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ABSTRACT

The propagation of the charge-exchange plasma for an electrostatic

ion thruster is crucial in determining the interaction of that plasma

with the associated spacecraft. A model that describes this plasma and

its propagation is described, together with a computer code based on

this model,

The structure and calling sequence of the code, named PLASIM, 13

described. An explanation of the program's input and output is included,

together with samples of both. The code is written in ANSI Standard

Fortran IV.
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INTRODUCTION

Ton thrusters can be uued in a variety of primary and auxiliary

apace-propulsion applications. A thruster produces a charge-exchange

plasma which can i,ntemet with various systems of the spacecraft. In

order to understand these possible interactions, a detailed knowledge

of the plasma propagation is required.

The production of charge-exchange ions by thrusters has been

understood for some time. l Fast ions from the thruster interact with

slow neutrals that are also escaping, resulting in the production of

ions that initially have only a thermal. velocity. Tile electric fields

within the ion beam cause these ions to move approximately radially out

of the ion beam These charge-exchange ions leave the ion beam along

with electrons supplied by the neutralizer, the combination constituting

the charge-exchange plasma. The propagation of the charge-exchange

plasma depends on several factors, ictcluding the initial thermal, energy

of the ions, the distribution of ion production along the beam, and the

potentials and geometry of neighboring spacecraft surfaces.

In the THEORY section of this report, the geometry of an idealized

spacecraft with an ion thruster is described, together with the simpli-

fications and definitions used in modeling the ion beam. The distribution

function used for charge-exchange ion production is also presented,

along with the barometric equation that relates the variation in plasma

potential to the variation in plasma density. The numerical methods and

approximati.one used for the calculations are then discussed. This

section describes the main calculation subroutine, CALC, and the dis-

placement ealcul.at94on subroutine, CALM.
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In the PROGRAM STRUCTURE section, a flowchart is provided that

diagrams the calling sequence of the modules; also presented are

detailed descriptions of each of the modules. A guide to using the

program in presented in the INPUT AND OUTPUT section of ".:his report.

Descriptions of the calculated results are presented in the INPUT AND

OUTPUT and VERIFICATION sections.

Also presented Is a method of obtaining better resolution in the

upstream region. The high-resolution option of the program simulates

only the upstream region. This option utilizes previously calculated

trajectories as boundaries for the region to be simulated at higher

resolution (see notes in the computer code).

The VERIFICATION section of this report also compares experimental

and analytic results with those obtained by the computer code.

Factors limiting simulation accuracy are also discussed.

An analytic solution is derived for the case of an infinitely

long cylindrical beam with a uniform distribution of charge-exchange ion

production along the beam. Expressions are obtained for the radial

variations in ion density and velocity, permitting a direct comparison

with results from the computer code. This analytic solution is

described in APPENDIX A and used in the comparison described above.

It should be noted that this final report provides a complete

description of the program and supersedes previous reports. 
2,3 

All of

the information necessary to use the program is contained herein. A

glossary of the variables used in the computer code is provided in

APPENDIX C and the computer code is listed in APPENDIX A.
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THEORY

The interaction of an ion thrustet with other components of an

electrically propelled spacecraft through the plasma surrounding a

spacecraft has been stvo.^ed for some time, Vic transport of electrono

from the ion beam to a solar-array surface was treated first by Knauer,

ct al, 4 as an electron space-charge-flow problem. Measured electron

ourrento, though, were found to be much higher than calculated by

Knauer. The difference was due to the presence of a charge-exchange

plasma,

Charge-exchange ions are produced when .fast beam ions pasta near

slow escaping neutrals. The fast neutrals that result usually present

no problem, and escape following the directions they had as ions. The

slaw charge-exchange ions that are produced, though, initially have only

the velocity of the thermal neutrale. Small electric fields within the

ion beam result in the charge-exchange ions leaving the beam in approxi-

mately radial directions, These charge exchange ions, together with 	 ^^ I

some escaping electrons, form the charge-exchange plasma that surrounds

an electrically propelled spacecraft,

The production rate for the charge-exchange ions was first calcu-

lated by Staggs, et al. l The capability of the charge-exchange plasma

to transport electrons to other parts of the spacecraft was experimentally

evaluated by Worlock, et al. 5 Some detailed trajectories of charge-

exchange ions have been examined by Komatsu, et al.
6
 Experimental studies

of the charge-exchange plasma distribution, particularly upstream of the

iron-beam direction, have been conducted by Kaufman, 7-9 and Carruth, et

al. 
10-12 

Several studies included a correlation of plasma properties in

terms of the distance from the thruster and the angle relative to the
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beam direction. 9-11 Theoretical studios of wo charge exchange plasma

have been carried out by Rubinson, et al. 3tl) and Katz, ot al, 14 The

lattor Lroat the iona l numerically, as 
a cold fluid in contrast to the

Use Of Calculated ion Lrajectorico and density gradients.

'rhe physical processes involved in the charge-exchange plasma have

become we'll understood as a result of the various studies that have

beep conducted. The electron population outside of the beam agrees with

the 11birometric" equation

11 e 13 
11 c , ref exp 

(-qV/kT 
a
)

which wan introduced by Sallen, et al. is and verified by ORawa, et

al, 16ol7 for the population within the beam and by Kaufman 7 for tile

population in the charge-exchange plasma. The plasma potential V in Eq.

(1) is taken to be zero at the reference electron density n e,ref' The

electron temperature T e in the charge-exchange plasma has been found to

be about half the value in the ion beam. 7 The electron temperati= in the

ion beam varies with thruster size and ranges from about 7 eV for a 5 em

thruster to 5 eV for 15 cm and 0.35 eV for 30 cm. Also l q is the elem-

entary unit of charge and k is Boltzman's constant.

1-he experimental validity of Eq. (1) is consistent with the low

dens^ty and long moan-free paths in the charge-exchange plasma. The

decreasing plasma density with increasing distance from the thruster

forms a potential well for the electrons, so thet man^ transits or this

region are probable before Lin electron escapes. The many transits

permit randomization of the electron population to a single Maxwellian

distribution by Coulomb collisions.
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The o? hTt? ent of the charge-exchange plasma i s l arge compared to tho

Debye nhielding distanee^ which means that the electron density must

everywhere be equal, to the icon density, Inasmuch (it) the ions only move

outward from the thruoteic, U. nir motion if; corientially collisionleas and

governed by titre potential distribution from Eq. (1).

Tile approach used in this atudy has been to assume a cylindrical,

axially symmetric ion beam, with the charge-exchange ions leaving the

beam with a uniform velocity in the radial. direction, The coordinates

and simulation boundaries are defined in Trig. l.. The current density of

these charge-exchange ions at the cylindrical beam boundar y is a function

of the distance downstream from the thruster. The total charge-exchange

current icy distributed among the total number of trajectories, with

this total number specified as an input parameter, N. Approximately

fifty percent of the charge-exchange ions are generated within one beam

radius of the downstream end of the thruster, so about half of the

specified trajectories will initially start in this region.

A trajectory represents the path of a single representative ion on

which acceleration is produced by electric fields in the plasma. These

fields correspond to potential gradients induced by gradients in the

plasma density, as indicated by Eq. (1). Density gradients are used in

two separate calculations. The component of the density gradient along

the path provides a potential gradient which serves to change the ion

velocity in that direction, while the component of the density gradient

normal to the path provides, a potential gradient which modifies the

direction of the path, The forces on the ,ions acting normal and parallel

M	 to the path are resolved into x and z components to obtain the resultant

force acting on the ion.

A

"A
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1 1. Coordinate system and dimensions for simulatioti.

ORIGINAL PAGE IS
OF POOR QUALITY



1
7

In the simulation used herein, the ion path is represented with a

stepwise progression away from the beam and the trajectories are advanced

from left to right starting from the end of the thruster, It is assumed

that, with small enough step sixes, following the :Ions through one pass

of calcOations is sufficient. (The validity of this avauniption is

partially checked later by comparison with experimental and analytic

results.) From a physical viewpoint, the ions are moving at, or above,

acoustic velocity, so disturbances should not propagate in t'e upstream

direction. Also, the extent of the plasma is very large compared to the

Debye shielding distance, ho ice electric fields at the flow boundaries

should not extend into the bulk of the plasma. The distances to neigh-

boring paths ire important parameters, in that they are used to determine

densities. As indicated in Fig. 2, a normal to the path being incremented

is extended in ()oth directions. This normal is used to calculate the

distances to neighboring paths, on the right and left of the path being

incremented. In this report, right and left are defined in terms of

relationships upon leaving the ion beam, with the viewing direction in

the direction of charge-exchange ion motion. The distances to the

neighboring paths are obtained by calculating the distance from the path

being incremented, along the normal to this path, to the neighboring

path where the normal intersects it. If the neighboring path was not

intersected by a normal, as in the right side of Fig. 2a, then the

neighboring path is extended linearly from the last interval and the

distance is calculated. If the normal intersects a neighboring path

below the final two ion positions on that path, as is the case for the

left hand paths in Figs. 2a and 2b, back stepping is used, This allows

the distance to be calculated to the line the normal actually intersects.
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1t	 (b)	 Paths intersected both sides ( path iterated again ),,
Lack stepping used on left.
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If intersections are found on both the right and left, as in Fig. 2b

(linear extrapolation not used), the path currently being iterated will

be iterated again so it can keep in step with 
its 

neighbors. 'Finally,

if the normal intersects the neighboring path between the final two ion

positions, as in the right hand path of Fig. 2b, the intersection point

is used as it is.

The density 16 Inversely proportional to the distance between neigh-

boring paths, the ion velocity and the radial distance. The latter rela-

tion8hip is due to the axial symmetry and the use of only one trajectory

for each axial location. The density on the left is thus given by

n L m 
C/Ad 

L x
vi o 	 (2)

where C is a constant depending on operating conditions and the number

of trajectories specified, Ad 
L 

Is the distance between the path being

	

incremented and the path on the left, x is the radius and vi is the ion	 f.

velocity. The density 
on 

the right is defined in a similar manner, except

that 
tit  

and Ad 
R 
are used. After the radial distance, x, and the ion

velocity, vi , are calculated, the densities to the right and left are cal-

culated using Eq. (2). The two quantities ) n 
L 

and n. 0 are averaged to

get the plasma density at the point under consideration.

The pinsma potentials to the right and left are then calculated

using Eq. (1). Here n 
a 

represents the density just calculated to the

right or J.vf t and fie,  
ref 

represents the initial density to the right

or left of the path being incremented. The force normal to the path

direction is then,

F = -qAV /Ad
s	(3)
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wher'? AV -6 io the difference between the potentials on the right and Left

and .`,d,1 if; the smaller of A`1, and ,^dR . This choice for Qd s was included

to accommodate radical changes in the displacements arising when the

perpendicular displacement intersects a boundary. The effect of this

choice as compared to averaging 0e displacements was found to have a

negligibl y: effect on interior paths. This force is resolved into x acid

z components.

The force acting parallel to the path can be calculated in a fashion

similar to Eq. (3),

F 1 
= -gAV11 /adp 	 (4)

where AV ll is obtained through Eq. (1) with potentials being those at the

point presently under consideration and the previous point and 
6d  

the

distance between these two points. This force is also resolved into

% and z components.

The normal and parallel forces can also be set equal to the rate of

change of momentum:

, l

FI'll " 
MAv

.L, 
IL/at
	

(s)

with m the ion mass, Av, , , l the velocity component generated normal

or parallel to the path direction, and At the size of the time interval

used in the iteration. Equating these two force expressions yields

,W II 	 Flrll ^t/m
	

(6)

These are the velocity changes normal and parallel to the path direction

for the present iteration. Similar expressions hold for the x and z
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components of the velocity, 
AV 

andand Avx , where Fx 
x 
is used instead of

J

F' The total velocity and its components are calculated from 
AV  and

Qvx . The new ion position is don calculated, using linear expressions,

thereby incrementing the path.

i
It was necessary to consider several special cases in the execution

of the displacement algorithm. Three were men;.oned in reference to

Figs. 2a and 2b in discussing the calculation of distances to neighboring

paths. Those were linear extrapolation, back stepping and iterating a

path again if intersections were found on both sides. Other cases

involve the extreme right and left trajectories that have not inter-

cepted a boundary, Without special treatment, these cases would result

in an undefined density on one side of the path because the normal will

intercept a boundary instead of another path. The boundary is treated

as another path with one exception. If at any time a path would be

repelled by the boundary, the direction is left unchanged. This approx-

imates a plasma sheath which would be present at such a boundary.

in general ) both the distance between trajectories and the distance

from a trajectory to a boundary will be much larger than the Debye

distance, The accuracy of the simulation should therefore be considered

questionable at any location where the distance between trajectories

approaches the distance to a boundary. A better approximation in such a

location might be obtained by extrapolating from deeper within the

charge-exchange plasma. It would also be possible to use more trajec-

tories, so that the space between them would be reduced.

The distribution of charge-exchange ion production along the axis
i

is assumed to be proportional to the neutral density on the axis. This

neutral, density for a single thruster (no overlap of neutral effluxes

from adjacent thrusters) is 7,8 (see ,Appendix B),
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n(z) - no	l '	 2	
z 

2 1/2(z + r  )
(7)

X41

where rb in the beam radius and no is a constant for a given combination

of beam diameter and neutral loss rate. This function decreases rapidly

with increasing z, due to the rapid divergence of neutral atom paths in

free molecular flow. The beam radius, r b , is an important parameter in

this simulation, because approximately half of the total charge-exchange

production occurs within about one beam radius of the thruster. This

means that half of the charge-exchange trajectories will originate

within the same distance.

In determining the locations for the origin of ion trajectories

along the axis, the integral of Eq. (7) is used

CO

f n(z)dz a n 
o 

r b .	 (8)
0

The region simulated is finite, so that not all of the integral can be

represented. The region to be simulated was defined so that 95 percent

of n 
o 

r 
b 

is contained within this region. For N trajectories making up

0.95 no rb , with each trajectory located at the median of the density

interval that it represents, the following expression holds

l 2N zi±l	 zi+l

Qz 	
n(z)dz a N zf n(z)dz - 0.95 norb /2	 (9)

i	 i

For the first trajectory, the starting point is at the right end of the

thruster (left end of the ion beam, see Fig. 1). To calculate each

successive z, the expression used is

2 1/20.95rb
/2N	 zi+l-(zi+l + r b )	

- z  + (zi2	
2 l/2+ rb) 	 (10)
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For the first trajectory, i - 0 and i + 1 w 1. The value of z  is the

right end of the thruster and the first trajectory is started at zl.

The second trajectory is started at z 3 , third at z3 , and so forth.

The initial velocity upon leaving the ion beam is the Bohm velocity,

vg • (kTe/mi)l/2 ,
	

(11)

where T  is the electron temperature Ln the ion beam and m  is the ion

mass. The constant, C, in Eq. (2) Ls obtained using the following

procedure. The total production rate of charge-exchange ions, for a

uniform beam current density profile, is given by 

1 Iln - 2Jb 2 (1-nu)acv/Trrbnug 2v0 ,
	 (12)

where J  is the ion-beam current (A), nu is the propellant utilization,

aCe is the charge-exchange cross section (m 2), rb is the beam radius (m))

q is the absolute electronic charge (C), and vo is the mean neutral

thermal, velocity, (8kT0 /7rm
0

) 1/2 (,a/sec) . With typical values for Hg

neutrals and singly charged ions used,

Nce = 6.18 x 1016 Jb2 (1- nu)/rb nu .	 (13)

The charge-exchange cross section usually decreases with ion energy.

The value used for Eq. (13) corresponds to Hgh ions at about 1,000 eV.

The plasma density can be related to this production rate by

n = NCe/2frAdmxviN ,	 (14)
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where 4d 
m 

is the local mean spating between trajectories (m), x is the

radius Ws v
i
 io the local ion velocity (m/see) and 3 is the number of

trajectories simulated. Substituting for Nee,

2
Jb

n w
rb n 2

liq 
IT 
2v 

0	
xAdmvi

whore the quantity enclosed in the parentheses is the constant C.
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PROGRAM STRUCTURE	 I^
Et

3k

The simulation is performed by a computer program written in

standard Fortran Its that is listed in APPENDIX D. The main driver

program, PLASIM, onuiblinhes the sequencing of computatieno in the
3

simulation and makes calls to the major subroutines which perform the

required calculations, This overall flow is illustrated with a flow

chart in Pig, 3.

First, all of the fixed parameters are stored in the COMMON blocks

by the subprogram BLOCK DATA, The control parameters which define the

type of computation, disposition of results and termination, along with

physical data used in the simulation, such as the thruster and accel-

crater system dimensions and the plasma characteristics, are input

through subroutine READER. The parameters and data are read from card

images.

For a typical simulation, the next call is o subroutine INIT,

which initializes the constants and arrays, calculates the coordinates

of ion trajectories (paths) at the beam edge and performs the first

iteration, thus calculating the second set of coordinates on the paths,

Calls are then made to subroutine WRIT to output the heading, thruster

schematic, initial parameters and results of the initialization and

first iteration,

PLASIM next begins the staging and successive iterations by calls

to subroutine CA,C. Subroutine WRIT is also called to output a heading

for information on the progress of the computation. After the completion

of a specified number of iterations, termed a stage, the contents of the

coordinate and density arrays are written to an external mass storage

file, PATHS. The arrays are reinitialized and the next stage commenced.

ORIGINAL PAO
ORI GINAL PAGE I

OF POOR QUAM OF POOR QUALITY
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1

Vii;,	 Calling sequence for program PLASIM.
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informative messages whenever unrealistic values appear in certain

variables (see subroutine BLOCK DATA).

1

}

:4

V, 44
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After completion of all the stages, the plotting routines are called

according to the status of the control parameters set at the beginning,

Another call to READER is made to determine the next action, either

another simulation run or a normal termination.

The main calculation subroutine, CALC, seta up an accounting

procedure for the paths, the iteration number, the activity of the

path, and the boundary condition, in addition to carrying out calcula-

tions leading to new ion positions, Displacements from the currant

path to adjacent paths are returned by a call to subroutine CALCD and

then the densities on both sides of the present path are calculated.

The potentials, on both sides of the path and at the present and prior

ion locations, are obtained, followed by the calculation of forces

acting perpendicular and parallel to the path, respectively. The forces

are resolved into z and x components to calculate the new z and x

components of the ion velocities. A new ion location is computed from 	
E r

the z and x velocities and a call is made to subroutine. BOUND to ascertain

if it is within the simulation boundaries.

Two plotting methods are included, one for a line printer, LNPLT,

and one for a Versatec electrostatic plotter, VRSPL. The subroutines

called in VRSPL are described in the appropriate literature. 
18 

These

may be not only device-dependent, but site-specific as well., They are

included to indicate a possible preparation procedure to use in presenting

thc simulation results in graphical. form,

There are several error detection segments in the code which output
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There are three types of simulations defined by the control pai

MY, KEYe-1 generates a normal simulation with a non-uniform initia..

denni,ty diotribution t UY-1 generates a simulation with a uniform

initial density distribution and KEMNO generatev an upstream :simulation

which utilizes a given path from a previous run as a boundary and

simulates paths upstream from that path. A call with KEY-0 causes a

normal termination including normal clearing of the plottint buffers,

The following subsections discuss the various subroutines in detail,

PLAgIM

This is the main driver routine for the simulation of a charge-

exchange plasma su*:rounding a broad beam ion thruster, This routine

controls and sequences the computation aed lefines the program struc ture

and staging by calling 'various subroutines. It is outlined in rig. G.

The first statement (two lutes) of the program is a non-ANSI statement

which declares the files required for input and output. This will be

converted to a comment statement to prevent errors because of non-

standard FORTRAN.

READER: The first call is to subroutine READER which reads in the

run specifications and information. INIT: The next call is to sub-

routine INIT which initializes various parameters and performs the first

iteration. CALL: The next call is to subroutine CALL which computes

the ion positions along the trajectories. CALL is called NUMIT times,

This completes the first stage, (NUMIT is the maximum number of Itera-

tions to be performed on any given path during any particular stage,)

information for the first (NUMIT - 10) iterations in written to an

external file, PATHS. Core memory is then reinitialized by transfering

the results of, the final ten iterations to the core space for the

a
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START

input data

CALL READER

Fig. G. Flow chart of main driver routine ) PLASM.
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No	 STOP 1
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1

write contents of core to
external file

CALL WRIT (5)

reinitialize care

2

Fig. G, Continued, PLASIM.
	 D
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initial ten. The results of these ten iterations act as a base for

another set of (NUMIT - 10) iterations, CALC is called another (NUMIT

10) times to fill core storage with another set of PATH coordinates

which completes the second stage. Then another set of (NUMIT - 10)

results are written to PATHS, core is reinitialized again and another

stage is run. This is scone until all paths intersect boundaries,

Finally, the plot indicator, ICLPLT, is checked to determine which

plotting routine to use to output a plot of the path coordinates, if

any

Two blank cards are always placed at the end of the data deck to

signal a stop, The word size dependent variables are IFI, IF2, INFOp

ITITL, and IW, See BLOCK DATA for instructions on word size dependent

variables and code generated error messages*

BLOCK DATA

This subprogram 1p ads data into labeled common storage at compile

time through the data statements. Error message infarmation and the

instructions on word size dependence have been included. This depen-

dence was motivated by the requirement for transfer of alphanumeric data

for labels to the plotting subroutines of 'Versatec and IMSL. The basic

unit for input was chosen to be 80 characters, a full data card. These
4

l	 80 characters must be packed corrt;wo ply into words of an array which

will be transferred to the ex0—;rnal plotting subroutines. The arrange-

ment described below accomplishes this but requires a change in the DATA

statements for computers with word size not equal to 10 characters.

The word size dependent variables are: IFl, IF2, IW, INFO, and
E	 ^t

r
i	 ITITL, IW is the number of words required to generate RO characters,

r	 ^,

To convert to a machine using different word size, modify only IW, IF1

and IF2 in first two data statements below. The third data statement

ff
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it3 for 1/0 buffortj and the fourth data statement la for values of

Qo"Otanto,

DATA 114, IVI(l), IVIM /8 ► 611(BAIO), III /

DATA IV"q (l), TV2(2)o TV2(3)o IV2(4) /101l(8A10/2(4A,4IlI0)),ll1 olli

DATA IN, IOUT, IPATIIS /5, 6 1 7/

DATA K Q t PI /1-3806-H-23, 1,602E-19 t 3.141593/

When a code generated error message is called, the first line of

the error output will be of the form,

****** ERROR NNN ******

where. I NNN t In 
one 

of the following integers,

207 See Subroutine WRIT
410 roe Function Subroutine DS
4121 see Function Subroutine DS
521 See Subroutine, CALOD
522 See Subroutine CALM
523 Soo Subroutine CALOD
524 See Subroutine CAL-01)
525 See Subroutine CAWD
526 See Subroutine CALCD
527 Soo Subroutine CALC
528 See Subroutine CALOD
52q See Subroutine CALCD
530 See Subroutine CALC
610 See Subroutine BOUND
612 See Subroutine BOUND

and the reference([ Subroutine is the calling routine.

READER

See INPUT AND OUTPUT section.

t

INIT

This subroutine initializes the necessary variables and performs

Cho first iteration, It is outlined in Fig. 5. The constants, which

include the Bohm Veloeity, Velocity Of the thermal neutrals and the

step size, are defined first. Then the z and x coordinates oL the ion

ORIGINAL PAGE IS

OF POOR QUALITY
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ENTER

initialize constants

calculate x,z coordinates of
ion exit points from beam,

define ZBOUND

K OYes	
high t;esolvtion upstream run

7	 redefine ZBOUND

No	 -

KEY	
Yes	

uniform density distributior

-1	 run recalculate x,z
?	 coordinates

No

initialize Velocity array
calculate second set of ion

positions

initialize density ^ 1

arrays

iF

t 	I

E

Fig. 5. Flow chart of initialization routine, INIT. 	 r
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output heading, schematic,
initial parameters

CALL WRIT (1)

output first two sets of
interim data
CALL WRIT (2)

RETURN

Fig. 5. Continued, INIT.



r

25	 u

trajectory exit points are obtained and ZBOUND is defined. If this is a

high resolution upstream run (KEY>O), ZBOUND is redefined. If this is a

uniform density run (KEY--I), the ion trajectory exit points are redefined

to be unif%,rmly spaced, Following this, the velocity arrays and iteration

counter are initialized, the second ion positions on each path are calculated

and all the paths are set to active. The initial densities between the

paths and the initial densities on the paths are then calculated. Finally,

the heading, thruster schematic, initial parameters and results of theinit-

ialization and first iteration are output, then control is returned to PLASIM,

CALL

This is the main calculation routine, It is outlined in Pig. G.

This subroutine uses the arrays in blank common along with subroutine

CALM to determine the next position of the %on being considered. 	 The

densities and potentials to the right and left of the present path are

calculated first. 	 Then the force acting perpendicular to the present 4	 ,

path is calculated.	 If the boundaries repel the path, the perpendicular r
9

{

p

force is set equal to zero. 	 The potentials and forces acting parallel u

to the present path are obtained next.	 The total force (sum of perpen-

dicular and parallel components) acting on the ion is calculated and then

the velocity components along the x and z axes are obtained. 	 The speed on N

path one is normalized to 1.2 times the speed on path two when the speed

( on path one is 20% greater than the speed on path two. 	 Finally the next

3
ion position is calculated. 	 Subroutine BOUND is called to make sure the

new ion position is inside the boundaries. 	 The results are printed every
N

' ICLWRT iterations.	 IFLAGI is checked (see CALCD) to see if intersections
^

s

were found to both the right and the left. 	 If intersections were found a

to both sides, the path is iterated again.

t:
l'
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ENTER

calculated
3	 ion position fo

NUMTON
trajectories/

?

RETURN

No +^

-set iteration number on
current path

, make sure path is active

calculate displacements to

right and left paths

CALL CALM

check flags

-calculate x-position on right and left

• calculate velocities to right and left

-calculate densities to right and left
-calculate density at present location

No	 boundary	 Yes	 set perpendicular
1	 repulsion	 forces to zero

2

3

M

Fig. 6. Flow chart of main calculation routine, CALL.
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-calculate potential on
right and left

-calculate force acting
perpendicular to path

-calculate potentials at
present points

calculate force acting
parallel to path

-calculate total force and
components

-calculate total velocity
and components

first	 Yes	 if necessary,

trajectory	
normalize speed on path 1 to

p	 1,2 times speed on path 2

No

calculate new ion positions

make sure new ion positions
within simulation boundaries

CALL BOUND

output results of iteration
if desired

-increment iteration counter
*check flags

Fig, 6. Continued, CALC,
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t

CALCD

Thin ,subroutine, which is outlined in Fig, 7, computes the perpen-

dicular displacement from the present path to the adjacent paths, The	 3

flago are defined in this routine,
	 ^G

First, the flags are initialized and then the, slope of the line
	 s

perpendicular to the present path, at its end point, is calculated, If

the path under consideration is the right- or left-most active path,

function subroutine DS is used to get the displacement to the boundary,
	 t`

When an interior path is under consideration, displacemems are
	 i`

obtained to the right-, and left-hand paths. Here, the slope of the 	
`s`

adjacent path, between the :last two ion positions, is calculated. The

intersection point between the line perpendicular to the path under

consideration and the line formed by the last two points of the adjacent

path, is calculated. Tests are run to determine if linear extrapolation

(adjacent path extended to ,find an intersection point) or back stepping

(interpolation between points on the adjacent path previous to the last

two points) is to be used. The .flags are set, the displacement of the

adjacent path is calculated and then control, is returned to subroutine

CALL. This subroutine returns the values of the flags, the displacements

to the right and left and the angle that the perpendicular makes with

the horizontal,to subroutine CALC.

