c	 k-1 	e

g

or

tl
bk-1	 bk-1_

Lobs	 c	 + tk-1	 c
t 	 (3,.,15)

true

bk-1
1+

{l

c

3-7
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The observed time is corrected to be t ip by

bk IC-1t	 -1 	tobs	 c	 i:- 1	 e
It w (3-1G)

t► ic-]1 *
c

3.4 MODIFIED LULER INTLGItt1` O

1
The state equations for the spacecraft position and velocity are Integrated using

a modified ]Liner integrator. 	 The procedure is described below.

Using the state vector wid acceleration vector from the previous step, at

compute the position and velocity at `IC-1

1.-„ 1:k-	 ^.Ati.
rk 1 	 -k-1

(3-17)
.1t2

^^k	 i^i:-1 + At i _ 1	 2	 IC-1

where At is the integration stepsize.

This new state(Y^k,rî )	 is used to compute the acceleration at	 tl: , i ii by

calling the derivative evaluation subroutines. 	 Then, the two acceleration values

Cik-i , i`i{)	 are used to perform the integration
^E

k	 k-1 * 2 Lk-1 	 ?I;>

(3-18)
At 	 Jt2

r^

Ek - ^'k-1 + At 
r
l:-1	 3	 1k-1	 G	 11:

li

3-8
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ll	
The stepsize, \t , is monitored so that

Jt !^ 
Atmte.^

AvIlere JtMax is an input to the integration routines.
s

3.5 COORDINATE TIIANSFORMATIONS

The GPS satellites broadcast their information in Earth-centered 1-^'Rxth-fixed

(ECEF) Cartesian coordinates, and the ONPAC ephemeris and estimation al-

gorithYns are all written using ECJEF coordinates. More information on the

filter behavior and error sources can be obtained from examining ONPAC re-

stilts in other coordinate frames (in particular, the MM" coordinates and the

Keplerlan orbital elements). To convert from ECEP coordinates to UVNV coor-

dinates or to I oplerian elements first requires a conversion to an inertial

coordinate frame. The one used for this purpose inONPAC is the Eartli-

centered inertial (ECI) coordinate system.

3.5.1 Earth-Centered Inertial (ECI) to Earth-Centered Earth-Nixed (.ECEF)
Coordinate 'Transformation

In general, the transformation from an ECEF to an E CI coordinate system is

obtained by the notation

r, cos n t -sill n t	 0

' r= sill n t	 cos St t 0 r'	 (3-1 J)

0	 0	 1
5

where r is the satellite position rector in true of date ECI coordinates, r,
w

is the position vector in ECEF coordinates, S2 is the Earth's rotation rate,
it

'	 and t the elapsed time from the epoch of the tide of date system. For ONPAC,

3-0
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it is necessary only to know the instantaneous correction from one system to

the other. In this case, the time from epoch is zero and the transformation

from ECEF to ECI is

r=rt
(3-20)

r= r`f +0xr

where St is the vector directed along the Earth t s North polar axis whose mag-

nitude Is n , the rotation rate of the Earth.

3.5.2 ECI to UVW Coordinate Transformation

The unit vectors in the UVW coordinate system are

U	
r- X r1	

(3_21)

v =	 ( 3-22)
r

tv = i X v = r_ x (r x r	 (3-23)rx(rxr_)

The unit vector, u, is in the cross-track direction (along the angular momen-

tum vector), v is along track (along the velocity vector), and w is in the ra-

dial direction for a circular orbit. For any other orbit, it is in the orbit plane

perpendicular to the v and a vectors. It will be nearly in the direction of the

radius vector for an orbit with tow eccentricity.

