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I INTRODUCTION 

T h i s   r e p o r t   c o v e r s   t h e   r e s e a r c h   c a r r i e d   o u t  by SRI on   con t r ac t  

NASI-13792 (SRI p r o j e c t  4026) d u r i n g   t h e   p e r i o d  5 February 1975 t o  

5 February 1976. The p r imary   goa l   o f   t he   r e sea rch  i s  t o  des ign  a f l y -  

a b l e  SIFT  computer t h a t   c a n   d e m o n s t r a t e   t h e   f e a s i b i l i t y   o f   a n   i n t e g r a t e d  

func t ion ,   fau l t - to le ran t   computer   in   connnerc ia l   av ia t ion .  

P r i o r   r e s e a r c h  by S R I  on   con t r ac t  NASI-10920 (SRI p r o j e c t  1406) 

[Refs.  1,2] over   the   per iod   October  1972 to   October  1973 cons ide red   t he  

d e s i g n   o f   f a u l t - t o l e r a n t   c o m p u t e r   a r c h i t e c t u r e s  and, i n   p a r t i c u l a r :  

J; 

e The computa t iona l   and   r e l i ab i l i t y   r equ i r emen t s   o f   an  
advanced   t ransonic   commerc ia l   t ranspor t   a i rc raf t   us ing  
f ly-by-wire   t echniques   wi th  a un i f i ed   d ig i t a l   comput ing  
system. 

e The impac t  of  modern d i g i t a l   c i r c u i t   t e c h n o l o g y   o n   t h e  
des ign   of   such  a computer. 

e C a n d i d a t e   a r c h i t e c t u r e s   f o r  a computer t o   s a t i s f y   t h e  
requirements.  

One of t h e   a r c h i t e c t u r a l   c o n c e p t s   c o n c e i v e d   i n   t h a t   s t u d y  was given 

t h e  name "SIFT" (Software-Implemented  Fault-Tolerance).  It showed g r e a t  

p romise   o f   s a t i s fy ing   t he  extreme r e l i a b i l i t y   r e q u i r e m e n t s   o f   t h i s  a p p l i -  

c a t i o n  class. The d e t a i l e d   d e s i g n   o f  a computer  based  on  the  SIFT  con- 

cep t  i s  t he   p r imary   ob jec t ive   o f   t he   s tudy   r epor t ed   he re .  

The g o a l s   o f   t h e   e f f o r t  were: 

(1) To develop   the  SIFT des ign   concep t   t o  a p o i n t  a t  
which i t s  p o t e n t i a l   r e l i a b i l i t y  may be  evaluated 
wi th   reasonable   accuracy .  

(2) To i n v e s t i g a t e   a l t e r n a t e   s t r a t e g i e s   f o r   p h y s i c a l  
imp lemen ta t ion ,   u s ing   ava i l ab le   o r   spec ia l ly   des igned  
components . 

* 
Numbered r e f e r e n c e s  are l i s t e d  a t  the  end  of   the  chapter .  



(3 )  To prove   the   cor rec tness   o f   the   hardware   and   sof tware  
des   i gns  . 

( 4 )  To model the   sys tem  and   eva lua te  i t s  e f f e c t i v e n e s s  
from a f a u l t - t o l e r a n c e   p o i n t  of  view . 

To ach ieve   t hese   goa l s ,   t he   r e sea rch  was d i r e c t e d  a t  t h e  c r i t i ca l  

a spec t s   o f   t he   des ign ,   l eav ing  less c r i t i c a l  a s p e c t s   t o  a la ter  phase 

i n   t h e   r e s e a r c h  program. 

Some o f   t he   r e sea rch   r e su l t s   r epor t ed   he re   have   been   p rev ious ly  

d i scussed   i n   t he   mon th ly   t echn ica l   p rog res s   r epor t s   and   i n  a series of 

s even   t echn ica l  memos tha t   have   been   i s sued   du r ing   t he   cour se   o f   t h i s  

s t u d y .   I n   a d d i t i o n ,  a Technica l   P lan   for   the   Future   Development  of SIFT 

w a s  i s s u e d   i n  November 1975. 
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I1 SIGNIFICANT  RESULTS AND OUTSTANDING  PROBLEMS 

In  this  section  we  summarize  the  significant  research  results 

achieved  in  this  study,  and  we  identify  significant  problems  that  remain.. 

A. Significant  Research  Results 

The  principal  objective  of  the  study  was  to  carry  out  a  refinement 

of the  SIFT  concept,  thereby  reducing  uncertainties  in  the  design.  The 

intent  was  to  prove  the  feasibility  of  a  design  based on the  SIFT con- 
cept  with an eventual  goal  of  a  flyable  prototype  (or  "brassboard"). A 

significant  result  of  our  current  study is that  in  this  process  of re- 

fining  the  design,  no  radical  changes  have  had  to  be  made.  Indeed  the 

fundamental  SIFT  concepts  that  distinguish  it  from  other  fault-tolerant 

computer  architectures  remain,  namely: 

e A l l  fault-tolerance  procedures  (error  detection,  error 
correction,  diagnosis,  and  reconfiguration)  carried  out 
by  software. 

e No  essential  special  fault-tolerance--different  replica- 
tion  possible  for  different  tasks,  or  at  different  times 
for  the  same  task. 

e Very  high  reliability  achieved  without  the  need  for  high 
intrinsic  reliability  of  subunits  of  the  system. 

e Reconfiguration  on  the  basis of complete  processor/memory 
modules  or  complete  busses. 

e An ability  to  use  fairly  standard  units  such  as  processors 
and  memories,  with  an  attendant  gain  in  reliability  by 
taking  advantage  of  the  stability of production  processes 
with  standard  high-volume  production. 

The  development of these  concepts  leads  to  a  design  with  the  follow- 

ing  characteristics: 

e Replicated  units  do  not  operate  in  lock-step  mode  but  are 
only  loosely  synchronized.  The  communication  between CPUs 
is  asynchronous,  thereby  removing  the  need  for an ultra- 
reliable  system  clock. 

5 



e Agreement   between  repl icated  uni ts  i s  v e r i f i e d   o n l y  a t  
the  complet ion  of   program  segments   ( tasks) .  

0 F a u l t y   u n i t s  are n o t   n e c e s s a r i l y  removed b u t   c a n   b e   e i t h e r  

e Trans ien t   fau l t s   do   no t   necessar i ly   cause   permanent   removal  
o f   t h e   f a u l t y   u n i t s .   F u r t h e r m o r e ,   t h e   l o o s e n e s s   o f   s y n -  
c h r o n i z a t i o n  among sets  o f   t a s k s  makes i t  p o s s i b l e   t o  
enhance  immunity  f rom  t ransients   by  providing  that   redun-  
d a n t   v e r s i o n s   o f  a computation may be  done a t  d i f f e r e n t  
moments i n  time. 

i g n o r e d   o r   a s s i g n e d   t o   t a s k s   h a v i n g   n o   o v e r a l l  e f fec t .  

0 The degree   o f   f au l t - to l e rance   can  be d i f f e r e n t   f o r   d i f f e r e n t  
tasks   be ing   per formed  and   can   be   d i f fe ren t  a t  d i f f e r e n t  times 
f o r   t h e  same t a s k .  

e No spec ia l   hardware  i s  u s e d   t o   c a r r y   o u t   f a u l t   d e t e c t i o n  
o r   c o r r e c t i o n .  

e Communication  between CPUs i s  minimized s o  t h a t  low  band- 
wid th   busses   can   be   used ,   thereby   fac i l i t a t ing   phys ica l  
separat ion  of   modules   in   environments   where  physical  
damage i s  a hazard.  

0 The design  concept  i s  independent   of   the  way i n  which 
t h e   u n i t s  are b u i l t ;  i . e . ,  no s p e c i a l i z a t i o n   o f  CPU o r  
memory des ign  i s  r e q u i r e d   f o r   f a u l t   t o l e r a n c e ,   t h e r e b y  
a l lowing   t he   cho ice   t o   be   based   on   o the r   p rope r t i e s ,   e .g . ,  
s p e e d ,   a v a i l a b i l i t y .  

e The to t a l   comput ing  power of   the   sys tem  can   be   var ied   by  
u s i n g   u n i t s   o f   d i f f e r e n t   s p e e d   o r  by  changing  the number 
o f   u n i t s .  

D u r i n g   t h e   c u r r e n t   s t u d y   a l l  c r i t i c a l  uni ts   of   both  hardware  and 

sof tware  have  been  s tudied.  The fol lowing are  the   key   r e su l t s   ob ta ined :  

There i s  no r equ i r emen t   fo r  a c e n t r a l   w o r k i n g  memory, 
b u t   t h e r e  i s  j u s t i f i c a t i o n   f o r  a back-up ,   nonvola t i le  
memory, e .g . ,   magnet ic   bubble  memory (VI-C).* 

e Viab le   s t ruc tu res   fo r   t he   i npu t /ou tpu t   subsys t ems   have  
been  developed (VI-B) . 

e Trade-of f   s tud ies   o f   the   bus   sys tem  des ign   have   been  
c a r r i e d   o u t .   C o n s i d e r a t i o n   h a s   b e e n   g i v e n   t o   c o s t ,  
component   count ,   de lay ,   bandwidth ,   re l iab i l i ty ,   and  
s t r u c t u r a l   s i m p l i c i t y   o f   d i f f e r e n t   b u s   s t r u c t u r e s ,   w i t h  
a c o n c l u s i o n   t h a t  a t w o - l e v e l   s t r u c t u r e  i s  preferred  (VI-A).  

* 
P a r e n t h e s i z e d   n o t a t i o n s   i n d i c a t e   t h a t   c h a p t e r  o r  s e c t i o n   o f   t h i s   r e p o r t  
i n  w h i c h   t h e   p a r t i c u l a r   r e s u l t  i s  d i s c u s s e d   i n  more d e t a i l .  



A d e q u a t e   p r o t e c t i o n   a g a i n s t   e x t e r n a l  power t r a n s i e n t s  
e f f e c t i n g   t h e  power suppl ies   can  be  provided,   and 
f a u l t - t o l e r a n c e   o f   t h e  power system  can  be  economically 
achieved (VI-E) . 
O p t i c a l   t r a n s m i s s i o n   o f f e r s  a c o s t - e f f e c t i v e  way of  pro- 
t e c t i n g   a g a i n s t   i n d u c e d   t r a n s i e n t s   i n   d a t a   p a t h s .  

Sa t i s f ac to ry   me thods   have   been   dev i sed   fo r   a l l oca t ing  
tasks   be tween  processors   and   for   devis ing   and  repre- 
s e n t i n g   s u i t a b l e   s c h e d u l e s  (V). 

R e l i a b i l i t y   a n a l y s e s  show t h a t  a system  employing  f ive 
p r o c e s s o r s   a n d   f o u r   b u s s e s   y i e l d s   s a t i s f a c t o r y   r e l i a b i l i t y ,  
w i t h   g r e a t e r   r e p l i c a t i o n   y i e l d i n g   e v e n   b e t t e r   r e l i a b i l i t y   ( V I I ) .  

Fo rma l   p roo f s   o f   t he   r e l i ab i l i t y   p rope r t i e s   o f   t he   sys t em 
can   be   ca r r i ed   ou t   i n  a r i g o r o u s  manner, t hus   p rov id ing  
a s su rance   o f   t he   co r rec tness   o f   t he   des ign ,   and   a l so   t he  
c o r r e c t n e s s   o f   t h e   r e l i a b i l i t y  model  (VII). 

The d e s i g n   o f   t h e   s o f t w a r e ,   i n c l u d i n g   t h e   f a u l t - t o l e r a n c e  
f ea tu res ,   can   be   spec i f i ed   i n  a fo rma l   abs t r ac t  manner, 
t h u s   e n a b l i n g   t h e   p r o o f s   r e f e r r e d   t o   a b o v e   a n d   a s s i s t i n g  
i n   t r a n s p o r t i n g   t h e   d e s i g n   a c r o s s   d i f f e r e n t   h a r d w a r e  
implementat ions  (VIII) .  

I n   c a r r y i n g   o u t   t h e   d e s i g n   s t u d y  i t  has   been   necessary   to   deve lop  

a methodology  for  design  and  analysis.  While t h i s  methodology  has  been 

aimed d i r e c t l y  a t  the   ob jec t ives   o f   the   cur ren t   s tudy ,   they   have   grea t  

r e l e v a n c e   i n   t h e   w i d e r   c o n t e x t   o f   f a u l t - t o l e r a n t   c o m p u t e r   d e s i g n   a n d  

beyond t h a t   t o   t h e   d e s i g n   a n d   a n a l y s i s  of computer  systems i n   g e n e r a l .  

The p r inc ipa l   f ea tu re s   o f   t h i s   me thodo logy   a r e :  

0 Techniques  for  formal  specification  of  complex  computer 
systems. 

0 Techniques   for   formal   p roof   o f   cor rec tness   o f   des ign .  

T e c h n i q u e s   f o r   t h e   a n a l y s i s   o f   r e l i a b i l i t y   o f   f a u l t -  
tolerant   computer   systems.  

0 Techn iques   fo r   a l l oca t ing   t a sks  among processors   and   for  
des igning   and   represent ing   schedules   wi th in   p rocessors  
of a multiprogrammed  multiprocessor  computing  system. 

These   t echniques   represent  a powerful  r igorous  methodology  of  design 

and   ana lys i s   t ha t   can   have  a s i g n i f i c a n t   i m p a c t   o n   f u t u r e   d e s i g n   e f f o r t s .  
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. .... 

B. Outstanding  Problems 

While  our  study  has  considered  all  the  critical  design  and  analysis 

issues,  there  remain  some  outstanding  problems  both  in  the  development  of 

SIFT and  in  the  design  of  fault-tolerant  computers  in  general.  The  major 

outstanding  needs  that  we  see  are  for: 

Continued  refinement of the SIFT design  to  include  all 
design  aspects  and,  in  particular,  to  develop  costlperformancel 
reliability  trade-offs  to  enable  optimized  versions of SIFT 
to  be  produced. 

0 More  definitive  data  on  the  intrinsic  reliability of different 
electronic  technologies,  particularly  the  newest  ones, e. g., 
CMOS Large-Scale  Integrated (LSI)  circuits. 

e Improved  methods  for  the  analysis of coverage,  particularly 
of  diagnosis  techniques . 

e More  definitive  data on the  nature  and  incidence of massive 
transient  disturbances, e.g., as  caused  by  lightning  strikes. 

0 A systematic  study of the  inputloutput  units  within  an 
aircraft  (sensors,  actuators,  etc.)  and of  their  per- 
formance  and  reliability  characteristics. 

Most  of  these  problems  are  considered  in  the  technical  plan  for ' 
future  development  of  SIFT. 
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I11 TECHNICAL PLAN  FOR FLTTURF, DEVELOPMENT OF SIFT 

A. I n t r o d u c t i o n  

The material p r e s e n t e d   i n   t h i s   c h a p t e r  w a s  p rev ious ly   pub l i shed  

i n  November 1975 as an  informal  document. It is i nc luded   he re  so  t h a t  

t h i s   r e p o r t   c a n   b e  a self-contained  document .  

The p lan  as p resen ted   he re  i s  t h a t   o r i g i n a l l y   s u b m i t t e d .  Sub- 

sequent   d i scuss ions   be tween NASA s t a f f  and SRI have   r e su l t ed   i n  a 

recommendation t h a t   c e r t a i n   t a s k s   s h o u l d  be  delayed  from  Step 2 t o  

S tep  3 .  These are the  tasks   "Test   Procedures"   and  "Aircraf t   Test  

I n t e r f a c e "  as shown i n   F i g u r e  111-1. 

The p lan  i s  p r e s e n t e d   i n   d e t a i l   f o r   t h e   p e r i o d  up t o  November 1976, 

by which t i m e  t he   des ign  i s  expec ted   t o   have   been   comple t ed   i n   su f f i c i en t  

d e t a i l   t o   e n a b l e   p r o c u r e m e n t  of equipment. The spec i f i ca t ion   o f   sys t em 

so f tware   ( l oca l   and   g loba l   execu t ives )  w i l l  h a v e   b e e n   f u l l y   s p e c i f i e d   t o  

enab le   p rog ram  wr i t i ng   t o  commence. The p l an  i s  p r e s e n t e d   i n  more  gen- 

eral  terms f o r   t h e   p e r i o d  beyond November 1976. We d i s c u s s   i n   t h i s  

document the   impor tance   o f   s t rong   in te rac t ion   wi th   o ther   segments   o f  

i ndus t ry   such  as t h e   a i r l i n e s ,   a i r f r a m e   m a n u f a c t u r e r s ,   a v i o n i c s  manu- 

fac turers ,   and   semiconductor   manufac turers ,   and   a l so   wi th   o ther   re la ted  

r e sea rch  and  development  centers,  e.g., NASA-Ames  STP:AMD p r o j e c t  and 

NASA Houston  Space  Shuttle  Development. 

B. The Relevance  of  Analytic  Techniques,  Simulation,  Emulation, 

Exper imenta l   Models ,   Pro to types ,   and   F l igh t  Model i n   t h e  

Development  Process 

1. I n t r o d u c t i o n  

The pr imary   goa l   o f   the  SRI e f f o r t  i s  a f l y a b l e  SIFT  computer 

t h a t   c a n   d e m o n s t r a t e   t h e   f e a s i b i l i t y   o f   a n   i n t e g r a t e d - f u n c t i o n ,   f a u l t -  

t o l e ran t   compute r   i n   commerc ia l   av i a t ion .  Because  of  the  complexity  of 
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such a computer   and  the  importance  of   the  demonstrat ion,  it i s  d e s i r a b l e  

t o   a c h i e v e  a high level o f   c o n f i d e n c e   i n   t h e   d e s i g n   b e f o r e  a f l i g h t  model 

is b u i l t .  

For a computer  system,  such  confidence may be  achieved  through 

v a r i o u s  means o f   v a l i d a t i o n   s u c h  as human des ign  review, fo rma l   ana lys i s  

and  proof ,   s imulat ion,   emulat ion,   and  the  tes t ing  of   physical   prototypes.  

Fu r the rmore ,   i n   any   ve ry  complex  system i t  i s  common p r a c t i c e   t o   p r o c e e d  

w i t h   t h e   v a l i d a t i o n   i n   s e v e r a l   s t e p s ,   e a c h   s t e p   d e a l i n g   w i t h   d i f f e r e n t  

l eve l s   o f   abs t r a t ion   and   approx ima t ion .   Va l ida t ion   exe rc i se s   can  be 

very  expensive  and  time  consuming, so  i t  i s  d e s i r a b l e   t o   c h o o s e  a s t r a t -  

egy f o r   v a l i d a t i o n   t h a t  w i l l  y i e l d  a h igh   l eve l   o f   con f idence   qu ick ly  

and  with low c o s t .  

The design  approach SRI  i s  u s i n g   f o r  SIFT i s  u n u s u a l   i n   t h a t  

both  the  hardware  and  the  execut ive  sof tware w i l l  have precise, formal 

s p e c i f i c a t i o n s .   I n   t h i s   s e c t i o n  w e  w i l l  p r e s e n t  a p l a n   f o r   d e s i g n  va l i -  

d a t i o n   t h a t   t a k e s   a d v a n t a g e   o f   t h i s   d e s i g n   a p p r o a c h .  We b e l i e v e   t h e  

p lan  i s  both   e f fec t ive   and   economica l   compared   to   reasonable   a l te rna t ives .  

2. Out l ine   o f   t he   P l an  

We propose   the   fo l lowing   s teps :  

(1) Abst rac t   spec i f ica t ion   and   proof   o f   sof tware   and  
hardware. 

(2) Des ign   of   p rograms  and   log ic ;   inves t iga t ion   of  
nonlogica l*   des ign   i s sues .  

( 3 )  Val ida t ion   o f   t he   des ign   i nc lud ing   cons t ruc t ion  
o f  a prototype  computer.  

( 4 )  Tes t ing   o f   t he   p ro to type   and   cons t ruc t ion  and 
c e r t i f i c a t i o n   o f   a n   e x p e r i m e n t a l  model f l i g h t  
computer. 

(5) F l i g h t   t e s t s .  

* 
By "nonlogical"  we mean f a c t o r s   s u c h  as packaging,  device  performance , 
f a u l t  modes, e t c . ,   t h a t  are n o t   i n c l u d e d   e x p l i c i t l y   i n   p r o g r a m s   o r  
l og ic   des igns .  
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FIGURE 111-1 SIFT DEVELOPMENT  PLAN 





Between  Steps 2 and 3 w e  p ropose   t ha t  a des ign  review take   p lace .  

This  should  be  conducted by both  S R I  and NASA p e r s o n n e l   o r   t h e i r   r e p r e -  

s e n t a t i v e s .  

S tep  1 w i l l  i nc lude   t he   execu t ive   so f tware  and the  major  system 

modules ,   taken  to  a level o f   d e t a i l   t h a t   c o m p r i s e s   w e l l - u n d e r s t o o d   s o f t -  

ware  and  hardware  functions.  Some f a u l t - t o l e r a n c e   f u n c t i o n s  w i l l  be 

pa rame te r i zed   t o   a l l ow some use r   f r eedom  in   t he   cho ice   o f   f au l t - to l e rance  

po l i c i e s .   Aux i l i a ry   so f tware   such  as d i a g n o s t i c   r o u t i n e s  and  system 

e x e r c i s e r s  w i l l  n o t   b e   i n c l u d e d   i n   t h i s   s t a g e .  

S t ep  2 w i l l  r e s u l t   i n   t h e   c o m p l e t e   s p e c i f i c a t i o n   o f   t h e  com- 

pu te r   sys t em  to  a l e v e l   o f   d e t a i l   t h a t  w i l l  be   su f f i c i en t   fo r   equ ipmen t  

and  software  procurement.  The ha rdware   spec i f i ca t ions  w i l l  i nc lude  s ta te-  

men t s   o f   func t iona l   capab i l i t y ,   pe r fo rmance   pa rame te r s ,   r e l i ab i l i t y   con -  

s t r a i n t s ,   i n t e r f a c e   s p e c i f i c a t i o n s ,  and  packaging  constraints .  The s o f t -  

ware s p e c i f i c a t i o n s  w i l l  a l so   con ta in   func t iona l   r equ i r emen t s   and  p e r -  

formance  parameters and, i n   a d d i t i o n ,  w i l l  be  accompanied by sample i m -  

p lementa t ion   schemes .   Cer ta in   nonlogica l   des ign   i s sues  w i l l  be   i nves t i -  

gated.   These  include  choice  of   device  and  interconnect ion  technologies ,  

packaging  and  shielding,  power supp ly   des ign ,   and   spec i f i ca t ion   o f   pe r iph -  

e r a l   e q u i p m e n t   s u c h   a s   d i s p l a y s  and s torage   un i t s .   In format ion   concern ing  

f a u l t  modes w i l l  be   acqu i r ed   and   app l i ed   t o   t he   l og ica l   des ign   and   execu-  

t ive   p rograms.  

A t  t h i s   s t a g e  a design  review  should  take  place.  The purpose 

o f   t h i s   r e v i e w  i s  t o  make a detai led  examinat ion  of   the  design,   which had 

not   been   poss ib le   before  a complete  design  existed.   While w e  are conf iden t  

t h a t   t h e r e  w i l l  be l i t t l e  need   for   change   in   the   bas ic   sys tem  concepts ,  w e  

do see t h e   p o s s i b i l i t y   o f   c h a n g e s   i n  some of   the  parameters   of   the   system. 

This   review  should  a lso  examine  the  assumptions  upon  which  the  re l iabi l i ty  

analyses   were  based.  

The p ro to type   compute r   t o   be   p rocured   i n   S t ep  3 w i l l  be r e a l i z e d  

m a i n l y   i n   t h e  same techno logy   t ha t  i s  expec ted   t o   be   u sed   i n  a f l i g h t -  

exper imenta l  model. The sof tware  w i l l  be   ex tended   to   inc lude   sample   appl i -  

ca t ion   programs,   in - f l igh t   d iagnos t ic   p rograms,   and   bas ic   checkout   p ro-  

grams. In s t rumen ta t ion  w i l l  be  provided  both  in  software  and  hardware,  
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and  an  external   computer  w i l l  be programmed t o   d r i v e   t h e  SIFT computer 

so as t o   s i m u l a t e   t h e  a i r c ra f t  environment.  Hardware  developments w i l l  

i nc lude  power suppl ies ,   c locks   and   in te rconnec t ions ,   and   connec t ions   wi th  

p e r i p h e r a l   u n i t s   s u c h  as bubble  memories  and a i r c r a f t   c i r c u i t s ,  The 

computer w i l l  b e   a n a l y z e d   i n   o r d e r   t o   g u i d e  (1) t h e   f i n a l   d e s i g n   o f   i n t e r -  

connections  and  packaging  and (2)  t he   des ign   o f  test procedures.  A s  d i s -  

cussed a t  the   end   of   the   next   sec t ion ,  a l i m i t e d  amount o f   e v o l u t i o n  w i l l  

be   a l lowed   i n   t he   p ro to type .  Examples o f  mod i f i ca t ions   t ha t   migh t   be  

planned are (1) change in   i n t e rconnec t ion   t echno logy ,   e .g . ,   t he   i n t ro -  

duc t ion   o f   op t i ca l   coup le r s   and  special power-supply  c i rcui ts ,   and (2)  

replacement   of  some changeable  memories  by  read-only  memories,  e.g., f o r  

microprograms  or  programs. 

The f l i g h t  computer  of  Step 4 w i l l  be   ruggedized  and  shielded 

and w i l l  be   provided  with  maintenance  a ids   such as handbooks  and  diagnostic 

t o o l s .  A f u l l  se t  of   appl ica t ion   programs w i l l  be  prepared. The computer 

w i l l  be c e r t i f i e d   f o r   e x p e r i m e n t a l   a i r c r a f t   i n s t a l l a t i o n .  Our o b j e c t i v e  

w i l l  b e   t h a t   t h e   f l i g h t  model w i l l  d i f f e r  f rom  the   p ro to type   to   on ly  a 

l imi ted   degree ,   and  as such  can  be  regarded as an  evolut ion  f rom it. 

This  view i s  j u s t i f i e d  by t h e   f a c t   t h a t   t h e  SIFT concep t   a l l ows   fo r   t he  

use   o f   o f f - the - she l f   un i t s   fo r   t he   p rocesso r s   and   memor ie s .  We can   fore-  

see  changes  between  the  prototype  and  the  f l ight  model in   the   bus   sys tem,  

the   input /output   sys tem,   and   the   sca le   o f   the   sys tem  as  a whole  and,   in  

addi t ion ,   cer ta in   t echnology  changes   ment ioned   in   the   d i scuss ion   of   the  

e v o l u t i o n   o f   t h e   p r o t o t y p e   i t s e l f .  

3. J u s t i f i c a t i o n   o f   t h e   p l a n  

The proposed  plan  departs   f rom  convent ional  practice i n  two major 

r e s p e c t s .   F i r s t ,   f o r m a l   s y s t e m   s p e c i f i c a t i o n   ( S t a g e  1) i s  a much l a r g e r  

e f f o r t   i n   t h e   p l a n   t h a n   i n   c o n v e n t i o n a l   p r a c t i c e ,   w h i c h   t y p i c a l l y   s p e c i f i e s  

a sys t em  d i scu r s ive ly .  Our s p e c i f i c a t i o n  method i s  a c t u a l l y  a very   h igh-  

level  form  of  programming  that   not  only i s  p r e c i s e   ( t o  some level of  ab- 

s t r a c t i o n ) ,   b u t   a l s o   p r o v i d e s  a c a p s u l e   i n t u i t i v e  view of  the  system. 
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The second  depar ture  i s  t h a t   t h e   p l a n   d o e s   n o t   i n c l u d e  a major 

component f o r   t e s t i n g ,   e i t h e r  by  computer   s imulat ion  or   breadboarding.  

We b e l i e v e   t h i s   o m i s s i o n  i s  j u s t i f i e d   b e c a u s e  w e  b e l i e v e   t h a t   t h e   s p e c i -  

f icat ion  and  proof   methodology we are employing w i l l  leave ve ry  few des ign  

ques t ions   unanswered ,   w i th   t he   excep t ion   o f   ce r t a in   non log ica l   e l emen t s  

such as power supply  and  packaging (we p l a n   t o   a l l o w  as much t e s t i n g   f o r  

t h e s e  aspects as good eng inee r ing  practice r e q u i r e s ) .   E x t e n s i v e   t e s t i n g  

wou ld   t hus   cons t i t u t e  a w a s t e f u l   d i v e r s i o n   o f  time and money. Moreover, 

w e  do n o t  see t h e   n e e d   f o r   s i g n i f i c a n t   i n c o r p o r a t i o n   o f   i n n o v a t i v e   h a r d -  

ware technologies   which   would   need   to   be   t es ted   in  a breadboard   vers ion  

of   the  system. 

L e t  u s   cons ide r   t he   u sua l   a rgumen t s   i n   f avor   o f   t e s t ing ,   and   t he  

r easons  why w e  reject them. 

The u s u a l   r o l e   o f  tests i s  t o   h e l p   d e s i g n e r s  see j u s t  what 

behavior  i s  produced  by  the  thing  they  have  created.   This   purpose i s  

obviated  by  our   specif icat ion  methodology.  

Ano the r   a rgumen t   o f t en   t ende red   i n   f avor   o f   t e s t ing  i s  t h a t   t h e  

s p e c i f i c a t i o n s  may themse lves   be   de f i c i en t ,   and   t ha t   i n   t he   cou r se   o f  

p repa r ing  tests, i n d i v i d u a l s  w i l l  th ink  of   input   condi t ions  and  sequences 

t h a t  may have  been  overlooked  by  the  designers .  The i s s u e  i s  how t o   v a l i -  

d a t e   o r   c o n f i r m  a designer 's   understanding  of   the  system  problem. We 

b e l i e v e   t h a t   t e s t i n g  may be a weak tool   for   ach iev ing   th i s   purpose ,   and  

t h a t   g i v e n   t h e   p r e s e n t   c o s t   a n d  power o f   t e s t i n g ,   o t h e r  more human- 

oriented  methods  would  be  more  effective.   Such  methods  include: 

(1) Good means fo r   exp res s ing ,   r eco rd ing   and   d i sp l ay ing   t he  
design  and i t s  documentation. 

( 2 )  Ca re fu l   des ign  review methods,  such as redundant   design 
teams and  "walk-through"  (discussion of  a des ign   w i th   an  
o u t s i d e r ) .  

It i s  f o r   t h i s   r e a s o n   t h a t  w e  propose a des ign  review a t  the  end 

o f   S t ep  2, i.e., before   procurement   of   prototype  equipment   and  sof tware.  

Y e t  a n o t h e r   a r g u m e n t   f o r   t e s t i n g  i s  t h a t  it can  expose  assump- 

t i o n s  made about   p r imi tve   sys tem  func t ions .   For   example ,   the   a r i thmet ic  

o p e r a t i o n s   o f  a p a r t i c u l a r   p r o c e s s o r  may not   suppor t   the   computa t iona l  
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methods  assumed  by  the  application programer--or even  the-claims of the 

programming  manual.  This  is  indeed  a  significant  issue.  Computer  simu- 

lation  will,  in  general, not be  useful  to  solve  this  problem.  We  are 

optimistic  however  that  the  problem  can  be  deferred  to  the  prototype  stage 

(Stage 3)  without  creating  the  need  for  major  redesign. 

The  final  argument  for  testing  or  simulation  is  that  formal 

validation  methods  cannot,  in  their  present  state of development,  inform 

the  designer  about  execution  speeds.  Such  information  may  be  necessary 

in  order  to  set  performance  specifications  for  components,  such  as  bus or 

memory  bandwidth  and  processor  cycle-time. We believe  that  such  informa- 

tion  can  be  obtained  as  needed  by  special  analyses,  including  the  use  of 

computerized  models.  Such  models  would  be  much  simpler  and  easier  to 

create  and  use  than  general  system  simulations,  emulations,  or  breadboards. 

Fortunately,  the  SIFT  distributed-computer  design  places  very  mild  perfor- 

mance  requirements  on  system  components  for  the  chosen  application  domain, 

so we  believe  that  extensive  performance  analyses  will  not  be  needed. 

Some  further  remarks  about  the  prototype  are  necessary. A s  

described,  the  prototype  will  have  essentially  the  same  logic  and  use  the 

same  device  types  as  the  flight  model.  The  two  will  differ  mainly  in  size, 

completeness  of  program  set,  interconnection  techniques,  packaging,  physi- 

cal  hardening,  and  the  like.  It  might  be  argued  that  the  design  issues 

involved  in  these  various  qualities  might  be  resolved  without  the  necessity 

of  building  an  operating  prototype. It is  perhaps  too  early  in  the  course 
of  the  design  to  be  certain  about  this  issue;  however,  the  justification 

for  a  separate  prototype  does  not  rest on its  support  of  the  design  studies 

implied  by  the  differences  listed. 

Despite  our  confidence  in  the  prospect  for  validation  of  SIFT 

functional  design,  there  are  many  nonlogical  issues  that  may  contain  hid- 

den  implications  on  some  aspects  of  the  system  logic.  These  issues  in- 

clude  transient  fault  effects,  accessibility  and  controllability  for 

diagnosis,  and  postspecification  shortcomings  in  device  performance. 
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It would  be d e s i r a b l e   t o   u n c o v e r   t h e s e   " s u r p r i s e s "  as e a r l y  as 

poss ib le .   There  i s  t h e r e f o r e  a case   for   in t roducing   phys ica l   parameters  

i n to   t he   des ign   o f   t he   p ro to type   a s   ea r ly  as poss ib l e .  

To summarize,  our  view is t h a t   t h e   i s s u e s   t h a t  are t y p i c a l l y  

reso lved  by s imulat ion  and  breadboard  models   can  be  delayed  to   the  s tage 

o f   p r o t o t y p e   t e s t i n g   b e c a u s e   o f   t h e   i n h e r e n t   f l e x i b i l i t y   o f   t h e  SIFT 

concept .  

C .  Recommendations 

We see  the  development  of  the  SIFT  concept as a s e r i e s   o f   f i v e  s teps  

t h a t   c a n   b e   b r i e f l y   c h a r a c t e r i z e d  as fo l lows:  

( 1 )   C r i t i c a l  aspects o f   t h e   d e s i g n   ( c u r r e n t   c o n t r a c t )  

(2)  Complete  design  of a  SIFT sys t em  ( ex tens ion   t o   cu r ren t   con t r ac t )  

( 3 )  Bui ld ing   of  a prototype  of  SIFT 

( 4 )  P r o t o t y p e   t e s t i n g  and  procurement  of a f l y a b l e  model  of  SIFT 

(5) F l i g h t   t e s t  and eva lua t ion .  

The r e m a i n d e r   o f   t h i s   s e c t i o n   d e t a i l s   t h e   a b o v e  s teps  and   def ines  

the  work t o  be  accomplished  in them. The involvement   o f   d i f fe ren t   o rgani -  

z a t i o n s  (SRI, NASA, a i r f rame  manufac turers ,   a i r l ines ,   semiconductor  manu- 

f a c t u r e r s ,   e t c . )   i n   t h e  work i s  a l s o   d i s c u s s e d .  

The t echn ica l   p l an  i s  shown g r a p h i c a l l y   i n   F i g u r e  111-1, with  major 

groupings   o f   expec ted   resu l t s   o f   the   p resent   cont rac t   under  S t e p  1 (e .g . ,  

Hardware  Design). The p l an  shows t h e  work s teps  up t o   t h e   l a t t e r   p a r t   o f  

1976 i n   d e t a i l   ( w i t h   e a c h  item be ing   de f ined   i n   Sec t ion  C2), and less 

d e t a i l   f o r   t h e   s t e p s  beyond the  end  of  1976. 

A s  can  be  seen  f rom  the  char t ,  i t  i s  our  view  and  recommendation 

t h a t  a f l y a b l e  model  of  the SIFT computer  can  and  should  be  implemented 

approximately  in   1979.  A l l  of  the  preceding  tasks  have  been  designed 

w i t h   t h a t   g o a l   i n  mind. The exac t   phas ing   of   the  many tasks   can   be  a 

matter o f   nego t i a t ion ,   bu t   t he   r e l a t ive   phas ing  i s  cons idered   to   be  

as i n d i c a t e d  by t h e   a r r o w s   i n   t h e   c h a r t .  

17 



We f o r e s e e  t ha t  the tasks to   be   accompl ished  i n  S t e p  2 w i l l  r e q u i r e  

a l e v e l   o f   e f f o r t   s l i g h t l y   h i g h e r  than tha t  o f  the e x i s t i n g   c o n t r a c t .  

T h i s  w i l l  be  augmented  with  cooperation  from many industry  segments,   such 

as a i r l i n e s  and  semiconductor  manufacturers.  We show t h e   p o i n t  a t  which 

t h i s   c o o p e r a t i o n   b e g i n s   i n   S t e p  2, bu t   con t inu ing   coope ra t ion  i s  impl ied  

i n   t h e  l a t e r  s t e p s ,   t h o u g h   t h i s  l a t e r  coope ra t ion  i s  n o t   s p e c i f i c a l l y  

ind ica t ed   on   t he   cha r t .   Dur ing   t he  l a te r  p h a s e s ,   t h i s   c o o p e r a t i o n  w i l l  

have   to  become o n e   o f   a c t i v e   p a r t i c i p a t i o n  as equipment i s  procured  and 

the prototype  and  the  f lyable   model  are  p h y s i c a l l y   t e s t e d .  We see t h a t  

t h e   t o t a l   l e v e l   o f   e f f o r t   i n   S t e p s  3 ,  4 ,  and 5 w i l l  b e   s i g n i f i c a n t l y  

h ighe r   t han  a t  p re sen t   and   t ha t  i t  w i l l  be   spread   over  many o rgan iza t ions .  

The exact d e t a i l s   o f   t h e   t a s k s   t o   b e   p e r f o r m e d   i n   t h e s e  l a t e r  s t e p s  are 

t h e   s u b j e c t   o f   t h e   p r o c u r e m e n t   p l a n   t h a t  w i l l  be   prepared  under   Step 2, 

a t  which time w e  e x p e c t   t o   b e   a b l e   t o   d e t a i l   t h e  l a t e r  s t e p s  so t h a t  a 

complete   determinat ion  can  be made o f   t h e   r e q u i r e d   f u n d i n g   f o r   t h e  re- 

mainder o f  the  program. 

We c o n s i d e r   t h a t   t h e   m a j o r   e f f o r t   o f   S t e p  2 should  be carried out   by 

SRI, wi th   ac t ive   d i scuss ion   by   indus t ry   and   o ther   research   segments .   This  

combined p a r t i c i p a t i o n  w i l l  e n a b l e   t h e   e f f o r t   t o   p r o c e e d   w i t h   c o n t i n u i t y  

o f   p e r s o n n e l ,   w i t h   t h e   a d v a n t a g e   o f   m a i n t a i n i n g   t h e   e x i s t i n g   c a p a b i l i t y  

and  enthusiasm,  while a t  t h e  same time widening   the  community o f   t hose  

who are i n v o l v e d   i n   t h e   t o t a l   e f f o r t .  

The p a r t i c i p a t i o n  o f  o the r   i ndus t ry   s egmen t s   i n   S t eps  3 t o  5 i s  

e x p e c t e d   t o   i n c r e a s e   v e r y   s i g n i f i c a n t l y .  We see t h a t   t h e   m a j o r   r o l e   t h a t  

S R I  s h o u l d   p l a y   i n   t h e s e  l a t e r  s t eps  i s  one   of   t echnica l   l eadersh ip   and  

coord ina t ion ,  as well as be ing   t he   r e sea rch  arm o f   t h e   t o t a l   e f f o r t   i n -  

r e s o l v i n g   i s s u e s  tha t  are  a t  present   unforeseen   bu t  become known as  work 

proceeds .   In   addi t ion ,  w e  see t h a t   t h e   s c o p e   o f   t h e   t o t a l   e f f o r t  may be 

changed  with  changing  circumstances,   causing a need t o   c a r r y   o u t   r e s e a r c h  

t h a t  i s  beyond the  scope  of   that   which i s  c u r r e n t l y   e n v i s i o n e d ,  

1. Step  1 - Current   Cont rac t  

The c u r r e n t   c o n t r a c t  c a l l s  f o r  SRI  t o   d e s i g n  and ana lyze  a l l  

c r i t i c a l  aspec ts  of  SIFT.  The  following i t e m s  are  i n c l u d e d   i n  t h i s  e f f o r t :  



(1) General   system  requirements  

(2)  The d e f i n i t i o n   a n d   c o n c e p t u a l   d e s i g n   o f  SIFT 

(a) Bus and  processor  memory b u s   i n t e r f a c e  

(b)   Processor  

( c )  Memory 

( d )   I n p u t / o u t p u t   i n t e r f a c e  

(e) Software 

(i) Executive  program 

( i i )  Sample appl icat ion  program 

(3 )  Analysis  and  assessment  of SIFT 

(a) Thoroughness   o f   fau l t   ana lys i s  

(b )   P roof   o f   f au l t - to l e rance   p rocedures  

(c)  Modeling 

( 4 )  T e c h n i c a l   p l a n   f o r   f u r t h e r  SIFT development ( t h i s  document) 

(5) Reporting  and  documentation. 

SRI has   cu r ren t ly   comple t ed   abou t  70% o f   t h i s   r e s e a r c h ,   w i t h  

e v e r y   i n d i c a t i o n   t h a t  the o b j e c t i v e s  w i l l  be  m e t .  Very  few new and 

s ignif icant   problems  have  been  uncovered.  The o n l y   o n e   o f   g r e a t   s i g n i f i -  

cance i s  t h e  matter of  massive t r a n s i e n t s   i n   t h e   e v e n t   o f  severe envi ron-  

menta l   d i s t rubances ,   e .g . ,  a l i g h t n i n g   s t r i k e  on t h e   a i r c r a f t .  The tech-  

n i c a l   p l a n   f o r   S t e p  2 as p r e s e n t e d   b e l o w   d e s c r i b e s   t h e   a c t i o n s   t h a t  are 

p roposed   fo r   dea l ing   w i th   t h i s   p rob lem  ( see  d and h under   Step 2, 

fol lowing.  

2. Step  2 - Complete  design  of  SIFT 

T h i s   s u b s e c t i o n   d e f i n e s   t h e   t a s k s   t h a t   c o n s t i t u t e   S t e p  2 i n   t h e  

t echn ica l   p l an .   Each   ma jo r   t a sk   o r   g roup  of t a s k s  i s  s e p a r a t e l y   d e f i n e d  

i n  t h e   s e c t i o n s  a through j. 

a.  General - The o v e r a l l   g o a l  i s  t o   s p e c i f y   f u l l y  a represen- 

t a t ive  SIFT  system  to a l e v e l   o f   d e t a i l   s a t i s f a c t o r y   f o r   p r o c u r e m e n t   o f  

a l l  hardware  and  software  components.  The p a r t i c u l a r   c o n f i g u r a t i o n   o f  
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SIFT t h a t  w i l l  be   chosen   fo r   t h i s   pu rpose  w i l l  b e   a p p r o p r i a t e   f o r   c a r r y -  

i n g   o u t  a reasonable  set  o f   a i r c r a f t   a p p l i c a t i o n   t a s k s   c h o s e n   a f t e r   c o n -  

s u l t a t i o n   w i t h   b o t h   a i r l i n e s  and a i r f rame  manufac turers .   Throughout   th i s  

s t u d y ,   c l o s e   c o n t a c t  w i l l  be  maintained  with  both  semiconductor  and  avi-  

on ic s   manufac tu re t s  so  as t o   p r o v i d e   a n   e f f i c i e n t   i n v o l v e m e n t   o f  them i n  

the   bu i ld ing   o f  a p r o t o t y p e   t o   b e   c a r r i e d   o u t   i n   S t e p  3 of t h i s  program. 

b. Applicat ion  Tasks - F i r s t  implementat ion  of   the SIFT system 

should   inc lude   on ly  a subse t   o f   t he   t o t a l   on -boa rd   da t a   p rocess ing   sys t em 

t h a t  i s  p r o j e c t e d   f o r  j e t  t r a n s p o r t s   o f   t h e  1980-1985 per iod .   This  w i l l  

make much more e c o n o m i c a l   t h e   t a s k   o f   r e a l i s t i c   e v a l u a t i o n   o f   t h e   f a u l t -  

t o l e r a n t   t e c h n i q u e s  and  procedures   that  are to   be   i nco rpora t ed .  

One o b j e c t i v e  w i l l  be t h e   s e l e c t i o n   o f   t h o s e   a p p l i c a t i o n  

t a sks   t ha t   can   mos t   r ead i ly  and e f f e c t i v e l y  be i n c o r p o r a t e d   i n t o   t h e   p r o t o -  

type  system. The s u b s e t   o f   t a s k s  must   be   adequate   and   suf f ic ien t ly   var ied  

to   p rovide   meaningfu l  tes t  r e su l t s  f o r   a n a l y s i s .   I n   a d d i t i o n ,   t h e   s y s t e m  

must  be  planned  to  meet  the  constraints  imposed by ope ra t iona l ,  economic, 

and  procurement  factors.  The a p p l i c a t i o n   t a s k   s e l e c t i o n   m u s t   t h e r e f o r e  

b e   b a s e d   i n   p a r t  upon the  recommendations,   facil i t ies,   and  equipment  pro- 

v ided  by var ious  segments   of   the   a i r l ine  and  data   processing  communit ies .  

Among t h o s e   t o  b e   c o n s u l t e d   i n   t h e   t a s k   s e l e c t i o n  are the   fo l lowing:  

a Air l ines - -As   cu r ren t ly   v i sua l i zed ,   coope ra t ion   o f   one  
o r  more a i r l i n e s  w i l l  be  sought t o   p r o v i d e  a commercial 
a i r l i n e   e n v i r o n m e n t   t o   e n a b l e   g e n e r a t i o n   o f  a t r u e  
o p e r a t i o n a l   i n t e r p r e t a t i o n   o f   s y s t e m   t e s t   r e s u l t s .  
C l o s e   l i a i s o n   s h o u l d  be e s t a b l i s h e d   w i t h   a i r l i n e   p e r -  
sonnel  a t  a n   e a r l y   d a t e .   O p e r a t i o n a l  and  economic 
a s p e c t s   o f   t h e   o p e r a t i o n s   o f   t h e   a i r l i n e ( s )  w i l l  most 
p robab ly   impose   l imi t a t ions   on   t he   func t ions   t ha t   can  
i n  a p rac t i ca l   s ense   be   i nco rpora t ed   i n to  a pro to type  
tes t  sytem. 

0 Research  and  development  agencies--Throughout  the p a s t  
few yea r s ,  a cons ide rab le  amount of e f f o r t   h a s   b e e n  
directed  toward  the  design  and tes t  o f   d i g i t a l   s y s t e m s  
f o r   c e r t a i n   a i r c r a f t   c o n t r o l  and r e l a t e d   f u n c t i o n s .  
Agencies  and  companies  such as NASA, t h e  U.S. Air Force,  
and  Boeing  have  been a t   t h e   f o r e f r o n t  of  such  programs. 
L ia i son  w i l l  b e   e s t a b l i s h e d   w i t h   s u c h   o r g a n i z a t i o n s   i n  
o r d e r   t o   e x p l o i t   t h e   r e s u l t s   o f   t h o s e   e f f o r t s .  
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ARINC--It  will  be  desirable  to  specify  the  prototype 
system  to  be  consistent  with  existing  and  projected 
standards  insofar as feasible,  provided  that  the  basic 
goals of the  project  are  not  jeopardized.  Accordingly, 
direct  contact  will  be  made  with  agencies  such as ARINC 
(Airline  Radio,  Inc.)  to  achieve  the  desired  measure 
of system  standardization  and  compatibility. 

c. Hardware  Design - A complete  specification  of  all  hardware 

components of a  SIFT  system  will  be  prepared  to  a  level of detail  suffi- 
cient  for  procurement  of  a  prototype  from  commercial  vendors. The speci- 

fications must include  all  aspects  including: 

Functional  capability 
Size,  speed,  and  performance  parameters 

Reliability  constraints 
Interface  specifications 

0 Packaging  constraints 

To provide  assurance  that  the  specified  system  can  be  im- 
plemented  effectively  and  economically  within  the  projected  time  frame, 

contact  will  be  established  with  vendors  of  computers,  data  communication 

equipment,  interfacing  hardware,  and  semiconductor  products. In some 
cases,  standard  prodact  lines  can  possibly  be  modified  slightly  to  accomo- 

date  the  requirements  of  the  prototype  system.  For  example,  data  com- 

munication  elements  will  be  modified  to  be  compatible  with  the  specified 
bus  structure of the  prototype  system.  Liaison  will  be  established  with 
appropriate  departments of  such  organizations  to  facilitate  specification 

of any  such  modifications  that may prove  to  be  necessary. 

d. Software  Design - The software of the SIFT will  be  fully 
specified.  For  the  system  software  (Global  and  Local  executives),  the 

formal  specifications  prepared  under  the  current  contract  will  be  aug- 
mented  to  the  level of detail  that  can  be  used  for  procurement.  This 
will  involve  preparing  sample  implementation  schemes  and  providing  firm 

estimates of those  variables  in  the  system  that  are  currently  pararneter- 

ized  in  the  formal  specifications. 
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The set of application  tasks  (item  2b)  will  be  specified 

in a  similar  manner  to  the  system  software. 

The specifications  will  include  full  details of acceptance 

tests  to  be  used  for  evaluation. The  use of programing languages  at 

different  levels  will  be  specified.  Any  special  measures  to  be  taken  to 

assist  in  validation of the  software  will  be  specified. 

Techniques  should  be  investigated  for  providing  a  scheme 

for  achieving  fault-tolerant  application  software.  Such  studies  should 

include  consideration of the  concept of "Recovery  Blocks"  as  developed 

at  the  University  of  Newcastle,  England,  or  derivatives of it  specially 

adapted  to  the  SIFT  concept. 

e.  Aircraft  Interface - The  SIFT  system  will  require  digital 
data  transmission  from  a  multiplicity  of  instruments,  sensors,  radio- 

frequency  units,  and  other  peripheral  input  units,  and  transmission  to  a 

multiplicity of actuators  and  display  units.  One of the  tasks  will  there- 

fore  be  to  specify  the  total  data  communication  system.  Some  of  the  sa- 

lient  factors  to  be  considered  are as follows: 

0 The basic  system--Various  techniques  for  accessing  and 
transmitting  the  data  are  possible.  For  example,  a 
fully  buffered  system  could  be  devised,  or  a  simple 
polling  system can be  implemented  at  less  cost in hard- 
ware  but  at  greater  cost in time  requirements. 

A  third  alternative  would  be  to  provide  an  interrupt 
system  whereby  the  individual  data  source  notifies  the 
computer  via  an  interrupt  that  new  data  are  available. 

Requirements,  advantages,  and  tradeoffs  of  each  of  the 
candidate  data  communication  techniques  will  be  con- 
sidered  and  recommendations  made  for  each  input  and 
output  variable. 

0 Protocol--For  each  data  communication  technique  to  be 
used,  specific  procedures  will  be  established  for  proper 
control of  the  individual  communication  function. 

0 Synchronization--For  some of the  prototype  system 
functions,  relatively  noncritical  "macrosynchronization" 
among  the  various  types  of  units  and  among  replicated 
units of a given  type  will  suffice  for  proper  system 
operation.  In  general,  synchronization of this  type 
can  be  accomplished  by  proper  polling  sequences  and 
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the  like.  However,  there  may  be  some  functions  for 
which time  synchronization  will  be more critical,  and 
for  which  special  synchronization  must  be  provided. 
This possibility will be  given  special  attention. 

0 Data validity--For  a  high  reliability  system,  accuracy 
of  data  transmission  will  be  extremely  critical. The 
basic  data  communication  system  will  therefore  neces- 
sarily  include  data  verification  as  a  major  considera- 
tion. Use of  various  techniques  such  as  parity,  hash 
totals,  and  check  digits  will  be  considered in the 
system  specification. 

0 Data transmission  noise--In  computer  installations  such 
as those in aircraft  where  various  system  elements  are 
widely  separated,  and  where  (electronic)  data  pulse 
fronts  are  relatively  sharp,  grounding  problems  some- 
times  lead  to  generation  of  "noise"  pulses on the  data 
lines  that can cause  errors in reception  of  the  data. 
In addition,  errors  can  be  caused  by  such  phenomena as 
lightning  strikes on the  aircraft  and  the  consequent 
induced  signals on the  data  lines.  Potential  problems 
of  this  type  will  be  discussed  with  airline,  research, 
and  vendor  personnel, so that  system  specifications  can 
be  prepared with  a  high  assurance  that  problems  of  this 
type  can  be  circumvented. It is possible  that  optical 
data  transmission  via  glass or plastic  fiber  lines  may 
prove  to  be  satisfactory  as a  technique  for  interunit 
transmission  for  some  or  all of the  data in the  on-board 
system. 

f. Maintenance  Aspects - Ideally,  any  system--electronic  or 
mechanical--would  throughout  its  full  life  be  free of any  faults  that 

would  require  either  preventive  (scheduled)  or  fault-forced  (immediate) 

maintenance.  The  architecture  of  the  SIFT  system  precludes  the  need  for 

the  latter  type. It is  necessary  to  consider  scheduled  maintenance  pro- 
cedures  that  do  not  include  extensive  disconnection  of  system  components, 

probing of circuit  boards  with  oscilloscopes  and  voltmeter  probes,  etc. 
Airline  experience  has  consistently  indicated  that  additional  system 

faults  are  often  caused  by  such  well-intentioned  but  fault-prone  proce- 

dures  themselves.  Rather,  SRI  considers  that  the  scheduled  maintenance 

should  be a  preflight  "test  and  verification" (T/V) procedure,  whereby 
the  various  system  modules  are  exercised  automatically, e.g., via 
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prestored  programs,  and  either  approved  as  valid  (verified),  or  flagged 
as faulty. In the  latter  case,  at  least  some  minimal  method  of  auto- 
matic  diagnosis  should  be  incorporated  to  designate,  via  printout  or 

display,  the  faulty  module so that  it  can  be  replaced  with  a  minimum of 

effort  and  time. 

* 

The  economic  effect  of  different  maintenance  policies on 

airline  operations  should  be  considered.  Analyses  should  be  carried  out 

to  determine  the  conditions  under  which  different  maintenance  policies 

are  advisable;  for  example,  one  policy  may  be  appropriate  for  a  short- 

haul  use  while  a  different  policy  may  be  appropriate  for  long-haul  use. 

g. Reliability  Analyses - As the  design  of  the SIFT system 

becomes  defined  in  progressively  more  detail,  it is necessary  that  the 

reliability  analyses  carried  out  on  the  current  contract  be  updated.  As 

new  data  becomes  available on fault  statistics,  it  will  be  necessary  to 

examine  their  effect  on  system  reliability  and  in  particular  to  determine 

if  changes  are  therefore  required  in  the  design.  The  reliability  analyses 

carried  out  under  the  existing  contract  will  have  to  be  extended  to  in- 

clude  consideration  of  the  various  input/output  units,  including  the  sen- 

sors  and  actuators  of  the  aircraft.  The  analyses  will  also  be  extended 

to  take  into  account  all  the  different  fault-tolerance  procedures  that 

are  possible  within  the  general  framework  of  the  SIFT  concept. 

h.  Transient  Behavior - As  with  fault-tolerant  computer  de- 
signs, a cause  for  concern  is  the  possibility  of  a  massive  transient t 

* 
Current  plans  are  to  incorporate,  in  a  background  mode,  continuous  test- 
ing  of  this  type  for  all  processor  modules  during  real-time  flight 
operations. It is  further  suggested  that  the  status  of  each  processor 
be  indicated on  the  flight  deck  in  some  simple  manner  such  as (1) green 
light--processor  operation  valid; (2) amber  light--monetary  (transient) 
fault  detected;  or (3 )  red  light--processor  outputs  blocked  from  the 
system  because  of  continuing  faults. 

Such  transients  are  typically  caused  either  by  lightning  strikes  or by 
other  disturbances  of  the  electrical  system  of  the  aircraft. 

t 
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that  causes  multiple  faults  and  perhaps  multiple  errors in the  system. 

The approach  to  be  used in dealing  with  this  possibility  consists  of 

three  parts. 

First,  it  is  necessary  to  collect  data  relevant  to  the 

problem of transients.  Airlines  and  airframe  manufacturers  have  signifi- 

cant  data  relating  to  this  matter.  Tests  have  been  made on aerospace 
computers  at  NASA  Houston  and  other  sites.  Other  experiments  at SRI and 

elsewhere  have  examined  the  effect  of  large  electromagnetic  fields on 

electronic  equipment. It is  hoped  that  these  data  plus  consultation 
with  experts  in  this  field  will  enable an estimate  to  be  made of the 

effects of such  phenomena on an aircraft  computer.  Some  tests  may  need 

to  be  carried  out  to  answer  specific  questions  on  this  issue. 

Second,  schemes  must  be  developed  to  reduce  the  probability 

of such  massive  transients  in  the  system.  Such  schemes  must  include  as- 
pects  of  shielding,  improved  grounding  systems  and, as just mentioned, 
the  use of optical  data  links  for  the  larger  path-lengths  external  to 

the  computer  system  itself. 

Third,  within  the SIFT system,  techniques  must  be  developed 

for  recovery  from  such  transients.  This  may  involve  software  techniques 

such as an  automatic  restart  capability,  and/or  hardware  techniques  such 

as the  provision of a  highly  protected,  nonvolatile  back-up  memory  to 
store  critical  state  variables  to  assist  recovery  after a transient. 

Recovery  speed  requirements  for  these  variables  may  require a special 

memory  in  addition  to  the  general  system  back-up  memory. 

i. Diagnosis - The viability of the  error  detection  and re- 
covery  strategies  in  SIFT  relies on the  freedom  from  faults of most of 

the  SIFT  units  that  are  performing  computations.  Assuming  a  majority- 

vote  strategy,  there  are  double  failures  that  cannot  be  tolerated. At 

the  beginning  of  a  flight,  it  is  essential  that all units,  or  possibly 

all  units  except  one,  are  fault-free. We do  not  advocate  the  use  of 
special  test  equipment  to  accomplish  preflight  checkout  of  the  computer. 
In'stead,  the  checkout  is  to be carried  out  by  executing  special  diagnosing 

programs  that  flex  the  various  system  units, e.g., processors,  memori.es, 
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busses ,  1/0 processo r s .   Dur ing   t he   p re sen t   yea r ' s   r e sea rch ,  w e  a l s o  

i d e n t i f i e d   t h e   n e e d   t o   c a r r y   o u t   p e r i o d i c ,   i n f l i g h t ,   d i a g n o s i s   o f   t h e  

h a r d w a r e   u n i t s   t h a t  are not   f lexed   dur ing   normal   computa t ion .   This   per i -  

o d i c   d i a g n o s i s   r e d u c e s   t h e   p r o b a b i l i t y   o f   m u l t i p l e   f a u l t s   r e m a i n i n g  un- 

d e t e c t e d .  

There   has   been   ex tens ive   work   on   log ic   c i rcu i t   d iagnos is ,  

from  both a t h e o r e t i c a l  and a p r a c t i c a l   v i e w p o i n t .  Much o f   t h e   p r a c t i c a l  

work has   been   ca r r i ed   ou t  by the  semiconductor   manufacturers   toward  tes t ing 

LSI c h i p s  as they  emerge  from  production.  This  work i s  no t   adequa te   fo r  

our   purposes  since i t  r e l i e s  on special  t e s t  equ ipmen t   ( s igna l   gene ra to r s ,  

p robes ,   o sc i l l o scopes )   and   s ince  i t  does  not   guarantee  complete   coverage.  

The t h e o r e t i c a l  work has been  concerned wi th  developing   d iagnos ing  se- 

q u e n c e s   t h a t   i f   a p p l i e d   t o  a c i r c u i t  w i l l  d e t e r m i n e   i f  i t  i s  f a u l t y .  

T h i s  work i s  a t t r ac t ive  f rom  our   v iewpoin t   s ince  i t  re l ies  on t h e   c i r c u i t  

i n t e r f a c e s   o n l y .  (The  Computer  Science  Group  of SRI has   done   ex tens ive  

work i n   t h i s  area under  commercial  and NASA-ERC sponsorsh ip) .  However, 

t h e   t h e o r e t i c a l  work i s  not   adequate   s ince  i t  t y p i c a l l y   a s s u m e s   t h a t   t h e  

o n l y   f a u l t  mechanism i s  a g a t e   b e i n g   s t u c k  a t  z e r o   o r   s t u c k  a t  one. It 

i s  known t h a t  LSI c i r c u i t s   e x h i b i t  a f a i lu re   behav io r   wh ich  i s  s i g n i f i -  

c a n t l y  more  complex. 

Our approach w i l l  f i r s t   i n v o l v e   t e c h n i c a l   d i s c u s s i o n s   w i t h  

s e m i c o n d u c t o r   m a n u f a c t u r e s   t o   d e t e r m i n e   t h e   a c t u a l   f a i l u r e   b e h a v i o r .   P r e -  

l i m i n a r y   d i s c u s s i o n s   h a v e   i n d i c a t e d   t h a t   t h e   f o l l o w i n g  f a i lu re  behavior  

can  be  expected:  

A l l  t y p e s   o f   s i n g l e   g a t e   f a i l u r e s ,   i n c l u d i n g   i n p u t -  
ou tput   shor t s ,   open-outputs ,  e tc .  

e Shor ts   be tween  cont iguous   ga tes  on a c h i p .   T h i s   f a u l t  
assumption  precludes  the  development   of  test  sequences 
t h a t  are b a s e d   e n t i r e l y  on the   log ic   d iagram.  

0 F a i l u r e s   t h a t   o c c u r   o n l y   u n d e r  maximal g a t e   l o a d i n g  
c o n d i t i o n s .   T h i s   f a u l t  seems t o   b e   m a n i f e s t e d  as 
i n p u t   g a t e   f a i l u r e s   f o r  some of  t h e   g a t e s   d r i v e n  by 
t h e   f a i l e d   g a t e .  

A f t e r   i d e n t i f y i n g   t h e   f a i l u r e   b e h a v i o r  w e  w i l l  s t u d y   t h e  

development  of  the  sequences that  w i l l  r e v e a l   t h e   o c c u r r e n c e   o f   t h e  
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expec ted   f a i lu re s .   Dur ing   S t ep  2, w e  i n t e n d   t o   d e v e l o p   a p p r o p r i a t e   t e c h -  

n iques ;  the wr i t ing   o f   ac tua l   d iagnos ing   programs  must  await the   p rocure-  

ment o f   h a r d w a r e   i n   S t e p  3 .  

j. Procurement  Plan - D e t a i l e d   p l a n s  w i l l  be drawn  up f o r   t h e  

t a s k s   t o   b e   a c c o m p l i s h e d   i n   S t e p s  3 t o  5. These  plans w i l l  i n c o r p o r a t e  

f o r   e a c h   t a s k   t h e   f o l l o w i n g  items: 

e The s p e c i f i c a t i o n   o f  work to   be   accompl ished  

e The  es t imated  time t o   a c c o m p l i s h   t h e  work 

e The e s t i m a t e d   c o s t   o f   c a r r y i n g   o u t   t h e  work 

e The q u a l i f i c a t i o n s   r e q u i r e d   o f   o r g a n i z a t i o n s   t h a t   c o u l d  
c a r r y   o u t   t h e  work 

e C o n d i t i o n s   o f   d e l i v e r y   a n d   a c c e p t a n c e   c r i t e r i a  

e A t e n t a t i v e  l i s t  o f   c a n d i d a t e   o r g a n i z a t i o n s   t o   c a r r y  
o u t   t h e  work. 