BOUND

This subroutine checks the point (z,x) to see if it lies inside the

defined boundaries of the simulation, If (z,x) does lie inside the

defined boundaries, no changes are made and control is returned to sub-

routine CALL. If the point lies outside the boundaries, the path status

is scat equal to the iteration number. In addition, if (z,x) lies on the

ORIGINAL PAGE 9
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ENTER

initialize flags

` -calculate slope J line perpendicular
to current path at the end point

-calculate angle the perpendicular makes
with the horizontal

F	
—	 calculate displacement

to left

left 	 Y_ns	 calculate ^splacr( I 	c, e d • 	a ent I I
most	 ..r to

path?	 boundary on left (IFLAG3),
use function p5	 ^!

a

No

-set iteration index of left hand path
1

t.	 -make sure left path is active (IFLAG2)

calculate slope of left hand path
between final two ion positions

I

can	
decrease iteration
index of left path by

2	
Yes	 intersections	 to	

one
be found?

t

t

	

3	 k

j

7. Flow chart of displacement calculation routine, CALCA.
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4

-calculate slope of right path
between final two ion pc*sitrions

or	 can	
No

intersections
be found?

decrease iterati on
index of right path by
one

Yes

calculate intersection point of right
hand path line and perpendicular to
current path

is

	

intersection	 No
point adequate?

(IFLAGI,
IFLAG2

Yes 1

calculate displacement to right

	

define IFLAG3	 RETURN
i

I t	
^^

Fig. 7. Continued, CALCD,
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first or laot active path and lies outside the boundaries, no changes

are made and control its returned_ to subroutine CALC.

WRIT

Thin in the main output routine. It consists of five subsections

with the value of the passed parameter, KE, determining which section is

called. KEwl: the first three pages of output are generated, consisting

of the heading, a thruster schematic and the constants and input data,

KEm2, the interim status of the major variables is output from subroutine

INIT. KE-3; the heading is printed for the results of one pass of calY-

culationn, KEo4: a file of path coordinates is created to be used in a

high resolution upstream run. KEo5 a file of position-density triplets

in rrnnhnd to lag used for plot t n g (env YMDUU ^ AMn O:lmnL'T

DS

This function subroutine finds the perpendicular displacement from 	 t
n

the first or last active path to the boundary. CALCD constructs a
	 r

perpendicular Lo the present path at the present point (z,x) with a

slope of SLOPEP. Function NS then extrapolates this perpendicular of

slope SLOPED to the left or right (depending on whether the first or

last a ,ttive path is considered) and finds the z and x intercepts (ZINT

and XINT) along a boundary line. ZINT and XINT are checked to see if

they lie on or between the boundary endpoints on the boundary line. If

they do, the displacement is calculated, if they do not, ZINT and XINT

are calculated along the next boundary line And tested again. This

continues until adequate intersection points are found or all boundaries

have been considered in which case an error message is output, The	
r±

perpendicular displacement is returned to subroutine CALCD. 	 z
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VHSPL and VRSPVr

Thenp nubroutinen vot up the data In ZION and XION for transfer to

the utility plotting package, Veroatee. They aloo draw a schematic of

the thrunter and beam. Labela for the graph and its axes are also

trannferred and involve the word-size dependent variables. USPT, pIG40

from the external file, PATHS, whereas VRSPLT plats from core memory.

Theoe ruutineo are device dependent and may require considerable modifi-

cation at other installations.

LNPLT and PLOT14

LNPLT nets up the data in ZION and XION for transfer to the utility

platting routine PLOW which utilizes the line printer. It is also

dependent on the type of printer available and may require considerable

modification at other installations.

A
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INPUT AND OUTPUT

For each simulation run, neven data cards (or card images) are read

by READER. On the second card, if KEW, the reading acquence Is inter-

rupted and control returno to PLASIM, where normal termination ensues.

The input data Garda have the following formats and parameters which are

defined in the following aubscation and in APPENDIX C.

Card 1, FORMAT (ace the first data card In BLOCK DATA)

Content: Description of the run, up to 80 characters.

Card 2, FORMAT (7110) 	 .

Content; NUMION, NUMIT, KEY, IOLWRT, ICLPLT, NTOTST, ZCLERR,

Card 3, FORMAT (010.5)
	

.

Content: 0. RBOUNU, RT, THRLEN, BMCLR, UT1L.

Card 4, FORMAT (SElo.3)

Content: TELIN, TELOUT, TTNNEU, CEXSEC, UMSION.

Card 5, FORMAT (0100)

Content: TIMEMU, XVELM , ZVELMU.

Cara 6, FORMAT (see the second data card in BLOCK DATA)

Content: Label for graphical output.

Card 7 1 FORMAT (ace the second data card in BLOCK DATA)

Content: Axis labels for graphical output.

Due to the dimensions in the COMMON BLOCK, the values of the

variables NUMION and NUMIT should not exceed 41 and 150, respectively.

Also NUMIT should not be less than 11 and the total number of Vera-

ti.ono performed should be less than 8888. The temperatures input on the

fourth data card should be in units of eV, all other variables require

SI units.

The printed output begins with three pages of identification

including a schematic of the simulation region and a statement of the

parameters defining the conditions of the run. (See WRIT(1).)
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The next two segments cous int of INTERIM STATUS, a report of the

coordinates, velocity and density for each path after the initialr,zation

and first iteration, as prepared by INIT. (See WRIT(2).) A provision

is made in subroutine CALC to output the counters, coordinates, velocity

and density values for each iteration so that the progress of the
j{

simulation may be followed in detail. if the results of each iteration

are not desired, the value of the input variable ICLWRT on data card 2

should be set to a value other than one. The value chosen determines ^a
I'

how many iterations must occur before those results are output, WRIT(3)

outputs the heading for the information output in subroutine CALL.

Graphical output consists of an outline drawing of the thruster and

beam boundaries and the paths generated by the computation in the form

of dots or lines. The paths are graphs of the coordinates contained in

the arrays ZION; .ETON, Thaw arrays are each a doublo-subscripted array

in which the first subscript identifies the ion path number, and the
c

second one identifies the iteration, The density array is also available

for plotting, but provision for such has not been installed.
C

An appropriate relative scale in terms of the number of paths and

the iteration step size must be established to properly model the upstream

regions. Very small steps compared to the path spacing are inappropriate

as are very large steps compared to the path spacing. The scaling ratio

S - 4d/vBlit compares the path spacing to the axial step size. Appropriate

values of this ratio, used herein, for the various thruster sizes are:

5 cm thruster: S = 2,9, 15 cm thruster: S m 3.9, 30 cm thruster: S a 3.6.

These values were obtained by taking Ad as the separation between the

14th and 15th paths, along the beam edge, v  as the Bohm velocity and At

as the time step for each ;onfiguration given in the SAMPLE INPUT section,

_	 It should be noted that the value of the scaling ratio, S - 2.9, for the

^n
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5 cm thruster wao restricted by computer CPU time allocations, The

modeling of the upotream region for a 5 cm thruster would be better if

more otagen were tined beeause for 10 otages, 8 w 3,2 and for 11 stages

S m 3 ► 5,

Sample Input

A typical uet of input parameters for program PLASIM, to simulate

a 5 cm ion thruster using mercury (11S) propellant, are,

Data Card Content

1 5 em thruster, non-uniform density distribution,
basic configuration.

2 40	 150	 -2	 20	 3	 9	 1

3 .025	 .60	 .08	 .50	 .05	 .7^

4 7.OE+00	 3.51114-00	 4,7&-02	 G.OE-19	 3.34E-23

5 .75	 1,0	 0.0

6 Propagation of a abarge-exchange plasma, 5 cir, thruster

7 Distance along beam axis (meters) Radial distance
(meters)

A typical set of input parameters for program PLASIM, to simulate

a 15 am thruster using mercury (11g) propellant, are

Data Card Content

1 15 cm thruster, non-uniform density distribution,
basic configuration.

2 40	 150	 -2	 20	 3	 4	 1

3 .075	 .60	 .12	 .30	 .63	 .85

4 5,OE+00	 2.5E+00	 4,7E-02	 6, OE-19	 3.34E-23

5 .75	 1.0	 0.0

6 Propagation of a charge-exchange plasma, 15 cm thruster.

7 Distance along beam axis (meters) Radial distance
(meters).
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A typical sat of input parameters for program PLASIN to simulate a

30 cm ion thruster using mercury (Hg) propellant are,

Data Card	 Content

1	 30 cm thruster, non-uniform density distribution,
basic configuration.

2	 40 150 -2 20 3 2 1

3	 .14 .60 .20 .40 2.0 0.9

4	 0.350E+00 0,175E+00 4.7E-02 6.0E-19 3,34E-23

5	 .75 1.0 0.0

6	 Propagation of a charge-exchange plasma, 30 cm
thruster,

7	 Distance along beam axis (meters) Radial distance
(meters),

The values given on data cards 3 and 4 in all of the above cases,

orrespond to the experimental values for those quantities.
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VERIFICATION

Two studies, one analytic and one experimental, are used for

the verification of the computer code presented herein. The analytic

study was conducted an a support activity for the development of the

subject !computer code, and is reported in more detail in APPENDIX A.

Analytic Solution

The analytic solution is for the case of an infinitely long

cylindrical ion beam with a uniform production of charge-exchange ions

along the beam. The density and potential variations are restricted

to be only radial so that an analytic solution could be obtained in

a straightforward manner.

A computer solution was obtained using the uniform ion density

option of the program (KEY--1) and is shown in Fig. 8. The dots occur

every 60 iterations. The radial density and velocity from the analytic

solution are compared to the radial density and velocity from the simu-

lation, as a function of radial distance, in Pigs. 9 and 10, respectively.

The agreement between the analytic solution and the computer simulation

for the velocity and the density is excellent.

Experimental Solution

Experimental surveys of the plasma density 
8,9 

are shown in Figs.

11 and 12 along with comparisons to the computer code for 5 cm and I$ km

thruo tern, respectively. The operating conditions used in the experi-

mental studies were duplicated to obtain the isodensity contours

generated by the computer simulation. Figure 13 shows the isodensity

contours generated by the computer simulation for a 30 cm thruster. No

experimental data is presently available for a 30 cm thruster. The ion
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Fig. 9. Comparison of radial densities calculated using the

computer code and analytic solution.
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Q â^

M ^

U

u
C
a^

o
v

(uv
414r
ca

O'
O

ao

ORMINAL ^a	 v^
7 Soon' QUALITY

t



E

of
c^
c
f°N
'Q

'x
Q

ti

fil

t
is

a

ro

H
Q

D,
iJ
^r{

a^
b
a
Nu
a
w
w
Q

v

N

ro

a

N

a

ro
a

'b
4l
t^td

M

N

as
w

4

I (q0

^i
0

co

O

t^

43

1-00
 s3 \0

`r1110,,f+,lP

	

0 

1

0 X /^o'` r 
w r /

0

k

r''0, 
0100	

k/ 0-1M
//	 r.

000 0001-

b	
b. ►

a \	 04)
yq̂ E td a1

W in 4
n

0
rr

ti
UJ	 I	 ^ ^c, ^O r. ,^ ^+\o

0	 CG	 CCU	 Ci

r W `90U0421p Iplp®a

,

ORIGINAL PAGE IS
p	 QE POOR QUALITY

^x

M

`VN
C
Q^
'C7

c
0

^a

•.
m
N7

^' d

... 00
C7



44

-A4
4

OnIGINAL J' jGE it

A P6^ QUALITy

ter	 ^f
r+°°	 ^^	 ,, E O u

^00,

Nlb00,00.0
	

000,
\

\	 ^''r
u°a

+	 ^^
00,

cn

4rjl

^	
t	

b

._	 G f -A. u

O
U
G)

A 1014

w

I'll

M
t!1

%4	 ^„

\.A0000
^C!

ri

E
NO

CC ^ ^

't7	 (n	 Gj	 (n '"'

C	 CV a
_

C;

a
p
t

M	 N
O	 C?

w'aoualslp IDIPOU



ro

45

trajectory directions obtained using the simulation are in good agreement

with the experimental measurements of Carruth and Brady.10

Figures 14, 15 and 16 show typical ion trajectories generated by

the simulation using the data in the SAMPLE INPUT section for a 5 cm,

15 cm and 30 cm thruster, respectively. The dots occur every GO itera-

tions,

Figure 17 is a simulation of the 15 cm thruster for use in comparing

the computer code contained herein to that discussed in relation to

Fig. 8 of the October 1980 report.3

Limitations in Use

Major factors affecting the accuracy of the simulation obtained are

the number of ion paths used, the number of iterations performed and the

time interval used. When the number of ion paths simulated is increased,

either more iterations must be used or the time interval size decreased

through use of the variable TIMEMU, This is necessary to keep the

spacing between the paths comparable to the distance the ion travels in

one iteration, this is accomplished using the scaling ratio, S. If care

is not taken in doing this, path crossings will sometimes occur, especially

among the paths within one beam radius of the thruster. These path

crossings result from plasma properties changing so rapidly that the

error in a path location will exceed the local path spacing. The procedure

used in carrying out the simulation depends on a "laminar" path structure,

that is, no intersection of paths. The existence of any crossed paths,

therefore, invalidates local calculations of densities and the other

related parameters.

^i. Other limitations are imposed by core storage allocations, external

file space, and the CPU time available in a particular machine.
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The present code takes approximately 20 seconds to compile, 150 seconds

to execute three stages with NUMION-40, NUMIT-150 and ICLWRT=lo occupies

about 140K8 bytes of central memory and writes approximately 125,000

characters on an external, file for three stages, as above, on a Control

Data Cyber 171 computer,

It should be noted that the code could be significantly simplified

and shortened if it were translated to Fortran 77 (Fortran V).

s ;E

s '{
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APPENDIX A

ANALYTIC SOLUTION

A theoretical benchmark is valuable for verification of the

computer code developed to model the charge-exchange plasma propagation

in the vicinity of an operating ion thruster. An analytic solution

is developed herein for that purpose.

A cylindrical ion beam is assumed with a length ve ,;y much greater

than rb , the beam radius. The current density representing positive

charge-exchange ion production in the beam is assumed uniform along the

beam.

In the region exterior to the beam, three basic physical conditions

are assumed to hold for the ion population and/or the plasma as a whole.

The first is continuity of ion current represented by

V - I - 0
	

(Al)

where I is the ion current density. The barometric equation is also
used to relate plasma density to local potential V

n = no,refexp(e(V-Va )/ItTe I
	

(A.2)

where V  is the potential at the reference density 
no ref and T

e is
i

the electron temperature in the region exterior to the beam. Finally,

energy conservation for singly charged ions is represented by

^'v	 (vo2 - 2e (V'Vo)/
mi)

1/2	 (A3)
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where v is the ion velocity and mi is the ion mass. As a boundary

condition at the beam edge, ions are assumed to have acquired the Bohm

velocity

vo = vB 0 (kTe /mi)
1/2
	(A4)

where T  is the electron temperature in the beam.
B

The ion current density is related to the streaming velocity by

a nev	 (A5)

For the assumed symmetry, the velocity is radial and is

v = v(r)r	 (A6)

In cylindrical coordinates, Eq. (Al) can be written with the substitu-

tion of Eq. (A5) as

1	 8v(r) 8V r	 9n(r) Wr)—
r
 n(r)v(r) + n(r) aV
	

8r + v(r) 
- 8V	 a 	

s 0	 (A?)

which can be solved for V(r) by eliminating n(r) and v(r) using Eqs.

(A2) and (A3). The solution can then be written as

(1 - e (V-Vo )/ kTe) 1/2exp (-e(V-Vo)/kTe) = r/rb	(A8)

}} 	 U

The density and velocity can be calculated using Eq. (A8) along with

Eq. (A3) or Eq. (M).

;f
i

r

E.



The solution in terms of potential, density and velocity is

displayed in dimensionless form in Figs. 1A, 2A O and 3A.

PW
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APPENDIX B

BEAM !CURRENT DENSITY PROMLES

Determination of the total rate of charge exchange ion production

in the beam volume must take into account both the beam current density

profile of the ion thruster and the spatial, distribution of neutral

propellant atoms in the path of the ion beam.

Por theoretical calculations a simplified ion beam current density

distribution is usually chosen and axial symmetry assumed. A closed-

form solution exists only for the very simplest distribution which has

been used for conservative estimates of charge exchange ion production, 19

In this case the current density is given by a Dirac delta function,

9 b °° Jb d (r) ,	 (Bl-)

where Jb is the total beam current and d(r) is the two-dimensional Dirac

delta function. This expression essentially places all of the beam

current on the thruster axis where the neutral density follows a simple

function, thus allowing a closed-form solution.

A current density profile that is more accurate for the larger,

multipole thrusters is a uniform beam current density

Jb ¢ Jb/rrb2 ,	 (B 2)

where r  is the beam radius. Another profile that approximates the beam

of some divergent ;field thrusters is a parabolic profile

a
P
r

..

o.

Jb ~ 2Jb (1 - r2/rb2 )Trrb
2
 ,	 (B3)
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where r io the diot;ance from the beam axis.

The expreoo iono given above for beam current density are normalized

auch that

2u rb
Jb - f f J brdrde .	 04)

A Gauooian profile io also used by some workers where

2 
-(r/ rb) 

Z

J b g3 
(d bArrb )e	 $	 05)

subject to the normalization:

2rr M

"fib	 f f J
b rdrd9	 (^^)

0 0

The uniform, parabolic and Gaussian profiles can also accommodate

a defined rate of beam spreading as it propagates. The simulation

described herein does not include effects from beam spreading.

Neutral gas leaving the accelerator system is taken to be in free

molecular flow so that the effective neutral density at an arbitrary

point ouch no that shown in Fig. 1B is proportional to the subtended

solid angle of the ion optics as viewed from the point (r,O,z).

Effective neutral densities were calculated numerically for an r-z

matrix with a resolution of 0.1 rb. Far the near field, where about

half of the charge exchange takes place, the calculated densities are

given in dimensionless form in Table 1B.

The calculated distribution of neutral propellant Along with the

beam current density profile allow a calculation of charge exchange ion

production rate per unit length as a function of distance from the ion

optics.

V
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As a first approximation, the charge exco.ange production rake can

be calculated in closed form if the Dirac delta function is used for

the ion beam profile. The neutral density along the beam axis is given

by

no (Z) p 
n

°^---	 l 	̂ ''2 	 ,	
(B7)	 s

z 2 + rb

r

where 
no,ref 

is defined as the density that would provide the correct

loss rate of neutral propellant through an opening of the same area as

the beam. The neutral loss rate is then

2 

r2m

No	
rbno ref'	

(BF3)
' 

where To is the propellant temperature, mo is the propellant mass, and

k is Boltzmann ' s constant. The charge exchange ion production rate per

unit length is thus

NCB ( z ) ® JbQn( z)/e 	(B9)
x

for small total production rates. Integrating to obtain, the total

production rate gives

NCE
T 

= 
db4no

' 
refrb

/2e
 ,	

(BlO)

i

As the assumed ion beam profile becomes less peaked, progressing
is

from a Dirac delta function through Gaussian and parabolic functions to

a uniform distribution, the production rate of charge exchange ions

f
r
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will diminish an more of the beam passes through the peripheral regions

of lower neutral propellant density. The two extremes in production

rates as a function of distance thus use a delta function and a uniform

function for the beam profile. The results for these two extremes are

shown in Vig, 2B, Table 2B gives the calculated total charge exchange

ion production rates for these two extremes, as well as 
the 

intermediate

parabolic ion beam profile, The ion beam profile is clearly not a

dominant parameter for charge exchange ion production.

The simulation developed to model the charge exchange plasma propa-

gation can be modified for an arbitrary input for the production rate

as a function of uistance.

, I
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Table 2B. Charge-Exchange Ion Production Rates for Different Beam
Current Density Profiles.

Profile	 Production Rate (J 
b 
Qn 

o,ref 
r 
b 
/2e)

J b6 (r)
	 1.00

2J 
b 
(I - r 

2 
/r b 2 ) /Irr b 2
	

0.97

i b 
/7rr 

b 2
	

0.94
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APPENDIX C

GLOSSARY OF VARIABLES FOR PLASIM

This glossary contains definitions of the variables used in the

driver Program PLASIM, the subroutines BLOCK DATA, READER, INIT, CALC,

CALCD, BOUND, and WRIT and the function subroutine DS, including all the

variables in the COMMON blocks. The variables used in the Plotting

subroutines, VRSPLT, VRSPL, LNPLT, and PLOTW are not defined here,

Ai

i1

n
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BK;	 Boltzman's constant WK).

BMCUR:	 Beam current (AMPS).

CEXSEC:	 Charge exchange cross section (METERS SQUARED).

{
C:	 Time Interval divided by mass of ion (TIME/UMSION).

i
COSPAR.	 Cosine of angle between line parallel to path and horizontal.

COSPER:	 Cosine of angle between line perpendicular to path and	 i

horizontal.,
,F

DELTAX:	 Difference between two x coordinates on present path. 	 is
,E

DELTAZ:	 Difference between two z coordinates on present path. 	 f

DELTLX:	 Difference between two x coordinates on left path.
i

G

DELTLZ:	 Difference between two z coordinates on left path.

DELTRX:	 Difference between two x coordinates on right path.

DELTRZ:	 Difference between two x coordinates on right path.

DELTRZ:	 Difference between two z coordinates on right path.

DN(I,N):	 Density can path I at iteration N.

DNI(I):	 Initial density between paths (1-1) and (I).

DNL:	 Density to left side of current path.

DNOB:	 Constant used in calculation of the densities, combination
of quantities including , BMCUR, CEXSEC, RB, NUMION, UTI,L,
Q and VELNFU.

l

DNR:	 Density to right side of present path.

DS:	 Perpendicular displacement from present path to boundary.

DSPLL:	 Displacement to left hand path.

DSPLR:	 Displacement to right hand path.

DMIMYP, DUMMYL, DUMMYR:	 Dummy variables used in the calculation of
the intercepts. Contain intermediate results.

DSPLIP:	 Displacement of ion along path.

i
F.	 Total force acting on ion.

FPAR:	 Force acting parallel to the path.

FPARX:	 Component of FPAR acting in x direction.

ORIGINAL PAGR 1§
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FPARZ:	 Component of FPAR acting in z direction.

FPER:	 Force acting perpendicular to the path.

FPERX:	 Component of FPER acting in x direction.

FPARZ:	 Component of FPER acting in z direction.

FX:	 Component of F acting in x direction (FPERX + FPARX).

FZ:	 Component of F acting in z direction (FPARZ + FPARZ).

1:

	

	 Allows do loop index, 11, to be passed through COMMON,
path index.

ICLERR:

	

	 Used to determine if code generated error messages, for
non-fatal errors, are written out.
- 0, Write messages.
= 1, Do not write messages.

ICLPLT:

	

	 Used to determine which (if any) plotting routine is used;
- 1, Use subroutine VRSPLT.
- 2 0 Use subroutine LNPLT.

3, Use both VRSPLT and LNPLT.
= anything else, No plots.

ICLWRT:

	

	 Frequency with which results of CALC are output. Write
statement in CALC called after every ICLWRT number of
iterations.

IDEF:

	

	 Used to determine when the x and z coordinates of an ion
trajectory exit point are defined (every other time).

IDXNEW:	 New index for right or left-most path.

IFLAGI:

	

	 Used to determine if intersections were found to both the
left and the right without using linear extrapolation,
= 0, Linear extrapolation not used.
= 1, Linear extrapolation used on left.
= 2, Linear extrapolation used on right.
= 3, Linear extrapolation used in both cases.

IFLAG2:

	

	 Error flag, tells whether or not the neighboring paths
are active,
= 0, No errors path active.
> 0, Error exists, value references program statement

where error condition originated.
= -1, Path to left is not active.
= -2, Path to right is not active.
= -3, Neither path (right or left) is active,

r	(Negative values do not indicate an error condition.)

ORIGINAL PAGE IS
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IFLAG3:	 Used to determine when there is a boundary on the right or
left (or both) of the current path.
m 1, No boundary intersected by the perpendicular to the

current path on either side,
w 2, Boundary intersected on left.
= 3, Boundary intersected on right,
- 4, Boundary intersected on both the Left and right,

IFLAG4:	 Trajectory one renormalization flag,
= 0, Continue iterating as usual.

1, Recalculate position, velocity and density of ion
on path 1.	

P'
IFVAR;	 Dummy variable used as an argument in an if statement.

IFl:	 A format for alpha-numeric data I/0.

IF2;	 A format for alpha-numeric data I/0.

II:	 Do loop index.

IL:	 Index (I) of left-most active path,

IN:	 Device code for input unit, used in read statements.

INFO(K);	 Array storing information describing run.

INITDO;	 Initial do loop index for DO 80 N which calls CALL.
4

INITIT;	 Initial iteration index (stage dependent).
	 D

LOUT:	 Device code for output unit, used in write statements.

IPAG;	 Page number for output,

IPATHS:	 Device code for output to external files.

IR:	 Index (I) of right-most active path.

ISAT;	 Used as path status holder for reading IPATHS and in
defining right boundary for high resolution upstream run.

ISTAT(I):	 Status of path I,
= 0,	 Path is active.
= 1 to NMAX, Path is not active, value is iteration number

where boundary was intersected.
= 8388,	 Path is not active, error condition.

ITITL(K):	 Array storing graph title and axis labels.

ITTOTN:	 Total number of iterations to be performed.
	 it
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IW:	 Number of words required to generate 30 characters,
• 8 For computers with a word size of 10.

14 For computers with a word size of 6.
(Used in COMON /IO/ and Routines BLOCK DATA, READER, WRIT,
VRSPLT and VRSPL).

J;	 Used to determine when WRITE-435 is executed (CALO)

KE:	 Calling parameter for subroutine WRIT,
= 1, Output heading, initial information and data.

2 1 Output interim status of main variables.
w 31 Finish of a pass, output results, start of new pass.

4, Create file of path coordinates.
Q 5, Create file of position - density triplets.

KEY;	 Used to determine type of run,
0, Finish plots and terminate (2 blank cards will do).

> 0, High revolution upstream pass, right most boundary is
defined using KEY'TH path of file IPATHS (used to
define ZBOUND) .

p -1, First pass, uniform density distribution.
< r1, Regular run; first pass, normal, non-uniform density

distribution.

LA3<	 Label containing computer code name, used for output.

LASTDO:	 Dummy variable denoting last value of do loop index.

LASTIT:	 Final (last) iteration index (path status dependent).

LR:	 Determines which side is being considered (DS),
1, Looking to the left.
2, Looking to the right.

(Working) number of iterations on present path, I, total
number of iterations for the present stage.

N:

NIP(I) :

NITP:

NL:

NLMI

NMAX:

NR:

NRMI:

NSTAG:

NSTAGE:

Total number of completed iterations on path I.

Iteration pass number, used for output.

(Working) number of iterations on left hand path.

NL minus one (NL-1), used for indexing left-hand path.

NUMPRE divided by four (NUMPRE / 4) (see WRIT(4)).

(Working) number of iterations on right hand path.

LR minus one (NR-1), used for indexing right-hand path.

Allows do loop index NSTAGE to be passed through COMMON.

Program stage number. i n

}
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NSTGMU:

NTOTST:

NUMION:

NUMIT:

NUMPRE;

NUMTRI:

NUM1:

NUM2;

PI:

PIOV2:

Q:

RB:

HOUND:

RB2:

RB95N;

RT:

SINOV2:

SINPAR:

SIMPER:

SLOPEL:

SLOPEP

SLOPER:

SPACER:

TELIN:

wwr
y}1'
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Used to add 10 to N after first atage, (N stage multiplier),
NSTAG - l; NSTGMU - 0
NSTAG > l; NSTGMU - I

Maximum number of stages to be run,

Number of ion paths.

Maximum number of iterations to be performed on any one
path during any one stage.

Number of ion paths (NUMION) from run which created file
IPATHS (see WRIT(4)).