3-10
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The transformation from ECI to UVW is

• u•i	 u	 u•kn
r" =	 v • i	 v• j	 v• k	 r	 (3-24)

nW • i	 w	 w•k

where (	 j, 1{) are the ECI unit vectors and r" 	 is the position vector in UVW

coordinates.

f 3.5.3 ICeplerian Orbital Elements_

The orbital elements are determined using ECI satellite position and velocity

(r, r) .	 The angular momentum is

c=rxi
(3-25)

=cii+c^j+cI{Z

The vector along the nodal line is

n =kx c

= n+ n^j	 (3-26)x

_-c+c.J
J	 i

The Laplace vector, whose magnitude is the eccentricity, e , and which points

along 	 P	 Pthe	 eria sis line is

1	 •2 -r	 r - (r• i)r^µ
(3-27)

e = !e

3•-11
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and p = GM , the gravitational parameter.

The semilatus rectum is

p = ^µ^	 (3-28)

The semimajor axis is

a= p 2	 (3-29)
1-e

The inclination of the orbit to the X-Y plane, I , is given by

c
cos I = c	 (3-30)

I_l

The inclination is always less than 180 degrees.

The longitude of the ascending node, measured from the X axis, is given by

a

F

I

n, .
cos n = aril	 (3-31)

i

If n  <0 , the orbit is retrograde and the longitude 	 + 180 0 .

The argument of perigee is given by

cos W = i 
n e
	 (3-32)

3-12 ;i
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If e l^ < 0 , the argument of perigee w + 18O 0
,

The true anomaly is given by

e, r
cos f = e 	 Ift,	 (3-33)

If r • x < 0 , the true anomaly = f * X800 .

The eccentric anomaly E Is given by

tan ^ =Jx * e tan 2	 (3-34)

3.6 STATE TRANSITION MATIM

A state transition matrix propagates the estimated corrections to the state vec-

tor forward in time and it is computed by integrating the linearized form of the

equations of motion. In ONPAC, the covariance matrb: is propagated by using

an analytic approximation to the state transition matrix. The analytic state

transition matrix is expanded in a Taylor: series and iriay be truncated at

O(t), O(t2 ) or O(t'i ) at the user's option. The force model for the state trans-

ition matrix includes the central body attraction and the Coriolis terms. The

user may also include some terms due to drag.

The general differential equation for the state transition matrix ^D is

(t, tk-1. ) 	 A(t) 
4) 

(t, tk-1)
	

(3-35)

3-13
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which has the solution

t

(tl{' ti{-1 ) - exp fk A(t) dt

-1

exp CA(tk-1) At]

A 2 (tk-1 ) At 
I +A (t 

k-1)  
tit +	 2.	 + ...

where At= t  - tk-1 . The matrix A(t) is composed of the partial derivatives

of the equations of motion F (t) , with regard to the state, X .

O il 03X1	 012 03x1	 013

0 1X3 1	 01x3 dt	 0

0 21 0 3X1	 022 03X1	 023

0 1X3 0	 01X3 1 - [fit/Tf 	0

01X3 0	 01X3 0	 1 - At/Td

where 011 = I (and is a 3 by 3 submatrix)

03 xl = 3 by 1 zero submatrix

012 = TAt + .2/2 (and is a 3 by 3 submatrix)

0 1x3 = 1 by 3 zero submatrix

021 = 0g 
At (and is a 3 by 3 submatrix)

022 = J+ oa At (and is a 3 by 3 submatrix)

rat = tl	 tl

3-14

(3-3G)

e? 
(t k' tk-1)

(3-37)
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2x2 y2 - z2	 3xy	 3xz

og
 =
	 3xy	 2y2 - x2 - z2	 3yz	 (3-38) ^,5

3xz	 3yz	 2z2 - x2 - y2

2 2 + y2 + i2	 sy	 X,i

O 
	 ay	 e+ 	 2y0  i s)	 yiO

a 	 ^^

kli'z	 s2 + ' 2 + 2i2Y 	 Y	 `

	

0	 20 0	
(3-39)

+ -M 0 0

	

0	 0	 0

-77 vkAt

023 M - 77VyAt	 (3-40)

-rlviAt

	013 = xA3	 (3-41)

where Q = notation rate of the Earth.

The equations of motion, F(t) , are Equations (3-6) and (3-7) defined in

Section 3.2.