The  procurement  plan w i l l  a l s o   d e f i n e   t h e   i n t e r a c t i o n  

b e t w e e n   t h e   s e p a r a t e   t a s k s .   I n   p a r t i c u l a r ,  i t  w i l l  i d e n t i f y   t h e  c r i t i c a l  

pa th(s )   in   the   deve lopment   and   the   manner   in   which   the   p rocurement   p lan  

i s  i n t e n d e d   t o   p r o t e c t   t h e   p l a n  as  a whole  from  being  jeopardized by 

f a i l u r e   t o   c a r r y   o u t   a n y   p a r t i c u l a r   t a s k .  

The  plan w i l l  cons ider   methods   tha t  are p o s s i b l e   f o r  

c o n t r a c t i n g   t h i s  work, for   example ,   the   use   o f   subcont rac t ing   or   the  

i s s u i n g   o f   i n d e p e n d e n t   c o n t r a c t s .  The o v e r a l l  management of   the   deve lop-  

ment w i l l  be  considered  and  recommendations made as t o   t h e  way i n  which 

t h e   s e p a r a t e   e f f o r t s  w i l l  be   coord ina ted .  

3. Desipn Review 

Between  Step 2 and  Step 3 w e  a n t i c i p a t e  a des ign   rev iew.   This  

w i l l  be c a r r i e d   o u t   b y  NASA p e r s o n n e l   o r   t h e i r   r e p r e s e n t a t i v e s  i n  consul-  

t a t i o n   w i t h   t h e  SRI d e s i g n  team. The   pu rpose   o f   t h i s  review i s  t o  re- 

examine   the   des ign   f rom  the   po in t   o f  view of   comple teness   and   cor rec tness  

and   t o   check  i t s  a p p r o p r i a t e n e s s   f o r   t h e   a p p l i c a t i o n  set f o r  which i t  i s  

intended.  A t  t h i s   p o i n t ,  i t  w i l l  a l s o   b e   p o s s i b l e   t o  review t h e   v a r i o u s  

e s t i m a t e s   t o  timescale and   funding   tha t  w i l l  have  been  prepared i n   t h e  
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procurement  plan in Step 2. Heavy  involvement  with  airlines,  airframe 

manufacturers,  and  avionics  manufacturers will be  desirable in this  review. 

4 .  Step 3 

There  are  three  major  objectives of Step 3 :  hardware  procure- 

ment and  integration,  software  procurement  apd  integration,  and  the  de- 

velopment of  a test  facility. It is  recommended  that SRI  continue  to 

play a  central  role in this  development  step  but  that  the  major  develop- 

ment of hardware  and  software  be  carried  by  organizations  specializing 

in  those  fields.  This  way  of  organizing  the  development of  a prototype 

has  been  used  extensively  by  SRI  with  great  success. In one  case,  we 

have  carried  out  the  role  of  system  integrators  for  a  mobile  digital 

packet  radio  network,  with  radio  and  computing  equipment  being  supplied 

by  vendors  in  those  fields. In another  case, SRI is  the  system  inte- 

grator in the  development  of  a  blind  landing  system  for FAA. The  design 

of  SIFT  greatly  facilitates  this  kind of operation  in  that  there  is  a 

high  degree  of  functional  independence  among  the  various  units  of  either 

hardware  or  software. It is  thus  relatively  easy  to  specify  individual 
procurements,  with  the  final  integration  to  be  carried  out  after  delivery. 

Our  design  methodology  for  preparing  formal  specifications  and  for  de- 

fining  the  functional  hierarchy of the  system  also  makes  independent  pro- 

curement  of  parts of the  system a  practical  strategy. 

The  integration of the  various  parts  will  involve  the  building 

of limited  amounts of special  hardware  (e.g.,  the  bus  system),  and  also 

the  writing of limited  amounts of programs (e.g., the  programs  used  for 

prototype  tests), 

a. Hardware  Procurement - It is planned  that as part  of  Step 2 

we  will  have  already  determined  those  organizations  that  are  qualified  to 

act as suppliers of the  processors  and  memories,  which  represent  the  major 

hardware  components of the  system.  It will be  necessary  in  Step 3 to  pre- 

pare  formal  requests  for  bid  from  these  organizations  for  each of the 
hardware  units.  Following  evaluations of these  bids,  purchase  orders or 

development  contracts  will  be  drawn  up  for  procurement  of  equipment. 
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We a n t i c i p a t e   t h a t   t h e s e   a c t i o n s  w i l l  h a v e   b e e n   t a k e n   i n   t h e   f i r s t  few 

months  of  Step 3 ,  t hus   enab l ing   t he   even tua l   p rocuremen t   t o  be  completed 

a f t e r  9 months   in to   S tep  3 .  The remaining 3 months  of  Step 3 w i l l  be 

devoted   to   the   in tegra t ion   of   the   hardware .   This  w i l l  b e   g r e a t l y   f a c i l i -  

t a t e d  by the   p r ior   deve lopment   o f   the   spec ia l   hardware   tha t  i s  necessary  

f o r   i n t e g r a t i n g   t h e   w h o l e   s y s t e m .   I n   p r o c u r i n g   t h e   m a j o r   u n i t s   o f   h a r d -  

ware, i t  i s  a n t i c i p a t e d   t h a t ,   t o  a l a rge   ex ten t ,   s t anda rd   o f f - the - she l f  

un i t s   can   be   u sed   w i th   ve ry   minor   mod i f i ca t ions .  We a n t i c i p a t e   t h a t  many 

s u p p l i e r s  may be  involved;   for   example,  i t  may b e   d e s i r a b l e   t o   p r o c u r e  

main  processors  from  an  avionics  computer  manufacturer and inpu t /ou tpu t  

processors   f rom  an LSI microprocessor   manufacturer .  

A s  t he   p ro to type   evo lves ,   t he re  w i l l  need  to  be  continuing 

e f f o r t ,   p r i m a r i l y   c o n c e r n e d   w i t h   t h e   d e t a i l s   o f   t h e  c i r c u i t  technology 

t h a t  i.s used   bu t   a l so   involv ing   ques t ions   o f   packaging   and   in te rconnec-  

t i o n .  We e x p e c t   t h a t   t h e   f i r s t   v e r s i o n   o f   t h e   p r o t o t y p e  w i l l  use  con- 

v e n t i o n a l   t e c h n o l o g i e s   i n   t h e s e   u n i t s   b u t  w i l l  e v o l v e   t o  become ve ry  

s i m i l a r   t o   t h e   e v e n t u a l   f l i g h t  model t h a t  i s  p lanned   in   S tep  4. 

b.  Software  Procurement - The major  software  procurememt  can 

be  broken down i n t o  two pa r t s ,   sys t em  so f tware   and   app l i ca t ion   so f tware .  

The system  sof tware w i l l  h a v e   b e e n   f u l l y   s p e c i f i e d   i n  S t e p s  1 and 2 and 

can  be l e t  o u t   f o r   b i d   u s i n g   t h e s e   s p e c i f i c a t i o n s .  The a p p l i c a t i o n s  

sof tware w i l l  be s p e c i a l i z e d   t o   t h e   p a r t i c u l a r   a i r c r a f t   f u n c t i o n s   t h a t  

are de termined   in  S t e p  2 and w i l l  be g r e a t l y   i n f l u e n c e d  by the   type   o f  

a i r c r a f t   t h a t  i s  t o  be t h e   e v e n t u a l  tes t  veh ic l e .   Cons ide rab le   ga in  may 

be  had  by  procuring  the  application  software  from  the same o r g a n i z a t i o n  

t h a t  i s  se lec ted   to   supply   the   major   hardware   components ,   par t icu lar ly   i f  

t h e  l a t t e r  i s  an   av ionics   manufac turer .  

We see tha t   t he   o rgan iz ing   o f   t he   so f tware   p rocuremen t   can  

b e   a c h i e v e d   i n   t h e   f i r s t  3 months  of S t e p  3, p a r t i c u l a r l y  when w e  t ake  

in to   accoun t   t he   p re l imina ry   ac t ions   t ha t  w i l l  have  been  taken  in   develop-  

ing  the  procurement   plan  of   Step 2, f o r  example ,   the   p r ior   se lec t ion   of  

o n e   o r  more c a n d i d a t e   o r g a n i z a t i o n s   t o   a c c o m p l i s h   t h e   n e c e s s a r y  work. It 

is expec ted   tha t   the   ac tua l   p rocurement   o f   the   sof tware  w i l l  be p o s s i b l e  
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i n  a pe r iod   o f  6 months, with t h e   f i n a l  3 months  of   Step 3 d e v o t e d   t o   t h e  

i n t e g r a t i o n   o f   t h e  several components  software. 

c. Development o f  a T e s t   F a c i l i t y  - I n   t e s t i n g   t h e   p r o t o t y p e  

(Step 4 below) it w i l l  be   necessa ry   t o   p rov ide   an   adequa te  test envi ron-  

ment.   This  involved two major   components ,   the   connect ion  of   the  proto-  

t ype   t o   s imu la t ed   i npu t   and   ou tpu t   un i t s   and   t he   gene ra t ion   o f   app ropr i a t e  

tes t  d a t a .  We f o r e s e e   t h e   s e t t i n g  up o f  a t e s t  g e n e r a t i o n   f a c i l i t y   b a s e d  

upon a genera l -purpose   computer   su i tab ly  programmed t o   g e n e r a t e   t h e  

a p p r o p r i a t e  tes t  s i g n a l s .  

d .   F l i g h t  Model Packaging - A l s o   t o   b e   i n c l u d e d   i n   S t e p  3 i s  

the   deve lopment   o f   packaging   techniques   for   the   f l igh t   model .  In t h i s  

t a s k  w e  would expect tha t   the   exper ience   o f   av ionics   equipment   manufac-  

t u r e r s  wou ld   be   d i r ec t ly   app l i cab le ,   and   i n   such  case w e  a n t i c i p a t e   t h a t  

t h i s   t a s k  would  be a r e l a t i v e l y  small e f f o r t .  The ma jo r   nove l ty   t o   be  

inco rpora t ed  i s  t h e   p r o v i s i o n   f o r   p r o t e c t i o n   a g a i n s t   t h e   e f f e c t s   o f  elec- 

t romagne t i c   d i s tu rbances .  We a l s o  see t h e   p o s s i b i l i t y  of  some problems 

i n   i n c o r p o r a t i n g   o p t i c a l   c o u p l i n g   b e t w e e n   u n i t s   w h i l e   m a i n t a i n i n g   t h e  

i n t e g r i t y   o f   a n y   r e q u i r e d   s h i e l d i n g .  

5 .  Steps  4 and 5 

The major a c t i v i t i e s  of  S teps  4 and 5 are t h e   t e s t i n g   o f   t h e  - 
pro to type   and   t he   bu i ld ing   and   t e s t ing   o f   t he   f l i gh t   mode l .  The t a s k s  

t o   b e   a c c o m p l i s h e d   i n   t h e s e   s t e p s  are shown i n   t h e  accompanying c h a r t .  

A s  s t a t e d   p r e v i o u s l y ,  w e  see t h a t   t h e   f l i g h t  model   should  be  an  evolut ion 

from t h e   p r o t o t y p e   r a t h e r   t h a n  a completely new des ign .  

We a n t i c i p a t e   t h a t   t h e   t e c h n o l o g y   o f   t h e   f l i g h t  model w i l l  be  

v e r y   c l o s e l y   r e l a t e d   t o   t h e   p r o t o t y p e .  One scheme  would  be t o   u s e  a 

set of  processors  and  memories  from a minicomputer  manufacturer,  which 

i n   t h e   p r o t o t y p e  would   be   cons t ruc ted   us ing   convent iona l   c i rcu i t   board  

techniques ,   and   to   use  a rugged ized   ve r s ion   o f   t he  same hardware i n   t h e  

f l i g h t  model.  This  scheme i s  v e r y  a t t rac t ive  i n   t h a t  much of   the   sup-  

p o r t i v e   d e s i g n  work  would no t   be   changed   i n   go ing   f rom  the   p ro to type   t o  
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t h e   f l i g h t  model. It would inc lude   the   des ign   of   spec ia l   equipment  

(busses ,   i n t e r f aces ,   e t c . ) ,   t he   so f tware   sys t em  ( execu t ive   and   app l i ca t ion  

p rograms) ,   and   t he   t e s t   p rocedures   and   f ac i l i t i e s   have   been   des igned   fo r  

t he   p ro to type .  

The approach  suggested  above  might  preclude  the  use  of  advanced 

technology  components  such as LSI c i r c u i t r y ,   b u t   t h i s  i s  considered a 

small r i s k   i n  view of  two f a c t o r s :  

It i s  u n l i k e l y   t h a t   t h e   f l i g h t  model  would b e   b u i l t   u s i n g  
r a d i c a l l y  new technology  because   o f   the   un t r ied   na ture  of  
such a technology  and   the   l ack  of  da ta   on  i t s  r e l i a b i l i t y .  

0 Any LSI components t h a t  are s u i t a b l e   f o r   t h e   f l i g h t  model 
w i l l  probably  be  preceded  on  the  market by t h e  same type 
of  equipment  implemented i n  a less   advanced  technology.  

I n  t e s t i n g   t h e   f l i g h t   m o d e l ,  a s u i t a b l e   r e s e a r c h   a i r c r a f t  

environment w i l l  be   requi red .  We under s t and   t ha t  NASA Langley i s  equipped 

wi th   such  a f a c i l i t y  and a n t i c i p a t e   t h a t  i t  can   be   used   for   t es t ing .  

F o r   t h i s   r e a s o n  we s e e  a s t rong  involvement   of  NASA p e r s o n n e l   i n   t h e s e  

s t e p s .  
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IV  THE  SIFT  CONCEPT 

A .  Introduction 

In recent  years,  a  number  of  fault-tolerant  architectures  [Refs. 1-41 
have  been  devised  and  in  some  cases  analyzed  and  implemented. Most  of 
these  architectures  depend  heavily on  special  hardware  structures  to 

achieve  their  fault-tolerance.  While  hardware  mechanisms  are  fast  and 

economical,  they  are  severely  limited  in  the  kinds  of  faults  they  can 
treat.  Also,  such  mechanisms  cannot  be  easily  modified  to  reflect  changes 

in  performance  and  reliability  requirements. 

The  SIFT  (Software-Implemented  Fault-Tolerance)  computer  [Ref. 51 

is  founded on  a  new  approach  to  fault-tolerant  computing  that  puts  strong 

emphasis  on  the  use  of  software  for  achieving  reliability,  with  correspond- 

ing  de-emphasis  on  special  hardware.  The  software  that is critical  to  the 

reliability  of  the  system  is  designed  in  accordance  with  a  hierarchical 

design  methodology  [Refs. 61 that  permits  the  stating  and  proving  of 
formal  properties  relating  to  the  system's  correctness. A Markov  process 
model  is  used  to  analyze  SIFT'S  reliability  as  a  function of various 

error-detection  and  reconfiguration  strategies.  The  reliability  model 

is  incorporated  into  SIFT'S  formal  description,  permitting  the  demonstra- 

tion  that  the  model  indeed  reflects  the  behavior of the  system. 

The remainder  of  this  chapter  is  concerned  with  the  goals  of  the 
SIFT  system  and  a  narrative  description of its  operation. 

We believe  that  the  SIFT  concept  is  useful  in  many  application  areas 

where  high  reliability  is  at  a  premium.  Although  a  system  might  have 

extensive  redundancy,  if  the  software  or  hardware  mechanisms  that  manage 

the  redundancy  are  incorrect,  the  system  will  still  be  unreliable.  Later 

chapters show  how formal  verification  methods  can  be  used  to  ensure  that 

the  present  system  is  correct. We  have  attempted  to  develop  a  precise 

statement, in terms of a  Markov-like  model,  of  the  behavior  of SIFT in 
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t h e   h i e r a r c h i c a l   d e c o m p o s i t i o n   o f   t h e   S I F T   s o f t w a r e   t o   f a c i l i t a t e  i t s  

v e r i f i c a t i o n .  We b e l i e v e   t h i s  i s  t h e   f i r s t   a t t e m p t   t o   s p e c i f y   f o r m a l l y  

a f a u l t - t o l e r a n t   s y s t e m .  

We t h i n k   t h a t  it w i l l  b e   p o s s i b l e   t o   v e r i f y   f o r m a l l y   t h e  SIFT s o f t -  

ware, because it i s  r e l a t i v e l y   s i m p l e  and  because i t  i s  h i g h l y   s t r u c t u r e d .  

Although  SIFT  exhibi ts  some o f   t h e   f e a t u r e s  of a modern  operating  system, 

e . g . ,   t a s k   d i s p a t c h i n g   a n d   ( l i m i t e d )  memory management, i t  i s  much s imple r  

t h a n   o t h e r   s y s t e m s   b e i n g   c o n s i d e r e d   f o r   v e r i f i c a t i o n   [ R e f s .  6-71, 

B. SIFT  Per formance   and   Rel iab i l i ty   Goals  

SIFT is  a genera l -purpose   computer   in tended   for   use  as t h e   c e n t r a l  

computer i n  advanced  commercial   a i rcraf t .   The  computat ional   requirements  

[Ref. 81 f o r   t h e   a i r c r a f t   e n v i r o n m e n t  can be  summarized as follows: 

The  cont ro l   fea tures   can   be   b roken  down t o   a b o u t  20 t a s k s ,  
e . g . ,   e n g i n e   c o n t r o l ,   s t a b i l i t y   a u g m e n t a t i o n ,   a n d   c o l l i s i o n  
avoidance,   that   must   be  serviced.   The  computer  i s  designed 
so  t h a t  i t  c o u l d   s e r v i c e   t h e   f a s t e s t   t a s k s   e v e r y  1 msec. 

The r e l i a b i l i t y   r e q u i r e m e n t  is dependent on t h e   t a s k .  The 
t a s k s   t h a t  are f l i g h t  cr i t ical  m u s t   e x h i b i t  a f a i l u r e  ra te  
no t   exceed ing   10 -9 / f   l i gh t -hour .   Th i s   h igh   r e l i ab i l i t y   can -  
not   be   ach ieved   wi th   cur ren t   hardware   t echnology  wi thout  
redundancy. 

The  programs  and  associated  data   that   implement   the  tasks  
are of   modera te   s ize .  

A t a s k   m i g h t   r e q u i r e   i n p u t   d a t a   f r o m   o n e   o r  more o t h e r   t a s k s  
( t y p i c a l l y   o n l y  a few  words). No other   type  of   communicat ion 
exis ts  between  tasks.  

I n p u t   f r o m   a i r c r a f t   s e n s o r s   c a n   b e   a c c o m p l i s h e d  by r ead ing  
mul t ip l e   cop ie s   o f   s enso r s ,   and   i n  some cases t h e   o u t p u t  
c a n   b e   d e l i v e r e d   t o   m u l t i p l e   a c t u a t o r s .  

C .  SIFT  System  Design 

The  SIFT  computer  (Figure IV-1) c o n i s t s   o f  a number of  hardware mod- 

u les ,   each  composed of  a memory and a p r o c e s s i n g   u n i t .   T h e   i n d i v i d u a l  

p rocess ing   un i t s   w i th in   t he   modu les  are c o n n e c t e d   t o   t h e   c o r r e s p o n d i n g  

memory uni t s   wi th   wide-bandwidth   busses .   The   in te rmodule   bus   o rganiza t ion  

(B1,B2,B3) i s  d e s i g n e d   t o   a l l o w  a p rocesso r   t o   r ead   f rom  any  memory b u t  
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n o t   t o  write i n t o   o t h e r  memory uni ts .   The  intermodule  bus i s  expec ted  

t o  have a much lower  bandwidth  than  an  intramodule  bus  because  of   the 

r e l a t i v e l y  low rate of   in format ion   f low  be tween  tasks .  

The inpu t /ou tpu t   sys t em  a s sumed   t o   be   connec ted   t o   t he   busses  B 1' 
B2, and B as shown i n   F i g u r e  I V - 1 ,  c o n s i s t s   o f  a l l  the  noncomputing 

u n i t s ,   f o r  example, t ransducers ,   ac tua tors ,   and   sensors .   The  p a r t  of 

t h e   t o t a l   i n p u t - o u t p u t   t h a t  i s  carried o u t  by  program,  such as fo rma t t ing  

or   code   convers ion ,  i s  handled i n   t h e  same manner as f o r  any   o the r   t a sk ;  

t h a t  is, it i s  r e p l i c a t e d   i n   s e v e r a l   p r o c e s s o r s .  

3' 

A l l  l a r g e   t a s k s  are b roken   i n to  a number o f   sub ta sks   i n   such  a way 

than   no   sub ta sk   r equ i r e s  more  computing  power  than  can  be  supplied by 

one  processor .   The  tasks  are g iven   t he   des igna t ions ,  A, B, C, ...; t h e  

p rocesso r s  are numbered 1, 2, 3 . .  . . Each  processor  i s  capable   o f   be ing  

mul t ip rogramed   ove r  a number of   t asks ,  as i l l u s t r a t e d   i n   F i g u r e  IV-2. 

The cont ro l   o f   the   comput ing   sys tem i s  carried o u t  by a number  of 

funct ions  that   can  be  segmented  into  two classes: 

(1) L o c a l   E x e c u t i v e :   f u n c t i o n s   t h a t   a p p l y   t o   e a c h   p r o c e s s o r  
( e .g . ,   d i spa tch ing ,*   vo t ing ,   r epor t ing   e r ro r s ,   l oad ing  
new task  programs) .  

( 2 )   G l o b a l   E x e c u t i v e :   f u n c t i o n s   t h a t  are g l o b a l   t o   t h e   s y s -  
t e m  (e .g . ,   a l loca t ion   and   schedul ing   of   work   load ,   recon-  
f i g u r i n g ) .  

A complete set o f   t he   so f tware   func t ions   o f   t he   Loca l   Execu t ive  is 

p resen t   i n   each   p rocesso r ;   t hose   o f   t he   G loba l   Execu t ive  are carried o u t  

i n  a s u f f i c i e n t  number o f   p r o c e s s o r s   t o   p r o v i d e   t h e   d e g r e e   o f   f a u l t   t o l -  

e r ance   r equ i r ed .  The f u n c t i o n s  are r e a l i z e d  by  programs t h a t   h a v e   t h e  

same t a s k   s t r u c t u r e  as a l l  other  programs. 

The  normal  operating mode f o r  a p rocesso r   ca r ry ing   ou t  a t a s k  i s  as 

fo l lows:  Data r e q u i r e d   f o r   t h e   t a s k  are assumed t o  have  been  computed  by 

s e v e r a l   p r o c e s s o r s   ( p o s s i b l y   i n c l u d i n g   t h e  same ones   ca r ry ing   ou t   t he  

t a s k ) .  The i n p u t  data are read   f rom  the   severa l   p rocessors   where   copies  

* 
The  bus  logic   envis ioned  does  not  u s e  vot ing.   The number  of  busses i s  
va r i ab le .   The  number 3 is chosen   for   convenience   o f   d i scuss ion .  
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exist. A v a l i d a t i o n  is now carried o u t ,   t y p i c a l l y  by a v o t e  among t h e  

several values  of  each  datum. I f  a n y   o f   t h e   c o p i e s   o f   t h e   i n p u t   d a t a  

are found  not t o   a g r e e ,   t h i s   f a c t  i s  n o t e d   f o r  later p rocess ing  by t h e  

execu t ive .   Dur ing   t he   r ead ing   o f   t he   d i f f e ren t   ve r s ions   o f  a d a t a  i t e m ,  

d i f f e r e n t   b u s s e s  are used i n   o r d e r   t o   p r o t e c t   a g a i n s t   e r r o r s   i n   b u s  op- 

e r a t i o n s .  The  computat ion  of   the  task i s  now carried o u t ;   t h e   r e s u l t s  

are l e f t   i n   t h e  memory of   the  module,   and  note  i s  made ( i n   t h e  module) 

o f   t h e   f a c t   t h a t   t h e   t a s k  i s  computed. 

I f   d i s c r e p a n c i e s  are de tec ted   be tween  the  several ve r s ions   o f  a d a t a  

ob jec t ,   d i agnos i s   p rog rams   i n   t he   g loba l  executive de termine   which   un i t  

is  a t  f a u l t .   R e c o n f i g u r a t i o n  i s  achieved by h a v i n g   t h e  several v e r s i o n s  

o f   t he   g loba l   execu t ive   i nd ica t e   t o   each   l oca l   execu t ive   wh ich   t a sks  

should  be  performed  and  which  other   processors   should replicate t h e  cal- 

c u l a t i o n s   f o r   e a c h   t a s k .  A l l  the   loca l   execut ives   examine   each   of   the  

g loba l   execu t ive   ve r s ions   and   i ndependen t ly   vo te   on   t hese   d i r ec t ions .  

That is, each   loca l   execut ive   dec ides   which   of   the   reconf igura t ion   d i rec-  

t i o n s  i t  w i l l  accept, u s ing  a m a j o r i t y   r u l e .  A f a u l t y   p r o c e s s o r   m i g h t  

n o t   h e e d   t h e   d i r e c t i o n s   o f   t h e   g l o b a l  executive, but ,   based  on  the  instruc-  

t i o n s   o f   t h e   g l o b a l   e x e c u t i v e ,   o p e r a t i v e   p r o c e s s o r s  w i l l  i g n o r e   t h e  

f au l ty   p rocesso r .   Thus   t he   wors t  i m p a c t  of a f a u l t y   p r o c e s s o r  i s  t h a t  

i t  w i l l  exert a s l i g h t   l o a d  on the  bus  system. 

D. The  Design  Methodology 

The   SIFT  des ign   has   been   spec i f ied   in   accordance   wi th  a formal  de- 

s ign   me thodo logy   t ha t   o r ig ina t ed   w i th  D. Parnas   [Refs .  9,101 and  has  

been  extensively  developed a t  SRI  [Ref. 61. The   ch ief   reasons   for   us ing  

such a medium were (1) t o  impose a d i s c i p l i n e  on the   des ign   p rocess  as- 

s u r i n g  a c l e a r l y - s t r u c t u r e d ,   e a s i l y   m o d i f i e d   d e s i g n ;  (2)  t o   s i m p l i f y   v e r -  

i f i c a t i o n  o f   t h e   c o r r e c t n e s s   o f   t h a t   d e s i g n ;   a n d  ( 3 )  t o   f a c i l i t a t e   t h e  

a n a l y s i s   o f   c e r t a i n   r e l i a b i l i t y   p r o p e r t i e s .   P r e v i o u s   u s e   o f   t h e   m e t h o d -  

o logy   has   been   conce rned   w i th   on ly   t he   f i r s t  two  of   these aims. The  SIFT 

e f f o r t  i s  t h e   f i r s t   i n s t a n c e   o f  i t s  u s e   i n   c o n n e c t i o n   w i t h   f a u l t - t o l e r a n t  

des ign .  
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The  methodology  can  be  viewed as a f o r m a l i z a t i o n   o f   D i j k s t r a ' s  

s t e p - w i s e  ref inement   concept   [Ref .  1 1 1 .  The c e n t r a l   i d e a  is t o  decompose 

t h e   d e s i g n   i n t o  a hierarchy  of   modules .  The h i g h e s t   m o d u l e s   i n   t h e   h i e r -  

a r c h y   p r o v i d e   a n   a b s t r a c t ,   g l o b a l   d e s c r i p t i o n   o f   t h e   s y s t e m ' s   c a p a b i l i t i e s .  

Modules a t  lower levels o f   t h e   h i e r a r c h y   s e r v e  as b u i l d i n g   b l o c k s   f o r  

implementing  the  highest- level   module.   Modules  a t  s t i l l  lower   l eve ls  a r e ,  

bui ld ing   b locks   for   implement ing   those  a t  in t e rmed ia t e   l eve l s ,   and  s o  on.. 

The   modu les   l y ing   nea r   t he   t op   o f   t he   h i e ra rchy   t hus   t end   t o   be   h igh ly  

a b s t r a c t ,   w h i l e   t h o s e  a t  o r   n e a r   t h e   b o t t o m   t e n d   t o   b e  more c o n c r e t e .   I n  

t h e  SIFT  des ign ,   for  example, d e s c r i p t i o n s   o f  real machine  hardware ap-  

pea r  a t  the  bot tom  level ,   and a s e t - t h e o r e t i c  model  of the   workings   o f  

t he   sys t em  appea r s   nea r   t he   t op .  

Each  module i n  t h e  h i e r a r c h y  is s p e c i f i e d   i n   t e r m s   o f  a se t  of  ab- 

stract data s t r u c t u r e s  (called V- func t ions )   p lus  a set  o f   o p e r a t i o n s  

(called O - f u n c t i o n s )   t h a t   c h a n g e   t h e   v a l u e s   o f   t h e s e   s t r u c t u r e s .  A t  any 

g iven  moment, t h e  state of  the  module is  determined by the   aggrega te   o f  

t he   va lues   o f  i t s  V-functions.   O-function cal ls  t h u s  cause t r a n s i t i o n s  

from  one state to  another .   The  V-funct ions  and  P-funct ions  of   each mod- 

u l e  are s p e c i f i e d   u s i n g  a formal   l anguage .   The   spec i f ica t ions   descr ibe  

what  happens when each   o f   t he   func t ions  of a module i s  c a l l e d .   S p e c i f i c a -  

t i o n s   f o r   O - f u n c t i o n s   c o n s i s t   o f   a s s e r t i o n s ,  i.e., logicaL  formulas   that  

relate t h e  s ta te  (va lues  of  V-functions) of t h e  module before   an  O-funct ion 

ca l l ,  t o   t h e  s ta te  r e s u l t i n g  from t h e  ca l l .  Module s p e c i f i c a t i o n s   h a v e  

o the r   a spec t s   [Re f .  1 2 1  t h a t  are d i s c u s s e d   i n   g r e a t e r   d e t a i l   i n  Chap- 

ter VIII. 

E. Design  Features   of   SIFT 

T h i s   s e c t i o n  is concerned   wi th   the   more   impor tan t   des ign   dec is ions  

t h a t  we have  formulated  for   SIFT.  

1. 

I n   t h e   a i r c r a f t   a p p l i c a t i o n ,   m o s t   c o m p u t a t i o n s  are i t e r a t i v e .  

Thus, tasks are executed on a r e g u l a r   b a s i s   w i t h  a f r equency   t ha t  is de- 

penden t   on   t he   app l i ca t ion .   Non i t e ra t ive   t a sks   can   a l so   be   hand led  
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w i t h i n   t h i s  scheme w i t h   n o   a p p a r e n t   d i f f i c u l t y .   D i s p a t c h i n g  i s  accom- 

p l i s h e d  v ia  a f i x e d   s c h e d u l e   t h a t  is s t o r e d   i n   e a c h   p r o c e s s o r .   T h r e e  

per iods ,   o r   f rames ,   o f  a p o s s i b l e   s c h e d u l e  are d e p i c t e d   i n   F i g u r e  IV-3. 
The maximum t a s k   i t e r a t i o n  rate, o r  frame rate, is determined  by  the 

f requency   of   the   "c lock- t icks ,"   which   can   be   der ived   f rom  an   u l t ra re l iab le  

system-wide  c lock,   or  v ia  a c l o c k   a s s o c i a t e d   w i t h   t h e   p r o c e s s o r   i n   q u e s -  

t i o n .   F o r   t h e  lat ter o p t i o n ,   t h e   c l o c k s   i n   t h e   r e s p e c t i v e   p r o c e s s o r s  are 

loosely  synchronized.   The  synchronizat ion  requirement  is tha t   no   p ro -  

c e s s o r  is  t o  commence i t e r a t i o n  n of a t a s k   b e f o r e   i t e r a t i o n   n - 1   h a s   b e e n  

completed  on a l l  p rocesso r s   execu t ing   t ha t   t a sk .   Thus ,   t he   s lowes t   p ro -  

cessor   should   no t  s l i p  b e h i n d   t h e   f a s t e s t   p r o c e s s o r  by  more than  one 

frame . 

FIGURE IV-3 SNAPSHOT OF A SAMPLE  SCHEDULE 

I n   t h e  example, t a s k s  A and C are dispatched  every  frame,  and 

t a s k  B every  two  frames.  Note t h a t   t a s k  C is not   d i spa tched  a t  t h e  same 

r e l a t i v e  time i n   e a c h   f r a m e .   F o r   t h e   a p p l i c a t i o n   b e i n g   c o n s i d e r e d ,   t h i s  

i s  an   a l lowab le   pe r tu rba t ion .   Each   o f   t hese   t h ree   t a sks  is  in tended  

to   execu te   t o   comple t ion   du r ing   each   f r ame   i n   wh ich  i t  i s  d ispa tched ,  

t h u s   o b v i a t i n g   t h e   n e e d   f o r  many mechanisms  usua l ly   assoc ia ted   wi th  

multiprogramming. A t a s k   t h a t   f o r  some reason   does   no t  complete t h e  

i t e r a t ion   by . ' t he   end   o f  i t s  a l l o t t e d  time i s  h a l t e d   i n   f a v o r   o f   t h e   n e x t  

t a s k .   I n   F i g u r e  IV-3, A d e s i g n a t e s   a n   i n t e r v a l   i n   w h i c h   t h e   p r o c e s s o r  

is i n  a noncomputing state, a w a i t i n g   t h e   n e x t   c l o c k - t i c k .  

2 .  Task  Communication 

Each   t a sk  i s  p rocessed   acco rd ing   t o   t he   fo l lowing  scheme: 

READ DATA FROM EACH TASK SUPPLYING INPUTS 
COMPUTE 
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WRITE  DATA TO A BUFFER  FOR EACH TASK THAT REQUIRES 
IT AS AN INPUT 

We are assuming  tha t   any   da ta  a t a s k   r e q u i r e s   f o r   t h e   e x e c u t i o n  of a n  

i t e r a t i o n  i s  ob ta ined   f rom  ou tpu t   da t a  computed  by t h e   p r e v i o u s   i t e r a t i o n  

of t h e  same and   o the r   t a sks .  

S ince   SIFT  does   no t   a l low  any   processor   to  write d i r e c t l y   i n t o  

t h e  memory o f   ano the r   p rocesso r ,   t he  WRITE DATA o p e r a t i o n  is  accomplished 

by u s i n g  a b u f f e r   t h a t  resides i n   t h e   w r i t i n g   t a s k ' s   p r o c e s s o r .   I f  B i s  

t o  write d a t a   f o r  A, B d e p o s i t s   t h e   d a t a   i n  a buf fe r   t ha t   can   be   subse -  

quen t ly   r ead  by A, which may b e   e x e c u t i n g   i n   t h e  same o r   i n   o t h e r   p r o -  

c e s s o r s .  

The READ DATA ope ra t ion ,   s ay  by t a s k  A f rom  task  B, i s  imple -  

mented as fo l lows:   The   da ta   depos i ted   by   each   vers ion   of  B, i n  i t s  own 

b u f f e r ,  is  r ead ,   and   t he   ma jo r i ty   va lue   o f   t he   s eve ra l   ve r s ions   o f   t he  

d a t a  i s  computed  by each   vers ion   of  A .  I n   o r d e r   t o   t o l e r a t e  bus   f a i lu re s ,  

each   vers ion   of  B is read  via  a d i f f e r e n t   b u s .  The  disagreements  reported 

by the   aggrega te   o f   p rocesso r s  are used t o   l o c a t e   f a u l t y   p r o c e s s o r s   a n d  

busses.  Some o f   t h e  data r equ i r ed  by a t a s k  are obta ined   f rom  ex terna l  

sources,  which  can  themselves  be  viewed as t a s k s  replicated f o r  relia- 

b i l i t y  enhancement. However, t h e   v a r i o u s   i n s t a n c e s  of a g iven   i npu t  

datum are n o t   l i k e l y   t o   b e   i d e n t i c a l   b e c a u s e   o f   s l i g h t   d i f f e r e n c e s  among 

real phys ica l   da t a   sou rces .   Such   s l i gh t   d i sag reemen t s   can   be   p reven ted  

from  causing a vote   disagreement  by p rov id ing  a mechanism  whereby a t a s k  

performing a r e a d   c a n   s p e c i f y   t h e   p r e c i s i o n   e x p e c t e d  among t h e   v a r i o u s  

i n s t a n c e s .  

When t a s k  A v o t e s   o n   t h e   d a t a  computed  by s e v e r a l   i n s t a n c e s   o f  

t a s k  B y  t hese   da t a   mus t  a l l  b e   a s s o c i a t e d   w i t h   t h e  same i t e r a t i o n   o f  B. 

C o n s i d e r   t h e   t a s k   t i m i n g   i l l u s t r a t e d   i n   F i g u r e  I V - 4 .  S i n c e  a l l  i n s t a n c e s  

of t h e   t a s k s   e x e c u t i n g   i n   d i f f e r e n t   p r o c e s s o r s  are n o t  assumed  (nor i n -  
t ended)   t o   be   mu tua l ly   synchron ized ,   and   i f   on ly   one   bu f fe r  w e r e  pro- 

v ided  p e r  p rocesso r  p e r  w r i t i n g   t a s k ,   t h e n   i t e r a t i o n  n of t a s k  A i n  P2 

would   read   da ta   f rom  i te ra t ion   n -1   f rom A i n  P2, b u t   f r o m   i t e r a t i o n  n 

from A i n  P1. This  problem is re so lved  by p rov id ing  two b u f f e r s   i n   e a c h  

41 



ITERATION n-1 ITERATION n ITERATION n+l 

SCHEDULE 
FOR P1 I 

A A I -  A * - I A - - 

READ -\ WRITE " - 
ITERATION  ITERATION 

SCHEDULE 
FOR P2 

A A - - - I - 

FIGURE IV-4 TASK  SCHEDULES DEMONSTRATING  THE  NEED 
FOR TWO COMMUNITY  BUFFERS 

processo r   fo r   each   wr i t i ng   t a sk ,   one   wh ich  i s  w r i t t e n   i n t o   o n  odd-numbered 

i t e r a t ions   and   t he   o the r   on   even-numbered   i t e r a t ions .  

3 .  D e t e c t i o n  and  Location  of  Processor  and Bus F a i l u r e s  

I n   t h i s   s e c t i o n ,  we d i s c u s s   t h e  method  whereby t h e   g l o b a l  exec- 

u t ive   can   de te rmine   which   processor   o r   bus  i s  f au l ty ,   based   on   t he   e r ro r  

r epor t s   o f   each   o f   t he   p rocesso r s .   Fo r   s imp l i c i ty ,  we  assume t r ipl ica-  

t ion   o f   p rocessors   and   busses ,  so t h a t   s i n g l e   f a u l t s   c a n   b e   t o l e r a t e d  and 

loca ted .  The g e n e r a l i z a t i o n  t o  general   redundancy is  n o t   d i f f i c u l t .  

On behalf   of  a t a s k ,  a p rocesso r  w i l l  read data from  other  pro- 

c e s s o r s   t h a t ,   i n   t h e   a b s e n c e   o f   f a u l t s ,   s h o u l d   b e   i d e n t i c a l .   I f   o n e   o f  

t h e  d a t a  i n s t a n c e s ,  as r ead  by a processor ,  is  i n   d i s a g r e e m e n t ,   t h e n   t h e  

processor  w i l l  r e c o r d   t h e   i d e n t i t y   o f   t h e   d i s a g r e e i n g   p r o c e s s o r   a n d   t h e  

ident i ty   o f   the   bus   used .   The   g loba l   execut ive  w i l l  examine t h e   p r o c e s s o r -  

bus   d i sc repanc ie s   r epor t ed  by each   of   the   p rocessors   and   a t tempt   to   iden-  

t i f y   t h e   p r o c e s s o r s ( s )   a n d / o r   b u s ( s e s )   t h a t  are f a u l t y .  

T h e   f o l l o w i n g   f o u r   f a u l t   t y p e s   c o v e r  a l l  p o s s i b l e   s i n g l e   p r o -  

cessor   and  bus f a u l t   o c c u r r e n c e s   t h a t   c o u l d   l e a d   t o   e r r o n e o u s   r e s u l t s :  

(1) Processor   computa t ion   and/or   vo t ing  (PCV)--A pro- 
cessor   p roduces   e r roneous   va lues   in   comput ing  re- 
s u l t s   f o r   t a s k s   a n d / o r   i n   p e r f o r m i n g  a vote   and 
dec id ing   wh ich   i npu t ( s )   t o   t he   vo te  i s  i n   d i s a -  
greement   wi th   the   major i ty .  
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(2) Bus t r a n s m i s s i o n  (BT)--A bus  changes  the  value 
of a word as it i s  t ransmit ted  between  processors .  

(3 )  Processor-bus i n   i n i t i a t i n g   r e a d i n g  (PB1R)--A pro- 
c e s s o r  is i n c a p a b l e   o f   i n i t i a t i n g  a r e a d   o p e r a t i o n  
v i a  a p a r t i c u l a r   b u s .  

( 4 )  Processo r -bus   i n   depos i t i ng   da t a  (PBDD)--A proces- 
s o r  is incapab le   o f   depos i t i ng  d a t a  on to  a p a r -  
t i c u l a r   b u s .  

To  i l l u s t r a t e   t h e   f a u l t   l o c a t i o n   a l g o r i t h m ,   s u p p o s e   t h a t  on 

e a c h   i t e r a t i o n ,  a t a s k  reads data   f rom a p r e v i o u s   i t e r a t i o n   o f   i t s e l f .  

The t a sk   execu te s   on   t h ree   p rocesso r s   and  u s e s  t h r e e   d i s t i n c t   b u s s e s   f o r  

t h e  read ope ra t ion .   Fo r  odd i t e r a t i o n s ,   t h e  bus  assignment i s  as i n  

F igu re  IV-5a and f o r   e v e n   i t e r a t i o n s  as i n   F i g u r e  IV-5b.  The i n t e r p r e -  

t a t i o n   o f   t h e  matrices i s  as f o l l o w s :   t h e  P 1  row of   Figure  IV-5a  indi-  

cates t h a t  when P1  reads  f rom  P1 i t  uses  bus B l , *  when P 1  reads from P2 

i t  uses  Bus 2, and when P 1  reads  f rom P 3  i t  u s e s  B3. It i s  apparent  

READ-FROM  PROCESSORS 

READING  P2 P3 
PROCESSORS 

P1 

P2 

P3 

(a) ODD-ITERATIONS 

READ-FROM  PROCESSORS 

READING  P2  P3 
PROCESSORS 

P1 

P2 

P3 

(b) EVEN-ITERATIONS 

FIGURE JV-5 BUS  ASSIGNMENTS  TO ENABLE SINGLE FAULT LOCATION 

* 
It is, o f   c o u r s e ,   f e a s i b l e   f o r  a p r o c e s s o r   i n   r e a d i n g   f r o m   i t s e l f   t o  u s e  
the   in te rna l   p rocessor -bus   connec t ion   which  i s  of a higher   bandwidth  than 
the   i n t e r -p rocesso r   bus   sys t em.  However, i n   t h i s   d i s c u s s i o n  we assume 
tha t   t he   bus   sys t em i s  used   for  a l l  read  data ope ra t ions .   Th i s   avo ids  
t h e  need f o r  a separate f a u l t   l o c a t i o n   a l g o r i t h m  when a t a s k   r e a d s   d a t a  
from a t a s k   i n  i t s  processor .  
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t h a t   f o r   e i t h e r   a s s i g n m e n t ,   t h e   o c c u r r e n c e   o f   a n y   o n e   o f   t h e   f o u r   f a u l t  

t ypes  leads t o   a n   e r r o r  which i s  masked  by t h e   v o t i n g  scheme. It remains 

t o  show t h a t  a f a u l t   c a n   b e   p i n p o i n t e d   t o  a processor ,  a bus ,   o r  a 

processor -bus   connec t ion   ( type  3 o r  4 ) .  

The f a u l t   l o c a t i o n   a l g o r i t h m  i s  i l l u s t r a t e d   i n   F i g u r e  IV-6, f o r  

a f a u l t  o f   each   o f   t he   fou r   t ypes .   In   t he  case of a t y p e  1 f a i l u r e   i n -  

vo lv ing  P 1  (PL computes  erroneous resu l t s  fo r   t he   t a sk   and /o r   p roduces  

e r roneous ,   and   a rb i t ra ry ,   e r ror   repor t s ) ,   f rom  the   repor t s   o f  P2 and P3 

it i s  a p p a r e n t   t h a t  P1 is f a u l t y   a n d   t h a t  i t s  e r r o r   r e p o r t s   s h o u l d   b e   i g -  

nored .   The   on ly   poss ib i l i ty   for   ambigui ty  is between a type  1 f a i l u r e  

(P1  v o t i n g   i n c o r r e c t l y )  and a type  3 f a i l u r e  (P1  u n a b l e   t o   i n i t i a t e  a 

read v i a  B l ) .  Both   fa i lure   types   could   p roduce   the  same e r r o r   r e p o r t  

(a l though i t  is  u n l i k e l y   t h a t   f o r  a type  1 f a i l u r e   t h i s  would  be  the  case) ,  

i n  which case t h e   g l o b a l   e x e c u t i v e  would f i r s t  s u s p e c t  a type  3 ;  the   sub-  

sequent   use  of  P 1  cou ld   ac tua l ly   r evea l   t he   p re sence   o f  a type  1 f a i l u r e .  

A f a u l t y   u n i t   s h o u l d   b e   i d e n t i f i e d   s h o r t l y   a f t e r   t h e   d e t e c t i o n  

o f   t h e   f a i l u r e  by t h e   v o t i n g   p r o c e s s o r s .  The g l o b a l   e x e c u t i v e  w i l l  then  

i n s t r u c t  a l l  p rocesso r s  t o  i g n o r e   t h e   f a u l t y   p r o c e s s o r   o r   n o t   t o   u s e   t h e  

f au l ty   bus .   Th i s   p rocess  is w e l l  known as adap t ive   vo t ing ,   [Re f s .  13,  141 
a n d   e n a b l e s   S I F T   t o   t o l e r a t e  some m u l t i p l e  f a u l t s   t h a t  may occur   be fo re  

reconf igura t ion   can   be   comple ted .  

A f t e r   t h e   i d e n t i t i e s   o f   t h e   f a u l t y   u n i t s  are known t o   t h e   g l o -  

ba l   execu t ive ,  i t  i n i t i a t e s  a r econf igu ra t ion   p rocess ,  s o  as t o   u t i l i z e  

e f f e c t i v e l y   t h e   r e m a i n i n g   o p e r a t i v e   r e s o u r c e s .   A f t e r   t h e   r e c o n f i g u r a t i o n  

i s  c o m p l e t e ,   t h e   a l l o c a t i o n   o f   t a s k s   t o   p r o c e s s o r s   a n d   b u s s e s   c o u l d   b e  

e n t i r e l y   d i f f e r e n t   f r o m   t h a t   p r i o r   t o   t h e   r e c o n f i g u r a t i o n .  A s  a r e s u l t  

o f   t he   r econf igu ra t ion ,   p rocesso r s   migh t   be   g iven  new schedules ,   and 

t h e   p r o c e s s o r   a n d   b u s   a l l o c a t i o n   t a b l e s   i n   e a c h   p r o c e s s o r   m u s t   b e  up- 

da ted .  

The formula t ion   of  new bus   a s s ignmen t s   a f t e r   de t ec t ion   and  lo-  

c a t i o n   o f  a b u s   f a i l u r e  i s  e a s i l y   c a r r i e d   o u t  by t h e   g l o b a l   e x e c u t i v e .  

It i s  f e a s i b l e   f o r   t h e   g l o b a l   e x e c u t i v e   t o   c o m p u t e   i n   r e a l   t i m e  new t a s k  

a l l o c a t i o n s  and   s chedu les   i n   r e sponse   t o  ea,ch p r o c e s s o r   f a i l u r e .  
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ERROR  REPORTS 
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READ  INITIATION 
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PROCESSOR-BUS, TWO  DIFFERENT PROCESSORS - (P1.61) - - (P1,Bl) - 
DEPOSITING  DATA REPORT  ERRONEOUS  RESULTS 

(P1,Bl) INVOLVING P1 AND B1 - 

FIGURE IV-6 ILLUSTRATIONS OF FAULT-LOCATION ALGORITHM 



An alternative  approach  is  to  precompute  the  allocations  and  schedules 

for  all  possible  processor  fault  occurrences. We are  now  using  this 

latter  approach,  since  the  storage  requirements  are  small. 

A global  executive  instance  could  reside in each  processor,  and 

thus  assume  the  entire  responsibility  for  reconfiguring  that  processor, 

based on  the  error  reports  of  all  processors.  Besides  deriving new 

schedules  and  bus  assignments  for  its  processor,  each  global  executive 

updates  tables  and  loads  new  tasks  into  the  processor.  However, in  order 

to  minimize  the  executive  computational  load  on  the  processors, we have 

decomposed  the  executive  tasks  into  two  parts: (1) a  global  executive 
task,  residing  in  at  least  three  processors,  which  computes  new  allocations 

and  schedules  for  each  processor,  and (2) a  local  executive  residing  in 

each  processor,  which  determines  what  its  new  configuration  should  be  by 

voting  on  the  three  global  executive  instances. 

F.  The Logical  Structure  of  SIFT 

The preceding  discussion  has  summarized  the  primary  operation of 

SIFT. In this  section, we consider  a  hierarchical  decomposition  of  the 

system. 

The logical  structure  of  SIFT  consists  of  a  hierarchical  layering 

of  modules,  which we designate  as  system  modules,  and  some  programs, 

namely  the  application  tasks  and  the  global  and  local  executives,  that 

utilize  the  facilities  of  the  external  interface  of  system  modules. For 

simplicity,  we  will  say  that  the  tasks  call  the  functions  of  the  interface. 

Each  system  module  may be  considered  as an abstract  machine  that  maintains 

a  state  (represented  by  V-functions)  and  provides  operations  (0-functions) 

to  modify  the  state. The application  tasks  and  executive  may  then  be 

considered  as  programs  that  run  on  the  abstract  machines. The data  re- 

quired  by  the  tasks  are  distributed  among  the  system  modules. 

Each task,  including  the  global  executive,  executes  in  some  subset 

of  the  processors. The fault  status  and  fault  schedules  modules,  which 

are  accessed  only  by  the  global  executive,  appear  only in processors 

executing  the global executive. 
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It is  assumed  that  the  real-machine  module  describes  the  ordinary 
machine  instructions, e.g.,  add,  store. In reality,  the  tasks  and  all 

modules  above  the  hardware  will  call  these  instructions  and  thus  should 

be  depicted  as  connecting  to  the  real  machine.  We  will  not  concern  our- 

selves  with  these  connections  here  since  they  are  not  essential  to  the 

fault-tolerance,  reliability,  and  scheduling  properties  of  SIFT.. 

G. Discussion 

The  SIFT  concept  embodies  a  number  of  ideas  whose  usefulness  extends 

beyond  the  particular  application  for  which  the  system  is  designed.  Be- 
cause  conventional,  off-the-shelf  processing  units  comprise  the  bulk  of 

the  hardware,  the  system  can  be  easily  and  inexpensively  adapted  to  a 

broad  range  of  needs.  Moreover,  because  the  degree  of  reliability  achieved 
by the  system  depends  on  the  number  of  processors  used  and  on  scheduling 
strategies  rather  than  on  built-in  aspects  of  the  design,  it  can  be  varied 

according to performance  and  cost  requirements  of  the  application. 

The use  of  a  formal  design  medium  for  purposes  of  specification, 

validation,  and  reliability  modeling  can  be  expected  to  play  an  important 

role  in  future  designs  of  fault-tolerant  computers.  While  a  system  might 

make  extensive  use  of  redundancy,  the  system  will  not  be  reliable  unless 

the  software  or  hardware  mechanisms  that  manage  the  redundancy  are  correct. 

Similarly,  the  formulation  and  use  of  elaborate  reliability  models  is  of 

little  value  if  it  cannot  be  demonstrated  that  these  models  actually  re- 

flect  the  behavior of the  system. We believe  that  SIFT  constitutes  a 
major  step in  the  direction  of  fault-tolerant  systems  whose  correctness 

and  reliability can be  verified. 
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V TASK STRUCTURE, ALLOCATION AND SCHEDULING 

A. I n t r o d u c t i o n  

T h i s   s e c t i o n   o f   t h e   r e p o r t   d e s c r i b e s   e f f e c t i v e   p r o c e d u r e s   f o r   t h e  

fo l lowing   major   e lements   in  the design  of a f au l t - to l e ran t   compute r   sys -  

tem: 

0 A n a l y s i s   o f   t a s k s   t o   d e r i v e   a p p l i c a b l e   f l i g h t   p h a s e  
d e s c r i p t i o n s .  

0 Determir ia t ion  of   the  numbers   and  s izes   of   the   redundant  
processor   and memory u n i t s   r e q u i r e d   f o r   t h e   r e l i a b l e  
execu t ion   o f   t he   spec i f i ed   t a sks .  

A l l o c a t i o n   o f   t a s k s   t o   s p e c i f i c   p r o c e s s o r   a n d  memory 
u n i t s   t o   a c h i e v e  some balance  of   processing  and memory 
loads .  

0 Spec i f i ca t ion   o f   t a sk   s chedu l ing   and   r econf igu ra t ion  
procedures   and  symbologies   in  a c o n c i s e ,   e f f i c i e n t  
f r o m   s u i t a b l e  for  implementation. 

The a n a l y s i s   c o n s i d e r s   r e p r e s e n t a t i v e   t a s k s   f o r   t h o s e   a i r c r a f t   f u n c -  

t i o n s   t h a t   h a v e   b e e n   p r e v i o u s l y   d e s c r i b e d  as c a n d i d a t e s   f o r   c o n t r o l   b y  

SIFT. While t h i s  se t  i s  more  comprehensive  than  the set o f   t a s k s   t h a t  

w i l l  b e   i n i t i a l l y  implemented i n   t h e   p r o t o t y p e ,  i t  i s  impor t an t   t o   deve l -  

op a design  methodology  for  SIFT t h a t  w i l l  b e   a p p l i c a b l e   u p   t o   t h e   d e s i r e d  

conceptua l  level o f   t echno log ica l   soph i s t i ca t ion .   Th i s   app roach   a s su res  

a n  upward compat ib le   des ign  t h a t ' w i l l  meet the   requi rements   o f  a smaller 

scale p r o t o t y p e   w h i l e   n o t   c o n s t r a i n i n g  o r  i n v a l i d a t i n g   f u t u r e  levels of 

system  expansion. 

Th i s   s ec t ion   a l so   cons ide r s   s chedu le   imp lemen ta t ion   f ac to r s   such  as 

schedu le   s to rage ,   t he   impac t   o f   sys t em  deg rada t ion ,   t he   p rac t i ca l   imp l i -  

c a t i o n s  of t a s k   c r i t i c a l i t y  class, the   change   o f   s chedu les   w i th   f l i gh t  

phase   change ,   and   approaches   to   der iv ing  new task   schedules   dynamica l ly  

d u r i n g   f l i g h t .  
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B. Flight  Phase  Analysis 

The  set of  flight-related  application  tasks  previously  described in 

the SRI report  entitled  "Design  of  a  Fault  Tolerant  Airborne  Digital 

Computer"  [Ref. 13 was  examined  to  establish  configurations of active 

tasks  sufficient  to  support  the  major  flight  phases  potentially  encoun- 

tered  in  normal  flight.  The  intent  of  this  study  was  to  determine  the 

variations  in  the  task  profiles  of  the  various  phases. It became  neces- 
sary  to  distinguish  between  tasks  that  were  actively  being  executed, 

those  that  were  serving  a  vital  backup  role  (referred  to  as  passive  allo- 

cation),  and  those  tasks  that  performed  secondary  roles  by  actively  con- 

firming  and  augmenting  the  results of the  primary  tasks. In  some 

instances,  certain  tasks  were  not  required  at  all  for  certain  phases. 

The derived  flight-phases  (Table  V-1)  constitute  the  major  operational 

modes  for  which  SIFT  must  provide  task  allocation  and  scheduling  among 

the  multiple  processors  and  memories,  as  discussed  in  the  following 

portions  of  this  section. 

An  anomaly  state  presenting  a  "Navigational  Failure"  is  also  speci- 

fied in  Table  V-1  as  an  illustrative  example.  Although  it  is  represented 

as  a  phase,  it  is  clearly  a  state  that  may  need  to be accommodated  during 

several  of  the  described  phases.  The  primary  change  is  the  shift  of  the 

navigational  support  system  from  the  VOR/DME  and  Multiple-DME  to  the  Omega 

or  satellite  equipment  as  primary  support,  with  reliance  on  Air  Data  for 

secondary  support.  Thus,  the  task  schedules  could  be  modified  by  simple 

replacement of the  preferred  primary  and  backup  navigation  systems  by 

the  appropriate  secondary  set  of  primary  and  backup  systems. 

C.  Review  of  Task  Characteristics  for  Fl~igkt  Phase  Assignment  and 
Processor-Memory  Unit  Allocation 

- " 

The set  of  flight  tasks  that  were  to be considered  for  initial  SIFT 

implementation  are  listed  in  Tables 3 and 4 of  the SRI report  entitled 

"Design  of  a  Fault  Tolerant  Airborne  Digital  Computer"  [Ref. 13. Further 

qualification  and  modification of  the  characteristics  of  these  tasks  have 

been  made  to  facilitate  schedule  development.  Values  of  some  properties 
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Table  V-1 

SYSTEM CONFIGURATION ANALYSIS 

Task 
Code 

A1 
A2 
A 3  

A4-6 

A7 

A8 
B2 
83 
B4 
B5 
B l  

B8 
B9 
B 10 

c1 
c2 
c3 
Dl 
D2 
D3 
D4 

D5 

- Application 

Attitude  Control 
Flutter  Control 
Load  Control 

Autoland 
Autopilot 
Attitude  Indicator 
Inertial 
VOR/DME & Multiple DME 
OMEGA or  Satellite 
Air  Data  (Navigation) 
Flight  Data 

Airspeed,  Altitude 
Graphic  Display 
Test  Display 

Collision  Avoidance 
Data  Comn.,  A/C 
Data  Comn.,  Air/Ground (DABS) 

AIDS 
Instrument  Monitor 
System  Monitor 
Life  Support 

Engine  Control 

Flight  Phase 
C 1 imb  Initial  Hissed  Navigational 

Takeoff  Descent 
" 

- P 

P 
S 

- 
- 
- - 
- P 
P  P 
P P 

P 

B 

- 
- 
- - 
- P 
P  P 

P 
S S 

P  P 
P  P 
S S 

S S 

S S 

S S 

P 
P  P 

- 

- 

Cruise 
P 
P 
S 
- 
P 
P 
P 
P 

B 
- 
P 
P 
P 
S 

P 
P 
S 

S 

S 

S 

P 
P 

Approach 
P 
- 
S 
- 
P 
P 
P 
P 

B 
- 
P 
P 

P 
P 
P 
P 
P 
S 

S 

S 

S 
P 

Landing 
- 
- 
P 
P 

B 
P 
P 
P 
B 
- 
P 
P 

P 
P 
P 
P 
P 
S 

S 

S 
- 
P 

Approach 

P 
- 
S 
- 
P 
P 

P 
P 
B 
- 
P 

P 
P 
P 
P 
P 
P 
S 

S 

S 
- 
P 

Failure 

P 
- 
S 
- 
P 
P 
P 
- 
P 
B 
B 
P 
- 
S 

P 

P 
S 

S 

S 

S 

P 
P 

Symbols: P: Prime; S: Secondary;  B:  Backup; -: N/A 



needed  to  be  assigned,  and  ranges  of  values  required  unique  assignments 

before  schedule  development  could  proceed. In addition,  the  local  and 
global  executived  have  now  been  specified  to  a  degree  permitting  values 

with  a  sufficient  level  of  confidence to  be  assigned  to  their  description. 

Likewise,  the  flight-phase-change  tasks  and  the  reconfiguration  tasks can 

be  specified  more  accurately. A summary  of  the  modifications  and  addi- 
tions  that  have  been  made  to  the  tables  are  given  in  Table V - 2 .  The 

resulting  revised  set of task modules-and their  properties  is  shown  in 

Table V - 3 .  These  data  can  now be used  to  allocate  task  sets  to  processor- 

memory  units  and  to  develop  a  suitable  task  scheduling  algorithm. 

* 

D. Task  Allocation  and  Schedule  Generation 

Procedures  are  outlined  here  for  the  allocation  of  the  various  tasks 

to  specific  (redundant)  processor  and  memory  units,  and  for  the  organiza- 

tion  of  the  scheduling  of  those  tasks. 

The  problems  of  allocating  and  scheduling  these  tasks  are  considered 

in  some  detail.  Assumptions  regarding  the  characteristics  of  the  tasks 

include : 

All tasks  pertinent to a  flight  phase  are  resident  in 
main  memory  during  that  phase. 

0 Reconfiguration  can  occur  due  to  flight  phase  change, 
processor-memory  failure  or  pilot  intervention. 

Software  task  replication  in  separate  processor-memory 
units  is  used  to  achieve  fault-tolerance. 

Replicated  tasks  will be only  loosely  synchronized. 

The  tasks  operate  on  a  real-time  basis  and  have 
stringent  execution  periodicity  requirements. 

* 
The alphanumeric  task  designators  are  those  used  in  Table V - 1 .  
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Table V-2 

ADJUSTMENTS AND MODIFICATIONS 
TO THE INITIAL TASK SPECIFICATIONS 

Tasks A4, A 5 ,  and A6, the  Autoland  Tasks,  were coa lesced  
in to   one   t a sk .  

Task B 1 ,  t h e   S u p e r v i s o r  Task, w a s  merged wi th   the   Loca l  
Execut ive,  LE. 
Task B 4 ,  DME/OMEGA, was combined wi th  Task. B3, VOR/DME, 
s i n c e   t h e y  would not   run   concurren t ly .   Also ,  B 4  was 
as s igned   t he  same MIPS as B 3 . '  

Task B 5 ,  A i r  Data, was a s s i g n e d   a n   i t e r a t i o n  ra te  p e r  
second  of 5 and a MIPS of 0.001. 

The c r i t i c a l i t y  class of  Task C2, Data Comm. A/C, w a s  
set t o  1 assuming  tha t   the   backup i s  u n d e r   p i l o t   d i r e c -  
t i o n .  

V a r i a b l e   t a s k   c r i t i c a l i t y  class assignments  were f i x e d  
by  assuming  the  highest   value.  