Number of triplets output to be external file.

Number of ion paths plus one (NUMION + 1).

Two times the number of ion paths plus one (2*NUMION + 1).

Geometrically defined constant, 3.14:159265...

PI over (divided by) 2.

Elementary unit of charge (C).

Radius of the beam (METERS).

Radial boundary in positive x direction (METERS).

Beam radius squared (R$ ** 2).

95 percent of the beam radius divided by 2 times the number
of ion paths (RB * .95 / (2 * NUMION)).

Radius of the thruster (METERS).

SINPER over (divided by) 2.

pine of angle between line parallel to path and horizontal.

Sine of angle between line perpendicular to path and
horizontal.

Slope of path on left between two "working" points.

Slope. of Line perpendicular to current path at endpoint.

Slope of path on right between two "working" points.

Initial distance between paths in uniform distribution.

Temperature of electrons in the ion beam (EV).

a
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TELOUT:	 Temperature of electrons outside the ion beam (EV).

THETAP:	 Angle between Line with slope SLOPEP and horizontal,

THRLEN,	 Thruster ]nngth (METER$).

TIME,	 Time interval, defines iteration strip size.

TIWEMU,	 Time multiplier, used to define the time otep in terms of
multiple of RBOUNA / (VELBOH * NUMIT).

TTHNEU:	 Temperature of thermal neutrals in chamber (RV).

UMSION:	 Mass of sons (propellant) (KILOGRAMS).

UTIL:	 Utilization factor of propellant (part of propellant turned
into ions).

VGURR:	 Plasma potential at present point on path I.

VELBET:	 Present total velocity between path under consideration and
neighborin; path.

VELBOH:	 Bohm velocity,

VELBTL:	 Present total velocity between path under consideration and
path on left.

VELBTR:	 Present total velocity between pal.h under consideration and
path on right.

VELNBU:	 Thermal velocity of the neutrals in the chamber.

VELTOT:	 Present total velocity of ion.

VELTT2:	 Present total velocity of ion along path 2.

VELTX(I):	 Present total, velocity component in x direction.

VELTZ(I);	 Present total velocity component in z direction.

VELX:	 Velocity contribution for this iteration along x direction.

VELZ:	 Velocity contribution for this iteration along z direction.

VL:	 Plasma potential on left side of present path.

VPREV:	 Plasma potential at previous point on path I,

VR:	 Plasma potential on right side of present path.

X:	 X coordinate of point to be tested.

XINT:	 X intersectian point on boundary Line..
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XINTL:	 X interoection, to left, of lines SLOPEP and SLOPEL,
it

XINTR;	 X intersection, to right, of linen SLOPED and SLOPTR.

XION (I,l): X coordinate of ion trajectory exit paint I.

XION (I M: First x coordinate of ion after leaving ion bnnm along
trajectory I.

XION (I,N): Present x position of ion.

XION (I,N+I): Newly calculated x position of ion.

XPOSL:	 X-position (coordinate) half way along the perpendicular
displacement (DSPLL) to the neighboring path on the left,

XPOSR:	 X-position (coordinate) half way along the perpendicular
displacement (DSPLR) to the neighboring path on the right.

XVELMU	 X velocity multiplier, used to define initial x velocity in
terms of some multiple of the Bohm velocity.

£..	 .'ii:	 N coordinate of point to bu t44i--Af

ZBOUND:	 Z boundary to right of thruster.

ZCURR:	 Current z increment, used to get ion exit points.

ZINT:	 Z intersection point on boundary line.	 D

ZINTL	 Z intersection, to left, of lines SLOPED and SLOPEL.

ZINTR:	 Z intersection, to right, of lines SLOPEP and SLOPER.

ZION (I,1): Z coordinate of ion trajectory exit point I.
j

ZION (I,2): First z coordinate of ion after leaving ion beam along
trajectory I.

ZION (I,N): Present z position of ion.

ZION (I,N+I): Newly calculated z position of ion.

ZMAX:	 Maximum z value on path KEY of IPATHS, defines ZBOUND for
high resolution upstream run.

ZPREV:	 Previous z increment, used to get ion exit points.

ZVELMU:	 Z velocity multiplier, used to define initial z velocity in
terms of some multiple of the Bohm velocity.
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APPENDIX D

COMPUTER CODE LISTING VOR PLASIM
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PROGRAM PLASM M (INPUT# OUTPUT# TAPES * INPUT# TAPED n OUTPUT#
I	 NPAPAM# P ATHS) TAPE?	 PATHS# DEBUG	 OUTPUT)

N#*# *###A # nq IVFR R11UTINE * #**#####**

PROGRAM DESCRIPTIM PRnC5RAM M ER •- WILLIAM OEININGER# A - 30 - PI
PLACE NOTES ON RFVISI nNS HEAEI (INCLUDE DATED INITIALS# LOCATICIN
AND CHANGE MACE *** PLEASE ***)

THIS IS THE DPIVFP ROUTINE FOR THE SI MULATION OF A CHARGE •
EXCHANGE PLASMA SURR4t i NnI NG A PPOAD REAP ION THRUSTER# THISPDUTINE
DEFINES THE PRrGRAM STRUCTURE AND STAGING OY CALLING VARIOUS
SUIIROUTINES * RFADF R I T I4 F FIRST CALL IS TO SUBROUTINE READER WHICH
READS IN THE RLIN SPECIFTCATIONS AND INFORMATION* INITI THE NEWT
CALL IS TO SUBRnUTTNF TNTT WHICH INITIALIZES VARIOUS PARAMETFP$ AND
CONSTANTS# OFFiNFS THE TPN FXIT POINTS ALONG THE REAM EDGE AND
PERFORMS THE FIRST ITFPATION, CALCI THE NEXT CALL IS TO
SUBROUTINE CALL WHICH CnMPUTES THE ION POSI(ION$ ALONG THE
TRAJECTORIES* CA(C T C CALLED NUMIT TIMES, THIS COMPLETES THE
FIRST STAGE. (NUMIT IS THE MAXIMUM NUMBFR OF ITERATIONS TO RE
PERFORMFO ON ANY OTVFN PATH DURING ANY PARTICULAR STAGE),
INFORMATION FOR THE V TPST (NUMIT - 10) ITE RATIONS IS WRITTEN TO AN
EXTERNAL FILE# PATHS, SORE MEMORY IS THEN REINITIAL17FO BY
TRANSFERING THE RESULTS nP THE FINAL TEN ITERATIONS TO THE CORE SPACE
I'QP THE. INITIAL TEN, THE RESULTS OF THESE TFN ITERATIONS ACT AS A
BASE FOP ANOTHFR SFT MR (NUMIT - 10) ITERATIONS * CALL IS CALLED
ANOTHER (NUMIT • 101 T! m E$ TO FILL CORE STORAGE WITH ANOTH"cR SET OF
PATH rOORDINATFS WNIC"N C nMw LETES THE SECOND STAGE. THEN CORE IS
REINITIALIZED AnAIN AND ANOTHER STAGE IS RUN, THIS IS DONE UNTIL
THE DESIRED TOTAL NIIMAFR OF ITERATIONS IS PERFORMFD# OR UNTIL
ALL PATHS INTE R S FCT RnUNDAPIES * FINALLY# THE PLOT INDICATOR#
I ICLPLT I # IS CHFCKFD TO nETEQMINE WHICH PLOTTING ROUTINE TO USE TO
OUTPUT A PLOT nF THE PATH CIIORDINATES# I F ANY,

*#* NOTE ***
ALWAYS P UT TWn BLANK CARDS AT THE END OF THE DATA DICK TO
SIGNAL A STOP, THE WPRD SIZF DEPENOFNT VARIABLES ARF)
IFI# TF?# INcn# ITITL AND IW,
SEE PL UCK DATA Fn p INSTRUCTIONS ON WnRO SI?E
DFPEN pFNT VARIA B LES AND CODE GENERATED ERROR MESSAM9

******** VARIARLF DICTInNARY ********

DN(K#M)
	

DFNSTTY IN PATH K # AT ITERATION M,
ICLPLT
	

USE?) T O nFTFRMINE WHICH (IF ANY) PLOTTING ROUTINE I$
USFD	 n I	 # USE SUBROUTINE VPSPLT,

n 7	 , USE SUBROUTINF LNPLT,
n S	 # USE 90T14 VRSPLT AND LNPLT*
n ANYTHING ELSE # NO PLOTS,

INITUO
	

INITIAL nP LOOP INDEX FOR I DO 80 NI WHICH CALLS ICALCI*
I$TAT(K)
	

STATUS nF PATH K#
n 0	 # PATH IS A.CTIVEe
* I, TO NMAX # PATH IS NOT ACTIVE# VALUE IS ITERATION

NUMBER WHERE BOUNDARY WAS CROSSE09
A g AA	 , P ATH IS NOT ACTIVE# FRRnR CONDITION,

KEY
	

USE^ TO DETERMINE TYPE OF RUN#
* 0 # F I N ISH P LOTS AND TERMINATE+

DRIQINAL PA91 lP
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C > 0 r WIGH RESOLUTION UPSTREAM PASSP	 RIGHT MOST
C BOUNDARY IS DEFINED USING O X W TN" PATH OF FILE

60 C IP4THS	 (USED TO DEFINE	 ZOO UND).
C : -I#	 FIRST PASS ► 	 UNIFORM DISTRIBUTTON,
C a -li	 R EGI I LAR	 RUNP	 F IRST P ASS#	 NON-UNIFOPP DISTRIBUTION,
C NSTAG	 #	 ALLnWS nn LOOP	 INDEX	

O
NSTAGE'	 TO BE PASSED THROUGH

C COMMON,
65 C NSTAGE	 :	 P ROGRAM	 STAGF NUMBER.

C NTOTST	 i	 MAXIMUM NII MRFR	 OF	 STAGES TO	 RE	 RUN,
C NUMION	 t	 HUMBER	 nF	 ION PATHS TO BE SIMULATED,
C NUMIT	 I	 MAXIMUM NUMAFR OF 	 ITERATIONS TO BE PERFORMED ON	 ANY ONF
C PATH nURING ANY ONE STAGF•

70 C XInN(K P M)	 :	 X	 PnCITI7N 9F ION ON	 BATH K	 AT ITERATIQN	 M,
C ZION(K#M)	 :	 Z	 PISITION OF	 ION	 ON	 PATH K	 AT	 ITERATION	 M.
C
C ***	 END OF PROGRA M nFSCPIPTION	 **^
C

75 C PROGRAM DECLAPATT11N STATFMENTS.
C BLANK	 COMMON FOR	 IARGF	 ARRAYSP	 I0 •	 INPUT-OUTPUTP	 PARAM .	 PARAMETERS,
C

COMMON	 ZION(4?, 151)rxTnN(41,151),VELTZ(151),VFLTX(151),
1	 NIP(41)tDN(41 ► 1'51),DNI(42)sISTAT(41)

BO CnMMON	 /	 ID	 /	 TNtrOilTo1NFO(14)PKEYPICLPLTPICLWPT#ITITL(28)p
2	 TPATHS`TWaTFl (2))IF2 (4)pICLEPR
COMMON	 /	 PAPAM	 /	 N#NUMIONiNUMITiRBPRBOUND#RT..#TELOUToBMCURPUTIL,

3	 TEL INiTHULFNiI)MSTnN,#VELPOHPZBOUNDPILpIQpPIpAKpOrRR9yNi
4	 nNnP,CEXSFCrTTHNFUrTIMEPTIMEMUPXVELMUtZVELMU ► NSTAGr

P5 5	 NSTGMUPNTnTST, PT;iV?,
c
C INPUT	 PARAMETERS p	S A FCIFTrATIONS,	 INFORMATION,	 INITIALIZE	 VARIABLES•
C CHECK KFY TO SIGNAL	 STnp,
C

90 1	 CALL	 READER
INITDO	 n 	 2
NSTAG	 n 	 1

C *****************+*#***#********#***********

C PLOTTING ROUTINE	 VRSPLT PLOTS	 FRO)' CORE	 MEMORY
95 C FOyy., C

y 
A
,yy 

LLyL	 VVy R
,

S
yy0)yyyyJJy y/yT 

yyF 
yy yy
(K

Ky
EEy Y

yyyy ,yy
	

yy
	

yP
y L yT

y yy yy yy ,yy yy 	yy JY y yy	 11yyyyyC T*TTTTTTTTT*TTTT*T'`*YT*T'Y'*TT^f T7•TTTT*TTTTSTT

IF	 (KEY	 +EO,	 01	 r ALL	 VRSPL
IF	 (KEY	 .FO.	 0)	 S T nP	 1

C
100 C PERFnRM	 INITIAL T74TT'7N,

C

CALL	 KNIT
C
C BEGIN STAGING.	 THE	 nO LnnP	 INDEX	 O NSTAGE'	 GIVES	 THE	 STAGE	 NUMPFR.

1U9 C
DO 100 NSTAGF.	 n 	 to	 NTnTST

NSTAG v NSTAGF
IF	 (NSTAG	 .EO.	 11	 GO	 TO	 70
INITDO	 n 	 IO

110 C
C REINITIALIZATInN	 PRnCEnURF,	 THE	 RESULTS	 FOR	 THE	 FINAL TEN	 ITERATIONS
C ARE	 TRANSFERED TO THE	 COPE	 AREA	 FOR	 THE	 FIRST	 TEN	 ITERATIONS,	 THFSF
C TEN	 ITERATIONS ARF	 13 9: 0AS	 A	 BASF	 F09 ANOTHER	 (NUMIT - 10)	 ITERATIONS,
C THE	 TOTAL	 ITEPATT r N	 P ER PATH COUNTER	 IS	 REDUCED BY ONE TO ENSUPF
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115 C THAT (EACH STAGC DOES TNr PROPER NUMBER OF ITERATIONS*
C

DO 50 M w 10 10
DO 40 It w It NUMION

IF (ISTAT(K) .NE. 0) GO TO 40
1 20	 m m 	 H+14.1

	

XION(K, M )	 XION(K ► HM)

	

ZInN(KeMI	 ?ION(K ► MM)
IF (M .FQ. 10) 60 TO 30
RN(KPM)	 . DN(Ksmm)

12 5 	GO TO 40
30	 nN(k ► M)	 » 0.0
40	 CONTINUF
$0	 CONTINUE

00 60 I m It N(JM70N
130	 NIP(l) a NI P (T)	 1

60	 CONTINUE
C
C ITERATE "NU M IT" TIMES TO COMPLETE THE FIRST STAGE. ITERATE
C "NUMIT - 10" TIMES T'1 COMPLETE THE SUCCESSIVE STAGES. THIS

+35 C SECTION CALCULATES THE ION POSITIONS ALONG THE PATHS.
C

70	 CONTINUE
DO 00 NN » TNITOOo NUMIT

N v NN
140	 CALL WRTT(l)

CALL CALC
80	 CONTINUE

C
C WRITE INFORMATTnN F OR FIRST ( NUMIT - 10) ITERATIONS IN CORE

145 C TO 'EXTERNAL FILE. RFGTN NFW STAGE IF DISIRED,
\r

C !r*rr*tttatr*#*t***rttttttrrt*tttorrat
C VRSPLT AND LNPLT P LOT FROM CORE MEMORY
C	 CALL VRSPLT

130 C	 IF (ICLPLT .CT * 1)	 CALL LNPLT
C t*t^^trtt***t *^rttet^^^ttttftd^^r*t*tt*t

CALL WRIT(5)
100 CONTINUE

G
155 C DETERMINE PLOTTING PO(ITINE TO BE USED ► IF ANY, AFTER SLOTTING CHECK

C FOP MOPF INPUT ( PPAD MORE DATA TF ANY)«
G

	

IF (ICLPLT .FQ. 1)	 CALL VRSPL
	IF (ICLPLT *F09 1)	 CALL VRSPL

160	 GO TO 1
END

CARD NR. SEVERITY DETAILS 	 DIAGNOSIS OF PPnRLEM

1	 A4$1	 THIS STATE M ENT TY P E IS NCIN-ANSI.
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1 RLOCK DATA
C
C ***##*##*#	 "CnMMnN" DATA ENTRY ROUTINE 	 ***** # '

f C

5 C PROGRAM DESCRIPTION;	 PPOGPAMMER - WILLIAM	 DEININGFR&
C REVISIONS:	 (INrLUDE DATE,	 INITIALS	 AND DESCRIBE GRANGE #*	 PLEASE	 **)
C
C THIS PROGRAM LnAPS DATA INTO LABLED COMMON STORAGE, AT COMPILE TIME

-, C THROUGH THE DATA	 STATEMENTS. 1
10 c I

s C ********	 VARIARLF nICTInNARY	 **#*	 ##

C AK	 r	 4OLTZ M A Nt S CONSTANT	 (J/K). 9
C IFI.	 :	 A FORMAT	 FOR	 ALPHA—NUMERIC	 DATA	 I/Oo k

15 C IF2	 t	 A FOR M AT FOR	 ALPHANUMERIC DATA I/0.

ik C IN	 t	 DEVICF	 COD,	 FOR	 INPUT UNIT # 	USCD	 IN READ STATEMENTS.
C IOUT	 t	 DEVICE CnDE	 FOR OUTPUT UNITr	 USED IN WRITE	 STATEMENTS.

# C IPATHS	 ;	 DEVICE CnDF	 FOR OUTPUT TO EXTER N AL FILES&
C IW	 t	 NUMBER nF WORDS	 REQUIRED TO GENERATE	 EO	 CHARACTERS# {'

20 C N	 9	 FnP COMPt)TFPS	 WITH A WORD	 SIZE	 OF 10
C •	 14	 FOP COMPUTERS	 WITH A WORD	 SIRE OF 6

` C (USED	 IN	 "C l)MMON	 110/ 11	AND	 ROUTINES	 "BLOCK	 DATA "# 	 "READER"#
C "WRIT"#	 "VRSPLT"	 AND	 +RVRSPL")
C PI	 t	 GEOMETRICALLY D EFINED	 CONSTANT#	 3.14159265... f

25 C 0	 :	 ELE M ENTARY UNIT OF	 CHARGE	 (C) e

C
C ***	 END OF	 PROGRAM DESCRIPTION AND DICTIONARY	 "^*#
C

C PROGRAM DECLARATION STATEMENTS.
30 C BLANK	 COMMON	 FOP	 LARGE	 A P QAYS#	 IO	 n 	 INPUT-OUTPUT#	 PARAM	 d	 PAPAMETERSq

C
'•. COMMON	 ZION(41PI 51)# YION(41 #151)#VELTZ(l5l)#VELTX(1.51)y

I	 NIP(41)PPN(41e151)#DNI(42)tISTAT(41)
COMMON	 /	 10	 /	 IN#TOUT#TNFO(14)#KEY#ICLPLT#ICLWRT#ITITL(2R)#

35 2	 IPATHS#IWPIFI(2)vIF2(4)PXCLERR y
COMMON	 /	 PARAM	 / N#NUMIONiNUMIT#RB#RBOUND#RTPTELDUTPBMCUR#UTIL#

3	 TELIN#THRLFNjUMSIONoVEL60H,ZBOUNDPIL#IR#PIPAK POP RR95NP `	 y

4	 DNDB#CEXSFCPTTHNEU#y'IMF ► TIMEMU#XVELMUPZVFLMUoNSTAGP
5	 NSTCMU#NTnTSTPPTOVP

40 C '
C NOTE:	 WORD	 SIZE	 DFOENDFNT	 VARIABLES;

G C IF1,	 IF2#TW:	 TNFOp	 ITIT L
C IW	 IS THE NUMRER	 01: WORDS	 REQUIRED TO GENERATE	 80 CHARACTERS.
C TO CONVERT	 TO MACHINE USING DIFFERENT WORD 	 SIZED	 MODIFY ONLY

45 C TW#	 IF1	 ANII	 IFT	 IN	 FIRST	 TWO	 DATA	 STATE M ENTS	 BELOW. k

C THIRD DATA	 STATE M ENT	 FOR	 I/O BUFFERS,	 FOURTH DATA STATEMENT 	 FOR G
C VALUES	 OF CONSTANTS & #'
C

DATA	 IW#	 IFI(1)o	 TF1(2)	 /R p 	6H(8A10)e	 1H	 /
50 DATA	 IF2(1)#	 IF2(?)#	 TF2(3)#	 IF2(4)	 i'10H( 8A10 /2(4A#4H10))rlH	 p 1H	 / {{

DATA	 IN#	 IOIIT #	IPATHS	 /5#	 6 #	 7/

DATA	 BK&	 0 #	 P I 	 /1.3 906F-23,	 1.602E-19#	 3.1.1593/
C
C INFORMATION ON PROGRAM GFNERATED ERRORS 	 M ESSAGES; ^.

5 5 C
-----------------------------------

  -------..rs--w.-
C WHEN ERROR CALLED,	 F IRST LINE	 OF	 ERROR	 OUTPUT WILL RE OF THE FORM#
C **##*#	 FRROR NNN	 ***#**

r
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WHERE	 I NNN #	IS ONE OF	 THE FOLLOWING INTEGERS#
207 SEE SUMUTINE WRIT
410 SEE FUNCTION SUBROUTINE DS
412 SEA; FUNCTION SUBROUTINE DS
521 SEE S0 J) RnUTTNE CALF
527, SPF SUPRn(IT 'tNE CALCD

523 SFF SUARn(ITINE CALCO
574 SEE SUBROUTINE CALCD
529 SEE SU g Rn(ITINF CALCD
526 SEF S08M I TIN ,5 CALCO
527 SEE SUFRIOTINE CALL
52A SEE SLID P0 ( I TT NF CALCD
529 SEE SMOLI TINE CALCD
530 SEE SURRGUTIN4 CALL
610 SEE St ► BROtITINF BOUND

612 SEE sun p nU ME ROUND

AND THE REFERENCED SUBROUTINE IS WHERE THE ERROR
# FATAL' ERRORS	 ARE CENFRALLY FATAL TO PARTICULAR

END

60

65

70

75

i

r,

1

i

=4

IS CALLED FROM«
PATH ONLY*
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1	 SUBROUTINE READER
C
C	 INPUT (RPAD) ROUTINE **h 	 ^*#***

C
5 C PROGRAM DESCRIP T In4t PRnC p AMMER -• WILLIAM DEININGER, 7 » 9 -- A1,

C PrVISIl

C
C	 THIS SUBROUTINP READS IN THE RUN DESCRIPTION AND SPECIFICATIONS,
C BOUNDARY SPECIFTCATTnNS# PPOPFLLANT AND PLASMA SPECIFICATIONS# GRAPH

10 C LAHLFS AND READS FILF IPATHS (IF NECESSARY) TO SUPPLY THE NECESSARY
C INFOPM

C
C ******** VARIABLE DICTTONARY ********
C

15 C BMCUR
	

I BEAM CURRENT (AMPS).
C CEXSFC
	

t CHARrF EXCHANGE CROSS SECTION (METERS SOUARED).
C ICLPLT
	

s USFD Trl OFTER m INE WHICH (IF ANY) PLOTTING ROUTINE IS
C
	

USFnr	 n 1	 # USE SUBROUTINE VRSPLT.
C
	

P	 , USE SUBROUTINE LNPLT.
20 C
	

n 3	 , USE BOTH VRSPLT AND LNPLT.
C
	

y ANYTHING ELSE # NO PLOTS
C ICLWPT
	

t FRF^IUFNCY WITH WHICH RESULTS OF CALC ARE OUTPUT. WRITE
C
	

STATF M ENT IN CALC CALLED AFTER EVERY "ICLWRT" NUMBER
C
	

OF ITERATIONS.

25 C ICLERR
	

t USED TO DFTFRMINE IF COVE GENERATED ERROR MESSAGES, FOR
C
	

NON - FATAL FRRORS# ARE WRITTEN OUT.
C
	

" Oo	 WRITE MESSAGES•
C
	

It	 nO NOT WRITE MESSAGES.
C INFO(K)
	

t ARRAY STOPING INFORMA°I©N DESCRIBING RUN•
30 C ISAT
	

t USFr) AS PATH STATUS HOLDER FOR READING IPATHS AND IN
C
	

DEFINING RIGHT BOUNDARY FOR NIGH RESOLUTION UPSTREAM RUN.
C	 ISTAT(I)
	

t 'STATUS Oc PATH Is
C
	

0	 r PATHIS ACTIVEi
C
	

n I Tn NMAX # PATH IS NOT ACTIVE# VALVE IS ITERATION
35 C
	

NUMBER WHUPE BOUNDARY WAS CROS3C!)-
C
	

Y4 NRPH	 # PATH IS NOT ACTIVE # ERROR CONDITION.
C ITITL(K)
	

t ARRAY STOPINC GRAPH TITLE AND AXIS LARLES.
C KEY
	

: USFO TO DETER M INE TYPE OF RUN,
C
	

" 0 # FINISH PLOTS AND TERMINATE (2 BLANK CARDS WILL DO).
40 C
	

0 # HIGH RESOLUTION UPSTREAM PASS# RIGHT MOST BOUNDARY
C
	

7% DEFTNED USING KEY O TH PATH OF FILE IPATHS (USED
C
	

TO [D EFINE ZBOUND), (SEE NOTE BELOW).
C
	

-I# FIRST PASS, UNIFORM DISTRIBUTION.
C
	

< Y-1 ► REG1 1 LAR RUN) FIRST PASS, NORMAL NON-UNIFORM
45 C
	

DISTRIBUTION,
C NIP(I)
	

t TOTAL NUM RFR OF COMPLETED ITERATIONS ON PATH I.
C NMAIC
	

s NU MPRF nTVInFO BY FOUR (NUMPRE / 4) (SEE WRIT(4)).
C NTOTST
	

s TOTAL NO M PFR nF STAGFS TO SF RUN,
C NUM1
	

t NUMAFR nF TON PATHS PLUS ONE (NUMION + 1).
50 C NUMION
	

s NUm nF P OF Ir1N PATHS.
C NUMIT
	

t MAYT mllM NUMISER OF ITERATIONS TO BF PREFORMED ON ANY
C
	

ONF PATH DOPING ANY ONE STAGE,
C NUMPRF
	

I NUMAFR O F ION PATHS (NUMION) FROM RUN WHICH CREATED FILE
C
	

IPATHS (SEE WPIT(4)),
55 C RA
	

t RADIt1S nr THE REAM (METERS).
C RDOUND
	

t RAnI'AL BOUNDARY IN POSITIVE X DIRECTION (METERS).
t R0111S (IF THE THRUSTER (METERS).
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C TELIN	 i	 TEMPERATURE OF	 ELECTRONS	 IN	 THE	 ION BEAM	 (EV).

i^

C TELOUT	 TEMPFRATURF OF	 ELECTRONS OUTSIDE THE	 ION BEAM	 (EV).
60 C THRLEN	 t	 THRUSTER	 LFNCTH	 (METERS).