3.7 FADING ME MARY

The most recently made observations are weighted more heavily than

previous ones by fading the filter memory. When the covariance is pro-

pagated, as described by Equation (2-4), an additional factor is included

P (tk - sfi(tit, tk-1 ) P (tk-1) 4T(t1C , tk-1)	 (3-42)

3-15
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where the variable s can be described as

^tOTs	 e	 (3»43)

with At the interval between observations and T a time constant, 	 Since the
4

r

covariance is factored into U-D components for gait] and update computation

the D component of tile propagated covariance Is multiplied instead of the

entire covariance,

D(tk	w	 s D(t1C	 (3"i4)

which Is equivalent to (3-42) when there is process noise covariance. In ONPAC,
J the	 S	 term is ai)pl.'otillllateCl wl,tll a combination O f 51110othed SqUaI.`e-t0-Var iance

{
ratios of range and delta range Observations from the GPS Satellites in the

co nstollations, as described In Section 2.3.

The fading memory can be compared to the process noise covariance matrix

given in Section 5.	 The process noise terns, which are added to the covariance,

?i provide a minimum value for specific terms of the covariance at any given time.

The fading memory multiplies the entire covariance and can impact the covari-

ance much more than the process noise. 	 This limits the use of the fading

memory to periods of good GPS satellite visibility (four or more in view).

When used together, the fading memory will overwhelm the proce y s noise but

there is reason for having both available to ONPAC. 	 When the GPS satellite

' visibility is poor, only the process noise Is used. 	 When it is good, both the

44,

I

process noise and the fading memory are used.

3-1G
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SECTION 4 - OBSERVATION MODEL AND PARTIAL DERIVATIVES

( The pseudorange observation equation is the equation for the length of the line-

of-sight vector from the user to the GPS satellite. 	 The delta pseudorange ob-

servation equation is the difference between two range measurements made over

a short time span. 	 The partial derivatives of the pseudorange equation are

straightforward.	 Those of the delta pseudorange are the first terms of an ex-

pansion in which the assumption is made that a linear approximation will suffice

over a short time span.
r

,G
4.1 PSEUDORANGE OBSERVATION MODEL

LL The pseudorange observation equation at time t 	 is

N

2	 2	
1/2

2
i - x)	 + (sy - y)	 + (sz - z)+ b	 (4- 1)R(tk)

	
1(si

x

t where	 (x, y, z) = the user satellite position at ti{

(sX, sy , s z} = the GPS satellite position at t 

'i b = the user clock bias at t k

P.

The partial derivatives of the pseudorange observation with respect to the state
parameters are

t
BR

ax
	

X% "k'

ay	 y
E

aR =
-^z(tic)

4
az

^y

db _ 1

r

4-1
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U+
aR ... bR	 aR	 aIt	 aR

dy = a1 m au dd
(i-2)

(Oont' d)

where the components of the unit vector along the lino-of-sight froze, the user

a
satellite to the GPS satellite are given by

sx(tic) 
_ x(tl{)

^x(tit) 	R(tk) - b(tk)

S	 -y

^y(it	 ^ b (4-3)

k
s	 -z
z

^z(tk) 
W 

R - b

4.2 DELTA PSEUDORANGE OBSERVATION MODEL

'i

The delta pseudorange observation equation at time t 	 is

;I

f

OR(tk - R(tk) - P'(tlt-1) (4-4)

This equation assumes that a pseudorange measurement precedes the delta

pseudorange measurement at time

The partial derivatives of the delta pseudorange OR with respect to the state,
if

X , at time t l{ are

a0R(tk) aR(tk) aR(tk- 1) ax(tic-1)
ax(tl )	 a1(tk) - antl:-1) ax(tk)

(4-5)

n^	 aR(tk) aR(tk-1)

^. ax(tk)	 a^'(tl,-1)	 (tk-l' tic)

4-2
i
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The state transition matrix, 	 t k-1 , 
t
lc ), can be approximated by the expansion

J
(tk-1' ti)	 19X9	 A(tk•-1)O X9 N-1 - tic^	 (^ ^^)

r'or the nine-parameter state, a further approximation for the matrix A can be

a
introduced, where

$ 03X3	 I3X3	 03X:
ix

A 
	 03X3	 0 3X3	 03X3	 (4-7)

03X3	 03X3	 03X3

a
Then, the partial derivatives with respect to the state parameters are

a 6
AR ' 1x%tic-1) - z (tk)

' 6AR
cy	 Ay( tk-1) _ ^y(tk) .

if

az	
^. 