Task D3, System  Monitor, w a s  a s s i g n e d   a n   i t e r a t i o n  rate 
p e r  second  of 5 .  M u l t i p l e   o r   v a r i a b l e   i t e r a t i o n  rates 
were chosen   t o   have   t he   h ighes t   va lue .  

Task LE w a s  added t o   t h e   t a b l e   f o r   t h e   L o c a l   E x e c u t i v e  
and i s  t o t a l l y   r e p l i c a t e d .  It h a s   t o   r u n  as f r e q u e n t l y  
as the   mos t   f requent   module ,   tha t  i s ,  w i t h   a n   i t e r a t i o n  
ra te  of 670 p e r  second. The  number of i n s t r u c t i o n s  p e r  
i t e r a t i o n  was determined  to   be 50. 

The Global   Execut ive,  GE, was a l s o  added  and was ass igned  
a n   i t e r a t i o n  ra te  of   f ive   per   second  and  200 i n s t r u c t i o n s  
p e r  i t e r a t i o n .  

Inf requent   requi rements  - 
I n s t r u c t i o n s  

p e r   I t e r a t i o n *  

Reconf igura t ion  - Global 100 
Reconf igura t ion  - Local 120 
Fl ight   phase  change - Global 100 
Fl ight   phase  change - Local 120 
Program  load 20 X number of  words 

* 
C r i t i c a l i t y   c l a s s  = 1. 
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Table V-3 

TASK  MODULE PROPERTIES  FOR  SCHEDULING  ASSIGNMENTS 

Iteration 
Task Rate/Sec. 

A1  20 
A2 250 

* A3  240 
* A4,5,6 160 

A7 5 
* A8  30 

B2 25 
* B3 5 

B4 5 
B5 5 
B6 0.2 
B7 5 

* B8 16 
* B9 8 
B10 10 

* c1  670 
* c2 5 
* c3 4 
* Dl 4 
* D2 5 
* D3 5 
* D4 0.5 
* D5  33 
*LE 670 
* GE 5 

* REC-GE 
* FPC-GE * IRREGULAR 

* FPC-LE 1 
* PROGRAM LOAD 

Period in 
Sec. (~103)t 

50 
4 
4 (3) 
6.25 (6) 

33.3 (30) 

40 
200 (180 
200 
200 
5000 
200 

125 (120) 
100 

200 

62.5 (60) 

1.5 
200 
250 

250 
200 
200 

2000 
30 

1.5 
200 (180) 

Instructions 
Iteration 

1150 
276 
58 

344 
200 

2567 

1360 
800 
800 
200 

5000 
5600 
562 
4000 
1900 

31 
1200 
250 

500 
2800 
200 

2000 
3606 

50 
200 

100 
120 
100 
120 
20* 

Abbreviations: 
FPC - Flight phase change 
LE, GE - Local and Global  Executives 
REC - Reconf igurat ion 
T - Totally  replicated 

- MIPS 

0.023 
0.069 
0.014 
0 .OS5 
0.001 
0.077 

0.034 
0.004 
0.004 
0.001 
0.001 
0.028 
0.009 
0.032 
0.019 

0.021 
0.006 
0.001 

0.002 
0.014 
0.001 
0.001 
0.119 

0.034 
0.001 

Criticality 
Class 

1 
1 
3 *  
1 *  
4 
1 *  

2 
4 *  
4 
4 
4 
4 
4 *  
4 *  
4 
4 *  
1 *  
4 *  
5 *  
4 *  
I *  
1 *  
1 *  

l * T  
1 *  

1 *  
l * T  
1 *  
l * T  
l * T  

Memory 

2075 
92 
60 

1025 
250 
1310 

2250 
3 00 
505 
135 
3 15 
550 
430 
6250 
9340 

1200 
610 
562 

1300 
1900 
1000 
1000 
1500 

320 
1:oo 

* 
Most demanding phase, Autoland 

The values in parentheses are period assignments somewhat shorter than the 
desired requirements, but  representing  convenient  multiples of the smallest 
period (1.5  msec.), and of subsequent  higher multiples, for  schedule derivation. 
Note that in no instance was the period changed by more than 30%. 

t 

*Times the  number of words 
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To achieve   ba lanced   task   loading   in   t e rms   of   bo th  
processing  and memory requirements .  

To a l low  enough  spare   capac i ty   to   permi t   reconf ig-  
u ra t ion   w i th   one  less memory-processor  unit .  

0 To accomodate   supplementary  "passive"  a l locat ion  of  
c r i t i c a l   t a s k s   t h a t  demand p rocess ing   w i th in  a t i m e  
f r a m e   t h a t   d o e s   n o t   a l l o w   f o r   r e c o n f i g u r a t i o n .  

0 To p e r m i t   e i t h e r   f u l l   t a s k   a l l o c a t i o n   o r   s i n g l e   f l i g h t -  
p h a s e   t a s k   a l l o c a t i o n   w i t h   r e c o n f i g u r a t i o n   t o   a c h i e v e  
f l igh t -phase   change .  

Schedule   genera t ion   has  a similar set  o f   o b j e c t i v e s :  

0 A t echnique   wi th   an   unequivoca l   se t  of task  sequence 
ass ignment   ru les .  

A s c h e d u l e   s p e c i f i c a t i o n   t h a t   c a n  be e f f i c i e n t l y  
s t o r e d ,   a p p l i e d ,  and  changed. 

0 A der iva t ion   methodology  tha t  i s  f l e x i b l e  and can  be 
shown t o   a c h i e v e   t h e   r e q u i r e d   t a s k   e x e c u t i o n   p e r i o d i c i t y .  

0 A r e p r e s e n t a t i o n   t h a t  i s  eas i ly   i n t e rp re t ed   and   imp le -  
mented. 

P r i o r   t o   d e t a i l e d   a l l o c a t i o n   a l g o r i t h m   d e v e l o p m e n t ,   c o n s i d e r a t i o n   s h o u l d  

b e   g i v e n   t o   t h e  way t h a t   t a s k   s c h e d u l e s  w i l l  be  implemented. Of p a r t i c u -  

l a r  i n t e r e s t   h e r e  are such   f ac to r s  as: 

0 The r e source   pena l ty   fo r   l oad ing  a l l  normal   tasks  
b e l o n g i n g   t o   a n y   f l i g h t   p h a s e   s c h e d u l e s  so t h a t  
no r e c o n f i g u r a t i o n  w i l l  be   necessary .  

When a f a i l u r e   o r  set of f a i l u r e s   o c c u r s ,   t h e  method 
by  which new schedules  are de r ived  and  implemented. 

0 The e x t e n t   t o   w h i c h   t a s k s   c a n   b e   r e p l a c e d   b y   p i l o t  
c o n t r o l  so  t h a t   s c h e d u l e s  may b e   r e v i s e d  by simply 
e l i m i n a t i n g   f a i l e d   t a s k s .  

The form i n  which  schedules are t o   b e   s t o r e d   a n d / o r   t h e  
way they  w i l l  be   genera ted   on- l ine .  

The r e s o l u t i o n   o f   t h e s e   d e s i g n   f a c t o r s  i s  dependen t   on   t he   t a sk   r ep l i ca -  

t i o n  scheme, p a s s i v e   a l l o c a t i o n   t e c h n i q u e s ,   f a i l u r e  state procedures ,  

a n d   t h e   t o t a l  number of processor -memory   un i t s .   I f  a general ized  approach 
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is  taken  to  addressing  these  factors,  the  factors  might  be  evaluated 

from  several  alternative  approaches  to  determine  the  impact  of  these 

assumptions  on  either  the  required  processor-memory  resources,  the  sim- 

plicity  of  schedule  derivation  and  implementation,  or  the  reconfiguration 

method.  For  instance,  if we triply  replicate  all  tasks  and,  for  all 

flight  phases  simultaneously,  allocate  them  over  five  processor-memory 

units,  would  resources  of  any of these  units  be  exceeded,  and  what  is  the 

size  memory  units  that  is  required?  Likewise,  what  is  the  resulting 

accumulated  distribution of processor  and  memory  resources?  These.  and 

other  similar  questions  are  examined  in  this  section. 

The  problems  associated  with  reconfiguration  resulting  from  system 

failures  are  considered  first  and  may  determine  the  amount  of  spare 

capacity  that  must  be  designed  into  the  system  to  assure  redistribution 

of tasks on a  failed  processor-memory  unit  onto  the  other  operational 

units. A less  critical  task  that  is  adequatly  replicated  initially  may 

not  need  to  be  reassigned.  Very  critical  tasks  either  must  be  reassigned 

to  another  processor-memory  unit,  must  have  adequate  backup  via  another 

task  that  is  operational,  or  must have  been  passively  allocated  on  some 

other  processor.  Tasks  that  cannot  tolerate  missed  iterations  and  that 

belong  to a  high-criticality  class  should  be  passively  allocated  to  guar- 

antee  immediate  takeover  of  the  critical  task  processing  from  a  failed 

unit . 
One  approach  is  to  take  all  the  tasks  in  any of the  phases  and  dis- 

tribute  them  across  processors.  However,  this  distribution  would  lead 

to  rather  heavily  loaded  processors,  and  one  or  more  additional  processor 

units  would  be  required  to  support it. Such  a  distribution  would,  how- 

ever,  facilitate  reconfiguration  and  flight  phase  change. 

If there  is  only  one  flight  phase  per  allocation  or  if,  at  least, 

not  all  tasks  are  loaded  into  the  system  all  of  the  time,  then  the 

occurrence of a  failure  requires  either  accessing  stored  schedules o r  

having  a  method  of  automatically  generating  them.  Such  methods  are  con- 

sidered  in  detail  in  the  next  section.  Another  approach  is  to  depend 

upon  pilot  intervention  for  certain  noncritical  support  functions  and  to 

more  than  triply  replicate  the  critical  tasks.  While  these  approaches 
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are all viable,  the  current  documents  need  only  demonstrate  the  feasi- 

bility  of  at  least  one  such  allocation  and  scheduling  scheme. 

In order  to  estimate  the  minimum  adequate  number  of  processors  to 

forestall  degradation  because  of  a  single  processor  or  memory  unit loss, 

a  simple  approach  might  be  taken.  First,  all  tasks  above  minimum  criti- 

cality  must  be  at  least  triply  replicated  to  assure  an  adequate  level  of 

confidence.  Three  replications  are  sufficient,  but  four  give  an  addi- 

tional  margin  that  allows  one  processor-memory  to  fail  while  the  module 
continues to  execute  reliably  without  configuration.  Assuming,  however, 

that  reconfiguration  is  acceptable  and  necessary,  a  simple  approach  to 

estimate  the  number  of  processors  sufficient  for  the  task  is: 

Let PT be  the  processing  time  to  carry  out  one  iteration of the 
task, 

T  be  the  iteration  period  of  the  task, 

MR be  the  memory  requirement  of  the  task, 

then,  the  total  processor  requirement  is 

the  total  memory  requirement  is 

M =  
all  tasks 

To illustrate  application  of  possible  allocation  techniques,  two 
approaches  are  taken.  Instead  of  focusing  initially  on  the  flight  phases, 

it was  decided  to  attempt  to  schedule  all  tasks  across  all  processors. 
These  processors  are  assumed  to  have 0.5 MIPS (millions  of  instructions 

per  second)  capacity  and  have  a  20-kiloword  memory. 

First,  all  tasks  were  assigned  triple  replication.  Then  the  number 

of processors  was  calculated: 
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Number of - 
Processo r s  

- 

I n   t h i s  example, N = t h e  

2 MIPS X 3 X - 
j=1 0 .5  

1 . 2  + 

number  of t a s k s ,  MIPS 
j 

1 = 4.8 '5  . 

i s  t h e   m i l l i o n s  of i n s t r u c -  

t i ons / second   r equ i r ed   fo r   t a sk  3 i s  f o r   t r i p l e   r e p l i c a t i o n ,   t h e  0.5 

f a c t o r  i s  the  machine MIPS, and  the 1 . 2  f a c t o r   p r o v i d e s  a sa fe ty   marg in .  

When t h e   r e s u l t i n g  number i s  rounded  up   to   ach ieve   an   in teger  number  of 

p rocesso r s ,   t he   app ropr i a t e  number i s  found t o   b e   f i v e .  Thus, when t h e s e  

t a s k s  are a l l o c a t e d   o v e r   f i v e   p r o c e s s o r s ,   a s s i g n i n g   t a s k s   o f   t h e   h i g h e s t  

c r i t i c a l i t y  class f i r s t ,  and a l l o c a t i n g   s o l e l y  on t h e   b a s i s  of processor  

r e s o u r c e   u t i l i z a t i o n  (MIPS) and n o t  on memory, t h e   a l l o c a t i o n   f o u n d   i n  

Table  V-4 i s  ob ta ined .  Of p a r t i c u l a r   n o t e  i s  the   degree   o f  MIPS ba lanc ing  

achieved.  The t o t a l s   a r e   c o n s i s t e n t   t o   w i t h i n   a p p r o x i m a t e l y  49.2%. 

j' 

* 

The fo l lowing   s t eps   de f ine  a more r e f i n e d  method f o r   d i s t r i b u t i n g  

r e p l i c a t e d   t a s k s   o v e r  a number of   processor-memory  uni ts   while   assur ing 

t h a t  some balance  of   loads i s  achieved .  

0 D e f i n e   t h e   f l i g h t   p h a s e  and t a s k s   t o   b e   r e s i d e n t   i n  
t h e  memory u n i t s .  

a Tabu la t e   fo r   each   t a sk :  (1) t h e   t a s k  MIPS and t h e  
f r a c t i o n a l   p r o c e s s o r   u t i l i z a t i o n   f o r   t h e  assumed 
processor  type,   and (2) t h e   t a s k  memory requirement  
i n   t housands   o f   words ,   and   t he   f r ac t ion   o f   t o t a l  
memory r e q u i r e d   ( f o r   t h e   s i z e  of memory u n i t   t o   b e  
used) .  

a D e t e r m i n e   t h e   r e q u i r e d   r e p l i c a t i o n   p e r   t a s k   b a s e d  on 
t h e   c r i t i c a l i t y   c l a s s  and  whether passive a l l o c a t i o n  
w i l l  b e   r e q u i r e d .  

0 Accumulate  the sum of t h e  MIPS r e q u i r e d   f o r  a l l  t a s k s  
o f   t he   wors t - case   f l i gh t  mode t o   d e t e r m i n e   e i t h e r :  
(1) t h e   t o t a l  number  of a p respec i f i ed   p rocesso r   t ype  
t h a t  w i l l  b e   r e q u i r e d ;   o r  (2)  the   p rocessor   speed  re- 
qui red   to   p rovide   one   comple te   f l igh t -mode   process ing  
c a p a b i l i t y   p e r   p r o c e s s o r   ( i n c l u d i n g  a r e a s o n a b l e   s a f e t y  
margin) .  From  an o v e r a l l   r e l i a b i l i t y   v i e w p o i n t ,  i t  i s  
d e s i r a b l e   t o   p l a n   f o r  a t  least f i v e   p r o c e s s o r s  (as d i s -  
cussed   i n   Chap te r  V I I ) .  

* 
However, the   ba lance  may no t   a lways   be   t h i s   c lo se .  
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Table V-4  

ALLOCATION O F  ALL TASKS  TRIPLY  REPLICATED  ACROSS FIVE PROCESSORS 

Allocation  Sequence: 

0 Take t a s k s   w i t h   c r i t i c a l i t y   c l a s s   1 - 2  and d i s t r i b u t e  them  by maximum 
MIPS; then 

0 Take t a s k s   w i t h   c r i t i c a l i t y   c l a s s  3-5  and d i s t r i b u t e  them  by maximum 
MIPS. 

"~ ~ 

:G MIPS ~. 1 2 3  4  5 
~ ~~~ 

1 0.119 D5  D5  D5 

1 0.077 A8 A8 A8 

1 0.069 A2  A2 A2 

1 0.055 A4  A.4 A4 
2 0.034 B 2  B 2  B 2  

1 0.023 A 1  A 1  A 1  

1 0.006 c2 c2 c2 
1 0.002 D3,4 D3,4  D3,4 

~~ ~ ~~ . 

4 

4 

4 

4 

3 

4 

4 

4 

4 

5 

4 

4 

4 

4 
- 

0.032 

0.028 

0.021 

0.019 

0.014 

0.014 

0.009 

0.004 

0.004 

0.002 

0.001 

0.001 

0.001 

0.001 
- 

T o t a l  

B9 

B 10 

A.3 

D 2  

B8  

A7 

B6 

B5 

B9 

c1 

A.3 

D2 

B3 

B4 

A7 

c3  

B 5  

B9 

B7  B7 

c1 
B 10 

A3 

D2 

B 8  

B3 

B4 

D l   D l  

A7 

B6 

c 3  

B5 

B 7  

c1 
B 10 

B 8  

B3 

B4 

D l  

B6 

c3 

0.322  0.322  0.321  0.322  0.321 
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0 Accumulate  the sum of   the memory requi rements   for  a l l  of  
t h e   a l l o c a t e d   t a s k s   o f   t h e   w o r s t - c a s e   f l i g h t  mode ( inc lud -  
ing  a r easonab le   s a fe ty   marg in )   fo r   each   o f   t he   p rocesso r s .  
I n   a d d i t i o n ,  memory mus t   be   p rov ided   fo r   t he   pas s ive  
a l l o c a t i o n  of those  c r i t i c a l  t a sks   fo r   wh ich ,   du r ing  
r econf igu ra t ion ,  no m i s s e d   i t e r a t i o n s   c a n   b e   a l l o w e d .  

0 B e g i n   a l l o c a t i o n   b y   s e l e c t i n g   t h e   u n a l l o c a t e d   t a s k  
r e q u i r i n g   t h e   h i g h e s t   f r a c t i o n  of e i t h e r   p r o c e s s o r  MIPS 
o r  memory s torage,   whichever  i s  g r e a t e r .   I n   t h e   e v e n t  
of a t ie ,  select  the   one   w i th   t he   h ighes t  combined 
processor-memory t o t a l .   F o r   t h e   g i v e n   f l i g h t   p h a s e ,  
p a s s i v e   a l l o c a t i o n   s h o u l d   b e   b a s e d  on t h e  memory 
requirement   only.   That  i s ,  t h e   r e q u i r e d  memory s t o r a g e  
i s  c o n s i d e r e d   f o r   p a s s i v e   a l l o c a t i o n ,   a l o n g   w i t h   t h e  
ac t ive   modules .  However, t h e   e x e c u t i o n  of t i m e  f o r   t h e s e  
t a s k s  i s  t r e a t e d  as z e r o   f o r   p r o c e s s o r   r e s o u r c e   u t l i z a t i o n .  

Us ing   t he   de t e rmined   a l loca t ion  c r i te r ia  ( e i t h e r  memory 
o r   p r o c e s s o r ) ,   a s s i g n   e a c h   s e l e c t e d   t a s k   i n   t u r n   t o   t h e  
memory o r   p rocesso r ,  as appropr ia te ,   wi th   the   mos t  avail- 
ab le   unass igned   capac i ty .   Ass ign   t a sks   t o   t he   i nd ica t ed  
r e p l i c a t i o n   l e v e l .  The o n l y   c o n s t r a i n t  i s  t h a t  a g iven  
t a s k  may be  ass igned a t  most  once t o  a given   processor -  
memory u n i t .  

0 Cont inue   ass igning   tasks   o f   lower   load   requi rement   un t i l  
a l l  tasks   have   been   ass igned .   Tasks   tha t  are t o t a l l y  
r ep l i ca t ed ,   such  as the  Local   Execut ive,   can  be  ass igned 
a t  any   po in t   dur ing   the   p rocedure .   For   the  examples given 
h e r e ,   t h e s e   t a s k s   a r e   a s s i g n e d  las t .  

0 Check accumula ted   capac i t ies  on a l l  u n i t s   t o   v e r i f y   t h a t  
none  have  been  exceeded. Of any  have  been  exceeded  or i f  
e i t h e r   r e s o u r c e  i s  badly  misbalanced, a r e a l l o c a t i o n  
should  be made t o   a c h i e v e   b e t t e r   b a l a n c e .  However, f o r  
a g iven   t a sk ,   r ea l loca t ion   can   t ake  place o n l y   t o   u n i t s  
t ha t   have   no t   a l r eady   been   a l loca t ed   t ha t   t a sk .  

A f lowchar t   r ep resen t ing   t hese   bas i c  steps i s  g i v e n   i n   F i g u r e  V-1. 

Next ,   app ly ing   t h i s   a lgo r i thm  to   t he   f l i gh t   phase   r equ i r ing   t he   mos t  

r e sources ,  we encounter  more i n t e r e s t i n g   c o n d i t i o n s .  An examination  of 

t h e   f l i g h t   p h a s e s   i n   T a b l e  V - 1  leads  to   the  Landing  Phase as the  most 

demanding o f  the  phases .  The c r i t i c a l   d a t a   f o r   a l l o c a t i o n   a r e  shown i n  

Table V - 5 .  The a l l o c a t i o n   b a s e d  on these   da t a  i s  shown i n   T a b l e  V-6. 

No preference  was made f o r   c r i t i c a l i t y   c l a s s .   T r i p l e   r e p l i c a t i o n  was 

assumed.   Also,   the   f ive  processors   used  in   the  previous  example  were 

used   here .   This  i s  t o   a l l o w   f o r   p a s s i v e   a l l o c a t i o n   a s   w e l l  as to   a l low 

modu les   f rom  o the r   phases   t o   be   p re sen t   t o   f ac i l i t a t e   r ap id   phase   change .  

62 

". " .- ". .... . ._ .. . , . , . .I 



p. = Processing Requirement 

m. = Memory Requirement 

Pi = Processing Load  Already 
Allocated to  Module  i 

Mi = Memory  Load Already 
Allocated to  Module i 

’ for Task j 

’ for Task j 

FIGURE V-I 

I I ALLOCATE  TASK J 
TO  MODULE i 

Pi < 1 Exit 

Algorithm 2 

ALLOCATION  ALGORITHM 

6 3  



Table V-5 

TABLE  OF  AUTOMATED  FLIGHT  PHASE  TASKS  AND THE 
CHARACTERISTICS  USED TO DISTRIBUTE  THEM  OVER  PROCESSOR-MEMORIES 

Task 

A3 
A4 

A8 

B3 

B8 

B 9  

c1 

c2 
c3 

Dl 

D2 

D3 

D4 

D 5  

GE 

- 

LE (T)* 

MIPS 

0.012 

0.055 

0.077 

0.004 
0.009 

0.032 

0.021 

0.006 

0.001 

0.002 

0.014 

0.001 
0.001 

0.119 

0.001 

0.034 

Fraction 
of 0.5 MIPS 
Processor 

0.024 

0.110 

0.154 

0.008 
0.018 

0.064 

0.042 

0.012 

0.002 

0.004 

0.028 

0.002 

0.002 

0.238 

0.002 

0.068 

Memory (K) 

0.06 

1.02 

1.31 

0.30 

0.43 

6.25 

1.20 

0.61 

0.56 

1.30 

1.90 
1 .oo 
1 .oo 
1.50 
1.10 

0.32 

Fraction 
of 20K 
Memory 

0.003 

0.051 

0.065 

0.015 

0.021 

0.312 

0.060 

0.030 
0.028 

0.065 

0.095 

0.050 

0.050 

0.075 

0.055 

0.016 

* 
T = Replicated  totally 
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Table V-6 

ALLOCATION  EXAMPLES--DISTRIBUTED  ASSIGNMENT OF 
AUTOLAND  PHASE  TASKS  OVER  FIVE  PROCESSOR-MEMORY  UNITS 

Accumulated  Task  MIPS 
er  Processor 

Task M/P* 1 2  3 C - 
B9 
D5 
A8 
A4 
D2 
Dl 
c1 
GE 
D3 
D4 
c2 
c3 
A3 
B8 
B3 
LE 

M  0.032  0.032  0.032 
P 0.151 
P 0.109  0.109 
P 0.164  0.164 
M  0.165 
M 0.166 
M 0.185 
M 0.166 
M 0.186 
M  0.167 
M  0.172 
M 0.187  0.168 
P 0.199  0.180  0.184 
M  0.208 
M 0.184  0.188 
M  0.209  0.185  0.189 

4 - 
0,119 
0.196 

0.210 
0.212 
0.233 
0.234 
0.235 
0.236 
0.242 

0.251 
0.255 
0.256 

- J 

0. 119 

0.174 
0.188 
0.190 
0.211 
0.212 
0.213 
0.214 
0,220 
0,221 

0.230 

0.231 

Accumulated  Task  Memory  (K) 
per  Memory  Unit 

1 

6.25 

7.56 
8.58 

- 

9.78 

10 78 

11.34 

11.83 

12.15 

11 a40 

2 3 

6.25 6.25 
7.75 

7.56 
8.58 

9.88 

" 

9.65 

10.75 

10.88 
11.36 

11.44 
11.50  11.42 

11.80  11.72 
12.12  12.04 

* 
M - Allocation  based  on  fraction of memory  requiring  largest  capacity 
P - Allocation  based on fraction of processor  requiring  largest  capacity 
Notes: 1. Autoland  requires  the  greatest  processing. 

2. Memory  assumed -- 20  kilowords 
3.  Processor  assumed -- 0.5  MIPS. 

4 - 
1.50 
2.81 

4.71 
6.01 
7.21 
8.31 
9.31 
10.31 
10.92 

11.35 
11.65 
11.97 

- 5 

1.50 

2.52 
4.42 
5.72 
6.92 
8.02 
9.02 

10.02 
10.63 
11.19 

11.62 

11.94 



I n   t h i s  case, the  accumulated MIPS and memory are r e p o r t e d   i n   e a c h  

column.  The r e s u l t s   i n d i c a t e   t h a t   t h e   d i s t r i b u t i o n  i s  no t  well equa l i zed  

f o r   t h e   p r o c e s s o r   ( a b o u t  +16% d e v i a t i o n )   w h i l e   t h e  memory d i s t r i b u t i o n  

i s  c l o s e l y   b a l a n c e d   ( t o   a b o u t  +1%). 

Thus, v i ab le   a l loca t ion   s chemes   have   been   demons t r a t ed   t ha t  are 

e a s i l y  implemented  and s a t i s f y  a l l  s t a t e d   a l l o c a t i o n   o b j e c t i v e s .  

E .  Schedule   Der iva t ion  

Now t h a t  some f l ex ib l e   a l l oca t ion   t echn iques   have   been   desc r ibed ,  

the  problem of s c h e d u l e   d e r i v a t i o n   c a n   b e   a d d r e s s e d .   P r o p e r t i e s   t h a t  

are b a s i c   t o   s c h e d u l i n g  of t a s k s   i n  SIFT inc lude :  

0 Repl i ca t ed   t a sks   execu t ing  on d i f f e r e n t   p r o c e s s o r  
u n i t s  need   no t   be   in   lock-s tep   synchroniza t ion ,   bu t  
are only  loosely  synchronized.  

0 Tasks may be  preempted,  but  such a procedure   can  
make program  proving   more   d i f f icu l t .  

0 Fixed sets o f   t a s k s   r e p r e s e n t   f l i g h t   p h a s e s  and are 
executed   wi th  a g i v e n   p e r i o d i c i t y .  

0 The only   mandatory   descr ip t ion   of  a g iven   schedule  
execut ion  i s  one  of f l i g h t   c h a n g e   o r   r e c o n f i g u r a t i o n .  

I n  view of   these   condi t ions ,   severa l   assumpt ions   can   be  made t h a t  some- 

what s impl i fy   t he   approach   t o   s chedu l ing .  

Tasks are assumed t o   b e   a s s i g n e d   t o   s c h e d u l e s  as s i n g l e  
u n i t s   t h a t   c a n n o t  be preempted. The only   except ions   occur  
when t a s k s   e x e c u t e   f o r  a per iod  of t ime   t ha t   equa l s   o r  
e x c e e d s   t h e   s h o r t e s t   t a s k   p e r i o d   ( e q u a l   t o   t h e   p e r i o d   o f  
the   Loca l   Execut ive) .   These   t asks   do   requi re   p reempt ion  
and w i l l  be   considered  more  c losely.  

Tasks are execu ted   acco rd ing   t o  a f i x e d   t a s k   s e q u e n c e   i n  
which  each  task i s  a l loca ted   one   o r  several t i m e  b locks .  
E x c e p t   f o r   t h e   c l o c k   r o u t i n e  and g l o b a l   e x e c u t i v e   f l i g h t  
f a i lu re   o r   phase   change   p rocess ing ,  no t a s k  i s  i n t e r r u p t -  
d r i v e n   o r   i n i t i a t e d   o u t s i d e  of   the  f ixed  sequence.  

The schedule  i s  based on t h e  maximum execut ion  t i m e  of 
each   of   the  member t a sk   modu les   (w i th   p rov i s ion   fo r  a 
r easonab le   s a fe ty   marg in ) .  

The schedule   main ta ins  a t o t a l l y   r e p r o d u c i b l e   o r d e r i n g   o f  
t a s k s   t h a t   a s s u r e s  a l l  t a s k s   o f   t h e   r e q u i s i t e   p e r i o d i c i t y .  
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Furthermore, to  accomplish  the  objectives  laid  out  at  the  beginning  of 

this  section,  a  simple,  compact  method  of  representing  the  schedule  must 

be  available. 

F. Schedule " "" Representation  and  Notation 

A convenient  notation  is  needed  that  allows  representation  of  a 

task  schedule  in  a  concise,  easily  derived,  and  readily  interpreted  form. 

One  such  approach  is  the  adoption  of  a  notation  resembling  that  of  reg- 
ular  expressions.  The  notation  and  interpretation  of  this  formalism  has 

been  modified  and  expanded  to  accommodate  the  SIFT  scheduling  requirements. 

The  following  notational  conventions  have  thus  far  been  adopted: 

Symbol 

r Ii 

Interpretation 

The  parentheses  enclose a sequence  of  tasks  or  sets 
thereof ,+ separated  by  commas,  that are to  be exe- 
cuted in sequence.  The  lrnl'  superscript  indicates 
that  the  event  sequence  defined  within  the  expression 
is  to  be  repeated n times  and  then  terminated. The 
asterisk  superscript  means  that  the  expression  is  to 
be  repeated  from  left  to  right  until  externally  termi- 
nated. Note that  the  asterisk  may  not  be  used more 
than  once  in  a  given  expression  and  if  used,  must 
qualify  the  outermost  parentheses.  Each  task  is 
allocated  a  time  slot  equal  to  the  maximum  time 
required  for  normal  execution  (extended to provide 
a safety  margin). 

The square  brackets  enclose  tasks,  or  expressions 
containing  sets  of  tasks,  separated  by  commas.  Only 
one  of  these  elements  is  to  be  selected  for  scheduler 
processing  each  time  this  expression  is  encountered. 
Items  are  selected  sequentially  from  left  to  right  in 
turn  as  the  expression is  encountered,  such  that  for 
n-items,  one  task  for  each  of  these  n-items  will  have 
been  executed  after  n-iterations  through  this  expres- 
sion.  Again,  cycling  wraps  around  to  the  first 

'Clearly  the Task  Dispatcher  in  the  Local  Executive  must run following 
each  task  execution  to  refer  to  the  schedule  in  effect  and  to  determine 
the  next  task  to  be  executed.  Likewise,  the  clock  routine  must  be run. 
We assume  that  these  small,  fixed-length  blocks  of  instruction  can be 
treated as  though  they were part  of  each  task  rather  than  being  explic- 
itly  included  as  separate  tasks.  This  approach  sacrifices  nothing 
technically  but  greatly  simplifies  the  representation. 
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A i n t e g e r  

[ I j  

e lement .  The s u p e r s c r i p t   i n d i c a t e s   t h a t   t h i s   e x -  
p r e s s i o n  i s  to   be   r epea ted  i-times a t  t h a t   p o i n t  
i n   t h e   s c h e d u l e .  

The A i n d i c a t e s   a n   i d l e   o r   u n a l l o c a t e d   p r o c e s s o r   t i m e  
b l o c k   w h e r e   t h e   i n t e g e r  i s  t h e   a v a i l a b l e  t i m e  i n  
microseconds.  This may b e   u s e d   t o   e x e c u t e   i r r e g u l a r  
t a s k s   o r   t a s k s   t h a t  are s o  i n f r e q u e n t   o r   r e q u i r e  so  
much processor  t i m e  tha t   they   mus t   be   p reempted  a 
number  of times t o   a l l o w   m o r e - f r e q u e n t   t a s k s   t o   r u n .  

S u b s c r i p t s   i n d i c a t e   t h e   p e r i o d i c i t y   i n   m i l l i s e c o n d s  
of a given i t e m  i n  a g iven   schedul ing   express ion .  
These are used  for   convenience  and  need  not   be 
p r e s e n t .  

Examples  of t he   app l i ca t ion   o f   such  a n o t a t i o n  are shown i n   F i g u r e  V-2. 

Also shown i n   t h i s   f i g u r e  are a l te rna t ive   l ink-connected   d iagrams  and  

the  long  forms  of   these  expressions.  

Bas ica l ly ,   the   convenience   o f   the   modi f ied   regular -express ion   for -  

m a l i s m  i s  t h a t  i t  g r e a t l y   f a c i l i t a t e s   t h e   d e r i v a t i o n  of a schedule ,  as 

w e l l  as i t s  s to rage   and   execu t ion ,   wh i l e   t he   g raph ica l   r ep resen ta t ion  

a ids   in   the   comprehens ion   of  a completed  schedule.  

G.  Sample  Schedule  Derivation 

Us ing   t he   t echn iques   d i scussed   i n   t he   p rev ious   s ec t ion ,  a sample 

schedule  i s  now d e v e l o p e d   u s i n g   t h e   t a s k s   i n   t h e   L a n d i n g   F l i g h t   P h a s e .  

T h i s   p h a s e   r e c e i v e d   a t t e n t i o n   s i n c e  it demands  more  system  resources 

than   do   o the r   ope ra t iona l   phases .  The d a t a   r e q u i r e d   f o r   s c h e d u l i n g  are 

t h e   t a s k   p e r i o d i c i t y   a n d   t h e   t a s k   m o d u l e   e x e c u t i o n  t i m e .  The step-by- 

s tep  development   of   the   sample  task  schedule  i s  shown i n   F i g u r e  V-3, 
a n d   t h e   c o r r e s p o n d i n g   a l t e r n a t i v e   r e p r e s e n t a t i o n  i s  g i v e n   i n   F i g u r e  V - 4 .  

The  procedure   used   for   der iv ing   such  a schedule  i s :  

L e t  N = t h e  number of   tasks ,  

F o r   t h e  j th task ,  ( j  = 1, . . . N) ,  l e t  

= t h e   p e r i o d i c i t y   ( i n   m i l l i s e c o n d s )  

e = t he   execu t ion  t i m e  ( in   microseconds)  
j 
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The  flowchart  given  in  Figure V - 5  describes  the  procedure  for  deriving 
the  schedule  expression. 

SCHEDULE ALTERNATE 
EXPRESSION REPRESENTATION INTERPRETATION 

~~ 

(A,B,c)* 

(A ,B ,A)* 

A 

I 

I 
A 

I 

I 

I 
A 

B 

A 

B 

A 

n 
B k j  

A.B.C.A.B.C. A . 

AB. A.A.B.  A 

A.B. A,A,C,A.B. A ,  . . . 

FIGURE V-2 SCHEDULE  REPRESENTATION  EXAMPLES 

In representing  the  schedules, we can  use  a  convenient  shorthand 
notation  in  which we define  clusters  of  tasks  according  to  the  scheme 

illustrated  in  Figure V - 4 .  The  total  storage  required  to  represent a 

schedule  can  be  greatly  reduced,  as  can  be  seen  by  comparing  the  cluster 

representation of Figure V - 4  with  the  longhand  expression  illustrated  in 
Figure V - 3 .  
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TASKS? 

c 1  

LE 

A3 

A4 

88 

GE 

"- 
A 8  

89 

8 3  

~ 

ASSIGNED 
PERIODICITY 

(MILLISEC) 

1.5 

1.5 

3.0 

6 .O 

60.0 

180.0 

"" 

30 .O 

120.0 

180.0 

EXECUT)ON TIME 
WSEC) 

62 

100 

116 

688 

1124 

400 

"" 

5134 

8000 

1600 

EXPRESSION 

(THIS SET OF TASKS WILL REQUIRE  PREEMPTION, 
AND  THE TASKS ARE LOGGED IN A SEPARATE 
EXPRESSION IN  ORDER  OF  INCREASING  PERIOD 
SIZE .) 

fTha" tasks are allocafmd in fha ordar of docramsing itoration r a t a .  axcmr for thola tasks for  which  the 

a r u u f i o n  rima aqualmd or arcdmd the  pariod  tor  tha most fraquantly axacufmd tasks. Thew tasks raauire 

p r m p t i o n  and are assignmd fo an expransion wparata  from  fhaf  for  fhe  main  nchdula. 

$Assumad processing rate of 0.5 MIPS 

FIGURE V-3 SAMPLE  SCHEDULE  DERIVATION  FOR  THE  LANDING  FL IGHT  PHASE 
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c1 
I 

1 
LE 

A3 

Y""""-"- 

w-------- -7 A4. / \  """"- Z 

/ l1 2 7 /  \ Q  

v - - - - -  7 ------ \ G E  
A / 

c 1  

I 

I 
LE 

A 1338 

NOTE: Clusters may be defined in increasingly  greater detail: 

x = [Y,Zl   V = ( G E . A l 2 8 )  

Y = (A4.W) z = [ A I Z I S ~ ~ , U I  
w = [A52829.Vl  U = (88 ,   A94)3  

FIGURE V-4 ALTERNATE  SCHEDULE  REPRESENTATION 

There are two procedures   t ha t   need   fu r the r   d i scuss ion .  The f i r s t  

i nvo lves   t he   r eason   beh ind   choos ing   success ive   mu l t ip l i c i ty   f ac to r s  

r a t h e r   t h a n   f a c t o r s   b a s e d  on the   " lowes t  common denominator." It i s  

i n d e e d   t r u e   t h a t   t h e  la t ter  approach  would  lead to   an   accep tab le   s ched-  

u l e .  However, t h e   i n t e n t i o n   h a s   b e e n   t o   d e r i v e  a s c h e d u l e   d e s c r i p t i o n  

t h a t  was conc i se  and   s imple .   Wi th   th i s   in   mind ,   examining   the   in i t ia l  

s tages   of   schedule   development ,   one writes a s imple   expres s ion   w i th  a 

pe r iod  as b i g  as t h e   s h o r t e s t   o f   t h e   t a s k s .  One t h e n   a s s i g n s   p o r t i o n s  

of   the   remain ing  t i m e  b lock   t o   success ive   t a sks .   In   t he   c i t ed   example  
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I I I N I T I A L I Z E  

ORDER  TASKS BY Pj 
FROM SHORTEST  TO 

LONGEST 

WITHIN Pi, ORDER 
FROM  SHORTEST TO 
LONGEST ej, SET k = j 

+ 
ROUND  Pj + 1  DOWN  TO 

NEAREST  MULTIPLE 
OF Pk 1 

SET k TO k - 1 

FOR THE  SHORTEST 
PERIOD: 

SET T~ = p1  x 103 psec 
THEN, AT = T~ - Zs ej 

Number of tasks: 

Tasks: 

Period of task: 

Execution  time: 

Subsets of task: 

N 
j = 1,2, . . . N 

P. (msec) 

ej (psec) 

s = number of tasks j ,  
j + 1 . . . having  the 
same period (Pi) 

1 

FIGURE V-5 SCHEDULE DERIVATION FLOWCHART 
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Q 
SPLIT AT 

NEXT Pi - INTO 2 
BRANCHES 

1 1 
REPEATING ALL  LAST  ELEMENT: 

Cod.: I S I AT,,, = AT - I: ej 

+ 
Pi + s -1 * AT,, 

INSERT TASKS: 
AT - pi,pi + 1. . . . 

v 

I GET 1ST AT > ai 
j = j + s  

+ 
Pi + s -1 * AT,, 

INSERT TASKS: 
AT - pi,pi + 1. . . . 

t 

I GET 1ST AT > ai 
j = j + s  

STORE TASK  AT 
END  OF  LIST FOR 

PREEMPTIVE 
ALLOCATION 

(MAY BE BAD 
ROUNDING 

SELECTION) 

CREATE NEW FORKED 
CYCLE, SET 

M Pi'Pcxprcslion 
7 

1 
SET OE + l [ P ~ , P ~ l ,  . . . IP,.ATFIJ OLD EXPRESSION 
AND AT = A T F  FOUND ABOVE, THEN OE BECOMES 

[(OEIM - 1,  ([P,.P, I, . . . [Pm.Pi.ATF - Pi) l I I  

FIGURE  V-5  SCHEDULE  DERIVATION  FLOWCHART  (Continudl 
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I COLLECT SIMILAR 
EXPRESSIONS FOR 
SIMPLIFICATION 

COLLECT  BLOCKS 
OF ATS AS POSSIBLE 

AND  DEVELOP  ALTERNATE 
DIAGRAM 

APPEND PREEMPTED 
MODULES AT  END 
OF EXPRESSION 

FIND SHORTEST PERIOD 
Abort: WITH UNASSIGNED AT, 
Inadequate STORE AS PShort SET j 1 
Schedule Time 
Available 

ei - FIND 

WITH UNASSIGNED AT 

SET e. preempt 

NEXT SHORTEST PERIOD 

1 Yes 

FIGURE  V-5  SCHEDULE DERIVATION FLOWCHART (Concluded) 
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t h e   t o t a l   e x p r e s s i o n   h a d  a p e r i o d i c i t y   o f  twice t h e  smallest per iod .  We 

t h e n   p a r t i t i o n  the a v a i l a b l e  t i m e  b l o c k s   ( t h e  As) t y p i c a l l y   i n t o  two 

subexpressions,   only  one  of   which i s  executed  each t i m e  t h e   e x p r e s s i o n  

i s  processed.   These  subexpressions w i l l  t y p i c a l l y   h a v e   t h e i r  own A 

t i m e  b locks  as e lements .   Note   tha t   the   per iod   of   these   e lements  i s  a 

m u l t i p l e  of t h e   p e r i o d  of i t s  parent   expression.   Thus as each   t a sk  i s  

added t o   t h e   e x p r e s s i o n ,  a dec is ion   mus t   be  made as t o  which A t i m e  

b l o c k   s h o u l d   b e   p a r t i t i o n e d   t o  accommodate t h e   t a s k .   I f  i t  i s  p o s s i b l e  

to   t ake   advan tage   o f   t he   exp res s ion   hav ing   t he   l a rges t   pe r iod   a l r eady  

ass igned ,  by u s i n g   t h e  A t i m e  b lock   r ema in ing   w i th in   t ha t   exp res s ion ,  

t hen   t he  embedded expres s ion   h i e ra rchy  i s  g r e a t l y   s i m p l i f i e d  by not  

p r o l i f e r a t i n g  many  new d i s j o i n t   s u b e x p r e s s i o n s   w i t h  new p e r i o d i c i t i e s .  

I n   a d d i t i o n ,   t h i s   c h o i c e  of t h e  A t i m e  b l o c k   l e a d s   t o  more e f f i c i e n t   u s e  

of a v a i l a b l e  A t i m e  b locks ,   l eav ing   l a rge r  time blocks  unfragmented  and 

who le. 

The  second  procedure  deals   with  the  use of remaining time blocks  

t o   s a t i s f y   t h e   n e e d s   o f   t a s k   r e q u i r i n g   p r e e m p t i o n .  It  i s  assumed t h a t  

each   o f   t hese   t a sks  i s  run   t o   comple t ion   be fo re   ano the r  i s  s t a r t e d .  Here 

la rge   cont iguous  t i m e  b l o c k s   t h a t  are m a i n t a i n e d   i n t a c t  and  belong t o  

t h e   s h o r t e r   p e r i o d s  make t h e   p r e e m p t i o n   t a s k   a n a l y s i s  much more s t r a i g h t -  

forward .   This   a l lows   use   o f   very   regular  t i m e  i n t e r v a l s   t o   v e r i f y   t h a t  

t h e   p e r i o d   n e e d s   c a n   b e   s a t i s f i e d   f o r   t h o s e   p r e e m p t e d   t a s k s   i n - t h e   w o r s t  

case of a l l  t a sks   r equ i r ing   p rocess ing   s imul t aneous ly .   Fo r   example ,   i n  

t he   s ample   s chedu le ,   i f  a l l  t h ree   p reempt ive   t ype   t a sks  came d u e   f o r  

execut ion  a t  t h e  same t i m e ,  t h e r e  ar.e A t i m e  blocks  of  1338 psec avail- 

ab le   eve ry  3 millisec.  This  means t h a t  by 30 millisec ( the   pe r iod  of 

the   mos t   f r equen t   t a sk ) ,   t he re  are 13,380 psec   ava i l ab le .   S ince  a l l  

t h r e e   t a s k s   r e q u i r e  a t o t a l   e x e c u t i o n   t i m e  of.l4,734 p s e c ,   i f  w e  used  no 

o t h e r  A t i m e  b l o c k s   i n   t h e   e x p r e s s i o n ,  A8 and B9 would  have  been  executed, 

and B3 c o u l d   b e   s t a r t e d  when A8 came due f o r   e x e c u t i o n   a g a i n .   I f  w e  

then  examine  the  longest   consecut ive  sequence  of   tasks   that   could  occur  

before .  a A t i m e  b lock  came a v a i l a b l e ,  i t  could  be C1, LE, A 3 ,  B8, C1, 

LE, which  consumes a t i m e  b lock   of  1564 psec.  Then i n   t h e   w o r s t  case, 

i f  t h i s   s equence   occu r red  a t  t h e  t i m e  the   th ree   p reempted   tasks   needed  
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execut ion ,  a l ead  t i m e  i n   s c h e d u l i n g   t h e i r   e x e c u t i o n   a h e a d   o f   t h e i r  

r e q u i r e d   p e r i o d i c i t y   t o   a s s u r e   n o   s c h e d u l i n g   p r o b l e m   i n   t h i s   i n s t a n c e  

c a n   b e   c a l c u l a t e d .  It i s  d e s i r e d   t o   e x e c u t e  A8  p r i o r   t o   t h e   o n s e t   o f  

t h i s  "no b r e a k "   s i t u a t i o n .  Then it  should   be   scheduled  a t :  

M= T i m e  No A + Exec Time  A8 = 6.7 mill isec = 23% Of pe r iod  

Hence, i f   t h e   p e r i o d  of t h i s   t a s k  i s  decreased  by 23% f o r   s c h e d u l i n g  

purposes ,   then   the   per iod  a l l  t h r e e   t a s k s   s h o u l d   b e   s a t i s f i e d   i n   t h i s  

w o r s t - c a s e   s i t u a t i o n .  A similar a n a l y s i s   c a n   b e   c a r r i e d   o u t  on t h e   o t h e r  

p r e e m p t e d   t a s k s .   A d d i t i o n a l   c o n s i d e r a t i o n   o f   c r i t i c a l i t y  class and 

m i s s e d   i t e r a t i o n s  may weaken t h i s   r e q u i r e m e n t .  

H. Conc Ius   i on  

I n  summary, then ,   methods   for   de te rmining   the   requi red  number  of 

processor  memory u n i t s   h a s   b e e n   d e s c r i b e d  and a l l o c a t i o n   o f   t a s k s   c a n  

be  readi ly   performed.   Furthermore,  a schedule   der iva t ion   method  has  

been   presented   tha t   could   be   per formed  on- l ine .  However, a l l  normal 

f l i g h t   s c h e d u l e s  wou ld   be   bes t   s to red   i n  a r egu la r   exp res s ion   and  

invoked as requ i r ed .   Th i s  i s  because   t he   de r iva t ion   a lgo r i thm  wou ld  

requi re   more   execut ion  t i m e  and da ta   access   t han  would t h e  retrieval 

of   s tored   schedules .  While c r i t i c a l  t a s k s  w i l l  b e   p a s s i v e l y   a l l o c a t e d ,  

t h e r e  w i l l  be   ins tances   where  i t  may b e   n e c e s s a r y   t o   d e r i v e  a new 

schedule .  A method has   been   desc r ibed   t ha t   cou ld   be   r ead i ly   imp le -  

mented. I f   t a s k s  w i l l  revert t o   p i l o t   c o n t r o l ,   t h e n   t h e y   n e e d   o n l y  

b e   d e a c t i v a t e d   d u r i n g   r e c o n f i g u r a t i o n .   T h i s   e n h a n c e s   t h e   c r i t i c a l i t y  

o f   t he   d i sp l ay   s c reens   t o   t he   sys t em.  

A s  t o   s chedu le   s to rage ,   t he   r egu la r   exp res s ion   fo rma l i sm  can  

c l e a r l y   b e  mapped i n t o  a compact s t o r a b l e   s t a c k   o f   t a s k s   w i t h   a p p r o -  

p r i a t e   d e l i m i t e r s   a n d   f l a g s .   T h i s  would l e a d   t o  a way t o   s t o r e   t h e  

s c h e d u l e s   b o t h   e f f i c i e n t   a n d   u s e f u l .  

A s i m p l e r ,   m o r e   v i s u a l   s c h e d u l e   r e p r e s e n t a t i o n   h a s   a l s o   b e e n  

der ived   tha t   a l lows   for   ready   comprehens ion   of   the   t ask   execut ion  as 

a f u n c t i o n   o f  time a n d   t h e   p e r i o d i c i t y   o f   i s o l a t e d   t a s k   s e q u e n c e s .  
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Lastly,  the  schedule  derivation  is  such  that  preemption  is  required 

for  only a  subset  of  the  tasks,  namely  those  with  exceptionally  long 
execution  times  that  encroach  upon  the  time  periods of the  more  fre- 

quent  tasks,  and  the  period  of  these  preempted  tasks  is  verified.  This 

concludes  a  derivation  of  a  suitable  schedule  representation  for  SIFT. 
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VI HARDWARE DESIGN 

A .  Bus  Interconnection ~ Network 

1. Introduction 

The  purpose  of  the  bus  interconnection  network in the  SIFT 

computer  is  to  provide  communication  between  each  processor  (main  or I/O) 

and all  memory  units,  except  possibly  the  single  memory  unit  already 

connected  directly  to  that  processor  by  a  high-bandwidth  link.  This 

communication  could  be  established  with  a  separate  connection  between  all 

processor-memory  pairs.  However,  since  only  a  few of the  total  number  of 

possible  communication  paths  would  ever  be  in  use  at  the  same  time,  a 
multilevel  interconnection  network,  similar  to  those  employed  in  telephone 

systems,  should  be  considered in the  hope of achieving  a  net  saving  in 
equipment. A multilevel  realization  may  turn  out  to  have  some  desirable 
fault-tolerance  features  as  well. A two-level  arrangement  having  four  to 
six  intermediate  busses  was  proposed  in  the  original  SIFT  design  concept. 

In this  section,  some  alternative  designs  for  the  interconnec- 

tion  network  are  explored.  Comparisons  are  made  between  a  single-level 

network  of  direct  connections (no busses),  a  two-level  network  (single 

set  of  busses),  and  a  three-level  network  (a  cascade  having  two  separate 

sets  of  busses).  Bit-serial,  byte-serial,  and  all-parallel  data  transfer 

modes  are  evaluated.  The  principal  cost  measures  used  for  these  compari- 
sons of the  several  cases  are: 

g  or G = number  of  equivalent NAND gates,  a  measure  of 
hardware  complexity. 

t or  T = number  of  terminals. 

d or D = number  of  clock  cycles  of  delay  for  a  full  memory 
access. 

Lower-case  letters  apply  to  a  single  module  or  unit,  and  upper-case 

letters  to  the  grand  totals  for  the  entire  network.  Other  important  but 
less  quantitative  criteria  are: 
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0 The  degree  to  which  the  final  network  can  be  conve- 
niently  modularized  into MSI or LSI semiconductor  chips, 
either  custom  designed or commercially  available. 

0 The  complexity  of  calculations  needed  to  generate 
the  routing  codes  for  the  two-  and  three-level  net- 
works. 

0 Algorithms  required  for  checking  and  diagnosis  of  the 
interconnection  network  to  achieve  the  desired  degree 
of  fault  tolerance. 

Typically  about  half  of  the  processors  will  be 1/0 microproces- 

sors,  rather  than  main  processors,  and  their  memory  units will be corre- 

spondingly  smaller.  They  may  not  need  the  full  number  of  address  and 

data-word  bits,  and  communication  paths  will  probably  not  be  required 

between  each  microprocessor  and  the  other  microprocessor  memories.  How- 

ever,  the  savings  in  time  and  equipment  resulting  from  these  simplifica- 

tions  are  not  expected  to  be  great  and  have  therefore  been  neglected  at 

the  present  stage  of  the  design. 

The  main  results  of  this  analysis  are  expressed  in  Figures 

VI-7 and VI-8, which  are  described  in  detail in the  following  section. 

2. Design  Alternatives 

Figure  VI-1  shows  the  interconnection  network  within  its  imme- 

diate  context  in  the  SIFT  computer. Its overall  function  is  to  provide 

bilateral  communication  paths  between  a  set of  p processors  and a  set  of 

p memory  units.  Requests  normally  originate  with  a  processor,  which 

injects  onto  the  forward  connection  the  number  of  the  memory  unit (M) 

with  which  it  wishes to communicate,  bus  routing  information (B) as 
appropriate,  and  the  address (A) within  the  memory.  The  return  connec- 
tion  carries  a  data  word (W) from  memory, or  else  a  single  acknowledg- 

ment  digit . 
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DIRECT  HIGHCAPACITY 
I 1 CONNECTION 

FIGURE VI-1 INTERCONNECTION NETWORK 

The  following  list  gives  the  principal  independent  parameters 

and  their  expected  ranges: 

Parameter  Minimum Typ ica 1 Ma  x  imum 

p = number  of 9 12 18 
processors = 
number  of  memories 

b = number  of  3 
simultaneous  paths 
needed (= number  of 
busses  for  2-level 
case) 

4 6 

nw = number  of  bits 16 24  32 
in  data  word 
na = number  of  bits 16 20  24 
in  memory  address 

The  number  of  bits  needed  for  memory  selection  and  for  bus  selection  can 

be  derived  from p and b, respectively,  assuming  a  convenient  coding. 
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Three  possible  interconnection  schemes  are  shown  in  Figure  VI-2; 

switching  unit S in  this  figure is assumed  to  be  capable  of  making  one- 

to-one  connections  between  its  left-hand  terminals  and  its  right-hand 

terminals in  all (or  almost  all) ways--in  the  fashion  of  a  crossbar,  for 

example.  The  quantity (5 designates  the  total  number of simple  switches 

that  would  be  required  if  each  path  through  every  switching  unit  were 

provided  by  a  separate  switch.  (The  subscript  designates  the  number  of 

levels in the  network.) In Figure VI-2(a), for  example, we have 

O1 = p(p - 1). (Recall  that  a  network  connection  from  processor k to 
memory k is  not  needed.)  The  two-level  arrangement  in  Figure VI-2(b) 

reflects  the  assumption  that no  more  than b connections  are  ever  needed 

at  the  same  time.  The  three-level  network of  Figure VI-2(c), to  be 

described  in  detail  later,  also  has  the  flexibility  to  provide  as  few as 

R 

I P 

(c) u3 = p q  (2 + E  
s2 

FIGURE VI-2 POSSIBLE INTERCONNECTION SCHEMES 
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b < p pa ths ,  a t  a s a v i n g   i n   c i r c u i t   c o m p l e x i t y .   O t h e r  schemes  having 

more l e v e l s  are  a l s o   p o s s i b l e ,   b u t   t h e s e   t h r e e   a l t e r n a t i v e s  w i l l  be  seen 

to   be   the   mos t   compet i t ive   for   p resent   purposes .  

The se t -up  of the   pa ths   in   the   in te rconnec t ion   ne twork   mus t   be  

e x e c u t e d   i n  a sequence  of steps.  F i r s t ,  a p r o c e s s o r   i n i t i a t e s  a r e q u e s t  

i n   t he   fo rm (B, M y  A ) ,  where B c o n s i s t s   o f  0, 1, o r  2 bus  numbers,  depend- 

ing  on the  number o f   l e v e l s ;  M i s  the  memory number;  and A is  the   addres s  

w i t h i n   t h a t  memory ( job  number  and l o c a l   a d d r e s s ) .   T h i s   r e q u e s t  i s  s e n t  

t o   t h e   f i r s t   r e c e p t o r - - e i t h e r  a memory u n i t   [ F i g u r e   V I - 2 ( a ) ]   o r  a bus 

[Figures   VI-2(b)   and  VI-2(c)] .  Each o u t p u t   c o n t r o l l e r  C of each   receptor  

cont inuous ly  scans a l l  r e q u e s t  l ines  i n c i d e n t  upon i t  whenever i t  is n o t  

busy  holding a connect ion.  When the   scanning  is s u c c e s s f u l ,   t h e   r e c e p t o r  

en te r s   t he   busy  s ta te  and   c loses   t he   connec t ions   fo r   t he   fo rward   t r ans fe r  

of   the   address   and   next   bus   ( i f   any)   and   for   the   reverse   t ransfer  of d a t a .  

A t  t h e   n e x t   l e v e l ,   t h e  same a c t i o n  is repea ted  by the   succeed ing   r ecep to r .  

A t  t h e   f i n a l  level (1 ,   2 ,   o r  3 ) ,  t he   add res s  A i s  handled by the  memory 

u n i t   i t s e l f .  

Ac tua l   t r ans fe r   o f   da t a   ( and  la ter  release o f   e s t ab l i shed   pa ths )  

occurs  somewhat d i f f e ren t ly ,   depend ing  upon t h e  mode of b i t  communication 

through  the  network.  For para l le l  t r a n s f e r ,   t h e  memory addres s  A arrives 

a t  the  memory u n i t   c o i n c i d e n t   w i t h   t h e   d a t a   r e q u e s t .  The r e t u r n  of t h e  

d a t a  word W au tomat ica l ly   s igna ls   comple t ion   of   the   opera t ion .  The re- 

ques t  is then  removed  by the   p rocesso r ,  a l l  g a t e s   a l o n g   t h e   p a t h  are 

opened ,   and   each   cont ro l le r  is  released  from  the  busy s ta te  and  resumes 

scanning .   In   the   case   o f  serial  t r a n s f e r ,   r e c e i p t  of a r e q u e s t  a t  t h e  

memory u n i t   t r i g g e r s   t h e   r e t u r n  of  an  acknowledgment d i g i t   t o   t h e   s o u r c e  

processor .   This   p rocessor   then   spews  for th  i t s  stream o f   a d d r e s s   d i g i t s ,  

on  completion of which  the memory u n i t   r e t u r n s  i t s  stream of  data-word 

d i g i t s .  Release of t he   pa th   t hen   fo l lows  as i n  t h e   p a r a l l e l  case. Trans- 

f e r   t o   a n d   f r o m . I / O   p r o c e s s o r s   t a k e s   p l a c e   i n   a n   i d e n t i c a l   b u t   p o s s i b l y  

abbreviated  manner,  since  cormnunication may be  needed i n   o n l y  one r a t h e r  

t h a n   b o t h   d i r e c t i o n s .  
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3 .  Parallel  Transfer 

It should  be  clear  from  this  description  that  each  controller 
in  each  receptor  (memory  unit  or  bus)  requires  two  parts,  a  scanner  and 

a  switch.  The  manner  in  which  these  two  parts  function  together  is shown 

in  block  diagram  form  in  Figure  VI-3  and  as  a  logical  circuit  in  Figure 

VI-4,  for  the  single-level  case  and  parallel  mode  of  transfer. 

In the  functioning  of  each  scanner  (Figure  VI-4), a (p - 1)- 

stage  unary  counter  cycles  continuously  as  long  as no request  is  received 

on  one  of  its  memory  select  lines M. The  first  such  request  that  is 

encountered  stops  the  counter,  and  the  counter  state  m  and  busy  signal 

are  passed  on  to  the  switch. 

Each  switch  is  a  simple  two-way  multiplexor  for  connecting  one 

of the p - 1 processors  to  the  corresponding  output  lines.  Thus  it  has 
(P - 1) (na + n ) left-hand  terminals,  which  connect  to  the  processors, W 
and n + n right-hand  terminals,  which  connect  to  the  memory  proper. 

The  gate  realization  is  straightforward.  The  complex of lines  at  the 

left  side  of  Figure VI-4 corresponds  to  the  nearly  complete  crossing  of 
connections  within S in  Figure VI-2(a). Note  that  the  total  of p(p - 1) 
M-lines  ties  directly  to  the  scanners, p - 1 of  them  to  each  scanner. 
The  other  lines  are  paralleled  to  or  from  the  controllers. 

a W 

a.  One- and  Two-Level  Networks 

The  cost  measures  for  a  single  controller  may  now  be 

written  down  directly  for  the  single-level  case.  For  the  scanner  we  have 

gsc 

tsc 

= 12(p - 1) + (p - 1) + 2 + 6 = 13p - 5 
equivalent  gates 

= 2p  terminals  (excluding  clocks  and  power) 

d = 1, d = p - 1 clocks; 
and  for  the  switch,  letting n = n + n 

scmin scmax 

a W’ 

gsw = np gates 

= (n + 1)p terminals sw 
dsw = 0 
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. 

. 

- " -  
p Controllers 

FIGURE VI-3 SCANNER AND SWITCH FUNCTIONAL BLOCK DIAGRAM 
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FIGURE VI-4 SCANNER AND SWITCH LOGIC CIRCUITRY 
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We have  assumed  here a c o s t  of 1 2  ga t e s   pe r   s t age   fo r   t he   coun te r ,   and  

6 e q u i v a l e n t   g a t e s   f o r   t h e   s i n g l e - d i g i t   d e l a y .   ( T h e s e   c o s t s   a r e  a l l  

a p p r o x i m a t e ,   b u t   t h e   f i n a l   r e s u l t s  do n o t   d e p e n d   c r i t i c a l l y  upon  them.) 

Wired-OR o u t p u t   g a t i n g  i s  assumed f o r   t h e   d a t a - w o r d   l i n e s   r e t u r n i n g   t o  

the   p rocessors .  