C TIMEMU	 t	 TIME	 MULTIPLIER*	 USED TO DEFINE THE TIME 	 STEP	 IN TERMS
C OF SOME M ULTIBLE OF	 RBOUND	 /	 (VELBOH * NUMIT).
C TTHNFU	 t	 TEMPERATURF OF THERMAL NEUTRALS	 IN CHAMBER	 (EV).
C UMS'^l(T(4	 t	 MASS	 OF	 IONS	 (PROPELLANT)	 (KILOGRAMS) ,

65 C UTIL	 t	 UTILIZATIONFACTOR OF	 PROPELLANT	 (PART OF PROPELLANT
C TURNFO	 INTO	 IONS).
C XV)4,Nv	 t	 X VELOCITY m ULTIPLIER*	 USED	 TO DEFINE	 INITIAL VELOCITY
C IN TFRMS OF SOME MULTIBLE OF THE BOHM VELOCITY.
C ZVCLMU	 t	 Z	 VELOCITY MULTIPLIER*	 USED	 TO DEFINE	 INITIAL VELOCITY

70 C IN TERM$	 OF SOME MULTIBLE OF THE	 BOHM VELOCITY. !

C
C END OF	 PRnAPAM OFSCRIPTION AND DICTIONARY	 ***

C
C PROGRAM DECI.ARATTnN	 STATFMENTS. ;r

75 C BLANK COMMON FOR	 LARGF ARRAYS *	10	 INPUT-OUTPUT*	 PARAM •	 PARAMETERS.
C

COMMON	 710N(41*151)rXInN(41)151)rVELTZ(151)*VELTX(151)*
1	 NIP(41)*DN(41*151)*DNI(42)*ISTAT(41)
COMMON	 /	 TO	 /	 IN*IOUT*INFD(14)*KEY*ICLPLT*ICLWRT*ITITL(28)*

80 2	 IPATHS*IW*IF1(7)*IF2(4)*ICLERR
COMMON	 /	 PAPAM	 / NPNUMION*NUMITPPB* RBO(IND *RT*TELOUT#OMCUR*UTIL*

3	 TELIN*THRLEN*()MSION*VELROH*ZBOUND*IL*IR*PI*BK*OPR895N*
4	 DNOBPCEXSEC*TTHNEU*TIME*TIMEMU*XVELMU#ZVELMU ► NSTAG,
5	 NSTGMU*NTnTST*PTnV2

BS C '
C READ	 IN	 BO COLUMNS OF	 TNFnRMATION	 DESCRIBING	 RLINo,	 FIRST CHARACTER

_ C SHOULD BE A °LAt. R FOR "Ri"CK LINE CONTROL,C
f

READ	 (IN*	 IF1)	 (INFO(K)r	 K	 •	 1*	 IW) ^!
90 C

C READ	 IN	 RUN	 SPECTFICATIONS AND	 PARAMETERS.
y C m;

READ	 (IN*	 121	 NUMTON *	NUMITo	 KEY *	ICLWRT,	 ICLPLT*	 NTOTST*	 ICLERR
12	 FORMAT	 (7I10)

95 IF	 (KEY	 .EQ.	 0)	 RFTURN
NUMI	 n NUMION	 + 1

C
C READ	 IN	 BOUNDARY	 SPFCTFICATIONS,
C

100 READ	 (IN,	 13)	 PR * 	 RROUN': p	 R'P*	 THRLEN*	 BMCUR*	 UTIL
13	 FORMAT	 (6F10.5)

C 3
^t

C READ	 IN	 PROPELLANT AND	 PLASMA	 SPECIFICATIONS.	 TEMPERATURES	 (FIRST
C THREE VARIABLESLISTED)	 SHOULD	 BE	 INPUT	 IN ELECTRON—VOLTS.	 THEY WILL

103 C BE CONVERTED TO THE DESIRED UNITS FOR CALCULATION BY THE CODE.
C i

READ	 (IN>	 14)	 TFLIN *	TFLOUTP	 TTHNEU *	CEXSEC,	 UMSION
14	 FORMAT	 (5E10.3)

TELIN	 •	 TFLIN	 *	 !!

110 TELOUT	 n TELQUT * 0
TTHNEU	 n TTHNFU *	 0

CC READ	 IN THE TIME	 M ULTTPLIFR	 AND THE	 X AND	 Z VELOCITY MULTIPLIERS
C (SEE	 ABOVE	 DEFINITTrINS).

f

i4E

} 

r

ORIGINAL PAGE
OF POOR QUALITY ^ ^



83

115 C
READ (INP 151 TT MF MI ► r XVELMVt ZVELMV

15 FORMAT (3F100)
C
C READ TWO CAPDS F OP GRAPH # 80 COLUMNS FOR TITLE AND 40 COLUMNS FACE►

120 C FOR AXIS LABLES.	 (WnRn SIZE DEPENDENT AREA)
C

IW2 • IW t 2
READ (IN t IF?) (1TTTL(K), K n 1p IW2)

C
125 C TEST TO SEE IF T H IS TS A HIGH RESOLUTION UPSTREAM RUN. IF NOTO

C RETURN T4 DRIVER ► IF Snr READ FILE IPATHS AND SET UP BOUNDARY,
C

IF (KEY) 99P Q9 p 30
C

130 C REWIND FILE IPATHS Sn IT CAN BE READ FOR ANOTHER PASS, THEN READ
C THE NUMBER OF ION PATHSIN IPATHS TO BE RFADP THE TOTAL NUMBER OF

ION PATHS MAKING UP THE. F ILE IPATHS (NUMPRE r NUMION FRO M BEFOPF.)r
C THE STATUS nF THE PATHS ANO THE ARRAY (IF PATH COORDINATFS•
C rrrrrrrrrrrrorr•

135 C ***** NOTE ttttt
rrarrrrrrrrrrerr

C	 DUE TO THE nF R TNITION OF NMAX (SEE WRIT(4))i KEY MUST RE LESS

C	 THAN OP FOUAL T9 NMAX FOR A NIGH RESOLUTION UPSTREAM PUN,
CW0	 ASSIGNMENT nF PFVTCE CODE SHOULD RF MODIFIFD $O AS NOT TO

140 CWD	 INTF.RFER WTTH STAGING AND WRIT(5)6 (SEE WRIT M )
C

30	 REWIND IPATHS
READ (IPATHS) NMAYp NUMPRF
READ (IPAT H S) (ISTAT(I), I n lr NMAX)

145	 DO 50 1	 to N4AX
ISAT » ISTAT(T)
READ (T D ATHS) (7ION(I,NN), XION(IPNN) p NN n is ISAT)

50	 CONTINUE
C

150 C DEFINITION OF THE RIGHT P r)UNDARY (USED TO DEFINE ZROUND), PATH FOR
C RIGHT BOUNDA R Y IS DFFINFD BY TRAJECTORY "KEY" OF FILM IPATHS ALONG

C WITH THE PATH STATUS AND ITERATIONS ON THE PATH,
C

ISAT r ISTAT(KEY)
155	 DO 70 NN r le ISAT

7ION(NUM lr NN) n 7I0N(KEYP NN)

XION(HIIMI y NN) r XIDN(KFY' NN)
70	 CONTINUE

ISTAT(NUmll	 r ISAT
160	 NTP(NUM1)	 a ISAT

99 CONTINUE
RETURN
FND
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1	 SUBROUTINE INTT
C
C	 INITTALI7ATION ROUTING * **********
C

5 C PROGRAM DESCRIPTION( PROGRAMMER r WILLIAM DEININGERP 7 - 2 « B1
C REVISIONS; (INCLUDE DATE # INITIALS AND DESCRIBE CHANGE 	 PLEASE **)
C
C	 THIS SUBROUTINE INTTIktLIZFS THE NECESSARY VARIABLESP CALCULATES
C THE COORDINATES OF THE ION, TRAJECTORY EXIT POINTS FROM THE BEAM

10 C EDGE AND PERFORMS THE FIRSt ITERATION. FIRST THE CONSTANTS ARE
C DEFINEn p THEN THE ION EXIT POINTS) THE INITIAL Z AND X POSITIONS
C AND t ZBOUND t ARE CALCULATED. THEN THE TOTAL VELOCITY COMPONENTS
C AND THE ITERATION NUMBER PER PATH ARE INITIALIZED. THE NEXT ION
C POSITIONS ARE CALCULATED AND ALL THE ION PATHS ARE SET TO ACTIVE•

15 C THE INITIAL DENSITIES ARE CALCULATED AND FINALLY THE RESULTS OF THE
C INITIALIZATION AND FIRST ITERATION ARF OUTPUT*
C
C ******** VARIABLE DICTIONARY
C

20 C DNI(I)	 t INITIAL 4ENSITY BETWEEN PATHS (I-1) AND (I)+
C DNOB	 i CONSTANT USED TN CALCULATION OF THE DENSITIESP COMBINATION
C	 OF OUANTITIFS INCLUDING; BMCURP CEXSECP RB P NUMIONP
C	 UTILP 0 AND VELNEU.
C IDEF	 t USED TO DETERMINE WHEN THE X AND Z COORDINATES OF AN ION

25 C	 TRAJECTORY EXIT POINT ARE DEFINED (EVERY OTHER TIME).
C IL	 t INDEX (I) OF LEFT POST ACTIVE PATH•
C IR	 t INDF X (T) OF RIGHT MOST ACTIVE PATH.
C ISAT	 t ISTATII) FnR KFY t TH PATH IN UPSTREAM RUN*
C	 ISTAT(I)	 STATOR tZc PATH I;

30 C	 m 0	 p PATH I5 ACTIVE.
C	 n 1 TO NUMTT r PATH IS NOT AC'TIVEP VALUE IS ITERATION
C	 NUMBER WHERE BOUNDARY WAS CROSS60o
C	 • BHRB	 i PATH IS NOT ACTIVEP ERROR CONDITION.
C NIP(l)	 t TOTAL NUMAFR OF ITERATIONS PERFORMED ON PATH I.

35 C NUM1	 t NUMRFR OF rnN PATHS PLUS ONE (NUMION t 1).
C NUM2	 t TWO TI M ES THE NUMBER OF ION PATHS PLUS ONE (2*NUMION ; 1).
C PIOVz	 t PI OVER ( ►)TVIDED BY) 2.
C RB2	 t BEAM RADIUS SQUARED (RB ** 2).
C R095N	 s 95 PERCENT OF THE BEAM RADIUS DIVIDED BY 2 TIMES THE

40 C	 NUMBER OF I4N PATHS (RD * .95 / (2 * NUMION)).
C SPACER	 t INITIAL DISTANCE BETWEEN PATHS IN UNIFOPM DISTRIBUTION.
C TIME	 t TIMF INTERVAL # DEFINES ITERATION STEP SITE.
C VEL`$ET	 t PRESENT TOTAL VELOCITY BETWEEN PATH UNDER CONSIDERATION
C	 AND NFIGHAORI NG PATH.

45 C VELBOH	 t BOH M VELOCITY.
VELNEU t THER M AL VFLnCITY OF THE NEUTRALS IN THE CHAMBER,

C VELTX(I) t PRESENT TOTAL VELOCITY COMPONENT IN X DIRECTION.
C VELTZ(I) t PRESENT TOTAL VELOCITY COMPONENT IN Z DIRECTION.
C XION(Ivl)t X Cnn p nTNATF. OF ION TRAJECTORY EXIT POINT I.

50 C XION(I * 2)1 FIRST X COQ Q nINATE OF ION AFTER LEAVING ION BEAM ALONG
C	 TRAJECTORY I.
C ZBOUND	 t Z BnUNQARY TO FIGHT OF THRUSTER,
C ECURP	 t PRESENT I INCREMENT i USED TO GET ION EXIT POINTS,
C ZION(Irl)t 7 COnanINATE OF ION TRAJECTORY EXIT POINT I.

55 C ZION(Lr2)1 FIRST 7 COnROINATE OF ION AFTER LEAVING ION BEAM ALONG
C	 TRAJFCTORY I.
C ZMAX	 t MAXIMU M 7 VALUE ON PATH "KEY" OF IPATHSP DEFINES ZBOUND

LiF po i QUALITY
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C	 FOR HTRH RFSOLUTTON UPSTREAM RUN,
C ZPREV	 t PREVTnUS 7 INCRE M ENT, USED TO GET ION EXIT POINTS*

60 C
C *** END OF PRnr p A M OFSCRTPTION AND DICTIONARY 	 **
C
C PROGRAM DECLARATTnN STATFMENTS+
C BLANK COMMON POO LA O rF ARRAYS# TO - INPUT-OUTPUT p PARAM - PAPAMETFRS.

65 C
cn4m nN ZION(41# 151)#XTnN(41r151)#VFLTZ(151)#VELTX(151)r

I	 NIP(41)onN(41#1'il)#DNI(42)#I$TAT(41)
COMMON / 10 / IN#IrUT#INFn(14)#KEY#ICLPLT#ICLWRT#ITITL(28)#

2	 IPATHSsTW#IF1(?)#IF2(4)#ICLERR

	

70	 COMMON / PARAM / N#N(IMIONPNUMITPPBPRBOUNDPRTPTELOUToBMCURPUTILr
3	 TELIN#THRLFN#UNSTnN#VELDON#ZBOUND#IL#IR# PIP (IK#Q#R895N#

G 	 4	 ONORPCEXSECoTTHNEU.TIME#TIMEMU#XVELMU#7VELMUPNSTAG,
5	 NSTGMU#NTnTST*PIov?

C
75 C DEFINE CONSTANTS TNCLL, nING BOHM VELOCITY# THERMAL VELOCITY OF THE

C NEUTRALS AND THE TI M F TNTFRVAL,
C

IL	 1
TR	 NUMInN

	

BO	 N041	 NIIMTON + 1
NOM2	 2 + NLIMTnN + 1
PIOV2	 PT / ?,0
R82	 w RP ** 2
RB95N	 RP * 0,95 / (2,0 * FLOAT(NUMION))

	

@5	 VFLBOH - SORT (TELIN / UMSION)
VELNFU - SORT (TTHNFU / UMSION)
7PREV	 n 000
DNOD	 • (( AM CIIR	 ?) * CEWSEC * (1,0 - UTIL1) / (FLOAT(N(IMION)

h	 * RA * UTTL * VELNEU * (0* ?) * (PI	 2,0))

	

90	 TIME	 - TTMFMU * ROnlJND / (VFLBOH	 FLOAT(NUMIT	 NTOTST))
C
C CALCULATION OF THE X AND 7 COURINATES O F THE ION TRAJECTORY EXIT
C POINTS FROM THE BFAM, GIVES A NON-UNIFORM DISTRIBUTION OF ION EXIT
C POINTS,	 (2 * NUMTON + 11 POINTS ARE CALCULATED# THE EVEN POINTS

96 C ARE USFD AS ION EXIT PnINTS, THE LAST VALUE CALCULATIOP
C (2 * NUMION + 1)TH POINT# DEFINES ZPOUNn.
C

DO 100 11 - 1 ► NUM2
ZCURR	 - O,.5 * (RB95N + ZPREV - SORT (ZPREV ;* 2 + R82)) -

	

100	 7	 095 * RA? / (RP g 5N + ZPREV — SORT(7PREV ** 2 + RB2))
TOFF	 n M rlD (II# 2)
IF (IDEF .E(3. 0)	 CO TO 95

I	 n (II + 1) / 2
XION(Trl)- RP

	105	 71ON(Io1)- THRLFN + ZCURR

	

95	 7PREV	 - ZCL'RQ
100 CONTINUE

ZBnUNn	 - 7InN(N(iMlt 1)
C

110 C IF THIS IS A HTGH REROLUTT^IN UPSTREAM RUN# ZBOUND MUST BE REDEFINFD,
C THE LARGFST ZION() VALUF ON THE KEY I TH PATH IS USED AS ZBOUND,
C

IF (KEY)	 120# 120# 105

	

105	 ZMAX	 ?TON (KFY# 1)

I

I
f
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115	 ISAT	 ISTAT(1)^
DO 110 M w 2i ISAT

IF (?ION(KFY, M) .LE, Z MAX) CO TO 110
ZMAX • 7ION(NUMIr M)

110	 CONTINUE
120	 ZBOUND w 7MAX

C
C IF KEY EQUALS -1, A UNIFORM DENSITY DISTRIBUTION RUN IS DONE,
C THE INTERVAL RFTWFEN THRLFN AND Z80UND IS BROKENINTO NUMION+1
C EQUAL INTERVALS• THE ION PATHS START AT THE ENO OF EACH INTERVAL.

125 C
120 IF (KEY .NF, -1) 00 TO 125

SPACER	 w (7ROUND - THRLEN) / FLOAT(NUM1)
ZION(1o1)	 • THRLEN + SPACEP
DO 122 T n Zr NtIMION

130	 ZION(Irl)	 7ION(I-1i 1) + SPACER
122	 CONTINUE
125 CONTINUE

C
C INITIALIZATION nF THE TOTAL VELOCITY COMPONENTS AND THE TOTAL NUMBER

135 C OF ITERATIONS PFR PATH CnUNTER (NIP(I)), CALCULATE NEXT ION
C POSITIONS AND SET ALL TnN PATHS ACTIVE.
C

DO 130 1 M 1, NUMTON
VELTX(I)	 w VFLRnH	 XVELMU

140	 VELTZ(I)	 s VELBOH	 ZVELMU
NIP(I)	 • 2
XIDN(Ir2)	 w YIMN(T,l) + VELTX(I) * TIME
ZION(1#2)	 . ZION(I,1) + VELTZ(1) * TIME
ISTAT(I)	 n 0

145	 130 CONTINUE
C
C CALCULATION OF THE INITIAL DENSITIES. 	 o
C THE FOLLOWING GETS THE INITIAL DENSITIES BETWEEN THE PATHS.
C

150	 DO 160 I n 1, NUM1
IF (I ,EO, 1) GO TO 152

IF (.T .FO, NI1M1) GO TO 156
VELRET a (SORT (VELTM -1) ** a + VELTZ(I-1) ** 2) +

8	 SORT (VELTX(I) ** 2 + VELTZtI) ** 2)) / 2,0
155	 DNI(I) n DNnR I (f(XION(Ip 1) + XION(I-1, 1)) / 290)

4	 * (7TON(Tr 1) - ZION(I-1p 1)) * VELBET)
GO TO 160

152	 ONI(1)	 n DNnB / (XION(l i 1) * (7ION(l, 1) - THRLEN)
1	 * (SOPT (VFLTX(I) ** 2 + VELTZ(I) ** 2)))

160	 GO TO 160
156	 ONI(NUM1)	 - ONOA / (XION(I-1, 1) * (ZROOND -ZIONfI-1, 111

2	 * (SORT (VELTX(I-1) ** 2 + VELT7(I-1) ** 2)))
160 CONTINUE

C
165 C INITIALIZATION OF THE DENSITY ARPAY

C
DO 180 I n 2, NUM1

DN(I-1, 1)	 fnNl(1) + DNI(I-1)) / 290
180 CONTINUE

170 C
C RETURN TO DRIVFR AFTEP OUTPUTTING HEADING, SCHEMATIC OF THRUSTER,
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C INITIAL DARAMETFR$ AND TWF TWO SETS OF INFORMATION GENERATED BY
C THIS SURROUTINF.
C

175	 TELIN • TELIN 1 0
TELOUT . TEMIT / 0
TTHNFU • TTHNFU / 0
CALL WRIT(1)
TELIN v TELIN * 0

180	 TELOUT w TROUT + 0

TTHNEU m TTHNFU	 0
N	 • 1,
GALL WRIT M
N r Z

185	 CALL WRIT M
RETURN
END

1°

a
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SUBROUTINE CALC

*********** CALCULATION ROUTINE ****^*

PROGRAM DESCRIPTION; PROGRAMMER - WILLIAM DEININGERt 3 	 26 - 01
REVISInN$t (INCLUDE OATFP INITIALS AND DESCRIBE CHANGE 	 PLEASE **)

THIS SUBROUTINE USES THE ARRAYS IN BLANK COMMON
ALONG WITH SUIPOUTINF GALCD (GETS DISPLACEMENT$ TO RIGHT AND LEFT)
TO DETERMINE THE NEXT POSITION OF THE ION BEING CONSIDERED, tHE
DENSITIES AND Pn TFNTIALS TO THE RIGHT AND LEFT OF THE CURRENT PATH
ARE CALCULATED FIRST• THEN THE FORCE ACTING PERPENDICULAR TO THE
CURRENT PATH IS CALCULATED. THE POTENTIALS AND FORCES ACTING
PARALLEL TO THE CORRFNT PATH ARE OBTAINED NEXTo THE TOTAL FARCE
(SUM OF PERPENDICULAR AND PARALLEL COMPONENTS) ACTING ON THE ION IS
CALCULATED AND THEN THE VFLOCiTY COMPONENTS ALONG THE X AND I AXES
ARE OBTAINED. FINALLY THE NEXT ION POSITION IS CALCULATED• SUB-
ROUTINE BOUND IS CALLED TO MAKE SURE THE NEW ION POSITION IS INSIDE
THE BOUNDARIES, THE RFSULTS ARE PRINTED (EVERY "ICLWRT" TIMES) AND
FLAG1 IS CHECKED (SFE CALCD) TO SEE IF INTERSECTIONS WERE FOUND TO
ROTH THE RIGHT ANn THE LEFT, IF INTERSECTIONS WERE FOUND TO BOTH
SIDFS# PATH 119 ITERATED AGAIN.

******** VARIABLE nICTIONARY ********

- --

89

1

5

10

15

20

25

30

35

40

45

50

55

TIME INTi:RVAL DIVIDED BY MASS OF ION (TIME f UMSION)
COSINE nF ANGLE BETWEEN LINE PARALLEL TO PATH AND HORIZONTAL,

oeoacmntem A PATH AND

	

♦.. O N hevur e 1 ,rue	 Q Tn P6(JSII`► r iIF	 l•4G nanGr• .anw	 ...,....,..	 _

HORIznNTAL,
DENSITY nN PATH I AT ITERATION N,
DENSITY TO LEFT SIDE OF CURRENT PATH*
CONSTANT US E D IN THE DENSITY CALCULATIONS (C IN THE
REPORTS).
DENSITY Tn RIGHT SIDE OF CURRENT PATH*
DISPLACEMENT OF ION ALONG PATH.
TOTAL F ARCE ACTING ON ION.
FORCE ACTING, PARALLEL TO THE PATH.
COMPONENT OF FPAR ACTING IN X DIRECTION.
COMPONFNT OF F P AR ACTING IN Z DIRECTION,
FORCE ACTIN PERPENDICULAR TO THE PATH.
COMPONENT OF 'FPFP ACU NG IN X DIRECTION•
COMPONENT nF FPER ACTING IN z DIR ECT ION,
COMPONENT OF F ACTING IN X DIRECTION (FPERX + FPARX).
COMPONENT OF F ACTING IN z DIRECTION (FPERZ + FPARZ).
ALLOWS nn LnnP INDEX * II * TO BE PASSED THROUGH COMMON,
PATH INnEXo
TRAJECTnRY TINE RENORMALIZATION FLAG*

of	 CPNTTNUE ITERATING AS USUAL.
d 1,	 RECALCULATE POSITION* VELOCITY AND DENSITY OF ION

ON PATH 1,
DUMMY VAPTAILF USED AS ONE ARGUMENT IN AN IF STATEMENT.
USED TO DETERMINE WHEN WRITE-435 I! EXECUTED,
(WORKING) NUMAEP OF ITERATIONS ON PRESENT PATH, I* TOTAL
NUMBER Or ITERATIONS FOR THE PRESENT STAGE,
TOTAL NUP$FR nF COM P LETED ITERATIONS ON PATH I.
USED Tn AnD 10 TO I N I AFTER FIRST STAGES
(N STAGF MULTIPLIER)

C	 I

COSPAR t
COSPER 1

DN(IPN)t
DNL	 I
DNOB	 I

DNR	 I
DSPLIP I
F	 I
FPAR	 t
FPAQti	 I
FPA07	 I
FPER	 I
FPERX	 I
FPERZ	 I
F 	 I
F 	 I
I	 t

IFLAG4 I

IFVAR
J
N

N1P(I)
NSTGMU

n
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A"

60 C
C
C
c
C

65 C
C
C
C
C

70 C
C
C
C
C

73 C
C
C
C
C

no C
C
C
C
C

85 C
C
C
C
C

90 C
C

95

100 C
C
C
C
C

105 C
C
C
C
C

110

NSTAG	 1 i	 NSTGMU r 0
NSTAG	 1 8	 NSTGMV w 1

SINOV2 I SINPE'P LIVER (nTVTDED PY) 2*
SINPAR I SINE ?1F ANGLE RETIIEEN LINE PARALLEL TO PATH AND HORIZONTAL.
SINPAR t SINE nF ANCLF RFTWCEN LINE 'PERPENDICULAR TO PATH AND

HO RIZnNTAL,
VCURR I PLASMA POTENTIA( AT CURRENT POINT AN PATH I.
VELBTL I PRESENT TOTAL VELOCITY BETWEEN PATH UNDER CONSIDERATION

AND PATH ON THE LEFT,
VEWR I PRESENT TOTAL VELOCITY BETWEEN P ATH UNDER CONSIDERATION

AND PATH MN THE RIGHT,
VELTOT s CURRENT TOTAL VELOCITY OF YON,
VELTT2 ► CURRENT TOTAL VELOCITY OF ION ALONG PATH 2,
VELTX(T)t	 CURRENT TOTAL VELOCITY COMPONENT IN X DIRECTION,
VF,LTZ(I)I	 C(.IRRBNT TOTAL VELOCITY COMPONENT IN Z DIRECTION#
VELX	 t VELOCITY CONTRTAUTION FOR THIS ITERATION ALONG X DIRECTION,
VELT	 I VELOCITY CONTRTRUTION FOR THIS ITERATION ALONG Z DIRECTION,
VL	 I PLASMA POTENTIAL ON LEFT SIDE OF CURRENT PATHr
VPREV t PLASMA POTFNTTAL AT PREVIOUS POINT ON PATH I,
VA	 i PLASMA POTENTIAL ON RIGHT SIDE OF CURRENT PATH,
XPOSL t X-POSITION (CQORDINATE) HALF WAY ALONG THE PERPENDICULAR

DISPLACEMENT ( DSPL1,) TO THE NIEIGHBORING PATH ON THE LEFT,
XPOSR i X•POSITION (COORDINATE) HALF WAV ALONG THE PERPENDICULAR

DISPLACEMENT (nsPLR) TO IHE NEIGHBORING PATH ON THE RIGHT,
XION ( I#N)t	 C( ► RPENT X POSITION OF ION,
XION(T#N+I)t NEYT (NF0 X POSITION OF ION,
ZION(I#N)f	 CURRENT 2 POSITION OF ION*
Zl0N(Z0N +1 ) t N EXT (;IFW) T POSIT70N OF' ION,

*** END OF PROGRAM DESCRIPTION AND DICTIONARY *+^

PROIRAM DECLARATION STATEMENTS,
BLAN K COMMON FOR LARIF APPAYS P TO s INPUT ,-OUTPUT# PARAM n PARAMETERS,

COMMON ZION ( 41PI11 ) #XInN ( 41t151)PVELTZ ( 151)#VELTX(151)t
1	 NIP(41)rnN(41t131)#DNI(42)#ISTAT(41)
COMMON / IO / 1NPIOUTtINFO(14)PKEY#ICLPLTPICLWRTPITITL(28)#

2	 IPATHS#IW ► IF1(2)t>;F2(4)p%CLERR
COMMON / PARAM / NtNUMIONtNUrSITPROPRBOUND#RTP TELOUT#BMCURPUTILP

3	 TEL IN#THRLEN#UMSTON ► VELBOH,Z80UNDPIL p IRP PI; BKpOpRB9ONt
4	 ONOBPCEXSECPTTHNEVPTIMEPTIMEMUtXVELMUPZVELMUPNSTAGt
5	 NSTGMUPNTnTST ► PIOV2

DEFINE CONSTANTS# BEGIN ITERATION OF EACH PATH# TEST FOR PATH ONE
RENOPMALIZATION AND SFT THE CURRENT "WORKING" NUMS6R OF ITERATIONS
ON PATH I, MAKE SURE THE TOTAL NUMBER OF ITERATITINS PERFORMED ON
PATH I IS NOT Tnn LARCF FOR THE CURRENT STAGE AND SEE IF CURRENT
PATH IS ACTIVE,

NOTES ANY GIIANTTTIFS OPERATED ON BY "AINT" AND MULTIPLIED
OR DIVIDED RY ,I TIMES SOME POWER OF TEN# ARE BEING
TRUNCATED Tn AVOID COMPUTER ROUND-OFF ERROR,