A z (tk-1) - 4z(tl.)

6AR 	
0	 (4-8)

bb

E anR
a	 = -ot eY(tk-1)

?4

` ay = -ot .2y(tk-1)

6AR

'i

i

1

f 4-3

f

r=
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°'	 s

,^	 dab ^ 
©t	

0-8)
(Cont'd)

ad

it

where At - tit - tk-	 In the pseudorange measurement, the At Is small

(on the order of 0. G second). The 6NPAC program assumes that a delta pseudo-
;	

range observation at time t  is following a range observation at tk-1

it
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SECTION 5 - DERIVATION OF THE STATE PROCESS NOISE
COVARIANCE MATRIX

The covariance matrix in a Kalman filter or EKr will become saturated, the

terms becoming very small, after a large number of observations have been

processed. The result is such that the filter will no longer significantly correct

the state (i. e. , the state corrections become infinitesimal). To prevent this,

a noise matrix which compensates for neglected terms in the force model is

computed and added to the covariance matrix when it is propagated. Then,

Equation (2-4) becomes

P(tk) = `D(tk' tk-1 ) P(tk-1) 
CD 	 tk-1) + Q(tk)
	 (5-1)

where Q(tk) is the state process noise covariance matrix.

The noise errors are assumed to be uncorrelated in time (see Reference 4) and

the r*sition-velocity and drag terms are uncorrelated with the clock terms.

The vector X is defined as the error in the state.
—e

6r

6b

X = 6v—e —

6b

6d

where 6r = position error

6 = clock bias error

6v— = velocity error

6b = clock drift rate error

6d = drag scale error

5-1

(5-2)
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j	 Then, the differential equations to describe this system cart be written

wy

X = DX1 X + w (t)	 (5-3)_e	 1 _e
Af

where w(t) is a random forcing function to account for the errors in the force

models used in the differential equations. This is called the state noise. The

function w(t) is assumed to satisfy the following;

ECw(t)] = 0

f	 T	 (5-4)

E [W (t)W (s)1 = W6 (t — s)

where	 6 = the Dirac delta function

6(t-s)=1, t 
0, t	 s

E = the expectation operavor

W = spectral density matrix

This model assumes that the state noise is unbiased and uncorrelated in time.
s

The covariance matrix for the noise is
I

t
j	 Q(t) = E	 tIc	 is	 ^(tk, u) w	 w(u) T (s) ^DT (tl{ s) du ds

tk-1	 tk- 1 	
5-5

f

t
k	 tic	 r

f^(tk, u) ECw(u) wT(s) ^T(tl^, s)du	 ds

k-1	 k-

1
ta»

^ A

X ^

R	 5-2

y^^r 

q



r

l

QUALI '

or pp0V,

f
If the position-velocity and drab; terms are uncorrelated Nvitli the clock terms,

the state noise matrix can be partitioned and the clock terms derived separately.