~ I n   t h e   t w o - l e v e l   c a s e ,  shown i n   F i g u r e  V I - 5 ,  the  bus  and 

memory r e c e p t o r s   a r e   t h e  same as in   t he   one - l eve l   ca se   excep t   fo r   t he  

d i f f e r e n t  numbers   o f   inputs   and   ou tputs .   In   par t icu lar ,   the  number  of 

scanned  posi t ions  increases   f rom p - 1 t o  p i n   t h e  f i r s t  leve l   and   reduces  

from p - 1 t o  be in   the   second  leve l .   Thus ,  

Level 1 

gsc 
t = 2 p + 2  

= 13p + 8 

s c  (b  of   these)  

d = l t o p  s c  

Level 2 

gs c = 13b + 8 ) 
t = 2 b + 2  (p og these )  

= l t o b  
s c  i d s c  

The  number of b i t   l i n e s   t o  be  switched  increases  from n t o  n + p i n   t h e  

f i r s t  l e v e l ,   i n   o r d e r   t o   i n c l u d e   t h e   r o u t i n g   d i g i t s  B y  bu t   r ema ins   a t  

the   va lue  n in   t he   s econd   l eve l .  Thus 

Level 1 

SW 
= (n + p + 1 ) ( p  + 1) 

d = O  
s w  

Level 2 

gsw 

d s w  

= n(b  + 1) 

= (n + .1) (b + 1) 

= o  
sw 

(b   of   these)  

(p   of   these)  . ,  

, .  
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Note  that  the  circuit  arrangements  presented  in  Figures 

VI-3  and  VI-5  constitute  a  simplification  over  that  described  previously 

in  the  Project 1406 Final  Report.  Specifically,  memory-unit  selection 
is  done  here  with  a  unary  rather  than  a  binary  code.  This  choice  presumes 

that  each  processor  requests  each  individual  memory  unit  with  a  separate 

line. The  previous  DATA  REQUEST  line  can  then  be  combined  with  this  line. 

If the  memory  units  were  selected  with  a  more  compact  binary  code  having, 

say, np digits,  where n < p, then  the  number of bit  lines  to  be  switched 
in the  first  level  would  be  reduced  slightly  in  the  two-level  case 

P 

[gsw = (n + n,)p], but  a  more  costly  scanner  must  be  used [g M 13p + sc 
15 + n (p + ll)]. We conclude  that  the  unary  code  leads to a  more  eco- 

nomical  design. 
P 

The  grand  totals  may  now  be  calculated.  Summing  over  all 

p memory-unit  controllers,  the  single-level  case  yields 

G~ = p(13p - 5) + (n)p = p (n + 13) - 5p 2 2  

T1 = 2p + (n + 1)p = p (n + 3) 2  2  2 

- - 
, Dlmin 3, Dlmax = p + l ;  

while  the  two-level  case  yields 

G2 = b(l3p + 8 )  + (n + p)b(p + 1) + p(13b + 8 )  + n(b + 1)p 
= (n + 8) (2bp + p + b) + bp(p + 11) 

T2 = b(2p + 2) + b(p + l)(n + p + 1) + p(2b + 2) + 
p(n + 1)(b + 1) 

= (n + 3)(2bp + p + b) + bp(p + 1) 

Note  that  in  both  cases  two  clocks  have  been  added  to  the  total  transfer 

time  for  acceptance of the  memory  address  and  return of the  data  word. 

G and T designate  the  total  number  of  gates  and  terminals,  respectively, 
for  all  controllers,  assuming  one  scanner  module  and  one  switch  module 

in  each  controller. 
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b. The  Three-Level  Network" 

The  general  form  of  a  three-level  interconnection  network 

was  shown  in  Figure VI-2(c)  [Ref. 1 1 .  In the  first  level,  the  set  of p 

network  inputs is handled s at  a  time,  by  qp/s  controllers  in  p/s  groups 

of q each.  Each  has s inputs.  The  second  level  has  qp/s  controllers, 

now  in q groups of p/s  each. Each  has  p/s  inputs.  The  third  level, 

antisymmetrical  to  the  first,  consists  of p controllers  in  p/s  groups  of 

s each.  Each  has q inputs. An example  for p = 9, s = q = 3 ,  is  given 

in  Figure VI-6. 

p = 9 ,  s = q = 3  

F I G U R f  VI-6 EXAMPLE OF A THREE-LEVEL NETWORK 

The  parameters q and s should  be  chosen to optimize  the 

3' design;  we  use  here  the  cost  parameters G T3,  and D The  values of q 

and s measure  the  richness  of  interconnectability,  through  the  number b 
3' 

of  simultaneous  parallel  paths  provided,  just  as  in  the  two-level  network. 

First, s must  be  selected  in  the  range 2 S s S p/b  for  the  network  of 

* 
The  calculations  reported  earlier  in  Technical  Memo No. 5 contained  an 
algebraic  error,  which  affected  the  numerical  results  and  the  compari- 
son of the  three-level  case  with  the  others.  This  error  has  now  been 
corrected  and  the  conclusions  modified  accordingly. 
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Figure  VI-2(a)  to be meaningful.  To  achieve b simultaneous  paths  we  need 

q = ~ i f s S b a n d q k b i f s > b .  

Telephone  switching  theory  provides  several  directly  appli- 
cable definitions  and  results. 

A rearrangeable  network  is  one  that  provides  all  possible 

one-to-one  input-output  connections,  just  as  assumed  for  the  switching 

unit S itself; i.e.,  it  is a permutation  network. In general,  however, 
if  some  of  these  connections  have  already  been  established  along  certain 

paths,  it  may  be  necessary  to  reroute  them  in  order  to  set  up  additional 

connections. A nonblockinq  network  also  has  full  permutation  capability, 
but  in  this  case  such  rerouting  is  never  necessary,  regardless  of  the 
order  and  the  particular  routing  with  which  prior  connections  are  set  up. 
These  two  classes  of  switching  networks  are  useful  theoretical  models  for 

telephone  switching,  but  are  never  used  in  practice  because of their  high 

cost,  and  because  only  a  small  fraction  of  all  telephones  are  ever in use 

at  the  same  time. 

The  parameters  of  the  three-level  network  are  constrained 

as  follows : 

0 For  a  nonblocking  network, q 2 2s - 1. 
0 For  a  rearrangeable  network, q 2 s .  

0 For  most  telephone  networks, q << s .  

For  the  bus  interconnection  network,  it  has  been  assumed 

sufficient  to  have  as  few  as  b < p  simultaneous  connection  paths.  Con- 
sequently,  a  rearrangeable  or  nonblocking  capability is not  needed; 

however,  such  capability  may  be  an  asset  if it can  be  achieved  at  a  small 

additional  cost--a  definite  possibility,  since  the  utilization  ratio  b/p 

is larger  here  than  in  telephone  practice. 

Cost  parameters  for  the  scanners  and  switches in the  indi- 

vidual  levels  may now be  readily  calculated,  just  as  was  done  in  the  two- 

level case.  For  parallel  data  transfer: * 

*Actually,  a scanner-having only two positions  is  somewhat  less  complex 
than  the  above  expressions  indicate.  The  value  gsc = 21 has  been  used 
in  this  case  instead  of  the  value  given  by  these  formulas  (gsc + 3 4 ) .  
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Level 1 

gsc 

tsc 

= 13s + 8 
= 2 s + 2  

d = l t o s  sc 

gSW 

tsw 

+ (n + + q) ( s  + 1) 
= (n + E  + q + l)(s + 1) 

S 

d = O  sw 

Level 2 

gsc 

tsc 

= l$+ 8 
S 

= 2E+ 2 
S 

d sc =lto: 

gsw 

tsw 

dSW 

= (n + E) (t + 1) 

= (n + 2 + 1) (E + 1) 
S 

S S 

+ o  

Level  3 

gsc 

tSC 

= 13q + 8 
= 2 q + 2  

d = l t o q  sc 

gsw = n(q + 1) 

tsw = (n + 1) (q + 1) 

d = O  sw 

(y of  these) 

I 

> (y of these) 

(p of these) 

Summation  of  these  individual  contributions  leads to com- 

plex  expressions  for G and  T3.  Those f o r  T are identical  in  form  and 

similar  in  value to those  for G3,  differing  only  in  some of the constants. 

Consequently,  it  will  be  sufficient to deal  with G only,  in  optimizing 

q and s in  terms of p, b y  and n. 

3  3 

3 
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F i r s t ,   n o t e   f r o m   t h e   c o n t r i b u t i n g  terms tha t   the   depen-  

dences on q and s are s t r i c t l y   p o s i t i v e  and i n v e r s e ,   r e s p e c t i v e l y ,  so  t h a t  

G w i l l  be  least when q i s  minimized  and s is maximized,   subject   only  to  

t h e   c o n s t r a i n i n g   i n e q u a l i t i e s   c i t e d   a b o v e .  Two cases mus t   be   d i s t i n -  
3 

g u i s h e d .   I f  p 5 b , t hen  w e  have q = s 5 p/b  5 b .   Se l ec t ion  of t h e  

l a r g e s t   p o s s i b l e   v a l u e   o f  s g ives  s = p / b ,   y i e l d i n g  

z 

G3 = p [ p  + (2n + 27)bl /b  + p(p  + 3n + 24) + 2 2 

pb(b + n + 1 5 ) .  

2 On t h e   o t h e r   h a n d ,   i f  p > b , t hen  we have q = b  2nd  b < s 5 p/b.  The 

maximum value  of  s is  t h e  same, y i e l d i n g  

G = b + (n + 16)b + 2(n + p + 8 ) b  + 2(n + 13)pb + 4 3 2 
3 

p (n  + 8 ) .  

The cor responding   va lues   o f  D are  

D3min 

3 

= 5  

( $ + b + 2 w h e n p 5 b  2 

4 .   B i t -Se r i a l   T rans fe r  

For serial  implementation of t h e   c o n t r o l l e r ,   t h e   s c a n n e r   h a s  

t h e  same c o s t s ,   w h i l e   t h e  number  of b i t   l i n e s   i n   t h e   s w i t c h  is  reduced 

from n t o   j u s t   3 :  a s i n g l e   a d d r e s s   l i n e ,   a n  acknowledgment l i n e ,  and a 

data-word  l ine.  However, t h e  time r e q u i r e d   f o r   a c t u a l   t r a n s f e r  is now 

inc reased  by n. Thus, 

gsw = 3P 

tsw = 4P 
dsw = n 

For a l l  p memory u n i t s  i n  t h e   s i n g l e - l e v e l  case, then  
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2 2 2 
Tl = 2p + 4p = 6p 

lmin = n + 3, Dlmax 
= n + p + l  

For   t he   two- l eve l   ca se ,   a s suming   pa ra l l e l   t r ansmiss ion   o f  mem- 

o r y   s e l e c t i o n   l i n e s   t h r o u g h   t h e   b u s   c o n t r o l l e r s ,   b u t   s e r i a l   t r a n s f e r   o f  

a l l   a d d r e s s e s   a n d   d a t a ,  

G2 = b( l3p  + 8) + b(p + 1 ) ( 3  + p)  + p(13b + 8) + p(b + 1 ) 3  

2 
= b(p  + 33p + 11) + l l p  

D2min - n + 4,  D2max = n + p + b = 2  - 

For   the   th ree- leve l   case ,   t ak ing  s = p / b  and e i t h e r  q = s o r  

q = b, a s   b e f o r e :  

G, = p ( p  + 33b)/b + p(p + 33) + bp(b + 18) f o r  p S b , 2 2 2 

= b + 19b3 = 2(p + 1 l ) b  + 32pb + l l p  f o r  p > b . 4 2 2 

D3min = n + 5 ,  D3max = * + b + n + 2 f o r p S b y  b 2 

= E + 2 b + n + 2 f o r p > b  2 b 

I n   t h e s e   c a l c u l a t i o n s ,  i t  is assumed t h a t   t h e   c i r c u i t r y   r e q u i r e d  

f o r   s e r i a l i z a t i o n  and p a r a l l e l i z a t i o n  of   addresses   and  data  i s  i n t e g r a t e d  

in to   t he   p rocesso r s   and   memor ie s ,   r e spec t ive ly ,  a t  no appreciable   change 

i n  ha rdware   cos t   w i th in   t hese   un i t s .   I f   t h i s   a s sumpt ion  is n o t   j u s t i f i e d  

fo r   t he   t echno logy   chosen   fo r   p rocesso r   and  memory implementation,  then 

t h e   e f f e c t i v e   v a l u e  of G w i l l  increase o v e r   t h a t   c a l c u l a t e d   h e r e .  R 

5. Byte-Ser ia l   Transfer  

S i m i l a r   c a l c u l a t i o n s   a p p l y   i f   t h e   t r a n s f e r  is e f f e c t e d   u s i n g  

r = Ina/B’ + fnw/B’ success ive   B-b i t   by tes .  Here, n -+ 2 + 1 i n  G and T ,  

and   the   de lay  D i n c r e a s e s  by r o v e r   t h e   v a l u e   f o r   t h e   p a r a l l e l  mode. 
B 

The r e s u l t s   f o r   t h e   s i n g l e - l e v e l   n e t w o r k  become: 

94 



lmin = r + 3 , D  = r + p + l  lmax 

For the   two-level   network:  

2 

2 

G 2  = bp + (48 + 29)bp + (b + p)(28  + 9) 

T2 = bp + (48 + 9)bp + (b + p)(2@ + 4)  

D2min = r + 4 ,  = r + p + b + 2  2max 

F i n a l l y ,   f o r   t h e   t h r e e - l e v e l   n e t w o r k :  

G3 = p [ p  + (48 + 29)b] /b  + p(p + 6 8  + 27) + 2 2 

pb(b + 28 + 1 6 )   f o r  p 5 b , 2 

= b4 + (28 + 17)b3 + 2(28 + p + 9)b2 + 2(28 + 14)pb + 
p(28 + 9 )   f o r  p b 2 

D3min = 5 + r ,  

D3max = l e + b + r + 2 f o r p < b ,  b 2 

= ‘ = 2 b + r + 2 f o r p > b  2 
b 

6 .  Comparative  Analysis of Cost  Measures 

F igures   VI-7(a) ,  ( b ) ,  and ( c )   d i s p l a y   c o l l e c t i v e l y   t h e  magni- 

tude  of G a s  a func t ion   of  p ,  b ,  n ,  and   over   the   ranges   o f   in te res t   o f  

t h e s e   p a r a m e t e r s ,   f o r   t h e   p a r a l l e l  mode o f   da t a   t r ans fe r .   These   cu rves  

a r e  shown f o r   t h e   t y p i c a l   v a l u e   o f  n = n + n = 4 4   b i t s   ( s o l i d   c u r v e s ) ,  

w i t h   v a l u e s   f o r   t h e  minimum and maximum (n = 32  and n = 56, r e s p e c t i v e l y )  

des igna ted  by do t t ed   cu rves   fo r   t he   two- l eve l   ca se .  (The o t h e r s  are  very 

similar .) 

a w  

All of   t he   fo rmulas   fo r  T are so similar i n  form  and relative 

v a l u e   t o   t h e   c o r r e s p o n d i n g   o n e s   f o r  G t h a t   t h e r e  is no need t o   d i s p l a y  

t h e i r  values s e p a r a t e l y .  It may be   s a fe ly   conc luded   t ha t   t he   r anges   o f  

op t ima l i ty   o f   des ign   pa rame te r s   based   on   t he   t o t a l  number T of  scanner 

and   swi tch   t e rmina ls  are v e r y   n e a r l y   t h e  same as those   based   on   t he   t o t a l  

number G of   ga tes .  
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FIGURE VI-7 GATE COSTS FOR PARALLEL  TRANSFER 



Reference  to  these  figures  leads  to  the  following  conclusions 
for  the  parallel  case. 

For  b = 4 and p large  the  two-level  network is preferred  by  a 

wide  margin,  but  as  b  is  increased  or  p  decreased,  both  the  one-  and 

three-level  networks  become  more  competitive  in  terms  of  gate  cost. In 
particular,  the  two-level  network  is  superior  to  the  three-level  over  the 

entire  range  of  parameter  values  of  interest,  and  to  the  one-level  network 
as  well  over  all  of  this  range  except  when p 5 2b;  however,  this  extreme 
combination  of  values is very  unlikely to  occur in the  design  of  the SIFT 

computer.  The  dependence  of  the  minimum  gate  cost  on all.three parameters 

p, b, and  n is linear  and  nearly  proportional; in fact  the  approximate 
formula 

holds  within 3% over  the  entire  range  of  interest.  This 

one  to  estimate  quickly  the  effect  of  a  change in  one of 
eters on the  circuit  complexity. 

Gate  costs  for  the  seri.al  mode  of  transfer  are 

formula  allows 
the  design  param- 

shown  in  Figure 

VI-A-8  for  the  case  b = 4 .  Again,  the  superiority  of  the  two-level  imple- 
mentation is apparent. 

For  the  typical  case: p = 12, b = 4 ,  n = 4 4 ,  and B = 4 ,  Table 

VI-1  lists  maximum  delay  times  D  for 1, 2, and 3 levels  and f o r  all 

three  transfer  modes.  Dependence on  p, n, and  b  is  linear  (where  there 

is any  dependence  at all), so the  sensitivity  of D to  changes in these 

parameters  can  be  readily  estimated. 

Rmax 

max 

It is clear  that,  within  each  mode,  the  one-  and  three-level 
networks  are  preferred  from  the  standpoint  of  minimizing  the  maximum  delay 

time.  However,  the  differences  are  only  about  25%  to 30% for  the  parallel 

mode,  are  truly  negligible  for  the  bit-serial  mode,  and  are in between  for 
the  byte-serial  mode. 

It may  be  concluded  that  the  operating  speed  of  the  intercon- 
nection  network  is  not  critically  dependent  upon  the  number  of  levels  in 

the  network,  but  (not  surprisingly)  depends  rather  critically  upon  whether 
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the  parallel,  byte-serial,  or  bit-serial  mode of transfer  is  employed. 

In the  parallel  case  there  is  a  secondary  dependence on the  number p of 
processors  and  number b of  busses,  as  expressed  in  the  equations 

lmax = p + 1 ,  D = p + b + 2 ,  2max D3max x 3 b +  2 

7. Networks  with  More  Than  Three  Levels- 

For  sufficiently  large  p,  the  costs G A  and T  can be  reduced  by 

employing  an  interconnection  network  having  more  than  three  levels.  This 

can be  done  by  holding q and s at  small  values  (2, 3, or 4 )  and  applying 

recursively  to  each  controller  in  the  center  level  the  one-to-three-level 

transformation  implied  by  Figures  VI-2(a)  and  VI-2(c).  For  example, a 

five-level  network so generated  from  Figure  VI-2(c)  for p = 8, s = q = 2 

is  illustrated  in  Figure VI-9. The relevant  concern  here  is  whether  such 

an  alternative  is  preferred  over  the  two-level  case  for  the  range  of 

values  of p likely  to  be  encountered  in  the  SIFT  interconnection  network. 

R 
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FIGURE VI-9 EXAMPLE OF A  FIVE-LEVEL NETWORK 

The  limiting  situation q = s = 2  may  be  examined  first. In this 

case  each  of  the S-units  has two  inputs  and  two  outputs. The  network  is 
the  well-known  Benes-Waksman  arran  [Ref. 21 shown  in  Figure VI-9 for 

p = 8. This  network  is  known  to  have  complete  permutation  capability 

(b = p), and  for p = 2  has  2u - 1 levels  and p(u - 1/2) S-units. (A 
less  symmetrical  version  has  a  slightly  smaller  number p(u - 1) + 1 of 
S-units, but  would  probably  require  a  more  complex  routing  algorithm.) 

Thus, 

U 

R = 2u - 1, 
OR = 2p(2u - 1) 

Each  S-unit  requires  a  pair  of  route-selection  lines  from  the  source  pro- 
cessor. At the  ith-level,  then, 

gswi = 3[n + 2(R - i)] 

Summing  over  all  levels  to  get  the  grand  total 

we obtain,  taking  g = 21  as  before, sc 

gA = 6.2  (2u - 1) (n + 2u + 5) ,  where u = log2(p) u- 1 
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For p = 16 we have u = 4 and .k? = 7, giving G = 19,152  for n = 44 and 

G7 = 5736 for  the  serial  mode.  These  values  are  much  greater  than  the 

minimum  values  plotted  in  Figures V I - 7  and V I - 8 .  The  corresponding  costs 

for p = 8 (Figure V I - 9 )  are G5 = 6600 and 1 6 8 0 .  These  values  are  indi- 

cated  by  small  triangles  in  Figures V I - 7  and VI-8. We may  conclude  that 

the  exclusive  use  of 2 X 2 S-units,  using  as  many  levels  as  needed,  gives . 
rearrangeability  but  is  more  costly  than  all  other  solutions  in  the  total 

number  of  gates  required.  The  delay D would  also  increase  in  these 

five- and  seven-level  realizations,  of  course. 

7 

max 

Exclusive  use  of 3 X 3 S-units  does  not  lead  to  a  fully  utilized 

network  having > 3 levels  until p = 3 = 2 7 .  For p = 1 2 ,  however,  a 

hybrid  five-level  network  for s = q = 3 can  be  formed  by  realizing  each 

of the  three 4 X 4 S-units  in  the  central  level  in  Figure V I - 2 ( c )  in  the 

form  of  a  three-level,  six-element  subnetwork  of 2 X 2 S-units.  The 

final  network,  shown  in  Figure VI-10, has  a  total  gate  cost G = 1 0 , 8 6 0  

for  n = 44 and G = 2496 for  the  serial  mode.  Another  five-level  version 

using 2 X 2 and 3 X 3 S-units  in  alternate  levels  has  exactly  the  same 

cost.  These  values  are  indicated  by  small  circles  in  Figures V I - 7  and 

V I - 8 .  Again,  these  costs  are  quite  high  and  indicate  the  undesirability 

of  increasing  the  number  of  levels  above  three. 

3 

5 

8 .  Modularization of the  Bus  Interconnection  Network 

The  most  complex  scanner  encountered  in  the  previous  discussions 

had  g = 1 3 p  + 8 2 242 gates  and tsc = 2 p  + 2 5 39 terminals.  Conse- 

quently,  there  would  be no difficulty  in  implementing  the  scanner  as  a 

separate  semiconductor  module,  should  this  be  desired.  The  switch, on 

the  other  hand,  has  a  typical  complexity  given  by 

sc 

gsw = (n + y ) ( 6  + 1) 
t = (n + y + 1)(6 + 1) sw 

where 6 varies  from 0 to p and 6 from b or s to p. Except  for  the  serial 

mode (n = 3 ) ,  then,  the  switch  will  need  to  be  partitioned  into  two or 

more  parts  to  fit on any  but  the  largest L S I  modules.  This  may  be  con- 

veniently  done  in  the  present  instance by  taking  advantage  of  the 
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FIGURE VI-10 FIVE-LEVEL NETWORK USING 2 X 2 AND 3 X 3 S-UNITS 
IN  ALTERNATE  LEVELS 

iterative  form  of  the  circuitry  for  the  n  parallel  bits.  Only  the 6 gate 
control  lines  (from  the  counter  in  the  scanner)  need  be  repeated in each 

module,  and  all  switch  modules  at  the  same  level  could  be  essentially  the 

same. 

9 .  Comparison  of  Delay  Times 

The  maximum  delay  times  through  the  interconnection  network  for 
different  values  of  are  shown  in  Table  VI-1. 

A particularly  attractive  design  alternative  for  realization 

would  be  one  in  which  all  controllers  have  the  same  number  of  inputs  and 

outputs, so that a  common  module  might  then  be  utilized  in  all  three 

levels.  This  would  result  in  a  minimum  of  wasted  gates  and  terminals, 

merely  those  corresponding  to  some  of  the  routing  selection  digits in 

levels  past  the  first. With reference  to  Figure VI-2(c),  this  condition 
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Table  VI-1 

SUMMARY OF MAXIMUM DELAY TIMES Dhax 
(p = 1 2 ,  b = 4 ,  n = 44, f! = 4 )  

- R Parallel Byte-Serial  Bit-Serial 

1 13 2 4  57 
2 18 2 9   6 2  

3 1 2  2 3  56 

2  2 requires  that s = q = p/s, so that p = q = b , for  the  three-level  net- 
work.  Hence , 

G3 = 3b [b + b(n + 14) + (n + 8 ) l  2 2  

for  the  parallel  case,  and  with n replaced  by 3 for  the  serial  case.  Each 

= 2b + b(n + 15) + (n + 8 )  of  the  3b  modules  now  requires g = 

gates  and t = t + t - p = b + b(n + 5) + (n + 3) terminals.  Results 3 sc  sw 
for  the  only  two  cases  of  interest,  corresponding  to  b = 3 and  b = 4 ,  are 

tabulated  in  Table VI-2 for  parallel  transfer (n = 44)  and  for  serial 

transfer. The  network  for  b = 3 is  shown  in  Figure VI-6. 

2 2 

23 gsc + gsw 

It is  immediately  apparent  that  the  modules  are  pin-limited 

rather  than  gate-limited  for  any  modern  semiconductor  technology. A 

serial  controller  might  fit  nicely  on  one  semiconductor  chip,  but  the 

parallel  version  would  still  need  to  be  bit-partitioned  to  make  this 

possible.  Nevertheless,  this  possibility  is  an  attractive  one  from  the 

standpoint  of  implementation,  despite  the  nearly  double  total  gate  cost 

(small  squares  in  Figures V I - 7  and VI-8). 

If this  high  gate  cost  can  be  afforded,  the  single-level  network 

must  be  reconsidered,  since  all  controllers  are  also  identical  in  this 

case: 
2 

G1 = p (n + 13) = 5p 

g1 = p(n + 13) - 5 

tl = p(n + 3) 
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Table  VI-2 

SUMMARY OF COSTS FOR NETWORK  REALIZATION 
USING  ALL-IDENTICAL  MODULES 

Three-Level  Network One-Level  Network 
Parallel,  n = 44 Bit-Serial Parallel,  n = 44 Bit-Serial 

F 
0 w No. of 

- b E _Modules - G3  g3 - 3 t - - G3 g3 t3 
" 

3 9  27  6,345  247  203  1,917  83  39  4,572 508 423  1,251  139  54 

4 16 48 14,400 320  259  4,560  115  54  14.512  907  752 4,016 251  96 



The total  number  of  gates  required  is  now  somewhat  less,  but  the  number 

of terminals  (and  gates)  per  module  is  substantially  greater, so more 

modules  would  be  required. 

All of  these  alternatives  are  compared  numerically  in  Table 
VI-2. 

10. Fault  Tolerance  Aspects 

We  follow  the  principle  that  recovery  should  be  possible  from 

all  single  faults  and  from  all  double  and  most  other  multiple  faults  that 

occur  sufficiently  far  apart  in  time to allow a delay  for  the  fault  analy- 

sis  programs  to  identify  the  faulty  unit  and  reconfigure  the  machine  to 

avoid  its  use. 

This  degree  of  fault  tolerance  can  be  achieved  by  defining  and 

isolating  units  in  such  a  way  as  to  limit  the  extent  of  a  "single"  fault. 

Note  that  the  extent  of  a  fault  is  determined  not  only  by  how  the  domain 

of  improper  operation  propagates  electrically,  but  also  by  the  precision 

with  which  the  diagnostic  routines  are  able  to  pinpoint  the  location  of 

the  fault.  For  example,  if  these  routines  are so weak  that  a  fault in A 
can  be  narrowed  down  only  to  the  combination (P ,A), then  the  extent  of 

the  fault  must  be  considered  to  be  (P1,A)  and  not just (A). With  refer- 

ence  to  Figure  VI-11,  this  ability to  limit  means  that  any  one  of  the  units 

1 

PI'  P2' P y  A1, A2, or A 3 may  fail  as  a  result  of  a  single  fault,  but 

FIGURE VI-11 ARRANGEMENT OF UNITS 
TO  ACHIEVE  FAULT  TOLERANCE 
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t h a t  a f a u l t   i n   u n i t  A1, for  example,  must  never  cause A of A t o  become 

i n o p e r a t i v e .   S i m i l a r l y ,  a f a u l t   i n  P1 must   never   incapac i ta te  P o r  P 2 3‘  
It is  possible ,   though  presumably less l i k e l y ,   f o r  a f a u l t   t o   d e v e l o p   o n  

an   ac tua l   connec t ion   pa th- - f rom P t o  A fo r   i n s t ance - - tha t   p reven t s  

communication  between  these two u n i t s .  Such a f au l t   migh t   occu r   w i thou t  

b locking   proper   opera t ion   of  P in conjunct ion   wi th  A and A o r  of A1 

i n   c o n j u n c t i o n   w i t h  P and P 2 .  On the   o ther   hand ,   such  a f a u l t   m i g h t  

a l s o   d i s a b l e   e i t h e r  P o r  A o r   bo th .  What we do   i n s i s t ,   however ,  is  

t h a t   i f  A1 mus t   be   dec la red   fau l ty ,   then  A2 and A3 will not   be  rendered 

i n o p e r a t i v e  by t h e  same f a u l t ,  and i f  P i s  d e c l a r e d   f a u l t y ,  P and P 

are n o t   a f f e c t e d .  

2 3 

1 1’ 

1 2 3’  

1 

1 1 

1 2 3 

I n  terms o f   t h e   c o n n e c t i o n   g r a p h   f o r   t h e   u n i t s  of t h e   e n t i r e  

compute r ,   t h i s   cond i t ion  i s  e q u i v a l e n t   t o   r e q u i r i n g   t h a t  a s i n g l e   f a u l t  

may disable   (a)   any  one  branch,   (b)   any  one  node,   (c)   any  one  node  with 

an   inc ident   b ranch ,   o r   (d)   any  two connected  nodes  and  their   incident  

branch. 

P rope r   de f in i t i on   o f   wha t   cons t i t u t e s  a s e p a r a t e   u n i t   w i t h  

r e s p e c t   t o   s i n g l e   f a u l t s   r e q u i r e s   o n l y   t h a t   r e p l i c a t e d   p a r a l l e l   s u b n e t -  

works  be  regarded as s e p a r a t e   u n i t s ,  j u s t  a s  one  would e x p e c t .   I s o l a t i o n  

o f   t h e s e   s e p a r a t e   u n i t s  must  then  proceed  according t o  t h e   p r i n c i p l e   t h a t  

p a r a l l e l   r e p l i c a t e d   u n i t s   s h o u l d   n e v e r   b e   c o n n e c t e d   t o g e t h e r   i n   a n y  way. 

A t  t h e   c i r c u i t  level  t h i s   c o n d i t i o n  of i s o l a t i o n   r e q u i r e s   t h a t  

m e r g i n g   l i n e s   m u s t   b e   e l e c t r i c a l l y   i s o l a t e d  a t  a l l  p o i n t s  of fan-in  and 

fan-out   o f   these   rep l ica ted   un i t s .   This   might   be   implemented  as simply 

as e m p l o y i n g   r e s i s t o r s   o r   d i o d e s   f o r   i n p u t   c l a m p i n g   a n d   f o r   i n t e r u n i t  

connec t ions  a t   a l l  poin ts   o f   fan- in   and   fan-out ,   in   o rder   to   p revent  

p ropaga t ion   o f   f au l t s   be tween   un i t s .  However, o p t i c a l   c h a n n e l s   o r   s p e c i a l  

coup l ing   c i r cu i t s   migh t   be   p re fe r r ed ,   depend ing  upon t h e   n a t u r e  of t h e  

actual s igna l s   and   t he   magn i tudes   o f   t he   f au l t   p robab i l i t i e s .  

To p r e v e n t   t h e   m o s t   l i k e l y   t y p e s   o f   d o u b l e   f a u l t s   ( t h o s e  con- 

f i n e d   t o   s i n g l e   u n i t s )   f r o m   b l o c k i n g   f a u l t - f r e e   u n i t s   f r o m   u s e ,   a n   a d d i -  

t i o n a l   c o n d i t i o n   o n   t h e   t h r e e - l e v e l   i n t e r c o n n e c t i o n   n e t w o r k   s h o u l d   b e  
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imposed:  that  all  switch  units  should  have  a  fan-in  and  fan-out  of at 

least  three.  Thus, 

This  requirement  is  satisfied  by  all  of  the  realizations  discussed  pre- 

viously. 

Diagnostic  routines  should  have  no  difficulty in pinpointing 

the  location  of a  fault  to  any  switch,  since  this  unit  is  purely  combina- 

tional  and  is  interposed  in  data  paths  between a  processor  and  a  memory. 

Thus  all  stuck-at  and  short-circuit  faults  will  appear  as  errors in 

address  or  data  transmission  and  can  be  readily  detected  and  located. 

Some of the  switched  lines  carry  routing  and  memory  selection  information, 
but  errors  in  this  information  will  also  show  up  as  data  errors  whenever 

the  wrong  memory  is  selected.  To  provide  more  positive  protection  against 

memory.selection errors,  it  may  be  desirable  to  assign  replicated  files 

to different  address  blocks  within  the  various  memory  units. 

The  scanner,  while  a  simpler  unit,  operates  sequentially  and 

must  therefore  be  checked  externally  for  both  "do-nothing"  faults  and 

faults  that  cause  two  otherwise  nonsimultaneous  actions  to  occur  at  the 

same  time.  The  former  type  of  fault  will  presumably  be  detected  by  what- 

ever  overtime  monitor  is  used  for  processor  operations.  The  latter  type 

could  cause  small  delays  if a  processor  tries to communicate  with  a  memory 

unit  through  more  than a  single  path  through  the  interconnection  network, 

or  it  could  cause  data  errors  if a  processor  becomes  connected to more 

than a  single  memory  unit.  Both  of  these  types  of  faults  are  readily 

detected.  However,  the  second  may  require  some  special  attention  in  prep- 

aration  of  the  fault  location  routines so that  the  fault can be  properly 

localized. 

11. Routing 

When  the  number of levels  in  the  interconnection  network  is two 
or  more,  the  allocation  program  in  the  system  executive  must  contain  a 

routine  for  assigning  busses  or  a  route  for  each  processor-to-memory  access. 

This  routing  information is forwarded  to  the  processor  as  part  of  the 
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execution  program;  in effect it  becomes  a  portion of the  memory-select  and 

address  information.  However,  the  assignment  of  access  routes  cannot  be 

made  independent  of  one  another.  The  scheduling  of  all  of  the  various 

tasks  must  be  considered, in order  to  avoid  conflicts  and  delays  that 
would  otherwise  result  from  two  processors  demanding  overlapping  routes. 

Thus,  route  assignment  must  take  into  account  both  the  scheduling  of  tasks 
and  the  detailed  interconnection  possibilities  within  the  interconnection 

network. 

For  the  two-level  network, all bus  controllers  connect sym- 

metrically  to  all  processors  and  also  to  all  memories.  Consequently, 

potential  routing  conflicts  can  be  circumvented  by  simply  avoiding  the 

assignment of the  same  bus  to  two  concurrent  accesses.  If  the  scheduling 

constraints  are  not  too  severe,  such an assignment  might  be  handled  by 

simply  rotating  the  assignment  of  busses  to  processors.  This  allocation 

rule  would  be  used  until  faults  occur. As particular  bus  controllers, 

processor-to-bus  connections,  and  bus-to-memory  connections  are  recognized 

as  potentially  faulty  and  are  taken  from  use,  the  assignment  algorithm 
would  become  more  constrained. It could  still  operate  on  a  "next  avail- 

able"  basis,  or  by  whatever  algorithm  is  used  for  handling  defective 

processors  and  memories. 

e 

If the  number of levels is three or more,  the  choices  between 

possible  routes  between  processors  and  memories  are  no  longer  equally 

preferable. As indicated  previously,  these  interdependencies  could  be 

completely  avoided  by  employing  a  nonblocking  interconnection  network. 
This  form  of  network  was  seen  above  to  be  nearly  twice  as  costly  as  a 

rearrangeable  network,  however,  and  its  use  is  probably  not  justified  in 
the  present  application. In view of  the  small  number of connections 

likely  to  be  set  up  simultaneously,  relative  to  the  total  number  of  pro- 

cessors,  routing  conflicts  would  appear  to  be  the  exception  rather  than 

the  rule,  even  if  a  simple  "next  available  path"  assignment  algorithm 

were  used.  Telephone  theory  provides  sophisticated  algorithms  aimed at 
minimizing  the  blocking  probability  for  average  low-level  use  of  a  switch- 

ing  system  [Ref. 11. In the  present  case,  however,  the  number  of  proces- 
sors  is  probably too small to make  such  elaborate  schemes  either  necessary 

or  beneficial. 
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It seems  sufficient,  therefore,  for  the  allocation  subroutine 
to  maintain  and  update a  simple  table,  which  contains  for  each  processor 

(row  of  the  table)  and  memory unit (column) a  list  of  the  paths  that  have 

been  provided  for  in  the  design--normally 3 or  4--and  the  status  of  each 

such  path:  (a)  fault-free  and  available  at  the moment, (b) fault-free 

but  busy, (c) potentially  faulty,  or (d) faulty.  Except  for  the  multiple 
choice  of  routes,  this  table  is  the  same  in  kind  as  must  be  maintained  to 

store  the  status  of  all  units  in  the  SIFT  computer. 

12. Conclusion 

The  foregoing  analysis  indicates  the  superiority  of  a  two-level 

interconnection  network  over  alternatives  employinp  only  one  level  or 

three  or  more  levels  for  virtually  all  ranges of parameters  likely  to  be 

encountered in the  SIFT  computer  and  for  all  three  transfer  modes, parallel, 

byte-serial,  and  bit-serial.  In  terms  of  the  various  cost  measures,  the 

two-level  network  is  less  complex  in  total  gate  and  terminal  counts  for 

all  parameter  ranges of interest,  in  most  cases  by a  wide  margin. It has 
the  same  (or a  little  greater)  maximum  access  delay. 

The  bus  interconnection  network  is  readily  decomposed  into  cir- 

cuit  modules,  although  some  sacrifice  in  gate  cost  can be expected  if  all 
of  these  modules  are to be  made  alike. 

These  conclusions  are  not  yet  based  upon a reliability  analysis, 

one  that  will  take  into  account  the  various  fault  probabilities  in  each 

type of unit  and  especially  failures  in  interunit  connections,  The  final 
design  choice  for  the  interconnectio  network  will  depend to some  extent 

upon  this  analysis,  as  well  as  upon  the  scheduling  algorithms  and  diag- 

nostic  strategy  adopted  and  upon  system  tradeoffs  involving  speed  re- 

quirements,  relative  hardware  costs,  and  the  parameters  assumed  specified: 

p, b, and  n. 

The  principal  unanswered  question  at  this  stage  of  the  design 

concerns  the  matter  of  how  the  controller  should  be  realized  in  hardware. 

No two  controllers  occupying  similar  replicated  positions  in  the  network 
should  share  the  same  chip.  However,  most  .of  the  controllers  are 
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t e r m i n a l - l i m i t e d   r a t h e r   t h a n   g a t e - l i m i t e d ,  and t h i s   p o s e s  a problem  for 

good economy o f   r e a l i z a t i o n .  

B .  Input/Output  Subsystem 

1. Int roduct ion   and  Sunmlary 

The input /output   subsystem  of   the SIFT computer i s  u s e d   t o  con- 

n e c t   t o   t h e   a i r c r a f t   e n v i r o n m e n t .  It c l e a r l y   m u s t   s a t i s f y   t h e  same kind 

of r e l i a b i l i t y   r e q u i r e m e n t s  as the   remainder   o f   the   sys tem.   In   addi t ion ,  

i t  is h igh ly   cons t r a ined  by t h e   c h a r a c t e r   o f   t h e   d e v i c e s   w i t h i n   t h e  air- 

c r a f t ;   f o r   e x a m p l e ,   r e p l i c a t e d  a i r  p r e s s u r e   s e n s o r s  w i l l  not   produce 

i d e n t i c a l l y   t h e  same read ings ,  so  t h e   v o t i n g  on t h i s   d a t a  will have   t o  

a l l o w   f o r   t h i s   f a c t .  

The b a s i c  scheme fo r   t he   i npu t /ou tpu t   subsys t em is: 

0 Crit ical  senso r s  are r e p l i c a t e d ,  and the  programs 
t h a t   r e q u i r e   t h e   d a t a   r e a d  a l l  t h e   v e r s i o n s  and 
c a r r y   o u t  a vot ing   procedure  as w i t h   a n y   d a t a   t h a t  
are read .  

0 Crit ical  ac tua tors   mus t   be   rep l ica ted ,   each   of  
them c o n t a i n i n g   s u f f i c i e n t   l o c a l   l o g i c   t o   b e   a b l e  
t o   r e a d   t h e  several v e r s i o n s  of t h e   o u t p u t   d a t a  
t h a t   t h e y   r e q u i r e   a n d   c a r r y   o u t   l o c a l   v o t i n g ,  
p o s s i b l y  by  mechanisms similar t o   t h o s e   c u r r e n t l y  
employed w i t h   m u l t i p l e   a c t u a t o r s  on a i r c r a f t ,   e . g . ,  
forced  sum v o t i n g .  

0 N o n c r i t i c a l   s e n s o r s  and a c t u a t o r s  are n o t   r e p l i c a t e d  
b u t  are connec ted   t o   t he   sys t em  in   t he  same way as 
c r i t i ca l  o n e s   i n   o r d e r   t o   p r e s e r v e   t h e  same f a u l t -  
i s o l a t i o n   r u l e s  on the   input /output   subsys tem as  are 
used  between  processing  modules. 

0 The cent ra l   comput ing   e lements  of t h e  SIFT system 
are i so l a t ed   f rom  nonc r i t i ca l   s enso r s   and   ac tua to r s .  

The  manner  by  which the   above   ob jec t ives  are achieved is de- 

s c r ibed   be low,   s t a r t i ng   w i th   t he   des ign   o f  a sys t em  fo r  c r i t i c a l  sensor  

and   ac tua to r   i npu t /ou tpu t ,   f o l lowed  by a d i scuss ion   o f   app ropr i a t e   s t ruc -  

t u r e s   f o r   n o n c r i t i c a l   u n i t s .  The sec t ion   conc ludes   w i th   cons ide ra t ions  

o f   t h e   a i r c r a f t   b u s   s t r u c t u r e   a n d   t h e   q u e s t i o n   o f   p r o b l e m s   o f   t h e   p o s i t i o n -  

i n g   o f   t h e   l o g i c   o f   s e n s o r s  and a c t u a t o r s  a t  the   cen t r a l   compute r   o r  a t  

the   un i t s   t hemse lves .  
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2.  Critical  Input/Output  Units 

Figure  VI-12  shows  how  critical  input  and  output  units  would 

be  connected  to  the  central SIFT  computer  system. We assume  that  data 

to  and  from  the SIFT  system  flows on a  multiple  bus  system,  which  is con- 

nected  to  the  main  bus  system  of  SIFT  via  logic  that  is  realized  by a 

specially programed microprocessor  (marked  as P in  Figure.VI-12). 

t 
MICROPROCESSOR-BASED 

INPUT/OUTPUT  CONTROLLER 

FIGURE VI-12 INPUT/OUTPUT FOR CRITICAL SENSORS AND  ACTUATORS 
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Each  microprocessor   operates   in   the same manner as t h e  main 

p rocesso r s   o f   S IFT ,   excep t   t ha t   t he   t a sks   t ha t  are to   be   pe r fo rmed  are 

much smaller a n d   t h e   e x e c u t i v e   t h a t   r e s i d e s   i n  them is  a reduced   vers ion  

of   the LE/GE c o m b i n a t i o n   i n   t h e   c e n t r a l   p r o c e s s o r s .  The r e d u c t i o n s   t h a t  

are made are: 

0 No g loba l   execu t ive  i s  p r e s e n t   i n   t h e   m i c r o p r o c e s s o r s ,  
as the   func t ions   normal ly   per formed by it are e i t h e r  
n o t   n e c e s s a r y   o r  are c a r r i e d   o u t  by t h e  GE of   the  
central p rocesso r s .  

0 The LE con ta ins   on ly   t he   vo te r ,   s chedu l ing ,  and d i s -  
p a t c h i n g   f u n c t i o n s ,   t o g e t h e r   w i t h   s u f f i c i e n t   o f   t h e  
g l o b a l / l o c a l   i n t e r f a c e   t o   e n a b l e  i t  t o   d e t e r m i n e  i t s  
schedu les   by   r ead ing   t he   cen t r a l  GE t a b l e s .  

I n  a l l  o t h e r   r e s p e c t s   t h e  1/0 p r o c e s s o r s   o p e r a t e   a c c o r d i n g   t o  

t h e  same g e n e r a l   r u l e s  as t h e   c e n t r a l   p r o c e s s o r s .   T h i s   i n c l u d e s   v o t i n g  

on   mu l t ip l e   i npu t   t o   ach ieve   e r ro r   de t ec t ion   and   co r rec t ion ,   r econf igu -  

r a t i o n  by   change   o f   s chedu l ing   t ab l e s ,   and   t he   r e s t r i c t ion   t ha t  a pro- 

c e s s o r  may on ly   r ead   da t a   f rom  o the r   p rocesso r s   and  may n o t  write i n t o  

t h e  memory o f   o the r   p rocesso r s .  

F igure  VI -12  shows t h e   l o g i c a l   s t r u c t u r e   b u t   d o e s   n o t   i n d i c a t e  

the   phys ica l   p lacement   o f   the  1/0 p rocesso r s .  It is a n t i c i p a t e d   t h a t  some 

o r  a l l  of t h e  1/0 processo r s   cou ld   be   p l aced   c lose   t o   t he   s enso r s   and  

a c t u a t o r s   t h a t   m u s t   b e   c o n t r o l l e d .  Such cons idera t ions   depend  on   the  

e c o n o m i c s   a n d   r e l i a b i l i t y   p r e d i c t i o n s   f o r   t h e   v a r i o u s   b u s   s y s t e m   t e c h -  

no log ie s .  

3.  - N o n c r i t i c a l   I n p u t   U n i t s  

I n  a SIFT s y s t e m   t h a t  is ca r ry ing   ou t   bo th  c r i t i ca l  and non- 

c r i t i ca l  t a s k s ,  i t  is necessa ry   t o   ma in ta in  a sepa ra t ion   be tween   t he   t a sks  

b e c a u s e   t h e   n o n c r i t i c a l   t a s k s  may n o t  receive as much v a l i d a t i o n  and ver- 

i f i c a t i o n  as t h e  c r i t i c a l  tasks   and   thus  may c o r r u p t  them. A method  of 

pro tec t ion ,   whereby  a p rogram  canno t   a f f ec t   t he  memory o u t s i d e   t h a t  al- 

l o c a t e d   t o  i t ,  p reven t s   p rog rams   fo r   t he   nonc r i t i ca l   t a sks   f rom  in t e r -  

f e r i n g   w i t h   t h e   c r i t i c a l   o n e s   ( s e e   S u b s e c t i o n  VI-C-4).  The same degree 

of p r o t e c t i o n   a g a i n s t   t h e   p o s s i b i l i t y  of e r r o r s   i n   t h e   h a r d w a r e  i s  
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achieved  by  the  use of a  microprocessor-based  unit  that  connects  to  the 

main  bus  system  and  is  used  to  read  from  the  sensor  and  deposit  the  re- 

sults  of  the  read  operation in  its own memory.  These  results  can  then  be 

read  by  the  main  processors of SIFT.  This  scheme  effectively  isolates 

potentially  unreliable  equipment  from  the  other  units  of  the  system. 

4.  Noncritical  Actuator  Units 

Noncritical  actuators  can  be  dealt  with in the  same  manner  as 

noncritical  sensors,  by  interposing  a  microprocessor-based  unit  between 

the  busses  of  SIFT  and  the  units  themselves. To some  extent  this  may  not 

be  necessary  if  the  units  themselves  are so connected  into  the  bus  system 

that  they  can  only  read  from  the  SIFT  module  memories.  This  constraint 

on the  operation  can  be  achieved  in  the  bus  control  mechanism,  as  is  the 

case  for  the  connection  of  SIFT  modules  themselves.  The  advantage  of  the 

use  of  a  microprocessor  is  that  attention  can  be  given  to  the  design  of 

its  interconnection  and  the  same  logic  can  be  used  many  times,  whereas if 

the  units  are  themselves  connected,  then  it  is  necessary  to  ensure  that 

the  logic  and  physical  design  preclude  the  propagation  of  errors  or  dam- 

age.  This  validation  would  have  to  be  carried  out  for  each  individual 

type of unit  that  is  connected  to  the  system. 

C. SIFT  Memory  System  Design 

1. Introduction  and  Summary 

In this  discussion  of  SIFT  memory  system  design,  we  consider 

the  storage  of  programs  and  data  for  high-rate  control  and  display  func- 

tions,  which  are  served  by  the  distributed  memories  of  the  basic  SIFT 

scheme,  and  also  the  low-rate,  high-volume  storage  that  may  be  required 

in  a  practical,  general-purpose  aircraft  computer. 

At  the  present  state  of  development  of  the  SIFT  architecture, 

the  following  questions  about  memory  are  the  most  pertinent: 

0 How  many  levels  of  memory  are  needed  to  accommodate 
the  range of storage  capacities  and  speeds  in  the 
SIFT  prototype? 
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0 What  technologies  are  appropriate  to  the  various 
storage  functions? 

0 What  special  logical  functions  may  be  needed  within 
memory  modules  to  support  SIFT  processing  and  com- 
munication  modes? 

What  fault-tolerance  capabilities  are  appropriate 
to  the  various  levels  of  the  memory  hierarchy? 

0 What  are  the  basic  performance  requirements  for  SIFT 
memories? 

These  questions  are  discussed  in  order. 

The  following  conclusions  are  derived  in  the  discussion: 

0 Two  levels  of  memory  are  needed  in an Air  Transport 
SIFT:  a  set  of  high-speed  random  access  memories 
(RAM) for  program  execution  and  a  high-capacity  block- 
access  byte-serial  store.  A  large  central RAM is  not 
needed. 

0 The  following  fault-tolerance  schemes  appear  attractive: 
- Single-error-correction,  double-error-detection 
codes  exist  for RAM data  channels. 

- Software  reconfiguration  of  contiguous  blocks  of 
words in RAM is  provided. 

- Either  arithmetic  sum  checks  or  longitudinal  parity 
checks  are  made  for  a  byte-serial  store. 

- Redundant  address  information  (to  some  degree  of 
precision)  may  be  usefully  appended  to  each RAM 
word. 

- The  appropriate  form  of  redundancy  for  the  block 
access  memory  needs  further  study.  Dual  redundancy 
appears  satisfactory. 

- A section  of  read-only  memory  may  be  employed  use- 
fully  in  each  processor  memory. 

- A reliable  form  of  nonvolatile  writable RAM would 
be  beneficial,  but  is  not  presently  available. 
Awareness of future  developments  is  desirable. 

- The  feasibility  of  marginal  checking  for  contem- 
porary  semiconductor  memories  should  be  investigated. 
It is  potentially  of  great  value  in  SIFT. 

- Memory  design  should  allow  for  the  possible  use of 
tagged  architecture.  Tagging  of  words  appears  to 
have  several  beneficial  uses, e.g., in  protecting 
data  from  erasure  because  of  erroneous  address 
calculation. 
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0 The  problem  of  unflexed  fault  tolerance  circuits  is 
significant,  but  solutions are apparent, e.g.,  perma- 
nently  string  data  patterns in memories  that  can  test 
error-detection  logic. 

2. Memory  Hierarchy 

The  most  pressing  concern  about  the  SIFT  prototype  memory  hier- 

archy  is  the  need  for  a  central  fast  memory.  Our  studies3  have  determined 

that  the  high-rate  aircraft  control  programs  may  be  served  adequately  by 

the  memory  modules  associated  with  the  distributed  SIFT  processors. It 
also  appears  necessary  to  have  capability  for  storing  high-volume  data 

with  relatively  low  requirements  for  access  speed.  Data  of  this  type 

include : 

0 Copies  of  all  programs,  to  be  used in an extreme 
situation  when  normal  reconfiguration  fails. 

0 Infrequently  used  programs,  e.g.,  for  diagnosis. 

0 Sequences  of  recent  input-output  activity,  to  be 
used  for  system  recovery  or  off-line  system  analysis. 

The  volume  and  rate  required  for  this  class of data  are  now  known  precisely, 

but  it  appears  that (1) transfer  of  a  block  of  data,  with  latency on the 

order  of  a few  milliseconds,  is  satisfactory  (see  Section V), and (2) 

capacities  on  the  order  of lo7 bits  and  data  rates  of lo6 bits  per  second 
are  reasonable  to  demand.  Such  characteristics  are  provided  by  current 

technologies  in  the  form  of  block-organized  shift  registers. 

These  considerations  indicate  that  the  SIFT  prototype  should 

provide  for  serial-mode,  block-transfer  storage  as  well  as  multiple, 

fast,  random-access  storage  units  for  the  distributed  processing  of  high- 

rate  programs.  Given  the  disparity  in  speeds  and  sizes of the  two  memory 

types,  it  is  natural  to  consider  the  use  of an intermediate  level  of 

storage,  such  as  a  large-capacity  random-access  memory. 

The  following  uses  for  such  a  memory  are  apparent: 

(a) Direct  program  execution,  one  benefit  of  which  would be 
an  economy  in  storage,  since  failures  in  a  processor  would 
not  require  abandonment of memory,  as  in  the  present  dis- 
tributed  processor  design. A second  benefit  would be a 
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r educ t ion   i n   t he   ove rhead   r equ i r ed   fo r   t he  memory mapping 
t h a t   s u p p o r t s   r e c o n f i g u r a t i o n   o f   s t o r a g e   u n d e r   f a u l t s .  

Storage  of   rarely  used  programs,  a benef i t   o f   which  would 
be a r e d u c t i o n   i n   t h e   r e q u i r e d   c a p a c i t y   o f   t h e   d i s t r i b u t e d  
processors   for   programs  which,  when needed ,   requi re   rap id  
a c c e s s .  

S t o r a g e   o f   f l i g h t - c r i t i c a l   p r o g r a m s   f o r   r a p i d   l o a d i n g   o f  
d i s t r i b u t e d  memories d u r i n g   f a u l t   r e c o v e r y .  

S to rage  of fu ture   very   l a rge   p rograms  tha t   exceed   the  
ind iv idua l   capac i ty   o f   p re sen t   d i s t r ibu ted   memor ie s .  A 
b e n e f i t  would  be to   s imp l i fy   r econf igu ra t ion   p rocedures ,  
s i n c e   t h e   d i s t r i b u t e d  memories  would  be  reserved  for small 
programs. 

Of t h e s e   p o i n t s ,   o n l y  (a) r e q u i r e s   s p e c i a l   a r c h i t e c t u r a l   p r o -  

v i s i o n s ,   s i n c e   t h e   d i r e c t   e x e c u t i o n  of  programs  from a c e n t r a l  memory 

r e q u i r e s  a ma jo r   i nc rease   i n   bus   da t a  rates and/or  a redesign  of   the  bus 

concept .   The  major   benefi ts   appear   to   be  economic,   on  the  grounds  that  

i n  a c e n t r a l  memory, f a i l u r e  of a processor   does   no t   cause  a r e d u c t i o n  

i n  memory; hence a lower  amount  of memory redundancy is needed. The 

economic  impact  would  appear t o   b e  small, b e c a u s e   p r o c e s s o r   f a i l u r e  is 

e x p e c t e d   t o   c o n t r i b u t e  l i t t l e  t o   s y s t e m   f a i l u r e  rate compared t o  memory 

i t s e l f .  

Po in t   (b ) ,   s to rage   o f   r a r e ly   u sed   p rog rams ,   can   be   s a t i s f i ed  by 

the   b lock -o rgan ized   s to rage   l eve l ,   p rov ided   t ha t   t he   s to re  i s  capable  of 

loading  a 1 K  program  block  in 1 2  m s  [ R e f .  3 1 .  

P o i n t  (C), s t o r a g e   f o r   r a p i d   l o a d i n g   o f  c r i t i c a l  programs, 

a p p e a r s   n o t   t o   h a v e   s i g n i f i c a n t   b e n e f i t .  A l l  t h e  c r i t i c a l  programs  sur- 

veyed are small and  can  be  t ransferred  between a p a i r  of d i s t r i b u t e d  

memories w i t h   s u f f i c i e n t   s p e e d   t o  meet r e c o v e r y   r e q u i r e m e n t s .   I f ,   i n   t h e  

f u t u r e ,  c r i t i ca l  programs are added t h a t  are so  l a r g e  as t o   p r o h i b i t  

r a p i d   t r a n s f e r ,   s a t i s f a c t o r y   r e c o n f i g u r a t i o n   c o u l d   b e   a c h i e v e d  by employ- 

i n g  a h i g h e r   o r d e r   o f   r e p l i c a t i o n   t h a n  i s  c u r r e n t l y   e x p e c t e d   f o r   a p p l i c a -  

t ion   p rograms.  

Poin t   (d) ,   s torage   o f   abnormal ly   l a rge   p rograms,   does   no t  con- 

s t i t u t e  a c o m p e l l i n g   r e a s o n   f o r   d i s t i n g u i s h i n g  a s e p a r a t e  level of memory. 

It m i g h t   r e q u i r e   t h a t  some of t h e   d i s t r i b u t e d  memories   be  of   larger   than 
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average  size.  This  would  tend  to  constrain  the  flexibility of reconfigu- 

ration,  but  it  does  not  seem  to  be  a  serious  problem. 

We  conclude  that an intermediate  level  of  storage, in the  form 

of  a  large  random  access  memory,  is  not  justified. 

It should be  noted  that  the  arguments  given  are  based on the 

particular  computational  needs  of  the  air  transport  problem  environment 

and  on  currently  feasible  memory  organizations.  The  appropriate  memory 

hierarchy  for  a  SIFT  computer  used in different  problem  areas,  e.g.,  time- 

shared  computing  or  communications  processing,  would  have  to  be  reexamined. 

New  memory  developments  might  also  have an impact.  For  example,  an  ex- 

tremely  low-cost  serial  store  might  be  a  useful  attachment  to  each  dedi- 

cated  processor-memory. 

3.  Memory  Technologies 

The  primary  impact  of  memory  technology on SIFT  architecture  is 

felt  in the  following  issues: 

0 The  choice  of  magnetic  core  or  semiconductor  storage 

0 The  feasibility  of  a  block-access  107-bit  secondary 

for  the  processor  memories. 

store. 

0 The  need  for  fixed or nonvolatile  storage. 

In the  July 1974 study  [Ref. 31 it  was  argued  that  semiconductor 

memories  are  preferable  to  magnetic-core  memories on the  ground  that (1) 
they  tend  to  use  much  fewer  circuit  connections  and  manual  assembly  opera- 

tions, (2) the  drive  circuits  operate  at  lower,  hence  less  stressful  power 

levels,  and ( 3 )  low-level  sense  signals  are  restricted  to  the  interior  of 

the  devices,  hence  are  more  immune  to  noise.  We  believe  that  these  fac- 

tors  still  apply,  and  our  following  discussions  assume  the  use  of  semi- 

conductor  memories  for  the  processor  memories.  We  also  observe  that 

magnetic-core  memory  technology  continues  to  evolve  appreciably.  There- 

fore  the  comparative  value  of  the  two  memories  should be reviewed  period- 

ical  ly . 
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Recent  developments  have  established  the  feasibility  of  two 
novel  technologies  for  block-access  stores:  charge-coupled  devices  (CCD) 

and  magnetic  bubble  storage (MBS). Both  are  amenable  to  byte-serial 

shift-register  type  structures  and  are  well  suited  for  block-structuring, 

with  block  lengths  of 104-10 bits. Data  rates  appear  to  favor  CCD  by  a 

factor  of  two  to  three.  Contemporary  CCD  units  have  a  maximum  rate  of 
about 5 Mb/s, while MBS units  have  a  maximum  rate  of  about 2 Mb/s. CCD 

appears  to  be  capable  of  higher  speed  through  design  refinements,  but 
significant  increases  in MBS speeds  may  require a breakthrough  in  tech- 

nology. 

5 

An important  function  of  a  block-store  memory  is  to  retain  data 

between  flight  periods. At such  times,  aircraft  power  may  be  off. It is 
therefore  important  to  consider  the  feasibility  of  means  for  preserving 

data  with  power-off in the  two  schemes. MBS appears  to  have  a  significant 
advantage  in  nonvolatility  of  data, in respect  to  both (1) power loss and 

(2) interference  due  to  strong  environmental  signals  such  as  lightning. 

This  advantage  results  from  the  use  of  static  magnetic  biasing  fields 

closely  adjacent  to  the  storage  surface.  The  problem of power  loss  in 

CCD  (and  other  semiconductor  memories)  may  be  mitigated  by  the  use  of 

small  batteries,  and  the  problem  of  interference  may  be  solved  by  careful 

shielding.  The  use of "holding"  batteries  is  common  in  current  semicon- 

ductor  memories,  but  it  is  not  yet  fully  accepted  as  a  solution.  Shield- 

ing  as  a  protection  against  lightning  strikes  also  has  proved  generally 

satisfactory  for  low-power  digital  circuits.  Power  loss  remains an 
inadequately  studies  problem. 

Based on nonvolatility, MBS would  appear  to  be  the  medium  of 

choice  at  this  time.  The  issue,  however,  may  be  decided on economic 

grounds.  While  the  primary  issue  for  the  air  transport  application  is 
not  cost  but  reliability,  the  two  are  closely  connected,  since  high-volume 

production  has  a  strong  effect on intrinsic  device  reliability. 

With  regard  to  economic  factors,  CCD  has  a  strong  current  ad- 
vantage  over MBS, derived  in  part  from  the  strength  of  the  existing  semi- 
conductor  industrial  technology  base.  CCDs  are  themselves  facing  strong 
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competition  from  ordinary  random-access  memory (RAM) technologies.  Appar- 

ently  the  somewhat  higher  intrinsic  cost  of RAMs (due to higher  fabrica- 

tion  and  testing  complexity)  may  be  outweighed  by  their  presently  much 

higher  production  volumes  and  by  the  system  advantages  of  their  lower 

latency  times. 

In  summary,  a  reliable,  low-cost,  block-oriented  mass  store 

appears  feasible  at  this  time.  If  the  magnetic  bubble  technology  proves 

not  to  be  economically  viable,  then  special  effort  should  be  made  to 

assure  the  capability  of  semiconductor  memories  to  withstand  transient 

interference  and  to  have  data  maintained  during  power-off  periods of 

several  days. 

The  problem of data-volatility  also  pertains  in  the  distributed 
RAMs used  for  program  execution.  The  reason  for  concern  is  that a  massive 

power  failure  or  noise  impulse  may  erase  critical  programs  or  data  and 

require  a  time-consuming  reloading of programs  or  recomputation of crit- 
ical  state  data. 

The  most  critical  data,  in  order,  are: 

0 The  local  executive  program 

0 Any  copy  of  the  global  executive  program 

0 Flight-critical  state  information  for  high-iteration- 
rate  control  programs 

0 Flight-critical  state  information  for  low-rate  control 
programs 

0 Non-flight-critical  programs. 

The  following  several  candidate  functional  types  of  random- 

access  memory  are  considered. It is  generally  feasible  to  mix  memory 
types  within  a  single  memory  unit. 

The  most  nonvolatile  memory is a read-only  memory (ROM). For- 

tunately,  a ROM is  entirely  feasible  for  the  local  executive  because  the 

same  program  appears  in  each  memory,  and  it  should  not  be  subject to 

change.  The  use  of  a ROM has  the  important  benefit  that  it  would  permit 
system  initialization  without  the  use  of  external  memory  units. 
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The  use  of  ROM  for  the  global  executive  is  more  controversial, 

because  not  every  memory  needs a copy of the  global  executive  and  because 

the  program  may  be  more  subject  to  change.  The  nonvolatility  of  a  ROM 
may  be  attractive  enough  for  the  purpose of rapid  recovery  after  massive 

transient  errors  to  justify  some  extra  copies  of  the  global  executive. 

