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1. INTRODUCTION 

Life support syst~ms for manned space missions use a combination of replen­

ishment and recycle. As mission durations increase and crew sizes enlarge, 

either partial or total recycle options become more attractive (Modell 1977). 

Potential ·life support systems that provide the essentials' of air, water, 

and food through waste recycling have been referred to as CELSS (Closed Ecologi­

cal Life Support Systems) and PCELSS (Partially Closed Ecological LSS) 

(Meissner, Modell 1979). 

For each possible partial or total recycle scenario a break-even point 

exists a.t \'ihich it becomes more economical to send into space all the equipment 

and materials needed t~ close the recycle loops than to stock all the needed 

provisions for use on a once th\ough basis (Modell, Spurlock 1979). Presently 

the knm'lledge needed to identify the optimum recycle PCELSS or CELSS option 

for a given type of mission does not exist. 

A scenario analysis method has been proposed for the initial step of 

comparing scenario options and identifying promising alternatives (Modell, 

Spurlock 1979). The method consists of five steps: 

1) Specify the diet. 

2) Select the food-producing processes. 

3) Determine waste-processing requirements and methods. 

4) Characterize equipment and facility requirements. 

5} Test control strategies and determine the ability of the scenario 

to ensure man's survival. 

-1-
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This paper presents the results of applying the scenario analysis method 

on a simplified CELSS scenario. Emphasis is on the fifth step of~the method. 

Control strat~gies and survivabil ity are evaluated with a new approach to the 

ana 1 ys is of envi rorimenta 1 systems deve loped by Hornberger and Spear (1980). 

The approach combines probabilistic Monte-Carlo simulation techniques \'tith the 
.: ' . "i 

notion of descriptors of system behavior to evaluate system performance. The 

ability of the simplified scenario to ensure man's survival is investigated 

with this approach. The approach can also be used as a generalized sensitivity 

analysis procedure to isolate the critical uncertainties in the system and 

derive information of use in focusing the next phase of research. 

The result~ presented can not be viewed as a prediction of the survivabil­

ity of any future CELSS. The scenario model developed is simplified to such 

an extent that it does not have that kind of predictive value. Much of the 

information needed to develop even first preliminary predictive models Ilas not 

yet been collected. 

Instead, the model has been developed and the scenario analysis approach 

applied to it to serve as an example of how the approach may be utili~cd on 

more ~ealistic predictive models to evaluate the attractiveness of alternative 

partial or total recycle systems. One goal of this paper is to create an 

awareness of the Monte-Carlo System Descriptor evaluation process among those 

responsible for supplying information to the system modelers. 

2. CLOSED ECOSYSTEMS 

A closed ecosystem can be considered as a collection of living and non­

living components combined in such a way that they ~re closed to mass exchange' 

across the tot.:d systelll uoundtlry. l-:ithin the bounclill'Y, hOI-leVel", mass mlly 
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collect in a flow among the components as determined by the dynamics of the 

ecosystem. 

To survive indefinitely, the mass flows must form c.losed cycles. The 

simplest ecosystem cycle is a three step process (Quinlan 1975, Quinlan, Paynter 

197.6) illustrated in Figure 1. First, plants (autotrophs) use radiant energy 

to synthesize complex organics from carbon dioxide and other nutrients. Next, 

the plants are eaten by food consumer.s Cheterotr·ophs). Ultimately the con­

sumer's oxidized waste products return to the inorganic nutrient pool to com­

plete the cycle. 

A simple CELSS that includes closed mass flow cycles is shown conceptually 

in Figure 2. In this envisioned space colony humans are the heterotrophs. 

The autotrophs are the plants required to provide the food supply. The human's 

metabolism oxidizes to carbon dioxide and water a portion of the food. The 

remainder appeal~S as partially oxidized products in the human ' s \'Jaste products. 

If the recycler fully oxidizes the partially oxidized wastes and any nonedible 

portion of the plants, the inorganic nutrients needed for plant photosynthesis 

are reproduced. The-net effect of human metabolism plus waste oxidation is 

the reverse of the net plant photosynthesis and the gross material balance 

cycle is closed (Modell, Spurlock 1979). 