The noise matrix can be divided into the follo`ving;

I

X11	 °3 x 1	 X12	 °3 x1 	 X13

01X3 	 qbb	
01X3 	 qb6	

0

Q(t) =	
QT	

0	 Q	 0	 Q	 (5-G>12	 3x1	 22	 3x1,	 23

°1x3	 gbli	 °1x3	 %6	 °

^f X13	 °	 23	 °	 X33

The clock process noise covariance matrix terms are

bb	 2 p At + 2 a At2 + I
	

^At3 + 4 D t^

n
2aD t"

^bli 
_ 2:^t * ;;2v2 + 1 2	 (5-7)

-4

?f

h	 l

^lili - a 1c + 2 
-,.2 

2^t 	ID

A t
wherc	 c	 4. G	 -

2 T
'in in	 min

r2	 is the clock white noise Allan variance fac tor

u, r	 is the clock flicker noise Allan variance factor

r2	is the clock ramiom walk Allan variance factorw2

u

rD is the deterministic clock drift rate variance
^h
{

and	 T	 is the scaled minimum time where flicker noise p redominatesmin 
on the Allan variance curve

5-3
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Q1(t)	 is defined as the subset of Q(t) which concerns the position-velocity

and drag terms

f*
Q11	 Q 12	 Q13

Q I M - Q12	 Q ?.2	 Q23	
(5 -8)

(
U

T	 T
L.Q 13	 Q23	 Q33

Equation (5-4) can be rewritten in the form

0 3X3	 0 3X3	 03X1

}f EGW(u) WT (s)' =	 03X3	 a2 I3x3	 03X1	
(5-9)

0	 0	
2	 )

bd	 u - s1X3	 1X3	 a	
(

i_

for the position-velocity and drag noise terms where a and Qd are the rates
l

of the noise variances for the acceleration and the drag coefficient.

Because Equation (5-5) for computing Q(t) contains both CD and ^T , the state

transition matrix, (D may be approximated with fewer terms than those given

e
in Section 3.

3

The transition matrix is approximated for use in Equation (5-5) by	 ±`

f

X 11	 X12	 03X1

ĉ (tk'	 c-1)	 03X3	 022	 023	
(5-10)

0 1x3	 01X3	
1 -
 

4t^"d	 '+

i

,tit

5-4

ds ^^

^J
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where	 At = t  - tk-1

O11 - I3X3^.

012=dtI3

1	 2n At 1

022 = -20At	 1 0

0	 0 1

-rvxOt

023 = -^vgOt

-rwz^t

v = Y2 + y2 + z2

n = rotation rate of the Earth

' 77 =the atmospheric density

r Then,

a2 At4
_

Q11	
a

^	 4	 I3

j At3	 •- OA t4 02	 2

i	 l 2 S., At	 Ot3_
412 - ^a 2	 2	 0

^t3

{ 0	 0	
2

I(
0

Q13=	 0

0
u^
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At 	 •t- n Ate	0 0
f>

Q22 = 
va 0	 At + St Ott 0 (5-14)

Y

0	 0 At2

X

2
^2Q23 = -77v Cr 

d	
y (5-15)

u
z

Q23 = a d At (5-1G)

j

n
The termsod2 Ot2 and vd At 	 were neglected since they are smaller than the

neglected terms in the state transition matrix.

The state noise process covariance matrix is a positive definite matrix. Con-
;(
ri sideration of the position-velocity components	 [Q11' Q 12 ^ shows that

r

Q11	 Q12

T
Q12	 Q22

is a matrix which may be factored into U - D components. Let Q" be the subset

r of Q described above.	 Then,

11	 11
Q"	 a ^t2I6 X 6  + ql/ (q2/ (I G x G 

T 
q11 (5-17)

5-G
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where	 03x3 ^Ix
q1 =

03x3 03x3

	

At	 0At2

2(1 + Sd2At2 )	 2(1 + n2At 2 ) 0
1

q1	
Q At2	At

2(1 + Q2At2 )	 2(1 + E22At2 0

At

	

0	 0	 2

and q2 is a diagonal G by G matrix with elements

q^ = C4, 0, 0, 1 + 522dt2 , 1 + n At2 , 1j

► 4r t

+i

4

i^
ii

5-7
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APPENDIX A - MATRIX DECOMPOSITION

