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FOREWORD

The Systems Technology Laboratory (STL) is a computational re-
search facility located at the Goddard Space Flight Center of the
National Aeronautics and Space Administration (NASA/GSFC). The
ST’ was established in 1978 to conduct research in the area of
flight dynamics systems development. The laboratory consists of a
VAX-11/780 and a PDP-11/70 computer system, along with an image-
processing device and some microprocessors. The operation of the
Laboratory is managed by NASA/GSFC (Systems Development and Anal-
ysis Branch) and is supported by SYSTEX, Inc., Computer Sciences
Corporation, and General Software Corporation.

The main goal of the STL is to investigate all aspects of systems
development of flight dynamics systems (software, firmware, and
hardware), with the intent of achieving system reliability while
reducing total system costs. The £flight dynamics systems include
the following: (1) attitude determination and control, (2) orbit
determination and control, (3) mission analysis, (4) software en-
gineering, and (5) systems engineering. The activities, findings,
and recommendations of the STL are recorded in the Systems Tech-
nology Laboratory Series, a continuing series of reports that in-
cludes this document. A version of this document was also issued
as Computer Sciences Corporation document CSC/SD-81/6028.

The primary contributor to this document was
Joan B. Dunham (Computer Sciences Corporation)

Other contributors include
Anne C. Long (Computer Sciences Corporation)
William Wooden (Goddard Space Flight Center)

Single copies of this document can be obtained by writing to

Keiji Tasaki

Code 582.1

NASA/GSFC

Greenbelt, Maryland 20771
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ABSTRACT

This document, which is an update to Computer Sciences Corporation document
number CSC/SD-78/6002, describes the mathematical theory of the computa~-
tional algorithms employed in the Onboard Navigation Package (ONPAC) System.
" This system, which simulates an onboard navigation processor, was developed
to aid in the design and evaluation of onboard navigation software. The mathe~

T form of the extended

matical formulations presented include the factorized UDU
Kalman filter, the equations of motion of the user satellite, the user clock equa-
tions, the observation equations and their partial derivatives, the coordinate

transformations, and the matrix decomposition algorithms.,

Use of the ONPAC system, with sample input and output, is described in a com-

panion document, the ONPAC User's Guide (Reference 1),

iiR .
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SECTION 1 -~ INTRODUCTION

The Onboard Navigation Package (ONPAC) Simulator simulates an onboard nav~
Igation processor assembly using a modified version of the deslgn proposed In
Reference 2. The pseudorange and delta pseudorange observations for the es~
timatior. of user spacecraft position and time will be measured by the onboard
receiver/processor assembly from informatlon broadcast by the NAVSTAR/
Global Positioning System (GPS)., The pseudorange observation is modeled as
the line of sight distance from the GPS to the user, and the delta pseudorange
is modeled as the change in the pseudorange over a period of time. The system
is currently being used for analysis and evaluation of the algorithms presented

in this document for premission studies.

The ONPAC system is being developed on a Digital Equipment Corporation
(DEC) PDP 11/70 computer which is similar to the DEC LSI 11 which the nav-
igation processor assembly will use. One proposed use of the processor as-
sembly is to be a part of an experimental package to be placed on Landsat-D
for onboard orbit determination using Phase I GPS. A sample case and sample
output for Landsat-D are presented in the appendixes of the user's guide (Ref-

erence 1).
1.1 OVERVIEW OF ONPAC CAPABILITIES

The ONPAC system processes GPS pseudorange and delta pseudorange obser-
vations sequentially to estimate and apply corrections to a host vehicle state,
which includes the satellite position and velocity, two terms to describe cor-
rections to the host vehicle clock, and a satellite drag coefficient., The inte-
grator used to predict the position and velocity from observation to observation
is an Euler integrator; the force model used in this integrator may be varied
by the user. The force model options are detailed in Section 3.2. The covari-
ance matrix is propagated with a state transition matrix which is a Taylor

2
series expansion of the analytical state transition matrix to At, At , or Ata

1-1
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as specified by the user. A state process noise covariance matrix is also com~
puted to allow for errors in the knowledge of the state and is added to the co-
variance matrix. The variance of the state noise in position, in the drag

coefficient, and in the clock terms may be specified by the user,

The ONPAC system design Is modular so that algorithms can be replaced ox
added with minimal changes to the existing simulator., Procedures for making

such changes are discussed In the user's guide (Ref rence 1),
1.2 SUMMARY

This document describes the basic mathematical algorithms used in ONPAC,
Derlvations for most of the algorithms are available in standard texts and
sources are given In the references, Secetion 2 describes the extended Kalman
filter and gives a brief derivation of the UDUT filter., The step-by-step appli-
cation of the UDUT filter in ONPAC Is presented, with the points identlfied at
which editing and smoothing are performed. The state vector and the state
propagation equations are given in Section 3. The mathematical models in
ONPAC use four different coordinate systems. Transformations from the
inertlal to the other three systems are also given in Sectlon 8. The pseudo-
range and delta pseudorange observation models and partial derivatives are
described in Section 4. The state process noise covariance matrix used in
ONPAC Is given in Section 5. Appendix A describes the matrix decomposition
algorithms. The data simulation which is performed using the Goddard Tra-
jectory Determination System (GTDS) is described in Jinpendix B. The relation-

ship of these elements of the ONPAC program is shown in Figure 1-1.

1-2
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SECTION 2 - ESTIMATION EQUATIONS

Matrix factorization techniques have been demonstrated to improve the stability
and accuracy of Kalman filters (Reference 3), The factoring of the covariance

matrix, P, into square root

reduces the occurrence of numerical problems by keeping the covariance ma-
trix posltive definite. The {llter in ONPAC is an application of the U-D for-

mulation of an extended Kalman filter (EKTF),
2.1 EXTENDED KALMAN FILTER

A derivation of the EKT, also known as the extended sequential filter, can be
found in many sources (Reference 4 and 5).. The EKT equations are presented

in this secction as a basis for the UDUT filter discussion which follows.