Note that the CELSS shO\'Jn in Figure 2 contains h:o basic types of elements 

flow elements and ~torage elements. The flow elements are considered to 

be "transducers" that transduce a stream of inputs to a steady stream of out­

puts. With the exception of the growing food, a negligible fraction of the 

system mass is contained in the flow elements. Most mass is held in the vari­

ous storages. 
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3. MODEL DEVELOPMENT 

A" state equation model based on the conceptual CELSS of ~igure 2 ha~ been 

developed to demonstrate scenario and control strategy evaluation "by means of 

Monte-Carlo simulation \'lith descriptors of system survival. The five step 

scenario analysis method guided the model development. 

The inputs required to support a person in space are shown in Table 1. 

A simple diet scenario based on wheat can be specified to meet 'the dry food 

requirement." Given this harvest requirement, the carbon dioxide, water, and 

nutrient inputs and the oxygen output must be determined for the food producing 

p}"ocesses. 

The human requirements for oxygen, food, and water have already been given, 

but the "corresponding outputs of carbon dioxide and water vapor must be calcu­

lated. Finally, the waste inputs and characteristics of the waste recycler 

must be specified. For details of these calculations see Stahr (1979). 

The recycler is based on an incineration oxidizer proposed by Meissner 

" and Modell (1979). The recycler outputs are chosen to close the material 

balance cycles. This situation corresponds to the ideal case in which all 

\'laste inputs can be successfully recycled and the CELSS system could survive 

indefinitely as long as each system component performs at its steady state 

operation point without perturbation. 

The next step of the scenario analysis method is the equipment and facil­

ity specifications. This step along with the survival analysis is ~ssential 

for the break even cost point determination, however, specific details are not 

considered here because they are not needed to illustrate the evaluation process. 

The analysiS just completed determines a simplified equilibrium flo\,1 

CELSS model. The steady state mi.lSS flO\'J values derived in Stahr (1979) arc 
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,. shown in Figure 3. The state equations,- each of which expresses mass contirt~­

ity for the particular storage involved, are 'listed in Figure 4. 

A constant growth rate over the plant's. 196 day growing cycle is assumed. 

The average biomass' holdup (GROW) is half the harvest biomass. So, each day 

2~~06W of the grO\'/ing food is ·harvested. 

To achieve interesting dynamic behavior model· devel.opment must proceed 

beyond just equilibrium flow considerations. Some examples of the type of 
- I 

behavior that should be present in the model include: 

1) The plant growth rate should be affected by environmental conditions. 

2) Required human inputs sho~ldbe dependent on the level of human 

activity. 

3) Control laws for the recycler and purifier and other flows such as 

the nutrient flow to the growing crop must be formulated. FlO\'/s 

needing such laws are indicated with a flow valve indicator in 

Figure 3. 

4) Flows from a storage should go to zero as the volume of material 

held in storage approaches zero. 

All these examples and others are included in the model. For instance, 

the plant growth rate is affected by four variables -- the levels of applied 

nutrient and water, the atmosphere carbon dioxide partial pressure, and the 

relative humidity. Some simulations include a fifth variable, a random 

parameter that models a growth rate limit due to some unknown cause. 

A detailed term by term derivation of the model equations is given in 

Stahr (1979). 

4. A GENERALIZED SENSITIVITY ANALYSIS PROCEDURE 

The analysis approach developed by Spear and Hornberger is now presented 

in summary form. (See Hornberger and Spear 1980, Spear 19~Oa, 1970b fOl~ a more 
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detailed exposition)., ;.~ ) 

4~'l' The Monte:Ca flo .•.. Systefu Descri ptor' 'Ana lys i:sAppr~ach" 

Consider prot·~ss.es that ~an be modeled by a set of first order differen­

tial equations of the form (other models may be haridledsimilarly): 

A~.(t} = Se(t) = f(x(.t), f."Q,(t}) 
dt 

where: ~(t) = state vector E = tincertain ~a~amcters 

Q,( t} = inputs, for.cing function, time variable, f.unctions, 
assumed deterministic here for simplicity. 

Different equations correspond to different CELSS scenarios or differ~nt con­

trol'strategies within a scenario. Each element of the parameter vector ~ is 

consi~e~ed to be a random variable with a distribution corresponding to the 

uncertainties in the flO\'/s to be expected to or from a CELSS component, or 

to the ul1cel~tainty in the required volume of each storage. The parameter 

distributions define an ensemble of models for the scenario. 