It should  not  be  necessary  to  have  a  copy  in  each  memory,  merely  enough 
to  cover  the  expected  needs  for  spare  copies.  Furthermore, it may  be 

possible  to  partition  the  global  executive  program  into  ROM  and  RAM  por- 
tions  to  achieve  some  economy in the  redundant  copies;  every  memory  would 
then  have  a  copy  of  the  ROM.portion,  but  only  as  many  RAM-portion  copies 

would  be  carried  as  are  expected  to  be  needed. 

ROM  technology  is  not  appropriate  for  Items (c), (d) and (e). 

For  critical-state  information,  it  would be attractive  to  be able to  use 
one of the  various  forms of writable  nonvolatile  semiconductor  memory, a 

function  usually  referred  to  as  programmable  read-only  memory (PROM). 

The  so-called MNOS technology,  for  example,  has  the  desirable  character- 

istic  that  information  is  retained  without  applied  power. It has  several 
disadvantages,  such  as  deterioration  with  extensive  use  and  slow  writing 

speed,  which  seem  to  rule it out  for  the  present  application.  Several 

claims  have  been  made  recently  in  various  trade  journals  about  improved 

PROM  technologies  for RAMS and CCDs. Such  developments  deserve  continued 
attention. 

In  summary,  the  use of ROM  for  a  portion of the  SIFT  working 

memories  should  be  assumed.  The  use  of  PROM  technology  would  be  benefi- 

cial  if  some  reliable  form  appears  that  is  compatible in timing  with  the 

'primary RAM devices. 

4 .  Special  Logical  Functions 

In this  section  we  discuss  the  possible  need  for  special  logical 
functions  in  memory  units  other  than  for  fault  tolerance. We consider 

both  the  distributed RAM memories  and  the  block-structured  mass  memory. 

In SIFT,  each  processor  handles a mix of tasks,  some of which 

are of high  criticality  while  others  may  have  no  strong  reliability 
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requirements. It is  expected  that  the  high-criticality  programs  will  be 
subjected  to  a  variety of verification  procedures  (including  formal  proof) 

to  ensure  their  correctness.  The  tasks  of  low  criticality  may  not  be 

verified  to  the  same  high  degree,  and  thus  it  is  necessary  to  ensure  that 

these  latter  tasks  cannot  adversely  effect  the  correct  operation  of  the 

high-criticality  task  through  the  presence  of  programming  errors. A 

powerful  mechanism  to  guarantee  the  separation of tasks  is  the  use  of 

"bounds"  checking  on  memory  references.  This  mechanism  allows  a  task 

program  to  write  only  into  the  area  of  memory  that  is  allocated  to  it. 

Various  known  address-control  mechanisms  should  be  incorporated 

in the  processor. It may  also  be  cost-effective'to  include  some  redun- 
dancy  within  the  memory.  For  example,  a  short  data  field  may  be  attached 

to  each  data  word  that  can  carry  some  identification  to  aid  in  program 

protection.  Such  identification  could  be  either  a  unique  program  label, 

or  perhaps,  a  label  indicating  the  level  of  certification  reached  by  a 

given  program. 

Such  appended  data  fields  are known as tags. The  extensive  use 

of  tags  has  been  advocated  by  several  authors  (Feustal),  e.g.,  for  secu- 

rity  enhancement  and  for  indicating  the  "type"  of  a  datum  (integer,  alpha- 

numeric, etc.). It is  employed  in  at  least  one  line  of  commercial  com- 
puters.  Decisions  about  tagging  properly  belong  to  processor  design. 

For  the  SIFT RAMS, the  concept  simply  implies  additional  word  length  of 

from  three  to  ten  bits.  Logical  operations  on  the  tags  would  be  accom- 

plished  within  the  processors. 

The  second  class  of  memory  function  is  the  block-oriented  bulk 

memory.  This  memory  is not intended  for  direct  program  execution, so it 

need  not  be  associated  with  a  regular  processor.  Nevertheless,  in  order 

to  receive  data  for  recording,  it  must  actively  request it. Some  form 

of  processor  is  therefore  needed  to  provide  this  function,  as  well  as 

such  functions  as  block  address  interpretation  and  output.  Only  a  frac- 

tion  of  the  logical  capability of a  standard  SIFT  processor  would  be 

needed,  but  using  one  is  probably  the  most  cost-effective  approach. 
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5. Fault  Tolerance 

The  basic  SIFT  concept  assumes  the  use  of  modules  of  standard 

design  for  both  memories  and  processors.  The  primary  mechanism  for  fault 

tolerance  is  reconfiguration  over  modules,  but  the  use  of  some  fault- 

tolerance  mechanisms  within  modules  is  not  excluded,  and  may,  in  fact, 

be  cost  effective.  This  section  discusses  the  use  of  fault  tolerance 
within  SIFT  memories.  The  major  emphasis  is  on  the  primary  distributed 

memories. 

The  five  relevant  issues  in  memory  fault  tolerance  are: 

0 Diagnosis 

0 Error  detection 
0 Error  correction 

0 Reconfiguration 

0 The "unflexed  fault  tolerance  circuit"  problem. 

These  issues  will  be  discussed  in  order. 

a. Diagnosis 

The  need  has  been  established  for  in-flight  diagnosis  in 

addition to preflight  diagnosis  for  the  Air  Transport  SIFT.  The  archi- 

tectural  issues  are (1) should  diagnostic  data  have  a  special  memory  port, 

or  should it flow  via  the  normal  data  part,  and (2) are  any  special  logi- 
cal  capabilities  needed  within  the  memory  devices  or  subsystems  to  aid  in 

diagnosis? 

With  regard  to  the  first  of  these, it is  clear  that  addi- 

tional  ports  would  introduce  sources  of  error  whose  control  might  be  very 

expensive  in  terms  of  added  system  fault-tolerance  mechanisms  and  increased 

complexity of reliability  analysis. All efforts  should  be  made  to  employ 
the  data  paths  and  processor  control  functions  used  for  actual  computa- 

tion. 

The  second  issue  is  difficult to address  in  the  absence  of 

particular  memory  designs. In general  it  is  desirable  to  avoid  special 

mechanisms,  both to reduce  the  number  of  fault  sources,  and  to  avoid 
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special,  low-volume  production  runs  that  might  be  required  for  special 

features,  but  two  functions  may  justify  some  added  equipment: (1) marginal 

testing,  and (2) partitioning  of  memory  to  enhance  fault  location. 

We  deem  marginal  testing  to  be  potentially  a  very  valuable 

facility,  especially  because  it  may  help  to  uncover  incipient  faults,  and 

thus  give  time  for  reconfiguration  before  computing  errors  occur. The 

actual  benefit  for  contemporary  memory  systems  needs  to  be  ascertained 

prior to the  statement of engineering  specifications.  One  item  of  con- 

cern  is  that  the  control  of  such  marginal  states  needs  to  be  protected. 

One  one  hand,  the  use  of  program  control  introduces  new  hardware  and  soft- 

ware  sources  of  error  (in  order  to  limit  the damage  due to such  errors, 

marginal  checking  should  be  controlled  independently  in  each  processor). 

On  the  other  hand,  it  would  be  an  unreasonable  burden  on  the  flight  crew 

to  have  the  control  completely  manual.  It  may  be  acceptable  to  use  pro- 

gram  control  together  with  a  crew-visible  indicator to indicate  the  appli- 

cation  of a  marginal  state.  This  would  tend  to  protect  against  a  stuck-on 

marginal  state. * 

The  use  of  internal  logic  to  enhance  fault  location  could 

be  beneficial  if  it  were  desired  to  use  internal  reconfiguration  for  fault 

tolerance  (e.g.,  by  modifying  memory  address-mapping).  Its  benefit  would 

be  to  accelerate  diagnosis  by  isolating  sections  of  memory. RAMS have 

very  uniform  structures,  which  are  amenable to systematic  testing. It is 
therefore  not  clear  that  the  amount  of  the  acceleration  of  diagnosis 

would  justify  the  cost  and  fault-hazard of the  added  logic.  Some  further 

investigation of this  point  would  be  justified.  In  any  event,  since 
memory  diagnosis  is  not  feasible  for  recovery  of  high-criticality  faults, 

its  acceleration  is  a  relatively  minor  issue. 

- 

*The  trade-offs  discussed  here  also  appear  in  th'e  more  general  issue  of 
run-time  system  diagnostics,  since  any  diagnostic  mode  can  introduce 
some  sources of vulnerability  to  mission-directed  computation. 
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b.  Error  Detection 

Error  detection in SIFT  memories  may  have  several  benefits. 

For  example, 

0 As an adjunct  to  error  correction,  it can  give 
warning  of an incipient  memory-unit  failure. 

0 It can  strengthen  the  decision  of  a  programmed 
voting  check;  that  is,  if  one  version  of an 
input  datum  disagrees  with  the  one  (or  more) 
other  versions,  a  memory-error  indicator  can 
confirm  the  identification  of  the  faulty  data 
source.  If  there  is  only  one  other  version 
(i.  e. , if  the  redundancy  is  "dual"),  then  the 
faulty  source  may  be  identified  without  further 
diagnosis.  This  would  tend  to  justify  increased 
use  of  dual-mode  redundancy. 

Many  effective  techniques  are  known  for  error  detection in 

memories.  Several  important  examples  are: (1) generalized  parity-check 
codes  for  words  of  data, (2) special  codes  for  numerical  data, (3)  arith- 

metic  sumchecks  for  blocks  of  data,  and ( 4 )  address  tags  (for  verifying 

address-selection  logic  in RAMs). 

Parity-check  codes  are  very  cost-effective  for RAMs, and 

are  widely  used.  The  use  of  up  to  ten  percent  additional  number  of  bits 

is  probably  justified. 

The  use  of  separate  codes  for  numerical  data  is  not  justi- 

fied.  They  are  inefficient  for  memories,  and  ineffective  for LSI- 

realized  processors,  especially  in  a  voting-and-whole  processor- 

reconfiguration  scheme  such  as  SIFT. 

The  use  of  arithmetic  sum-checks  for  data  blocks  appears 

attractive  for  a  serial  mass-memory,  since  it  would  tend  to  catch  shift- 
control  faults  (that  would  cause  loss  of  duplication  of  characters).  The 

technique  has  no  additional  contribution  over  word-parity  checks  for RAMs. 

The  use  of  redundant  address  tags on words  is  attractive, 
since  certain  faults  in  some RAM word-selection  logic-circuits  tend  to 
cause  selection  of  single  incorrect  words  (other  faults  may  cause  selec- 
tion  or  partial  selection  of  several  words).  Single-word  selection  errors 
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would  not  be  detected  by  parity  checks. The cost  of  detection  would  de- 

pend on the  precision  of  the  redundant  address  information.  This  could 

range  from  one  bit  to  the  full  address.  The  value  of  this  technique 

should  be  estimated in the  context  of  particular  memory  system  designs. 
For  example,  the  word  selection  logic  may  be  such  that  most  failures  give 

either  non-selection  or  multiple-word  selection. 

c.  Error  Correction 

The  benefit  of  error  correction  for  the  data  of  SIFT  memo- 

ries  is  that  it  may  be  a  very  cost-effective  way  to  prolong  the  useful 

life  of  by-far  the  largest  portion  of  SIFT  hardware. It appears  to  be 
unsurpassed  in  cost-effectiveness  protection  against  one  or  perhaps  two 

faults  per  memory  unit.  Furthermore,  it  is  usually  inexpensive  to  obtain 

error  detection of one  unit  more  than  the  amount  of  error  correction. 

Thus,  given  the  programmed  voting  check  of  SIFT,  the  occurrence  of  two 

errors  in  a  single-error-correctiony  double-error-detection  memory  unit 

would  still  allow  indication  of  which  version  of  a  dual-redundant  com- 

putation  is  correct. 

While  the  use  of  error  detection  alone  is  potentially  very 

effective  in  SIFT,  as  discussed  previously,  the  added  cost  of  single-error- 

correction  with  double-error-detection  appears  to  be  highly  justified. 

The  degree  of  redundancy  required  for  a  block-access  mass 

memory  will  depend  on  technological  factors  that  are  presently  unknown. 

Considering  the  relatively  low  criticality  of  the  data,  dual  redundancy 

may be satisfactory.  Since  the  memory  will  probably  have a module  real- 

ization,  it  may  be  that  dual  redundancy  might be effectively  applied  over 

storage  blocks  within a memory,  provided  that  the  driving  circuitry  can 

be protected. 

d. Reconfiguration 

The  major  value of memory  reconfiguration  is  to  deal  with 

multiple  faults,  since  error-correction  schemes  using  coding  are  almost 
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always  more  cost-effective  for  one  or  two  faults.  Reconfiguration  may 

be  applied  at  the  level  of  a  block  of  words,  a  bit-plane  or  a  memory 

device. 

The  least  expensive  form  is  block  reconfiguration.  In  the 

current  SIFT  design,  software  memory  mapping  tables  are  employed  to  inter- 

pret  addresses  for  all  interprocessor  communication.  These  tables  greatly 

facilitate  program  relocation  among  processor-memory  units. It is a 
trivial  step  to  assign  values  to  the  mapping  tables so as to  bypass  any 

contiguous  block  of  words  in  a  memory  that  has  been  determined  to  contain 
faults,  The  major  cost  would  seem  to  be  the  size of  the  program  (and  the 

cost  of  its  verification)  needed  to  analyze  the  fault  pattern  and  to 

define  the  boundaries  of  the  forbidden  region. 

Block  reconfiguration  is  effective  for  faults  in  memory 

cells  and  for  some  faults  in  word  selection  circuits,  but  it  is  not  effec- 

tive  for  faults  that  affect  an  entire  bit  circuit.  Such  faults  are  well 
covered  by  error-correcting  codes,  for  one or two  bit  circuits  per  mem- 

ory.  If  a  larger  number  of  bit-circuit  faults  must  be  tolerated,  some 

form  of  switching  of  logical  bit-planes  may  be  effective.  Such  switch- 

ing  is  very  expensive  and  fault-prone.  Considering  the  numerous  other 

fault  tolerant  mechanisms  available  in  SIFT,  we  deem  it  not  to  be  a  cost 
effective  measure. 

A device-level  reconfiguration  scheme  has  been  described 

[Ref. 31 that  is  very  cost-effective  for  large  numbers  of  faults.  In 

order to employ  this  scheme  some  modifications  to  memory  chip  design  are 

needed,  together  with  a  rather  powerful  diagnosis  and  reconfiguration 

program.  The  initial  cost  of  the  scheme  appears  to  be  prohibitive  for 

the  present  application.  Its  greatest  value  is  for  very  long  unattended 

life. 

e. The "Unflexed  Fault  Tolerance  Circuit"  Problem 

The  general  "unflexed  problem" is the  problem  of  determin- 

ing  that  a  functional  element  is  operable  prior  to  its  use in a  real-time 

computation.  This  problem is especially  serious  for  fault-tolerance 
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mechanisms.  In  a  straightforward  design,  some  failures  of  such  a  mecha- 

nism  will  be  observed  only  when  the  fault  condition it is designed  to 

treat  occurs. An apparent  dilemma  exists in that  if  a  fault  condition  is 
artificially  simulated so as to  test  the  mechanism,  some  action  (such  as 

program  reconfiguration)  may  be  initiated  that  could  harmfully  degrade 

performance;  therefore,  to  avoid  such  degradation,  the  consequent  activity 

must  be  inhibited.  Such  inhibition,  of  course,  may  also  be  a  source  of 

trouble,  and  a  complete  test  must  assure  that  the  inhibition  itself  can 

be  terminated. 

This  problem  applies  to  both  hardware  and  software  mecha- 

nisms. In the  case  of  memories,  the  controlled  flexing  of  error  detection 
and  correction  circuits  is  clearly  desirable.  One  attractive  way  to 

achieve  this  would  be  to  record  permanently  a  set  of  erroneously  encoded 

words  in an.ROM section  of  each  memory.  Such  words  could  be  read  by  a 

diagnostic  program  which  would  be  designed  to  interpret  correctly  the 

outputs  of  the  error-detection  or  correction  circuits.  The  problem  of 

correctly  inhibiting  undesired  reconfiguration  would  be  passed  upward  to 

the  executive  program. 

This  scheme  avoids  the  need  for  special  circuitry to defeat 

the  normal  data  encoding  circuits.  Such  defeating  would  be  needed  in 

order  to  simulate  a  defective  memory. 

6. Performance  Specifications 

In  this  section  we  summarize  the  performance  required  for  SIFT 

memories. At this  stage  of  SIFT  development,  the  various  requirements 
have  different  degrees  of  certainty.  The  discussion  references  the 

sources of  the  requirements  and  indicates  the  issues  that  must be examined 

in  order  to  achieve  more  precise  values. 

a.  Distributed-Processor  Memories 

The  following  requirements  pertain  to  the  random-access 

memories  used  locally  to  each  SIFT  processor: 
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0 Word l eng th  

Data f i e l d :  24 b i t s   [ R e f .  31 

Tag f i e l d :  4 t o  8 b i t s  
( l eng th   t o   be   de t e rmined  by a n a l y s i s  of h igher -  
level mechanisms f o r   c o r r e c t i o n  of f a u l t s   i n  
memory addres s ing )  

Error-detection/correction f i e l d :  9 t o  12 b i t s  
(assume 30 b i t s   f o r   d a t a  and   t ag )   ( l eng th   t o  
be  determined  by  the  t rade-off   in  cdst and 
r e l i a b i l i t y   b e t w e e n  memory and  coding-decoding 
l o g i c )  

0 Maximum c a p a c i t y :  [64K-l28K]  words  [Ref. 31 

Actual   values  w i l l  va ry   w i th   t he   app l i ca t ion ,  and 
may be much less than   the  maximum. The expected 
v a l u e   r e q u i r e d   t o   c o v e r   t h e   e n t i r e  se t  of a i r  
t r a n s p o r t   a p p l i c a t i o n s  i s  [24K]. The maximum 
amount  assumed w i l l  de t e rmine   t he   addres s   s i ze  
r e q u i r e d   f o r   p r o c e s s o r   d e s i g n .  The va lue  of 
maximum-capacity s t a t e d  i s  c o n s i s t e n t   w i t h   t r e n d s  
i n  modern  minicomputer  technology  and  architec- 
t u r e .  It is  v e r y   c o n s e r v a t i v e   w i t h   r e s p e c t   t o  
t h e   f u l l   s e t   o f   c o m p u t a t i o n s   s u r v e y e d   i n   R e f e r -  
ence 3 .  It i s  conce ivab le   t ha t  some new r e q u i r e -  
ments may d e v e l o p   t h a t   g r e a t l y   i n c r e a s e   r e q u i r e d  
system  memory-capacity,   e.g. ,   elaborate  graphic 
d i s p l a y s .  The SIFT arch i tec ture   can   be   expanded  
(by a t  least a f a c t o r  of  three,   and  perhaps 
h ighe r )  by t h e   a d d i t i o n   o f  new processor-memory 
p a i r s ,  so as t o  meet a g r e a t l y   i n c r e a s e d   r e q u i r e -  
men t . 

Access  modes:  (1)  whole  word,  read/write, random- 
a c c e s s   ( a c c e s s   t o   s u b f i e l d s   a t   t h e  memory i n t e r -  
f a c e  i s  an   unnecessary   fea ture  and  would g r e a t l y  
complicate  error-detectionlcorrection); ( 2 )  whole 
word,   read-only,   random-access   (data   are   preset  
a t  manufac ture) .  Assembly should  a l low  easy 
change of ROM p o r t i o n  by maintenance  personnel.  
T o t a l  amount of  t h e  ROM p o r t i o n  i s  expec ted   to  
be less than  20% of   t he   d i s t r ibu ted -p rocesso r  
memory. 

0 S p e c i a l   f e a t u r e s  

(1) S i n g l e   e r r o r   c o r r e c t i o n   w i t h   d o u b l e   e r r o r  
detect ion,   us ing  encoding  and  decoding 
l o g i c  a t  t h e  (word) d a t a   i n t e r f a c e .  

(2) P o s s i b l e   u s e  of programmed marginal  check- 
ing   o f  memory c i r c u i t s .  
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0 Interfaces 

(1) High  bandwidth  interface  to  the  local 
processor. 

(2) The  interface  to  the  bus  system  must  incor- 
porate  a  means  to  protect  the  memory  from 
continuous  accesses  by  a  faulty  bus.  Sec- 
tion VI-B describes  such an interface  which 
is  identical  to  the  means  used  by  a  bus  to 
protect  itself  against  repeated  accesses  by 
a  faulty  processor. 

b. Block-Access  Memory 

Requirements on the  block-access  memory  are  less  certain 

at  this  time  than  those on the  random-access  memories,  because  the  re- 

trieval  functions  are  less  critical. Also, some  relevant  architectural 

issues  remain  to  be  settled,  such  as  tolerance  to  transient  interference. 

The  key  characteristics  are  data  rate,  delay  in  accessing 

the  beginning  of  a  data  block,  and  capacity.  The  capacity  of  the  memory 

system  will  be  determined  by  numerous  critical  and  noncritical  data 

functions. A range of lo6  to  10  bits  appears  likely.  The  data  rate  and 
access  delay  will  depend  upon  the  critical  functions.  These  appear  to  be 

of  two  classes, i.e., temporary  storage  of  input  and  output  data,  and 

storage  of  duplicate  copies of critical  programs. A maximum  recovery 

time of 12 milliseconds  is  assumed.  Separate  block  memories  may  be  needed 
for  the  two  classes. The  following  estimates  apply: 

8 

0 Data  rate:  for  temporary I / O :  10 bytes/sec 6 

for  program  access : 0.5 X 106 bytes/sec. 
(based  on  transfer  of a block of 4K word, 
30 bit/word,  in 50 ms). 

Access  delay  for a random  block:  less  than  1  ms. 

Special  features: 

(1) fault  tolerance  probably  in  the  form  of 
dual  redundancy,  with  independent  control 
of storage  and  retrieval.  Possible  use  of 
longitudinal  error-detecting  codes. 
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D. P rocesso r s  

The e s s e n t i a l   f e a t u r e s   t h a t  are r e q u i r e d   i n  a SIFT p r o c e s s o r   f o r  

u se   i n   an   advanced   comnerc i a l   t r anspor t  are d e s c r i b e d   i n   t h i s   s e c t i o n .  

A s  t he   f au l t - to l e rance   o f   t he   comple t e   sys t em i s  achieved by so f tware  

a ided  by t h e   o v e r a l l   s y s t e m   s t r u c t u r e ,   t h e r e  i s  l i t t l e  need  for   any 

spec ia l   f au l t - to l e rance   ha rdware . in   t he   p rocesso r s   t hemse lves .   Ra the r ,  

t he   r equ i r emen t s  on the   p rocesso r  are c o n f i n e d   t o  a small number of 

c r i t i c a l  f e a t u r e s   t h a t   e n a b l e   t h e   s o f t w a r e ' t o   a c h i e v e   t h e   f a u l t - t o l e r a n c e .  

The c r i t i ca l  i s s u e s   i n   t h e   s p e c i f i c a t i o n   o f   t h e   p r o c e s s o r s  are: 

I n t e r f a c e   t o   t h e   b u s   s y s t e m  

I n t e r f a c e   t o   t h e  memory 

0 F e a t u r e s   t o  assist d i a g n o s i s   i n   t h e   p r o c e s s o r s  

0 Indi rec t   and   indexed   address ing  

0 I n t e r r u p t   s y s t e m  

0 I n t e r n a l   c l o c k  

0 Memory access bounds  checking. 

We a d d r e s s   t h e s e   p o i n t s   i n   t h e   o r d e r   l i s t e d .  

The i n t e r f a c e   t o   t h e   b u s   s y s t e m  i s  t h e   m o s t   i m p o r t a n t   i s s u e   i n   t h e  

p r o c e s s o r   s p e c i f i c a t i o n .  It  i s  t h i s   i n t e r f a c e   t h a t   e n a b l e s   t h e  SIFT 

s y s t e m   t o   a c h i e v e   f a u l t   i s o l a t i o n   a n d  damage i s o l a t i o n   b e t w e e n   i n d i v i d u a l  

processor  memory modules.  The f a u l t   i s o l a t i o n  i s  achieved by t h e   f a c t  

t h a t   t h e   p r o c e s s o r s   c a n n o t  w r i t e  d a t a   o n t o   o t h e r   u n i t s ,  and t h e  damage 

i s o l a t i o n   c a n   b e   a c h i e v e d  by t h e   u s e   o f   a p p r o p r i a t e   c i r c u i t   d e s i g n  

techniques  such as t h e   u s e  o f   h igh   impedance   d r ive   c i r cu i t s .  The i n t e r -  

face   mus t   be   capable   o f   t ransmi t t ing  a da ta - r ead   r eques t   t o   t he   app ro -  

p r ia te  b u s   a n d   o f   t r a n s f e r r i n g   t h e   a c c e s s e d   d a t a   b a c k   t o   t h e   r e q u e s t i n g  

p rocesso r .  A da ta - r ead   r eques t   con ta ins   t he   fo l lowing   e l emen t s :  

Bus des igna to r  (max 3 b i t s )  

0 Process   des igna to r  (max 4 b i t s )  

Task   des igna tor  (max 6 b i t s )  

0 O f f s e t   w i t h i n   t a s k  (max 14 b i t s ) .  
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.. . . . . - . . . . . . " ." 

The  above estimates f o r   t h e  number o f   b i t s   a s sumes   t ha t   t he   fo l lowing  

maxima are u s e d   i n   t h e  SIFT s p e c i f i c a t i o n :  8 busses ,   16   p rocessors ,  64 

t asks   and  16K words  within a t a s k .  It a l s o   a s s u m e s   t h a t  a s i m p l e   b i n a r y  

code i s  used   and   t ha t   codes   fo r   e r ro r   de t ec t ion   and   co r rec t ion  are n o t  

employed.  The  above  control  data  must  be  communicated  to  the  bus  system. 

The 27 maximum b i t s   o f   t h i s   d a t a   c a n   b e   a c h i e v e d   w i t h   t h e   f i l l i n g  of a 

r e g i s t e r  of two words   l eng th .   Th i s   imp l i e s   t he   ex i s t ence  of t h i s   s p e c i a l  

r e g i s t e r   a t t a c h e d   t o   t h e   c o n v e n t i o n a l   o u t p u t   u n i t   o f   t h e   p r o c e s s o r .  The 

use  of   such a s p e c i a l   r e g i s t e r   c a n   e n a b l e   c o n v e n t i o n a l   p r o c e s s o r s   t o   b e  

used i n   t h i s   a p p l i c a t i o n   w i t h  or r ly   the   requi rement   o f   be ing   ab le   to   load  

a p a i r  of e x t e r n a l   r e g i s t e r s ,  as will b e   p o s s i b l e   w i t h  a l l  commonly avail- 

a b l e   p r o c e s s o r s .   F o l l o w i n g   a c t i o n  by the  bus  system on t h e   c o n t r o l   d a t a  

a word w i l l  b e   t r a n s f e r r e d   b a c k   t o   t h e   p r o c e s s o r .   T h i s  word of d a t a  w i l l  

b e   p l a c e d   i n   a n   e x t e r n a l   r e g i s t e r   t h a t   c a n   b e   r e a d  by t h e   p r o c e s s o r   i n  a 

conventional  manner.  

* 

The i n t e r f a c e   t o   t h e  memory u n i t s  would   be   the   convent iona l   in te r -  

f a c e  as t y p i c a l l y   s u p p l i e d   w i t h  a processor   and no spec ia l   r equ i r emen t s  

arise i n   t h e  case of   the  SIFT computer. 

The u s e   o f   s p e c i a l   f e a t u r e s   t o  assist i n   t h e   d i a g n o s i s  of p rocesso r s  

and  memories  would l e a d   t o   a n   o p p o r t u n i t y   f o r  more power fu l   d i agnos i s  

t e c h n i q u e s .   I n   t h e  SIFT system we in t end   t o   base   t he   d i agnos i s   o f   equ ip -  

ment on t h e   b e h a v i o r a l   c h a r a c t e r i s t i c s  of that   equipment   and  thus w e  see 

l i t t l e  need f o r   s p e c i a l   b u i l t - i n  test equipment (BITE) o r  i t s  u s e   i n  

b u i l t - i n   t e s t i n g   ( B I T ) .  

The reading  of   data   in   one  computing  module by ano the r  demands t h a t  

i n d i r e c t   a d d r e s s i n g   b e   a v a i l a b l e ,   b e c a u s e   t h e   l o c a t i o n  of a word i n  one 

memory u n i t  i s  unknown t o   t h e   r e a d i n g   u n i t .   T h i s   i m p l i e s   t h a t  a t a b l e  

o f   base   addres ses   fo r   da t a   s egmen t s   be   kep t   i n   each  memory and t h a t   t h e  

access t o  a word in   those   memor ies  would u s e   i n d i r e c t   a c c e s s i n g   t o   t h e  

r equ i r ed  word.  The same comments a p p l y   a l s o   t o   t h e   u s e  of  indexed access 

~~ ~ 

* Assuming a word l e n g t h   o f   1 6   b i t s  as d i scussed  below. 
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t o   da t a .   These   r emarks  are a l s o   r e s t r i c t i o n s  upon t h e   s p e c i f i c a t i o n   o f  

memory u n i t s   b u t  are i n c l u d e d   h e r e   b e c a u s e   t h e   i n d i r e c t i o n   a n d   i n d e x i n g  

i n t o  memory is o f t e n   c a r r i e d   o u t   i n   t h e   a s s o c i a t e d   p r o c e s s o r .  

The p r o v i s i o n   o f   a n   i n t e r r u p t   s y s t e m   i n   t h e   p r o c e s s o r  is requ i r ed  

f o r  some o f   t h e   f a u l t   t o l e r a n c e   t e c h n i q u e s   t h a t  are p a r t . o f   t h e  SIFT 

d e s i g n .   I n c l u d e d   i n   t h i s  are t h e   i n t e r r u p t   f o r   t i m e - o u t  when a t a s k   h a s  

ove r run   t he  time a l l o t t e d   t o  i t  a n d   t h e   i n t e r r u p t   o n   t h e   o c c u r r e n c e   o f  a 

c l o c k   t i c k .  The l a t te r  occurs  whenever a new t a s k  starts. No e x t e r n a l  

i n t e r r u p t s  are e n v i s i o n e d   f o r   t h e  SIFT system. An i n t e r n a l   c l o c k  is  re- 

qu i r ed   t o   p rov ide   fo r   t he   above -men t ioned   c lock   t i cks  a t  the  start of 

each   task   f rame.  

An impor tan t   fea ture   o f   the   p rocessor  i s  t h e   n e e d   t o   p r o v i d e   f o r  

checking of t h e   a d d r e s s   i n   e a c h   t a s k   c a l c u l a t i o n   t o   e n s u r e   t h a t   d a t a   o f  

o t h e r   t a s k s  is not   cor rupted .   This   can   be   accompl ished  by the   u se   o f  

array  bounds  checking as i n   c o n v e n t i o n a l   d a t a   p r o c e s s o r s .  

Wi th in   the  limits of   the   above ,   there  are few  requirements  on  the 

p rocesso r  beyond the   speed   requi rement   tha t   the   p rocessor   be   capable  of 

o p e r a t i n g  a t  a n   i n s t r u c t i o n   e x e c u t i o n  rate of  approximately 0.5 MIPS. 

This  i s  a r e l a t ive ly   modes t   r equ i r emen t  compared t o  modern minicomputers,  

b u t  i s  c u r r e n t l y  beyond t h a t   a c h i e v a b l e  by present-day L S I  microcomputers, 

a l though i t  is  expec ted   t ha t  by t h e  mid-1980s t h i s   s p e e d  will be  achiev- 

a b l e  by s u c h   u n i t s .  

E. Power  Supply  System 

We are concerned i n   t h i s   s e c t i o n   w i t h   r e l i a b i l i t y   a s p e c t s  of   the 

power supp ly   sys t em  fo r  SIFT. Two i s s u e s  are i m p o r t a n t ,   p r o t e c t i o n  

a g a i n s t  damage propagat ion  and  maintaining  adequate  power s u p p l y   t o  SIFT 

i n   t h e   e v e n t  o f   i nd iv idua l  power s o u r c e   f a i l u r e s .  

The pr imary power sources  used  on modern c i v i l i a n   c o m m e r c i a l   a i r c r a f t  

va ry   w i th   each  a i rcraf t  type.   For  an  example,   the DC-10 and t h e  747 both  

u s e  a three-phase 400 c y c l e   a l t e r n a t o r   d r i v e n  by each j e t  engine.  The 

DC-10 h a s   t h r e e  j e t  e n g i n e s   a n d   t h r e e   a l t e r n a t o r s   w h i l e   t h e  747 h a s   f o u r .  

I n   b o t h   a i r c r a f t   t h e  power genera ted  by t h e   a l t e r n a t o r s  i s  r e c t i f i e d ,  

131 



r egu la t ed ,   and   f ed   t o  a common 28-volt  bus,  which i n  t u r n   s u p p l i e s   c u r r e n t  

t o   t h e   2 8 - v o l t   b a t t e r y   b a n k .  

The a l t e r n a t o r s  are used i n  a f e e d b a c k   s y s t e m   i n   w h i c h   t h e   r e g u l a t o r s  

mon i to r   t he   i npu t   vo l t age  (and cur ren t )   and   feedback  a p r o p o r t i o n a t e  

amount t o   t h e   a l t e r n a t o r   f i e l d   t h u s   c o n t r o l l i n g   t h e   a l t e r n a t o r   o u t p u t   v o l t -  

age.   Figure  VI-13  depicts   such a s i n g l e   a l t e r n a t o r   s y s t e m .   F i g u r e  VI-14 

shows t h e  power sources  on a DC-10 a i r c ra f t   w i th   t h ree   p r imary   and  two 

a u x i l i a r y   a l t e r n a t o r s .  One o f   t h e s e   a u x i l i a r y   u n i t s  i s  d r i v e n  by  a t u r -  

b ine   fo r   u se  when t h e   a i r c r a f t  i s  on  the  ground  and  the  main  engines   are  

a t  i d l e   o r  when e n g i n e s   a r e   b e i n g   u s e d   t o   t a x i   t h e   a i r c r a f t ,  as the   vary-  

ing  engine  speeds  used  during  taxi   operat ion  would  cause  unacceptable  

v o l t a g e   f l u c t u a t i o n s .  The   s econd   aux i l i a ry   un i t  on t h i s   a i r c r a f t  is 

d r i v e n  by the   f low  f rom  an   ex terna l  a i r  scoop when t h e   a i r c r a f t  is i n  

f l i g h t .  It is  s t r i c t l y   f o r  emergency   pu rposes   i n   even t   o f   f a i lu re   o f   t he  

m a i n   a l t e r n a t o r s .  

The 747 a i r c r a f t   s y s t e m  is  similar but   has   four   main   engine   d r iven  

a l t e r n a t o r s   a n d  two a u x i l i a r y   g a s   t u r b i n e   d r i v e n   a l t e r n a t o r s .  Each  of 

t h e s e   a i r c r a f t   p r i m a r y  power systems i s  a good example  of p a r a l l e l   r e d u n -  

dancy.   Under   emergency  operat ion,   any  one  a l ternator   feeding  the  bat tery 

bank   cou ld   supp ly   adequa te   cha rg ing   cu r ren t   fo r  a long  enough  per iod  for  

s a f e   c o m p l e t i o n   o f   t h e   f l i g h t .  

Primary power sys t ems   o f   t h i s   na tu re   p rov ide  a para l le l  redundant 

sys t em  in   wh ich   t he   ma in   a l t e rna to r s   a r e   a l l  on l i n e  a n d   c o n t r i b u t i n g   t o  

the  common load .  Up t o   t h e  l i m i t  o f   the   s torage   capac i ty  o f  t h e   b a t t e r y  

bank,   the  excess  power i s  be ing   s to red .  The r e g u l a t o r s   a r e   t y p i c a l l y  

a d j u s t e d  so  t h a t   e a c h   a l t e r n a t o r  is con t r ibu t ing   an   approx ima te ly   equa l  

amount t o   t h e  common load ,  When the   ba t t e ry   pack  is f u l l y   c h a r g e d ,   t h e  

r e g u l a t o r s   f u r n i s h  less f i e l d  and t h e   a l t e r n a t o r  i s  a l l o w e d   t o   i d l e .  

F a i l u r e  of a n   a l t e r n a t o r   c a n   b e   c a u s e d   e i t h e r  by f a i l u r e   o f   t h e  

d r iv ing   eng ine   o r  by a f a i l u r e  o f   t h e   a l t e r n a t o r   i t s e l f .   I n   e i t h e r  case 

the   r emova l   o f   t ha t   a l t e rna to r   f rom  the   sys t em is a f f e c t e d  by t h e  series 

combination  of (1) t h e   r e c t i f i e r   d i o d e   a n d   ( 2 )  by t h e   r e g u l a t o r   b e f o r e  

manua l   ( swi t ch ing )   i n t e rven t ion  is a f f e c t e d .  The r e m a i n i n g   a l t e r n a t o r s  

132 



COMPARING 
AMPLIFIER 

RECTIFIERS I I 
DIODE 1 

ALTERNATOR 
FIELD 

1 
- 3-PHASE 400-CYCLE - 
I) ALTERNATOR 

FIGURE VI-13 TYPICAL  AIRCRAFT ALTERNATOR/REGULATOR SYSTEM 



I 

SWITCHING 
I 

RECTIFIERS 
AUXILIARY 

ALTERNATOR 

a 
T 

EMERGENCY 
ALTERNATOR 

1. I 

MAIN JET 
ENGINE-DRIVEN 

ALTERNATORS ( 1  

I 

MAIN  BATTERY BUS - 
TO  LOAD  SWITCHING  PANEL - 

1 
MAIN - BATTERIES 

- 

i 

FIGURE VI-14 SCHEMATIC OF DC-10 POWER SYSTEM 

134 



a u t o m a t i c a l l y   p i c k  up the   ex t r a   l oad   wh ich  w a s  b e i n g   c a r r i e d  by the  

f a i l e d   u n i t   i n   a d d i t i o n   t o   t h e i r  own previous   load .  

F a i l u r e   o f   a n y   s i n g l e   d i o d e  by o p e n   c i r c u i t   c o n d i t i o n  w i l l  not   nec-  

e s s a r i l y   c a u s e  a s y s t e m   f a i l u r e .  The r i p p l e  w i l l  i nc rease   and   t he  rect i -  

f i e r   o u t p u t   v o l t a g e  will d r o p ,   r e s u l t i n g   i n   i n c r e a s e d   f i e l d   e x c i t a t i o n  

r e q u i r e m e n t   t o   t h e   a l t e r n a t o r .  The u n i t   f a i l u r e s  are normal ly   de tec ted  

a n d   c o r r e c t e d   b y   t h e   f l i g h t   e n g i n e e r .  A shor t ed   d iode  would  be  more 

ser ious   and   could   cause  a f a i l u r e   i n   t h e   u n i t   e i t h e r  by burn   ou t  of t h e  

phase   winding   or  damage t o   t h e   r e g u l a t o r   c i r c u i t .  (A s imple   fuse   could  

b e   i n s e r t e d   i n   e a c h   p h a s e   l e g   t o   e n s u r e   a n   o p e n   c i r c u i t   i n s t e a d  of a s h o r t  

and  thus  prevent  component damage.) 

One sugges t ed   p ro t ec t ion   dev ice  i s  an   ove rvo l t age   p ro t ec t ion   dev ice ,  

Figure  VI-15.   This   device would  be loca t ed  a t  the   l oad   i npu t .  The 

c i r c u i t   h a s   t h e   a b i l i t y  of f a s t   a c t i o n   i n   t h e   e v e n t   t h a t  a r e g u l a t o r  

f a i l u r e   r e s u l t e d   i n   a n   o v e r v o l t a g e   f r o m   t h e   a s s o c i a t e d   a l t e r n a t o r .   I n  

t h a t  case t h e   d e v i c e  would tu rn   on   t he  SCR thus   shoo t ing   ou t   t he   fu se  

and  removing  the  offending  system. The r e m a i n i n g   a l t e r n a t o r s  would be  

una f fec t ed   excep t   t ha t   t hey  would b e   r e q u i r e d   t o   p i c k   u p   t h e   a d d i t i o n a l  

load .  

The a v a i l a b i l i t y  o f   t he   f i ve   gene ra t ing   sys t ems   p lus   t he   ma in   ba t t e ry  

bank  provide a paral le l   redundant   system  which  has   proved  capable   of  

f a i l u r e - f r e e   o p e r a t i o n   f o r   t h e  time pe r iods   no rma l ly   r equ i r ed   i n  

commerc ia l   f l i gh t s .  The a t t e n t i o n  of a f l i g h t   e n g i n e e r   t o   m o n i t o r   t h e  

system  and make t h e   n e c e s s a r y   s w i t c h i n g   d e c i s i o n s . i s   m a n d a t o r y   i n   p r e s e n t  

f a i l u r e   s i t u a t i o n s .  

Consider a f a u l t   t o l e r a n t   c o m p u t e r  power s y s t e m   i n   w h i c h   t h e   f l i g h t  

eng inee r   does   no t   p l ay   such  a p a r t .  The u s e  of m u l t i p l e   p r o c e s s o r s  would 

a l low  us   t o   t ake   advan tage   o f   t he   r edundancy   o f   bo th   t he  power sou rces  

and the   p rocesso r s .   F igu re  VI-16 shows such a s y s t e m   a p p l i e d   t o   t h e  

f i v e  power s o u r c e s   a v a i l a b l e  on a DC-10 a i r c r a f t ,   f o r   t h e   c a s e  of a SIFT 

sys tem  wi th  a i r  processors .   F igure  V I - 1 7  i s  a s i m p l i f i c a t i o n   i n   w h i c h  

t h e  X s  i n d i c a t e   t h a t  a connect ion i s  made, i . e . ,  t h a t   t h e   p r o c e s s o r  i s  

o b t a i n i n g  power f rom  the   assoc ia ted   source .  
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Assume a failure  of  main  alternator No. 1 in  this  system.  Proces- 

sors A ,  C, D, and F would  each  lose  one of their  three  power  sources. 
Two  sources  would  remain  to  sustain  operation.  The  case  is  similar  for 

loss  of  alternators 2 or 3 .  In each  instance,  two  power  sources  remain, 
In  multiple  failure  cases,  four  processors  are  obtaining  power  from  the 

essential  battery  bus. 

We  conclude  that  a  reliable  power  supply  for  the SIFT system  can  be 
designed  by  using  two  techniques: 

0 Incorporate  protective  devices  in  the  local  power  system 
controllers so as to  provide  protection  against  damage 
propagation. 

0 Use  an  interconnection  scheme  between  power  sources  and 
processor so that  failure  of  up  to  two  power  sources  does 
not  effect  the  SIFT  system  and  failure  of  three  power 
sources  causes  failure  of at most  one  processor/memory 
module. 
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V I 1  RELIABILITY ANALYSES 

A. Summary 

Several   models   of  SIFT system are examined t o   d e t e r m i n e   f a i l u r e  

p r o b a b i l i t i e s   a n d   f a i l u r e  rates under   c i rcumstances  where random  permanent 

f a u l t s   o r   t r a n s i e n t   e r r o r s   i n t e r f e r e   w i t h  normal  operation.  The  system 

i s  modeled  by a t ime-homogeneous  Markov  process,   and  analytical   techniques 

are deve loped   fo r   conven ien t   so lu t ion   o f   t he   a s soc ia t ed  s ta te  graphs.  

P r inc ipa l   pa rame te r s   o f   t he   ana lys i s  are t h e  numbers  of  working  processor/ 

memory and   bus   un i t s   remain ing  a t  a p a e t i c u l a r  time, t h e i r   r e s p e c t i v e  

f a i l u r e  ra tes  and t h e   l e n g t h   o f  t i m e  involved   in   reconf igur ing   the   sys tem 

on   de t ec t ion   o f   e r ro r .   Each  model i s  implemented as a FORTRAN program  from 

w h i c h   t a b u l a t e d   v a l u e s   o f   f a i l u r e   p r o b a b i l i t i e s  may b e   c a l c u l a t e d   f o r  any 

d e s i r e d   v a l u e s   o f   r e l e v a n t  model parameters. The  most s i g n i f i c a n t  con- 

c l u s i o n s   o f   t h e   s t u d y  are 

a Assuming t y p i c a l   f a i l u r e  ra tes  f o r   e l e c t r o n i c   c o m q n e n t s  
and   an   accep tab le   t o t a l   sys t em  f a i lu re  r a t e  o f  10 / h r  
( a s  recommended  by t h e  FAA), a SIFT system composed of  
f i v e   o r  more processors   and   four   o r  more busses   should 
adequate ly  meet t h e   r e l i a b i l i t y   r e q u i r e m e n t s .  

a System  survival  i s  l i m i t e d  by t h e  "weaker" c o l l e c t i o n  
o f   t h e  two t y p e s   o f   u n i t s   ( p r o c e s s o r s   o r   b u s s e s ) .   T h a t  
is, i f   t h e r e  are too  few p r o c e s s o r s   a v a i l a b l e  a t  a given 
time, i t  does   no t   improve   sys t em  r e l i ab i l i t y   t o   have  a 
l a r g e  number o f   ava i l ab le   busses ,   and   conve r se ly .  

a For   e i the r   pe rmanen t   o r  randum t r a n s i e n t   f a u l t s ,   s y s t e m  
performance i s  no t   s ign i f i can t ly   deg raded   by   r econf igu -  
r a t i o n  times an   order   o f   magni tude   g rea te r   than   the  ex- 
p e c t e d   v a l u e   o f  a few mi l l i s econds .  

0 U n c o r r e l a t e d   t r a n s i e n t   e r r o r s   s i g n i f i c a n t l y   d e c r e a s e  
s y s t e m   r e l i a b i l i t y   o n l y   i f   t h e i r  ra te  of   occur rence  i s  
comparable   wi th   tha t  o f  permanent   fa i lure .  
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B. Mot iva t ion  

According  to   an  old  anecdote ,   one e l e c t r i c a l  instrument   manufacturer  

dur ing   the   mid-1930s   used   to  t es t  h i s   p r o d u c t s   f o r   r e l i a b i l i t y  by  kicking 

them down a f l i g h t   o f  s tairs.  Apparent ly   the   p rocedure  was e f f e c t i v e ,  

s ince   h i s   equ ipmen t   en joyed   t he   r epu ta t ion   o f  extreme ruggedness.  The 

s t o r y   i l l u s t r a t e s   a n   e a r l y  a n d   n o t   v e r y   s c i e n t i f i c   a p p l i c a t i o n   o f   d e s t r u c -  

t i ve  t e s t i n g   t o  reveal weaknesses i n   d e s i g n   c o n c e p t s .   D e s t r u c t i v e   t e s t i n g  

i s  s t i l l  widely  used  and i s  p a r t i c u l a r l y   e f f e c t i v e   i n   t h e  areas of  mechani- 

ca l  and s t r u c t u r a l   e n g i n e e r i n g   w h e r e   f a i l u r e  ra tes  may b e   a c c e l e r a t e d   i n  

well understood ways  by  applying excessive loads,  stresses, hea t ,  e t c .  

Another way o f   o b t a i n i n g   i n f o r m a t i o n   a b o u t   f a i l u r e  ra tes  i s  by l i f e  

t e s t i n g  many similar un i t s   unde r   no rma l   ope ra t ing   cond i t ions .   Th i s  

p o l i c y  i s  the   one  more usually  employed when i t  i s  u n c l e a r  how t o  accel-  

e ra te  component f a i l u r e   i n  a predictable   manner .  

F o r   t h e   e s t i m a t i o n   o f   t h e   r e l i a b i l i t y   o f  SIFT, ne i the r   o f   t he   above  

m e t h o d s   o f   t e s t i n g   c a n   b e   u s e f u l l y   a p p l i e d   t o   t h e   t o t a l   s y s t e m   f o r  two 

r e a s o n s .   F i r s t ,  i t  i s  not  clear how t o  "abuse"   the   sys tem  in   such  a way 

t h a t  a p r e d i c t a b l y   i n c r e a s e d  ra te  o f   f a i l u r e  would  occur.  Second,  the 

d e s i g n - g o a l   f a i l u r e  r a t e  f o r   t h e   t o t a l   s y s t e m  i s  so low (-10-9/hour) t h a t  

a c t u a l   l i f e   t e s t i n g  would  be  prohibi t ively  s low  and  expensive,  

A s  an  a l ternat ive  approach,   one  can  decompose  the SIFT sys t em  in to  

p a r t s   e a c h  o f  which  has known r e l i a b i l i t y   p r o p e r t i e s   o r  i s  s u s c e p t i b l e  

t o  separate r e l i a b i l i t y   a n a l y s i s .  

Then the in t e rac t ion   be tween   t hese  parts c a n   b e   a c c u r a t e l y   d e s c r i b e d ,  

one  can make conf iden t   p red ic t ions   abou t   t he   behav io r   o f   t he   sys t em as a 

whole.   Except   for  a c h o i c e   o f   a n a l y t i c   t e c h n i q u e s ,   t h i s   p a r t i t i o n i n g  

scheme i s  the   e s sence  o f  a r e l i a b i l i t y  model,   and  our  conclusions w i l l  

depend  on  the  accuracy  of  our  knowledge  about  the  behavior  of i t s  compo- 

n e n t   p a r t s .  What w e  hope t o   l e a r n   f r o m   t h e   r e l i a b i l i t y  model w i l l  be  

o u t l i n e d   i n   t h e   f o l l o w i n g   s e c t i o n .  
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C. The  Reliability  Model 

We deal  with  a  physical  system (a collection  of  hardware  and  pro- 
grams)  and  a  complicated  set  of  possible  "events."  For  convenience  one 

can  distinguish  between 

Normal  events; e.g.,  initiation  and  termination of scheduled 
programs,  changes  in  flight  phase,  pilot  intervention,  etc. 

Abnormal  events; e.g.,  hardware  failure or transient  errors. 

The  partitioning of the  system  could  be  carried  out  to  any  level of 

detail,  but  for  purposes  of  the  following  analysis we distinguish  proces- 

sors  (with  their  associated  memories)  and  individual  communication  busses 

as  component  parts  subject  to  separate  reliability  analysis.  For  these 

system-hardware  units  good  reliability  estimates  exist,  based  on  total 

count  of  active  devices  and  much  experience  with  similar  electronic 
equipment.  For  example  the  failure-rate of a  typical  processor  in  the 
SIFT  system  is  estimated  with  some  confidence  as  about 10 per  hour, 

while  failure of  a  bus-unit  is  estimated  to  be 10 per  hours  on  the  basis 

of  a  component-count  of  approximately 10% that  of  a  processor. 

-4  

-5 

As  part of the  SIFT  system,  programs  may  also  be  partitioned  into 
subsets  for  reliability  analysis.  The  main  interaction  between  programs 
and  hardware  from a reliability  standpoint  concerns  the  duration  and 

criticality of the  programs.  The  role of  program  criticality  is  dis- 

cussed  elsewhere  in  this  report,  however,  it  is  clear  that  short,  rapidly 

executed  programs  have  less  likelihood of being  disturbed  by  transients 

or  onset of hardware  failure. In particular,  reliability  estimates  turn 

out  to  be  sensitive  to  the  execution  time of  a  program  necessary  to re- 

covery or reconfiguration  of  the  system. 

We  intend  to  model  the  functioning of the  SIFT  system  by  a  finite 

set  of  distinct  "states"  with  transitions  between  states  occuring  in 

response  to  particular  events.  A  state of the  system  can  represent  any 
condition  that  seems  important  to  consider  in  the  reliability  analysis. 

For  example  a  specific  state  of  the  model  may  represent  the  combined 
conditions  that  one  processor  has  failed  and  that  a  reconfiguration  pro- 
gram  is  currently  being  executed on  a  different  processor.  Of  the  events 
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t ha t  cause   t r ans i t i ons   be tween  s ta tes  of  the model (pa r t i cu la r ly   abnorma l  

e v e n t s ) ,  many w i l l  occur  a t  random times. We want t o   a n a l y z e  the model t o  

d e t e r m i n e   t h e   p r o b a b i l i t i e s   t h a t   t h e   s y s t e m  w i l l  be   found   i n  a des igna ted  

s t a t e  a t  o r   b e f o r e   o r  a f t e r  a p a r t i c u l a r  time. I n   p a r t i c u l a r  we are i n -  

t e r e s t e d   i n   t h e   p r o b a b i l i t y   t h a t   t h e   s y s t e m  w i l l  have   reached   the  FAIL 

s t a t e  be fo re   t he   mi s s ion  time 2 has   e l apsed .  

I n   a d d i t i o n   t o   t h e  estimate o f - s y s t e m - f a i l u r e   p r o b a b i l i t y   t h e   a b o v e  

model y i e l d s  several o t h e r   u s e f u l   t y p e s   o f   i n f o r m a t i o n .  

The p r o b a b i l i t y   o f   r e a c h i n g   c o n d i t i o n s   ( s t a t e s )   t h a t  would 
r e q u i r e   s p e c i a l   a c t i o n s   t o   b e   t a k e n .   F o r   e x a m p l e   t h e  abandonment 
of  some n o n c r i t i c a l   t a s k s   o r  some fo rm  o f   p i lo t   i n t e rven t ion .  

D i f f e r e n t i a l   f a i l u r e  r a t e s .  That i s ,  t h e   f a i l u r e  ra te  o f   t he  
s y s t e m   a f t e r  i t  has  been i n  o p e r a t i o n  i n  say  n hours .   This  
i s  i m p o r t a n t   i n   e s t a b l i s h i n g  a pol icy  for   equipment   maintenance 
and  replacement.  

0 Mean t ime  be tween  fa i lures  (MTBF) f o r   t h e   s y s t e m   o r   p a r t s  of  
i t .  T h i s  i s  i n f o r m a t i v e   i f   u s e s  are contemplated  where no 
maintenance i s  f eas ib l e ,   e .g . ,   an   ex tended   mi s s ion   i n   space .  

D. Analy t ica l   Techniques  

The  most g e n e r a l   f o r m u l a t i o n   o f   t h e   r e l i a b i l i t y  model t h a t  w e  u se  

c o n s i s t s  o f  a d i r ec t ed   g raph  whose ver t ices  cor respond  to  s ta tes  o f   t he  

s y s t e m ,   w h i l e   e d g e s   c o r r e s p o n d   t o   p o s s i b l e   t r a n s i t i o n s .   I n   t h i s   c a s e  

e a c h   t r a n s i t l o n   h a s   a n   a s s o c i a t e d  r a t e  t h a t  may be time dependent  and 

a l s o   h i s t o r y   d e p e n d e n t .   T h a t  is, t h e   t r a n s i t i o n  r a t e  o f  a p a r t i c u l a r  

edge  might  depend  upon  the  manner i n  which   the   a t tached  state-vertex 

was reached. To analyze  such a s y s t e m   r e q u i r e s   t h e   s o l u t i o n   o f  a 

s y s t e m   o f   n o n l i n e a r   d i f f e r e n t i a l   e q u a t i o n s   f o r   w h i c h   r o u t i n e   a n a l y t i c a l  

methods do no t   ex i s t .   Consequen t ly ,   w i th   t h i s   t ype   o f  model, r ecour se  

would  have t o  be made to   numer ica l   in tegra t ion   programs,   and   to   the  

computation  of many p a r t i c u l a r  cases t o   d e t e r m i n e  how so lu t ions   behave  

w i t h   r e s p e c t   t o   d i f f e r e n t   p a r a m e t e r s   o f   t h e  model. 

F o r t u n a t e l y ,  w e  w i l l  no t   need   such   comple t e   gene ra l i t y  in  d e a l i n g  

w i t h   t h e  SIFT r e l i a b i l i t y   m o d e l s .  One s i m p l i f i c a t i o n  i s  t h a t  we w i l l  

a lways   be   ab le   to   choose   the  s t a t e s  of  the model i n  such a way tha t  the 

probabi l i ty   o f   occupying  a s ta te  i s  independent   o f  how t h e  s t a t e  was 
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reached.  For  example,  if  we  designate  one  state  of  the  model  to  repre- 

sent the condition  that  two  processors  have  failed,  it  should  be  imma- 
terial  which  one  failed  first  (history  independence).  Another  simplifi- 

cation  occurs  because  most of the  transitions  of  our  models  are  in  re- 

sponse  to  "abnormal"  events of stochastic  nature,  like  component  failure, 

whose  failure  rates  are  constant  (time  independence).  Note  that  this 

assumption is approximately  true  for  semiconductor  devices  but  would  not 

be  true  for  say  the  clutch  in  an  automobile  which  wears  out  with  con- 

tinued  use. 

With  both  of  the  foregoing  simplifications,  our  reliability  model 

falls  into  the  category  of  a  finite-state,  continuous-time,  simple 

Markov  process.  For  such  Markov  processes,  there  are  elegant  and 

powerful  methods  of  obtaining  complete  closed-form  solutions.  When 
transition  rates  are  time  dependent  (but  not  history  dependent), as  will 

be  the  case  if  a  transition  depends  on  say  the  fixed  execution  time of  a 

program,  then  the  model  corresponds  to  a  semi-Markov  process. 

Here  a  variety of solution  techniques  have  been  suggested  in  the 
literature.  For  our  purpose  it  seems  very  desirable  to  retain  the 

simplicity of the  pure  Markov  model  and  to  have  a  uniform  analytic 
procedure  that  can  be  applied  in  all  cases.  For  this  reason,  the 

method  we  favor  is  to  approximate  the  behavior  of  time-dependent  state- 
transitions  with  a  collection  of  redundant  states  having  constant 

transition-rates,  and  whose  collective  behavior  simulates  the  desired 
time  dependence.  This  artifice  has  been  called  "the  method of stages" 

and  a  discussion  of  its  use  may  be  found  in  Reference 1. For  those 

unfamiliar  with  Markov  processes  a  short  description  with  applications 

to  the  modeling  problem  is  presented in the  appendix  to  this  report. 
The  appendix  also  illustrates  the  method  of  stages  as  applied  to  the 

modeling of  a  fixed-duration  event  and  a  transient  event. 

We  wish  to  find  the  most  convenient  and  potentially  useful  way of 

obtaining  the  desired  insight  and  the  actual  numerical  results  from  a 
given  SIFT  model.  The  Markov-process  description  of  the  model  yields  a 

system of linear,  first-order,  constant-coefficient  differential  equations 

that  completely  determine  all of the  state-transition  probabilities  as  a 

143 



func t ion   o f  time. I n   t h e   u s u a l   f o r m u l a t i o n ,   t h e s e   r e l a t i o n s  are c a l l e d  

t h e  Chapman-Kolmogorov d i f f e r e n t i a l   e q u a t i o n s .   S i n c e  w e  are more i n -  

t e r e s t e d   i n   t h e   p o s s i b i l i t y   o f   o c c u p a t i o n   o f   p a r t i c u l a r  states o f   t he  

model, w e  w i l l  cons ider  a s l i g h t l y   d i f f e r e n t  set  o f   d i f f e r e n t i a l   e q u a -  

t i o n s   t h a t   r e l a t e   o c c u p a n c y   p r o b a b i l i t i e s   r a t h e r   t h a n   t r a n s i t i o n   p r o b a -  

b i l i t i e s .  The system  of   equat ions i s  

where P q ( t )  i s  the   p robabi l i ty   o f   occupying  s t a t e  q a t  time t, and a 

b .   a r e   t h e   ( c o n s t a n t )   t r a n s i t i o n - r a t e s   a s s o c i a t e d   w i t h   e d g e s   e n t e r i n g  

s t a t e  q from s t a t e  i and  leav ing   s tage  q t o  s ta te  j ,  r e s p e c t i v e l y   ( f o r  

a d e r i v a t i o n   o f   t h e s e   r e l a t i o n s  see the   appendix) .  

i’ 

3 

A s  i s  well known, the   so lu t ion   o f  a sys tem  of   equa t ions   l ike   the  

above s e t   c a n  be c a r r i e d   o u t  by a purely  mechanical  process.   Given  an 

i n i t i a l   v e c t o r  o f   o c c u p a t i o n   p r o b a b i l i t i e s ,   s a y  P = 1 and P = 0 f o r  

a l l   o t h e r  s ta tes ,  then  each P ( t )   c an   be   expres sed  as the  sum 
1 q 

4 

where n i s  the  number o f   s t a t e s   i n   t h e  model, A i  a r e   numer i ca l   coe f f i -  

c i e n t s   t h a t   d e p e n d   o n l y  on t h e   i n i t i a l   p r o b a b i l i t i e s ,   P l ( 0 )  ... Pn(0) ,  

and A i  are the   e igenva lues   o f   t he   ma t r ix   o f   coe f f i c i en t s   o f  Pi 

assoc ia ted   wi th   the   sys tem  of   equa t ions   g iven  by (1). T r i v i a l   c o m p l i -  

ca t ions   occu r  i f  a l l  o f   t h e   e i g e n v a l u e s   a r e   n o t   d i s t i n c t ,   i n   w h i c h   c a s e  

terms  of  the  form 

where k i s  the   mu l t ip l i c i ty   o f   an   e igenva lue ,   need   t o  be  included. 
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In principle  one  can  rely on standard  routines  for  finding  eigen 

values  and  eigen  vectors of a  finite  matrix  to  solve  any  particular re- 

liability  model.  One  important  problem,  however,  is  that  expressions 
like  that of equation (2) can  lose  almost  all  of  their  computational 

accuracy  when  very  low  failure-rates  are  involved.  To  illustrate  this 

point  consider  the  very  over-simplified  model of  a SIFT  system  shown  in 
Figure  VII-1. 

FIGURE VII-1 A SIMPLIFIED  SIFT  MODEL 

Here  we  depict  a  system  that  begins  in  state  3  with  three  active  proces- 

sors  whose  individual  failure-rates  are  (per hour). This  model  shows 
a  rate  of "decay" 3r, into  the  situation  where  two  processors  survive, 

followed  by a  rate  of  failure  into  a  state  where  one  processor  is  left, 

followed  by a  rate of failure  into  a  failed  state F. Suppose  we  are 

interested  in  the  probability  of  being  in  state  1,  with  one  processor 

still  surviving.  Using  standard  numeric  techniques  as  described  above 

we  could  obtain  the  following  expression  for  this  probability, 

P (t) = 3e-lt - 6e + 3e-3rt -2rt 
1 

where  the  above  coefficients  might  not  actually  be  exact  due  to  round-off 

errors.  Now  if  we  attempt  to  evaluate  this  expression  for  small rt the 
answer  may  be  almost  meaningless  unless  high-precisions  arithmetic is 

employed  throughout  all of the  calculations.  The  reason  is  that  each of 
the  above  exponential  terms  has  a  value  nearly  equal  to  unity. The 
value of P (t) for  small rt is  actually  close  to 3(rt)2, but  this  fact 

might  not  be  evident  from  an  imprecise  evaluation of (3), particularly 

for  very  small  values of rt  where  much of the  significant  behavior of 

the  SIFT  system  occurs. 