Given a state vector and covariance matrix at time t the prediction

k-1’
and update equations at time tk are as follows:

1. Givet; 5(_:(tk_1) , the estimated n-dimensional state vector at tk-l ,
and ?(tk_l) , the covariance at tk—l R integrate the state equations of motion

EE b,

X

F&E, 0 (2-1)

2-1
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from tk-l to tk y with the initial conditions Sf(tk_l) » This gives the pre-

dicted state }‘:(tk\ » The carets over X and P indicate the updated estimates

o

after processing an observation.

ey

Compute the state transition matrix - (t X tk-l) y by integrating the differen-

ﬁ tial equations
}% (kb ) =AG B b ) (2-2)
{{
{ where A(t) Is the matrix of partial derivatives
: dF(X, t
Alt) = [—-—-—E%{——-l] (2~3)

ety

=

; evaluated at X = X(tk_l) . The initial conditions for the integration are
fb(tk_l, tk-l) =1, the identity matrix.

! Propagate the covariance matrix using the state transition matrix to obtain the
predicted covariance matrix at time tk (without process nolse),
(2-4)

- 3 T
P(t) = (b ty ) P, ) @ ¢

K e be-1)

2, Obtain the observation at time tk’ Y(tk) . Compute the predicted
‘:5 observation, G(X(tk), tl_) , where G is a nonlinear function of the state pa-
K 'Y

rameters and time.

] Compute the (1 X n) matrix of observation partial derivatives

i%’

. [ac;(:_g, tk)]

| Ht) = [~ (2~5)
§,§ k oX §=§(tk)

B

oy
W 7
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The observation residual, or observed minus computed nhgervation (O - C) is

given by
3. The Kalman gain, Lg(tk) y Is

-1
T T T 2
5@9»P¢QH(%%}qgm%niﬁg+qJ @-7)

2
where Gm is the measurement variance.

The quantity within the brackets is a scalar and IS(tk) is a vector with n com-

ponents,

The Kalman gain is use\' to compute the updated state vector
Rt ) =X(t ) + Kt ) gt
X( k) - f..( k) + ....( k) g( k) (2"8)
and the updated covariance matrix
Bt,) = [1-K(t,) Ht, )] P(t
(b = LI-E() H k)] () (2-9)

The updated state vector and covariance matrix at time tk are then the input

for propagation to time t in the next step.

k+1
2.2 UDUT FILTER DERIVATION

The covariance matrix is a positive definite square matrix which may be factored
into a triangular matrix and its transpose. It may also be factored into a trian-

gular matrix with unity on the diagonal, its franspose, and a diagonal matrix,

2-3
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The EKTI equations can then be formulated using the component matrices instead
of the covariance matr.g. The covariance matrix is computed as shown below,

P = UDU T 2-10)

where U is an upper triangular matrix and D 1is a diagonal matrix.

The Initial conditions for the t(th step of the EKF filter are

!

Rt ), O, ), D
Kby _q)r Ulheg ) D(tk-l)

Propagating the covariance matrix (without process noise) to time tk yields,

_ T
Pt = Ult,) D6 U™ (8,

- N A AT T _
Pty by q) Uil ) Dl ) Ul ) @76 b ) (2-11)
_ A o A T
=Bl by Uty Dt p) (B¢ b ) Uty )]
The covariance update equation is
ol
P(tk) =[1-K (tk) H(tk)] p(tk) (2-12)
For the following equations, all quantities are evaluated at tk . Replacing
K in Equation (2-12) with Equation (2-7) gives
T T/ 2\
P=p-pHT kHPHT - crm> HP (2-13)
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Substituting Equation (2-10) Into Equation (2-13) gives

B = 506
T T, T T 2\t T
= UDU” ~UDU"H” |HUDU H “’m HUDU (2~14)
T T T 2\* T
=UID~DU H (HUDU"H '*"O'm HUD| U
. For a single observation, the term
N i S
HUDU™H *O0m
is the scalar
/ . - \2
5 a i=-1
@, =0 * 3. dfn, + > hy v (2~15)
1=1 j=1
where n 1is the dimension of the state vector, di = di {7 the diagonal terms
’
of D, hi = h1 X the elements of the YU matrix and u, j are the elements
H ]

of the U matrix.

Substituting this relationship into Equation (2-14) gives

T
~ T A o G A & ]
560 =u!|p-RUH JiouTx") -
. @, ]

T 2~-16)

Equation (2~16) is then premultiplied by U“1 and postmultiplied by UnT to
give

vlipu T vt T (2-17)
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which is, substituting in (2-106)

T)T

T T)(;y (T
P B (buTH OZ(DU H
n

(2-18)

- - -
Because both £ and U (and U 1) are positive definite matrices, U “Bu N is

also positive definite (Reference 3). Therefore, the matrix (2-18) is a positive
definite matrix and can itself be decomposed into upper triangular and diagonal

component matrices.

Let
T
T..T T T
v ep . DUTHD ([pu'tn ) (2~19)
o
n
and
T
M = BWB (2-20)

where B is an upper triangular matrix with unity on the diagonal and W is a

diagonal matrix.

Then,

56T =upwnT U

and the following can be identified:

1
G
s5}

(2-21)

o b
i
=
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The matrices B and W can be found by applying the fuctorization equations

given in Appendix A,

The general terms for cornponents of the matrix M are

o/ L=l 2
+
3 dl (hl 4=l u,@,l hi)
mp =Y o (2-22)

and for {#j

[+ 5
d. d (h + u h.)(h_+ zlu h>
i\t = L1 i\ = q,i ¢q (2-23)

After decomposition and some manipulation, the general term for W is

d, o
w, ===k (2-24)
i
where w, =w, ,
i i, i
o, . =ag *+ d, [h, + S_: il ) (2-25)
- / od s -
i-1 n = i\] k___lhk k,]
and
i=1 2
= + < + -2
@ =yt by ;1 By uk,i) (2-26)

o
i
-3
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The general off-diagonal term of the B matrix is

1~j~1 i-1
"1y (hi~j ¥ 2_: % uk.i~j)(hi " 2 ey 1)
b - g==] k=1
i %1

Then, the update equations for the U and D matrices are

N
di= "
i
and
Q
A 9 5 8 Yk % Sk 5
“u"“m"“r“il? "
! ? j=1  K=i+1 j-1
where S is defined as
=1
S,=h, + hu
RLADIEILE

The Kalman gain is given by

-1
2
K=UDUT HY (H uouT uT + c&)

\

- UDUT HT

%

2-8

(2-27)

(2-28)

(2-29)

(2-30)

(2-31)
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The components of the gain vector are

n
F 1 =
—_— + E
O‘n (dl Sl A ul,j dj Sj)

K= : (2-32)

2.3 ONPAC FILTER

The filtering algorithm used to process each observation in ONPAC is discussed

below.