For each randomly chosen parameter set ~* there corr'esponds a uni que 

state trajectory~( t) ,and obseryati on vector y*( t). A behavi ordescri ptor 

for the system is defined in terms of yet). For CELSS this descriptor could 

be survival or nonsurvival of the human occupants for the mission duration. 

More complex multi-possibility behavior categories could be defined. 

Multiple computer simulations are performed for random choices of c from 

the predefined dis~ributions. Each simulation either res.ults in a behavior, 

B, or not a behavior, B. For each element, Ek' of the parameter vector £ 

the multiple runs result in a.set of values ck associated with B and a set 

. associated with B. The subset of pa'rametel~s that account most strongly for 
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the occurence of B or B must be identified. A large fraction of.the·parameters 

are often uni~portant to the critical· behavior. 

A sensitivity rankinf'can be based on a measure of the separation of the 

cumulative di stributftm functi ons F(Ek I B) and F(Ek IB) using the Kolmogorov­

Smirov two sample test statistic: 

d n· = suplS (x)-S (x)1 m, x n . m . 

\'/here for n behavi ors and m nonbehavi ors: 
Sn = sample distribution corresponding 
Sm = sample distribution corresponding 

to F(Ek I B). 

to F(EkIB). 

Large values of.<dm,n indicate that the parameter distributions have separated 

and the occurence of B or B is sensitive to the parameter value. In cases 

where induced covariance is small the converse is true for small values of 

d m,n 
A parameter might be strongly coupled with other parameters to affect the 

behavior. Therefore the induced covariance structure must be included in a 

full sensitivity ranking. (See Hot"nberger and Spear 1980.) 

Upper and lov/er limit probability bounds for a sample distribution may be 

obtained through use of the statistic 

o = supISn(x)-F(x)1 n x 

where S (x) = the sample cumulative distribution. 
n 

~-

F(x) = the true distribution (assumed to be continuous). 

Kolmogorov determined the distribution of D. A confidence band about S (x) 
n n 

that includes F(x) with a given probability can be set up. 

P {D = suplS (x)-F(x)l> d} = a 
n x n. a 
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. 
Given'n and a, d may be found in any elementary book, on statistics or in Spear . . . " . . . 
(.1970b). ,Finally, confidence'regi~nsfor the true dis'tribution may be found 

. '\ .- '/ . . 
., '-, .. " . '- . . . 

from: 
, .;;)~"yl: '':''', ',.: 

P {S (x)-d ~F(x)~S (x) + d for all x} = nan ,a l-a. " 

4.2 ' Model Survival Criteria 

In the model simulations, the behavi6r, B, is defined as nonsurvival of 

the human occupants. The CELSS must be designed to maximize the probability 

of the sw~vival of the occupants,_ B. Failure to survive is evaluated with 

'three criter; a: 
. ~ . 

1) Oxygen.' If the human lung alveolar oxygen partial pressure ," 

ever drops below 35mm Hg the humans perish due to lack of 

oxygen (Billings 1972). 

2) Food. If the humans do not receive their ideal food supply 

a food deficit starts accumulating. Failure occurs if they 

receive the equivalent of no food for a fifty day period. 

Food 

, (TmaX 

Survive if: )o~ (l 

Fail if: 
. 1 ~
Tmax 

-- (1 . 50 

FM 
- Fl:nT) dt <1 

If a food deficit exists and plenty of food is presently 

available, FM \'Ji1l increase above FMII ,to start decreasing the 

defi cit. ' 

3) Drinking water. Simi1arly~ failure occurs if the humans 

receive the equivalent of no water for a five day period. 
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r~x . 1 HMO 
Survive if: 05 . (l - HOSS) dt <1 

. \~ater ~Tmax 
FaH if: 1 (1 _ HHO_) dt >1 

5 " HOSS -
0 

Failure occurs if ~ny of the three criteria indicates failure .. 
" 

S. SH1ULATIONS 

S.l Control Laws 

T\'Io control strategies are contrasted in the simulations. These strategies 

will be called proportional control and supervisory control. 