A.]. CHOLESI Y DECOMPOSITION

Any positive definite square matrix can be factored into a triangular matrix

and its transpose. If A is such a matrix,

A = BB T

The matrix B is not unique and may be either an upper or lower triangular

matrix. If It Is an upper triangular matrix, the decomposition algorithms for

an n x n matrix are as follows:

bn, n V an, n

a

bi,n bin for i=1ton-1
n, n

fin'`
bj ► j -/a, ,j L^ bfor j=n-1to1

i=j+1

n
a^. 1
	 1 

bj, k b^ , k

b	
k=

^ 	 for k=j-ltol
bj	 J,j

u

(A-1)

It

A. 2 UDUT DECOMPOSITION

The matrix A can also be factored into a triangular matrix with unity on the

diagonal and a diagonal matrix,

A= CECT	(A-2)

Y

A-1
	 3
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which can also be written as

A = (CE 1/2)(CE1/2)T
	

(A-3)

^i

a	 ^

ll

1lI

i

{P^

s	 fi'

implying that

	

B = CE 1/2	 (A-4)

When C is an upper triangular matrix, the algorithms for the C and E coni-

ponents are as follows:

en, n an, n

(A-J)

c
n-i n- 

1n-i, n for i= 1 to n- 1
'	 n, n

Then, for j = 1 to n - 1 the diagonal terms are

n	
2

	

e
n-j, n-j _ an-j, n-j	 en-j, k ek, k	 (A-G)

1c--n-j+1

and the off-diagonal terms in C are for m = 1 to n - j - 1

n

an-j-m, n-j	 = +1 cn-j-m, .t cn-j, k e .2, k
c	 -	 (A-7)n-j-m, n-j	 en-j, n-j

A-2



The diagonal terms of C are

it

it

c 
iti 

==1,  for I m 1, n

Il
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APPENDIX B - DATA SIMULATION

Simulated pseudorange and delta pseudorange measurements from GPS broad-

casts are provided by using the ANALYSIS program of GTDS. Further infor-

j	 ination on the ANALYSIS program is available in Reference 7. Data may be

simulated for either ONPAG or the FILTER and DC programs in GTDS.
i

For a data simulation computation, the user satellite orbit is computed using

the GTDS EPHENT program, and the true coordinates are read as input to the

ANALYSIS program. The GPS satellite coordinates at a given time are deter-

mined depending on the configuration chosen. The options available are 3 GPS

satellites in 2 orbits (Phase I), G satellites spaced in 3 orbits as set by the

!1

	 user (modified Phase I); 12 satellites with unequal separation (Phase IIa),

12 satellites with equal separation (Phase IIb), and 24 satellites with equal sep,-

aration (Phase III).

The visibility of the GPS satellites is constrained by the observer antenna cone

angle and the ionospheric cutoff. The user may cycle through all visible GPS

satellites, select a subset of four by choosing those four which minimize the

Geometric Dilution of Precision (GDOP), or use all those visible except only

one of the t<vo or more that are essentially in the same direction from the user.

The use and GPS satellite positions can have random noise added. The GPS

position and velocity errors are simulated by computing errors in HCL coor-

dinates, with the along-track error increasing Nvith time.

The clock errors are a total of the GPS and user satellite clock errors. The

GPS clock offset is a constant for each GPS satellite. The constant value is

chosen at random for an input standard deviation. The user clock offset may

be computed using a quadratic or a bIarkov process model.

B-1
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° The quadratic model of the user clock offset, 	 T 	 , at time t Is

 ~ TB(t)	 TB + fB (t	 t) + ^ fD (t - t) 	 (B-1)U	 u	 u	 0	 2 u	 o

where T^ - the user clock bias

'j
f 	 G the user clock drift which equals the user frequencyoffset In parts

per reference frequency at time t

fA = the user clock drift rate which equals the user discrete change in
I^ frequency per reference frequency

t = the observation time (in seconds)

to = the epoch of the clock model

In the Marlcov process, the drift rate fD is computed as a random number at

discrete update ti rnes. 	 The time interval between updates Is set by input, as

are the mean and standard deviation of the random number generator. 	 The

drift rate is assumed constant between update times. 	 The clock drift at time ti

fB ( ti ) P is
f

i

fB (ti ) _ fB (to) + E f
u (t +1 u (ti - tj+1)	 (B-2)

J=O

z

where u(r) is a step function

t 0,	 r	 0
u ('r) -	 1, T Z 0

and the tj+1 are the times of updates.