1,

!

Enter with a state vector, f\_g(tk_l) » and covariance matrix compo-
nents, ﬁ(t and ﬁ(t from the previous step. If this is the

Ot

-1/ k-}\) ’
initial step in the filter, (X¢, ;) U, _,)»

Sample initial conditions are given in the user's guide (Reference 1),

A . s
D (tk_l)) are initialized.

Retrieve t , (the time of the next observation), and Y(tk) , (the

k 4
observation). Correct the time tk with the previous estimate of the

user clock error (Section 3.3). Propagate the state to t using the

k
Euler integrator (Section 3)., If At = tk - tk—l is larger than the
maximum allowable stepsize, the integration from tk—l to tk is

done in substeps no larger than At .
max

2-9
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3. Compute <i>(t1 R 1;l ). (the state transition matrix) and Q(t,) (the
g’ k-1 k

noise matrix).

4, Propagate the covariance matrix
P(t) = @t t_p) O ) Bee ) [qa(tk, t_q) ﬁ(tk_l)]'r + Q) (2-38)

B Decompose P(tk) into U and D components using the method given

in Appendix A
- B(t) = U(t) D(t) U (k) (2-34)

G, Fade the filter memory by multiplying the D component of the fac~

tored covariance matrix

D(t) = pDI(t)

where

1 4 . .

pP=3 Z;‘ Br(D) + Bag(d) (ﬁmm< P < ﬁmax) (2-35)
i=

where ﬁR and g AR e vectors of smoothed residuals from each of

the GPS satellites in the current constellation, and g_. and g
min max

are the minimum and maximum values allowed for p. If there are

fewer than four GPS satellites in view, this step is not performed.

7. Compute the observation

GE,. tk) =R(t,) for pseudorange

(2-36)

= AR(tk) for delta pseudorange

2-10
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and the matrix of observation partial derivatives

H= l:g-g] for range
_ |SAR o
= [az_g] for delta range
These equations will be given in Section 4,

8. Compute the gbservation residual

g(t,) = Yt - G » )

9, Compute the a's and S's

j-1

S.=h, + hpu, .,
J j ;;I"Esl

2 2 .
where 0, = OR for a pseudorange observation

=g2 _ for a delta pseudorange observation

AR

10, Test the residual for acceptability by computing the square-to-

variance ratio

ﬁl- - [y(tk):}z

N o
n

(2~37)

(2-38)

(2-39)

(2-40)

(2-41)
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Test p'l'{ against pmax’ a tunable parameter, If p'l'{ >pmax’

the observation is rejected. In that case, set

P
Kby p) = X6

>

Ott, ) = Ut

k-1) = UG

D(tk-l) = D(tk)

b1 = b

tlt: = tk+1

and go back to stzp 1.
If b'k < Pax and the observation is a range, compute the smoothed

residual
Br) = B +p(Py ~ Bg(D) (2-42a)
If the observation is a delta range, the smoothed residual is
Bar® = By + (P = By (D)) (2-42h)

where (ﬁR(i), BAR(i)) is the smoothed square~-to-variance ratio from
the previous observation of the ith GPS and p is a tunable parameter.

After (BR(i) i)) is computed, it is checked against a tunable

parameter Q, and, if larger than Po» set equal to Po -

Update the U and D components of the covariance matrix and com-~
pute the Kalman gain, K, using Equations (2-28), (2-29), (2-30),
and {2-32),

2-12



13,  Update the state vector

.}S(tk) = K(tk) + K (tk) g (tk) (2""43)

If there are more observations, go to step 1.

2-13
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SECTION 3 ~ STATE PARAMETER PROPAGATION EQUATIONS

The ONPAC simulator has nine state parameters, the position and velocity
components, two clock terms, and a drag coefficient, TFor satellites such as
Landsat, which are not highly drag perturbed, this can be reduces to eight by

leaving out the drag coefficient.

With the intention of reducing the computation time and storage needed, the
Taylor series expansion in the algorithms for the state propagation were trun-
cated to the minimum number of terms necessary for achieving the desired
accuray. Observations will be made very frequently at the rate of a pseudo~
range and delta pseudorange palr in every 6.6 seconds when possible., This
will reduce the impact of the neglected terms in the propagation algorithms on

the filter accuracy.
3.1 STATE VECTOR

The state vector, X, which is used in ONPAC is given by

S

|
e

lk

(3-1)

Ne d»

fo

3-1
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where (%, ¥, 2, X, ¥, %) are the Cartesian position and velocity components
in Earth-centered Earth-fixed (CCEF) rotating coordinates, (b, 13) are the clock

gty

[‘ bias and blas rate expressed in kilometers (km) and kilometers per second
: (km/sec) (i.e., the blas and blas rates are multiplied by the speed of light

ylelding km and km/sec. This provides immediate comparison with the errors
l in pseudorange and delta pseudorange) and d is the drag coefficient

C_ A
_ _Dex

} T 2m (3-2)

where Acx = the cross-sectional area of the satellite

m = the mass of the satellite

% CD = a constant coefficient
i

3.2 FORCE MODEL
{ The ONPAC force model is variable, to be set by the user at run time, The

equations of motion include the force terms due to the central body attraction
and the coriolis and centripetal terms. To this may be added the force terms
; due to J2 yortoa 2x2,3x%x3,4x4, or 5 X5 geopotential model and

b atmospheric drag. The gravity potential is a Pines model (Reference 6).