C	 HINT (TIMF / (UMSION * 1,0E+15))
C	 n C * I,OF+15
NSTGMU n 0
IF (NSTAG ,GT, 1) NSTGMU • 1
IFLAG4 n 0
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115 DO 450 It	 NUMION
I	 of	 It
IF	 (I	 sFO * 	2)	 I F LAC4	 .	 1
IF	 (NIP(1)	 * 6T * 	((NSTAG * NUMIT)	 -	 ((NSTAG - 1)	 *	 10)))

I	 IFLA64 n 0
120 300	 N w NIP(I)	 - (NSTAO - 1) *	 (NUMIT - 10)

IF	 (NIP(I)	 ,GT * 	((NSTAG * NUMIT)	 -	 ((NSTAG - 1)	 * 10)))
2	 GO TO 450

IF	 (ISTAT(I)	 ,NF,	 0)	 GO	 TO 450
C

125 C GET THE DSPLACFMFNTS TO THE RIGHT AND LEFT, CHECK THE ERROR
C FLAG ► 	 BOUNDA R Y INTFRSFCTInN FLAG# MAKE SURE PARTICLE TRAJECTORY
C PATHS ARE SMOOTH AND iCALCULATF THE NEEDED TRIGONOMETRIC FUNCTIONS
C OF THETAP*
C

130 CALL CAM	 (To	 IPLAG1r	 IFLA62P IFLAG3P DSPLR # DSPLL# THETAP)
IF	 (IFLAG?	 ,GT,	 0)	 GO TO 499
IF	 (IFLAG3	 *LF,	 0	 * OR *	 IFLAG3	 * GE,	 5)	 AO TO 497
IF	 (IFLAG3	 * F44,	 4)	 GO TO 460
COSPAR	 w AINT	 (COS	 (PIOV2 - THETAP) * 1.0E+03)

135 CQSPER	 -	 AINT	 (ro,	(THETAP)	 *	 1.0E+03)
SINPAR	 M	 HINT	 (SIN	 (PIOV.? - THETAP)	 *	 I*OF+03)
SINPFR	 w	 AINT	 (SIN	 (THETAP)	 *	 1.0E+03)
COSPAR	 n	 COSPAR	 /	 1*0E+03
COSPER	 . COSPER	 I	 1*0E+03

140 $INPAR	 r SINPAD / li06+01

SIN P ER 	 n 	 SINPER	 1	 1,0E+03
C
C CALCULATION nP THE LEF T AND RIGHT X •P g SITIONS HALF WAY ALONG THE
C PERPENDICULAR DISPLACFMFN'r$ TO THE NEIGHBORING PATHS

145 C (X+-COORDINATFS	 AT CFNTER	 OF DENSITY CFLLS) *	"IF STATEMENT"
C DFTERMINFS T H E	 DIRECTION OF PATH PROPAGATION*
C

SINQV2	 .	 SINPFR	 1	 2*0
IF	 (ZION(T,N)	 -	 71ON(IpN -1))	 314s	 310P	 318

150 C
$10	 XPOSL	 -	 XION(IPN)

XPOSR	 n 	 XTON(T#N)
GO TO 320

C
155 314	 XPOSL	 »	 XION(I,N)	 - DSPLL	 * SINnV2

XPOSR	 m	 XInN(I#N)	 + DSPLR	 *	 SINOV2
GO TO 3PO

C
318	 XPnSL n 	 XTON(I,N)	 + DSPLL * SINOV2

140 XPOSR	 -	 XION(T,N)	 -r DSPLR	 *	 SINOV2
C
C CALCULATION nP THE TnTAL	 VELOCITIES BETWEEN THE PRESENT PATH
C AND THE	 PATHS TO THE RIGHT AND LEFT.
C

165 320	 IF	 (I	 .ca.	 1)	 on to 322
VEL O TL	 n 	 (SPAT	 (VELTX(I-1)	 **	 2 +	 VELTZ(I-1)	 **	 2)

3	 +	 SORT	 (VISLTX(T)	 **	 2	 +	 VELTI(x)	 **	 2))	 /	 290
IF	 (T	 * FO,	 NUMION)	 GO	 TO	 323

321	 VELBTR w	 (SORT	 (VFLTX(T)	 **	 2 + VELTZ(I)	 **	 2)	 +

170 4	 SQRT(VELTX(I+1)	 **	 2	 +	 VELTZ(I+1)	 4*	 2))	 /	 2,0
GO	 On 325

a
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39.2	 VELBTL M SORT (VELTX(T) ** 2 + VELTZ(I) ** 2)
GO TO 3?1

323	 VELRTR • SORT (VELTX(I) * 2 + VELTZ(I)	 21
175 C

C	 CALCULATION OF THE nENSTTIES TO THE RIGHT AND-LEFT ► AND THE
C	 AVERAGE DENSTTY AT THE CURRENT POINT, MAKE SURE DNL AND DNR
C	 ARE NOT ZERO.
C

100	 323	 DNL	 n AINT (ONO q / (XPOSL * DSPLL * VELOTL))
DNR	 n AINT (ONOB / (XPOSR * OSPLR * VELOTR))
DN(I p N) » (PNL + DNR) / 2,0
IF (DNL ,LE, 0 * 0 .OR * ONR ,LE, 0,0) GO TO 495

C
185 C WHEN A BOUNDARY IS INTERSECTED ON THE LEFT OR RIGHT# THE DISPLACE n

C MENTS HAVE TO AS CHECKFD TO MAKE SURE NO 9OU QARY REPULSION EXISTS.
C IF THE 02SPLACFMENT F ROM THE CURRENT PATH TO THE BOUNDARY IS LESS
C THEN THE DISPLACE M ENT BETWEEN THE CURRENT PATH AND THE NEIGHBORING
C PATH ► THE PERPENDICULAR FORCE IS ZEROED ► OTHERWISE THE PATH

190 C PROPAGATES AS USUAL,
C

IF (IFLAG3 ,EO * 1) GO TO 340
IF (VELT7(I) .EO, 060)	 GO TO 340

IF (IFLAG I * F0, 2) GO TO 328
195	 IF (IFLAG3 ,EO * 3) GO TO 335

GO T4 497
329	 IF (DSPLL *LE, DSPLR)	 GO TO 330

GO Tn 340
330	 FPERX n 0,0

200	 FPERZ n 0*0
GO TO 370

335	 IF (DSPLR ,LF, DSPLL) GO TO 330
r

C	 CALCULATION OF THE POTENTIALS TO THE RIGHT AND LEFT, THE FORCE#
205 C	 AND ITS COMPONENTS ► ACTING PERPENDICULAR TO THE PATH IS THEN

C	 CALCULATED USING THE SMALLER OF THE TWO PERPENDICULAR DIS
C	 PLACEMENTS AS THE 4TVISOR*
C

340	 VL	 AINT ((ALOG (DNL / ONI(I)) * TELOUT / 0 )
210	 5	 1*0E+04)

VR	 n AINT ((ALOG (DNR / DNI(I+1)) * TELOUT / 0)
h	 1,OF.+04)

VL	 p VL I 1 ,OF.+04
VR	 n VR / 1*0E+04

215	 IF (DSPLL ,LE* DSPLR) GO TO 345
FPER n ATNT ((0 * (VL - VR) / DSPLR) * 160E+20)
GO TO 150

345	 FPER	 n AINT (10 * (VL - VR) / DSPLL) * 3,0E+20)
350	 FPER	 • FPER / 160E+20

220	 FPERX	 • FPER * SINPER
FPERZ	 n FPER * COSPER

C
C	 CALCULATION OF THE POTENTIALS AND THE FORCE AND ITS COMPONENTS
C	 ACTING PARALLEL T4 THE PATH,

225 C
370	 VCURR	 n ALOG (DN(IpN) / DN(Ipl)) * TELOUT / 0

VPREV	 n ALDG (ON(T ► N-1) / DN(I p 2.)) * TELOUT / 0
DSPLIP • SORT ((XInN(IPN) 	 XION(IrN-1)) ** 2 + (ZION(IPN)
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7	 7I ON ( I 0-11 ) * * 2)
230 FPAR	 AINT	 ((O 11	 (VPREV - VCURR)	 /	 DSPLIP)	 I90E+20)

FPAR	 FPAP	 / I.OF+20
FPARX	 a FPAR * SINPAR
FPARZ	 * FPAR * COSPAR

C
235 C CALCULATION OF	 TOTAL FORCE AND COMPONENTS.

C
FX	 n FPARX	 + FPERX
FZ	 • FPAR?	 + FPERZ
F	 n 	 SORT	 (FY	 **	 2	 + FZ	 ** 2)

240 C
C CALCULATION ng	VELOCITY COMPONENTS FOR 	 THIS	 ITERATION+	 TOTAL
C VELOCITY COM OnNFNTS	 AND TOTAL VELOCITY FOR PATH I.
C

VELX	 n FX * C
245 VELZ	 n 	 F 7 * C

390	 VELTX(I) n 	 VELTX(T)	 +	 VELX
VELTZ(I) n 	VFLT7(I)	 +	 VELZ
VELTOT	 n 	 SORT	 (VELTX(I)	 **	 2	 +	 VELT7(I)	 **	 2)

C
250 C THIS SECTION MnnTFIFt THE VELOCITY ON THE FIRST PATH SO THAT ITS

C NORMALIZED WITH RFSPFCT TO 142 TIMES THE VELOCITY ON THE SECOND
C PATH	 IN TERMS nF MAGNITUDE•	 THE DIRECTION OF THE TRAJECTORY IS
C LEFT UNCHANGFG,	 THIS NnRMALIZATION ONLY OCCURS WHEN THE 	 VELOCITY
C ON PATH 1	 IS MnRG THAN 20 PRECENT GREATER THEN 	 THE VELOCITY ON

255 C PATH 29	 THE VALUE DF 20	 PERCENT IS ARRITARY AND IS	 RASED ON
C WHAT GIVES THE	 SMOOTHEST TRAJECTORIES.	 THIS	 PREVENTS PATH ONE
C FROM ACCELERATING TO FAST,
C

IF	 (I	 +EO.	 1	 ,AND.	 IFLAG4	 .EO.	 1)	 GO TO	 398
260 GO TO 410

398	 VELTT2	 n 	 SORT	 (VELTX(I+1)	 **	 2	 + VELTZ(I+1)	 **	 2)	 *	 1.2
IF	 (VELTOT - VFlTT2)	 410P	 410 p	400

400	 VELTX(T)	 n 	 (VFLTX(I)	 *	 VELTT2)	 /	 VELTOT
VELTZ(I)	 n 	 (VFLTZ(I)	 *	 VELTT2)	 /	 VELTOT

265 VELTOT	 n 	 SORT	 (VELTX(I)	 **	 2	 +	 VELTZ(I)	 **	 2)
C
C CALCULATION nF	 THE NFXT	 ION	 POSITION	 (USES	 LINFAR	 APPROXIMATION)y
C MAKE SURF	 ITS	 INSInF THE	 BOUNDARIES.
C

270 410	 XION(IrN+l)	 n 	 VELTx(I)	 *	 TIME	 +	 XION(I,N)
ZION(I P N+1)	 m	 VFLT7(I)	 *	 TIME	 +	 ZION(I#N)
CALL	 BnUNn	 (7ION(IrN+1)t	 XION(I,N+I) p	I)

C
C WRITE	 THE RESULTS	 EVERY "ICLWRT"	 TIMES.	 IF	 ISTAT(I)	 IS NON-ZERO#

275 C WRITE	 THE RESULTS.	 INCREASE NIP(I)	 BY ONE	 FOR NEXT	 PASS.
C IF PATH	 I REACHED A	 BOUNDARY OH THIS	 ITERATION#	 SET	 NIP(I)	 TO	 ITS
C FINAL VALUE.	 IF	 TO	 MANY ITERATIONS HAVE OCCURED SET ISTAT(I) 	 • No
C TEST Tr.	 SEE	 IF	 PATH	 I NEEDS	 TO OF	 ITERATED AGAIN (TEST IFLAGI) 	 AND
C CHECK TO SEE	 TF	 TTFRATTON LIMIT HAS BEEN REACHED.	 CHECK	 IFLAG4

280 C FOR RENORMAL17ATION OF	 PATH 1.
C

420	 IF	 (rCLWPT	 .LFt	 0)	 GO TD 440
J	 MOD	 (NIP(I)i	 ICLWRT)
IF	 (ISTAT(I)	 •NF.	 0)	 GO	 TO	 425

285 IF	 (J	 .NF,	 O1	 r,O	 TO	 440
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425	 WRITE (InUT ► 435) Is No NIP(I) ► ISTAT(I) ► ZION(I ► Ntl) ►
8	 XION('T ► N+1) ► VELTZ(I) ► VELTX(I) ► VELTOT# DN(I ► N)

435	 FORMAT (1X# I3 ► 1X# 3(I4 ► 2X) ► 6(E13,6 ► 2X11
440	 NIP(I) - NIPM + 1

290	 IF (ISTAT M .NE, 0) NIP(I)	 NIP(I) • 2
IFVAR v (NSTAG * NUMIT + 1) 	 ((NSTAG .- 1)	 9)
IF (NIP(I) .GT, IFVAR) 	 ISTAT(I) n N
it (I ,EQ, 1 ,AND,) IFLA64 9E0.1) GO TO 445
YF (IFL.AG1 ,FQ, 0) GO TO 300

295	 IF (IFLAG4 ,EQ, 0) GO TO 450
I r 1
IF (ISTAT(I) •NE, 0)	 GO TO 445
NIP(I) • NIP(I)	 1
GO TO 300

300	 445	 IFLA64 a 0
450 CONTINUE

NSTGMU . 1
RETURN

C
303 C IF A BOUNDARY TS INTERSECTED ON BOTH SIDE$ OF THE PATH (TO THE RIGHT

C AND LEFT) ALL FORCES ARE SET EQUAL TO ZERO CAUSING THE X AND Z
C VELOCITY CONTRIBUTIONS FOR THIS ITERATION TO BE ZERO, THE PATH
C PROPAGATES LINEARLY, THE DENSITY IS TREATED AS A CONSTANT.
C

310	 460 VELX n 00
VELZ • 0.0
DN(I#N) • DN(I#N-1)
GO TO 390

C
315 C ******* ERROR FXTTS AND ERROR CONDITIONS***+^*#

C
C	 - ERROR 527 - TFLAG? TMPROPERLY DEFINED# FATAL,
C
C	 — ERROR 530 — DNL OR DNR EQUAL ZERO OR LESS THEN :FRO, CAUSES

320 C	 VL OR VR TO BLOW UP) FATAL.
C

495 IFLAG2 - 325
WRITE (IOUT# 530)	 IFLAGl# IFLAG2P IFLAG3 ► I ► No DNL ► DNR ►

9	 DSPLL# DSPLR, XPDSL# XPOSR
325	 GO TO 499

497 WRITE (TOUT# 927)	 IFLAGlr IFLAG2 ► IFLAG3 ► I ► N
499 ISTAT(I) n 8880

GO TO 420
527 FORMAT (/ ► 11XP23H****** ERROR 527 ****** ► / ► / ► 11X ►

330	 1	 33HIFLAG3 IMPRrPERLY DEFINED (FATAL),/#11X#
2	 27HCALLED FR71 SUBROUTINE CALL#/,11XPBHIFLAGI wiI5,
3	 10H IFLAG2 nil5 p lOH IFLAG3 - ► 25#5H I 9 #I5#5H N n #I5)

530 FORMAT (/ ► 11X ► 23H****r* ERROR 530 ****** ► / ► / ► 11X ►
1	 45HDNL OR DNR LESS THEN OR EQUAL TO ZERO (FATAL) ► / ► 11X#

335	 2	 27HCALLFO FROM SUBROUTINE CALC ► / ► 11X#
3	 BHIFLAGI -,T5,910H IFLAG2 n#I5s10H IFLAG3 • ► I5#5H I no
4	 I5p5P N n iI5#7H DNL n #E10930H DNR n #El0.3 ► / ► 11X#
5	 9H DS P LL • P F10.3p9H DSPLR n #E10 0 0H XPDSL •#E10.3#
6	 9H XPOSR •#E10,3)

340	 FND
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SUBROUTINE CALCD (I# IFLAGI ► IFLAGZ # IFLA63 # DSPLR # DSPLL # THFTAP)

******* CALCULATION OF THE DISPLACEMENTS TO THE RIGHT AND LEFT *******

PROGRAM DESCRIPTION t PRnGRAMER - WILLIAM DEININGERi 5 - 19 - 01
REVISIONS t (INCLUDE DATE# INITIALS AND DESCRIDE CHANGE **PLFASE**)

THIS SUBROUTTNF. USES THE ARRAYS ZION()# XION() AND NIP(I) TO GET
THE DISPLACEMENTS FROM THE CURRENT PATH TO THE LEFT AND RIGHT HAND
PATHS * THE DISPLACEMENT TO THE LEFT IS DENOTED " DSPLL" AND TO THE
RIGHT "DSPLR" * FIRST THE PERPENDICULAR IS OBTAINED (SLOPED)# THEN
THE LINE FORMEn BY THE FINAL TWO POINTS OF THE PATH ON THE LEFT
IS OBTAINED (SLOPEL)# AND FINALLY THE X AND Z INTERSECTIONS# TO
THE LOFT # ARE CALCULATFO (XINTLr ZINTL). TESTS ARE RUN TO MAKE SURE
THE INTERSECTION POINTS ARE "GOOD" AND TO DETERMINE IF LINEAR
WPAPOLATION W ►i S USED, THE DISPLACEMENT TO THE LEFT HAND PATH
(DSPLL) IS THEN CALCULATED * LIKEWISE FOR THE RIGHT HAND
DISPLACEMENT (DSPLR). FUNCTION (SUBROUTINE) DS IS CALLED TO GET
THE DISPLACEMENTS FOR THE SPECIAL CASES# EGt AOUND^ARIES ON THE
RIGHT OR LEFT.

---IFLAGI IS USED TO DETERMINE IF INTERSECTIONS WERE FOUND TO BOTH
THE LEFT AND THE RIGHT WITHOUT USING LINEAR EXTRAPOLATION#

IFLAGI	 m 0 LINEAR EXTRAPOLATION NOT USED.
IFLAGI	 - 1 LINEAR EXTRAPOLATION USED ON	 LEFT*
IFLAGI	 . 2 LINEAR EXTRAPOLATION USED ON	 RIGHT*
IFLAGI	 n 3 LINEAR EXTRAPOLATION USED IN	 90TH CASES*

IF	 LINEAR	 EXTRAPOLATION IS	 NOT USED#	 THE	 CURRENT PATH NEEDS	 TO BE
ITERATED AGAIN SUE TO	 ITS	 SMALLER ACCELERATION.

---IFLAG2 IS THE FRROR FLAG AND TELLS WHETHER OR NOT THE NEIGHBORING
PATHS ARE ACTIVE.

IFLAG2 n 0 NO ERROR$
IFLAG2 > FRROR EXISTS#	 VALUE REFERENCES PROGRAM ^

STATEMENT WHERE	 ERROR CONDITION ORGINATEDo
IFLAG2 0 -1 PATH TO LEFT IS NOT ACTIVE.
IFLAG2 - - 7 PATH TO RIGHT	 IS	 NnT ACTIVE.
IFLAG2 n NFITHER PATH (RIGHT OR LEFT)	 IS ACTIVE

---IFLAG3	 IS USED TO DFTERMINE	 WHEN THERE	 IS A	 BOUNDARY ON	 THE RIGHT
OR	 LEFT	 (OR BOTH)	 nF THE CURRENT PATH*

IFLAG3 - 1 NO 90UNDARY INTERSFCTED BY THE 	 PFRPENDICULAR TO
THE CURRENT	 PATH ON EITHER SIDE*

IFLAG3 n 2 BnUNDARY INTERSECTED ON LEFT.
IFLAG3 • 3 ROUNOARY INTERSECTED ON RIGHT*
IFLAG3 - 4 BOUNDARY INTERSECTED ON BOTH THE LEFT AND RIGHT

i

I

e

50

55

THIS SUBROUTINE RETURNS t IFLAGI, IFLAG2, IFLAG3# DSPLL# DSPLR#
AND THETAP.

***** VARIAALE DTCTIONARY *****

DELTAXt OIFFERENCF BFTWEEN TWOX COORDINATES ON CURRENT PATH.
OELTAZt DIFFERENCE NETWEEN TWO Z COORDINATES ON CURRENT PATH.
DELTLX= DIFFERFNCE BFTWEFN TWO X COORDINATES ON LEFT PATH*
DELTLZt DIFFERENCE RETWFEN TWO Z COORDINATES ON LEFT PATH*
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C DELTRXt	 DIFFERFNCE BETWEEN TWO X COORDINATES ON RIGHT PATH.
C DELTRZt	 DIFFERFNCE BETWEEN TWO Z COORDINATES ON RIGHT PATH,

60 C DSPLL t	 SEE ABOVE COMMENTS.
C DSPLR	 t	 SEE ABOVE COMMENTS•
C DUMMYP# DUMMYLi	 Dt,MMYR	 t	 DUMMY VARIABLES USED	 IN' THE CALCULATION
C OF THE	 INTERCEPTS,	 CONTAIN	 INTERMEDIATE RESULTS,
C IFLAG11	 SEE ABOVE COMMENTS.

65 C IFLAG21	 SEE ABOVE COMMENTS+
C IFLAG3t	 SEE ABOVE COMMENTS*
C TFVAR	 t	 DUMMY VARIABLE USED AS AN ARGUMENT IN AN IF TiTATEMENT.
C NIP(I)t	 TOTAL NUMBER	 OF COMPLETED ITERATIONS ON PATH I,
C N	 ;	 (WORKING,)	 NUMSFR OF	 ITFRATIONS	 ON PRESENT PATNP	 TOTAL

70 C NUMBER OF ITERATIONS FOR PRESENT STAGE*
C NL	 t	 (WORKING,)	 NUMBER OF ITERATIONS ON LEFT HAND PATH.
C NLM1	 t	 NL	 MINUS	 1	 (Nt	 - 1) p	USED FOR	 INDEXING LEFT HAND PATH,

C NR	 =	 (WORKING)	 NUMBER OF	 ITERATIONS ON RIGHT HAND PATH,
C NRM1	 r NR	 MINUS	 1	 (NR - 1),	 USED FOR INDEXING: nrGHT HAND	 PATH,

73 C SLOPELt	 SLOPE OF	 PATH ON LEFT BETWEEN TWO "WORKING" POINTS,

C SLOPEPt	 SLOPE OF	 LINE	 PERPENDICULAR TO CURRENT PATH AT ENDPOINT,
C SLOPERt	 SLOPE OF	 PATH	 ON RIGHT BETWEEN TWO "WORKING" POINTS,
C THETAPI	 ANGLE BETWEEN	 LINF	 WITH SLOPE "SLOPED" AND HORIZONTAL,
C XINTL	 t	 X	 INTEPSECTTONi,	 TO	 LEFTr	 OF LINES	 "SLOPED" AND "SLOPEL",

BO C XINTR	 t	 X	 INTERSECTION#	 TO RIGHTP	 OF	 LINES "SLOPEP ► '	 AND "SLOPER",
C ZINTL	 t	 Z	 INTERSECTIONP	 TOLEFTP	 OF LINES "SLOPEP" AND "SLOPEL",
C ZINTR	 :	 Z	 INTERSFCTInN ► 	 TO RIGHTP	 OF LINES "SLOPEP" AND "SLOPER",
C
C 0*	 END OF pROGRAM DFSCRIPTION AND DICTIONARY	 ***

85 C
C PROGRAM DECLARATION STATEMENTS,
C BLANK COMMON FOR	 LARGE,	 ARRAYS#	 10 .	 INPUT-OUTPUTP	 PARAM • PARAMETERS,

G
COMMON	 ZION(41# 151)#XION (41#151))VELTZ(151)pVELTX(1511

90 IoNIP(41 ),DN(41r151),DNT(42)#ISTAT(41)
COMMCAI	 /	 10 /	 IN, IOLIT,TNFO(14 )#KEYIICLPLTPICLWRT ► ITITL(28)r

2	 IPATHSrIWpIF1(2)jTF2(4)pICLERR
COMMON	 / PARAM	 / NPNUMTONPNUMITPRB ► RBOUNDPRTPTELOUTPRMCUR)UTILP

3	 TELINPTHRLENsUMSION,VELBOHPZBOUND.ILPIRPPIPBKPOPR895NP
95 4	 DNOBPCEXSECoTTHNEtIyTIMEPTIMEMU ,XVELMUPZVELMUPNSTAGP

5	 NSTGMUPNTOTST#PIOV2
C
C INITIALIZE	 NECESSARY VARIABLES	 (FLAGS),
C

100 IFLAGI	 • 0
IFLAG2	 n 0
TFLAG3	 •	 0

C
C CALCULATE SLOPE OF LINE PERPENDICULAR TO THE CURRENT	 PATH AT END-

105 C POINT OF CURRENT	 PATH	 (NEGATIVE RECIPROCAL OF	 SLOPE BETWEEN	 LAST
C TWO POINTS ON CURRENT	 PATH)	 AND ANGLE THIS LINE MAKES WITH HORIZONTAL
C

DELTAZ	 n 	 ZION(T#N«1) 	- ZION(IpN)
DELTAX	 n 	 XION(IPN)	 -- XION(IPN-1)

110 IF	 (DELTAX	 ,EO,	 0.01	 DELTAX	 1,0E-16
SLOPEP n DELTA? /	 DELTAX
THETAP	 * ATAN(SLnPEP)
DUMMYP	 •	 XION(IPN)	 - SLOPE p	*	 ZION(IsN)
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TWO SUBSECTIONS FOLLOW) TH6 FIRST SUBSECTION OBTAINS THE INTER-
SECTION POINT AND DISPLACEMENT TO THE LEFT# THE SECOND SUBSECTION
OBTAINS THE INTERSECTION POINT AND DISPLACEMENT TO THE RIGHT#

CALCULATIONS FOR LEFT,
rn.rwrww--a-.-r--ww rr--re-w

CHECK TO SEE TF THIS IS THE FIRST ACTIVE PATH AND INITIALIZE
THE COUNTER FOR THE LEFT HAND PATH. THE FIRST ACTIVE,PATH MUST
BE HANDLED AS A SPECIAL CASE (IL n 1). CHECK TO SEE I'F LEFT NAND
PATH IS ACTIVE.

IF (I - TL) 492) 460# 307
307	 NL	 NIP(I-1) - (NSTAG - 1) * (NUMIT - 9)

NLMI	 NL - 1
IF (ISTAT(I-1)) 470# 311# 4r0

CALCULATE SLOPE OF PATH ON LEFT BETWEEN FINAL TWO (OR TWO
"WORKING") POINTS.

311 DELTLZ n 7ION(I-l#NL) - ZION(I-1#NLr,1)
DELTLX • XION(I-1#NL) - XION(I-1#NLM1)
IF (DELTLZ .F4. 0.0) DCLTLZ r 1,0E-16
SLOPEL a nELTLX /'DELTLZ

MAKE SURE INTERSECTION, CAN BE FOUND# THE SLOPES OF THE TWO LINES
CAN NOT BE UHF SAME. STATEMENTS 312 AND THOSE RIGHT ,BEI,OWP
BACKSTEP THE LEFT HAND PATH ONE ITERATION# ALLOWING A NEW SLOPE
To °E CALCULATED. lF R ACKSTEPPING IS NOT NEEDED/ THE
INTERSECTION POINTS ARE CALCULATED.