1 
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A second  problem  involved  in  using  automatic  numeric  solution  tech- 

niques  of  the  eigenvalue-eigenvector  type  is  that  the  representation  of 
a  solution  in a form  involving  computed  numeric  coefficients  conceals  the 

way that  different  parameters of the  model  interact.  Thus,  it  is  more  dif- 

ficult  to  determine  how  particular  parameters  are  affecting  the  behavior 

of the  model  than  it  would  be  if  explicit  parameterized  expressions  for 

the  state  occupation  probabilities  were  available. 

For  these  (and  other)  reasons  we  prefer  to  use  Laplace  Transform 

techniques  in  dealing  with  the  system of  equations (1). Using  this 

approach  one  can  reduce  the  solution  of  the  system  to  algebraic  mani- 

pulation  of  polynominals  in  a  transform  variable 5, that  is  related  to 

the  probabilities Pi(t)  by  the  transformation 
/-a 

Pi(t)e dt 
.L -st 

When  the  transformation  is  applied  to (l), one  obtains  a  set  of  linear 

equations of the  form 
n n 

or 
n 

where B stands  for  the sum of the  rates b of  edges  emanating  from  state 

q. The  solutions  of  this  system  are  simple  ratios of polynomials  in g 
which  can  be inverted  by  standard  methods  to  obtain  the  corresponding 

time-dependent  solutions  for  each of the  state-occupancy  probabilities 

i 

Pi(t> ' 

Using  this  method on the  diagram  of  Figure VII-1 one  obtains 

PA1 ( s )  = 6r / (s+3r)  (s+2r)  (s+r) 2 
( 7 )  

from  which  one  can  immediately  deduce  the  exact  solution  already  given 

in (3). However,  the  expression (7) can  also  be  seen  by  inspection  to 
have  approximate  value  6r2/s3  for  sufficiently  large s .  So, from 
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a  knowledge  that  tn  transforms  to n!/s one  can  also  conclude  by 

inspection  that P (t) behaves  like 3(rt)2 as t-Q. Several  simple but 

useful  relations  of  this  type  are  mentioned  in  the  appendix. 

n+l 

1 

E. Models  and  Programs 

In this  section  we  will  discuss  four  reliability  models of the  SIFT 
system  and  describe  computational  programs  based  on  these  models. A 

primary  assumption  is  that  the  principal  failure  modes of  a  model  corre- 
spond  to  transient or  permanent,faults  occurring  either  in  a  processor/ 

memory  unit or in  a  communication  bus  unit.  The  modeling so far  has  not 
considered  a  further  subdivision of the  system  components,  since  strate- 

gies  for  making  use  of  "partially  failed"  devices  have  not  been  considered 

in  any  detail.  We  also  assume  that  there  is  no  difference  in  criticality 
to  the  system  in  the  failure  of  any  particular  processor  or  bus.  This 

assumption  may  not  be  strictly  true  since  a  processor  that  is  executing 
an executive  program  may  be  more  critical  to  survival  than  one  employed 

in some  inessential  task.  By  choosing  to  ignore  the  latter  possibility 

we  obtain  results  that  are on the  pessimistic or "safe"  side of the  actual 
reliability  situation. 

The  main  parameters of the  models  considered  here  are  the  number  of 

processor/memory  units  and  number  of  buses  available  at  the  start of  a 

mission,  their  respective  permanent-failure  rates,  and  mission  time.  Two 

other  parameters  of  importance  are  the  expected  time  to  reconfigure  the 

system  after  detection of  a  fault  and  a  measure of the  expected  degree of 

success  in  diagnosing  a  transient  fault  and  restoring  the  system  to  oper- 
ation  without loss of  equipment.  For  each  model  we  assume  that  a  failed 

state  has  been  reached  if  less  than  two  processors  or  buses  survive. 

This  would  correspond  to  a  situation  in  which  voting  among  remaining  hard- 
ware  units  would  no  longer  be  meaningful. 

The  models  listed  below  were  selected  with  the  intent of discovering 
the  effects of differing  failure  modes  separately  and  in  combination. 

Model I: Permanent  faults,  instantaneous  reconfiguration. 

Model 11: Permanent  faults,  finite  reconfiguration  time. 
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Model 111: T r a n s i e n t  f a u l t s  a lone .  

Model I V :  T rans i en t   and   pe rmanen t   f au l t s   w i th   f i n i t e  
r e c o n f i g u r a t i o n  t i m e .  

For   each  of   the  above  models   the  corresponding  Markov-process  s ta te -  

graph was analyzed  using  Laplace  Transofmr  methods  to   obtain  c losed  form 

s o l u t i o n s   ( o r   a p p r o x i m a t e   s o l u t i o n s )   f o r   t h e   p r o b a b i l i t y   o f   r e a c h i n g   t h e  

f a i l e d  s t a t e  as a f u n c t i o n   o f   m i s s i o n  time. T h e s e   a n a l y t i c a l   e x p r e s s i o n s  

are  used  by several small i n t e r a c t i v e  FORTRAN p r o g r a m s   t o   p r i n t   t a b l e s   o f  

f a i l u r e   p r o b a b i l i t i e s   f o r   a n y   d e s i r e d   v a l u e s   o f   t h e  model parameters. A 

s a m p l e   o u t p u t   g i v i n g   t h e   f a i l u r e   p r o b a b i l i t i e s   f o r  a SIFT system composed 

from 10 or   fewer   p rocessors   and  7 o r   fewer   buses   under  Model I assumptions 

i s  shown i n   T a b l e  V I I - 1 .  Here t h e  sample  o u t p u t  i s  parameter ized   wi th  

f a i l u r e  ra tes  o f  10 /hr  and 10 / h r   f o r   p r o c e s s o r   a n d   b u s   f a i l u r e  ra tes  

r e spec t ive ly ,   wh i l e   t he   mi s s ion  t i m e  was t aken  as 10 hour s .   These   f i gu res  

are i n t e r a c t i v e l y   s u p p l i e d  by the  program  user .  

-4 -5 

Cons is tency   be tween  d i f fe ren t   models  may be  checked  by  running  their  

cor responding   programs  wi th   parameter   va lues   tha t   cause   one  case to   de -  

g e n e r a t e   i n t o   a n o t h e r .   F o r  example Model 11, f o r   r e c o n f i g u r a t i o n  

time = 0, g i v e s   t h e  same r e s u l t s  as Model I, and  Model I V  wi th  100% 

p r o b a b i l i t y   o f   t r a n s i e n t   r e c o v e r y   g i v e s   t h e  same r e u l t s  as Model 11. 

For  convenience,  we have   a l so   mod i f i ed   t he  Model I1 and  Model I V  

programs t o   p r o v i d e   d i f f e r e n t i a l   p r o b a b i l i t i e s   o f   f a i l u r e .   T h a t  is, t h e  

p r o b a b i l i t y   o f   f a i l u r e   d u r i n g   t h e   n e x t   o n e - h o u r   p e r i o d   o f  a s y s t e m   t h a t  

s t a r t e d   w i t h  n processors   and 2 buses,  as a func t ion   o f   mi s s ion  time. 

A t a b l e   o f   f a i l u r e  r a t e s  f o r   t h e   p a r t i c u l a r   r e c o n f i g u r a t i o n  t i m e  of  one 

second as computed  by  Model I I A  i s  shown i n   T a b l e  V I I - 2 .  This   informa- 

t i o n  i s  impor t an t   i f   one   mus t  make po l i cy   dec i s ions   conce rn ing  when re- 

placement o r   m a i n t e n a n c e   o f   d e f e c t i v e   u n i t s   s h o u l d   o c c u r .   F o r  example, 

Table  V I I - 2  shows t h a t   w i t h   t h e   a s s u m e d   i n i t i a l   c o n f i g u r a t i o n  several 

10 -hour   mi s s ions   cou ld   s a fe ly   be   unde r t aken   w i thou t   be tween- f l igh t  

m a i n t e n a n c e .   A c c o r d i n g   t o   t h e   t a b l e ,   a f t e r  60 hour s   o f   ope ra t ion ,   t he  

e x p e c t e d   h o u r l y   f a i l u r e  ra te  i s  s t i l l  on ly  5 x LO-'', which i s  w i t h i n  

the   nominal   acceptance   va lue   o f  10 . -9 
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Table VII-1 

SAMPLE OUTPUT 

MODEL I. * 

PROCESSOR  FAILURE RATE: 1E-4 

BUS UNITS  FAILURE RATE: 1E-5 

MISSION TIME, I N  HOURS: 10 

FAILURE PROBABILITY TABLE : 

PRO/BUS 2 

2 2 .20~-03  

3 2.03E-04 

4 2.00E-04 

5 2.OOE-04 

6 2.00E-04 

7 2.00E-04 

8 2.00E-04 

9 2.00E-04 

10 2.00E-04 

3 

2.OOE-03 

3.02E-06 

3.40E-08 

3.00E-08. 

3. ow-08 

3.00E-0& 

3.00E-08 

3.00E-08 

3. OOE-Oe. 

4 

2.OOE-0 j 

3.OOE-06 

4.OOE-'39 

8.99E-12 

4.01E-12 

'4.00E-12 

4.00E-12 

4.00E-12 

4.00E-12 

5 

2.00E-03 

3.00E-06 

3.993-09 

4. WE-12 

6.4eE-15 

5.07E-16 

5.00E-16 

5.00E-16 

5.00E-1 G 

6 

2. OOE -03 

3.OOE-06 

3.99E-09 

4.993-12 

5.98E-15 

7.03E-1 e 

6.79E-20 

6.00E-20 

6.00E-20 

7 

2. OOE-OS 

3.00E-06 

j. 99E-09 

4.99E-12 

5.9EE-15 

6 .  gr/E-1 8 

7. WE-2 1 

1.60E-25 

7.01E-24 



T a b l e   V I I - 2  

FAILURE RATES FOR RECONFIGURATION  TIME 
OF ONE SECOND AS  COMPUTED BY MODEL I I A  

MODEL 1 1 - A .  * 

PROCESSOR  FAlLUHE RATE: 1E-4 

BUS UNITS FAILURE RATE: 1E-5 

NO. PROCESSORS: 5 

NO. BUSSES : 4 

RECONFIG. TIME, iN SEC: 1 

FAlLURE PRCBABILITY  TABLE: 

TINE: €iR. FAiL. PROB. H@URLY RATE. 

1 
2 
4 
6 
8 

10 
12 
16 
20 
40 
60 
80 

100 
200 
4 00 

5.59E-11 
1.12E-10 
2.24E-10 
5.37E-10 
4.51E-10 
5.67E-10 
6.87E-10 
9 . 4 2 ~ 1 0  
1.23E-09 
3.75E-0 9 
1.OGE-08 
2.65E-06 
5.elE-08 
7-993-07 
1.17E-05 

5.59E-11 
5.59E-11 
5.61E-11 
5.65E-11 
5. TZE-11 
5. EOE-11 
6.04E-11 
6.60E-11 
7. %E-1 1 
1.96E-10 
5.10E-10 
1.  11E-09 
2.08E-09 
1.5sE-08 
1.13E-07 

DATA EXTRACTED FROM MODEL 11. 
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F. Computa- t iona l   Resul t s   and   In te rpre ta t ions  

The r e l i a b i l i t y   m o d e l s   r e f e r r e d   t o   a b o v e   y i e l d   q u a n t i t a t i v e   d a t a   o n  

the   s epa ra t e   and  combined e f f e c t s   o f   f i n i t e   r e c o n f i g u r a t i o n  time and i m -  

p e r f e c t   t r a n s i e n t   r e c o v e r y   o n  a SIFT s y s t e m   t h a t   a l s o   s u f f e r s   s p o n t a n e o u s  

permanent   faul ts .  Model I depic t s   the   mos t   idea l ized   (and   mos t   op t imis-  

t i c )   s i t u a t i o n   i n  which  only  permanent   faul ts  are cons ide red .   Pe r fec t  

reconf igura t ion   s t ra teg ies   and   t rans ien t   recovery   schemes   cannot   improve  

t h e   r e l i a b i l i t y  estimates o f  Model I unless   "sa lvage"   o f   working   par t s  

o f   t he   sys t em a t  a level smaller than  a processor/memory o r   b u s - u n i t  i s  

f e a s i b l e .  We have   no t   cons ide red   t he  l a t t e r  p o s s i b i l i t y   i n   t h i s   a n a l y s i s .  

A s t a t e - d i a g r a m   f o r  Model I i s  shown i n   F i g u r e   V I I - 2 .   S t a r t i n g  

wi th  2 processors   and m b u s s e s   i n   t h e   i n i t i a l  s t a t e ,  w e  assume cons tan t  

f a i l u r e  ra tes  o f  p and g f o r   e a c h   o f   t h e s e   d e v i c e s   r e s p e c t i v e l y .  It i s  

assumed t h a t  a f a i l e d  s t a t e  w i l l  have   been   reached   on ly   i f  less than  two 

p r o c e s s o r s   o r   b u s s e s   s u r v i v e   a f t e r  a miss ion  time o f   d u r a t i o n  T. 

STATE 1 

FIGURE VII-2 MODEL I STATE-DIAGRAM 
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I n   t h e   r e c t a n g u l a r   a r r a y   o f  s ta tes  r e p r e s e n t i n g   t h e   s u r v i v i n g  num- 

b e r s   o f   p r o c e s s o r s   a n d   b u s s e s   r e s p e c t i v e l y ,   n o t e   t h a t   t h e   f a i l u r e - r a t e s  

. a s s o c i a t e d   w i t h   e a c h  ex i t  arrow are p r o p o r t i o n a l   t o   t h e  number of  re- 

m a i n i n g   u n i t s   o f   t h e  same type.  The s ta tes  des igna ted  F r e p r e s e n t  

f a i l u r e .  

Obse rve   t ha t   t he  model   corresponds  to   one  in   which  processor   and 

b u s   f a i l u r e  are cons idered   to   be   independent   and   uncorre la ted   events .  

T h e r e f o r e   a n   a n a l y s i s   o f   f a i l u r e   p r o b a b i l i t y   c a n   b e   c a r r i e d   o u t   w i t h o u t  

"so lv ing"   for   each  s t a t e  occupancy   probabi l i ty .  However, w e  r e t a i n   t h e  

g e n e r a l i t y   o f   t h e   f u l l   M a r k o v - p r o c e s s   r e p r e s e n t a t i o n   b e c a u s e  w e  might 

wish i n  some l a t e r  a n a l y s i s   t o   c o n s i d e r  some s p e c i a l   a c t i o n   t o   b e   t a k e n  

i n  o n e   o f   t h e   p a r t i c u l a r  s t a t e s  of   F igure   VII -2 .   In   each   of   the   subse-  

quent   models   to   be   d i scussed ,  a s imilar  s t a t e  graph i s  assumed,  except 

t h a t   t h e   t r a n s i t i o n s   b e t w e e n  s ta tes  are compl i ca t ed   by   t he   i n se r t ion   o f  

i n t e r m e d i a t e  s ta tes  t h a t   r e p r e s e n t   t h e   e f f e c t s   o f   r e c o n f i g u r a t i o n   d e l a y s  

o r   t r a n s i e n t - f a u l t   r e c o v e r y .  

An a n a l y s i s   o f  Model I y i e l d s   c l o s e d - f o r m   e x p r e s s i o n s   f o r   f a i l u r e  

p r o b a b i l i t i e s   p a r a m e t e r i z e d   i n  terms o f   p r o c e s s o r / b u s   f a i l u r e  ra tes  and 

miss ion  time as  shown i n   T a b l e  V I I - 1 ,  where p = 10 , q = 10 and T = 

10 hour s .   Th i s   t abu la t ion  shows t h e   i n t u i t i v e l y   e x p e c t e d   r e s u l t   t h a t  

s u r v i v a l   p r o b a b i l i t y   f o r  a system  having  few  processors   or  few busses  i s  

n o t   s i g n i f i c a n t l y   i m p r o v e d  by  having a l a r g e  number o f   t h e   o t h e r   t y p e   o f  

u n i t   a v a i l a b l e .  

-4 -5 

To i l l u s t r a t e ,   r e f e r r i n g   t o   T a b l e  V I I - 1 ,  w e  see t h a t   w i t h   a n   i n i t i a l  

c o n f i g u r a t i o n   e m p l o y i n g   f o u r   p r o c e s s o r s   t h e   s y s t e m   f a i l u r e   p r o b a b i l i t i e s  

are e s s e n t i a l l y   i d e n t i c a l   i f   f o u r   o r  more busses  are a v a i l a b l e   i n i t i a l l y .  

S i m i l a r l y   i f   o n l y   t h r e e   b u s s e s  are i n i t i a l l y   a v a i l a b l e   t h e n  i t  does  no 

good to   have   more   t han   f i ve   p rocesso r s .   The   sys t em  r e l i ab i l i t y   can   be  

s a i d   t o   b e   p r o c e s s o r - l i m i t e d   o r   b u s - l i m i t e d .  It t h e r e f o r e  makes sense  

t o   t h i n k   o f  "enough" b u s s e s   f o r  a g iven  number of  processors   (and  con-  

v e r s e l y ) .  

The c a l c u l a t e d   v a l u e s   o f   T a b l e  V I I - 1  are t y p i c a l .   I n   t h i s   p r o t o t y p e  

case, a SIFT system  composed  of  four  processors  and  four  buses i s  seen  
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t o  have a 1 0 - h o u r   m i s s i o n   p r o b a b i l i t y   o f   f a i l u r e   o f  4 x 10 . On a per -  -9 

h o u r   f a i l u r e  rate b a s i s   t h i s  would  be 4 x which i s  w i t h i n   t h e  

FAA a c c e p t a b l e  l i m i t  o f  1 x lO-’/hour.  The s i t u a t i o n  i s  not improved 

by  adding  another   bus,   which  would  change  the  fa i lure  ra te  t o  3.99 x 10 . 
However, t h e   a d d i t i o n  o f  another   processor   (making  the  count  5 and 4 )  

l e a d s   t o  a f a i l u r e  ra te  of   about   which  again i s  n o t   s i g n i f i c a n t l y  

improved by add ing   ye t  more  processors.  

-10 

F o r   t h i s  model, t h e   s i g n i f i c a n t   f e a t u r e s   c a n   b e  summerized  by  the 

g raph   o f   F igu re  VII-3, which   shows  sys tem-fa i lure   p robabi l i ty   p lo t ted  

10-l8 

1 0 - l ~  
>- 
k 
=! 
m 

0 
a 
a 10-12 

a 

2 a 

Q, 

w 
3 

U 

1 o - ~  

1 o4 

1 o - ~  
1 

P = NUMBER OF PROCESSORS 

10 100 1000 

MISSION TIME - hours 

10.000 

FIGURE V I I S  MODEL I BEHAVIOR 
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a g a i n s t   m i s s i o n  time f o r   v a r i o u s  numbers o f   p rocesso r s   and   buses .   In  

p a r t i c u l a r ,   t h e   p o i n t   c o r r e s p o n d i n g   t o  a mis s ion  time o f  100 hours  and 

a f a i l u r e   p r o b a b i l i t y   o f  lo-'' (10 /hour)  i s  s e e n   t o   b e   b a r e l y   a c h i e v a b l e  -9 

w i t h  6 processors   and 4 buses ;   the   need  i s  f o r   n e a r l y  7 and 5 r e s p e c t i v e l y .  

I n  Model I1 w e  c o n s i d e r   t h e   e f f e c t   t h a t  a f i n i t e   r e c o n f i g u r a t i o n  

t i m e  has   i n   deg rad ing   t he   pe r fo rmance   o f  Model I. Here i t  i s  assumed 

t h a t  upon d e t e c t i n g   t h e   p r e s e n c e   o f   a n   e r r o r   i n  a p rocesso r   o r   bus  some 

d iagnos t ic   and/or   reconf igura t ion   programs  of   f ixed   dura t ions   mus t   run  

be fo re   s a fe   sys t em  ope ra t ions   can   be   r e sumed .   I f   ano the r   p rocesso r   o r  

b u s   f a i l u r e   o c c u r s   d u r i n g   t h i s   s h o r t   i n t e r v a l   o f  time i t  could   cause  

ser ious   p roblems  in   recovery .   For   the   purpose   o f  Model I1 w e  cons ide r  

t h e  l a t t e r  e v e n t   t o   b e  f a t a l .  Therefore ,  Model I1 p r e s e n t s  a r a t h e r  

pessimistic i n t e r p r e t a t i o n  of  f a i lu re  p r o b a b i l i t i e s   d u e   t o   n e a r l y  s i m u l -  

t aneous   permanent   fau l t s .   The   s ta te -d iagram  of   F igure   VII -2  i s  a l s o  

a p p r o p r i a t e   t o  t h i s  case i f  each t r a n s i t i o n  i s  r e i n t e r p r e t e d   t o   c o n t a i n  

a d e l a y - s t a t e   o f   f i x e d   d u r a t i o n   a n d  a d i r e c t   e n t r y   t o   t h e   f a i l e d  s t a t e  

as  shown i n   F i g u r e  V I I - 4  

I In-llp 

FIGURE VI14 MODEL 11 STATE-DIAGRAM 

The f i x e d   d e l a y  s ta tes  l a b e l e d  T i n  F igu re  VII-4 are handled in  the 

manner desc r ibed  i n  the appendix t o  th i s  r e p o r t .   A c t u a l l y ,  w e  o b t a i n  

exact c losed - fo rm  expres s ions   fo r   t he   va r ious   s t a t e -occupancy   p robab i l i t i e s  

just as was done   for  Model I .  
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A t yp ica l   ou tpu t   f rom  the  Model I1 program i s  shown i n   T a b l e  VII-3. 

Here again,  we have   taken   processor   and   bus   fa i lure  ra tes  of  10  and 

10 as r e a s o n a b l e   v a l u e s   w i t h  a miss ion  t i m e  o f  10 hours.  The value 

of T, t h e   r e c o n f i g u r a t i o n  t i m e ,  s t a t e d  as 10 seconds i s  a gross   over -  

estimate of   the   p robable  time for   such  a procedure,  which  might  take a t  

the  most  perhaps 100 m s .  We t a k e   t h e   l a r g e r   v a l u e   o f  T t o   i l l u s t r a t e   t h e  

e f f e c t s   o f   t h e   f i n i t e   r e c o n f i g u r a t i o n  t i m e  o n   t h e   r e s u l t s   o f  Model I. 

-4 
-5 

From an   i n spec t ion   o f   Tab le  VII-3 it can   be   seen   tha t   in   each  row 

and  column  corresponding  to a f i x e d  number o f   p r o c e s s o r s   ( b u s e s ) ,   i n  

s y s t e m   f a i l u r e   p r o b a b i l i t i e s   f i r s t   d i m i n i s h  and   then   increase   wi th   l a rger  

number buses   (p rocesso r s ) .  The i n t e r p r e t a t i o n   o f   t h i s  r e su l t  can  be  under- 

s tood  by cons ide r ing   ou r   p rev ious   a s sumpt ion   t ha t  a s y s t e m   f a i l u r e  would 

o c c u r   i f   a n y  p a i r  o f   f u n c t i o n a l   u n i t s   f a i l e d   w i t h i n  t i m e  r. Obviously, 

t h i s   p o s s i b i l i t y   i n c r e a s e s   w i t h   t h e  number o f   a c t i v e   p r o c e s s o r / b u s   u n i t s  

involved. However, t h e   d i s t r i b u t i o n   o f   t a s k s   o v e r  many p rocesso r s  would 

a l l o w   v o t i n g   o v e r   t h e   r e s u l t s   o f   s e v e r a l   u n i t s   i n s t e a d   o f   s a y   t h r e e - -  

so t h a t  some d o u b l e   f a i l u r e s   m i g h t   i n   f a c t   b e   t o l e r a t e d .   T h i s  means t h a t  

t h e   r e s u l t s   o f  Model I1 may be   cons idered   to   be   pess imis t ic .   F igure  VII-5 

shows how f a i l u r e   p r o b a b i l i t y   v a r i e s   w i t h   e x t e n d e d   m i s s i o n   t i m e s   w i t h  re- 

c o n f i g u r a t i o n  time as a parameter.  The c u r v e s   r e p r e s e n t   a n   i n i t i a l   c o n -  

f i g u r a t i o n   o f   f i v e   p r o c e s s o r s   a n d  4 buses. 

The d a s h e d   l i n e   r e p r e s e n t i n g   z e r o   r e c o n f i g u r a t i o n  t i m e  cor responds  

to   da ta   ob ta ined   f rom Model I. The e f f e c t s   o f  a f i n i t e   r e c o n f i g u r a t i o n  

t i m e  a r e   m o s t   a p p a r e n t   f o r   s h o r t   m i s s i o n  times where f a i l u r e   p r o b a b i l i t y  

would  have  been  very low accord ing   to   the   assumpt ions   o f  Model I. 

For   very  long  mission times f a i l u r e   p r o b a b i l i t y  is l i m i t e d   b y   t h e  

numbers o f   ava i l ab le   p rocesso r s   and   buses   and  becomes  independent  of  the 

v a l u e   o f  T. In   t he   r ange   o f   mi s s ion  times nea r  10 hours ,   there  i s  a n  

inc rease   o f   f a i lu re   p robab i l i t y   o f   abou t   one   o rde r   o f   magn i tude   fo r   each  

o rde r   o f   magn i tude   i nc rease   i n  T .  It should   be   no ted   tha t   for   about  a 

10 hour   mission  and a r e c o n f i g u r a t i o n  time of  10 seconds ,   t he   f a i lu re  

p r o b a b i l i t y  i s  about 5 x 1 0   o r  5 x LO-" on a per -hour   bas i s .  
-9 
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Table  VII-3 

TYPICAL  OUTPUT  FROM  MODEL I1 PROGRAM 

MODEL 11. Q 

PROCESSCR FAILURE RATE: 1E-4 

BUS  UNITS  FAILURE RATE: 1E-5 

MISSION TIME, IN HOURS: 10 

RECONFIG. TIME, I N  SEC: 10 

FAILURE PROBABILITY TABLE : 

PRO/BUS 2 

2 2 . 2 0 ~ - 0 3  

3 2.03E-04 

4 2.00E-04 

5 2.00E-04 

6 2.OOE-04 

7 2.00E-04 

a 2.00E-04 

9 2.00E-04 

10 2.0OE-04 

1 
d 

2.0013-03 

3.03.E-06 

3.726-08 

3.56E-08 

3.83E-08 

4 .  17E-08 

4.56E-OR 

5.OOE-08 

5.50E-0 8 

4 

2.00E-03 

3.OOE-06 

7.363-09 

5.593-09 

8.36E-09 ' 

1 .  17E-08 

1.563-08 

2.00E-08 

2.50E-08 

5 6 

2.OOE-03 2.OO.L-03 

3.00E-06 3.OOE-06 

7.38E-09 7 . 4 0 ~ ~ - 0 9  

5.6113-09 5.64E-09 

8.383-09  8.41E-09 

1.17E-08  1.17E-08 

1.56E-08  1.56E-08 

2.00.E-08 2 . 0 1 ~ - 0 8  

2.50E-08 2 . m - 0 8  

7 

2.OOE-03 

3.00E-06 

7.44E-09 

5 . 6 7 ~ - 0  9 

8.44E-09 

1.18E-08 

1.5'jE-08 

2.01E-08 

2 . 5 1 ~ 0 8  

* FINITE RECONFIGURATION TIME. 
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FIGURE VII-5 MODEL 11 BEHAVIOR 

Therefore ,  10 seconds  would  be  an  acceptable   reconfigurat ion t i m e  f o r  

this   combinat ion  of   processors   and  buses .   Actual ly  w e  have  es t imated 

t h a t   r e c o n f i g u r a t i o n   s h o u l d   t a k e  no  more than  a few mi l l i s econds ,  so t h a t  

a f a i l u r e   p r o b a b i l i t y   a b o u t  100 times smaller than  the  above  f igure  would 

b e   e x p e c t e d   i n   t h i s  case. 

Model I11 was des igned   to  measure t h e   e f f e c t s   o f   i m p e r f e c t   r e c o v e r y  

from t r a n s i e n t   e r r o r s .  A s  such, i t  does  not   provide a r e a l i s t i c  model o f  

SIFT s i n c e  i t  assumes  that  no  permanent f a u l t s   o c c u r .  The u s e f u l n e s s   o f  

Model I11 was mainly  to   have  an  independent   computat ional   check  on  the 

r e s u l t s   o f  Model I V  which  includes Model I11 as t h e  special  case where 
bo th   p rocesso r   and   bus   pe rmanen t   f a i lu re   r a t e s   have   va lue   ze ro .  
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I I I I ...I .. . .. . ._  .- "- 

Model IV is  a superposition of  Models I, 11, and 111. It  attempts 

to  account  for  the  effects of permanent  faults  (randomly  occurring), 

finite  reconfiguration  time  and  transient  recovery.  The  state  transitions 

associated  with  one  node of the  state  diagram  are  shown  in  Figure V I I - 6 .  

... 

'Designates  probabilities  (not  rates). 

. 

FIGURE VII-6 MODEL IV STATE-DIAGRAM 

For  the  typical  node  of  the  state-transition  graph  of  Model  IV 

there  are  these  possibilities: 

a. A transient  error  may  occur  with  average  rate 

or rb, causing  a  transition  to  one of the  two  states 
labeled R in  Figure  VII-6.  Following  this  occurrence 

we  assume  that  detection  and  correction  in  a  return  to 

the  original  state.  Otherwise,  we  conclude  that  a  per- 

manent  fault  has  occurred  and  proceed  to  a  state  with 

one  less  processor or bus  in  the  active  system. 
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b. A permanent   faul t  may occur   wi th   average  ra tes  p o r  g 

( a s   i n  Model 11) caus ing  a t r a n s i t i o n   t o   o n e   o f   t h e  

s ta tes  having  one less  p r o c e s s o r   o r   b u s   S f   c o n f i g u r a t i o n  

i s  s u c c e s s f u l .   I f  two permanent f a u l t s   o c c u r   w i t h i n  

time r, t h e  FAIL s ta te  i s  en te red .  

S ince  Model I V  has   s even   pa rame te r s ,   i nc lud ing  two permanent f a i l u r e  rates 

( f o r   p r o c e s s o r s   a n d   b u s e s   r e s p e c t i v e l y ) ,  two c o r r e s p o n d i n g   t r a n s i e n t   f a i l -  

u r e  rates r e c o n f i g u r a t i o n  t i m e ,  t r a n s i e n t   r e c o v e r y   p r o b a b i l i t y ,   a n d  

miss ion  tirne--it i s  h a r d   t o   p r e s e n t  a comprehens ive   p ic ture   o f  how a l l  

t h e s e   p a r a m e t e r s   i n t e r a c t .  The b e s t  way t o   e x p l o r e   t h i s   s e v e n - d i m e n s i o n a l  

space  (nine  dimensions  of   processor   and  bus  counts  are inc luded)  i s  t o   r u n  

t h e   i n t e r a c t i v e  Model I V  FORTRAN program  using  parameter   values   near   the 

r e g i o n   o f   i n t e r e s t .  We have   a l r eady   focused   a t t en t ion   on   one  set  of  pa- 

rameter values t h a t  seem t o   b e   r e a s o n a b l e   o r   t y p i c a l   f o r   t h e   p r o p o s e d  

SIFT system, i . e . ,  p = 10 q = l f 5 ,  T = 10 hours ,  T = 100ms, m = 5 

p rocesso r s ,  n = 4 buses.  To see how t r a n s i e n t   e r r o r s   c a n   a f f e c t   f a i l u r e  

p r o b a b i l i t i e s  w e  may assume  the  above  values  and  compute  Model I V  f o r  

v a r i o u s   v a l u e s   o f   t r a n s i e n t   r e c o v e r y   p r o b a b i l i t y   a n d   t r a n s i e n t   e r r o r  rates. 

Resu l t s   co r re spond ing   t o   one   cho ice   o f   r ecove ry   p robab i l i t y  ( . 9 )  and  t ran-  

s i e n t   e r r o r  ra te  (10 ) are  shown i n   T a b l e  VII-4. 

-4  

-5 

A composi te   g raph   showing  the   e f fec t   o f   d i f fe ren t   assumpt ions   about  

recovery  r a t e  and t r a n s i e n t   e r r o r  r a t e  i s  shown i n   F i g u r e   V I I - 7 .  It i s  

o b s e r v e d   t h a t   t h e   e f f e c t s   o f   t r a n s i e n t s  are r a the r   c lo se ly   approx ima ted  

by s imply   adding   to   the   p rocessor   and   bus   permanent   fa i lure  rates a ra te  

e q u a l   t o   ( l - p t r . )  times t h e   c o r r e s p o n d i n g   t r a n s i e n t   f a i l u r e  rate.  
J- 

In   F igu re   VI I -7   t he   cu rve   l abe led  A r e p r e s e n t s   t h e   s i t u a t i o n   i n   w h i c h  

t r a n s i e n t   r e c o v e r y  is  s u c c e s s f u l  100% of  t h e  time i . e . ,  ptr;k = 1. 

Curve B r e p r e s e n t s  a case w h e r e   t r a n s i e n t   e r r o r  rates are assumed t o   b e  

i d e n t i c a l   w i t h   p e r m a n e n t   f a u l t  ra tes  a n d   t h e   p r o b a b i l i t y  of  recovery  i s  

zero.   Thus,   for   any  recovery  probabi l i ty   between 0 and 1 t h e   f a i l u r e  

p r o b a b i l i t y   o f   t h e   s y s t e m  l ies  between  the  curves  A and  B--and  very  close 

t o  A f o r   h i g h   r e c o v e r y   p r o b a b i l i t i e s .  The curve  D r ep resen t s   ze ro   p roba -  

b i l i t y   o f   r e c o v e r y  from t r a n s i e n t s   o c c u r r i n g  a t  10 times t h e  ra te  o f  
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Table VII-4 

TRANSIENT RECOVERY PROBABILITY AND TRANSIENT ERROR RATES 

NODEL i V .  

PROCESSOR PERMANENT FAILURE RATE: 1E-4 

PROCESSOR TRANSIENT FAILURE RATE: 1E-5 

BUS UNITS PERblANENT FAILURE RATE: 1E-5 

BUS  UNITS TRANSIENT FAILURE RATE: 1E-5 

MISSION TIME, HOURS: 10 

RECONFIG. TiME, 1N SEC: 0.1 

RECGVERY PROBAGILlTY: 0 .9  

FAILURE PROBABILlTY TAELE : 

PRO/BUS 2 

2 

3 

4 

5 

6 

7 

8 

9 

10 

2.24E-03 

2 .23 -04  

2.20E-0 4 

2.20E-04 

2.20E-04 

2.20E -04 

2.20E-04 

2.20E-04 

2.20E-04 

3 

2.02E-03 

3.09E-06 

4.04E-08 

3.64E-08 

3. €4E-08 

3.64E-0 8 

2.65E-08 

3.65E-08 

3.65E-08 

4 

2.02E-0 3 

3.06E-06 

4. 15E-Cg 

6.75E-11 

9.07E-11 

1.25E-10 

l.€QE--10 

2.10E-10 

2.60E-10 

5 

2.02E-03 

3.06E-0 6 

4 .  15E-09 

6.25E-11 

8.56E-11 

1.20E-10 

1.59E-10 

2.04E-10 

2.55E-10 

6 

2.02E-OS 

3.06E-.O6 

4.15E-09 

0.28E-11 

8.59E-11 

1.20E-10 

1.60E-10 

2.05E-10 

2 . 5 6 ~ - 1 0  

7 

2.02E-03 

3.06E-06 

4. 15E-09 

6.32E-11- 

8.63E-11 

1.20E-10 

1.60E-10 

2.05E-10 

2.5615-10 

* RECONFIGURATION WITH TRANSiENT RECOVERY. 
(UNCORRELATED BETKEEN DEVICES) 
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1 0 - l ~  I I 1 
10-l2 t PROCESSORS = 4 

BUSSES = 5 
RECONFIGURATION  TIME = 100 rns 

1 0-1 ’ 

MISSION TIME - hours 

FIGURE VII-7 MODEL IV BEHAVIOR 

permanen t   f au l t s .   F ina l ly ,   cu rve  C r e p r e s e n t s  a 70 p e r c e n t   p r o b a b i l i t y  

o f   r e c o v e r i n g   f r o m   t r a n s i e n t   e r r o r s   a l s o   o c c u r r i n g  a t  10 times t h e  perma- 

n e n t   f a i l u r e  rate.  

We do n o t   p r e s e n t l y   h a v e   r e l i a b l e   d a t a   o n   t h e   e x p e c t e d  rates f o r  

t r a n s i e n t   f a u l t s ,   b u t   t h e  rates c o v e r e d   i n   F i g u r e  VII-7 are probably 

h i g h e r   t h a n   t h o s e   t h a t  would  occur i n   p r a c t i c e .   O b s e r v e   t h a t   e v e n   w i t h  

the   h igh  ra tes  o f  10 a n d   f o r   p r o c e s s o r   a n d   b u s   t r a n s i e n t   e r r o r s ,  

t h e   s y s t e m   f a i l u r e  ra te  f o r  a 10 hour   mission i s  about  3 x 10 . T h i s  

is  well wi th in   the   nominal  10 p e r   h o u r   f a i l u r e  ra te  cons idered  satis- 

-3  

-8 

- 9  

f a c t o r y  by t h e  FAA. 
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V I 1 1  THE HIERARCHICAL  DESIGN  METHODOLOGY 

T h i s   s e c t i o n  was p rev ious ly   i s sued  as Technica l  Memo No. 6 ,  It is 

a tu to r i a l   desc r ip t ion   o f   t he   so f tware   des ign   me thodo logy   t ha t  i s  be ing  

employed i n   t h e   d e s i g n   o f   t h e  SIFT  computer  and  other  software  systems. 

T h i s   p a r t i c u l a r   a p p r o a c h  i s  a n   i n s t a n c e  and an  extension  of   what   has  come 

t o  b e   c a l l e d   " s t r u c t u r e d  programming." It  has  been  developed i n  i t s  pres-  

ent   form  mainly a t  SRI f o r   t h e   c r e a t i o n   o f   l a r g e  and  complex  programs, 

i nc lud ing   ope ra t ing   sys t ems .  

Th i s  new methodology a p p e a r s  t o  have   cons ide rab le   gene ra l i t y ,   bu t  

f o r   t h i s   i n t r o d u c t o r y   d e s c r i p t i o n   o n l y   t h o s e  aspects t h a t  are r e l e v a n t   t o  

t h e  SIFT  computer  design are  covered in  d e t a i l .  Emphasis i s  placed  on 

c o n c e p t s   t h a t  are  e i ther  fundamenta l   bu t   unfami l ia r ,   o r  are e s p e c i a l l y  

c r i t i c a l  i n  the SIFT  computer. 

The new methodology claims s e v e r a l   s i g n i f i c a n t   a d v a n t a g e s   o v e r   c o n -  

ven t iona l   so f tware   des ign   t echn iques ,  namely 

The costs   of   program  product ion are  reduced. 

The f i n a l  program i s  more  amenable to   formal   p roof   o f  
c o r r e c t n e s s   t h a n  a program  developed  on  an  ad  hoc  basis.  

The r e l i a b i l i t y   o f   t h e   r e s u l t a n t  program i s  improved. 

The  program i s  s p e c i f i e d   i n  a way tha t   enhances  i t s  
u n d e r s t a n d a b i l i t y .  

The  program i s  f l e x i b l e   t o   f u t u r e   d e s i g n   m o d i f i c a t i o n s .  

The  program i s  c r e a t e d   i n   s u c h  a way t h a t  i t  may be  aug- 
mented t o   h a v e   a d d i t i o n a l  special  proper t ies - -e .g . ,  

- Secur i ty   p rov i s ions   can   be   added   t o   p reven t   unau thor -  
i z e d  access, l eakage   o r   mod i f i ca t ion   o f   i n fo rma t ion .  

- T h e   o p e r a t i o n a l   r e l i a b i l i t y   c a n   b e   a s s e s s e d   q u a n t i t a -  
t i v e l y .  

Most   o f   these   fea tures  are impor tan t   des ign   ob jec t ives   o f   the   SIFT com- 

p u t e r .  



. , 

Large   and   d i f f icu l t   p roblems  of   any   type- -bas ic   research ,   engineer -  

ing   des ign ,   p roduct   deve lopment ,   and   product   o rganiza t ion- -are   invar iab ly  

handled by  some so r t   o f   decompos i t ion  of t h e  large p rob lem  in to  several 

smaller ones.  Of t h e  many possible   decomposi t ions  that   could  be  used,  

one i s  n o r m a l l y   s e l e c t e d   f o r   w h i c h   t h r e e   c o n d i t i o n s  are s a t i s f i e d :  

(1) Each smaller problem i s  well def ined ,  s o  t h a t   t h e r e  
i s  no ambigui ty   about   whether  a proposed   so lu t ion  i s  
rea lLy a s o l u t i o n .  

(2 )  The  decomposition is  comple te - - tha t  i s ,  s o l u t i o n s   t o  
a l l  o f   t h e  smaller problems w i l l  b e   S u f f i c i e n t   t o  
s o l v e   t h e   l a r g e   o n e .  

( 3 )  The smaller problems are easier t o   s o l v e   t h a n   t h e  large 
one. 

The s m a l l  problems  can  be  fur ther  decomposed a c c o r d i n g   t o   t h e  same con- 

d i t i ons .   Th i s   decompos i t ion  may be  repeated as o f t e n  as n e c e s s a r y   u n t i l  

on ly   r ead i ly   r e so lved   ques t ions ,  tests, measurements o r   expe r imen t s  re- 

main. I f   t h e   t h r e e   c o n d i t i o n s  are s a t i s f i e d  a t  each s t e p ,  then   one  may 

b e   s u r e   t h a t   t h e   d e c o m p o s i t i o n   p r o c e s s  w i l l  t e rmina te ,   and   t ha t   t he   o r ig -  

i n a l   l a r g e   p r o b l e m   h a s  a s o l u t i o n  when t h e   f i n a l   r e s i d u a l   p r o b l e m s  are 

so lved .  

T h e s e   c o n d i t i o n s   f o r   t h e   i t e r a b i l i t y   o f  a decomposition are w e l l -  

known, but  are s t a t e d   h e r e   i n   t h i s   p a r t i c u l a r  way b e c a u s e   o f   t h e i r   d i r e c t  

r e l e v a n c e   t o   t h e   c r e a t i o n   o f  complex   sof tware   sys tems--a   re levance   tha t  

has   r e s i s t ed   fo rma l   t r ea tmen t   du r ing   t he  p a s t  two decades  of  development 

of  computer  programming.  These t h r e e   c o n d i t i o n s ,  when p r o p e r l y   r e s t a t e d  

in   fo rma l   t e rms ,  are s u f f i c i e n t   t o   i n s u r e   t h a t   l a r g e  a n d   v e r y   i n t r i c a t e  

programs may be  created  by  repeated  decomposi t ions,  as f i n e l y  as des i r ed ,  

so  as to   ach ieve   t he   advan tages   l i s t ed   above .  

The   concepts   tha t  are c e n t r a l   t o   a n   u n d e r s t a n d i n g  of t h i s   t y p e   o f  

program  decomposition w i l l  be   introduced by extension  f rom two f a m i l i a r  

engineer ing  design  problems.   These examples u t i l i z e   d e c o m p o s i t i o n s  so  

n a t u r a l  and f a m i l i a r   t h a t   t h e   i t e r a b i l i t y   c o n d i t i o n s  are n o t   u s u a l l y   d e a l t  

w i t h   e x p l i c i t l y .  

The f i r s t   p o i n t   t o   b e  made  i s  t h a t   t h e   r e s u l t s   o f  a decomposition 

may b e   a b s t r a c t   r a t h e r   t h a n   c o n c r e t e .  
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Consider  the  design  of  a  large  unit of engineering  hardware  such as 
an  automobile  or  a  spacecraft. For an automobile  a  traditional  approach 

is  effective:  the  overall  problem  is  decomposed  into  portions  correspond- 

ing  to  the  various  physical  parts  of  the  vehicle--engine,  steering,  brakes, 

body,  electrical  system,  and so on.  Each of these  portions  can  be  simi- 

larly  decomposed,  and so on.  Specifications  are  written  for  each  portion 

to  permit  the  various  portions  to  be  designed  independently, with the 

assurance  that  they  will  all  fit  together  in  the  final  assembly. 

For  spacecraft,  however,  it  has  proven  more  effective  to  make  the 

initial  decomposition on the  basis  of  function--e.g.,  attitude  control, 

propulsion,  scientific  experiments,  communications,  etc.,  as  suggested  by 
Figure  VIII-1.  Each  such  function  may  but  need  not  correspond  to  a  par- 

ticular  unit  of  hardware. Finer decompositions  are  made in terms  of  func- 

tion  and/or  hardware. A given  unit  of  hardware  may  be  used  to  provide 

several  functions  or  subfunctions. The first  two  iterability  conditions 

are  satisfied  at  each  step  by (1) describing  each  function  or  unit  by  a 

specification  that  prescribes  its  behavior  completely,  without  getting 

involved  in how this  behavior  is  implemented;  and ( 2 )  showing how the 

overall  design  specifications  will  be  met if only  the  various  functions 

or  units  meet  their  own  specifications. 

In addition,  if  each  step  involves  a  simplification  of  function 

[Condition ( 3 ) 1 ,  the  entire  iteration  will  converge  into  an  effective 

design. For example,  the  communication  function  might  be  broken  down 

into  data  acquisition,  data  reduction  and  data  storage,  followed  by  a 

transmitter  and an antenna  system. Data acquisition  could  be  further  de- 
composed  into  sub-functions  such  as  scanning,  multiplexing,  A+D  conver- 

sion,  etc.;  and so on. A s  noted,  some  subfunctions  will  be  executable on 
common  subunits of hardware,  such as  an onboard  computer  provided  to  im- 

plement  not  only  data  acquisition  and  reduction,  but  data  storage,  por- 

tions of attitude  control  and  the  scientific  experiments  as  well. 

This  example  should  illustrate  clearly  that  design  decompositions, 

including f u l l  specifications,  need not be  made  in  terms  of  hardware,  but 

that  abstract  nonphysical  concepts  such  as  "function"  can  be  used  as  well. 
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FIGURE VIII-1 DECOMPOSITION IN TERMS OF FUNCTION 



A second  illustration  is  provided  by  the  set  of  subroutines  that  are 
commonly  employed  in  the  writing of a  program.  Assuming  that  no  recursion 

is  allowed,  the  "calling"  operation  can  effectively  organize  these  sub- 

routines  into  a  hierarchy  with  the  main  program  (or  programs)  at  the  top 

(Figure VIII-2). This  hierarchy  represents an iterated  decomposition  of 

the  original  program  (problem)  into  a  succession of successively  smaller 

programs.  One  may  even  suppose  that  the  simplest  subroutines  are  them- 
selves  decomposed  into  sequences  and  instructions  taken  from  a  common 

programming  language  at  the  lowest  level.  The  syntax  of  conventional 

programing normally  forces  the  three  iterability  conditions  to  be  sat- 
isfied  automatically. 

FIGURE VIII-2 ILLUSTRATION OF A  FUNCTIONAL  HIERARCHY 
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This   s econd   example   i l l u s t r a t e s  how a programming h ierarchy   can   be  

s e t  up. It i s  d e s i r a b l e   t h a t   t h i s   h i e r a r c h y   p o s s e s s   c e r t a i n   f e a t u r e s ,   t h e  

most  important  of  which i s  the   independence   of   the   da ta   handled  by a sub- 

rou t ine   f rom  d i r ec t   man ipu la t ion  by t h o s e   h i g h e r - l e v e l   s u b r o u t i n e s   t h a t  

may c a l l   t h e   s u b r o u t i n e   i n   q u e s t i o n .  It would   be   p refer red   i f   the   da ta  

s t r u c t u r e s   u s e d  by any   one   subrout ine   (or   p rocedure)   could   be   in t imate ly  

a s s o c i a t e d   w i t h   t h e   o p e r a t i o n s   o f   t h a t   s u b r o u t i n e ,  so t h a t  a l l  accesses  

and  changes t o   t h e   d a t a   m u s t  pass th rough   t he   sub rou t ine   i t s e l f .   Whi l e  

these   k inds   o f   cons t r a in t s  may b e   i n c o r p o r a t e d   i n t o  a convent ional   pro-  

gram i n  any   spec i f i c   i n s t ance ,   wha t  i s  r e a l l y  needed i s  a methodology  that  

au tomat i ca l ly   con t ro l s   t he   a l lowed   r anges   o f   ope ra t ions   on   s to red  d a t a  

and p rograming  states when c rea t ing   p rog rams   i n   gene ra l .  

This   requirement  may b e   s a t i s f i e d   i n h e r e n t l y  by p l ac ing   t he  data 

s t r u c t u r e s   t o  be  manipulated by t h e   p r o g r a m   i n   t h e  same decomposition 

h i e r a r c h y  as i s  used   fo r   t he   sub rou t ines   t hemse lves .   I f   t h i s  i s  done 

p r o p e r l y ,   t h e   s p e c i f i c a t i o n s   f o r  a p a r t i c u l a r   f u n c t i o n   i n   t h e   h i e r a r c h y  

can   be   wr i t t en   t o   p rov ide  s t r ic t  cont ro l   over   the   cor responding   e lements  

of data. As a resul t ,  each   subrout ine  w i l l  be s e l f - c o n t a i n e d   a n d   f u l l y  

s p e c i f i a b l e   w i t h  respect t o   b o t h   t h e   o p e r a t i o n s  i t  performs  and t h e  co r -  

responding data s t ructures .  Note   here   tha t ,  j u s t  as the   fundamenta l   in -  

s t r u c t i o n s   f o r   t h e   h a r d w a r e   c o r r e s p o n d   t o   t h e   l o w e s t   l e v e l s   i n   t h e   h i e r -  

archy, so  a l s o  are the  fundamental   elements  of data loca ted  a t  t h i s   l e v e l .  

As one moves  upward th rough   t he   h i e ra rchy ,   da t a   s t ruc tu res  composed from 

these   da t a   e l emen t s  may become la rger   and  more i n t r i c a t e ,   j u s t  as the  

functions  performed  upon them become  more complex  and  powerful. 

A type  of program  hierarchy w i l l  now b e   d e s c r i b e d   t h a t   s a t i s f i e s  

t h i s  a d d i t i o n a l   d a t a - s t r u c t u r i n g   r e q u i r e m e n t   i n   a n   e f f e c t i v e  and p r a c t i c a l  

way. 

The  fundamental  element i n   t h e  new h ie ra rchy  w i l l  be  designated a 

module, a term d u e  t o   P a r n a s  (who is  a l s o   r e s p o n s i b l e   f o r   o t h e r   i d e a s   i n  

s t ructured  programming) .  A t yp ica l   p rog ram  h i e ra rchy   has   t he  same form 

as t h a t   i l l u s t r a t e d   i n   F i g u r e  VIII-2. Each  module, dep ic t ed  by a circle 
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In the  figure, is  related  to  certain  other  modules  below  it  by  a  depen- 
dency  relation,  which  is  indicated  by an  arrow and  will  be  defined sub- 

sequently. The uppermost  module(s)  represents  the  user  program(s),  and 

the  lowermost  modules  represent  the  minimal  level  of  implementation--e.g., 

computer  instructions  or  hardware. 

... 

In essence,  a  module  consists  of  a  collection  of  data  structures  and 

a  collection  of  operations  on  these  data  structures.  For  example,  a  mod- 

ule  called  MATRIX  might  maintain  n X n  matrices  of  real  numbers  and  func- 
tions  for  inversion,  transposition,  element  change,  access,  etc. A mod- 
ule  called  STACK  might  be  used  to  push  and = characters  on  the  top  of 
a  "stack"  of  stored  characters. 

By  virtue  of  its  data  structures,  a  module  may  be  said  to  possess  a 

storage  state  which  will  change  from  time  to  time  as  operations  are  per- 

formed  in  the  module. To specify  a  module  completely,  it  is  first  con- 

venient  to  define  its  data  structures  by  declarations  of  variables,  pa- 

rameters,  etc., in  a  conventional  way,  plus  a  set  of  value-functions 

called  V-functions.  These  V-functions  collectively  and  completely  de- 

scribe  the  storage  state of the  module,  though  without  presuming  any  par- 

ticular  configuration  of  the  data  elements  in  a  physical  or  other  form. 

For example,  it  is  of  no  concern  at  this  point  whether  the  characters  in 
a STACK  module  are  stored in the  form of a  bidirectional  shift  register, 

an array  with  a  pointer, or as  a  linked  list;  the  only  property  of  inter- 

est  is  that  the  characters  entered  by  push  be  returned  by pop in inverse 
order  of  entry. In this  case,  the  set  of  V-functions  describes  the  set 
of all  past  characters  pushed  in  that  have  not  yet  been  popped. 

For  the  second  part  of a module  specification,  the  operations  per- 

formable  in  the  module  are  described  by a set  of  operation-functions  or 

0-functions.  These  0-functions  are  expressed  in  terms  of  the  effects 
they  have on the  set  of  V-functions  of  the  module.  That  is,  each 

0-function  describes  in  V-function  terms how a  prior  storage  state  is 

transformed  into  a  new  storage  state.  Again,  no  presumptions  are  made 

here as to how an 0-function is to be  realized or implemented in terms 
of simpler  constructs. 
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To c o m p l e t e   t h e   s p e c i f i c a t i o n   o f  a module, i n i t i a l   v a l u e s   m u s t   b e  

s p e c i f i e d   f o r  a l l  V-funct ions.  Also, e x c e p t i o n   c o n d i t i o n s  may b e   i n d i -  

c a t e d   f o r   b o t h  0- and   V-funct ions- -e .g . ,   an   input   var iab le  i s  ou t   o f  

r a n g e ,   a l l o c a t e d   s t o r a g e   s p a c e  i s  f u l l ,   o r  a d i sa l lowed   ope ra t ion  is  re- 

ques ted .   Engl i sh- language   explana tory  comments may a l s o   b e   i n c l u d e d   i f  

des i r ed ,   bu t   t he   spec i f i ca t ion   mus t   be   comple t e   w i thou t   t hese ,   o f   cou r se .  

F ina l ly ,   t he   modu le  i s  g iven  a name. 

T h e   t o t a l   s p e c i f i c a t i o n  now s a t i s f i e s   t h e   f i r s t   i t e r a b i l i t y   c o n -  

d i t i o n ,  namely, t h a t   t h e  module i s  comple te ly   def ined  as f a r  as i t s  k- 
h a v i o r  i s  concerned. 

To s a t i s f y   t h e   s e c o n d   i t e r a b i l i t y   c o n d i t i o n ,   e a c h   m o d u l e  i s  i m p l e -  

mented by a set of   lower- leve l   modules   in   the   h ie rarchy .   The   modules   on  

which a given  module  depends  for i t s  implementat ion are s a i d   t o   b e   i n  a 

dependency r e l a t i o n   t o  it, and are c o n n e c t e d   t o  i t  i n   F i g u r e   V I I I - 2  by an  

in t e rmodu le   a r row  po in t ing  downward from it .  Consider  a t y p i c a l  module 

M and a l l  those  other   modules   on  which it depends--i ts   dependency set-- 
as i l l u s t r a t e d   i n   F i g u r e  V I I I - 3 .  L e t  us   suppose   tha t   an   implementa t ion  

o f  M has   a l ready   been   accompl ished ,  so  t h a t  M and a l l  of   the  modules  

i n  i t s  dependency set have   been   spec i f ied  as described  above.  Thus,   each 

has  i ts  own set  of 0- a n d   V - f u n c t i o n s ,   i n i t i a l   v a l u e s ,  etc.,  a p p r o p r i a t e  

t o  i t s  purpose.  To "implement" M it i s  now n e c e s s a r y   t o  somehow relate 

i t s  own s p e c i f i c a t i o n   t o   t h e   s p e c i f i c a t i o n s   o f   t h e   m o d u l e s   i n  i t s  depen- 

dency set .  

k 

k k 

k 

To t h i s  end, a correspondence  between M and i t s  dependency set  i s  k 
r e c o g n i z e d .   F i r s t ,   t h e  states of  M and t h o s e   o f  i t s  dependency set are k 
pu t   i n to   co r re spondence .   Th i s  is done  by  mapping  the  nonhidden 

V-funct ions i n  the  dependency set  o n t o   t h e  set of   V-funct ions  of  . For  

example, t h e  states r e p r e s e n t i n g   t h e   c o n t e n t s   o f  matrices i n  a MATRIX 

module  would  be  expressed i n  terms o f   t h e  states r e p r e s e n t i n g   v e c t o r s   i n  

a lower VECTOR module  on  which it depends. A state mapping is  a c t u a l l y  

a mapp ing   o f   da t a   s t ruc tu res .  It can   be   expressed  by a set of a s s e r t i o n s  

or equat ions ,  or  i n   s i m p l e  cases merely as a t a b u l a r   l i s t i n g .  

Mk 
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DEPENDENCY 
SET OF Mk 

FIGURE VIII-3 DEPENDENCY SET 

I n   g e n e r a l ,   c e r t a i n   p o r t i o n s   o f   t h e   t o t a l  s ta te  i n   t h e  dependency 

set may b e   t r a n s p a r e n t   t o  M i n  which  case  the  mapping w i l l  be  many-to- 

one  ra ther   than  one-to-one.  The corresponding  V-funct ions are s a i d  t o  

be  hidden (HV), e .g . ,  a l l  s t o r e d   c h a r a c t e r s   e x c e p t  t h e  most   recent ly   en-  

tered one i n  a STACK module  would  normally  be  transparent t o  a c a l l i n g  

module  above,  and  would  be  represented by such a function.  HV-functions 

i n   t h e  dependency set  do  not  par t ic ipate  i n   t h e  mapping  onto M b u t   t h e  

HV-functions i n  M must a l l  be  accounted  for   by  the set  of  V-functions 

i n   t h e  dependency set. 

k’ 

c 

k’ 

k 

Second,  every  0-function  and  V-function  of  module M m u s t  be imple -  k 
mented as a program  ( tha t  i s  a s e q u e n c e   o f   c a l l s )   i n  terms o f   t h e  0- 

and  V-functions  of  the  modules  of i t s  dependency set. Note t h a t   t h e s e  

programs  for   funct ion  implementat ion are a b s t r a c t  programs, i n   t h e   s e n s e  

t h a t   t h e  modules  on  which  they  might  be  run are themse lves   abs t r ac t  

machines. 
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This  particular  definition  of  a  program  hierarchy  of  modules  natur- 

ally  assumes  that  there  is no recursion  in  the  dependency  order.  However, 

it  is  permitted  for  two  or  more  modules  to  depend  upon  the  same  lower- 

level  module.  Consequently,  the  graph  that  describes  the  hierarchy  is  a 

directed  graph  without  cycles. 

The set  of  nonhidden  V-functions of a  module may  also  contain de- 
rived  or  DV-functions.  These  are  redundant  and  are  created  for  conve- 

nience  only.  DV-functions  need  not  participate  in  the  assertions  that 

describe  mapping  correspondences,  but  must  be  defined  directly  or  indi- 

rectly  as  programs,  just  as  for  the  other  accessible  V-functions. 

As  a  convenience  one  may  also  speak  of an  OV-function  as an insep- 

arable  concatenation  of an  0-function and a  V-function. It need  not  par- 
ticipate i n  the  mapping,  but  like  0-functions  requires  a  statement  of 

effects  in  its  specification. 

The second  condition  of  iterability,  the  completeness  of  decompo- 

sition,  is  therefore  satisfied  provided  each 0- and  V-function  of  every 

module  can  be  realized  as a program of 0- and  V-function  taken  from 

lower-level  modules of the  hierarchy,  where  the data structures  of  the 

corresponding  modules  are  related  by  a  complete  V-function  mapping  as 

defined  above. 

The  third  iterability  condition  is  satisfied  in  the  course  of  design, 

provided  each  module  is  implemented  with  other  modules  that  are  less  com- 

plicated  than  itself.  This  condition  is  not  automatically  satisfied  by 

the  design  methodology.  However,  the  methodology so structures  the de- 
sign  that  it  is  easier  for  the  designer  to  maintain  control  over  the  com- 

plexity  of  the  implementations  at  each  level,  compared  to  a  conventional 

des  ign. 

These  concepts  and  definitions  will  now  be  illustrated by means  of 

the  simple  example  illustrated  in  Figure  VIII-4. An upper  module  STACK 

is to be 

STACK  is 

stack--a 

on  which 

implemented  by  means  of  a  lower  module ARRAY. The  function  of 

to  carry  out  the  usual  push  and  pop  operations  on  a  conventional 

data  structure  consisting  of  a  finite  ordered  list of elements 

elements  may  be  inserted  (pushed)  or  removed  (popped)  only  at 
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MODULE  STACK 

V-FUNCTION  0-FUNCTION 
.. 

SIZE  PUSH (X)  
STAK(J)  [HVI POP [OVI  
TOP [DVI  

# 

MODULE  ARRAY 

V-FUNCTION  0-FUNCTION 

CHAR(A)  CHANGE(A,Y), 

FIGURE VIII-4 EXAMPLE OF CONCEPTS AND  DEFINITIONS 

t h e   t o p  of t h e  l i s t .  T h e   d a t a   s t r u c t u r e   i n  ARRAY i s  an  unordered set  of 

e lements .  