:& f The gravity potential function uses a four parameter model. The potential

function is

u nmax Ren
,} veEdi. Y — [:JnAn,O(u)

n
i - Z—' An’ m(u)<cn,m rm(sit) * Sn’m inl(s:t))]i

(3-3)




where R o © mean radius of the Earth

i = GM, the gravitational parameter (the gravitational con-
stant times the mass of the Earth)

Jn = zonhal harmonle coefficlents

C i S = tesseral harmonic coefficlents (the values used are from
n,m’' n,m GTDS)
) 9. .2 1/2 _
r = (V94 y4 o+ 2%) = magnitude of the position vector
s =x/r
t=y/r
u=z/r

A (u)=dm Ppu)/dl (where Py(u) = the Legendre polynomial
! of the first kind of degree n)

nmax = a user specified Input which =0, 1, 2, 3, 4, or 5
= ( to produce a 2~body only geopotential
=1 to produce a J, geopotential
=2, 3, 4, orb glv"'nga 2x2,3x%x3,44x4, o0r
5 X 5 geopotentlal fleld, respectively
The functions rm(s,t) and lm(s, t) , the real and complex portions of the

potential expansion, are defined by
m
(s+jt)y = rm(S’ t)y + 111‘1(5’ t)

where j= y-1,

The gravitational acceleration is the gradient of the potential function with re-

spect to the four parameters (r, s, t, u)

a -
—a%’As VA V0 (3~4)

_BV
P—arAr+ 3t d3u

3-3
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The acceleration in Cartesian coordinates due to the gravitational potentinl is

= a -
ﬂ.x 1 Sa4

ay=a2 -f:a‘!1

N
ﬂ.z 3 ua4

&
i1
"=

(3-5)

)

]

=
alo oo oo
gle 22 g

&=
i}
s |

=V —ta -
a4—-ar sal taz uaa

The equations of motion for the spacecraft position vector are

&g

e.!%
[ o ad
n
e

(3-6)

2Ig

S
it
Ne

The equations of motion for the spacecraft velocity vector are

dx__ » 2 .
3t = +2Qy + Q7 x - dnvx

s . | (3-1)
-c-%-:ay -20x+ Qy - dnvy

3-4
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d% .
T °% dnvz

. where d = the drag scale factor

2
= Cp x satollite area in km
2 X satellite mass in kg

Cp = cocfficient of drag

. . 2 1/2
v = (xz + },’2 + 22) / = magnitude of veloeity vector

£ = BEarth's rotation rate
n = the atmospheric density, computed as follows:
The height of the satellite, h, above the reference ellipsold is found from

/
her-R [:1 -(-e-f“f]l ’ (3-8)

where ¢ = Earth's ellipticity

Re = Semi{-major axis of the reference ellipsoid.

The height is scaled with
n o= I’Oh
15 “m (3"“9)

where ro is a constaut,

The scaled height hs is compared against a series of heights
Ah = hs - hl'(k) , fork=1,6 (3~10)

where ht is a vector of threshold heights,
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When the first value of k is found for which
Ah >0
the atmospheric density Is computed as

I We(k)
n=wW (k) [Wb(k)Ah * 1]

where Wa’ Wb’ and Wc are veetors of constants,

I
hs > ht(G)
then

n=0.

The equation to model the behavior of the drag coefficient is

a=-}-5d

where 7, is an input parameter, the time constant of the drag.

d
3.3 CLOCWK MODELING

The clock equations are as follows:

o
(o2

Fial
db _ '
at - TP
where Ty is the time ronstant of the clock.

3~

(3=11)

(3-12)

(3-13)



—

u

TN Ty f bl
- i

oy

# R

f
i
it

ORIGINAL PAGE 1S

ofF POOR QU ALITY

]

Tor a step of At from tk—-l to tk,

b(tk) = b(tlc-l) +Atb(tk )

(3-14)

bit,) =b(t, )

3.3.1 Correction of the User Clock

The independent variable, t , is the user clock. The corrections to the user
clock, (b, b), which are estimated in the filter, must be applied to this in~

dependent variable,

When an observation is received, the time at which it is received must be
corrected with the predicted offset and rate. The clock rate equation (Equa-
tion (3-9)) computes the correction in kilometers, To convert it to seconds,

it needs to be divided by the speed of light in kilometers per second (c).

The true time, at the kth observation, is approximately

A
bk—l it - )bk~1
obs c true k-1" ¢

or
~ o
_.}_D_l.{_l. t bk"1
¢ ~ obs c k-1 ¢ (3-15)
true g
1+ k-1
c
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The observed time is corrected to be tk by

aY
_ bk 1 .t ’Bk—l
ob (4] k=1 ©
b = = : (3-10)
) U1
1 o

3,4 MODIFIED EULER INTEGRATOR
The state equations for the spaceeraft position and veloelty are integrated using
a modified Euler integrator, The procedure is deseribed below,

Using the state vector and acceleration vector from the previous step, at tk-l .

compute the position and velocity at tk-l .

'!l-i ° 'Ek-l At zk—l

5 (8-17)
prer, kAR 4 T i
-k k-1 —k=1 2 =k-1

whore A\t is the integration stepsize.

This new state (_1_'1': , 31" ) is used to compute the acceleration at be s jfk by
\S 'Y
calling the derivative evaluation subroutines. Then, the two acceleration values

(.i.:]- 1’ 'i-:k) are used to perform the integration
<=

D oS4yt g @y 5
(3-18)
r, =7 *Ativ +.é_t..2_‘1: .,..é.tf_i:
~k =k-1 k-1 3 -k-1 6 =k
3-8
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The stepsize, At , is monitored so that

At Atmux

where ’Mmzw is an input to the Integration routines.

3.5 COORDINATE TRANSFORMATIONS

The GPS satellites broadeast their information in Earth-centered Earth-fixed
(ECET) Cartesian cocrdinates, and the ONPAC ephemeris and estimation al-
gorithms are all written using ECET cooxdinates. More information on the
filter behavior and error sources can be obtained from examining ONPAC re-
sults in other coordinate frames (in particular, the UVW coordinates and the
Keplerian orbital elements), To convert from ECET coordinates to UVW coor-
dinates or to Keplerian elements first requires a conversion to an inertial
coordinate frame. The one used for this purpose in ONPAC is the Earth-
centerec] inertinl (ECI) coordinate system.