Th~ proportional control regulates the flows from storage based solely on 

the amount of matter contained in the storage. The rate laws for three of the 

flo\'JS are illustrated in Figure 5. The la\."s for the other rates, for- example 

the waste recycler operation rate (RRTE), are all directly proportional to 

the storage involved (I1STR in this case). 

RRTE = ,WS\G . WSTR • RRAO 

The proportional gains, I1STG in this instance, are all set so that the steady 

state recycl er rate is reached \'!hen the storage contai ns 25 days \'Iorth of 

material. RRTE is more complicated than the other rates because it contains 

a modulating factor, RRAO, included to model incomplete combustion at 10\'/ 

atmospheric oxygen concentrations. 

The superv; sory" contra 1 monitol"s the food and oxygen 1 eve 1 and takes 

corrective action if either level starts becoming 101.". Two steps are taken to 

raise the level 
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1) More crops ,are pl~nted which produce more oxygen • 
.. ;.1:, -, ! 

2) The recycler opcfrati on· rate:is decrea:sed \ihich' decreases the 

recycler's oxygen consumption. 
;".i i.. 

~/hen the food storage bC~Ij!llCS low' the pla~ting rate: is increased. 
' . 

. Notice that if. the sys'tem does.become unbalanced, pressure can be applied 

only at certain pbints ,'suchas"those ab~ve, to attempt a correc'ti'on. H.owever, 
. ~~., "~ ~:';' . . f " ,: .;.: .'. . -. .." - , , . . . _', ! . 

such attempts could conceivably unbal,ance some other part of the system ancf·· 
- -. ._" 

lead to different failures. 
.'! ' 

5.2 Flow Uncertainty Results 

,'., i.' The: first simulations were conducted with three random parameters relating 

to flow uncertainties. They are: 

,1) . UHl. Reflects uncertainty in the fraction of the harvest that is 

ed.ible food, 

,2) ULOA. Uncertainty in the human level of activity which affects 

all the hwnan inputs and outputs. 

3) UBOP. A growth rate limit due to some unknown or unmode1~d cause' 

(i .e., not nutrient, water, carbon dioxide or humidity levels). 

Each parameter was given an independent, rectangular probability density 

function distribution with upper and lower limits 25% away from the steady 

state values of 1. Since only upper and lower limits are knO\·m, the rectangu­

lar distribution will provid~ the least biased specification of the parameters. 

For botll control schemes 100 simulation runs of 500 day length were con­

ducted with different storage volume initial conditions. The results of these 

runs are presented in Table 2. Looking at the results for the Supervisory 

control with 100 day storage it is seen that no failures occurred. Thus, the 
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estimate of the probability of success (survival) is unity. Since 100 simula-' 

tions were performed we can say that 

0.96 < probability of survival ~l 

with 95% confidence. (See Clopper 'and Pearson, 1934.) 250 days supplies are 

required 'to make the same statement with the proportional control. -

Figure 6 shows state variable plots for one of the 200 day supply propor­

tional cont~ol failures. The human~ perished at 410 days from insufficient 

oxygen. This failure like all the others presented in this paper is a conse­

quence of the system's dynamics and can not be predicted on the Qasis of an 

algebraic analysis of flm'/s. 

5.3 Recycler Shutdown 

The response of the model to the unexpected event of a twenty day recycler 

shutdown was studied next. For these simulations the factors UH1, ULOA, and 

UBOP were all set to their steady state value of 1 so that the system could 

operate at steady state in the presence of no distrubances. Storages were 

set to 25 days supplies. 

We might expect system survival since storages exceed shutdown time. 

This expe'ctation, hm,/ever, is not necessarily correct as can be seen from 

the proportional control results of Figure 7 and the supervisory control 

results of Figure 8. 

With the proporti ona 1 control, the twenty day shutdm·m causes a fail ure 

nlore than 800 days after the event. The system is never able to re-reach 

steady state. The additional flexibility of the supervisory control allows 

the system to recover without failure. 

The importance of selecting IIgood" control strategies is illustrated by 
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the improved supervisory control performance in this and the earlier simulations. 

5.4 Storage Size Sensitivity Analysis 

In·the previous flow uncertainty simulations we found that 100 days worth 

of supplies were needed to ensur~ survival. However, some of these storages may 

have been unimportant to survival and been sized much larger than actually neces­

sary. The sensitivity of individual storage sizes to the recycler shutdown event 

is now studied. The more effective supervisory control is used in the study. 