IF (SLOPE D - SLOPEL) 313# 312# 313
312	 IF (IFLAG2 .EO * 312) GO TO 481

IF (IFLAG2 .EO. 311) GO TO 401
NL	 n NL - I
IF (NL .F4. 1) GO TO 480
NLM1 « NL - 1
GO TO 311

313	 DUMMYL a XION(I-1#NL) - SLOPEL * ZION(I-1#NL)
ZINTL a (DUMMYL - DUMMYP) I (SLOPEP - SLOPEL)
XINTL n SLOPEP * ZINTL + DUMMYP

TEST TO SEE IF TNTFPSFCTION POINTS ARE GOOD, FIRST FIND DIRECTION
OF PATH PROPGATIONP 320 IMPLIES NEGITIVE Z DIRECTION# 325 IMPLIES
POSITIVE Z DIRECTION# 330 IMPLIES VERTICAL (UP OR DOWN) DIRECTION.
THEN TESTS ARE RUN TO SEE IF THE INTERSECTIONS ARE "GOOD"# IF
LINEAR EXTRAPOLATION IS USED (SETS IFLAGI) ► OR IF BACK STEPPING
IS NEEDED, THESE TFSTS ARE RUN IN ALL CASES.

IF (ZION(1-1 NL) - IION(I-1#NLMl)) 320 ► 330# 325

320	 IF (ZION(I-10L) .LE. ZINTL .AND. ZINTL •LE.
6	 ZION(I-1001)) GO TO 355

IF (ZINTL .LT. ZION(I-1#NL)) GO TO 353
322	 IF (ZINTL .GT. ZInN(I-1rNLM1)) GO TO 312

IFLAG2 • 322
GO TO 486
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325	 IF (ZION(T-I#NLM1) .LE. ZINTL ,AND. ZINTL .LE.
7	 ZION(I-I#NL)) GO TO $35

175	 IF (ZINTL .GT. ZION(I-1#NL)) GO TO 353
!	 327	 IF (ZINTL .LT# 7ION(I »1#NL Jl,2)) GO TO 312

IFLAG2 * 327
GO TO 486

C

	

160 C	 WHEN STATEMENT 330 IS CALLED WE HAVE TO TEST THE X COMPONENTS

	

C	 TO FIND THE X DIRECTION OF PROPAGATION ► THEN SEE IF THE

	

C	 INTERSECTIONS ARE "GOn0" ► IF LINEAR EXTRAPOLATION IS USED#

	

C	 OR IF BACK STEPPING IS NEEDED.
C

185	 330	 IF (XIONIT-10 0 - XIONtI-1#NLM1)) 340 # 484# 345

	

Y4	

C

	

340	 IF (XION(I-1rNL) .LE. XINTL .AND. XINTL .LE.
6	 XInN(I-1,NLM1)) GO TO 355

IF (XINTL .LT. XION(I-1#NL)) GO TO 353
190	 342	 IF (XINTL .0% XION(1-1)NLM1)) GO TO 312

IFLAG2 a 342
GO TO 486

C
f	 345	 IF (XtnN(t-1 # NLM1) .LE. XINTL ,AND. XINTL .LE.

195	 9	 XION(T-1 ► NL)) GO TO 355
If (XINTL •GT. XION(I-1 ► NL)) GO TO 353

	

347	 IF (XINTL .LT. XION(I—I#NLM1)) GO TO 312
IFLAGI n 347
GO TO 486

200 C

	

C	 STATEMENT 350 RFSETS IFLAG2 IF STATEMENT 404 IS REFERENCED.

	

C	 STATEMENT 353 SETS IFLAGI# STATEMENT 35,5 CALCULATES THE

	

C	 DISPLACEMENT TO THE LEFT. MAKE SURE IFLAG2 IS SET PROPERLY.
C

205	 350	 IFLAG2 • 0
GO TO 355

	

353	 IFLAGI a IFLAGI + 1

	

355	 DSPLL - SORT ((XINTL - XION(I#N)) ** 2 +
1	 (tINTL — ZION(I,N)) ** 2)

210	 IF (IFLAG2 .GT. 0) IFLAG2 	 IFLAG2 - 312
C
C CALCULATIONS FOR RIGHT.

i C ruw r-rrrrssrrrsr-rsrsrr r
C

	

215 C	 CHECK TO SEE IF THIS IS THE LAST ACTIVE PATH AND INITIALIZE THE

	

C	 COUNTER FOR THE RIGHT HAND PATH, THE LAST ACTIVE PATH MUST

	

C	 BE HANDLED AS A SPECIAL CASE (IR • NUMION). CHECK TO SEE IF THE

	

C	 LEFT HAND PATH IS ACTIVE.
C

220	 358	 IF (IR - 1) 497s 461# 359

	

f	 359	 NP	 NIP(I+11 - (NSTAG - 1) * (NUMIT - 9)
NRMI •^ NR - 1
IF (ISTAT(I+1)) 472r 361# 472

C

	

i`	 225 C	 CALCULATE SLOPE ns PATH ON RIGHT BETWEEN FINAL TWO (OR TWO

	

C	 "WORKING") POINTS.

	

C 361	 DELTRZ n 7ION(T+1 # NR) - ZION(I+1#NRM1)

I

I
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DELTRX " XION(I+Y#Nrt)	 XION(I+1#NRMI)
230 IF	 (DELTRZ	 # EO#	 04)	 DELTRZ w 1.OE-16

SLOPER . DFLTRX I DELTRZ
C
C MAKE SURE INTFRSECTIONS CAN RE FOUND ► 	 THE SLOPES OF THE TWO LINES
C CAN NOT BE THE SAME * 	STATEMENTS 362 BACKSTEP THE RIGHT HAND PATH

235 C ONE ITERATION#	 ALLnWING A NEW SLOPE TO RE CALCULATED	 IF
C BACKSTEPPING IS NOT NFFDEDP 	 THE INTERSECTION POINTS APE
C CALCULATED.
C

IF	 (SLOPEn - SLOPER)	 363 ► 362#	 363
240 362	 IF	 (IFLAG2	 ,GE.	 359	 .AND.	 IFLAG2	 .LE.	 362)	 GO TO 483

NR n NR - 1
IF	 (NR	 .00o	 1)	 GO TO 482
NRMI • Nk - I
GO TO 361

045 363	 DUMMYR	 r XI(JN(I+1#NR)	 - S).OPER *	 ZION(I+I#NP)
ZINTR w	 (111MMYR	 - DUMMYP)	 /	 (SLOPEP - SLOPER)
XINTR p	 g LOPEP	 ZINTR + DUMMYP

C TEST TO SEE 1 9 INTERSECTION POINTS ARE GOOD. 	 FRST FIND DIRECTION

Z50 C OF PATH PPUPAGATInN#	 370 IMPLIES NEGITIVE Z DIRECTION #	 375 IMPLIES
C POSITIVE 7 DIRECTION)	 380	 IMPLIES VERTICAL	 (UP OR DOWN)	 DIRECTION,
C AS BEFORE#	 TESTS ARE RUN TO SEE IF THE INTERSECTIONS ARE "GOOD"#
C IF LINEAR EXTRAPOLATION	 IS USED (SETS	 IFLAGI)#	 OR	 IF BACK	 STEPPING

C IS NEEDED,	 THESE TESTS ARE RUN IN ALL CASES,
255 c

IF	 (IIONft+l # NR)	 - 7ION(I+1#NRMI))	 370 #	380#	 175
C

e yln	 tt	 f. 7ImuI T1'1	 UO1	 t C_	 7T U.7b	 IAIh_	 7TTNT0	 _L G._

2	 ZION(I+l#NRml))	 GO TO 397
260 IF	 (XINTR	 ,LT•	 ZION(I+l#NR))	 GO	 TO 395

372	 IF	 (Z,INTR	 .GT.	 Z.ION(I+1#NRM1))	 GO	 TO	 362
IFLAG2 w 372
GO TO 48P

C
265 375	 IF	 (7104(I+1#NRM1)	 .LE.	 ZINTR	 .AND.	 ZINTR	 .LE.

3	 ZION(I+1#NR1)	 Gn TO	 397
IF	 (ZINTR	 oGT,	 ZTnN(I +1#NR))	 GO TO 395

377	 IF	 (ZINTR	 LT+	 ZION(I+I,NRM1))	 GO TO 362
IFLAG2 . 377

270 GO TO 4AR
C
C WHEN STATEMENT 380 IS CALLED# WE HAVE TO TEST THE X COMPONENTS
C IN THE SAME MANOR AS WHEN STATEMENT 330 WAS CALLED TO LOOK TO

C THE LEFT.	 NEED TO TEST FOR	 "GOOD" INTERSECTIONS#	 LINEAR

275 C EXTRAPOLATION ANn RACK STEPPING.
C

380	 IF	 (XION(I+1#NR)	 - XION(I+1#NRMI)) 	 385#	 490#	 390
C

385	 IF	 (XION(I+l#NP)	 ,LE.	 XINTR ,AND.	 XINTR	 .LE•
280 4	 XION(I+I#MRM1))	 GO TO 397

IF	 (XINTR•LT.	 XION(I+1#NR))	 GO TO	 390
387	 IF	 (XINTR	 :GT.	 XION(I+1#NRM1))	 GO TO 362

IFLAG?	 w 387
GO TO 40A

#
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39Ik	 IF (VIO4(T+1 ► NRM,L) ,LE. XINTR .AND. XINTR +LE.
9	 XION(T+1iNR)) GO TO 391

IF (XINTR .CT. 'XION (I+1,NR)) GO 70 395
392	 IF (YINTR .lT. XIO V I+i,NRMI,)) GD TO 362

290

	

	 IFLA92 v 392
GO Tn 08

C
C	 STATEMENT 394 RFSF7S IFLAG2 IF STATEMENT +490 IS REFFRENCED.
C	 STATEMENT 395 SETS TFLA410 STATEMENT 397 CALCULATES THE

295 C	 DISPLACEMENT 'fin THE RIGHT. MAKE SURE IFLAG2 AND IFLA03 ARE
C	 PROPERLY SET.
C

394	 IFLA62 n 0
GO TO 397

300	 9[;5	 IFLAGI	 IFLAGI + 2
397	 DSPLR	 SORT ((XINTR	 XION(I#N)) ** 2 +

6	 (ZINTR - ZION(I#N)) w* 2)
IF (IFLA02 .GT O) IFLAd2 n IFLA62 - 362
IF (IFLAG? .EO. 21 GO TO 405

305	 GO TO 418
405	 IF (IFtAC4 2 .NF. -2 .AND. IFLAGI .NE. 2) GO TO 450

IFLAG3 n 4
GO TO 4'50

C
310 C DEFINE IFLAG3,

C
C TnE Fvi.i.D^II:D eceyTnm cvAIYEC YFt ► r1 1Nn TFiAC_.2 Sn THAT TFLOG3 CAN GE
C DEFINED+ IFLAG3 TS +JSED IN CALC TO DETERMINE uHEN BOUNDARY REPULSION

315 t. EXISTS SO THAT THE 45SCESSARY FORCES CAN BE ZEROED, STATEMENT 4301
C BOUNDARIES INTERSFCTED ON BOTH SIDESP STATEMENT 4351 BOUNDARY
C INTERSECTED ON RIGHT ► STATEMENT 440: BOUNDARY INTERSECTED ON LEFT#
C STATEMENT 4451 NO RnIINOARIES INTERSECTED.
C

320	 418	 IF (IFLAG2) 420 P 445# 494
420	 IF (IFLAGII 4441 4451 423
423

	

	 IF (TFLAG2 .E p . -1 .AND. IFLAGI .EO. 2) GO TO 445
IF tI r-LAG2 .F0, -1) GO TO 440

IF (TVLAc ; .EO. -2 .AND. IFLAGI .EO. 1) GO TO 445
325	 IF (IFLAG2 .EO. -2) GO TO 435

Jr- (IFLAG2 .NE. -3) GO TO 496
IF (IFLAG1 .EA. 1) GO TO 440
IF (IFLAGI .EQ. Z) GO TO 435
IF (IFLAGI .EQ. 3) GO TO 430

330	 00 To 4q4
430	 IFLAG3 • 4

Gn Tn 450
435	 IFLAGI n 3

GO TO 450
335	 440	 IFLAG3 • 2

GO TO 450

445	 IFLAG3 n 1
450 IF (DSPLL .GT. 0 * 20 GO TO 502
452 IF (DSPLR .GT. 0.25) GO TO 504

340	 435 RETURN
C
C CALCULATIONS FnR (AnUNnA p Y),;SPECIAL CASES.
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C
345 C	 STATEME N TS +460 AND 461 CALCULATE THE DISPLACEMENT TO THE LEFT

C	 OF THE FIRST ACTIVE PATH TO THE BOUNDARY AND TO THE RIGHT OF THE
C	 LAST ACTIVE PATH TO THE BOUNDARY, RESPECTIVCLY ► WHEN STATEMENT
C	 461 IS CALLED IFLAG3 HAS TO BE PROPERLY SET.
C

350	 460	 OSPLL * DS (TION(I,N), XION(I#N), SLOPEP# 0, 1)
IF (OSPLL .FO ► 1.0E+24) GO TO 490
IFLA03 « 2
nO TO 35A

C
355	 461	 DSPLR w D3 (TION(I#N)# XION(I#N) ► SLOPEP, 1, 1)

IF (DSPLP .FO. 1.0F+20) 00 TO 50 0
IF (IFLAG7 ,NFw -1 +AND. IFLAGI .NE. 1) GO TO 465

IFLAG3 w 4
GO TO 446

360	 465	 IFLA63 . 1
466	 RETURN

C
C OTHER TESTS AND ASSIGNMENTS.

irnrrwrwrrwrwiwwpwanw►rr.wrwwwoawrir:rMr

365 C	
DEFINE IFLAG? IN CASES WHERE TESTED PATH IS INACTIVE*

C
470 IFLAG2 * -1

GO TO 311
370	 472 IF (IFLAG2) 475# 470 6 496

4f5 LFLAG2 w -3
GO TO 361

470 IFLAG2 w w2
GO TO 361

375 C	 BACK-STEPPING LOGIC WHEN MORE THEN TEN BACKSTFPS ARE NEEDED ON
C	 A PARTICULAR PATH, ALLOWS USE OF INFORMATION IN CORE STORAGE
C	 NOT YET OVER WRITTEN WITH NEW RESULTS ►
G

380 C	 FOR LEFT-HAND PATH#
C

4Rq IFLAG2 • IFLA02 + 312
IFVAR	 NIP1I-11	 (NSTAG	 1)	 (NUMIT - 9)
IF (IFVAR .GF ► 140) 00 TO 546

385	 NLM1 n 141
GO TO 311

C
401 IFVAR w NIP(T-1) - (NSTAG - 1.) * (NUMIT - 91

IF (NLM1 ► LF, (IFVAR + 2)1 GO TO 506
3 90	 NL n NLM1

NLM1 . NLM1 - 1
GO TO 311

C
C	 FOR RIGHT-HANG PATH,

395 
C 402 IFLAG2	 IFLAG2 + 362

IFVAR	 NIP(1+1) w (NSTAG - 1) * (NUMIT - 9)
IF (IFVAR .(E ► 140) 60 TO 500
NRM1 n 141

1 y
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4	 GO TO 361

433 IFVAR a NTP(I+1) - (NSTAG - 1) * (NUMIT *- 9)
IF (NRM1 .LF• (IFVAR + 2)) GO TO 509
NR • NRM1

405	 NRM . a NRM1 - I
GO TO 361

C
C ERROR CONDIYIONS.
G' rMw-erM++^wrrrwwwwrw^r

410' C

C ***** STATEMENTS 404 THROUGH 300 ARE VARIOUS ERROR EXITS, *****
C THE VALUE OF I F LAG2 DFTER M INCS IF VALUES OUTPUT ARE FAR RIGHT OR
C LEFT# SINCE VALUE OF TFLA02 REFERENCES A PROGRAM STATEMENT.
C

410 C ERROR 521 w STATFMENTS	 506 ► 500 MEAN INDICES NL#	 NR WERE BACK e-
C STEPPED (130 TIMES)	 UNTIL CORE STORAGE NO LONGED'
C CnNTAINEP VALUES THAT WERE CALCULATED DURING THE
C PRFVInUS STAGE.	 CORRECT COMPARISIONS CAN NOT PE
C MAnE PAST THIS POINT# 	 (FATAL)*

420 C
C w ERROR 522 r STATFMFNTS 406 ► 	 400 MEAN THAT THE INTERSECTION POINTS
C CONStDERFD IN STATEMENTS 322 ► 327# 342# 347#	 372♦
C 377r 307 ANP 392 00 NOT SATISFY ANY LOGICAL
C CRITERION,	 UNPHYSICAL	 INTERSECTIONS	 (FA'T'AL) ►

425 C
C ERROR 523 - STATEMENTS 404#	 490 INDICATE THAT POINTS N AND N-1
C ARE THE SAME.	 ION ONLEFT OR RIGHT HAND PATH ►
C RESPFCTIVILY# DID NOT MOVE. 	 UNPHYSICAL UNLESS !ON
C HAS 7F Rn VELOCITY AND THFRE IS NO NET FORCE

430 C ACTING ON	 IT	 (FATAL).
C
C ERROR 024 - STATEMENT 492 INDICATES THAT T IS LESS THAN ONE OR
C GREATER THEN NUMION.	 SHOULD NOT OCCUR SINCE I IS
C DO L tIOP INDEX	 (FATAL)*

435 C
C ERROR 525 - IFLAGI IMPROPERLY DEFINED	 (FATAL)#
C
C - ERROR 57O - TFLAGP IMPROPERLY DEFINED	 (FATAL)•
C

440 C r- ERROR	 5X6 - OSPLL	 OR	 DSPLR COULD NOT BE DEFINED 	 (FATAL).
C
C - ERROR 5Z9 - DSPLL OR DSPLR UNUSUALLY LARGE	 (NON-FATAL)#
C

464 IFLA02 n 464
445 IF	 (VELTX(I-1) •Fa•	 0+0	 HAND#	 VELTZ(1-1)	 .60s	 0.0)

7GO TO 350
WRITE	 (POUT# 523)	 IFLAGZ#	 I#	 NL#	 No	 ZION(I-1*NL)#	 ZION(I-1#NLM1)#

8	 XION(I-1#NL)# YlON(I-1 ► NLM1)#	 ZINTL#	 XINTL#	 SLOPEP#	 SLOPEL
GO TO 510

450 406 WRITF	 (IOUT ► $22)	 IFLAG2#	 It NL#	 No	 ZION(I-1#NL)#	 ZION(I-1#NLM1)#
9	 XION(I^*1#Ni^)# XTON(I+^1#NLM1)#	 ZINTL# XINTL# SLOPEP)	 SLOPEL
GO TO 510

406 WRITE	 (TOUT# 522)	 IFLAG2#	 I#	 NR#	 No	 ZION(T+1#NR)#	 ZION(I+1 ► NRM1)#
1	 XtnN(I+1 ► NR)# XTDN(I+i#NRM1)#	 ZINTR#	 XINTR#	 SLOPEP#	 SLOPER

405	 GO TO 510
490 IFLAG2 m 490
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IF	 (VELTX(I+I)	 .Ea * 	 0.0	 * AND * 	YELTZ(I+1)	 .Eat	 0»0)
M TO 394
WRITE	 (TOUT*	 523)	 IFLAGt*	 Is NRP Nt ZION(I+IaNR)+ XION(I+I*NRM*.)#

460 3	 XION(I+1*NR)t	 XION(Ia,1tNRM1)t 1INTRf	 XINTR*	 SLOPEPt	 $LOPER
GO TO 510

492 WRITE	 (TOUT* 524)	 It ILt	 IRt NUMIAN
GO TO514

494 WRITE	 (IOUTt	 125)	 IFLAGI,	 It N
465 GO TO 510

496 WRITE	 (TOUTt	 526)	 TFLAG2 ► 	 It	 N
DO TO 510

498 IFLAGZ o 460
WRITE	 (IOUT#	 528)	 `tFLAGZt	 It	 N	 'k

474 00 TO 510
300	 IFLAG2	 * 461	 of

WRITE	 (IOUTt	 528)	 IF(,AG2*	 Is	 N
GO TO 510	 r

502 IF	 (ICLFAR	 Y6a * 	1)	 GO TO 452
475 TFLAGZ * 3.55

WRITF	 (IOUTt	 929)	 IFLA02t	 It	 No	 NLr .DSPLtt	 SLOPELt	 SLOPFPt	 XINTLt
4	 ZINTLt	 DUMMYL!	 DUMMYP*	 XION(I ► N)* ZION(I ► N)
IFLAGZ N 0
GO TO 452

480 504	 IF	 (ICLERR	 * Ea•	 1)	 GO TO 510
IFLAGZ n 397
WRITE	 (IOUT ► 	 52 q )	 TFLAG2t	 I* No	 NR ► 	 OSPLRt	 SLOPER*	 SLOPEPt	 XINTRt

?INTPg 0UMHYR, DUMMYP, XION(ItN)t ZIDN(I*N)r ,^
IFLAGZ » 0

483 $06 WRITE	 (TOUT ► 	 521)	 IFLAGZt	 To NO	 No	 SLOPEPt	 SLOPELt	 ZINTL*
6	 XINTL ► 	 DUMMYP,	 DUM NVLt	 XION(I-I ► NL)t XTON(I-Iv NLM1)t
7	 ZION(I-1tNL)t	 7lnN(I-1,NLM1) ► 	 DSPLLs	 THETAP
C,0 TO 510

508 WRITC	 (TOUT,	 g 21)	 IFLAGZt It NRt NRMlt	 No	 SLOPEP*	 SLOPERt	 ZIN,rR*
490 6	 XINTRt	 Dt1MMYPr	 DUHMYRt	 XION(I+1tNR)t	 XION(I+I*NRM1)t

9	 ZION(1+I,NR)*	 Z.TnN(E+1*NRMI)t	 DSPLPt	 THETAP
GO TO 514

510 RETURN
C

40 C	 ERROR CnNDITTnN FgRMATSt ERROR NUMBER 	 IS FORMAT HUMRERe
C

521 FORMAT	 (lt 1?.X ► 23H**+#+►i* ERROR	 527	 *** ► ** ► /t /* I1Xt
1	 36HNL OR N?	 RACK	 STEPPED TO FAR	 (FATAL) ► /r11X*,
2	 28HCALLED FROM SUBROUTINE CALCD ► /t11Xt

500 3	 BHIFLAGZ *#110H 	 I	 ntI5t13H	 NIL OR R)	 - ► I5t9H	 N(L OR ►
" 4	 6HR)M1	 10#15	 SH	 N u ► I5t10H	 SLOPEP n tE9 * 3 ► 12H	 SLOPE(L DRt

5	 5H R)	 • ► E9 * 3t/tl1Xt16H	 ZI"T(L OR R)	 »tE9.3t/14HXINT(L DRt
6	 6H R)	 • aEQr3t10H	 DUMMYP	 u ► E9*3*17H	 DUMMY(L OR R)	 atE9*3t
7	 /PllXol?H	 YTON(I	 I- OR	 +)	 1 ► 	 NIL OR	 R))	 •*E9*3t

545 8	 33HXInN(I	 I-nR +)	 It	 NIL OR R)M1)	 •tE9*3t
9	 a3H	 TION(I	 (- OR	 +)	 Is	 NIL OR R))	 et/ollYPE9.3t
I	 33HZTnN(I	 I — OR	 +)	 1 ► 	 NIL OR	 R)Ml)	 otE9*3 ►
2	 16H	 DSPL(L	 OR R)	 *tE9.3 ► 1aH	 THETAP • ► E9*3)

522 FORMAT	 (/*llX)23H****** ERROR 522#+****/ ► / ► i1Xt
510 1	 38HUNPHYSICAL THTERSECTION POINTS (FATAL) ► /*11X,

2	 2PHCALLED FROM SUBROUTINE CALCDt/ ► 11X,
3	 FHIFLAG2 w#1 50H	 I	 r t15*13H	 NIL OR R)	 •*l5 ►
4	 5H	 N	 0*15 ► 33H	 ZION ( I	 (- OR	 +)	 It

	 NIL
	 OR R))	 »* E9.3t/tl1Xt

t

n	

{

l
S
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5 33HZSt1NII	 I- OR	 +)	 1 ► 	 NIL OR a)M1)	 •rE9.3 ►
515 6 33H	 VTON(I	 I- OR +)	 1 ► 	 NIL OR R))	 •rE9*3 ► /al1Xr

t 33MXION(I	 t- OR	 +)	 11	 NIL OR	 R)Ml)	 o#E9.3r
9 16H	 7ItN T(L OR R)	 t► t69.3t16H	 XINT(L OR R)	 n r69.3t,?0lXr
9 ONSLOPFP n 490PM	 SLOPE(L OR R) wrE9,3)

323 FORMAT ( /,11Xj 2314* *****	 ERROR 523 ###^'*#, /t Ir1 1Xr
520 1 OWN POSITIONS ARE THE SAME ► NO MOTION (FATAL)t/rl1Xr

7 Z$HCALLFD FPOM SVOROUTINE CALCDt Ir llXr
3 9HIFLAGZ	 wrI5r5H	 1	 w ► I5t13H	 NIL OR	 R)	 •t15t
4 5N	 N w ► 1503H	 LIONII	 I- OR +)	 1r	 NIL OR	 R)1	 wtE9.3 ► /tI1Xt
g 33HZI ►IN(I	 (- RJR	 +)	 It	 NIL OR	 R)M1)	 -p ► E9.3t

525 5 33H	 XTON(T	 I- OR	 +)	 Is	 NIL	 OR	 R))	 *tE9 ► 3 ► / ► 1lXr
7 33HXION(I	 i• OR +)	 1 ► 	 NIL OR	 R)MI)	 wtE9.3r
9 16H	 7INT(L	 OR R)	 «rE993r.16H	 XINT(L OR R)	 •rE9,3 ► Iri1X ►
9 9HSLnOEP	 oorQ * 3tl7H	 SLOPE(L	 OR	 R)	 wtE9,3)

524 FORMAT I/rll ttt23W****##	 ERROR 524 ****** ► /t/ ► 11X ►
'530 1 30HOD LOOP INDEX MODIFIED (FATAL)A/r11X ►

2 20HCOLLED FROM SU9ROUTINE CALCD ► / ► 11X ►
3 3HI	 n tT5t6H	 IL	 M rI5 ► 6it	 IR	 w ► I5r10H	 NOIATON	 w ► 15)

525 FORMAT I/ ► IIX ► 23H*M****	 ERROR	 525 ****** ► I ► / ► I1X ►
1 33147FLAGI	 IMPROPERLY DEFINED 	 (FATAL)r/r11X ►

535 ? 2ONCALLFD FROM SUBROUTINE CALCD ► /rl1Xt
3 aNIFLAGI N t150H	 I % #150H	 N wr15)

$26 FORMAT I/r1IXr23W#####*	 ERROR	 525 ##*#*#r/rl ► 11Xr
1 33HIPLAGZ	 IMPROPERLY DEFINED 	 (FATAL)r/ ► 11X ►
2 2DHCALLFD FROM SUBROUTINE•, CALCD ► /#I1Xr

540 3 SHIFLAC2 M ► T5r5H	 I	 op lI #5H	 N w ► 15)
529 FORMAT (I ► 11X t23H*w****	 ERROR 528 t rt/t i.1X ►

I 43HOSPLL OR	 DSPLR COULD NOT BE	 DEFINED	 (FATAL) ► I ► 11X ►
2 20HCALLFO FRnM SUBROUTINE CALCD#IsllXt
3 OHIFLAGZ w illt5H	 I	 n r15 ► 5H	 N	 wtl5)

545 529 FORMAT I/#IIXt234******	 ERROR	 529 ###***t/r/rI1X ►
1 32HDSPLL OR	 DSPLR	 LARGE	 (NON-FATAL) ► / ► 11X1
2 28HCALLED FROM SUBROUTINE CALCDt/#I1Xt
3 8WIFLAG2	 wt15o5H	 I	 v tI'3t5H	 N	 n t13 ► :13H	 NIL	 OR	 R)	 K ►
4 I5 ► I6H	 DS P LIL	 OR	 R)	 n rE9,3t17H	 SLOPEIL OR	 rt)	 viE9+3r