The user clock bias is then

'
B	 i

TB (t.) = TB (t) + f	 (t ) (t	 - t) +	 f^ (t.	 ) (t	 ° t	 ) u (t	 t	 )	 (B-3)i	 x	 +1	 i	 +1U	 u	 a	 u	 o	 o	
j=0 u
	 j	 i - j +].

^t

B-2
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For the quadratic model, the user offset Is computed by evaluating Equa-

tion (B-1). In 4NPAC, the user clock Dias, b , Is expressed In kilometers,

and Is compared to TB by multiplying Tut times the speed of light In km/seo.

The pseudorange observation is the true range plus the user and GPS clock

offsets plus the range measurement noise, computed as a random number with

a user-supplied standard deviation. The delta pseudorange is the difference of

two true ranges plus its measurement noise computed from the user-specified

standard deviation. The filter programs are also supplied with GPS coordinates

which will be obtained from the broadcasts. The coordinates are Cartesian

ECBP and contain the simulated CPS ephemeris errors.

The ONPAC data tape also includes a record with the true observation, true

user coordinates, and true user clock offset and drift for each observation

record. This information is used in analyzing the results.
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GLOSSARY

A(t) Partial derivatives of the equations of motion defined
in Equation (2-3)

Acx Gross-sectional area of the satellite

Anom
Associated Legendre polynomials

a Semimajor axis defined In Equation (3-25)

a1 , a^2 , a3 , a4 Acceleration components In Pine's model defined in
Equation (3-5)

a , a , a Acceleration component3
1	 y	 z

B Upper right triangular matrix In U-D update derivation

b Clook bias	 in units of Icm

U Clock drift rate expressed in units of km/sec

bI 
j

dement of D defined in Equation (2-27)

CD Coefficient of drag

C Tesseral harmonic coefficients
n, m

e Angular momentum vector defined In Equation (3-25)

cl , cy, C Angular momentum components

D Diagonal component matrix of covariance matrix

d Drag coefficient defined in Equation (3-2)

di Diagonal components of D matrix

ad Drag coefficient error

E	 Eccentric anomaly

E[	 Expectation operator

G-1
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r

r

1S

r

e Eccentricity

e Laplace vector defined in Equation (3-27)

F(X, t) Equations of motion

f True anomaly defined in Equation (3-43)

ff

G(X(t), t) Observation equation

g(t) Observes', niinus computed observation defined in Equa-
tion (2-6)

H(t) Matrix of partial derivatives of G(X(t), t)

j h Satellite height defined after Equation (3-6)

hi Components of H(t) matrix

h Scaled height

i,
ht Vector of threshold heights

j
t

I Identity matrix
r	

,i
I Satellite orbit inclination defined in Equation (3-30)

r i	 (s, t) Imaginary part of the potential expansion defined after
m Equation (3=3)

j Jn Zonal harmonic coefficients
li

J V-1

K(t) Kalman gain vector defined in Equation (2-31)

Line-of-sight unit vectors defined in Equation (4-3)

M Inner matrix in the U-D update derivation Equation (2-19)

u i^1 Satellite mass

4 m. Element of bI matrix defined in Equations (2-22) and
(2-23)

n The number of state parameters

G-2
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i

r^u

r ^*
I	

f^

r,

^. a

,r

P(t)	 Covariance matrix defined in Equations (2-33) and
(2-34)

P al	 Legendre polynomials

P,	 Semilatus rectum defined in Equation (3-28)

P	 Filter tunable parameter used to compute smouthed
residual

Q(t)	 State noise process covariance matrix defined in Equa-
tion (5-G)

Q11' Q12' Q13	
Submatrix components of Q(t)