The storage initial conditions were given rectangular probability density 

functions with the limits indicated in Figure 9. Two hundred fifty simulations 

of 500 day missions were performed which resulted in 103 survivals and 147 fail­

ures. The cumulative distributions for each storage are shown in Figure 10. 

Table 3'contains the Ko1mogorov-$mirov statistics, d for each storage. m,n 
The statistic for two storages, NSTR (nutrient storage) and WSTR (waste 

storage), indicate at above the 99% level of significance that the simulative 

distributions fail the null hypothesis of identical distributions. All other 

storages fall below the 99% level. These results indicate, at least in terms 

of a univariate analysis, that the NSTR and WSTR storage sizes are the most 

important determinants of the behaviOl~. 

Note that the distributions for FSTR show that for the initial condition 

ranges used, there are regions such that the survival probability is high for 

cases with small initial food storage. Also, there are regions such that the 

survi.val probability is low for cases with large initial food storage. 110\,/­

ever, univariate analysis is misleading due to the multiple modes of failure. 

An analysis of the covariance structure should uncover significant couplings . 

among the initial condition parameters, if they exist. 



It may also seem odd that the WSTR initial condition should affect the 
-

survival probabil ity significantly. However, the supervisory control gains 

part. of its flexibility fronl being able to decide how fast to re~ycle the wastes 

in sotrage. This flexibility is losi if only small amounts of waste are present. 

The univariate analysis indicates that the NSTR and HSTR sforages are 

adversely affecting the CELSS survival as presently sized. The next step in the 

storage size design process is to incr~ase these storages and repeat the multi­

ple ~imul~tions. 

NSTR was increased from its previous range of values to a constant value 

of 200 days supply. The large figure was chosen because the NSTR separation 

was so large and the additional nutrient weight is negligible compared to the 

total weight of the CELSS storages. WSTR was increased to the upper limit of 

its previous range. The full initial condition set for this second set of 

multiple runs may b~ found in Figure 11. 

In a set of 250 simulations absolutely no failures occurred with these 

nevI initial conditions .. The estimated probability of survival is unity. 

Thus, with 951 confidence we can say that 

:0 .. 98 < probabil ity of survival ~l 

for the modified initial conditions when subjected to this particular unexpected 

event. (See Clopper and Pearson, 1934.) With this level of confidence we can 
-

now conclude that the storage initial conditions as presently sized provide a 

high probability of survival fOt' the recycler shutdown event. 

We might wish to examine a design alternative that does not involve 

increasing the waste storage size. If we want to c~ange any of the initial 

condition probability densities, the entire analysis process must be repeated. 

A multiple run could be done in which all HSTR initial conditions w~re set 
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equal to zero. New sets of.cumu1ative distributions would .be determined that 

might now.indicate diff"erent sensitivities caused by the changed system struc-

ture .. 

Similarly a different unexpected event could require different storage 

s.izing to ensure survival. The total range of possible events, rather than a 
, f' • 

single'event, must be defined and considered in a complete CELSS scenario 

evaluation. 

6. DISCUSSION 

An approach to the problem of comparing alternative CELSS of. PCELSS ste­

narios and control strategies within a scenario has been illustrated in this 

paper. We see that once probability distributions have been assigned to all 

uncertain parameters of the system, this method performs a generalized sensitiv­

ity analysis. This enables us to determine the critical parameters or regions 

within the range of the par~meters leading to a high probability of survival. 

If the model does not include provision in some form for a possible criti­

ct\l fai.lure mode of.the real system, there is nothing in the sensitivity anal­

ysis method that will uncover the sensitivity. Fo~ instance, microelements 

may build up in the plants or humans or microorganisms might be present that 

could lead to other possible failures. 