550 5 /r11X ► FHSLOPEPr#E9*3r16H	 XINT(L OR	 R)	 n rF9,3y
6 16H	 7XNT(L OR P)	 •rE9.3 ► 1714	 DUMMY(I	 OR R)	 »tE90 ►
7 JQ,4	 DtlMMYP	 w ► CQ,3r/rllXrtIHXION(IrN)	 otE9.3 ►
0 13H	 7ION(I ► N)	 n ► E993)
END

ORIGINAL PAQR IS

OF POOR QUALITY

r



1,1

1

e4k

104

SUBROU 'TINU ROUND (it X1 I)

****** + * 4nUNDARY CHECK ROUTINE + ► ^'^*'^#^► *#

PROGRAM DESCRIPTTONI PROGRAMMER - WILLIAM DETNINGERP I - 8 - 02
RFVISIONSt (INCLUDE DATE, INITIALS AND DESCRIBE CHANGE ** PLEASE *0

THIS SUBROUTINE CHECKS THE POINT (Z#X) TO SEE IF IT LIES INSIDE
THE DEFINED BOUNDARIES OF THE SIMULATION, IF (ZPX) QOFS LIE INSIDE
THE DEFINED BOUNDARIFSo NO CHANGES ARE MADE AND CONTROL IS RETURNED
TO SUBROUTINE CALC	 IF (70) LIES OUTSIDE THE 9EFINED GOUHDARIESP
THE PATH STATUS TS SFT EQUAL TO THE ITERATION NUMBERS IN ADDITIONP
IF (T#X) LICS (IN THE FIR ST OR LAS`I ACTIVE PATH AND LIES OUTSIDE THE
BOUNDARIES* THE LF F T-MOST (IL. OR RIGHT-MOST (IR) INDEX IS RESET*

******** VARIARLF DICTIONARY ********

I	 t PATH hNDFX

IDXNEW t NEW l DEX FOR RIGHT OR L,TFT-MOST PATH,
II	 t DO L00 INDEX,
IL	 I INDEX OF LEFT-MOST ACTIVE PATH,
IR	 t INDEX OF RIGHT-MOST ACTIVE PATH,
LASTDO t DUMMY VARIABLE DENOTING LAST VALUE OF DO LOOP INDEX,
X	 s X COORDINATEQF POINT TO DE TESTED,
Z	 s 2 COORDINATE OF POINT TO BE TESTED,

*** END OF PROGRAM DESCRIPTION AND DICTIONARY ***

PROGRAH OCCLARATTnN STATEMENTS,
BLANK

t̂

 COMMON FnR LARGE AROAYSP IO s INPUT-OUTPOTt PARAM n PARAMETERS,

v {,1M'W ,l. &Iun1 3.'i	 IA

COMMON	

TX ► L7il/'.
1	 NIPt41)^^Nt41r151)afSNlik2)^ISTATt41)
COMMON / 10 / INeIOUTrINF0(14)oKEYPICLPLTsICLWRTsITITL(29)o

2	 IPATHSrIWrIF1(2)tIF2(4)pICLERR
COMMON / PAPAM / NPNUMIONPNUMITrROPABOUNDPRTPTELOUT#BMCURrUTILP

R	 TELIN ► TIIRLEN I)MSIDNiVELBOHPZBOUNDPILPIRPPIPBItiQPP095Nr
4	 ONDOPCENSErPTTHNEUrTIMEPTIMEMUPXVELMUPZVELMUPNSTAGr
5	 NSTGMUPNTOTSTPPIOV2

TEST TO SEE IF THE X COORDINATE IS LESS THEN OR EQUAL TO THE BEAM
RADTUSr OR GREATER THEN nP EQUAL TO RBOUND, TEST TO SEE IF THE Z
COORDINATE IS LESS THEN OR EQUAL TO 0 (ZERO) OR GREATER THEN OR
EQUAL TO X9nUNn. FINALLY, TEST TO SEE IF Z IS LESS THAN OR EQUAL TO
THE THRUSTPR LENGTH AND IF X IS LESS THEN OR EQUAL TO THE THRUSTER
RADIUS, IF ANY OF THE ABOVE TESTS ARE TRUE# SET ISTAT(I) n No
OTHERWISE RETURN In SUARVUTINE CALC*

IF (X ,LE, RA) Gn In 50
50	 IF tX ,GE, RRnUNn) GO TO 50

IF (Z ,LS. 0,0) GO TO 50
IF (X ,GE * ?ROUND) GO TO 50
IF (7 * LE, THZJ.EN * AND, X .LE, RT) GO TO 50
RETURN

55	 50 ISTAT(I) * N
C
C IF (ZPX) IS ON T$IF FTRST OR LAST ACTIVE PATH AND LIES OUTSIDE THE

1

5

10

15

20

25

30

35

40 C
C
C
C
C

45 C
C
C
C

fi

a,

i
sl
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C M INEO BOUNDARIES # RESET THE COORESPONDING INDEX TO THE INDEX OF
C THE NEXT ACTIVE PATH.

60 C
C FOR LEFT MOST PATH ►

MII^W Wi MirrrrrrNrr^lrl•

C
IF (I r IL) 200) POP 120

65	 80	 CONTINUE
LASTDO R NUMION M IL
00 100 IT * 1 ► LASTDO

IDXNEW n I + IT
IF (ISTAT(InYNFW)) 210 ► 105 ► 100

70	 100	 CONTINUE

	

105	 IL n IDXNEW
RETURN

O

C
C FOR RIGHT MOST PATH,

rr/rrw+rgwMMl^^rrr rr^r
C

120 IF (I r IR) 160r 1255 200

	

125	 CONTINUE
00 140 II m lr IR

IDXNEW • I - II
IF 4 ISTAT(IOXNEW)) 210r 145r 140

	

140	 CONTINUE

	

145	 IR • IDXNEW
160 RETURN

C
C ERROR CONDITIONS.
C mm"'1w-wwr-----rr

C
C ***** STATEMENTS 200 THRPUGH 210 APE ERROR EXITS * *f**s
P;
c	 - ERROR 610 r IrTL nR IR DEFINED INCORRECTLY ► FATAL.
C
C	 ERROR 612 - ISTAT(I) IMPROPERLY DEFINED ► FATAL.
C

200 WRITE (IOUTr610) Ir ILr IR
TSTAT(I) a PASR
GO TO 250

21' WRITE (IOUTr612) Ir IDXNEW ► ISTA1 ( I)r ISTAT ( IDXNEW)r N ►

	

6	 NTP(1) ► NIP(IDXNEW)
ISTAT ( I)	 P808

250 RETURN
C

C ERROR CONDITION FdRMATSP ERROR NUMBER IS FORMAT NUMBER.
C

610 FORMAT' (/ ► 11Xr23H****** F?RnP 610*****^r/r/ ► :1Xr

	

1	 39HIr IL nR TR D^VJNP*D INCUAAECTLY ( FATALIr/ol1Xa
	2 	 28HCALLED G ROM SUBROUTINE BOUNDr/ ► 11X ► 3HI •,I5 ►

	

3	 6H IL • rI5r6H IR *rI5)
612 FORMAT (/ ► 11Xr23H****** ERROR 612 ******rlr/r11X ►

	1 	 34HISTAT() IMPROPERLY DEFINED (FATAL)#1r11Xr

	

2	 28HCALLED FRnM! SUBROUTINE BOUND#/r11Xr

	

3	 3HI -0500H IDXNEW • rI5r12H ISTAT(I) n rI5 ►

	

4	 17H ISTAT(TDXNEW) n ,I5f5H N n rIStIOH NIP(I) o ►

	

5	 I5r15H NIP(TDXNEW) n ► I5)
ENO
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1	 SUBROUTINE WRTT(KF)
C--WRIT PRINTS INFORMATION AROUT THE SIMULATION
C--KE M It OUTPUT HEAnING, INITIAL INFORMATION AND DATA
C--KE•2t OUTPUT INTERIM STATUS OF MAIN VARIABLES

5 C--KE•3t FINISH OF A PASS, RFSULTSP START OF NEW PASS
C--KE n 41 CREATE FILE OF PATH COORDINATES
C--KE n 5t CREATE FILE OF POSITION - DENSITY TRIPLETS,
C
C BLANK COMMON FnR LARGE ARRAYS

10	 COMMON ZION(41r1x1)'XTON(41,151),VELTZ(101),VELTX(151),

	

1	 NIP(411#DN(41r151)PDNI(42)#ISTAT(41)
COMMON / TO / IN,IOUI',INFO(14),KEYPICLPLT,ICLWRT,ITITL(28),

	

2	 IPATHS,TWpIFl(2),1F2(4)iICILERR
COMMON/ PAR AM/ N,NUMION,tVUMIT,RB,RBOUND,RTo TEL OUT,BMCUR,UTIL,

15	 3	 TELIN,THRLF.N,I)M5IONPVELBOH,ZROUND ► IL,IR,PI,BK,O,R095N,

	

4	 DNOB,CEXSFC,TTHNFU,TIME,TIMEMU,XVELMU,ZVELMU,NSTAG,

	

5	 NSTGMU,NTOTST,PIOV2
DATA IPAG,LARPNPAS /0,6HPLASIM,I

C
20 C--	 FORMATS

C
10 FORMAT( ////,43HO	 THIS RUN MAY BE CHARACTERIZED BY INFOt,// )
11 FORMAT(IHl,//,60X,A6,I3,////// )

13	 FORMAT(////17Xy33HP L A S M A 	 S I M U L A T I 0 N,/t/
25	 2	 17XP43HA COMPUTER CODE TO DESCRIBETHE PROPAGATION,//

	

3	 17X,43HnF A CHARGE-EXCHANGE PLASMA IN THE VICINITY,//

	

4	 17X,40HOF AN ELFCTRICALLY PROPELLED SPACECRAFT ,///

	

5	 17X,45HWRITTEN BY WILLIAM DEININGER AND DALE WINDER,//

	

6	 17XP33HFOR THE JET PROPULSION LABORATORY,//
30	 _7	 21Xv27H( J P L P. 0, NO. 955322 ),///

	

d	 j,F,ylHl"IAF47L L3 R• PAUFr*AU! Pn it: ^. °AL 'INVESTIGATOR X11

	9 	 27X,21HDEPARTMENT OF PHY5ICS,//

	

1	 25XP25HCOLORADO STATE UNIVERSITY,/l

	

2	 26X,23HFt)RT COLLTNS, CO 80523 ,//
35	 3	 33Xi9HFALL 1981)

14	 FORMAT(lHl,//6OV,A6,I3,/////,lOX,21HSCHEMATIC OF THRUSTER,///

	

2	 llX,3H- t,/,11Xy3HA t,/r11X,3Ht t,/ p llX p 3Ht t, /,

	

3	 llX,3Ht t,5X,6HTHRLEN,/,11X,3Ht t,7X,1HV,/,

	

4	 11X,1IHt ---w-----,43X#6HZBOUND,/,11Xr1Ht p 6X,4HA t,44X^1HV
40	 5	 /,9X,6HPBOUND,3X,4Ht	 s,/llX,1Ht,6X,1Ht,2X,45(1H•),/,

	

6	 11X,1Nt,6X,2HRT,5X,1HA,40X,IHt,/,11X,2(1Ht,6X)2HRB,39X,1Ht,/

	

7	 4(11X,1Ht,6X,IHt,6X,1Ht,40X,1Ht,t),13X,1H+,13(4H- . ),/

	

8	 lIX, 5HCOs O) ► 50X,1Ht, /, 5 (66X,1Ht, / ), 21X, 45(1H n ), /,
	9 	 2(21X,1Ht,/),13Xc9(IH-),/,6(13X,1Ht,/)01/1)

45	 15	 FORMAT(16X,28HINITIAL VALUES OF PARAMETERS,/,/,/,

	

I	 5X,22HFRt1M SFCOND DATA CARD,,/,14X,6HNUMION,5X,5HNUMIT,

	

2	 7X,3HKEY,4X06HICLWRT,4X06HICLPLT,4X,6HNTOTST,4X,6HICLERR,/,

	

3	 l0X,7I10,/,/,/,5X ► 21HFROM THIRD DATA CARD „ /,18X,2HRB,4X,

	

4	 6HRBOLIN(1,BXr2HRT,4X06HTHRLENr5X,5HBMCUR,6X,4HUTILPIPIOX,
50	 5	 6F10.3,/,/,/,5X,22HFROM FOURTH DATA CARD „ /,15X,5HTELIN

	

6	 4X06HTELOUT,4X06HTTHNEU,4X,6HCEXSEC,4X,6HUMS ION P/,10X,

	

7	 3FlO.a ► 2F10,3, /,/, /,5X,21HFROM FIFTH DATA CARD,,/,14X,

	

8	 6HTIMEMl194X06HXVELMU,4X06HZVELMU,/,10X,3FlOo3,,',/,/05X,

	

9 	 22HCALCULATED OUANTITIES,,/,16X,4HTIME,4X,6HVELBOr4,4X,
55	 1	 6HZBOUND,/,10X,E10.3,2F1D93)

21 FORMAT(1H1,12(5H -2- ),A6,I3/t10X,27HINTERIM STATUS -- ITERATION,

	

2	 I4,3H OF,14,11H ITERATIONS,
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.0

3	 / ► / ► 3X ► 1HI ► 4X INN#3Xi5HISTAT ► 4X ► 9HZION(I+1)r6Xp9HXION(I+11 ►
4	 6XP8HVFLTT(I) ► 7X#BHVELTX(I WX ► 6X ► BX ► 7HON(IPN) ► /)

	

60	 22 FORMAT (1X ► I3, 1X ► 2(I4s 2X)s 4(E13.6 ► 2X) ► 15X/ 1113.6)
31 FORMAT(/ ► / ► ?7N RESULTS OF PASS-^-ITERATION ► 24 ► 3H UF ► I4 ► 9H ITERATIO ►

2	 2HNSr/ ► 3X ► 1HI ► 4X ► iHNr3XA3HNIPp2X ► 5HISTAT ► 4X ► 9HZION(N+1)16X ►
3	 9HXION(N+1) ► 6X ► BHVELTZ(I) ► 7X ► 8HVELTX(I) ► 8X ► 6HVELTOTBX ►
4	 7HDN (If N) ► /)

	

65	 35 FORMAT(/ ► / ► 5X ► 39H************ BEGIN WRIT(5) ************i/)
36 FORMAT(/ ► / ► :^,X#39H************ END WRIT(5) *#*** *****+ ► /)

C--	 WHAT KIND OF CALL IS IT
GOTO	 (1 ► 2 ► 1,r , 4 ► 5) ► KF

C--	 I	 ^`	 1
70 C--INITIAL STATE--HEAPING AND DATA

1 IPAG n IPAG + 1
WRITE(IOUT ► II)LA8 ► 2PAG
WRITF(TOUT ► 13)
IPAG . IPAG + 1

	

75	 WRITE(IQUT ► 14)LAB ► IPAt',
IPAG n IPAG + 1
WRITE(IOUT ► 11) LAA ► IPAG
WRITE(IOUT ► 101

WRITE(IOUT ► I 9 1) (INFO(K)sK n 1 ► 2W)

	

80	 WRITE(IOUT)15) NUMION ► NUM IT ► KEYP ICLWRT ► ICLPLTj NTOTST ► ICLERR ►
1	 RRo RBOUND ► RTP THRLEN ► BMCUR ► UTIL ►
2	 TKLIN ► TFLOUT ► TTHNEUP CEXSEC ► UMSION ►
3	 TIMEM ( lr XVELMU ► ZVELMU ►
4	 TIME ► VELBOHP ZBOUND

	

85	 RETURN
C--	 2	 22
C +--THIS SECTION PRINTS THE INTERIM STATUS AT THE NTH ITERATION

2 IPAG • IPAG + I
WRITE(IOUT ► 21) LAR ► IPAG ► N ► NUMIT

	

90	 DO 28 I.1aNlIMInN
28 WRITE(IOUT ► 22) IPNrISTAT(I)PZION(I#N) ► XION(IPN)PVELTZ(I).*

2	 VFLTX(I)pnN(IiN)
RETURN

C--	 3	 3	 3
95 C THIS SECTION PRINTS RESULT OF A PASS AT NTH EXTRAPOLATION

3 NITP • N + (NSTAG - 1) * (NUMIT + 1) - (10 * (NSTAG - 1))
ITTOTN n (NTOTST * NU M IT + 1) •- (NTOTST - 1) * 10
WRITE(IOUT ► 31) NTTP p ITTOTN
RETURN

100 C--	 4	 4	 4
C THIS SECTION CREATES FILE OF PATH COORDINATES
CWD DEVICE CODES SHOULD RE CHANGED SO AS NOT TO INTERFER WITH WRIT(51

4 NMAX n IFIX((LnAT(NUMTON)/4.)
REWIND IPATHS

	

105	 WRITF(IPATHS) NMAX ► NUMION
WRITE(IPATHS) (ISTAT(T)pI.1 ► NMAX)
DO 44 I n 1 ► NMAX
ISAT n ISTAT(T)

44 WRITE(IPATHS) (ZION(I ► NN),XION(IPNN),NN n I,ISAT)

	

110	 RETURN
C
C--	 3	 5	 5

C
C	 (WRIT(5) WRITTEN BY WILLIAM DEININGER)
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THIS SECTION WRITFS INFORMATION FROM THE FIRST (NUMIT -^ 9)
ITERATIONS IN CQRE MEMORY TO AN EXTERNAL FILE, THE INFORMATION
IS STORED ON THE EXTERNAL FILE IN "TRIPLETS"; EACH TRIPLET CONTAINS
ONE VALUE EACH FOR "XION()" ► "ZION()" AND "DN()", THIS IS DONE IN
PATH'MAJOR ORDER. IN OT14FR WORDS, ALL THE DESIRED RESULTS FOR ONE
PATH ARE OUTPUT BEFORE OUTPUTTING ANY RESULTS FOR NEIGHBORING PATHS*
FIRST THE PATH STATUS IS CHECKED TO MAKE SURE NO ERROR CONDITIONS
WERE SET DURING PXECUTION, THENTHE INITIAL ITERATION INDEX IS SET
EOUAL TO ONE FnR THE FIRST STAGE AND 10 FOR ALL STAGES THERE AFTER.
THE FINAL ITERATION INDEX IS COMPUTEDi FOR WHICH THE MAXIMUM VALUE
1S (NUMIT + 1) AND OCCURS IF THE PATH IS STILL ACTIVE, IF THE PATH
IS ACTIVE (ISTAT * 0) ► THE NUMBER OF TRIPLETS BECOMES (NUMIT • 9),
IF ISTAT IS GREATER THEN TERO AND BECAME GREATER THEN ZERO IN
THE CURRENT STAGE ► THE NUMBER OF TRIPLETS BECOMES (ISTAT -+ 1),
IF ISTAT BECAME NON-ZERO IN A PREVIOUS STAGE WE CONSIDER THE NEXT
PATH,

AFTER CALCULATING THE NUMBER OF TRIPLETSt THE PATH NUMBER AND
NUMBER OF TRIPLETS ARE OUTPUT TO THE EXTERNAL FILE, THEN THE
TRIPLETS ARE OUTPUT. THE NEXT PATH IS THEN CONSIDERED ► ETC.

- ERROR 207 - PATH STATUS IMPROPERLY DEFINED# FATAL,

5 IF (NSTAG ► FO. 1) RFWIND IPATHS
WRITE (IOUT ► 35)
00 100 IS + I t NU41ON

140
	

IF (ISTAT(IS) - 8688) 25 ► 100: 95
25	 INITIT • 1

IF (NSTAG ,GT, 1)	 INITIT n 10
LASTIT n NI P (TS) • (NSTAG
	

1) * (NUMIT - INITIT)
IF (I^TAT(TS)) 95p SO P 40

143	 40	 !FVAR • (((NSTAG • 1) * NUMIT) + 1 — ((NSTAG	 2)
1	 INITIT) * NSTGMU)

IF (NIP(IS) .LE, IFVAR) GO TO 100
LASTIT • ISTAT(IS) • 1
GO TO 60

150	 50	 LASTIT . LASTIT • 10
60	 NUMTRI • LASTIT

MODNTR » (NUMTRI / 3) + 1
WRITE (IPATHS) ISP MODNTR
DO 90 NS o lo NUMTRI

155	 IF (NS ,EO, 1)	 GO TO 85
J n MOD (NSa 3)
IF (J ,NE, 0) GO TO 90

85	 WRITE (IPATHS)	 XION(IS#NS) ► ZION(IS ► NS) p DN(ISsNS)
90	 CONTINUE

160	 GO TO 100
95	 WRITE (IOUT# 207)	 IS # ISTAT(IS)

ISTA' 'IS) n 8BAS
RETUk4

100 CONTINUE

165	 WRITE (IDUT ► 361
RETURN

207 FORMAT (/ ► 11X p 23H****** ERROR 207 ****** ► t#/ ► 11X,
1	 38HPATH STATUS IMPROPERLY DEFINED (FATAL)#/ ► 11X1
2	 29HCALLED FROM SUBROUTINE READERP/,#11X ►

170	
3END	

6HISTAT( ► I4 ► 5H ) * PIS)

115

120

125

130

135

u
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1 FUNCTION DS	 (Z#	 X#	 SLOP),?#	 LR#	 I)
C
C BOUNDARY DISPLA^,EMENT ROUTINE **^**^+***
C

5 C PROGRAM DESCRIPTION(	 PROGRAMMER w WILLIAM DEININGEP # 	B	 26 „ 81
C REVISIONSt	 (INCLUDE DATE #	INITIALS	 AND DESCRIBE CHANGE	 PLEASE **)
C

C THIS FUNCTION SUBROUTINE FINDS THE PERPENDICULAR DISPLACEMENT FROM
C THE FIRST OR LAST ACTIVE PATH TO THE 061JNDARY,	 CALCD CONSTRUCTS A

10 C PERPENDICULAR TO THE PATH FROM THE CURRENT POINT 	 ( Z#X) WITH SLOPE
C "SLOPEP",	 FUNCTION DS THEN EXTRAPOLATES THIS PERPENDICULAR OF SLOPE
C "SLOPEP" TO THE LEFT OR FIGHT	 ( 0'EPENDING ON WHETHER WE ARE CONSID -
C ERING THE FIRST OP LAST ACTIVE PATH) AND FINDS THE 1 AND X INTERCEPTS
C (ZINT AND	 XINT)	 ALONG THE BOUNDARY LINE.	 ZINT AND XINT ARE CHECKED

15 C TO SEE IF THEY LIE ON OR NETWEEN THE BOUNDARY ENDPOINTS ON THE
C BOUNDARY LINE,	 IF THEY nn#	 THE DISPLACEMENT IS CALCULATED#	 IF THEY
C DO NOT#	 ZINT AND XINT ARF CALCULATED ALONG THE NEXT BOUNDARY LINE
C AND VESTED AGAIN•	 THIS CONTINUES UNTIL "GOOD" INTERSECTION POINTS
C ARE FOUND OR ALL BOUNDARIES HAVE BEEN CONSIDERED IN WHICH CASE AN

20 C ERROR MESSAGE IS OUTPUT, 	 THE PERPENDICULAR DISPLACEMENT IS RETURNED
C TO CALCD,
C
C *****'#**	 VARIABLE	 DTCTIONARY	 ********
C

25 C DS	 t	 PERPENDICULAR DISPLACEMENT FROM CURRENT POINT TO BOUNDARY,
C I	 t	 PATH	 INDEX,
C LR	 t	 DETERMINES WHICHSIDE	 IS BEING CONSIDERED#
C 1	 LOOKING TO THE LEFT,
C 2	 LOOKING TO THE RIGHT,

30 C X	 t CURRENT X POSITION ON FIRST OR	 LAST ACTIVE PATH (XION(I#N)),
C XINT	 t	 X	 INTFRSECTION POINT ON BOUNDARY LINE,
C Z	 :	 CURRENT	 Z	 POSITION ON FIRST OR	 LAST ACTIVE	 PATH (ZION(I#N)),
C ZINT	 t	 Z	 INTFRSECTION POINT IN BOUNDARY LINE,
C

35 C **#	 END OF	 PROGRAM DESCRIPTION AND DICTIONARY*

C PROGRAM DECLARATION STATEMENTS*
C BLANK COMMON FOR	 LARGE ARRAYS#	 IO •	 INPUT-OUTPUT#	 PARAM n 	 PARAMETERS,
C

40 COMMON	 ZION(41#151)#XION(41#151)#VELTZ(151)PVELTX(151)#
1	 NIP(41)#DN(41#151)#DNI(42)#LSTAT(41)
COMMON	 /	 IO /	 INPTIUT#INFO(14)#KEY#ICLPLT#ICLWRT ITITL(26)#

2	 IPATHS#iW#IF1(2)#IF2(4)#ICLERR
COMMON	 / PARAM	 / N,NUMION#NUMIT#RB#RBOUND#RT#TELOUT#BMCUR#UTIL#

45 3	 TELIN#THRLFN#UMSION#VELBOH#ZBOUNDPIL#IR#PI#BK#9#R895N#
4	 DNOB#CEXSEC#TTHNEU#TIME$TIMEMU#XVELMU#ZVELMU#NSTAG#
5	 NSTGMUPNTf)TST, PIOV2

C
C DETERMINE	 WHETHER	 THE	 DISTANCE ON THE RIGHT OR	 THE LEFT IS DESIRED,

50 C
IF	 (LR	 ,EO,	 2)	 GO	 TO 200

C
C CALCULATIONS	 FOR	 LEFT,
C wwwwwwwww^.www,wrw^w^www

55 C
C TEST :OR	 INTERSECTIONS ALONG THE END OF	 THE THRUSTER BETWEEN THE
C BEAM EDGE	 (THRLEN*	 RA) AND THE THRUSTER CORNER 	 (THRLEN#	 RT),	 (FIRST

r
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C THE INTERSECTIONS ARE FnUND ALONG THE BOUNDARY LINE AND THEN TESTED
C TO SEE IF THEY LIE ON OR BETWEEN THE BOUNDARY ENDPOINTS ON THE

60 C BOUNDARY LINE.) (EQUATION OF BOUNDARY LINES Z n THRLEN)
C

100 IF (SLOPFP .LT, -I,OF+10) GO TO 110
ZINT w THRLEN
XINT w (THRLEN - Z) + SLOPEP + X

	

65	 IF (XINT ,GF,. PO .AND. XINT * LE * RT) GO TO 300
C
C TEST FOR INTERSECTIONS ALONG THE EDGE OF THE THRUSTER BETWEEN THE
C THRUSTER CORNER (THRLENR RT) AND THE SPACE CRAFT WALL (Do RT).
C (EQUATION OF BOUNDARY LINE# X • RT)

70 C 110 IF (SLOPEP ,EQ, 0,0) GO TO 120
TINT Q (RT Y- X) / SLOPEP + Z
XINT . RT	 ,
IF (ZINT ,GE, 00 ,AND. ZINT ,LIE. THRLEN) GO TO 300

75 C
C TEST FOR INTERSECTIONS ALONG THE SPACE CRAFT SURFACE BETWEEN (Or RT)
C AND (O1 RBOUND), (EQUATION OF BOUNDARY LINE$ Z • 0,0)
C
120 IF (SLOPEP ,LT, 1.0E+10) GO TO 130

	

A0	 7INT • 0.0
XINT w X - 7 + SLOPEP
IF (XINT .GE, RT ,AND, XINT * LE. RBOUND) GO TO 300

C
C TEST FOR INTERSECTIONS ALONG RBOUND BETWEEN THE SPACE CRAFT WALL

85 C (Or RBOUND) AND (ZROUNDP RBOUND). (EQUATION OF BOUNDARY LINEt
C X • RBOUND)
C

130 IF (SLOPEP .EQ. 0.0) GO TO 400
ZINT w (RBOUND - X) / SLOPEP + Z

	