3.5.1 Earth-Centered Inertial (EC1) to Earth-Centered Earth-Fixed (ECETF)
Coordinate T'ransformation

In genoral, the transformation from an ECET to an ECI coordinate system is

obtained by the rotation

cos Qt -sinQt 0
r=|sinfdt cosQt 0|2 (3-19)
0 0 1

where r is the satellite position vector in true of date ECI coordinates, !
is the position vector in ECEF coordinates, Q Is the Earth's rotation rate,

and t the elapsed time from the cpoch of the true of date system. For ONPAC,



R ——

it is necessary only to know the instantaneous correction from one system to
the other, In this case, the time from epoch is zero and the transformation
from ECEF to ECI is

=
H]
el

(3~20)

1=
i
-

't@Xr

where {0 is the vector directed along the Earth's North polar axis whose mag-

nitude is §, the rotation rate of the Earth.

3.5.2 ECI to UVW Coordinate Transformation

The unit vectors in the UVW coordinate system are

A_ TXT
s o

oA A _I‘_‘_X(TXi' -9
#=8x 0= D) (23

The unit vector, ﬁ, is in the cross-track direction (along the angular momen-~
tum vector), ¥ is along track (aiong the velocity vector), and & is in the ra-
dial direction for a circular orbit. TFor any other orbit, it is in the orbit plane
perpendicular to the ¢ and @ vectors. It will be nearly in the direction of the

radius vector for an orbit with low eccentricity.

3-10
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The transformation from ECI to UVW is

.7 ?.7 4.%
N
r=9.T 9.7 ¥.%|=z (3-24)
I
T §.7 ¥.%

where ('i\, 'j\, 'i;) are the ECI unit vectors and " is the position vector in UVW

coordinates.

3.5.3 Keplerian Orbital Elements

The orbital elements are determined using ECI satellite position and velocity

(r, ) . The angular momentum is

g=r Xt
(3~25)
~ ~ A~
=c,i+e,j+ck
i j k
The vector along the nodal line is
7~
n=kxc
=nt+nj (3-26)
1 J
=-ci+ct
j i

The Laplace vector, whose magnitude is the eccentricity, e , and which points

along the periapsis line is

{e]
]

(3-27)

o
1l

3+11
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and 4 = GM , the gravitational parameter.

The semilatus rectum is

= 3-28
P g (3-28)
The semimajor axis is
a=—L— (3-29)
l~¢
The inclination of the orbit to the X~Y plane, I, is given by
c
k
cosl =T 3-30
le| (6-30)

The inclination is always less than 180 degrees.

The longitude of the ascending node, measured from the X axis, is given by

n, .
cos () = "'—r (3-31)
==

If nj <0, the orbitis retrograde and the longitude = ) + 180° .

The argument of perigee is given by

(3-32)

3-12
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It e < 0, the argument of perigee = w + 1800.

The true anomaly is given by

e.r
cos f{ = ~== (3~33)

If r*1<0, the true anomaly = f + 180° .

The eccentric anomaly E is given by

o v

t .E..... .l.:_g.t ..£.
=1 e tany (3-34)

3.6 STATE TRANSITION MATRIX

A state transition matrix propagates the estimated corrections to the state vec=
tor forward in time and it is computed by integrating the linearized form of the
equations of motion, In ONPAC, the covariance matrix is propagated by using
an analytic approximation to the state transition matrix. The anilytic state
transition matrix is expanded in a Taylor series and may be truncated at

o), O(tz) or O(tS) at the user's option. The force model for the state trans-
ition matrix includes the central body attraction and the coriolis terms. The

user may also include some terms due to drag.

The general differential equation for the state transition matrix & is

bty t_p) =AG) Bl ) (3=35)

3-13
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which has the solution

t
k

() (tk, tk_l) = exp f A(t) dt
-1

~ exp LA, ;) At

2

A?'(tk__l) At
~ THA®_ ) A

24

where At = tk - tk—l .

+00.

of the equations of motion I (t) , with regard to the state, X .

)
%1 351 %1p 031
olxs 1 O1><3 4t

S B 1) T P91 Ogyy o 051
Oy 0 01x3 1 ‘At/"'f
%13 0 Ouxg 0

where 9)11 =1 (and is a 3 by 3 submatrix)

03><1 = 3 by 1 zero submatrix

4
¢12 =JAt + q)aAt /2 (and is a 3 by 3 submatrix)

le3 = 1 by 3 zero submatrix

¢21 = ¢g At (and is a 3 by 3 submatrix)

9529 =1+ q:aAt (and is a 3 by 3 submatrix)

At = tk - 1:k-*-l

3-14

%13

23

1- At/ a]

(3-36)

The matrix A(t) is composed of the partial derivatives

(3-37)
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[ 2
2x" - },2 - 22 3xy 3xz
8, =& Sxy oy% - x> - 7 3y (3-38)
r
] 3xz 3yz 222 - xz - yz
282 + 5 + 2 %5 %
- 2 2 .
g == %5 2 4 ay? 4 52 o
a V
%5 33 52 432 4 022
0 20 o0 (8-39)
+1-20 0 0
0o 0 0
~NVXAL
Boq = | ~MIVYAL (3~40)
~NVZAL
%13 = —‘%%3 (3-41)

where § = rotation rate of the Earth,

The equations of motion, F(t) , are Equations (3-6) and (3-7) defined in

Section 3. 2.
3.7 FADING MEMORY

The most recently made observations are weighted more heavily than
previous ones by fading the filter memory. When the covariance is pro~

pagated, as described by Equation (2-4), an additional factor is included

A T
P(tk) = ScI:(tk, tk—- ) P(tk_l) &b (tk’ t

1 Jk-1) (3-42)

3-15
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whore the variable s ean be described as

At/T
e

= (3=43)
with At the interval between observations and 7 a time constant, Since the
covariance is factored into U~D components for gain und update computation,
the D component of the propagated covariance is multiplied instead of the

entire covariunce,

D(t) = sD(t) (3=d4)

which is equivalent to (3-42) when there is process noise covariance, In ONPAC,
the s term is approximated with a combination of smoothed square-to-variance
ratios of range and delta range observations from the GPS satellites in the

constellations, as described in Section 2, 3.

The fading memory can be compared to the process noise covariance matrix
given in Section 5, The process noise terms, which are added to the covariance,
provide a minimum value for specific terms of the covariance at any given time.
The fading memory multiplies the entire covariance and can impact the covari-
ance much more than the process noise, This limits the use of the fading
memory to periods of good GPS satellite visibility (four or more in view).