The existence of failure modes that are a consequence of the system's 

dynamic interactions and not predictable from static analysis, complicates 

the modeling task in CELSS systems because it is more difficult to determine 

the elements of the system that can be neglected in simulation studies. The 

generalized sensitivity analysis presented here should help in that effort 

as well as find use in control strategy evaluation. 
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Oxygen 

Drinking Water 
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900 

1800 

Sanitary Water 2300 

Domestic Water I 16800 
'---_ .... _. ------- . - -.-.- ,----- .-..• -_._---------_ .. -_ ... __ 1 

TABLE 1: Inputs required to support a person in space. 
Adapted from Modell (1977) 
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NUMBER OF FAILURES IN 100-RUNS 
NUMBER OF STEADY (500 day mission length) 
STATE DAYS STORAG.E PROPORT!ONAL--' '-----SUPERVI"S'ORY 
FOR ALL STORAGES CONTROL CONTROL 

I 50 39 I I I 100 I 21 

22 
o 
o I 150 I 13 

I 200 6 - I 
L ____ :.?~ ____ . ____ . _J __ -~_._ .. _____ . ________ ~ ___ ._. ____ .. _. __ J 

TABLE 2: Flow uncertainty results. 

- - - - -- .- --------
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STORAGE dm,n 

GROW .1345 
FSTR .1763 
NSTR .6561 
AOST .·1576 
HSTR .1019 
CSTR .1567 
WSTR .2510 
SDST .0965 

Acceptance limit for the Kolmogorov-Smirnov t\'m sample 
test (Lindgren 1976) 

0(=.01 1.63 I~+:' = 1.63 j~g§+~tt~"1 = .2095 

TABLE 3: Kolmogorov-Smirnov two sa~ple test statistic. 
for each storage. 103 survivals. 147 failures. 
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FIGURE 1: Simple ecosyst.em cycle 
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FIGURE 3: Equilibrium mass flow 
CELSS model. 
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ut 98 
d . 
cIt FSTR = .133 UHl • GROW - FM. 
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It WSTR = .867 • UH2·· G~~W + WM - WRSS • RRTE 

It NSTR= NRSS . RRTE - NF 

d . 
cIt SOST = SOM - SOPS . PRTE 

it ~O'ST = OF. - OM - OWSS . RRTE 

.. ' 

A HSTR = HPSS • PRTE + AHF + AHM + AH~IS • RRTE - HM - HF 

ddt CSTR = CM + CWSS . RRTE - CF 

. STATE EQUATION Nm1ENClATURE 

AHF' Plant atmospheric \'Jater .output 
AHM Human water output to atmosphere 
AHWS Steady state waste recycler water output 
AOST Atmospheric oxygen storage 
BO Plant net growth rate 
CM Human carbon dioxide output flow 
CSTR Carbon dioxide storage 
CWSS Steady state waste recycler carbon dioxide output 
FM . Actual flow of food to man 
FSTR Food storage 
GROW Growing food crop 
HF Actual plant water flow 
HM Water flow to humans 
HPSS Steady state purifier output 
USTR ~Jater storage 
NF Actual nutrient flow to crop 
NRSS Steady state recycler nutrient production rate 
NSTR Nutrient storage 
OF Oxygen output rate of plants 
OM Actual oxygen flow to humans 
OWSS Steady state waste recycler output 
PRTE Purifier control rate 
RRTE Recycl er opera ti on ra te 
SDM Sanitary and domestic water flow to humans 
SOPS Steady state purification rate 
SDST Sanitary and domestic storage 
UHl .Edible crop fraction uncertainty 
UH2 Inedible crop fraction uncertainty 
WM Actual human waste production 
WRSS Steady state waste recycler iriput 
WSTR Waste storage 

FIGURE 4: Modei state equations and nomenclature 
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a) Food to man. 

b) Water 

FRTE. 
,- ! 

FHIf-

/ 
/ 
·------~3522'--------------~----.. ~ 

FSTR 

to man f 
HMDI"7 

HMHT 

.~. 
/~------------------- I 

,/' 
L_·l32155":1-

HSTR 

c) Water to Plant1 -l 
HRTA HFI r ..._____ .. _--] 

~~ 13d55f~_ 
HSTR. 

FIGURE 5: Fiow laws' 
a) Ideal flow until FSTR contains 5 

days supply of food. 
b) Ideal flow until HSTR contains·7.4·days supply 

of drinking water for the humans (.5 days 
total water requirement). 

c) Ideal flow until HSTR contains 23.6 days supply 
o'f water for the growing crop (5 days total water 
requirement). 