90	 XINT r RBOUNn
IF (XINT .GF, 0.0 .AND. ZINT .LE. ZBOUND) GO TO 300

C
C TEST FOR INTERSECTIONS ALONG THE BEAM EDGE BETWEEN THE THRUSTER

	

C (THRLENs RB) AND iZBQV ND i RB).	 (EQUATION OF BOUNDARY LINES X + RB)
95 C

XINT w (RB - Xa / SLOPFP + Z
XINT - RB
IF (ZINT .GF. THRLEN .AND. ZINT ,LE. ZBOUND) GO TO 300
GO TO 400

100 C
C CALCULATIONS FnR FIGHT.

rirsrw.w.rwirwa.rwrn....u-....wrav

C TEST FAR INTERSECTIONS ALONG ZBOUND BETWEEN THE BEAM EDGE (ZBOUNDi
1Qa C RB) AND (ZBOUND) RBOUND). THE Z COMPONENT OF THE TOTAL VELOCITY

C CHECKED TO DETFRMTNE THE DIRECTION OF PATH PROPAGATION. (EQUATION
C OF BOUNDARY LINEt Z • ZnOUND)
C

200 IF (SLOPEP .LT. 1.0E+10) GO TO 210

	

110	 ZINT • ZOOUNn
XINT w (ZBOUNn	 Z) + SLOPEP + X
IF (XINT ,GE. RB .AND. XINT .LE, RBOUND) GO TO 300

210 IF (VELTZ(I)) 2?0 p 400P 240

C

ORIGINAL PAGE 10
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115 C TEST FOR INTERSECTIONS ALONG RBOUND BETWEEN THE :PACE CRAFT SURFACE
C (Op RBOUND) AND (?BOUND# RBOUND). (EQUATION OF BOUNDARY LINEI
C X - RBOUND)
C
e10 ZINT n (ROGUND - X) / SLOPEP + Z

120	 XINT - RBOUND
IF (ZINT .GE * 0.0 * ANn. ZINT sLE * ZBOUND) 00 TO 300
GO TO 400

C
C TEST FOR INTERSECTIONS ALONG BEAM EDGE BETWEEN END OF THRUSTER

125 C (THRLENP RB) AND (znntIND p R9).	 (EOUATION OF BOUNDARY LINEI X n RP)
C

240 ZINT - (BB - X) / SLOPEP + Z
XINT - RP
IF (ZINT .GE. THRLFN .AND * ZINT ,LE * ZBOUND) GO TO 300

130	 GO TO 400
C
C CALCULATE THE DISTANCE Tn THE BOUNDARY•
C

300 DS . SORT ((Z - ZINT) ** 2 + (X - XINT) ** 2)
135	 IF (DS rGT * 0.25) An TO 402

RETURN
C
C ******** ERROR CONDITIONS *' '^***^}
C

140 C — ERROR 410 - NO "GOOD" INTERSECTION POINTS FOUND BETWEEN
C	 BOUNDARIES AND CURRENT PATH USING DS (FATAL).
C
C	 ERROR 412 - DS UNUSUALLY LARGE (NON-FATAL).
C

145	 400 WRITE ( I nUTp 410) Xp Z. SLOPEPP XINT# ZINT# Is VELTZ(I) ► LR
GO TO 408

402 IF (ICLERR •EOo 1) GO TO 409
IF (LR .EQ. 1) Gn TO 409
WRITE (IOUTP 412)	 LRs Is OSs Zp Xp SLOPEP P XINT# ZINT

150	 GO TO 409
408 OS • 1.0E+20
409 RETURN

C
C ERROR CONDITION FORMATS*

155 C
410 FORMAT (/p11Xp23H****** ERROR 410 *****#p/p/s11Xp

1	 30HDS UNUSUALLY LARGE (NON-FATAL)#/,11Xp
2	 34HCALLED FRnM FUNCTION SUBROUTINE DSp/p11Xp
3	 3HX n ► E9.3s5H T -pE9 * 3p10H SLOPEP n PE9.3p8H XINT -pE9*3p

160	 4	 8H 7INT -rE9.3p8H VELTZ(pI5p4H ) n PE9*3 p 6H LR "pI3)
412 FORMAT (/p11Np23H****** ERROR 412 ***** *p /s /p 11Xp

1	 30HDS UNUSUALLY LARGE (NON-FATAL)s1)11X#
2	 34HCALLED FROM FUNCTION SUBROUTINE DSp/ol1Xp
3	 4HLR -PI30 H I n r15 p 6H DS -pE9930 H Z n p E9.3 p 5H X -p

165	 4	 E9.3s1OH SLOPEP -sE9 * 3p8H XINT - p E9 * 3 p 8H ZINT -PE9*3)
END
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SUBROUTINE VRSPLT
C
C--VRSPLT USES VERSATEC PLOTTER TO PLOT ARRAYS X() AND Y()
C
CWD THIS ROUTINE IS SITE DePENDENT. IT PLOTS THE CONTENTS OF ARRAYS
CWD XION AND ZION FROM CORE MEMORY•
C
C BLANK COMMON FOR LARGE ARRAYS

COMMON ZION(41oll))PXION(41P151))VZ(151)#VX(151)
10
	

IPNIP(41)#DN(41rl3l)#DNI(42)1ISTAT(41)
COMMON 1 10 f TNrIDUTPINFO(14),KEY,ZCLPLT,ICLWRToITITL(28)
1 ► IPATHS)IW#IFl(2))IF2(4),rICLERP

COMMON/PARAM/N#NU m InN NUMITPRDPRBOUNDPATPTELQUT*BMCUP*UTILt
1 T5LINtTHRLEN ♦ UMSttONr'VELBOHPZBOUND ► ILPIRrPIPBKPQ,R895N

13
	

1 iDNOBrCF.XSPCxTTHNEUPYTMFoTTMEMU#XVELNU*ZVELMUPNSTAGP
5	 NSTGMUPNTOTST*Pinv?
DIMENSION SAV7(2)#SAVXf2)pD7(151)nDX(151)
DATA ZAXLN#XAXLN#IMC#LINTYPpISYM /9,0t790r1r+0#l/
DATA INTR/0/

20 CW USE INTR TO COUNT FNTRY NUMBER AND AVOID REINITIALIZINr
C--FIRST ENTRY--SPT UP THE SYSTEMP SCALEr AXES, A40 TITLE IF DESIRED

INTR n INTR+1
IF(KEY.E4.0) GOTQ 3
IF(INTRREQ.I) CALL PLOTS(0 * 0# 00

25 C--SET ORIGIN OF PLAT
CALL PLOT t1.i1r-3)
CALL SETMSG(I)
SAVZ(1)o0*
004VA{ ^ 1O Vi

30
	

SAVZ(Z)uZBQUND/ZAXLN
SAVX(2) n RBOUNP/XAXLN
ZMAX nZAXLN*SAVZ(P'

CW WORD-SIZE DErPENnENT APEAt IWIs IW2 ARE FLAGS IN ITIT.L
IW1*IW+ 1

35
	

IW2«IW1 + IW/2
CALL AXISt0 * a0.}ITTTL(IW1)P-4O p ZAXLNP09PSAVZ(I )rSAVZ(2))
CALL AXIS(0voXAYl.N p 1H plpZAXLNp0,sSAVZ(1)eSAVZ(2))
CALL. AXIS( 0.p0.#ITTTL(IW2)r40sXAXLN/90.#SAVX(1),#SAVX(2))
CALL SYMBOL(O * r9.Or0.14 lTITL(1)rO*PBO)

40
	

DO 80 JWZ#NUMIDN
IFtZTON(J,1).GTsZMAX) GO TO 82

80 CONTINUE
82 NUMPT^J-1

INKEY.GT.0) NUMPT•NUMION41
45
	

OD 150 JYIpNUMPT
NPTS n ISTAT N )
IP(ISTAT(J) E0s0) NPTS•NIP(J)
DO 100 NM n I,NPTS
DZ(NM)-ZTON(JnNM)

50
	

DX(NM)•XION(JPNM)
100 CONTINUE

DO 120 IM1,2
NPT n NPTS+I
DZ(NPT)-SAVZ(I)

55
	

120 DX(NPT)-SAVX(T)
IF(J.EO.NUMTON+I) ISYM*O
CALL LINE(DZrDXPNPTSPINCPLINTYPiISYM)

kMer PAGE jr
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1$0 CONTINUE
C-DRAW SCHEMATIC OF THRUSTER AND DEAM•

00	 PX(1)*RT
DX(Z)*RT

!	 DzWpoo
DX(3) n Or
DZ(Z) n THRLEN

63

	

	 OZ(3) n THRLEN
DZ(4)oTHRLEN
DX(4)*RP
DX(0)«R8
DZ(5)pzBOUND

70	 NPTSwl
i

	

	 00 200 101*2
NPT•NPTS+I
DZ(NPT) n SAVI(l)

200 DX(HPT)*SAVX(I)
!	 73	 CALL LtNE(Dt ► DX ► NPTSplpOjO)

CN FINISH THIS PLOT ANn GO RACK FOR MORE
CALL PLOT(C*+0.P-9c9)
RETURN

CM-TERMINATE ALL P ►. QT'(ING ,+*-,RELEASE OUTPUT TO VERSATEC PLOTTER
k	 90	 3 IF (INTR ,LT. 0 RETURN

CALL PLOT(Oo p Os it +999)
INTR » 0
RETURN
END

ORIGINAL PAGE IS
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1	 SUhNnUTINE VRSPL

C--VRSPL USES VERSATFC PLOTTER TO PLOT ARRAYS Xt! AND YO
C

S CWO THIS ROUTINE ISSITE DEPENDENT. IT PLOTS THE CONTENTS OF THE
CWD ARRAYS XION AND ZInN WI4ICH HAVE AEEN READ FROM THE EXTERNAL
CWD FILE PATHS IN TERNS nF TRIPLETS.
C
C BLANK COMMON FOR LARCF ARRAYS

	

10	 COMMON ZION(41 ► 171) ► XIONt41 ► 151iVZ(151) ► VXt151)
1 ► NIP(41)PDN(41P151)PDNt(42)PISTATt41)
COMMON 1 IO 1 INPIOUT#INFO(14)*KEY#ICLPLT ► ICLWRT,ITITL(ZB)
1 PIPATHSPIW ► IFl(2) ► IF214) ► ICLERR
COMMON /PAR A MI N ► NUM ION# NUM IT#RBPRBOUN DoRTPTELOUTPBMCUR ► UTILP

	

1S	 1 TELIN ► T14RLF4,(IMSIONtVELBOHPZBOUNDPIL ► IR ► PI ► 6K ► Q ► RB95N
1 ► DNOB ► CEX,SFC ► TTHNEUP'elMt,,TIMEMUPXVELMUPZVELMU ► NSTAGr
5	 NSTGMU ► NTOTST ► PTO V?
DIMENSION SAVZSZ)#SAVX(Z)#DX(151)rDX(151)1D(151)
DATA ZAXLNPXAXLNPINCPLINTYP ► ISYM /B.0 ► 6.5P1i+30,11

	

20	 DATA INTR/0/
CW USE INTP TO COU`iT ENTRY NUMBER AND AVOID REINITIALIZING
C-N-FIRST ENTRY r--SFT UP THE SYSTEMP SCALE ► AXES AND TITLE IF DESIRED
CWD	 11 - 23 . B1P	 MUST REWIND FILE BEFORE READING

REMIND IPATHS

	

25	 INTR•INTR+1
IF(KEY.E00) GOT9 3
IF (INTR.EQ•1) CALL PLOTS(O. ► 0. ► 0.)

C--SET ORIGIN OF 1LOT
CALL PLOT tl6Pl. ► -3)

°av AVL(l^M^'r^
SAVX(1)d0.
SAVZ(2)%0o92I?AXLN
SAVX(2)•RBOUNn/XAXLN
?MAX-ZAXLN*SAV7(2)

35 CW WORD-SIZE DEPENDE N T AREAt tW1P IW2 ARE FLAGS IN ITITL
tai g rw+ 1
IW2 0 IW1 + IW/2

CALL AXIS( Qe1Q,P ITITL(IW1)P-40 ► ZAXLNPO. ► SAVZ(1)PSAVZ(2))
CALL AXIS(O.PXAXLNPIH P1 ► ZAXLN ► 0.PSAVZtl) ► SAVZ(2))

	

40	 CALL AXIS(OeP©y ► ITITL(IW2)P40 ► XAXLN ► 90.ISAVX(1)PSAVX(2))
CALL SYMBOL(1. ► B.OPU.14 ► ITITL(I)PO. ► 90)

CW--DC29S1--MQD FOR READING] PLOTTING PATHS FILE
WRITE(IOUTP21) NUMION,NUMIT
NUM/ o NUMInN +1

	

41	 Dn 55 JS • 1 ► NTQTST
CWD THE MLOWING CODE COUNTS THE NUMBER OF TRAJECTORIES WRITTEN
CWD TO FILE PATHS*

YCnUNT n 0
IF (JS -11 5,1505

	

50	 5	 IFVAR w tWS-1) + NUP'IT +1) - ( ( JS-2)+10)
DO 7 IM1PNUMICIN
IF(NIP(1)+-Z9VA4) 7P7P9

7	 CONTINUE
9	 INITOO	 I

	

$5	 DO 11 I	 1PNUMION
IT . NUM1 -I
IFINIP(II)-TFVAR) 11 ► 11 ► 12

DIE F' OR QUALITY	 OF POOR QUALM
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73 INTEOwS
21 FORMAT(1H0pl04# 13H+++ VRSPL +++#15t614 IAN$

00	 33	 IT*	 IPNITF.R
CWO 12/7!61	 VX # V7 TO nYpDZ	 AND	 0 TO O(IT)	 T4

READ(IPATHS)	 DX(IT)pDZ(IT)vD(IT)
60 IF(EOF(IPATHS)	 +NE•	 00)	 GO TO 10

33 CONTINUF
00 37 Ir1#2
NPT w NITER+I
OZ(NPT)*SAVT(T)

65 37 nvtNPT)rSAV1t(t)
-DZrOXPNITEPPINC+LINTYP#TNTEG)CALL LINE	 (

44 CONTINUE
55 CONTINUE

C--DRAW SCHEMATIC rlF	 THRUSTF9	 AND BEAM.
90 70 DX(1)wRT

DX(2)-PT
DZ(1)•0.
DX(3)w0o
0Z(2) n THRLEN

95 DZ(3)wTHPLEN
OZ(4)•THRLEN
DX(4)wRR
DX(5)»R6
DZ(5)*ZBOUNO

100 NPTSw5
DO 200	 Iwlt2
NPT n NPTS+I
OZ(NPT)wSAVZ(T)

200 DX(NPT)wSAVX(I)
105 CALL	 LINE(DZrnXrN0T5t1a0 ► 0)

Ck FINISH THIS PLnT IND GO PACK	 FOR HOPE
CALL PLOT(0*p0,*M9gq)
RETURN

#10#11H ITERATIONS )

HOLD DENSITIES

lj

115

11	 CONTINUE
12	 LASTOO	 TI

60	 00 14 14	 INITOOP LASTOO
IF (ISTAT(IJ) - FRRE) 14e 13r 14

13	 IFVAR . WS ' NUMIT + 1) - ((%1$	 1)	 10)
IF (NIP(T) « MAO) 6t 6t 14

6	 ICOUNT w rCOUNT + 1
65	 14 CONTINUE

LASTOO o LASTDO - JNITDO - ICOUNT
GO TO 16

15	 INITOO " 1
LASTDO • NUMION

70	 is	 CONTINUE
00 44 J n lt LASTOO

READ(IPATHS) TONPNITER
WRITF(IOUTr2?) tON1NITFR

22 FORMAT(26H +++ VRSPL +++ ION NUMBER #13rr5i11H tTERATIONS10

CW-TEPKINATE ALL PLOTTINO—PELEASE OUTPUT TO VERSATEC PLOTTER
110	 3 IF (INTR .LT. 2) RFT(IPN

CALL PLnT(0.P0., +9qg)
INTR w 0

PFTUPN

END
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1	 SUBROUTINE POTV ( XPYP1-PL5PLINEPLA5)
C
C--	 SUB, PLOTW nY Dr R+ WINDER # PHYSICS DEPT. ► COLO# ST * UNIV.
C PLOT ARRAY$ Y VS XP PACH HAVING N POINTS# SELF SCALING,

5 C-- LB IS THE SYMnnL USFD FnR THE CURRENT GRAPH —SUGGEST NUMERICAL ORDER
C--E•G,- FOR THE FIRST GRAPH# SET IN CALLING PROGRAM( L6.01
C--THFN FOR 2ND nNFP RESET ITI LB «1H2P ETC# ONLY ONE CHARACTERP PLCkSE,
C--,THE FIRST ENTRY IS CPITICAL- -S IT ESTABLISHES NUMBER OF POINTSP ALSO

10 C-- UPON FIRST ENTRY # M AX AND MIN VALUES ARE FOUND AND ARE U$Fn LATER
C--IF LATER CALLS tNVnLVF POINTS OUTSIDE THESE LIMITSP THEY WILL BE
C—TRUNCATED AND AN EPRAR M FSSAGE PRINTED ON THE PLOT FILE.
C--+ To SIGNAL i LAST GRAPH TO BE PLOTTEOP PUT N*4 0• ALL GRAPHS WILL
C--00 PLOTTED ON ONF SHEET VIA THE ARRAY LINE(103PbA)P IF ONLY ONE

15 C--NOTF HON S SCALIN01 THIS EXPECTS PRINTER LWITH P10 CHARS/INCH# 6 LINES/IN
C-- LAB(16) CONTAINS TITLE (IN WORDS 1-8 )P X-AXIS LABEL (IN 9- 12)
C--AND YaAXIS LABEL ( IM 12-16), THE LAST CALL ( N »0) DOERMINES LABELS
C

20 C--CALLING PROGRAM MUST SET UP LINF(103P60) AND LAP-4b)

C-+NOTE THAT FORMATS ASSVME IWD n103P LN0M604 IF OTHERWISE# ADJUST THEM
20 FORMAT(BN1	 PLOT# 22XP8A10P/P25XPBHX-AXIS( P4AIOP11HP Y-AXIS( P

2	 4A10	 )
	25	 21 FORMAT(20XPI.HI#10(10H..••V.o.#X)r2H ► I)

22 FORMAT( I/P7XPI4HPLOT•-ON ENTRYPI3P12H WITH SYMBOL#IXP Al p /9Xb
2	 52HTHE RANGF nF VALUES EXCEEDED THAT SET ON FIRST ENTRY#/P9XP

	

-	 3	 31HCURRENT RANGES ARE(	 (ABSCISSA)P14XP10H(ORDINATE)P/P12XP
4	 13HPIRST ENTRY--P4XP4E11.3P/P12XP12HTHIS ENTRY--P5Xp4E11P3P1I1i

	

30	 23 FORMAT(/I7XP13HPLOT-- ENTRYp13P8H SYMBOL iAl#lI# 141 POINTS ► RANGE
2	 S1HS OF ARSCIS$A AND ORDINATE AREvP/29X)4E11.3)

24 FORMAT(20XP103A1)
25 FORMAT(5XP1PE13.-4P2XP103A1)
26 FORMAT03XP11(1XP1PE9.1)P///)

	

35	
C	 DIMENSION X(N)PY(N)iLINE(lO3P60)PLAB(16)PZX(11)

DATA f8LNKPIAORDPIWDPLNGPNTR/ H P1HIP103P56PO/

	

J	 CW	 7/27/81 REPLACED DATA nN I/O WITH NEXT LINE--RM PROBLEMS
IOUT1N6

	^	 40	 C
NTRooNTR + 1
IF(NTR.E0o1)NN-IARS(N)

C-- MAX-MIN SECTION--FIRST ENTRY ONLY THE RANGE IS 'SET FOR X AND Y
XS1wX(ll

	

k5	 XLI"X(1`)
YS1«Y(1)
YLI-Y(1)
00 31 J•2PNN

XSI-AMINI(YS1PX(J))

	

50	 XL1•AM'AX1(XL1PX(J))
YSI-AMIN1(YS1rY(J))

31	 YLIwAMAX1(YL1PY(J))
1F(NTR,GT.1)A OTn 34

XS,4XS1

	

55	 XL•XL1
YS-YS1
YL n YL 1

k

^f

}

di
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GOTO 39
C--NOT "HE FIRST FNTRYP sn C H ECK RANGES

60 34 IF(XSI#LT XS) GOTH 35
IF(XLI#GT#XL) GOTO 35
TF(YSI+LT#YS) 610T(1 35
IF(YLI-GT.YL) GOTO 35
GOTO 39

65 C-+-OUT OF RANGE*,-r WRITF MESSACE AND SET A FLAG WITH NTR
30 WRIT M OUTIP M NTR ► LP#XS#XLYYS#YL#XS1#XLI#YS1#YL1

NTR» - NTR
GOTO 55

0--WRITE MESSAGE A6nlJT THIS (GOOD) ENTRY

	

70	 39 WRIYE(IOUTI#?3) NTR#LB#N#X$1#XLlsYS1)YLl
IF(NTR-NE.1) GOTO 55

C ►*-00HE WITH RANG144R NOW SCALING ON FIRST ENTRY ONLY
YSCALE «(XL-VS) /(FLOAT(lWD-2))
YSCALEs(YL-YS) /lFLOAT(LN0-1))

	

75	 DO 70 J•lrll
70	 XX(J)-XS + F LOAT(J-1)*XSCALE* 10#

C-r-PLANK THE PLOT ARRAY I LINE ON THE FIRST ENTRY
DO 33 J•lplWn

DO 33 K++). ► LNG

	

BO	 733	 LINE(J#K)«IALNK
C- BORDERS • -LEFT AND RIGHT

00 44 Jwl#LNG
LINE(l#J)•TRIIRD

44	 LINE(IWD#J)RI9ORn

C-- r FILL IN ARRAY LINE
DO 57 IM11NN
IX«(X(I)-XS)/XSCALF+1,!s

IF(X(I)-LT-xS)IXw1

	

90	 IF(X(I)•GT.XL)IY*TWD
TY U (Y(I)-YS)/YSCALF + +5,
IF(Y(I)-LT-YS)TY-0

TI: (Y(T).GT-YL)IY n LN(: -1

IY v LNG - IY

	

93	 57 LINE(IXPIY) nLR
C--IF NOT THE LAST GRAPH# GO RACK FOR MORE

IF(11.GT-0)0nTO 91
C--MUST BE PLOTIMF -- PRINT TITLE, AXES LABELS# AND TOP BORDER

WRITE(IOUT1#a0)LAR

	

100	 WRITE(IOUTI#21)
C--PRINT Y-» VALUES AND PLOT

YVAL w YL + YSCALE
DO 73 J•l#LNG#2

YVAL -r YVAL 	 YSCALE

	

105	 WRITE(IOUTI#25) YVAL#(LINE(L #J)#Lw1#IWD)
YVAL-YVAL - YSCALF

73

	

	 WRITE(IOUTlo?4)	 (LINE(L#J+i)#Lrl#IWD)
WRITE(IOUT1#21)
WRITE(TOUTI*161	 (?V(L)#L-1#ll)

110 C--CLEAN OF THIS MESS AND RETURN
91 NTRMIABS(NTR)

C-•-IF THIS IS THE LAST GRAPH# RE-INITIALIZE
IF(N-LT-1)NTR.O
RETURN

	

115	 END
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1	 SUBROUTINE LNPLT
CW	 7/24/81	 LNPLT M (lI)IFIEn FOR PLASIMI Nt)W NO FORMAL PARAMETERS
C LNPLT PREPARES ARRAYS X AND Y FOR PLOTTING VIA PLOTW
C N IS NU$hFR OF FNTRIFS IN X AND Y ON FIRST ENTRY

S C N*O SIGNALS LAST FNTRYo FOR ONLY 1 ENTRY ► ENTER WITH wN

IO

15

20

25

30

3$

40

45

50

55

DIMENSION	 LINF(I.O*A P60)PLARtlbliX(,191),#Z(101) j
CW 7/24/01	 CHANCFO CnnF FOR PLASIM PLOTTING. ---STP *INCREMENTS
CW 7/24181	 RLANK COMMON AND LABELED COMMON FROM READER

COMMON	 ZIONi4lt1'^11rX1't?N^41 ► 1'311rVELTZi111^VELTX^1511 i
I ► NIP(41)*0N(41c151) ► ONIt421 ► ISTAT441) I
COMMON/I01	 INoinUTtINPO(14)*KEY ► ICLPLT*ICLWRT ► ITITL(20)

2	 ► IPATHS*IWtTFl(2) ► IF2(4)*ICLERR
COMMON/PARAM/	 N*NUMION ► NUMIT ► R9,R4OUND ► RT*TELOUT ► OMCURPOTIL*

3	 TELINPTHRLFNrUMSION ► VEL90H ► ZBOt1ND)IL ► IR ► PIiBKpQ*FB95NR
4	 DNON ► CEXSFCP TTHNELI ► T IME ► TIMEMU ► XVELMU*ZVELMU ► NSTAG ►
5	 NSTGMU ► NTOTST*PIOV2
DATA NTP ► XONSTPolTRSTP/0 ► 2 ► 2/ F
NTR o NTR+I ,r
IF(NTR.GT61)GOTO 35

CW 7/24/61	 PUT LABELS	 IN LAB FROM ITITL =4
IW2"2*IW
DO 33 JwlfIW?

33 LA9(J)*ITITItJ)
35 CONTINUE

CW 7!24/01	 SET UP DUM MY X ► T. FOR	 PLOTW USING XIONPZION
CW 7/24101	 IF OTHER	 PLOTS DESIRED, CHANGE NEXT LI NES

NITNNUMIT +I
CW 7/20101	 AD HOC	 SFT LIP MAXMIN FC° 	 PLOTW

DO	 34	 IONp1 ► NllMrnN
NITRMNIP(TON)-(NSTAC»1)*(NUMIT-10)
X(l)	 XI(IN	 (ION,I)
ZM	 ZION	 (ION01)
X(NIT)	 m	 X(1)
Z(NIT)	 d	 7.(1)

00	 39	 ITR«7 ► NITR
X(l)	 .	 AMrNl(Xt11,XION(rON ► ITP))
Z(1)	 n 	 AMINl(Z(l)MZION(ION ► ITR))
X(NIT) n AMAYI(x(NIT) ► XION(ION ► ITR))
I(NIT) o A M AX1(I(NIT)tZIONtION*ITR)) ;!

39 CONTINUE
LRm1H it

CALL	 PLOTW(7 ► X ► NIT)LR ► LINE ► LA8)
00 66	 IONr2pN(lMIONo?0NSTP r

C.0	 44 J sQvNTT t
X(J) n 040

44 7,(J)*000
NITRwNI0(ION1
LO-mSHIFT(ION*+!4)
00	 '35	 ITR n 1 ► NITRPITRSTP i
X(ITR) n XION(TnN}ITR)

55 Z(ITR) n ZION(ION ► ITR)
CW 7/24/Al	 IF LAST ENTRY TO PLOTW*	 TELL	 IT SO WITH NM0

IF(TON,GE.NL) M ION)NLTn 0 p

66 CALL	 PLOTW(Z ► x,NTT ► LO ► LINEfLAB) IIt
CW 7/24/R1	 FINISHED WITH ONE PLOT*	 RESET FOR NEXT ONE

NTR n O
RETURN 1

OF , P.00.R QUALM
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END

CARD NR. SEVERITY DETAILS	 DIAGNOSIS OF PROBLEM

kl	 ANSI	 HOLLERITH CONSTANT APPEARS OTHER THAN IN AN .
ARGUMENT LIST OF A CALL STATEMENT OR IN A DATA
STATEMENT.

m!

M t

r
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