When used together, the fading memory will overwhelm the proce;s noise hut
there is reason for having both available to ONPAC, When the GPS satellite
visibility is poor, only the process noise is used. When it is good, both the

process noise and the fading memory are used,

3-16
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SECTION 4 = OBSERVATION MODEL AND PARTIAL DERIVATIVES

The pseudorange observation equation is the equation for the length of the line~
of-sight vector from the user to the GPS satellite, The delta pseudorange ob-
servation equatlon is the difference between two range measurements made over
a short time span., The partial derivatives of the pseudorange equation are
straightforward., Those of the delta pseudorange are the first terms of an ex-
pansion in which the assumption is made that a linear approximation will suffice

over a short time span,
4.1 PSEUDORANGE OBSERVATION MODEL

The pseudorange observation equation at time tk is

2 2 2] 1/2
R(t,) = [(sx - x) +(sy - y) - (sZ - z) +b (4-1)
where (X, y, z) = the user satellite position at tk
(Sx’ sy, Sz) = the GPS satellite position at tk

b = the user clock bias at tk

The partial derivatives of the pseudorange observation with respect to the state

parameters are

—=-4 (tk) (4‘-2)

4-1
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od (Cont'd)

2

0’

&
Qr

where the components of the unit vector along the line~of-sight from the user

satellite to the GPS satellite are given by

s (t) = x(t,)
'ex(tk) = P}f(tk) - b(tk;
k k

2t = ;%’—?y (4-3)
S ~2
4% =R
4.2 DELTA PSEUDORANGE OBSERVATION MODEL
The delta pseudorange observation equation at time tk is
AR(t) = R(t,) = R(t, ;) (4=t

This equation assumes that a pseudorange measurement precedes the delta

pseudorange measurement at time t:l 1°
<

The partial derivatives of the delta pseudorange AR with respect to the state,

X, attime t,_ are

k

SAR(t,) BR(tk) aR(tk_l) BX(tk_l)
OX(t)  OX(t) T aX(t ) 8X(t)
(4-5)
dR(t,) OR(t )
=a~{ k - . k-1 q’(t , t)
X(t) X ) k1 k
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The state transitlon matrix, (P(tk-l’ tk), can be approximated by the expansion

(tk-l B t;l‘:) (-6)

@ (g0 ) S Toxg * Altyes)

9x9

For the nine-parameter state, a further approximation for the matrix A can be

introduced, where

O5xs Iaxs °3xa'\

A% N Oge3 Ogx3 Ogyg ! (+-17)
03><3 OBXS 03><3J
Then, the partial derivatives with respect to the state parameters are
ao}. =4 ( k=~ 1) zx(tk)
5:’11 = 'e (¢ k= 1) B .f’y(tk) '
LR b ) = 2,(8)
%—3 = 0 (4-8)
as__{n = ~At 4 y(tk_l)
éa{_-‘s:B =-aty (tk 1)
4~3
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where At =t In the pseudorange measurement, the At s small

- t ’
k k-1
(on the order of 0,6 second), The ONPAC program assumes thac a delta pseudo~

range observation at time t_ 1is following a range observation at

lk tk-l ’
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SECTION 5 - DERIVATION OF THE STATE PROCESS NOISE
COVARIANCE MATRIX

The covariance matrix in a Kalman filter or EKTF will become saturated, the
terms becoming very small, after a large number of observations have been
processed. The result is such that the filter will no longer significantly correct
the state (i,e., the state corrections become infinitesimal). To prevent this,

a noise matrix which compensates for neglected terms in the force model is
computed and added to the covariance matrix when it is propagated. Then,

Equation (2:-4) becomes

; 3 T
Plhg) = s Be_p) PO ¥ o B _p) + QY G=1)

where Q(tk) is the state process noise covariance matrix,

The noise errors are assumed to be uncorrelated in time (see Reference 4) and

the position-velocity and drag terms are uncorrelated with the clock terms.

The vector ;_(e is derined as the error in the state,

o
&b
X, =| & (6-2)
&b
| 6d

where Or = position error
&b = clock bias error
ov = velocity error
6b = clock drift rate error

6d = drag scale error

5-1
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Then, the differential equations to describe this system car be written

X, [gx] X+ wb) (5-3)

where w(t) is a random forcing function to account for the errors in the force
models used in the differential equations, This is called the state noise. The

function w(t) is assumed to satisfy the following:

Elwt)] =0
(5-4)

E[a® & ()] =Wt - )

where 6 = the Dirac delta function
0, t#s

E = the expectation operuator

W = spectral density matrix
This model assumes that the state noise is unbiased and uncorrelated in time.

The covariance matrix for the noise is

Q(t) = f ¢ /k k’ u) w(u) c_gT (s) ®r (t1 s) du ds
<
k-

t t
k k
= f <I>(tk, u) E[c_g(u)o_gT (s)] ‘1~‘T(tk,s) du ds

-1 k-1

(0-5)

5-2
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ga If the position-veloeity and drag terms are uncorrelated with the clock terms,
the state noise matrix can be partitioned and the clock terms derived separately,
3 The noise matrix can be divided into the following:
H 1 O3x1 Sup %ax1 Qg
*& 01 X3 Wb 01 x3 'Sy 0
N P\ -

QO =1Q5 O3y Qpp  O5y; Ry (5-6)

| Oixs %y Ok %y O
T T

| L_Q13 0 Q5 0 Quq ]

if The clock proecess noise covariance matrix terms are

i = LPAt + 265 2+2N202A3+-10'2At4
i 29 12 2 (5-7)
i ER20 AL+ T +B0 &
g U _1_\.L 7 30DAt:
| : 2 2 9 2 2
¥ . 8 = C+270A'+0t
U = 1 IRt + g

' where c= 4,6 ot <L - gt‘r >
‘ Tmin min
|

rg is the clock white noise Allan variance factor
f -
i 1;i is the clock flicker noise Allan variance factor
T );_% is the clock random walk Allan variance factor
1 =

r]% is the deterministic clock drift rate variance
:;n
J and T . is the scaled minimum time where flicker noise predominates

on the Allan variance curve

1
[
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Q'(t) Is defined as the subset of Q(t) which concerns the position-velocity

and drag terms
Q11

1 AT
Q' =[Qy,

T
Q13

Equation (5~4) can be rewritten in the form

p—

O3xs  Osxs
T . 2
Elo@ @ @1=1 0, 9 lgg
%% O1xa

2
for the position-velocity and drag noise terms where aa and

of the noise variances for the acceleration and the drag coefficient.