A c o m p l e t e   s p e c i f i c a t i o n   o f   t h e   m o d u l e  ARRAY i s  l i s t e d   i n   T a b l e  

V I I I - 1 .  F i r s t ,   v a r i a b l e s  are dec la red  as t o   t h e i r   t y p e s - - t h a t  is ,  

whether   they  are i n t e g e r ,  real, complex,  boolean, e tc . ,  and  parameters 

of t h e   a r r a y  are de f ined .  Next, t h e   s i n g l e   V - f u n c t i o n  CHAR(A) i s  spec-  

i f i e d .  After s t a t i n g  i ts  purpose ,   an   excep t ion   cond i t ion  i s  g iven  t o  

cover t h e  case when the   i ndependen t   va r i ab le  A i s  o u t  of range.  Then, 

t h e   i n i t i a l   v a l u e   o f   t h e   V - f u n c t i o n  i s  i n d i c a t e d  f o r  a l l  p o s s i b l e   v a l u e s  

of A .  Next, t h e   0 - f u n c t i o n  CHANGE(A,Y) is  s p e c i f i e d ,   i n c l u d i n g  i t s  pur- 

pose ,   excep t ions   cond i t ions   ( e i the r  A o r  Y o u t  of range),   and i t s  effect  

upon the   V-funct ion  of t h e  module .   This   module   could   be   d i rec t ly  real- 

i z e d   i n  a random access memory, i n  which case t h e  V- and  0-funct ions 

would  correspond t o  nondes t ruc t ive   r ead   and   s imple   wr i t e   ope ra t ions ,  re- 

s p e c t i v e l y .  Note t h a t   t h e r e  i s  n o t h i n g   a b o u t   t h e   s p e c i f i c a t i o n   o f  ARMY 

t h a t   p r e s u p p o s e s   t h i s   p a r t i c u l a r   h a r d w a r e   r e a l i z a t i o n ,   h o w e v e r .  
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Table  VIII-1 

MODULE  ARRAY 

Declaration: Integer  A, Y 
Parameters: AMAX Size  of  Array 

CHMAX . Maximum  value  of  stored  element 

V  -Func t ion : CHAR (A) 
Purpose:  To  return  the  A-th  element  of  the 

Exceptions:  AOUT:  A < 1 or A > AMAX 
Initially: B (0 5 i S AMAX) (CHAR(i) = 0) 

array 

0-Function:  CHANGE  (A, Y) 
Purpose:  To  replace  the  A-th  element  of  the 

Exceptions:  AOUT: A 1 or  A > AMAX 

Effects:  CHAR(A) = Y 

array  by Y 

YOUT:  X e 0 or  Y > CHMAX 

The  specification  of  the  module  STACK  shown  in  Table VIII-2 follows 

similar  lines.  The  V-function  SIZE  reflects  the  number  of  entries  that 

are  currently  stored  in  the  stack.  A  HV-function  STAK(J)  represents 

the  entire  contents  of  the  stack;  it  is  invisible  and  cannot  be  called  by 

higher-level  modules. A DV-function  TOP  is  derived  from STAK(J). The 

effects  of  the  0-function  PUSH(X)  are  to  inject a  new  element  X  onto  the 

top  of  the  stack  and  to  increase  SIZE  by 1. The  OV-function  POP  accom- 

plishes  the  reverse--the  top  element  is  both  returned  and  deleted  from 

the  stack,  and  SIZE  is  reduced by 1. Again,  the  STACK  module  could be 

implemented  in  a  variety  of  ways  and  none  are  assumed  or  precluded  by 

the  specification  given  here. 

Implementation  of  STACK  by  means  of  ARRAY  requires  first  that  the 

V-functions  of  the  two  modules  be  placed  in  correspondence. To this  end, 
the  parameters  are  related  first. The nonderived  V-functions of STACK 

are  expressed in terms  of  (nonhidden)  V-functions  of  ARRAY.  Note  that  the 

elements  of STAK and  CHAR  are  placed  in  one-to-one  correspondence,  except 

that  one  extra  element of CHAR  is  reserved  for  SIZE,  which is to be used 

as a  pointer  in  this  implementation. 
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Table  VIII-2 

SPECIFICATION OF MODULE  STACK 

Module  Stack 
Declarations:  Integer J. X 
Parameters: 

V-Function: 

HV-Func  tion: 

DV-Func t ion : 

0-Function: 

OV-Func  tion: 

Mapp in& 
Parameters: 

V-Functions: 

Initialization 
CHAKE (rLsAX, 0) 

Implementation 
V-Func t ion : 
DV-Func t ion : 

0-Tunc t ion : 

OV-Function: 

SMAX Maximum s i z e  of stack 
CHARMAX Maximum value of stored  element 
SIZE 
Purpose:  To  return  the  number  of  elements  currently in 

Exception:  None 
Initially:  SIZE = 0 

STAK(J) 
Purpose: To represent  entire  contents  of  the  stack 
Initially: Vi(0 i s SMAX)(STAK(i) = Undefined) 
TOP 
Purpose:  To  return top element in the  stack 
Derived:  TOP = STAK(S1ZE) 
Exceptions:  EMPTY:  SIZE = 0 

PUSH (X) 
Purpose: To augment  stack  with  an  additional  Element X 
Exceptions:  FULL:  SIZE = MAXS 

Effects:  SIZE = 'SIZE' + 1 

the stack 

XOUT:  X C 0 or  X > CHARMAX 

STAK(S1ZE) = X 
Pot- 
Purpose: To return  and  remove  top  element of the stack 
Exception:  EMPTY:  'SIZE' = 0 
Effects:  POP = STACK('S1ZE') 

SIZE  'SIZE' - 1 

CHMAX = CHARMAX 
CHMAX = SMAX 
A M A X = S M A x + l  

VJ(1 5 J 5 AMAX - l)(STAK(J) = CHAR(J)) 
SIZE = CHAR(AMAX) 

SIZE = CHAR(AMAX) 
TOP = CHAR(CHAR(AMAX)) 
EXIT:  EMPTS: CHAR(AMAX) = 0 
ASSERTIOK: FL'LL: CHAR(ANAX)  AMAX - 1 

SOI'T: X < 0 or X > CHEW 
PCSH(X):  CHAiiGE (AMAX, CHAR(ANAX) + 1) 

CHAKGE (CHAR("), X) 
ASSERTIOK:  EXPTY:  CHAR(ANAX) - 0 
Pop: m e  = CHAR(CHAR(AMAX)) 

CHANGE (AMAX, CHAR(AMAX) - L) 
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Next, ARRAY must  be  initialized  to  conform  to  the  initial  conditions 

of STACK.  Only  the  extra  element  CHAR  need  be  set  to  a  defined  value. 

Finally,  the  implementation  is  described  by  expressing  each  function 

of  STACK  as  a  program  in  terms  of  the  V-function  CHAR  and  the  0-function 

CHANGE  of  the  module  ARRAY.  Exit  conditions  expressed in the  same  terms 

describe  non-normal  returns  from  the  lower  level  to  the  upper  level. 

Several  properties  of  this  realization  may  be  noted  at  this  point 

as  a  way of  summarizing  some  important  general  features  of  a  hierarchi- 

cal  design : 

(1) Each  module  specification  is  essentially  independent 
of  those  of  all  other  modules. 

(2 )  The effects  of  0-functions  and  the  definitions  of 
DV-functions  are  expressed  in  terms of nonderived 
V-functions  of  the  same  module,  and  are  implemented 
solely  in  terms  of  functions  occurring  in  that  mod- 
ule's  dependency  set. 

(3 )  The implementation  employed  for  a  module  is  not 
visible  to  those  upper  modules  that  may  depend  upon 
that  module  for  their  own  implementations. 

( 4 )  The  state of  a  module  is  determined  by  the  complete 
set of values  of  all  of  its  nonderived  V-functions, 
over  all  allowed  values  of  their  arguments. 

(5) The mapping of V-functions  between  modules  presumes 
explicit  relationships  between  the  parameters  of 
corresponding  modules. 

( 6 )  HV-functions  have  no  exception  conditions; 0- and OV- 
functions  have  no  initial  conditions;  and  none of the 
V-functions  have  effects. 

With  this  background,  the  steps  of  design  according  to  the  methodol- 

ogy  may  be  outlined  as  follows. The starting  point f o r  the  design  con- 

sists  of  a  specification  of  the  uppermost  module  in  the  hierarchy--a  con- 

cise  description  of  what  the  overall  program  is  to  accomplish. If the 

hardware  on  which  the  final  program  is  to  be  implemented  is  prescribed, 

a  list  of  the  lowest-level  elements  or  functions  out of which  the  system 

is  to  be  composed  will  also  be  specified.  Then: 

(1) The uppermost  module  function  is  decomposed  into  a  hier- 
archy  of  modules,  the  function  of  each of which  is  cur- 
sorily  described  in  words. 
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(2) The  func t ion  of each  module is  de f ined   p rec i se ly   by  a 
s p e c i f i c a t i o n ,  as expla ined   prev ious ly .  

(3 )  The  V-function  mappings are worked out  between  each 
module  and  those  of i t s  dependency set. 

( 4 )  A l l  V-funct ions  and  0-funct ions are implemented as 
programs i n   t h e  V- and  0-functions  of  modules  of 
the i r   cor responding   dependency  sets. 

Like   mos t   des igns ,   these   four  steps are not   independent   of   one  another .  

They are n o t   e x e c u t e d   i n  a s i n g l e   s e q u e n c e   b u t  are passed  through re- 

p e a t e d l y   i n   t r i a l - a n d - e r r o r   f a s h i o n   u n t i l  a l l  cond i t ions  are s a t i s f i e d  

and a l l  c o s t  and qua l i ty   measu res   ( such  as t h e  number of  programming 

s t e p s ,   t h e   r u n n i n g  time, and  amount o f   s t o r a g e   r e q u i r e d )  are s u i t a b l y  

opt imized.  

S t e p s  2 and 3 above are l a rge ly   fo rma l ,   bu t  steps 1 and 4 are more 

c r e a t i v e .   T h e   f i r s t  s t e p  r e q u i r e s  a p e r s p e c t i v e   v i e w   o f   t h e   e n t i r e   h i e r -  

a r c h i c a l  program. I n  decomposing  the  var ious  module  funct ions,   the   de-  

s i g n e r   m u s t   u s e   h i s  p a s t  e x p e r i e n c e   t o   a n t i c i p a t e  how they   shou ld   bes t  

be  decomposed,  both i n  terms of   t he   ope ra t ions   pe r fo rmed   and   t he   da t a  

s t r u c t u r e s   a p p r o p r i a t e   t o   t h e s e   m o d u l e s .  The f o u r t h  s t e p  c a n   o f t e n  bene- 

f i t  f rom  ingenui ty  a t  a more d e t a i l e d ,   l o g i c a l   l e v e l .  

Two i d e a l i s t i c   a p p r o a c h e s   t o   h i e r a r c h i c a l   d e s i g n  are fa sh ionab le .  

I n   t h e  bottom-up  approach  the  modules are d e f i n e d   i n   s u c c e s s i o n   f r o m   t h e  

b o t t o m   o f   t h e   h i e r a r c h y   t o   t h e   t o p ,   i n   s u c h  a manner t h a t  no  module i s  

c r e a t e d   u n t i l  a l l  modules i n  i t s  dependency set h a v e   b e e n   c r e a t e d   f i r s t .  

The  user  program a t  t h e   t o p  is c r e a t e d  last. I n   t h e  top-down  approach 

one starts with  the  uppermost  module  and creates lower-level  modules i n  

success ion  as they  are needed, u n t i l  a l l  of   the   lowes t - leve l   modules  are 

defined.  The  bottom-up  approach i s  more  of a s y n t h e s i s ,   i n   t h e   s e n s e   t h a t  

t h e  s i m p l e s t  e l emen t s   o f   t he   sys t em are gradual ly   assembled  into  more  and 

m o r e   p o w e r f u l   u n i t s   i n   o r d e r   t o   r e a l i z e   t h e   f u n c t i o n  a t  t h e   t o p .   I n   o n e  

way it i s  a more o rde r ly   p rog res s ion .  The  top-down  viewpoint i s  more 

a n a l y t i c a l ,   i n   t h e   s e n s e   t h a t   f u n c t i o n s ,   d a t a   s t r u c t u r e s  and ope ra t ions  

are repea ted ly   b roken  down i n t o  s i m p l e r  parts u n t i l   o n l y  pr imi t ive  ver- 

s i o n s  remain. 
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Both   of   these   approaches   suf fe r   f rom  the  same disadvantage .  Namely, 

it i s  n o r m a l l y   d i f f i c u l t   t o   d e f i n e   m o d u l e s  a t  i n t e r m e d i a t e   l e v e l s   m e r e l y  

from a knowledge  of   module  specif icat ions a t  the  uppermost  and  lowermost 

levels o f   t h e   h i e r a r c h y .  While t h e   d e c o m p o s i t i o n   o f   t h e   s y s t e m   i n t o  a 

f u n c t i o n a l   h i e r a r c h y   g r e a t l y   s i m p l i f i e s   t h e   o v e r a l l   d e s i g n  problem, t h e  

s t e p  o f   s e l ec t ing   i n t e rmed ia t e - l eve l   modu les  s t i l l  r e q u i r e s  a broad view 

of t h e   m a n i f o l d   p o s s i b i l i t i e s   o f   a n a l y s i s  and   synthes is .   These  are pres- 

en t ly   bes t   acqu i r ed   on ly   t h rough   expe r i ence .  

Consequently,   the  bottom-up  and  top-down  approaches  actually  mark 

extremes a t  the   ends   o f  a cont inuum  of   poss ib i l i t i es .   The  practical  ap- 

proach l ies i n  between.  The t o t a l  number o f   compe t ing   des ign   a l t e rna t ives  

are reduced by working a t  a l l  l e v e l s   o f   t h e   h i e r a r c h y   s i m u l t a n e o u s l y ,  

u s ing   t he   t op   and   bo t tom  l eve l s   on ly  as s t a r t i n g   p o i n t s .  

I f  a computer   program  has   been  designed  hierarchical ly  as de f ined  

above ,   formal   p rogram  proving   techniques   can   be   appl ied   appropr ia te ly   to  

t h e  module spec i f ica t ions ,   to   the   V-funct ion   mapping   cor respondences ,   and  

t o   t h e  0- and  V-function  implementations,  t o  p r o v e   c o r r e c t n e s s   o f   t h e  

program.  These  techniques are now u n d e r g o i n g   r e f i n e m e n t   i n   r e l a t e d  SRI  

p r o j e c t s   i n   w h i c h   t h e   h i e r a r c h i c a l   d e s i g n   m e t h o d o l o g y  i s  b e i n g   a p p l i e d   t o  

o the r   so f tware   sys t ems .  

T h i s   h i e r a r c h i c a l   a p p r o a c h   a l s o  creates a d e s i g n   i n  which i t  i s  

easier t o   c o n t r o l   s e c u r i t y - - m a i n t a i n i n g   c o n t r o l   o v e r   d i f f e r e n t   u s e r s ’  

r i g h t s   t o  access and/or   change  var ious  data   e lements-- including a capa- 

b i l i t y   f o r   p r o v i n g   t h a t   t h e   d e s i r e d   s e c u r i t y  is  indeed   ach ieved .   F ina l ly ,  

a p rogram  r e su l t i ng   f rom  the  new methodology i s  amenable t o   d e t e r m i n a t i o n  

of i t s  r e l i a b i l i t y ,   u n d e r   a n  assumed set of f a i l u r e   p r o b a b i l i t i e s   f o r  i t s  

lowes t - l eve l   modu le   func t ions ,   and   t o   p rov ing   t ha t  a r e q u i r e d   r e l i a b i l i t y  

l e v e l   h a s   a c t u a l l y   b e e n   a c h i e v e d   i n   t h e   d e s i g n .  
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I X  HIERARCHICAL ORGANIZATION OF SIFT 

I n   t h i s   s e c t i o n  we d i s c u s s   t h e   d e s i g n   o f   t h e   S I F T   s y s t e m  as a h i e r -  

a r c h i c a l   l a y e r i n g   o f   a b s t r a c t   m a c h i n e s .   F i r s t ,  we b r i e f l y   d i s c u s s   t h e  

h i e ra rch ica l   des ign   me thodo logy ,   w i th  respect t o   o u r   c o n c e p t   o f   t h e  SIFT 

requ i r emen t s   and   t he   hand l ing   o f   f au l t s  and errors .   This   methodology com- 

p r i s e s   f i v e   s t a g e s   o f   d e s i g n   a n d   i m p l e m e n t a t i o n .   T h e   r e a l i z a t i o n   o f  SIFT 

is  d i s c u s s e d   r e l a t i v e   t o   t h e s e   f i v e  stages. T h e   p r o p o s a l   f o r   t h i s   p r o j -  

ect  s u g g e s t e d   t h a t   t h e   o p e r a t i n g   s y s t e m   b e   d e s c r i b e d   u s i n g   f l o w c h a r t s .  

Th i s   sugges t ion   has   no t   been   fo l lowed   because   t he   f i ve   s t ages   p rov ide  a 

descr ip t ion   which  is  easier t o   u n d e r s t a n d  and a l s o  i s  easier t o   v e r i f y  

and  analyze.  

A .  The  Hierarchical  Methodology Relative t o  SIFT 

I n   S e c t i o n  V I 1  t he   h i e ra rch ica l   me thodo logy  w a s  d i scussed  as a gen- 

eral approach t o   d e s i g n i n g  and  proving  systems. Below, we b r i e f l y   r e v i e w  

the  methodology  and  present some augmen ta t ions   t o   hand le   ha rdware   f au l t s ,  

t h e i r  i m p a c t  on a l l  abs t r ac t   mach ines  and an  approach  toward  developing 

a c r e d i b l e   r e l i a b i l i t y   a s s e s s m e n t   o f   S I F T .  The  methodology  involves  the 

fo l lowing   s t ages .  

S t age  O--Express  the problem  to   be   so lved   in   abs t rac t   and   perhaps  

imprec ise  terms. For  SIFT th i s  s t a g e  en ta i l s  expres s ing  the in ten t  of  

t h e  S IFT   sys t em  wi th   r ega rd   t o   d i spa tch ing   app l i ca t ion   t a sks   and   t he  

h a n d l i n g   o f   e r r o r s .  

Stage  1--Conceive of a set  of abs t r ac t   mach ines  that  seem appro- 

p r i a t e   fo r   so lv ing   t he   p rob lem.   Each   abs t r ac t   mach ine   has  a state space  

and o p e r a t i o n s   t o   c h a n g e   t h e  state.  As suggested  by  Parnas   [Ref .  11, 
we use  V-funct ions t o   r e p r e s e n t   t h e  state and  O-functions t o  correspond 

to   opera t ions .   The   machines  are o rgan ized   h i e ra rch ica l ly ,  i.e., as nodes 

i n  a d i r e c t e d   a c y c l i c   g r a p h .  An edge  from  node A t o  node B i n d i c a t e s   t h a t  

the   machine  a t  node B implements  the  machine a t  node A .  The  machines 
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c o r r e s p o n d i n g   t o   l e a f   n o d e s   i n   t h e   g r a p h  are c a l l e d  primitive machines 

s i n c e   t h e   o p e r a t i o n   o f   t h e   e n t i r e   s y s t e m  i s  dependent   on  these  machines .  

I n   t h e   d e s i g n   p r o c e s s  i t  i s  u s e f u l   t o  view each   abs t r ac t   mach ine  as main- 

t a i n i n g  a p a r t i c u l a r   t y p e   o f   a b s t r a c t   o b j e c t   f o r   u s e  by a n   a b s t r a c t  ma- .  

c h i n e   d i r e c t l y   a b o v e  it i n   t h e   h i e r a r c h y .  Some o f   t h e   f u n c t i o n s   o f   e a c h  

a b s t r a c t   m a c h i n e   c a n   b e   c a l l e d  by  programs t h a t   r u n  on the   sys tem.  We 

d e s i g n a t e   t h e s e   f u n c t i o n s  as compr i s ing   t he   sys t em  in t e r f ace .   Fo r  SIFT 

the   p rograms  tha t  ca l l  t h e   i n t e r f a c e   f u n c t i o n s  are s i m p l y   t h e   a p p l i c a t i o n  

t a s k s .  It  should  be clear t h a t   t h e   m a c h i n e   f u n c t i o n s   t h a t  are n o t  p a r t  

o f   t h e   i n t e r f a c e  are n o t   a c c e s s i b l e   t o   t h e   a p p l i c a t i o n   p r o g r a m s .  

A l l  o f   t h e  0- and  V-functions  of a m a c h i n e   a c c e s s i b l e   t o  a h ighe r  

leve l   machine  are c a l l e d   t h e   v i s i b l e   f u n c t i o n s   o f  a machine. Some o f   t h e  

V-funct ions j u s t  s e r v e   t o   a i d   i n   d e f i n i n g   t h e  s ta te  and  cannot  be  accessed; 

t h e s e   f u n c t i o n s  are ca l led   h idden   V-funct ions .   The  set of   V-funct ions  of  

a machine   tha t  are e s s e n t i a l   i n   d e f i n i n g   t h e  s ta te  space of  a machine are 

ca l l ed   p r imi t ive   V- func t ions .  Some o the r   V- func t ions ,   ca l l ed   de r ived  

V- func t ions ,   r e tu rn  a v a l u e   t h a t  i s  dependent   on  the  value  of   more  pr imi-  

t i ve   V- func t ions .  The ro l e   o f   de r ived   V- func t ions  is  t o  provide  a mech- 

a n i s m   f o r   r e f e r r i n g   t o  a c o l l e c t i o n   o f  states by a s ing le   func t ion .   These  

func t ions  are d e s c r i b e d   i n  more d e t a i l   i n   S e c t i o n  IX-D. 

I n   o r d e r  t o  fo rma l i ze   t he   concep t   o f  a f a u l t   o c c u r r e n c e ,  we use t h e  

mechanism  of  hidden  0-functions.   That i s ,  some o f   t he   abs t r ac t   mach ines  

w i l l  con ta in   t he   0 - func t ion   cause - fau l t ,   wh ich  i s  n o t   c a l l e d  by  any  pro- 

gram, but   occurs   asynchronous ly   wi th   o ther   p rocess ing ,   wi th  a p r o b a b i l i t y  

dependent   upon  the  hardware  and  t ransient   faul t   mechanisms.   The  object  

t h a t  i s  "damaged" by t h e  f a u l t  i s  d e p e n d e n t   o n   t h e   p a r t i c u l a r   a b s t r a c t  

machine   tha t  i s  s u b j e c t   t o   f a i l u r e .   I n   o u r   a n a l y s i s   o f  SIFT t h e   p r i m i t i v e  

o b j e c t s   t h a t  are s u b j e c t   t o   f a i l u r e  are processors   and  busses .   This  

r e p r e s e n t s  a c o a r s e   t r e a t m e n t   o f   f a u l t s  as compared  with  one i n  which 

f a u l t s  are assumed t o   a f f e c t  memory words o r   p r o c e s s o r   r e g i s t e r s .  Our 

course  approach is realist ic f o r   a n  LSI implementation  and  moreover, 

does  not   produce  overly pessimistic resu l t s .   Hidden   V-funct ions  are in -  

c l u d e d   i n   c e r t a i n   m a c h i n e s   t o   r e c o r d . t h e   o c c u r r e n c e   o f   f a u l t s .   T h e s e  
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f u n c t i o n s  are o f   necess i ty   h idden   s ince   an   obse rve r   o f   t he   mach ine ' s   be -  

hav io r  w i l l  n o t   d e t e c t   t h e   f a u l t   o c c u r r e n c e   u n t i l   t h e   m a c h i n e  i s  appro- 

p r i a t e l y   e x e r c i s e d .  

S t age   2 - - In   t h i s   s t age  a f o r m a l   s p e c i f i c a t i o n  i s  w r i t t e n   f o r   e a c h  

o f   t he   abs t r ac t   mach ines .  The e x a c t   f o r m a t   o f   t h e   s p e c i f i c a t i o n s  i s  d i s -  

c u s s e d   i n   t h e   n e x t   s e c t i o n ,   b u t  i t  s u f f i c e s   f o r   t h i s   d i s c u s s i o n   t o   s a y  

t h a t   t h e  m o s t   s i g n i f i c a n t  p a r t  of a s p e c i f i c a t i o n  i s  t h e   e f f e c t s   s e c t i o n  

for   each   0- func t ion   which   g ives   the  new V- func t ions   i n  terms of t h e   v a l -  

ues   o f   V-funct ions   immedia te ly   p r ior   to  a c a l l  on  the  0-funct ion.   These 

e f f e c t s  are w r i t t e n  as a s s e r t i o n s   i n  a language  to   be  descr ibed  below.  

I n   t h e  case of   machines   whose  specif icat ion is  i n t e n d e d   t o   p o r t r a y   t h e  

r e s u l t s   o f   f a u l t s ,   t h e   e f f e c t   o f   t h e   g e n e r i c   0 - f u n c t i o n   c a u s e - f a u l t  i s  t o  

change   t he   va lues   o f   h idden   V- func t ions   t ha t   r eco rd   t he   f au l t   occu r rence .  

The f au l t   c an   p roduce  a p e r c e i v a b l e   e r r o r  when an   0- func t ion  i s  invoked 

whose s p e c i f i c a t i o n s  are dependent  on  the  above  hidden  V-functions.  

S t age   3 - - In   t h i s   s t age   t he  s ta tes  o f   each   non-p r imi t ive   abs t r ac t  

machine   a re   represented   in   t e rms   of   the  s ta tes  of   the  lower  level   machines  

tha t   compr i se  its implementa t ion .   This   representa t ion  i s  a par t ia l  map- 

ping  f rom  the state-spaces of the  lower  level   machines   onto  the  upper  

l e v e l  state-space. I t  is pa r t i a l  s ince   no t   every   lower   l eve l  s ta te  w i l l  

have  an  image i n   t h e  uppe r  l e v e l ,  and it is on to   s ince   each  u p p e r  l e v e l  

s ta te  m u s t  be t h e   t a r g e t   o f  a mapping. Two d i s t i n c t  states S1, S2 i n   t h e  

u p p e r  level   machine m u s t  have   d i s t inc t   images   in   the   lower   l eve l   machine ,  

o t h e r w i s e   i n   t h e   i m p l e m e n t a t i o n   t h e  states w i l l  no t   be   d i s t i ngu i shab le .  

On the   o ther   hand ,   an  uppe r  l e v e l  state S1 can   be   represented  by more 

than  state T1, T2, ... i n   t he   l ower   l eve l   mach ine .  The  meaning  of t h i s  

m u l t i p l e   r e p r e s e n t a t i o n  i s  t h a t  a t  any   i n s t an t   on ly   one   o f   t he  states T i  

a c t u a l l y   r e p r e s e n t s  sl, but  which s ta te  i s  se lec ted   depends   on   the  i m p l e -  

m e n t a t i o n   ( s t a g e  4 )  and p o s s i b l y   e x t e r n a l   i n p u t s ,   e . g .   f a u l t s .   I f   t h e  

l o w e r   l e v e l   c o n s i s t s  of more than   one   abs t rac t   machine  it i s  convenient  

t o  view  the  aggregate   of   such  lower  level   machines  as a s ing le   mach ine  

wi th  a state space t h a t  is t h e   C a r t e s i a n   p r o d u c t  of t h e  component s ta te  

spaces. 
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It is a l s o   c o n v e n i e n t   t o   c a r r y   o u t   t h e  s ta te  mapping i n  two steps.  

I n   t h e   f i r s t  s t e p  a l l  of t h e  states in   t he   l ower   l eve l   mach ine   t ha t   have  

images i n   t h e   u p p e r  level are d e f i n e d .   I n   t h e   s e c o n d  s t e p  the   upper  

l e v e l   t a r g e t  states are s e l e c t e d   f o r   e a c h  s ta te  d e f i n e d   i n  s t e p  1. 

As d i s c u s s e d   f o r   s t a g e  2 above ,   ce r t a in  states of a module  record 

the   occur rence   o f  a f a u l t .   I n  some cases an  occurrence  of  a f a u l t  of  one 

machine  a lso results i n  a f a u l t  a t  a h igher   l eve l   machine .   In   such  cases 

t h e   f a u l t  states, similar t o   o t h e r  states  are mapped upward. However, 

i n   o t h e r  cases the   occur rence   o f  a f a u l t  i s  masked  by t h e   u p p e r   l e v e l  

machine.  Thus, a f a u l t - f r e e   a n d  i t s  c o u n t e r p a r t   f a u l t y  s ta te  both map up 

t o   t h e  same state i n   t h e  u p p e r  level machine. 

S i n c e   t h e  states of   an  abstract   machine are def ined  by values   of  

p r i m i t i v e   V - f u n c t i o n s ,   t h e   i n t e r m o d u l e   r e p r e s e n t a t i o n s  are w r i t t e n  as 

expres s ion   r e l a t ing   t he   l ower   l eve l   p r imi t ive   V- func t ions   and   t he   uppe r -  

leve l   V-funct ions .   The   process   o f   def in ing   the   lower   l eve l  states t h a t  

map upward i n v o l v e s   w r i t i n g   a n   e x p r e s s i o n   i n  terms o f   t h e   p r i m i t i v e  V- 
func t ions   o f   the   lower   l eve l   machine .  

S t age   4 - - In   t h i s   s t age ,   t he   nonpr imi t ive   abs t r ac t   mach ines  are  

implemented i n  terms of   the   machines   d i rec t ly   be low them in  t h e   h i e r a r c h y .  

S i n c e   t h e   v i s i b l e  0- and  V-functions  of a machine are c a l l a b l e ,  i t  i s  

t h e s e   f u n c t i o n s   t h a t  are t o  be  implemented i n  terms o f   t h e   v i s i b l e  0- 

and  V-functions  of  the  lower  level  machines.  At presen t ,  we write t h e s e  

implementation  programs i n  a s i m p l e  language  which we c a l l   a n   a b s t r a c t  

programming  language.  These  programs  can  serve as a p l a n   f o r   t h e   u l t i -  

mate implementat ion  programs  wri t ten  in   assembly  language  or   perhaps some 

higher   l eve l   l anguage .  We i n t e n d   t o   s t u d y   t h e   p o s s i b i l i t y   o f   u s i n g  some 

augmenta t ion   of   an   ex is t ing   h igh   leve l   l anguage  as t h e   a b s t r a c t  program- 

ming  language.  That is, t h e   a b s t r a c t  programs  could  be compi l ed  d i r e c t l y  

into  assembly  code.  

As d i s c u s s e d  above   fo r   s t age  1, t h e   o c c u r r e n c e   o f   f a u l t s  is handled 

by t h e   i n v o c a t i o n   o f   t h e   0 - f u n c t i o n   c a u s e - f a u l t  by a hidden  asynchronous 

p r o c e s s .   I f  a f a u l t   i n  a lower  level  machine i s  t o  b e   a p p a r e n t   i n   t h e  
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machine  direct ly   above,   then  there   must   be a c a u s e - f a u l t   0 - f u n c t i o n   i n  

the   upper   l eve l   machine .   The   upper   l eve l   cause- fau l t   0 - func t ion  is  t h e  

"implemented"  by a combina t ion   of   cause- fau l t   0 - func t ions   o f   the   lower  

level   machine.  

F i g u r e  I X - 1  d e p i c t s  t h e  s ta te  changes  and s ta te  r e p r e s e n t a t i o n  map- 

p ings   for   upper   l eve l   machine  S which is implemented  by  machine T .  I n  S 

t h e   e f f e c t   o f   t h e   0 - f u n c t i o n  when the   machine  i s  i n  state S1 i s  t o   c a u s e  

a t r a n s f e r   t o  S2. The states T 1  and T2 of T map up t o  S1 whi le  T3 and T4 

map up t o  S2. I f  T i s  i n  state T 1  then   the   implementa t ion   of   the  0- 

f u n c t i o n  i s  a program  which causes T to undergo  numerous state t r a n s i t i o n s ,  

b u t   o n l y   t h e   i n i t i a l  and f i n a l  states ( T 1  and T4) map up t o  S .  A f a u l t  

i n  T could   cause  a t r a n s i t i o n   f r o m  T1 t o  T2, b u t   t h i s   f a u l t  i s  i n v i s i b l e  

t o  S s ince   bo th  T1 and i t s  f a u l t y   c o u n t e r p a r t   b o t h  map up t o  S1. 

UPPER LEVEL 
STATESPACE 

(MACHINE TI 

UPPER ' ""' 

S T A T E - w w x  
(MACHINE S) 

0-FUNCTION 

/ I  REPRESENTATION 

""_ 
"""""" 

'FIGURE E - 1  DESCRIPTION OF STATE  CHANGES,  REPRESENTATION  MAPPINGS, AND 
IMPLEMENTATIONS IN ADJACENT  ABSTRACT  MACHINES 
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B. S t a g e  0 of   the  Methodology  for   SIFT 

I n   t h i s   s t a g e   t h e   i n t e n t   o f  SIFT i s  d e s c r i b e d   i n   i m p r e c i s e  terms i n  

o r d e r   t o  a i d  i n   d e v e l o p i n g  a h i e r a r c h i c a l   o r g a n i z a t i o n .   T h i s   d e s c r i p t i o n  

w i l l  a l s o   s e r v e   i n   f o r m u l a t i n g   p r e c i s e   a s s e r t i o n s   a b o u t  SIFT fo r   pu rposes  

of   ver i fying  the  design.   The  pr imary  purpose  of   SIFT i s  t o   d i s p a t c h  ap-  

p l i c a t i o n   t a s k s  when t h e i r   s e r v i c e  i s  needed,  even i f   t h e   h a r d w a r e   u n i t s  

f a i l .  A s  d i s c u s s e d   i n   S e c t i o n  V, two t y p e s   o f   a p p l i c a t i o n   t a s k s  are 

handled by t h e  SIFT  system:  scheduled  tasks  which are g u a r a n t e e d   t o   b e  

d i spa tched  a t  a f i x e d  rate, and p r io r i ty   t a sks ,   each   o f   wh ich  i s  d i s -  

p a t c h e d   i f  i t s  dead l ine   has   exp i r ed   and   i f  i t s  p r i o r i t y  i s  h ighes t   o f  a l l  

s u c h   t a s k s  whose dead l ine   has  e x p i r e d .  

The  basic  scheme  for a l l  a p p l i c a t i o n   t a s k s ,   f o r   e a c h   i t e r a t i o n  i s  as 

fo l lows:  

READ DATA FROM EACH TASK  SUPPLYING  INPUTS 

COMPUTE 

WRITE DATA TO A BUFFER  FOR EACH TASK THAT REQUIRES I T  
AS AN INPUT 

I f   t h e   n - t h   i t e r a t i o n   o f   t a s k  A r e q u i r e s   d a t a   f r o m   t h e   ( n - 1 ) s t   i t e r a t i o n  

o f   t a s k  A, t hen  A is i n c l u d e d   i n   b o t h   t h e   i n p u t   t a s k  set and t h e   o u t p u t  

t a s k  set f o r  A .  A p a r t i c u l a r   f e a t u r e   o f   t h e   s e l e c t e d   a v i o n i c s   t a s k  set 

is t h a t  a t a sk   runn ing  a t  i t e r a t i o n  rate f does  not read data from a t a s k  

running a t  i t e r a t i o n  ra te  f l ,   f l  > f .  Thus a t a s k  A need  only write d a t a  

f o r  a less f r e q u e n t l y   d i s p a t c h e d   t a s k  B, as o f t e n  as B i s  d i spa tched .  

When B writes data f o r  A, B d e p o s i t s   t h e  data i n  a b u f f e r   t h a t  i s  

shared   wi th  A .  When A i s  d ispa tched  i t s  read da ta   ope ra t ion   i nvo lves  

r ead ing   t he   con ten t s   o f   t he   bu f fe r .   Fo r   pu rposes   o f   r edundancy ,   t a sks  

are executed on  more than   one   p rocesso r .   Thus   t he   r ead   ope ra t ion   fo r  B 

from A y i e l d s  a r e su l t  which i s  t h e   m a j o r i t y   v a l u e   o f   t h e  d a t a  over a l l  

in s t ances   o f   execu t ion   o f  A .  I f  no m a j o r i t y   v a l u e  exists t h e n   s e v e r a l  

policies  can  be  invoked,  one  of  which i s  t o   t e m p o r a r i l y   s u s p e n d  B ' s  

e x e c u t i o n .   S e v e r a l   i s s u e s   r e g a r d i n g   t h e   v o t e   o p e r a t i o n  are s i g n i f i c a n t  

t o   t h e   d e s i g n  of t h e  SIFT opera t ing   sys tem.  
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T h e   a p p l i c a t i o n   p r o g r a m e r   f o r  B should   no t   have   to  know 
which  processors  are running  A nor  even how  many such 
p rocesso r s  ex is t  a t  any   ins tan t .   The   SIFT  opera t ing   sys-  
t e m  should   main ta in   such   in format ion   and   appropr ia te ly  
p r o c e s s   t h e  r e a d  i n p u t   d a t a  command. 

When B's read from A invo lves  a vo te   ove r  more than  one 
i n s t a n c e   o f  A, it is e s s e n t i a l   t h a t  a l l  such   i n s t ances  
p r o d u c e   d a t a   f o r   t h e  same i t e r a t i o n   ( e x c l u d i n g   t h o s e  
i n s t a n c e s   o n   f a u l t y   p r o c e s s o r s ) .  As we observe  below 
t h i s  is t h e   o n l y   s y n c h r o n i z a t i o n   r e q u i r e m e n t   o n   t h e  ex- 
e c u t i o n   o f   i n s t a n c e s  of t a s k s .  

When a v a i l a b l e ,   d i f f e r e n t   b u s s e s  are used   fo r   t he   r ead  
over   ins tances   o f  a t a s k ,   i n   o r d e r   t o  p e r m i t  t h e   v o t e  
mechanism t o  mask s i n g l e   b u s   f a i l u r e s ,   i n   a d d i t i o n   t o  
s i n g l e   p r o c e s s o r   f a i l u r e s .  

The  pr imary  error   detect ion  mechanism i s  v i a  a d i sag ree -  
ment  on a v o t e .   I f   t h e   r e d u n d a n c y  i s  s u f f i c i e n t   r e l a t i v e  
t o   t h e  number o f   f a u l t y   p r o c e s s o r s  and  busses, it i s  pos- 
s i b l e   t o   u n i q u e l y   i d e n t i f y   t h e   f a u l t y   u n i t s .  

T h e   u n i t s   t h a t  are i n d i v i d u a l l y   s u b j e c t   t o   f a i l u r e  are p rocesso r s  

and  busses.  A t  a f i n e r   g r a i n  i t  will b e   n e c e s s a r y   t o   c o n s i d e r   f a i l u r e s  

than   i nvo lve  a p r o c e s s o r ' s   i n t e r a c t i o n   w i t h  a bus. (We have  conducted 

some ana lyses  of t h i s  la t ter  f a i lu re   t ype   and   have   i nco rpora t ed  mechanisms 

i n   t h e   d e s i g n   t o  accommodate it, but   the  work is  n o t   y e t  complete.) When 

a f a i l e d   b u s  i s  d e t e c t e d   a n d   i d e n t i f i e d ,   t h e n   t h e   r e c o n f i g u r a t i o n   p r o c e s s  

w i l l  mod i fy   t he   sys t em  t ab le s   such   t ha t   t h i s   bus  i s  avoided i n  a l l  f u t u r e  

read i n p u t  d a t a  o p e r a t i o n s .  

When a f a i l e d   p r o c e s s o r  i s  d e t e c t e d   a n d   i d e n t i f i e d ,   t h e   r e c o d f i g u r -  

a t i o n   p r o c e s s  is  t o   r e a l l o c a t e   t a s k s   t o   o p e r a t i v e   p r o c e s s o r s   s u c h   t h a t  

t h e   o p e r a t i v e   p r o c e s s o r s  are used  in   an   op t imal   manner .  One s i m p l e  

po l i cy   t ha t   can   be   pu r sued   he re  is t o   a l l o c a t e   t h e   t a s k s   o f   t h e   f a i l e d  

p r o c e s s o r   t o  a spare p r o c e s s o r ,   i f   o n e  exists, o r  else accept   reduced 

redundancy   for   these   t asks .   The   des ign   does   no t   impose   the   use   o f   th i s  

s i m p l e  r e c o n f i g u r a t i o n   p o l i c y ,   b u t   i n s t e a d   a l l o w s   f o r   t h e   s t o r a g e   o f   t a s k  

a l l o c a t i o n s   t o   p r o c e s s o r s  as a f u n c t i o n  of f a u l t y   p r o c e s s o r s .   T h i s   t a b l e  

could   be   computed   pr ior   to  a f l i g h t   o r  when a p r o c e s s o r   f a i l u r e  is 

d e t e c t e d .  
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F o r   a n y   p o l i c y   o f   a l l o c a t i n g   t a s k s   t o   p r o c e s s o r s ,   a f t e r  a processor  

f a i l u r e ,  t h e  f o l l u w h g  steps must  be carried ou t :  

The  program  code f o r  a t a s k   a s s i g n e d   t o  a p rocesso r  is  
l o a d e d   i n t o   t h a t   p r o c e s s o r .   I n   S I F T   t h e   l o a d i n g   p r o -  
cess invo lves   t he   r ead ing   o f   t he   p rog ram  code   f rom 
o t h e r   i n s t a n c e s   o f   t h e  program,  by a special load ing  
program i n   t h e   p r o c e s s o r .  

The t a b l e s   o f  a l l  p r o c e s s o r s   e x e c u t i n g   r e a l l o c a t e d   t a s k s  
m u s t  be  updated s o  t h a t   t h e   r e a d   i n p u t   d a t a   o p e r a t i o n s  
are d i r e c t e d   t o   t h e   a p p r o p r i a t e   p r o c e s s o r .   S i n c e  a l l  
d a t a   r e q u i r e d  by a t a s k  is  obta ined  by read i n p u t  data, 
once  the  program  code i s  loaded   and   the   t ab les  are up- 
d a t e d ,   t h e   t a s k  i s  r e a d y   t o   b e   d i s p a t c h e d .  

Some t a s k s  w i l l  r e q u i r e  service i n d e p e n d e n t   o f   t h e   a c t i o n s   o f   t h e  

r econf igu ra t ion   p rocess .  Thus it is e s s e n t i a l   t h a t  a t  least one   i n s t ance  

of  each c r i t i ca l  t a sk   be   d i spa tched  as needed   du r ing   t he   r econf igu ra t ion  

p r o c e s s .   I n   o r d e r   t o   a c h i e v e   t h i s   c o n t i n u i t y   o f   s e r v i c e ,   t h e   r e c o n f i g u r -  

a t ion   po l i cy   changes   on ly   one   p rocesso r ' s   t a sk   a l loca t ion  a t  any t i m e .  I n  

a d d i t i o n ,   t h a t   p r o c e s s o r ' s   r e a l l o c a t i o n  is  comple ted   before   a t ten t ion  i s  

directed t o   a n o t h e r   p r o c e s s o r .  

Th i s   s ec t ion   has   p re sen ted   an   i n fo rma l ,   bu t   comple t e ,   desc r ip t ion  

o f   t h e   e x t e r n a l   i n t e r f a c e  of SIFT  system,  and  SIFT'S  mechanisms  and 

f e a s i b l e   p o l i c i e s   i n   h a n d l i n g   f a u l t s .   T h e   n e x t   s e c t i o n   p r e s e n t s  a h i e r -  

a rch ica l   decomposi t ion   o f   SIFT.  

C .  S t age  1 A s  Applied t o  'SIFT 

The  decomposition  of  the  SIFT  system as a h i e r a r c h y   o f   a b s t r a c t  ma-  

ch ines  i s  shown i n   F i g u r e  IX-2.  Each  of t h e   s o l i d - l i n e   b o x e s   c o r r e s p o n d s  

t o   a n   a b s t r a c t   m a c h i n e   t h a t   m a i n t a i n s   a b s t r a c t  data o b j e c t s ,  i.e., con- 

t a i n s  0 and  V-funct ions.   Each  of   the  dashed-l ine  boxes i s  a n   a b s t r a c t  

program tha t   does   no t   con ta in  a s ta te ;  the   p rog rams   j u s t   con ta in   code   t o  

ca l l  the   func t ions   o f   l ower   l eve l   abs t r ac t   mach ines ,   and   pe rhaps ,   con -  

s t a n t s .  

The state of   the   sys tem is m a i n t a i n e d   e n t i r e l y  by t h e   a b s t r a c t  ma- 

c h i n e s .   I n   o r d e r   t o   s i m p l i f y   t h e   d e s c r i p t i o n  we show on ly  a s i n g l e   i n -  

s tance  of   each  machine.  However, i t  is  unders tood   tha t   each   processor  
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i n   t h e   s y s t e m   p r o v i d e s  some o f   t he   func t ions   o f   t hese   abs t r ac t   mach ines  

a t  its i n t e r f a c e .   I n   m a c h i n e   s p e c i f i c a t i o n s   ( S e c t i o n  IX-D) we fo rma l ly  

h a n d l e   t h e   s i t u a t i o n   o f   m u l t i p l e   i n s t a n c e s  by incorpora t ing   an   a rgument  

iden t i fy ing   t he   p rocesso r   on   wh ich   t he   func t ion  was ca l l ed .   Th i s   fo rma l -  

i t y  i s  s t r i c t l y   f o r   p u r p o s e s   o f   s p e c i f i c a t i o n   s i n c e  a t a s k   i n s t a n c e   c a n  

only  c a l l  func t ions   p rovided  by the   p rocessor   on   which  i t  is running. 

A t a s k ,  when i t  i s  d ispa tched ,  w i l l  a cqu i r e   i n fo rma t ion  by c a l l i n g  

the   i n t e r f ace   V- func t ions   o f   t he   abs t r ac t   mach ines   and   can   change   t he  

s t a t e  of the   abs t r ac t   mach ines ,   s ay   fo r   pu rposes  of t r a n s m i t t i n g   i n f o r -  

m a t i o n   t o   a n o t h e r   t a s k ,  by c a l l i n g   t h e   i n t e r f a c e   0 - f u n c t i o n s  of the   ab-  

s t ract  machines. 

Below we b r i e f l y   d i s c u s s   t h e   a b s t r a c t   m a c h i n e s  and  two e x e c u t i v e  

t a s k s ;  d e t a i l e d  d i s c u s s i o n s  are g i v e n   i n   S e c t i o n s  I X - D  and IX-E. 

Hardware :  Th i s   mach ine   p rov ides   t he   bas i c   p r imi t ive   p rocess ing   i n -  

s t r u c t i o n s   ( a r i t h m e t i c ,   l o g i c a l ,   c o n t r o l )   a s s o c i a t e d   w i t h   e a c h   o f   t h e  

p r o c e s s o r s ,   i n   a d d i t i o n   t o   t h e  few i n s t r u c t i o n s   a s s o c i a t e d   w i t h   t h e   b u s  

system. None o f   t he   bus   sys t em  in s t ruc t ions  are v i s i b l e   t o   t h e  a p p l i c a -  

t i o n   t a s k s .  The bas i c   mach ine   i n s t ruc t ions  are v i s i b l e ,   w i t h   t h e  excep- 

t i o n   t h a t  a l l  main memory r e f e r e n c e s  by t a s k s  are processed  by t h e  ma- 

chines   above  the  hardware.   These extra levels o f   i n d i r e c t i o n   e n s u r e   t h a t  

a n   e r r a n t   t a s k  w i l l  n o t   b e   a b l e   t o  access memory o u t s i d e  of i t s  workspace. 

Memory Addressing: A t a s k   d u r i n g  i t s  e x e c u t i o n   r e q u i r e s  access t o  

memory i n   o r d e r  t o  r ead   and   wr i t e   l oca l  d a t a ,  and to   r ead   p rog ram  in s t ruc -  

t i o n s .  The memory of   concern  here  is t h e  memory a s s o c i a t e d   w i t h   t h e   p r o -  

c e s s o r   t h a t  is e x e c u t i n g   t h e   t a s k .   T h e  memory a d d r e s s i n g   a b s t r a c t  ma- 

c h i n e   e n s u r e s   t h a t   e a c h   t a s k ' s   a c c e s s e s  are w i t h i n   t h e  preset bounds f o r  

t h e   t a s k .  T h i s  l e v e l   o f   i n d i r e c t i o n  need no t  r e su l t  i n   i n e f f i c i e n t   p r o -  

ces s ing   o f  memory i n s t r u c t i o n s   i f   h a r d w a r e   b a s e   a n d  bound r e g i s t e r s  are 

used. 

Bus  Connection:  This  machine  provides  the  mechanism for  p rocesso r  

t o  connec t   wi th   another   p rocessor  by a p a r t i c u l a r   b u s .  A t a s k   c a n   e s t a b -  

l i s h  a bus   connec t ion   on ly   i nd i r ec t ly ,  by  performing a read i n p u t   d a t a  

ope ra t ion .  



Buf fe r :  When t a s k  A is t o   d e l i v e r   d a t a   t o   t a s k  B, the   channel  i s  a 

b u f f e r   i n   t h e   p r o c e s s o r   o n   w h i c h  A i s  executing  and  which  can  be read by 

B. Corresponding   to   each   task   for   which  A computes d a t a ,  t h e r e  exists 

two b u f f e r s .  As we d i s c u s s   i n   S e c t i o n  IX-D two  such  communication  buf- 

f e r s  are r e q u i r e d   s i n c e   t h e   e x e c u t i o n   o f   d i f f e r e n t   i n s t a n c e s   o f   t a s k s  is 

no t   t i gh t ly   synchron ized .  The t a s k s  do n o t   a c c e s s   t h e   b u f f e r s   d i r e c t l y ;  

t h e   a c c e s s  i s  v i a   t h e   r e a d e r / v o t e r   a b s t r a c t   m a c h i n e .  The b u f f e r s   a r e ,  

o f   course ,   u l t imate ly   implemented   in  terms of areas of real memory t h a t  

on ly   the   buf fer   machine   abs t rac t   p rograms  can  access. Also, t h e   b u f f e r  

machine w i l l  e f f e c t   t h e   n e e d e d   b u s   c o n n e c t i o n s   i n   o r d e r   t o   c a r r y   o u t   t h e  

i n t e r p r o c e s s o r  read o p e r a t i o n s .  

Dispa tcher :   The   d i spa tcher   abs t rac t   machine   ho lds ,   for   each   pro-  

c e s s o r ,  a s c h e d u l e   g i v i n g   t h e   o r d e r   i n   w h i c h   t a s k s  are t o  be   d i spa tched .  

For   scheduled   tasks  (see S e c t i o n  V )  t he   s chedu le  i s  a c i rcular  l i s t  of 

t a s k  names. During a f r ame   i n t e rva l   success ive   t a sks   on   t he  l i s t  are 

d ispa tched   in   tu rn .   Each   f rame  conta ins  some spare t i m e  i n  which  pr ior-  

i t y   t a s k s  are c o n s i d e r e d   f o r   d i s p a t c h i n g .  A t  t he   beg inn ing   o f   t he   nex t  

f r a m e   a n y   p r i o r i t y   t a s k   i n   e x e c u t i o n  i s  in te r rupted ,   and   the   next   sched-  

u l e d  t a s k   o n   t h e  c i rcular  list i s  d i spa tched .  A processor   can  be  given 

a new s c h e d u l e   a f t e r  a p r o c e s s o r   f a i l u r e   o r  when a change i n   f l i g h t   p h a s e  

occurs .  

Circular  L i s t s :  This   machine   p rovides   func t ions   for   main ta in ing   and  

a c c e s s i n g   t h e  c i rcular  l is ts  tha t   compr i se   t he   s chedu les  f o r  schedhled 

t a s k s .   I n   t h i s   m a c h i n e   t h e  c i rcular  l i s ts  are stored  compact ly  as reg-  

u l a r  expres s ions .  

Faul t   Schedules :  A s  noted i n   S e c t i o n  IX-B, i t  is f e a s i b l e   t o  p r e -  

c o m p u t e   s c h e d u l e s   f o r   e a c h   o f   t h e   p r o c e s s o r s   t h a t  are t o  be  invoked  under 

a l l  p o s s i b l e   p r o c e s s o r   f a u l t   c o n d i t i o n s .   T h e s e   s c h e d u l e s  are s t o r e d  i n  

t h e   f a u l t   s c h e d u l e   m a c h i n e   f o r  access as needed. It i s  l i k e l y   t h a t   e a c h  

processor   could  be  preloaded  with a l l  of t h e   s c h e d u l e s   t h a t  it w i l l  need 

dur ing  a f l i g h t ;   t h e   a p p r o p r i a t e   s c h e d u l e ,   f o r  a g iven  state o f   t he   sys -  

t e m ,  could  be selected by t h e   g l o b a l   e x e c u t i v e .  
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F a u l t   S t a t u s :   T h i s   m a c h i n e  is used t o   s t o r e   t h e   s t a t u s   ( o p e r a t i v e  

o r   f a i l e d )   o f   t h e   p r o c e s s o r s  and  buses  of  the  system. A s  we w i l l  n o t e  

below it i s  used   by   t he   g loba l   execu t ive   i n   dec id ing   t he   r econf igu ra t ion  

state a f t e r  a f a u l t .  

ReaderIVoter:   This  machine serves two purposes:  (1) it i s  c a l l e d  

by a task  whenever  i t  writes d a t a   i n t o  a b u f f e r   f o r   a n o t h e r   t a s k   o r   r e a d s  

data   f rom  another   task,   and (2)  it  r e c o r d s   t h e   o c c u r r e n c e   o f   f a u l t s .  

With  regard t o  (1) t h e   m a c h i n e   s t o r e s   t h e   i d e n t i f i c a t i o n   o f   t h e   p r o c e s s o r s  

e x e c u t i n g   t a s k s   a n d   t h e   b u s e s   t o   b e   u s e d   i n   r e a d i n g   d a t a .   F o r  a read  op- 

e r a t i o n ,   i n  which   task  A reads  f rom a b u f f e r   l o c a t i o n   o f   t a s k  B, t h e  

r e a d e r l v o t e r   r e t u r n s   t h e   m a j o r i t y   v a l u e   o v e r  a l l  i n s t a n c e s   o f   t a s k  B. 

W i t h   r e g a r d   t o  (2) t h e   r e a d e r / v o t e r   r e c o r d s   t h e   o c c u r r e n c e s   o f   p r o c e s s o r  

and  bus f a u l t s .  A f a u l t  becomes  manifested as a d e t e c t e d   e r r o r   i f  it 

causes  a d i s a g r e e m e n t   i n  a v o t e .   M u l t i p l e   f a u l t s   c a n   c a u s e  a t a s k   t o  

f a i l  it i f   t h e y   c a u s e   o n e - h a l f   o r  more a t  t h e   i n s t a n c e s   o f  a t a s k   t o  

p r o d u c e   a n   e r r o n e o u s   r e s u l t   i n   a n   o u t p u t   b u f f e r   o f   t h e   t a s k .   T h e   r e a d e r /  

v o t e r   r e c o r d s   s u c h   f a t a l   e r r o r   o c c u r r e n c e s .  

E a c h   r e a d e r l v o t e r   i n s t a n c e ,   u p o n   d e t e c t i n g   a n   e r r o r  as a d i sag ree -  

ment among o n e   o r  more   o f   the   vo ted   inputs ,  a t t e m p t s  t o   i d e n t i f y   t h e   o f -  

f e n s i v e   u n i t s .  It accompl i shes   t h i s   d i agnos i s   by   r eco rd ing   t he   p rocesso r -  

bus  combinat ions  that   produced  an  input   in   the  minori ty .  The g l o b a l  

execut ive ,   descr ibed   be low,   ana lyzes   the   repor t s   o f  a l l  o f   t h e   r e a d e r /  

v o t e r   i n s t a n c e s ,   a c c o u n t i n g   f o r   t h e   p o s s i b i l i t y   o f   e r r o n e o u s   r e p o r t s   f r o m  

a f a i l e d   p r o c e s s o r .  

Above we h a v e   b r i e f l y   d e s c r i b e d   t h e   a b s t r a c t   m a c h i n e s   o f   t h e  SIFT 

sys t em;   more   de t a i l s  are g i v e n   i n   S e c t i o n  IX-D relative t o   t h e   s p e c i f i -  

c a t i o n s .  The g loba l   execu t ive   and   l oca l   execu t ive   p rog rams  are b r i e f l y  

discussed  below. 

Global   Execut ive :   The   g loba l   execut ive  (GE) is s imply a t a s k   t h a t  

manages t h e   s y s t e m   r e c o n f i g u r a t i o n   a f t e r   t h e   d e t e c t i o n   o f  a f a u l t .  I t  

has  access t o   t h e   g l o b a l   s t a t u s   o f   t h e   s y s t e m   a n d   h e n c e   c a n   d e t e r m i n e  

t h e  new system state. The GE shou ld   be   d i spa tched   o f t en   enough   t o   gua r -  

a n t e e  a r a p i d   t r a n s i t i o n  t o  a recovery  state.  A p r e l i m i n a r y   a n a l y s i s  
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o f   t h e   e f f e c t s   o f   r e c o n f i g u r a t i o n  t i m e  on t h e   s y s t e m   r e l i a b i l i t y   h a s   d e -  

t e r m i n e d   t h a t   t h e  GE should  be  dispatched as o f t e n  as t h e   h i g h e s t - r a t e  

a p p l i c a t i o n   t a s k .   S i n c e   t h e  GE i s  a c r i t i ca l  t a sk ,  it m u s t  be  executed 

redundant ly- -a t  least t r i p l i c a t e d .  

The   opera t ion   of   (each   ins tance   o f )   the  GE is as fo l lows .  It  reads 

t h e   e r r o r   r e p o r t s   o f  a l l  r eade r lvo te r   i n s t ances ,   and  a t t e m p t s  t o   i d e n t i f y  

the   f a i l ed   p rocesso r s   and /o r   buses ,   i f   any .   The  GE w i l l  c o r r e c t l y   i d e n -  

t i f y   t h e   f a i l e d   u n i t s   p r o v i d e d   f o r   e a c h   v o t e   o n l y  a m i n o r i t y   o f   t h e   i n -  

p u t s  are i n   e r r o r .   I f   t h e  GE h a s   i d e n t i f i e d  a f a i l e d   b u s  it computes a 

new bus  assignment,   and  informs  each  local executive o f   t h i s  new as s ign -  

ment  by  communication  through a s h a r e d   b u f f e r .   I f  a processor   has   been  

deemed t o  h a v e   f a i l e d   t h e n   t h e  GE communicates   with  the  local   execut ives  

t h a t  m u s t  fo l low new s c h e d u l e s .   I n   o r d e r   t o   m a i n t a i n   t h e   s e r v i c i n g   o f  

t a s k s   d u r i n g  a r econf igu ra t ion ,   on ly   one   p rocesso r  i s  p e r m i t t e d  t o  be i n  

t h e   r e c o n f i g u r a t i o n  s ta te  a t  a n y   i n s t a n t .  Hence, t h e  GE s e l e c t s  a pro- 

c e s s o r   t o   f o l l o w  a new schedule ,   and  then awaits the   comple t ion   o f   t h i s  

p r o c e s s o r ' s   r e c o n f i g u r a t i o n   b e f o r e   s e l e c t i n g   t h e   n e x t   p r o c e s s o r .   T h e  

p rocess ing  t i m e  f o r   t h e  GE i s  dependent   on   the   ex is tence   o f   an   e r ror   and  

on t h e  number o f   r e a d e r l v o t e r   i n s t a n c e s   r e p o r t i n g   a n   e r r o r .  However, t h e  

maximum a n t i c i p a t e d   p r o c e s s i n g  t i m e  should  be small enough  such  that  

t h e  GE can  be  considered as a scheduled   task   to   be   d i spa tched   every   f rame.  

The abs t r ac t   imp lemen ta t ion   o f   t he  GE i s  d i s c u s s e d   i n   S e c t i o n  IX-F. 

By v i r t u e   o f   t h e   a b s t r a c t   f u n c t i o n s   p r o v i d e d   i n   t h e  SIFT i n t e r f a c e ,   t h e  

program i s  r e l a t i v e l y  s i m p l e  and  should  be  amenable t o   p r o o f .  

Loca l   Execut ive :   Each   processor   conta ins  a l o c a l   e x e c u t i v e  (LE) 

which i s  a t a s k   w h i c h . c o n t r o l s   t h e   r e c o n f i g u r a t i o n   o f   t h e   p r o c e s s o r  as 

d i c t a t e d  by t h e  GE. The LE i s  dispatched  every  f rame  and i t s  o p e r a t i o n  

i s  s i m p l y   t o   r e a d   t h e   b u f f e r   s h a r e d   w i t h   t h e  GE, i n   o r d e r   t o   d e t e r m i n e  

i f   t h e  GE wi shes   t o   change   t he  s ta te  o f   t h e  LE'S p rocesso r .   Th i s  s i m p l e  

read operation  consumes  only a few  machine   ins t ruc t ions .  

However, i f   t h e   p r o c e s s o r  is t o  b e   s i g n i f i c a n t l y   r e c o n f i g u r e d   t h e n  

it is p r o b a b l y   n e c e s s a r y   t o   s u s p e n d   t h e   s c h e d u l i n g   o f   t a s k s   u n t i l   t h e  

r e c o n f i g u r a t i o n  i s  complete. The LE can   accompl i sh   t h i s   suspens ion  by 
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c a l l i n g   t h e   d i s p a t c h e r   m a c h i n e   t o   i n v o k e  a schedule   which   conta ins   on ly  

t h e  LE. Based  upon the   computa t ion   o f   t he  GE, t h e   r e c o n f i g u r a t i o n   o f  a 

p rocesso r   cou ld   i nvo lve :  (1) in fo rming   t he  LE tha t   t he   a s s ignmen t   o f  

t a s k s   t o   p r o c e s s o r s   ( e x c l u d i n g   t h e  LE'S processo r )  i s  changed, o r  (2) 

in fo rming   t he  LE tha t   t he   bus   a s s ignmen t   fo r   r eads  i s  changed, o r  ( 3 )  

i n fo rming   t he  LE t h a t  i t  i s  t o  change   the   schedule   o f  i t s  processor.   The 

r e c o n f i g u r a t i o n s   a s s o c i a t e d   w i t h  (1) and (2)  are no t  t i m e  consuming, 

mere ly   requi r ing   the   updat ing   of   the   reader lvoter   ass ignment   t ab les .  

The r e c o n f i g u r a t i o n   a s s o c i a t e d   w i t h  ( 3 )  is s i g n i f i c a n t ,  however, 

s i n c e  it p o s s i b l y   i n v o l v e s  a major  change i n   t h e   s c h e d u l e   o f   t h e   p r o c e s -  

s o r .   I f  new t a s k s  are t o   b e   a l l o c a t e d   t o   t h e   p r o c e s s o r   t h e n  a loader   p ro-  

gram,  which  could  be a separate t a s k   o r   j u s t  a subprogram  of  the LE, m u s t  

be  invoked t o   s t o r e   t h e  program  code  of  the new t a s k s   i n   t h e   p r o c e s s o r ' s  

memory. The  loading i s  accompl ished   for   each   task   by   vo t ing   on   each   of  

the  instances   of   the   task 's   program  code.   The LE m u s t  a s s i g n  memory lo- 

c a t i o n s   i n   t h e   p r o c e s s o r   f o r   t h e  new tasks   and   mus t   update   the   t ab les   o f  

t he   bu f fe r   and  memory a d d r e s s i n g   m a c h i n e s   t o   r e f l e c t   t h e  new assignment 

of   t asks .  Once the   l oad ing   and   t ab l e   upda t ing   ope ra t ions  are complete, 

t h e  LE can   invoke   the  new schedule   and   cause   the   p rocessor   to   resume i t s  

s e r v i c i n g   o f   t a s k s .  

The LE is  a more  complicated  program  than  the GE, bu t  we f e e l   t h a t  

it should s t i l l  be  amenable t o   f o r m a l   p r o o f .  Some of the   complexi ty   can  

be  handled by decomposing  the LE in to   t h ree   subprograms ,   co r re spond ing  

t o  items (1) through ( 3 )  above. 

D. Fo rma l   Spec i f i ca t ion  of SIFT 

1. I n t r o d u c t i o n  

SIFT is s p e c i f i e d  as a hierarchy  of   Parnas   modules .   Each mod- 

u l e  i s  regarded as an   abs t rac t   machine ,   having  i t s  own d a t a  s t ruc tures  

(V-funct ions)   and  operat ions  (O-funct ions) .  