PROPORTIONAL CONTROL 

Initial Conditions 
(200 days suppli::s) 

GROVl=519027.6 
FSTR=140880 
NSTR=200 
AOST=332000 
HSTR=5302040 
CSTR=548000 
WSTR=O 
SDST=O 

Comments: • UH 1 = 1.094 
ULOA=1.224 
UBOP=.7616 

.Failure at 410 days due to lack of oxy,gen. 

FIGURE 6A: 200 day supply i uncertain fl0\7 I proportional c'ontrol. failure. 
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FIGURE 7A: 

PROPORTIONAL CONTROL 

Initial Conditions 
'(i5 days ~upplies) 

GROVl=519027.6 
FST,R=17610 
NSTR=25 
AOST=41500 
HST~=662755 
CSTR=68500 

. WSTR= 122995 
SDST=477500 

. " 

Comments: . -Recycler shu'~off for 20 days starting at day 10~ 

-UH1,ULOA & UBOP all set equal to 1. 

-Failure at 880 days due to lack of food. 

Recycler.shutdown, proportional control, failure. 
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SUPERVISORY CONTROL 

Initial Conditions 
(25 days supplies) 

GROVJ=519027.6 
FSTR=17610 
NSTR=25 
AOST=41500 
HSTR=662755 
CSTR=68500 
WSTR=122995 
SDST=477500 

Comments: -Recycler shutoff for 20 days starting at day 10. 
-UH1,ULOA,&UBOP all set equal to 1. 
-Failure at 880 days due to lack of food. 

FIGURE 8A: Recycler shutdown, supervisory control, survival. Compare 
with figure 7. 
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FIGURE 8B: R~c~cler shutdown, supervisory control, survival •. Compare with figure 7. 
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SUPERVISORY CONTROL 

I INITIAL CONDIT! ON l. ______ _ LOWER LDlIT I 
UPPER LI~l I 

i-'1."2. 519027.6 

I 
I 

GROW 

NSTR 
AOST 

HSTR 

CSTR. 
WSTR 
SDST ,. 

".8'519027.6 
·4-17610 
.4·25 
1- 41500 
~4·662755 

.4-68500 
0 
0 

I 1.2 ·17610 
! 1.2,,25 

I 1.2 '4.1500 
1 '.2· 662755 
1.2-68500 
122995 
477500 

----------'------------------

. Comments: ·"I.C.~s selected from rectangular probabil:i,.ty 
density functions. 

eUH1,ULOA &UBOP all set equal to 1 

.~ .' 1" ." 

.: ,I ..... ,:.::~ 

.. : .... !. 

ioN '. '. 

-The atmospheric volume is dependent on the AOST I.C. 

FIGURE 9: St,orage size sensitivity analysis initial coIidi-tions. 
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SUPERVISORY CONTROL 

r-- --r 

UPPER LIMI~ I 
! INITIAL CONDITION LOWER LIMIT 

GROW .8-519027.6 
I 

1.2-519027.61 
FSTR .4-17610 1.2 -17610 
NSTR 200. 200 
AOST 1·41500 . 1.2'41500 
HSTR .4-662755 J .2-662755 
CSTR .4-68500 1.2~68500 

. WSTR 122995 122995 
SDST 0 477500 

Comments: -I.C·ts selected from rectangular probability 
density functions. NSTR & WSTR increased from 
figure 9·. values •. 

·UH1,ULOA & UBOP all set equal to 1 

I 

.. 

eThe atmospheric volume is dependent on the AOST I.C. 

FIGURE .11: Increased NSTR & WSTR storage size sensitivity 
analysis initial conditions. 
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Nomenclature 