£

13

D

23

33

031

Ox1

03 6qu - s)_

d

(5-8)

(5-9)

2
0. are the rates

Because Equation (5-5) for computing Q(t) contains bpth & and @T , the state

transition matrix, & may be approximated with fewer terms than those given

in Section 3.

The transition matrix is approximated for use in Equation (5-5) by

¥ (tk’ tk—l) ~ 03 %3

01><3

¢22

0

1X3

1-mhh

(5-10)
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where At= tk - tk— 1

%11 axs

¢ 2=At1

1 3
1

¢22 = | =20 At
L 0

- VXAL

o =
o

S
I

03 = -NvyAt
.-T)Vé At

v = :':2+;§r2+é2

Q = rotation rate of the Earth

I =the atmospheric density

Then,

o att ,
Q, =41, ; (5-11)
At -aaft
2 2
4 3
_ 2| aaf At :
Q, =0, | =3 > 0 (5-12)
3
At
0 0 A
L. 5
0
Q=0 (5-13)
0
55
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ad 5 -~
AtT QzAt4 0 0
p) 2 2 4
=g {0 + 0 -1
sz . At + QAL (5-14)
[ 0 0 A2
X
2
- 2 4t | .
Q23 =-nve oY (5-15)
z
Q.. = 02 At 5-16
33 d (5-16)

2 2
The terms ¢ P At2 and ¢ 4 At3 were neglected since they are smaller than the

neglected terms in the state transition matrix.

The state noise process covariance matrix is a positive definite matrix., Con~

sideration of the position-velocity components EQll’ Q12] shows that

Q11 QlZ
T
Q12 Q22

is a matrix which may be factored into U - D components. Let Q" be the subset

of Q described above. Then,

Q"= GZ Atz[(lsxs i ql) (qz)(IGXG - ql)rl] (6-17)

5-6
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1
0
_|axs %
q, =
0. 0
3%3 33
[ st -~ 0At? ]
2(1 +QAt?) a1+ Aty o
o =
1 Qat? At
2(1 + o%at?) 21 +0%tdy O
A
o 0 >

and dy is a diagonal 6 by 6 matrix with elements

_ 9 2 2
qz—[o, 0, 0, 1+QAt", 1+QAt2, 1]

5-7
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APPENDIX A - MATRIX DECOMPOSITION

A.1 CHOLESKY DECOMPOSITION

Any positive definite square matrix can be factored into a triangular matrix

and Its transpose., If A Is such a matrix,

The matrix B is not unique and may be either an upper or lower triangular
matrix. If it is an upper triangular matrix, the decomposition algorithims for

an n xn matrix are as follows:

l,n fori=1lton-~-1

n,n

n
9 !
b, .=\%l .- Z b, ,forj=n-1tol
5] bi &y bt

n

a, - b. . b
K71 jyk 4k

Ly ] b,
1] J’j

(A-1)

for £4=j-1to1l

A2 UDUT DECOMPOSITION

The matrix A can also be factored into a triangular matrix with uiity on the

diagonal and a diagonal matrix,

A = CEC (A-2)
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which can also be written as

T
A = (ce*?) (ce!/?) (A-3)

implying that

B = cEY/2 (A-d)

When C is an upper triangular matrix, the algorithms for the C and E com-~

ponents are as follows:

e =Qa
nn  nn
(A-5)
Y-l
c = 2200 fori=lton-1
n-i,n e
]
Then, for j =1 ton ~ 1 the diagonal terms are
e = a - - 02 e (A-6)
n=j, n-j n=j,n-j k=1 n-j,k k,k
and the off-diagonal terms in C arefor m=1lton=~-j~-1
n
a_ . - c_ . c , ,e
n-j-m, n-j g=h3+1 h-j-m, & “n-j, L4 4
c . , = (A-7)
n-j-m, n-j e . .
n-J, n=)



The dlagonal terms of C are

ci’i=1, fori=1,n
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APPENDIX B ~ DATA SIMULATION

Simulated pseudorange and delta pseudorange measurements from GPS broad-
casts are provided by using the ANALYSIS program of GTDS. Turther infor-
mation on the ANALYSIS program is available in Reference 7. Data may be
simulated for either ONPAC or the FIL.TER and DC programs Ih GTDS,

Tor a data simulation computation, the user satellite orbit is computed using
the GTDS EPHEM program, and the true coordinates are read as input to the
ANALYSIS program. The GPS satellite coordinates at a given time are deter-
mined depending on the configuration chosen, The options available are 3 GPS
satellites in 2 orbits (Phase I), 6 satellites spaced in 3 orbits as set by the
user (modified Phase I); 12 satellites with unequal separation (Phase IIa),

12 satellites with equal separation (Phase IIb), and 24 satellites with equal sen-

aration (Phase III).

The visibility of the GPS satellites Is constrained by the observer antenna cone
angle and the ionospheric cutoff. The user may cycle through all visible GPS
satellites, select a subset of four by choosing those four which minimize the
Geometric Dilution of Precision (GDOP), or use all those visible except only

one of the two or more that are essentially in the same direction from the user,

The user and GPS satellite positions can have random noise added. The GPS
position and velocity errors are simulated by computing errors in HCL coor-

dinates, with the along~track error increasing with time.

The clock errors are a total of the GPS and user satellite clock errors. The
GPS clock offset is a constant for each GPS satellite. The constant value is
chosen at random for an input standard deviation. The user clock offset may

be computed using a quadratic or a Markov process model.

B-1
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The quadratic model of the user clock offset, Tf', at time t is

B, .mB B 1.D 2
T =T +f E=t) +50° ¢=t) (B~-1)
where T 313 = the user clock bias
fB = the user clock drift which equals the user frequency offset In parts

=

per reference frequency at time t

fD = the user clock drift rate which equals the user diserete change In
frequency per reference frequency

t = the observation time (in seconds)

= the epoch of the clock model

In the Markov process, the drift rate fD Is computed as a random number at
discrete update times, The time mtervai between updates is set by input, as
are the mean and standard deviation of the random number generator. The
drift rate is assumed constant between update times. The clock drift at time ¢t

i H
£B (), 1s

~f (t)+Lf (bgg) 0 0 = t,) (B-2)

where u(r) is a step function
0, 7<0

u(r) = 1, 120

and the tj 1 are the times of updates.