Q22' Q23' Q33

Q ?	Position-velocity and drag submatrix of Q(t) defined
in Equation (5-8)

Q i '	 Position-velocity submatrix of Q(t) defined in Equa-
tion (5-17)

q1' q2	
Component matrices in Q" defined after Equation (5-17)

R(t)	 Pseudorange defined in Equation (4-1)

©R(t)	 Delta pseudorange, defined in Equation (4:-4)

R	 Mean Earth radius
e

r	 Satellite position vector

6 r	 Satellite position erroa.

rin (s, t)	 Real part of potential expansion defined after Equa-
tion (3-3)

r	 Satellite height scaling factor, defined after Equation
(3-G)

S.	 Partial suns in the U-D update defined in Equation (2-30)
1

S	 Tesseral harmonic coefficients
n, m

G-3



s

i s Coordinate in Pines force model defined in Equation
(3-3)

r sx, sy , s z GPS satellite position components

i t Time

t Coordinate In Pines force model defined in Equation (3-3)

j At Filter stepsize

At Maximum allowable stepsize
max

i U Upper right triangular matrix component of the co-
variance

a u Coordinate in Pines force model defined in Equation (3-3)

f	 '^

u Crosstrack unit vector defined in Equation (3-21)

LI Element of U matrix

1
V Gravity potential defined in Equation (3-3)

r

jj v Satellite velocity vector

air Satellite velocity error

V Al ong track unit vector defined in Egmtlo n (3-22)

W Diagonal matrix in U-D update derivation

Diagonal element of W matrix, defined in Equation (2-24)AN.i

4 , Unit vector in UV`V coordinate system defined in Equa-

}}
tion (3-23)

Wa Wb , We Vectors of constants used in atmospheric density com-
potation, defined after Equation (3-6)

h
Y(t) State vector defined in Equation (3-1)

Error in state vector defined in Equation (5-2)e

k G-4



ti.

x Position component of satellite

ti Velocit • coal	 t component of sVelocity	 p	 satellite

Y(t) Observation i1

y Position component of satellite
V

Y Velocity component of satellite
i

z Position component of satellite

z Velocity component of satellite

«n Scalar divisor for EKF updafe defined in Equation (2-15)

u J6R, ,BAR Vectors of smoothed residuals (2-42)

r

3

^r^	 a
Mnlin

,
 finial

filter tunable parameters
E
}

Y Term in atmospheric density computation defined after
Equation (3-6)

E Earth's ellipticity

fl

j
Atmospheric density defined after Equation (3-6)

,u Gravitational parameter, GM

P fading memory factor, defined in Equation (2-35)

Pi` Ration of the square of the residual to et	 defined in
Equation (2-40)	 n

N.

P2 Tunable parameter used to limit ^,	
,R

2lj a^ Acceleration noise variance rate

2a 0 Clock white noise Allan variance factor,
l 2

Q Clock flicker noise Allan variance factor

v 2 Clock random wall: Allan variance rate factor

G-5
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T	 '

f,
!

	

-	 a^D	 Deterministic clock drift rate variance

I

	

u	
v	 Drag noise variance rate

^.

a2	 Measurement variance'
m iy

'r2R
	 Pseudorange measurement variance

	

D	 2	 l

QAR
	 Delta pseudorange measurement variance

1

i,

7	 Time constant of drag defined in Equation (3-12)

T	 Scaled minimum time where flicker noise predominates	 j
min	 on the Allan variance curve. I`

^ (tk  tk-1)	
State transition matrix defined in Equation (3-37)

0 
i^
, ,	 Submatrix component of D defined after Equation (3-37)

' o
n
	SubmatrN component of 4)defined in Equation (3-39)

	

!a	
09	

SubmatrN component of 41)defined in Equation (3-38)
J

	

{	
S.	 Rotation rate of Earth in Section 3.5.1

Longitude of the ascending node in Section 3.5.3

r

	

a	 W	 Argument of perigee

f

u

i

	

!I	 ii
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}

^j
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