AHF Plant atmospheric water output 
AHFS Steady state plant respiration fraction 
AHGS Steady state plant lost moisture fraction 
AHM Human water output to atmosphere . 
AHMO Human water output to atmosphere due to oxidation 
AHMT Human ~ater output to atmosphere (sweating, breathing) 
AHST Water vapor mass per unit volume of atmosphere 
AHHS Steady state waste recycl er water output. 
ANST Nitrogen mass per unit volume of atmosphere 
AOST Oxygen storage in total atmosphere 
BAC Atmospheric carbon dioxide growth rate modulating factor 
BAH Humidity growth rate modulating factor 
BH Available water to ideal water fraction 
BN Available nutrient to ideal nutrient fraction 
BO Plant net growth rate 
BOP Plant total growth rate 
BOPS Steady state total plant growth rate 
BaR Plant respiration rate 
BaRS Steady state plant respiration rate 
BOSS Steady state plant net gro\'/th rate 
CF Plant carbon dio~ide input flow 
CFPS Total plant photosynthesis carbon dioxide flow 
CFRS Plant respiration carbon dioxide flow 
CM HUman tarbon dioxide output flow 
cr·1SS .... Steady state humun carbon dioxide output flow 
C02V Atmospheric carbon dioxide level modulating factor 
CSTR Carbon dioxide storage 
CI~SS . Steady state \'1aste recycler carbon dioxide output 
FDEF ~ Food deficit 
FMActual f16w of food to humans 
FMDF Food deficit flow modulating factor 
FMI Ideal flow of food to humans (including food deficit) 
FMII Ideal flow of food to humans (not including food deficit) 
FMSS Steady state flow of food to humans 
FRTE Controlled flow level of food to humans 
FSTR Food strirage 
FSVL Fooq survival criteria 
GIWS Steady state growing food crop 
GROW . Growing food crop 
ImEF Human water def; cit 
HOSS Steady state human drinking water flow 
HF Actual plant water flow 
HFGS Steady state plant photosynthesis water flow 
HFI Ideal water flow to plants . 
HFMS Steady state plant moisture fraction water flow 
HM Water flow to humans 
HMO Actual human drinking water flow 
lI1,mF Water defi cit modu1 ati I1g factor 
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HMDI Ideal human drinking water flow 
HMRT Controlled water rate to humans 
HPSS Steady state purifier output 
HRTA Available \'/ater flow to crop 
HSDS Steady state sanitary and domestic water flow 
HSTG Sanitary and domestic control gain 
HSTR Water storage 
HSVL Water survival criteria 
LOA Steady state human level of activity 
LOM Actual level of activity . 
LOI\C Carbon dioxide level LOA modulating fact.or 
LOAF Food deficit LOA modulating factor 
LOAl "Ideal" level of activity 
MFB Supervisory control food level·modulating factor 
MOB Supervisory control oxygen level modulating factor 
MOF Supervisory control oxygen level modulating factor 
N Total moles in the atmosphere 
NF Actual nutrient flow to crop 
NFA Ava il ab 1 e nutri ent flo\'l to crop 
NFl Ideal nutrient flow to crop 
NFSS Steady state nutrient flow to crop 
NRSS Steady state recycler nutrient production rate 
NRTE Controlled nutrient flow level 
NSTG Nutrient control gain 
NSTR Nutrient storage 
OF Oxygen output rate of plants 
OFPS Steady state total photosynthesis oxygen production rate 
OFRS Steady state plant respiration oxygen consumption 
O~'1 Actua 1 oxygen flo'l'l to humans . 
om Idea 1 oxygen fl ow to humans 
OMSS Steady state oxygen flow to humans 
ORTE Oxygen flOl'1 to humans modulating factor 
OSVL Oxygen survival crited a 
OWSS Steady state waste recycler output 
P I\tmospheric pressure 
PC02 Carbon dioxide atmosphere fraction 
PH20 Water vapor atmosphere fraction 
PN2 Nitrogen atmosphere fraction 
P02 Oxygen atmosphere fraction 
P02L Lung alveolar oxygen partial pressure 
PRTE Purifier control rate 
RII Re 1 ati ve humi clity 
RRI\O Oxygen level recycler rate modulating factor 
RRTE Recycler operation rate 
SOI-1 Sanitary and dOlllest"ic \'1ater flow to humans 
SOPS Steady state purification rate 
SORT Sunitary and domestic water flo'l'l control rate 
SOSG Sanitary and domestic control gain 
SOST Sanitary and domesti c 'l'/aste storage 
SEED Planting rate 
SVL Total survival criteria 
UBOP Gro'l'rth rate uncertil"j nty 



UHl 
UH2 
ULOA 
VATM 
WM 
WMSS 
WRSS 
WSTG 
WSTR 
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Edible crop fraction uncertainty 
Inedible crop fraction uncertainty 
Random growth rate 1 imi ting factor- . 
Atmosphere volume 
Actual human waste production 
Steady state human waste production 
Steady state waste recycler input 
Haste recycler control gain 
Waste storage 

... 
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