The user clock bias is then

B
o) = TOw ) +E ¢ -t>+Z B ()t = &) ult - &) (B=3)
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For the quadratic model, the user offset Is ecomputed by evaluating Equa-
tion (B-1), In ONPAC, the user clock bias, b, Is expressed in kilometers,

and Is compared to Tf by multiplying Tf

times the speed of light In km/sce,
The pseudorange obgervation is the true range plus the user and GPS clock
offsets plus the range measurement noise, computed as a random number with

a user-supplled standard deviation, The delta pseudorange is the difference of
two true ranges plus lts measurement nolse computed from the user-specified
standard deviation. The filter programs are also supplied with GPS coordinates
which will be obtained from the broadcasts, The coordinates are Cartesian

ECET and contain the simulated GPS ephemeris errors.

The ONPAC data tape also includes a record with the true observation, true
user coordinates, and true user clock offset and drift for each obgervation

record. This information is used in analyzing the results.
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GLOSSARY
Partial derivatives of the equations of motion defined
in Equation (2-3)
Cross~sectional area of the satellite
Assoclated Legendre polynomials
Semimajor axls defined in Equation (3-25)

Acceleration components In Pine's model defined In
Equation (3-5)

Acceleration components

Upper right triangular matrix In U-D update derivation
Clock bias expressed In units of km

Clock drift rate expressed in units of km/sec
Element of B defined in Equation (2-27)

Coefficlent of drag

Tesseral harmonic coefficients

Angular momentum vector defined in Equation (3=25)
Angular momentum components

Diagonal component matrix of covariance matrix
Drag coefficient defined in Equation (3-2)

Diagonal components of D matrix

Drag coefficient error

Eccentric anomaly

Expectation operator

G-1
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K(t)

Eccentricity

Laplace vector defined in Equation (3-~27)
Equations of motion

True anomaly defined in Equation (3-438)
Observation equation

Observed miaus computed observation defined in Equa-
tion (2-G)

Matrix of partial derivatives of G(X(t),t)

Satellite height defined after Equation (3~6)
Components of H(t) matrix

Scaled height

Vector of threshold heights

Identity matrix

Satellite orbit inclination defined in Equation (3-30)

Imaginary part of the potential expansion defined after
Equation (3-3)

Zonal harmonic coefficients

\/.:I

Kafman gain vector defined in Equation (2-31)
Line-of-sight unit vectors defined in Equation (4~3)

Inner matrix in the U~D update derivation Equation (2-19)

Satellite mass

Element of M matrix defined in Equations (2-22) and
(2-23)

The number of state parameters

G-2
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Covariance matrix defined in Equations (2-33) and
(2~3+4)

Legendre polynomials
Semilatus rectum defined in Equation (3-28)

Filter tunable parameter used to compute smoothed
residual

State noise process covariance matrix defined in Equa-
tion (5-6)

Submatrix components of Q(t)

Position~velocity and drag submatrix of Q(t) defined
in Equation (5-8)

Position-velocity submatrix of Q(t) defined in Equa-
tion (5~17)

Component matrices in Q" defined after Equation (5-17)
Pseudorange defined in Equation (4~1)

Delta pseundorange, defined in Equation (4-4)

Mean Earth radius

Satellite position vector

Satellite position error

Real part of potential expansion defined after Equa-
tion (3-3)

Satellite height scaling factor, defined after Equation
(3-6)

Partial sum in the U~D update defined in Equation (2-30)

Tesseral harmonic coefficients



Coordinate in Pines force model defined in Equation

w

(3=3)

8. sy, 8, GPS satellite position components

t Time

t Coordinate in Pines force model define:l in Equation (3-3)

At Fllter stepsize

S Maximum allowable stepsize

U Upper right triangular matrix component of the co~
variance

u Coordinate in Pines force model defined in Equation (3-3)

@ Crosstrack unit vector defined in Equation (3-21)

ui,j Element of U matrix

\Y Gravity potential defined in Equation (3-3)

v Satellite velocity vector

v Satellite velocity error

¢ Along track unit vector defined in Equation (3-22)

W Diagonal matrix in U~D update derivation

wi Diagonal element of W matrix, defined in Equation (2-2-)

© Unit vector in UVW coordinate system defined in Equa-
tion (3-23)

Wa’ Wb’ Wc Vectors of constants used in atmospheric density com~
putation, defined after Equation (3-6)

X(t) State vector defined in Equation (3-1)

;_(e Error in state vector defined in Equation (5-2)

G-4
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Position component of sntellite

Veloeity component of satellite

Observation

Position component of satellite

+Velocity component of satellite

Position component of satellite

Velocity component of satellite

Scalar divisor for EKF update defined in Equation (2-15)
Vectors of smoothed residuals (2-42)

Filter tunable parameters

Term in atmospheric density computation defined after
Equation (3~6)

Earth's ellipticity

Atmospheric density defined after Equation (3~G6)
Gravitational parameter, GM

Fading memory factor, defined in Equation (2-35)

Ration of the square of the residual to o defined in
Equation (2-40) n

Tunable parameter used to limit ’BR’ 'BAR

Acceleration noise variance rate
Clock white noise Allan variance factor
Clock flicker noise Allan variance factor

Clock random walk Allan variance rate factor
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Deterministic clock drift rate variance

Drag noise variance rate

Measurement variance

Pseudorange measurement variance

Delta pseudorange measurement variance

Time constant of drag defined in Equation (3-12)

Scaled minimum time where flicker noise predominates
on the Allan variance curve,

State transition matrix defined in Equation (3-37)
Submatrix component of ¢ defined after Equation (3-37)
Submatrix component of & defined in Equation (3-39)
Submatrix component of & defined in Equation (3-38)
Rotation rate of Earth in Section 3.5.1

Longitude of the ascending node in Section 3.5.3

Argument of perigee

G-6
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