A t  any  given t i m e ,  t h e  state of  each  machine is j u s t  a d e s c r i p t i o n  

o f   t he   i n s t an taneous   va lues   o f  i t s  V-functions.  The  O-functions  of a mod- 

u l e  are o p e r a t i o n s   t h a t  cause t h e  s ta te  t o  change. 
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The highest  module in the  hierarchy  is an abstract,  global 

description  of  what  the  system  does.  Modules  at  lower  levels  of  the  hier- 

archy  can  be  viewed  as  building  blocks  for  implementing  the  highest- 

level  module.  Modules  at  still  lower  levels  are  building  blocks  for  im- 

plementing  those  at  the  intermediate  levels,  and so on. 

The specifications  that  follow in subsection IX-D-1 describe 

each  module  independently.  By  themselves,  they  say  nothing  about  how  the 

lowever  level  modules  are  actually  used  to  implement  those  at  higher 

levels.  This  information  is  provided,  rather,  by  mapping  functions  and 

abstract  programs.  Mapping  functions  implement  the  V-functions  of  a  given 

module  with  the  V-functions  of  lower-level  modules;  abstract  programs 

implement  the  O-functions  of  a  given  module  with  programs  written in terms 
of  the  O-functions  and  V-functions  of  lower-level  modules.  The  mapping 

functions  and  abstract  programs  for  SIFT  will  have  to  be  specified  before 

the  system  can  be  coded. It should  be  emphasized  however,  that  the  prop- 
erties we wish  to  prove  about  the  SIFT  design  depend  only on the  module 

specifications--not  on  the  mapping  functions  or  abstract  implementation. 

(In  the  same  way,  the  correctness  of  a  FORTRAN  program  depends  only  on 

the  program  itself--not  on  the  compiler.) 

Parnas  modules  are  specified  according  to  a  rigorous  syntactic  dis- 
cipline  much  like  a  programming  language.  Each  module  specification  is 

composed  of  several  segments--one  for  declaration  of  type  variables,  one 
for  defining  V-functions  and  O-functions,  and so forth. 

The  purpose  of  the  various  sections  of  a  module  specification  might 
best  be  explained in relation  to  a  specific  example.  Consider,  then, 

the  reader/voter  module,  which  has  five  sections--one  for  DECLARATIONS, 
PARAMETERS,  DEFINITION,  EXCEPTIONS,  and  FUNCTIONS.  This  last  section  is 
actually  the  most  important,  since  it  declares  the  V-functions  and 
O-functions  of  the  module. 
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2. The  FUNCTIONS  section 

The first  function  declared  in  the  FUNCTIONS  section  of  the 

reader-voter  is  the  V-function  task-set. The function  header VFUN task- 

set(proc) = st  gives  the  name  of  the  V-function,  its  formal  argument  list 

(proc),  and  the  result  identifier  st. The identifiers  proc  and  st.  are 

declared  in  the  DECLARATIONS  section  to  be  of  type  PROC  (processor)  and 

SET-OF  TASK  (set  of  tasks),  respectively. The  V-function  task-set is 

thus a  data  structure  which  is  indexed  on  PROCs  and  which  stores  sets  of 

TASKS.  The  INITIALLY  phrase  in  the  declaration  indicates  that  at  the 

time  the  module  is  initialized,  the  value  of  task-set  (on  each  argument 

proc)  is  the  single-element  set  {le]. The intended  interpretation  is 

just  that  at  initialization  of  the  system,  each  processor  is  loaded  with 

only  the  local  executive  task. 

The  next  declaration  in  the  FUNCTIONS  section  introduces the 

V-function  proc-bus-assignments,  which  is  keyed  on  two  arguments (a  PROC 

and a  TASK)  and  which  stores  sets  of  PAIRS.  Unlike  the  declaration  for 

task-set,  this  one  has  an  EXCEPTIONS  subsection.  Exception  conditions 

are  boolean  expressions  used  to  restrict  the  domain  of  a  V-function,  much 

as  array  bounds  in  an  ALGOL  array  declaration  restrict  the  domain  of  the 

array.  While  V-functions  may in general  have  an  arbitrary  number  of 

exception  conditions,  proc-bus-assignments  has  only  one:  task-not-in- 

proc(proc  task). Like  all  other  exception  conditions,  task-not-in-proc 

is  defined  in  the  EXCEPTIONS  section  of  the  module  specification  (to  be 

described  later).  As  is  evident  from  the  definition,  task-not-in-proc 

(proc  task) is TRUE  for  a  given  value  of  proc  and  task  if  and  only  if  task 

is  not  currently a  member  of  task-set.  Thus,  just  as  it  is  erroneous  to 

try  to  read  an  array  outside  the  limits  of  its  indices,  it  is  erroneous 

to  try  to  read  proc-bus-assignments  at  (proc,task)  if  task & task-set 

(proc)  at  that  time.  More  generally, it is  erroneous  to  try  to  read  any 

V-function  on  arguments  that  violate  any of its  exception  conditions  at 

this  time. 

Declarations  that  contain  a  header, a comment,  zero  or  more 

exceptions,  and  an  initialization  part  account  for  the  great  majority  of 
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V - f u n c t i o n s   i n  a t y p i c a l  module s p e c i f i c a t i o n .   I n   a d d i t i o n ,   t h e r e  are a 

few spec ia l   k inds   o f   V- func t ions   t ha t  are dec la red  somewhat d i f f e r e n t l y :  

A DERIVED V-function is  one  whose v a l u e  i s  determined  completely 

by t h e   v a l u e s  of o ther   V-funct ions   in   the   module .   The   V-funct ion   e r ror -  

d e t e c t e d ,   f o r  example, i s  DERIVED. Its v a l u e  is  determined  completely by 

tha t   o f   t he   V- func t ion   d i sag reemen t - se t .  More p a r t i c u l a r l y ,   f o r  a g iven  

va lue   o f  i ts argument   proc,   error-detected  has   the  value t r u e  i f  and  only 

i f   t h e  set d isagreement -se t (proc)  is non-empty.  Although  derived V- 

f u n c t i o n s  are, s t r i c t l y   s p e a k i n g ,   s u p e r f l u o u s ,   t h e y   o f t e n   a d d   c l a r i t y   t o  

s p e c i f i c a t i o n s .   N o t e   t h a t   d e r i v e d   V - f u n c t i o n s   h a v e   n o  INITIALLY s p e c i f i -  

c a t i o n   s i n c e   t h e i r   i n i t i a l   v a l u e s  are determined by t h e   i n i t i a l   v a l u e s  of 

the  V-funct ions  f rom  which  they  der ive.  

A HIDDEN V-function i s  one   t ha t  i s  n o t   i n t e n d e d   t o   b e   a v a i l a b l e  

t o   t h e  u s e r  of  the  module.   The  V-function  fault ,   for  example,  i s  HIDDEN 

r e f l e c t i n g   t h e   f a c t   t h a t   t h e  module   does   no t   p rovide   d i rec t   access   to   in -  

formation  about   what   processors   and/or   busses  are f a u l t y .  Note,  however, 

t h a t   t h e   v a l u e s   o f  HIDDEN V-functions  do impac t  F - f u n c t i o n s   t h a t  are v i s i -  

b l e .   Fo r  example, t h e  DERIVED V-function read i s  i n  p a r t  derived  from 

f a u l t .  A p a r t  f rom  the   des igna t ion  HIDDEN, HIDDEN V-functions are s p e c i -  

f i e d   i n   e x a c t l y   t h e  same way as ordinary  V-funct ions.  

A thi rd  special   k ind  of   V-funct ion,   the   OV-funct ion,  w i l l  be 

treated l a t e r .  

I n   a d d i t i o n   t o   d e c l a r a t i o n s   f o r   t h e   s t o r a g e   e l e m e n t s   o f   t h e  

module, t h e  FUNCTIONS s e c t i o n   c o n t a i n s   d e c l a r a t i o n s   f o r   t h e   o p e r a t o r s ,  

o r   0 - func t ions ,   t ha t   change   t he   va lues   o f   t hose   e l emen t s .  As wi th  V- 

f u n c t i o n   d e c l a r a t i o n s ,   e a c h   0 - f u n c t i o n   d e c l a r a t i o n   b e g i n s   w i t h  a header 

g i v i n g  i ts  name and  formal  argument l ist .  S ince   0 - func t ions   do   no t   s to re  

va lues   bu t   on ly   change   the   va lues   o f   V-funct ions ,  no " r e s u l t "   i d e n t i f i e r  

i s  given. As with   V-funct ion   dec la ra t ions ,   an  EXCEPTIONS s u b s e c t i o n  

may be   p re sen t ,   r e s t r i c t ing   t he   r ange   o f   accep tab le   a rgumen t s .  Once aga in ,  

t h e   d e f i n i t i o n  of each   excep t ion   cond i t ion  a p p e a r s  i n   t h e  EXCEPTIONS sec- 

t i o n  of t h e   m o d u l e   s p e c i f i c a t i o n .  
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The  substance  of an O-function  specification  is  contained in 

its  EFFECTS  subsection--the  section  that  describes  exactly  what  the 0-  

function  does. More precisely,  the  EFFECTS  section  contains  a  statement 

of the  relationship  between  the  state of the  module (i.e., the  values  of 

its  V-functions)  before  the  O-function  is  called,  and  the  state  just 

after  it  is  called. The O-function  delete-task(proc  task) in the  reader- 

voter  is  a  typical  example.  This  O-function  has  two  effects. It changes 

the  value  of  the  V-function  task-set,  deleting  task  from  the  set  task- 

set(proc). It also  changes  the  value of the  V-function  proc-bus- 
assignments,  causing  it  to  be  undefined  for  the  argument  pair  (proc,task). 

In the  specification,  quotes  are  used  to  distinguish  the  values  of  V- 

functions  before  the  call  from  those  after  the  call.  Thus,  'task-set 

(proc)' refers  to  the  state  before  the  call  while  task-set(proc)  refers 

to  that  after  the  call. 

It is  quite  important  to  note  that  the  statements in EFFECTS 

sections are assertions,  i.e.,  mathematical  statements  of a relationship 

among  states.  They  are  not in any way  procedural  as  would  be,  say, 

assignments  in  some  programming  language. For example,  the  assertion 
task-set(proc) = 'task-set(proc)' u {task]  could  equally well be  written 

'task-set(proc)' U [task} = task-set(proc) 

since  the = stand  for  equality, not for  assignment. 

Just  as  HIDDEN  V-functions  are  used  to  mask  certain  state  in- 

formation,  HIDDEN  O-functions  are  used  to mask certain  changes in state. 

The O-function  cause-fault  is  of  this  type. The cause-fault  operation 

simulates  a  hardware  failure  that  impacts  certain  reads.  Since  this 

operation  is  not  really  available  to  the  SIFT  system  but  is  rather  part 

of  the  internal  affairs  of  the  module,  it  is  made  hidden. 

In addition  to  V-function  and  O-function  declarations,  the 

FUNCTIONS  section  contains  declarations  for a function  which  is  a  combi- 
nation  of  the  two--the  OV-function.  An  OV-function  may  be  viewed  either 

as  an  O-function  that  returns a value,  or  as  a  V-function  whose  invocation 

produces a side  effect.  The  OV-function  vote-read  is of this  kind  since 
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i t  bo th   r e tu rns  a va lue   o f  word  and po ten t i a l ly   changes   t he   va lues   o f   t he  

V - f u n c t i o n s   f a t a l - e r r o r  and  disagreement-set .  

3 .  The DECLARATIONS S e c t i o n  

P a r t  o f   t he   spec i f i ca t ion   o f   any   Pa rnas  module i s  a s e c t i o n  de-  

c l a r i n g   t h e   t y p e s   o f   t h e   i d e n t i f i e r s   ( s u c h  as formal  arguments t o  V- and 

O- func t ions )   u sed   i n   o the r  parts of t h e  module s p e c i f i c a t i o n .   I n   m o s t  

programming  languages,   declarations are u s e d   f o r  two p u r p o s e s :   t o   d i r e c t  

a l l o c a t i o n   o f   s t o r a g e ,   a n d   t o   p r o v i d e   f o r   t y p e - c h e c k i n g .   I n   t h e   P a r n a s  

con tex t ,   s to rage  i s  associated  only  with  V-funct ions,   which are dec lared  

i n   t h e  FUNCTIONS s e c t i o n .  The DECLARATIONS s e c t i o n  of a module   spec i f i -  

ca t ion   conce rns   i t s e l f   exc lus ive ly   w i th   t he   t yp ing   o f   fo rma l   a rgumen t s  

( i n c l u d i n g   t h e  "result" arguments  of  V-functions).  

I n   t h e  DECLARATIONS s e c t i o n  o f   t he   r eade r -vo te r ,   t he re  are 

d e c l a r a t i o n s   f o r   i n t e g e r   a n d   b o o l e a n   i d e n t i f i e r s  much i n   t h e   s t y l e  of 

ALGOL. Unlike ALGOL, however, the  language of  module s p e c i f i c a t i o n s  

p r o v i d e s   a n   e x t e n s i b l e   t y p e   f a c i l i t y ,   t h a t  is, t h e   d e s i g n e r  of a module 

may in t roduce  new, a b s t r a c t   t y p e s .  

F o r   t h i s   p u r p o s e ,   t h e  DECLARATIONS s e c t i o n  may inc lude  a TYPE 

subsec t ion   i n   wh ich   t ypes   ( a s   opposed   t o   ob jec t s   o f  a given  type)  are 

dec la red .  The TYPE subsec t ion   o f   t he   r eade r -vo te r   con ta ins   dec l a ra t ions  

f o r   t h r e e  new p r imi t ive   t ypes  (PROC, TASK, and MACHINEWORD) and a new 

compound type  (PAIR).  The  word "DESIGNATOR" i n d i c a t e s   t h a t   t h e  new type  

is p r imi t ive ,  i.e., is no t   cons t ruc t ed   f rom  ex i s t ing   t ypes .  The name 

PROC s u g g e s t s   t h a t   o b j e c t s   o f   t h i s   t y p e  are in t ended   t o   des igna te   p ro -  

ces so r s ,  as indeed  they are. From the  formal  point  of  view,  however,  

ob jec t s   o f   t ype  PROC have  no i n t r i n s i c   p r o p e r t i e s   o t h e r   t h a n   t h a t   t h e y  

are d i s t i n c t   f r o m  a l l  objec ts   o f   any   o ther   type .  

The new t y p e  PAIR, o n   t h e   o t h e r  hand, is d e f i n e d   i n  terms of 
more p r i m i t i v e   t y p e s .  The type   des igna t ion  STRUCTURE  (PROC: p roc ,   i n t ege r :  

b u s )   i n d i c a t e s   t h a t   o b j e c t s  of type PAIR a r e  composed o f  two par ts ,  one 

of which i s  a PROC and  the  other   of   which i s  a n   i n t e g e r .  The i d e n t i f i e r s  

proc  and  bus i n   t h e   d e c l a r a t i o n   o f  PAIR a r e   s e l e c t o r s ;   g i v e n   a n   o b j e c t  p 
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of   type  PAIR, p . p r o c   r e f e r s   t o   t h e  component  of p which i s  of   type  PROC, 

a n d   p . b u s   r e f e r s   t o   t h a t   o f   t y p e   i n t e g e r .  

New types  may a l so   be   deve loped   u s ing   t he  SET-OF o r  BAG-OF con- 

s t r u c t s .  The i d e n t i f i e r  s p ,  f o r  example, i s  dec la red  as a set of o b j e c t s  

each  of  which i s  of   type PROC. S i m i l a r l y ,   v o t e s  is  dec la red  as a bag 

( t h a t  is, a kind  of set i n  which a g iven  member may have   r epea ted   i n - . -  

s t ances )   o f  MACHINEWORDS. 

4 .  The PARAMETERS S e c t i o n  

The PARAMETERS s e c t i o n   c o n t a i n s   d e c l a r a t i o n s   f o r   t h e   c o n s t a n t s  

of t he   des ign .  Parameters can  be  viewed as V-functions  whose  values are 

f ixed   once  and f o r  a l l  a t  t h e  time t h e  module i s  implemented.  They are 

f r e q u e n t l y  used  i n   e x c e p t i o n   c o n d i t i o n s   t o   d e s i g n a t e   t h e  maximum or   min i -  

mum va lues  V- o r   0 - func t ions   a rguments  may t ake .  The i n t e g e r  parameter 

max-tasks,   for   example,   indicates   the maximum number o f   t a sks  a processor  

can  accomodate.  Max-tasks a p p e a r s  i n   t h e   d e f i n i t i o n   o f   t h e   e x c e p t i o n  

condi t ion  too-many-tasks.   Note   that   the   syntax  of  parameter d e c l a r a t i o n s  

m i r r o r s   t h a t   o f   d e c l a r a t i o n s   i n   t h e  DECLARATIONS s e c t i o n .  

5. The DEFINITIONS S e c t i o n  

J u s t  as assembly  language  macros  save  programmers  the  labor  of 

w r i t i n g   o u t  repeated ins t ances   o f  a r o u t i n e ,   d e f i n i t i o n a l   m a c r o s   a l l o w  

t h e   s p e c i f i e r  of a module t o   a v o i d   r e p e a t e d   i n s t a n c e s  of an  expression.  

Each d e f i n i t i o n   b e g i n s   w i t h  a MACRO h e a d e r   g i v i n g   t h e  name of t h e  macro, 

a ( p o s s i b l y  empty)  formal  argument l ist ,  and a r e s u l t   i d e n t i f i e r   ( u s e d  

fo r   t ype   check ing) .  

Two de f in i t i ona l   mac ros  are used i n   t h e   r e a d e r - v o t e r  module-- 

m a j o r i t y - o p i n i o n ( p r o c   t a s k   o f f s e t )  and d i s s e n t i n g - p a i r s ( p r o c   t a s k   o f f s e t ) .  

A s  i t  happens ,   each   def in i t ion  i s  used  only  once-- in   the EFFECTS s e c t i o n  

of  the  OV-funct ion  read-vote .   Macros  were  used  in   this   case  not   to   save 

w r i t i n g ,   b u t   t o  make the  EFFECTS s e c t i o n  easier t o   r e a d  and  understand. 
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6 .  The  EXCEPTIONS  Section 

Exceptions  were  described  earlier  as  boolean  conditions  used  to 
restrict  the  intended  argument  domains  of  V-functions  and  0-functions. 

Because  a  single  exception  frequently  applies  to  several V- and/or 0- 

functions,  all  exceptions  are  defined  as  macros. The syntax  used  is 

exactly  the  same  as  that  used  for  macros  in  the  DEFINITIONS  section. 

Memory  Addressing 

The  functions  of  the  abstract  machine  instance  in  processor  proc 

are  called  by  abstract  machine  instances  above  memory  addressing  in  the 

hierarchy  and  tasks  executing on proc. These  tasks  will  use  memory ad- 

dressing in order  to  execute  instructions  in  their  programs  and  to  access 

temporary  data  locations. The machine  includes  some  simple  protection 

mechanisms in order  to  prevent  a  task  from  writing  beyond  the  limits  of 
its  address  space. 

Initially  the  only  task  known  to  memory  addressing,  as  indicated  by 

the  value of the  V-function  task-set,  is  the  local  executive (LE). The 

V-function  mem-area-write  defines  the  memory  area  allocated  to  a  task  for 

writing.  Initially  a  fixed  area  is  assigned  to  the LE; the  remaining  area 
is  free  as  indicated  by  the  value  of  the  V-function  area-free. The 0- 

functions  assign-mem-area  and  make-free  respectively  allocate  memory  area 

to  a  task  and  deallocate  the  area  that  was  previously  assigned  to  a  task. 

In order  to  ensure  than  an  errant,  unproved  application  task  does  not 

deleteriously  affect  another  task  or  the  system,  these  functions  are  not 

accessible  to  application  tasks.  Instead  the  LE  and  the  buffer  abstract 

machine will have  the  major  responsibility  for  managing  the  memory  in  its 

processor. 

The  V-function  memory,  is  called  by  a  task,  or  an  abstract  machine 

program,  in  order  to  read  the  contents  at  a  memory  location.  The 0- 

function,  write,  is  called in order  to  modify  the  value  at  a  location. 
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MODULE memory-addressing 

DECLARATIONS 

TYPE 
PROC, TASK, WORD = DESIGNATOR 

END -T Y PE 

WORD machineword 
boolean b p a r i t y  
i n t e g e r   o f f s e t   l e n g t h   a d d r e s s  
TASK t a s k  
PEOC proc 
SET-OF TASK s 

END-DECLARATIONS 

PARAMETERS 

TASK l e  (; local e x e c u t i v e   t a s k )  
SET-OF PROC proc-se t  (;  s e t  of processo r s )  
SET-OF  TASK t a s k s  ( ; set  of v a l i d   t a s k s )  
i n t e g e r   s i z e - l e  (; number of  words  occupied by 1 
i n t e g e r  
i n t e g e r  

- e )  .oca1  execut i v  
mem-size ( ;  t o t a l  number of  words o f  a s i n g l e  memory) 
max-tasks (; m a x i m u m  a l lowable  number of tasks) 

END-PARAMETERS 

EXCEPTIONS 

MACRO no-proc  (proc) = b 
not   proc member-of proc-set  

MACRO n o t - a - t a s k ( t a s k )  = b 
n o t   t a s k  member-of t a s k s  

MACRO out-of-bounds(address)  = b 
addres s  > mem-size - 1 o r   a d d r e s s  < 0 

MACRO task-not - in-proc(proc   t ask)  = b 
n o t   t a s k  member-of ' t a s k - s e t ( p r o c ) '  

MACRO not-authorized-write(proc t a s k  a d d r e s s )  = b 
not(  mem-area-write(proc  task)[ 1 3  <= addres s  and 

address  <= mem-area-write(proc  task)[ 11 + 
mem-area-write(proc  task) C2 I 1 
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MACRO too-many-tasks(proc1 = b 
cardinality('task-set(proc) I >= ma-tasks 

MACRO task-in-proc(proc  task) = b 
task  member-of ' task-set ( proc) ' 

MACRO area-not-fPee(proc  base  length) = b 
not  'area-free(proc  base  length)' 

MACRO not-a-task(task) = b 
not  task  member-of  tasks 

END-EXCEPTIONS 

FUNCTIONS 

VFUN memory(proc  address) = word 
( ;  memory  contents of processor  proc at given  address) 
EXCEPTIONS 
out-of-bounds(address) 
no-proc ( proc 1 

INITIALLY if o <= i <= size-le  then  memory(proc,  i) = mem-le(i.1 
else  if  size-le <= i < mem-size  then  memory(proc,i) = 0 
else  undefined 

END-EXCEPTIONS 

VFUN area-free(proc,base,length) = b 
( ;  indicates  whether  or  not  the  locations  in  proc  from 

EXCEPT IONS 
out-of-bounds(  base 
out-of-bounds(  base+length-1 ) 
not-proc(proc) 

INITIALLY if  base < size-le  then  area-free(proc,base,i) = false 

base  to  base+length-1  are  free) 

END-EXCEPTIONS 

else  area(proc,base,i) = true 

V F U N  mem-area-write(proc,task) = <base,length> 
(; indicates  memory  range  within  which  task is allowed  to  write) 
EXCEPT IONS 
no-proc(proc1 
task-not-in-proc(proc,  task) 

INITIALLY if task = le then 
END-EXCEPTIONS 

memory-area-write(proc,le) = <O,size-le - 1 >  
else  undefined 

VFUN task-set(proc) = s 
(; indicates  set of tasks  assigned  to  processor  proc) 
INITIALLY task-set(proc) = le 
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wuN write(proc  task  address  word) 
(; writes  word  in  address of processor  PrOC  for  task  task) 
EXCEPTIONS 
task-not-in-proc(pr0c  ,task) 
not-proc  (proc 1 
not-authorized-write(pr0c task  address) 

EFFECTS 
END-EXCEPTIONS 

memory(proc  ,address) = word 
END-EFFEC TS 

WUN assign-mem-area(proc  task  base  length) 
(; assigns  authorized  area  in  proc  into  which  task  can  write) 
EXCEPTIONS 

task-in-proc  (proc  task) 
area-not-free(proc  base  length) 
not-a-task(task) 

too-many-tasks(proc) 

END-EXCEPTIONS 
EFFECTS 

task-set(proc) = 'task-set(proc)  union I task 1 
forall i, j (base <= i <= j <= length - 1 )  

implies  area-free(proc i j 1 = false 
END-EFFECTS 

OFUN make-f'ree(proc  task) 
(; deassigns  task  from  proc,  causing  memory  occupied by task 

EXCEPTIONS 
not-proc(proc) 
task-not-in-proc(proc  task) 

EF F EC TS 

to be  deallocated) 

END-EXCEPTIONS 

let  base = 'mem-area-write(proc  task>Cl]' 
let  length = 'mem-area-write(proc  task)[21' 
forall i, j (base <= i <= j <= length - 1) 

implies  area-free(i j) 
END-EFFECTS 

END-MODULE 
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The  Buffer  

T h e   b u f f e r   m o d u l e   f a c i l i t a t e s   t h e   t r a n s f e r   o f   c o m p u t a t i o n   r e s u l t s  

f rom  one   p rocessor   to   another .  The  module c o n t a i n s  a s t o r a g e  area, o r  

bu f fe r ,   f o r   each  t r i p l e  <proc ,   t ask l ,   t ask2>  such   tha t :  

(1) proc is a p rocesso r  

( 2 )   t a s k l  is a t a s k   c u r r e n t l y   r u n n i n g   i n   p r o c  

( 3 )  t a s k 2  is a t a s k   c u r r e n t l y   r u n n i n g   o n  some processor  
( p o s s i b l y   p r o c )   t h a t   r e q u i r e s   c o m p u t a t i o n   r e s u l t s  
f rom  task l .  

The   bu f fe r   a s soc ia t ed   w i th   each  t r i p l e  a c t u a l l y   c o n s i s t s   o f  two sep -  

arate s t o r a g e  areas: t h e   e v e n   b u f f e r   a n d   t h e  odd b u f f e r .  On even iter- 

a t ions   o f   t he   computa t ion   fo r  a g iven   task ,  results are s t o r e d  i n  the   even  

bu f fe r ;   on  odd i t e r a t i o n s ,  results are s t o r e d   i n   t h e  odd b u f f e r .  

The  need f o r   s u c h  a scheme arises from  the  kind  of   synchronizat ion 

s i t u a t i o n   i l l u s t r a t e d   i n   F i g u r e  IX-3. The f i g u r e  shows a few i t e r a t i o n s  

of   computat ion i n   p r o c e s s o r s  1, 2, and 3 .  The s o l i d   h o r i z o n t a l   l i n e s  

PROCESSOR 1 

PROCESSOR 2 

PROCESSOR 3 

A 
" 

B 
" 

B 
" 

ITERATION 1 

A 

B 
" 

B 
" 

ITERATION 2 

A 
" 

0 
" 

B 

ITERATION 3 

FIGURE IX-3 TIMING DIAGRAM FOR TWO COMMUNICATING PROCESSES 

r e p r e s e n t   i n t e r v a l s   d u r i n g   w h i c h   p a r t i c u l a r  tasks are executed. N o w  sup- 

pose   tha t   Task  B r e q u i r e s   f o r  i t s  inpu t ,   on   each   i t e r a t ion ,   t he   ou tpu t  

of  Task A o n   t h e   p r e v i o u s   i t e r a t i o n .   B e c a u s e   t a s k s   e x e c u t i n g   i n   d i f f e r -  

e n t   p r o c e s s o r s  are only   loose ly   synchronized ,   Task  B may not   be  executed 

c o n c u r r e n t l y   i n   p r o c e s s o r s  2 and 3. More p a r t i c u l a r l y ,  B may b e g i n   i n  

p rocesso r  2 befo re  A completes i n   p r o c e s s o r  1, whi l e  B b e g i n s   i n   p r o c e s s o r s  
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3 a f t e r  A completes. I f  a s i n g l e   s t o r a g e  area i s  used t o   h o l d   t h e  results 

of A, the .programs  running B i n   p r o c e s s o r s  2 and 3 w i l l   r e a d   d i f f e r e n t  

i n p u t   v a l u e s .   B e c a u s e   t h e s e   i n p u t s  are s u b j e c t   t o   v o t i n g ,  a d i f f i c u l t  

arises. 

T h e   i n t r o d u c t i o n   o f   s e p a r a t e   b u f f e r s   f o r  odd and   even   i t e r a t ions  

allows  programs i n   d i f f e r e n t   p r o c e s s o r s   t o   r e a d   t h e  same d a t a   r e g a r d l e s s  

o f   t h e i r   r e l a t i v e   p o s i t i o n s   i n   t h e   i t e r a t i o n   f r a m e .   I n   t h e  example s i t u -  

a t i o n ,   t h e   r e s u l t s   o f   t h e   f i r s t   i t e r a t i o n  are p l a c e d   i n   t h e  odd b u f f e r  

and   those   o f   the   second  i t e ra t ion  are p l a c e d  i n   t h e   e v e n   b u f f e r .   D u r i n g  

the   s econd   i t e r a t ion   f r ame ,   bo th   p rocesso r s   runn ing  B t a k e   t h e i r   i n p u t  

f rom  the  odd  buffer .  

T h e   s p e c i f i c a t i o n s   f o r   t h e   b u f f e r   m o d u l e  are l a r g e l y   s e l f - e x p l a n a t o r y .  

The  module 's   chief   funct ion i s  the  OV-funct ion 

read(proc1,   proc2,  bus, t a s k l ,   t a s k 2 ,   p a r i t y ,   o f f s e t ) ;  

read  is c a l l e d  by the   p rogram  running   task2   in   p roc2   to   ob ta in   input   f rom 

t h e   p r o g r a m   r u n n i n g   t a s k l   i n   p r o c l .   I f   p a r i t y  i s  TRUE, t h e   a p p r o p r i a t e  

e v e n - b u f f e r   i n   p r o c l  i s  r ead ;   o the rwise ,   t he  odd b u f f e r  i s  read.  The V- 
func t ions   connec ted- r   and   connec ted- t   model   the   necessary   bus   swi t ich ing .  

By convention,  bus 0 d e s i g n a t e s   t h e   i n t e r n a l   c o n n e c t i o n   o f  a p rocesso r  

t o  i t s  own memory. 
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MODULE buffer 

DECLARATIONS 
TYPE 

PROC = EXTERNAL  DESIGNATOR 
TASK = EXTERNAL  DESIGNATOR 
MACHINEWORD = EXTERNAL  DESIGNATOR 

END-TYPE 

integer  offset,  length, bus, number 
boolean b, parity 
PROC proc,  procl,  proc2 
TASK taskl,  task2,  task 
MACHINEWORD word 

END-DECLARATIONS 

PARAMETERS 

integer  max-buff  ;maximum  number of buffers  allowed  in  a  processor 
integer  max-buff-size  ;maximum  size of a  buffer 
integer  numb-busses  ;number of busses  in  system 

END-PARAMETERS 

EXCEPTIONS 

MACRO no-buffer(proc,taskl,  task21 = b 
not 'buffs-exist(proc,taskl,task2)' 

MACRO out-of-bounds(proc,taskl,task2,offset) = b 
offset >= 'buffs-size(proc,taskl,task2)' 

MACRO buffer-too-long(1ength) = b 
length > max-buff-size 

MACRO bad-bss(bus) = b 
bus > numb-bgsses  or bus < 0 or  (bus = 0 and  not  PrOCl = PrOc2) 

MACRO same-proc ( proc 1, proc2 = b 
procl = proc2 

END-EXCEPTIONS 
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FUNCTIONS 

VFUN connected-r(proc) = bus 
(; indicates  which  bus  proc  is  connected  to  for  receiving  data) 
HIDDEN 
I N I T I A L L Y  undefined 

VFUN connected-t(bus) = proc 
(; indicates  which  proc  bus is connected  to  for  transmitting  data) 
HIDDEN 
I N I T I A L L Y  undefined 

VFUN buff-mem-odd(proc,taskl,task2,offset) = word 
( ; stores  words  in ttcddtt buffer  for  transmission  from 

HIDDEN 
I N I T I A L L Y  undefined 

taskl  to  task21 

VFUN buff-mem-even(proc  ,taskl,  task2,offset) = word 
(; stores  words  in  "even"  buffer  for  transmission  from 

HIDDEN 
I N I T I A L L Y  undefined 

taskl  to  task21 

VFUN buffs-exist(proc,taskl,task2) = b 
(; indicates  whether  buffers  exist  in  proc  for  the 

I N I T I A L L Y  undefined 
transmission of data  from  taskl  to  task21 

VFUN buffs-size(proc,taskl,task2) = length 
(; indicates  size of buffers  in  proc  for  transmission of data 

EXCEPTIONS 
no-buffer(proc,taskl,task2) 

I N I T I A L L Y  undefined 

from taskl  to  task21 

END-EXCEPTIONS 

CFUN create-buffers(proc,taskl,task2,length) 

will  deposit  data  for  task21 
(; establisthes  buffers of size  length  in  proc  in  which  taskl 

EXCEPTIONS 
too-many-buffers(proc1 
buffer-too-long(1ength) 

EFFECTS 
END-EXCEPTIONS 

buffs-exist(proc,taskl,task2) 
buffs-size(proc,taskl,task2) = length 
forall i (0 <= i <= length)  implies 

btlff-mem-odd(proc  ,taskl,  task21 = 0 
forall i (0 <= i <= length)  implies 

buff-mem-even(proc,taskl,task2) = 0 
END-EFFECTS 
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OFUN write(proc,taskl,task2,parity,offset,word) 
(; called  by  taskl  to  deposit  data  into  the  appropriate  buffer 

for  task21 
EXCEPT IONS 
no-btlffer  (proc,  taskl,  task21 
out-of-bounds(proc,taskl,tas.k2,offset) 

EFFECTS 
END-EXCEPTIONS 

if  parity  then buff-mem-even(proc,taskl,task2,offset) = word 
else  buff-mem-odd(proc  ,taskl,  task2,offset) = word 

END-EFFECTS 

OVFUN read(procl,proc2,bus,taskl,task2,parity,offset~ = word 
(; called  by task2  running in proc2  to  receive  data  from 

EXCEPTIONS 
no-buf  fer ( proc 1, task 1, task2 
out-of-bounds(procl,taskl,task2,offset) 
bad-bus ( bus 

EFFECTS 

the  appropriate  buffer  deposited  by  taskl  in  procl) 

END-EXCEPTIONS 

if  not bus = 0 then  connected-r(proc2) = bus 
and  connected-t(bus) = procl 

if parity  then  word = 'buff-mem-even'(procl,taskl,task2,offset) 
else  word = 'buff-mem-odd' (procl,taskl,task2,offset) 

END-EFFECTS 

WUN delete-buffers(proc  ,taskl,  task21 
( ;  deletes  the  buffer  in  proc  for  the  transmission of data 

EXCEPT IONS 
no-buffer(proc,taskl,task2) 

EFFECTS 

*om taskl  to  task21 

END-EXCEPTIONS 

buf  fs-exist  (proc,  taskl,  task2) = false 
buffs-size(proc,taskl,task2) = undefined 
buff-mem-even(proc,taskl,task2, offset) = Llndefined 
buff-mem-odd(proc,taskl,task2, offset) = undefined 

END-EFFECTS 
END-FUNCTIONS 

END-MODULE 
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. .  

Dispa tche r  

The   p r imary   ro l e   o f   t he   d i spa tche r  i s  t o   s t o r e   t a s k   s c h e d u l e s   a n d  

d i s p a t c h   t a s k s  as d i c t a t e d  by the   cu r ren t ly   app ly ing   s chedu le   and  by 

e x t e r n a l   e v e n t s .  

The   d i spa tcher   responds   to   the   passage   of  t i m e  i n   d e t e r m i n i n g   t h e  

t a s k   t o  be  dispatched.  There are two c l o c k s   p e r t i n e n t   t o   t h i s   m a c h i n e :  

a h igh  s p e e d  c lock ,  as r ep resen ted  by t h e   0 - f u n c t i o n  timer, and a slower 

c l o c k  as rep resen ted  by the   0 - func t ion   c lock - t i ck .   Each   o f   t hese   t iming  

0 - func t ions  i s  assumed t o  b e   c a l l e d  by a separate independent   process  

tha t   can   ope ra t e   a synchronous ly   w i th   t he   o the r   sys t em  t a sks .   Tha t  is, 

t h e s e   c l o c k s  are treated l i k e   i n t e r r u p t   s i g n a l s .  

The in t e rva l   be tween   success ive   c lock - t i cks  is called a frame.  The 

f a s t e s t   t a s k s  are d ispa tched   once   every   f rame;   s lower   t asks  are d i spa tched  

every  n- th   f rame,  n > 1. A s  p r e v i o u s l y   n o t e d ,   t h e   d i s p a t c h e r   h a n d l e s  two 

types   o f   t asks :   scheduled   and   pr ior i ty .  The schedu led   t a sks   run   t o  com- 

p l e t ion   eve ry  t i m e  they  are d i spa tched .  A t a s k  calls  the   0 - func t ion   j ob -  

complete t o   i n d i c a t e   t h a t  i s  has   completed  execut ion.   Each  task i s  a l s o  

g iven  a maximum t i m e  fo r   execu t ion ,  as measured  by c a l l s  on t i m e r .  The 

V-funct ion  max-task-t ime  records  the maximum allowed t i m e ,  and t h e  V- 

func t ion   t ime-cur ren t - task   records   the   remain ing   execut ion  time. I f  a 

t a sk   ove r runs  it i s  undispa tched   and   the   next   t ask  i s  dispatched.   The 

in fo rma t ion   t ha t   t he   d i spa tche r   needs   abou t   s chedu led   t a sks  i s  provided 

by t h e  LE c a l l i n g   t h e   0 - f u n c t i o n   a d d - r e g u l a r l y - s c h e d u l e d   t a s k .  B e s i d e s  

s e t t i n g   t h e   v a l u e   f o r   m a x - t a s k - t i m e ,   t h i s   f u n c t i o n   a l s o  makes known t h e  

i n i t i a l   s t a t u s  of a t a s k  (e.g., e n t r y   p o i n t ,   i n i t i a l   v a l u e   o f   r e g i s t e r s )  

t o   t h e   d i s p a t c h e r .  The actual s c h e d u l e   i t s e l f  i s  g i v e n   t o   t h e   d i s p a t c h e r  

by c a l l i n g   t h e   0 - f u n c t i o n   a d d - r e g u l a r - s c h e d u l e .  A schedu le  i s  a c i r c u l a r  

l ist of   scheduled   tasks ,   wi th  a p o i n t e r   i d e n t i f i e d  by nex t - se l ec t ed -  

element.  

P r i o r i t y   t a s k s  are o n l y   e l i g i b l e   t o   b e   d i s p a t c h e d  when a l l  o f   t h e  

scheduled   tasks   have   comple ted   the i r   execut ion   in  a frame.  The  parameter 

gp t ,  when i t  a p p e a r s  i n  a s c h e d u l e   i n d i c a t e s   t h a t  a p r i o r i t y   t a s k  is t o  

be  dispatched.  A c l o c k   t i c k   o c c u r r i n g   d u r i n g   t h e   e x e c u t i o n   o f  a p r i o r i t y  
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t a s k   s i g n i f i e s   t h a t   t h e  s ta tus  o f   t h e   c u r r e n t l y   e x e c u t i n g   p r i o r i t y   t a s k  

is to   be   s aved ,   and   t he   nex t   s chedu led   t a sk  i s  t o  be  dispatched.  When a 

p r i o r i t y   t a s k   c o m p l e t e s  its e x e c u t i o n ,   o r  i t s  execu t ion  t i m e  exceeds   the  

va lue   o f   max- t a sk - t ime   ano the r   p r io r i ty   t a sk  is c o n s i d e r e d   f o r   d i s p a t c h -  

i n g .   T h e   p r i o r i t y   t a s k   s e l e c t e d  i s  t h e   t a s k - o f   t h e   h i g h e s t   p r i o r i t y ,  as 

r e f l e c t e d  by t h e   v a l u e   o f   t h e   V - f u n c t i o n ,   p r i o r i t y ,   s u c h   t h a t   t h e  t i m e  

s i n c e  i ts  last execu t ion   exceeds   t he   des i r ed   pe r iod   fo r   t ha t   t a sk ,  as 

r e f l e c t e d  by t h e   v a l u e   o f   t h e   V - f u n c t i o n   p e r i o d - p r i o r i t y .   I n f o r m a t i o n  

a b o u t   p r i o r i t y   t a s k s  i s  g i v e n   t o   t h e   d i s p a t c h e r   v i a   t h e   O - f u n c t i o n   a d d -  

p r i o r i t y - t a s k .  

The   d i spa tche r ,   u s ing   t he   V- func t ion   i t e r - coun t ,   r eco rds   t he  number 

o f   i t e r a t ions   comple t ed  by each   task .  
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MODULE d i s p a t c h e r  

IECLARATIONS 

TYPE 
TASK = DESIGNATOR 
TIME = DESIGNATOR 
MACHINEWORD = DESIGNATOR 

END-TYPE 

i n t e g e r   p o s i n t  
boolean b 
TIME time, t i m e l ,   t i m e 2  
TASK t a s k  
MACHINEWORD word 
CIRCULAR-LIST t a s k - l i s t  
TUPLE-OF MACHINEWORD word-tuple 
ONE-OF {regular, p r io r i ty )   k ind -o f - t a sk  

END-DECLARATIONS 

PARAMETERS 

TASK l e  ( ;  local e x e c u t i v e   t a s k )  
TASK gp t  ( ;  g e n e r i c   p r i o r i t y   t a s k - -  GPT i s  the   l l cu r ren t - t a sk l l  

when a s p e c i f i c   p r i o r i t y   t a s k  i s  t o  be  
sc hed u l  ed 

real  t a s k  is t o  be  scheduled)  
TASK n u l l - t a s k  (; t h e  empty p r i o r i t y   t a s k  used t o  f i l l  i n  when no 

TUPLE-OF MACHINEWORD ze ro - tup le  ( ;  t u p l e   c o n s i s t i n g  of a l l  ze ro  words)  
TUPLE-OF MACHINEWORD status-le (; i n i t i a l   s t a t u s   o f   l o c a l   e x e c u t i v e )  
i n t e g e r  pn (;  p r i o r i t y   l e v e l   o f   n u l l - t a s k  1 
integer  max-scheduled-tasks ( ;  m a x i m u m  n m b e r   o f  

r e g u l a r l y   s c h e d u l e d   t a s k s )  
in teger   max-pr ior i ty- tasks  ( ;  maximum number o f   p r i o r i t y   t a s k s )  
i n t e g e r   s t a t u s - l e n g t h  (; number of machine  words 

TIME max-time-le (;  maximum execu t ion  time for  local  execu t ive )  
TIME max-time-null-task (; maximum execu t ion  time for n u l l  task)  

compris ing status o f   a n y   t a s k )  

END-PARAMETERS 

DEF I N  I T  IONS 

dispa tch-next - regular - task  
cu r ren t - t a sk  = currently-selected-element(ltask-list') 
c = advance - se l ec to r (   t a sk - l i s t  ) 
t ime-current- task = 

s t a tus -cu r ren t - t a sk  = *initial-status-task(current-task)t 
'max-task-time(currently-selected-element(?task-list?))? 
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d i spa tch - in t e r rup ted -p r io r i ty - t a sk  
c u r r e n t - t a s k  = currently-selected-element('task-1ist ' ) 
c = advance-selector('task-list') 
t ime-current- task = ' t ime- in te r rupted- task '  
s t a tus -cu r ren t - t a sk  = ' s t a tu s - in t e r rup ted - t a sk '  

s ave - s t a tus -cu r ren t -p r io r i ty - t a sk  
t ime- in te r rupted- task  = ' t ime-current- task '  
s t a t u s - i n t e r r u p t e d - t a s k  = ' s t a tu s -cu r ren t - t a sk '  

d i spa tch -nex t -p r io r i ty - t a sk  
l e t  s = { task I task member-of ' p r i o r i t y - t a s k - s e t '  and 

e x i s t s  taskl  
'time-to-next-exec ( t a sk )  = 0 1 

t a s k l  member-of s 
fo ra l l  t a s k 2   t a s k 2  member-of s i m p l i e s  

c w r e n t - p r i o r i t y - t a s k  = taskl  
t ime-cur ren t - task  = 'ma - t a sk - t ime( t a sk1) '  
s t a tus -cu r ren t - t a sk  = ' i n i t i a l - s t a t m - t a s k (   t a s k l  
time-to-next-exec(task1) = 'period-priority(task1)' 

' p r i o r i t y ( t a s k 1  1' <= ' p r i o r i t y ( t a s k 2 ) '  

END-DEFINITIONS 

EXCEPTIONS 

MACRO no - t a sk ( t a sk )  = b 
n o t  t a s k  member-of task-set and 
n o t   t a s k  member-of p r i o r i t y - t a s k - s e t  

MACRO t a sk - i s -gp t ( t a sk )  = b 
t a s k  = gpt  

MACRO not-a-priority-task(task) = b 
n o t  task member-of p r i o r i t y - t a s k - s e t  

MACRO task-already-known( task)  = b 
task member-of task-set or t a s k  member-of p r i o r i t y - t a s k - s e t  

MACRO too-many-regular-tasks = b 
c a r d i n a l i t y ( t a s k - s e t )  >= max-scheduled-tasks 

MACRO tuple-wrong-length(word-tuple) = b 
not   l ength(word- tuple)  = s t a t u s - l e n g t h  
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MACRO too-many-prior i ty- tasks  = b 
cardinality(pri0rity-task-set) >= max-prior i ty- tasks  

MACRO task-not - regular  ( task)  = b 
n o t   t a s k  member-of task-set 

MACRO no t - cu r ren t - t a sk ( t a sk )  = b 
n o t  t ask  = ' c u r r e n t  t a sk '  

MACRO n u l l - t a s k ( t a s k 1  = b 
t a s k  = n u l l - t a s k  

MACRO next-task-not-known = b 
n o t  next-selected-task('task-list'1 member-of 'task-set' 

MACRO cu r ren t - t a sk -no t -p r io r i ty  = b 

MACRO n e x t - t a s k - p r i o r i t y  = b 
no t   ' cu r r en t - t a sk '  = gpt  

next-selected-element('task-list') = gp t  

END-EXCEPTIONS 

FUNCTIONS 

VFUN task-set = s 
(;  s e t  of a l l  r e g u l a r   t a s k s   a s s i g n e d   t o   d i s p a t c h e r )  
EXCEPTIONS 

INITIALLY s = { le ,  g p t )  
END-EXCEPTIONS 

VFUN t a s k - l i s t  = c 
(; c i r c u l a r  l ist  o f   r egu la r ly - schedu led  tasks) 
EXCEPTIONS 

INITIALLY c = NEW c i rcu lar - l i s t  ( l e  , g p t )  
END-EXCEPTIONS 

VFUN max-task-time(task1 = time 
( ;  maximum time a l lowed   fo r   execu t ion  of a schedu led   t a sk )  
EXCEPT IONS 
no- task( task1  
task- is-gpt  ( t a s k )  

INITIALLY ma-task-time( task) = 
END-EXCEPTIONS 

if t a s k  = l e  then  max-time-le-task 
else i f  task = null - task  then  max-t ime-nul l - task 

else undefined 

VFUN c u r r e n t - t a s k  = t ask  
(; cur ren t ly   d i spa tched   s chedu led  t a sk )  
EXCEPTIONS 

INITIALLY c u r r e n t - t a s k  = l e  
END-EXCEPTIONS 

212 



VF.m t ime-cur ren t - task  = time 
(; a l lowab le  time remaining for c u r r e n t l y   d i s p a t c h e d  task) 
EXCEPT IONS 

INITIALLY time = time-le 
END-EXCEPTIONS 

WUN s t a t u s - c u r r e n t - t a s k  = word-tuple 
(; s t a t u s   ( v a l u e s  of program  counter  and  other registers) 

EXCEPTIONS 

I N I T I A L L Y  s t a tus -cu r ren t - t a sk  = status-le 

, of c u r r e n t l y   d i s p a t c h e d   t a s k )  

END-EXCEPTIONS 

WUN initial-status-task(task) = word-tuple 
(; i n i t i a l   s t a t u s  of e a c h   t a s k )  
EXCEPTIONS 
no - t a sk (   t a sk )  

INITIALLY i n i t i a l - s t a t u s - t a s k ( 1 e )  = s t a t u s - l e  
END-EXCEPTIONS 

initial-status-task(nul1-task) = zero- tuple  

VFUN s t a t u s - i n t e r r u p t e d - t a s k  = word-tuple 
( ;  h o l d s  s t a tus  o f  i n t e r r r u p t e d   p r i o r i t y   j o b )  
EXCEPTIONS 

INITIALLY s t a t u s - i n t e r r r u p t e d - t a s k  = zero- tuple  
END-EXCEPTIONS 

V F U N  c u r r e n t - p r i o r i t y - t a s k  = t a s k  
(; g i v e s   i d e n t i t y  of  c u r r e n t l y   e x e c u t i n g  or  

EXCEPTIONS 

INITIALLY task = n u l l - t a s k  

i n t e r r u p t e d   p r i o r i t y  t a s k )  

END-EXCEPTIONS 

VFUN t ime- in te r rupted- task  = time 
( ;  remaining  execQtion time f o r   i n t e r r u p t e d   p r i o r i t y  t a sk )  
EXCEPTIONS 

INITIALLY time = 0 
END-EXCEPTIONS 

VFUN overrun- tasks  = < sl, 92 > 
(;  i n d i c a t e s   t a s k s   w h i c h   h a v e   o v e r r u n   t h e i r  a l l o t t ed  times; 
s l  is se t  of schedu led   t a sks ;  s2 is set of p r i o r i t y   t a s k s )  

E XC EPT IONS 
NO-EXCEPTIONS 
I N I T I A L L Y  ~l I )  

s2 = { I  

VFUN p r i o r i t y ( t a s k 1  = p o s i n t  
(; p r i o r i t y   l e v e l  of p r i o r i t y   t a s k - - s m a l l e r   v a l u e s   i n d i c a t e  

EXCEPT IONS 
not-a-priority-task(task1 

INITIALLY p r i o r i t y ( n u l 1 - t a s k )  = pn 

h i g h e r   p r i o r i t y )  

END-EXCEPTIONS 
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V F U N  p e r i o d - p r i o r i t y ( t a s k )  = time 
(; m i n i m u m  schedul ing   f requency  for  p r i o r i t y  task 

EXCEPTIONS 
not-a-priority-task(task) 

INITIALLY time = 0 

measured i n   c l o c k  ticks) 

END-EXCEPTIONS- 

VFUN time-to-next-exec(task1 = time 
(; minimum allowable time to  n e x t   d i s p a t c h i n g  

EXCEPTIONS 
not-a-priority-task(task) 

INITIALLY time-to-next-exec(nul1-task) = 0 

of p r i o r i t y  t ask   t ask)  

END-EXCEPTIONS 

VFUN i t e r - c o u n t ( t a s k )  = p o s i n t  
(; i n d i c a t e s  t h e  number o f  i t e r a t i o n s   c o m p l e t e d  by task) 
EXCEPTIONS 
no-task(  task) 

I N I T I A L L Y  i t e r - coun t (1e )  = 0 
END-EXCEPTIONS 

i t e r - coun t (nu l1 - t a sk )  = 0 

OFUN add-regular ly-scheduled-task(   task, t ime,word-tuple)  
(; makes new t a s k  known to   d i spa tcher - - informat ion   concern ing  

m a x i m a n  execut ion  time and i n i t i a l   s t a t u s  are passed)  
EXCEPTIONS 
task-already-known(  task) 
too-many-scheduled-tasks 
tuple-wrong-length(word-tuple) 

EF F EC TS 
END-EXCEPTIONS 

task-set = ' task-set' union {task)  
ma-task-time(task) = time 
initial-status-task(task1 = word-tuple 
i t e r - c o u n t ( t a s k )  = 0 

END-EFFECTS 

OFUN delete-scheduled-task(  task) 
(; removes   regular ly   scheduled  task task) 
EXCEPTIONS 
task-not - regular (  t ask)  

EFFECTS 
END-EXCEPTIONS 

task-set = ' task-set' - {task) 
max-task-time( task)  = undefined 
initial-status-task(task) = undefined 
in t e r - coun t (  task)  = undefined 

END-EFFECTS 
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OFUN add-regular-schedule(c)  
(; give t h e  schedule  of r e g u l a r l y   s c h e d u l e d   t a s k s  as t h e  

EXCEPTIONS 

EFFECTS 

circular  list c )  

END-EXCEPTIONS 

t a s k - l i s t  = c 
END-EFFECTS 

CFUN add-priority-task(task,posint,timel,time2,word-tuple~ 
(; makes a new p r i o r i t y   t a s k   w i t h   p r i o r i t y   l e v e l   p o s i n t  

m a x i m u m  execu t ion  time timel, m i n i m l a m  time between 
e x e c u t i o n s   t i m e 2 ,   a n d   i n i t i a l   s t a t u s   w o r d - t u p l e  
known to  t h e   d i s p a t c h e r )  

EXCEPTIONS 
task-already-known( task)  
too-many-priority-tasks 
tuple-wrong-length(word-tuple) 

EF  FEC TS 
END-EXCEPTIONS 

p r i o r i t y - t a s k - s e t  = ' p r io r i ty - t a sk - se t '   un ion  { t a s k ]  
max-task-time(task) = t ime l  
i n i t i a l - s t a t m - t a s k ( t a s k )  = word-tuple 
i t e r - c o u n t ( t a s k )  = 0 
p r i o r i t y ( t a s k 1  = p o s i n t  
p e r i o d - p r i o r i t y (  task) = t ime2 
time-to-next-exec(task1 = 0 

END-EFFECTS 

WUN delete-priority-task(task1 
(; removes p r i o r i t y  t a s k  task)  
EXCEPTIONS 
not-a-priority-task(task) 

EFFECTS 
END-EXCEPTIONS 

p r i o r i t y - t a s k - s e t  = ' p r io r i ty - t a sk - se t '  - {task)  
ma- t a sk - t ime(   t a sk )  = undefined 
initial-status-task(task) = undefined 
iter-count(task1 = m d e f i n e d  
p r i o r i t y ( t a s k )  = m d e f i n e d  
p e r i o d - p r i o r i t y ( t a s k 1  = undefined 
t ime-to-next-exec(task) = undefined 

END-EFFECTS 

C F U N  assign-iter-count(task,posint) 
(; a s s i g n s   i t e r a t i o n  count p o s i n t  t o  t a s k )  
EXCEPTIONS 
no- task( task1  

EFFECTS 
END-EXCEPTIONS 

i t e r - c o u n t ( t a s k 1  = p o s i n t  
END-EFFECTS 
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OFUN job-complete( task)  
(; called by c u r r e n t l y   d i s p a t c h e d  task on   comple t ing  

execu t ion ;  a new task  i s  then   d i spa tched- -  i f  task i s  a 
p r i o r i t y   t a s k ,  t h e  new t a s k  will be as well. i f  t a s k  i s  
a r e g u l a r l y - s c h e d u l e d   t a s k ,  t h e  new task may be e i ther  
s c h e d u l e d   o r   p r i o r i t y .  we assrune t h a t  n u l l - t a s k   n e v e r  
c a l l s  job-complete.)  

EXCEPT IONS 
n u l l - t a s k (   t a s k )  
n o t - c u r r e n t - t a s k ( t a s k )  
next-task-not-known 

EFFECTS 
END-EXCEPTIONS 

i t e r - c o u n t ( t a s k 1  = ' i t e r - c o m t ( t a s k ) '  + 1 
i f  n o t   ' c u r r e n t - t a s k '  = gpt  

and  not next-selected-task('task-list' ) = gpt  
t hen   d i spa tch -nex t - r egu la r - t a sk  

e lse  i f  n o t   ' c u r r e n t - t a s k '  = gpt  and 
nex t - se l ec t ed - t a sk  = gp t  

t h e n   d i s p a t c h - i n t e r r u p t e d - p r i o r i t y - t a s k  
else d i s p a t c h - n e x t - p r i o r i t y - t a s k  

END-EFFECTS 

OFUN clock-tick 
(; s i g n a l s   i n t e r r u p t i o n   o f   p r i o r i t y  t a s k  and  subsequent  

d i s p a t c h i n g  of r egu la r ly - schedu led  task)  
EXCEPTIONS 

c u r r e n t - t a s k - n o t - p r i o r i t y  
n e x t - t a s k - p r i o r i t y  
ne.xt-task-not-known 

EFFECTS 
END-EZZEPTIONS 

f o r a l l  t a s k   t a s k  member-of ' p r i o r i t y - t a s k - s e t '  and 
n o t  'time-to-next-exec(task)' 0 

imp1 ies 
time-to-next-exec ( task)  = 

'time-to-next-exec(task)' - 1 
s a v e - s t a t u s - c u r r e n t - p r i o r i t y - t a s k  
d ispa tch-next -scheduled- task  

END-EFFECTS 
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OFUN timer 
(; decrements  time remaining for c u r r e n t   t a s k ,  logs 

EXCEPTIONS 
next-task-not-known 

EF F EC TS 

error a n d   d i s p a t c h e s   n e x t  task i f  o v e r r u n   o c c u r s )  

END-EXCEPTIONS 

t ime-cur ren t - task  = ' t ime-cur ren t - task '  - 1 
i f  t ime-cur ren t - task  = 0 t h e n  

i f  ' c u r r e n t - t a s k '  = g p t   t h e n  
over run- tasks[2  1 = 

' over run- tasks ' [2]   un ion  i ' c u r r e n t - p r i o r i t y  
- task '  1 

else overrun-tasks[  1 I = 
' over run- tasks ' [   11   un ion  i ' c u r r e n t - t a s k '  1 

n o t  next-selected-element('task-list' = g p t   t h e n  
i f  n o t   ' c u r r e n t - t a s k '  = gpt   and 

dispatch-next-scheduled-task 
else i f  n o t   ' c u r r e n t - t a s k '  = gpt  

and  next-selected-element( '  t ask- l i s t '  = g p t  
then 
d i s p a t c h - i n t e r r u p t e d - p r i o r i t y - t a s k  

else d i s p a t c h - n e x t - p r i o r i t y - t a s k  
END-EFFECTS 
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The Reader-Voter 

The reader-voter  module  provides  the  means  of  comparing  results  of 

different  processors  working on the same task. In the  present  design,  it 

is  the  only  mechanism  for  detecting  failures,  including  those  uncovered 

during  diagnosis. The reader-voter is  therefore  at  the  heart  of  SIFT's 

fault-tolerance  machinery. 

The  reader-voter  is  also  the  lowest  module in the  system  in  which 

processor  and  bus  failures  are  explicitly  modeled. The  reason is  that 

this  module  is  conceptually  the  lowest  point  at  which  errors  are  intro- 

duced. From the  point  of view'of the  global  executive,  if  the  reader- 

voter  has  not  recorded  a  voting-discrepancy,  no  fault  has  occurred--even 

if  certain  busses  and  processors  have  in  reality  failed.  One  must  bear 

in mind,  of  course,  that  the  reader-voter,  like  all  of  SIFT's  functions, 

is  actually  distributed  among  the  processors  of  the  system--the  global 

executive  compares  results  obtained  by  reader-voters in  all  modules  and 

is  aware  of  the  possibility  of  a  fault  affecting  some  processor's  reader- 

voter  program. 

The central  focus  of  the  module  is  the  OV-function  vote-read(proc 

task  offset).  This  function  is  used  by  the  program  associated  with  the 

task  task  running in processor  proc. The effect  of  vote-read  is  to  read 

(via  the  bus  network)  the  contents  of  the  virtual  address  <task,  offset> 

of  every  processor  performing  the  task  task,  and  then  vote on  the results. 

If some  value  receives  a  simple  majority,  that  value  is  returned;  other- 

wise, the  flag  fatal-error  is  set,  and  undefined  is  returned as the  value 

of the  call. In  either  case,  unless  the  vote  is  unanimous,  the  flag 

error-detected  is  set,  and  the  details of the  disagreement  are  logged. 

The outcome  of  a  call on vote-read  depends on a  number of factors. 

It clearly  depends on whether  and  which  processors  executing  task  are 

faulty  at  the  time. It similarly  depends on  which busses  used  in  com- 
municating  with  these  processors  are  faulty.  Naturally,  the  outcome  also 

depends on  what  the  polled  values  actually  are,  right  or  wrong. 
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The  o ther  V- and  O-functions i n   t h e  module are used t o  model t h e s e  

cons idera t ions .   The   mos t   impor tan t   o f   these  are the  V-funct ions  proc-bus-  

ass ignments ,   faul t ,   correct-read,   and  read.  

Proc-bus-assignments i s  a V-function  of  two  arguments,  proc  and  task. 

Fo r   each   p rocesso r   and   each   t a sk   execu ted   w i th in   t ha t   p rocesso r ,  it 

s t o r e s   t h e   i n f o r m a t i o n  as t o  what  busses are t o   b e   u s e d   i n   r e a d i n g   v a l u e s  

f rom  the   o the r   p rocesso r s   execu t ing   t he   t a sk .   Th i s   i n fo rma t ion  i s  r e p r e -  

s en ted  as a set  of PAIRS. Each   pa i r   has  two p a r t s :  a p roc   pa r t   des ig -  

n a t i n g  a processor ,   and a b u s   p a r t   d e s i g n a t i n g   t h e   b u s   t o   b e   u s e d   i n  

r ead ing   f rom  tha t   p rocesso r .  I t  might   be   no ted   tha t   the  set pro-bus- 

ass ignments   (proc   t ask)  may c o n t a i n  a p a i r  whose p rocesso r  component is 

p r o c   i t s e l f - - i n   o t h e r   w o r d s ,  a p rocesso r  may wish t o  read from i t s e l f   o v e r  

a bus. A d i a g n o s t i c   r o u t i n e ,   f o r  example, might  need t h i s   c a p a b i l i t y .  

The   V-funct ion   fau l t  is used t o  keep   t r ack   o f   f au l t s   i n   t he   ha rdware .  

F o r   p a r t i c u l a r   v a l u e s  of its arguments  procl,   proc2,  bus,   task,   and  off-  

set, it r e t u r n s  TRUE o r  FALSE depending  on  whether   or   not  a f a u l t  exists 

t h a t  impac t s  a read   by   p roc l ,   us ing   bus   bus ,   o f   the   v i r tua l   loca t ion  

< ta sk ,   o f f se t>   i n   p roc2 .   No te   t ha t   t h i s   V- func t ion  is gene ra l   enough   t o  

model a complete  breakdown  of a p r o c   o r   b u s .   I f   f o r  example, bus 1 i s  

s e v e r e d ,   f a u l t   r e t u r n s   t r u e   o n  a l l  legi t imate   combinat ions  of   arguments  

for  which  bus = 1. Because   f au l t  i s  n o t   i n t e n d e d   t o   b e   v i s i b l e   o u t s i d e  

t h e  module, i t  is dec la red  HIDDEN. Another HIDDEN V-funct ion ,   cor rec t -  

r e a d   ( t a s k   o f f s e t ) ,   r e t u r n s   t h e   v a l u e   o n e  would e x p e c t   t o   f i n d   i n   t h e  

v i r t u a l   l o c a t i o n   < t a s k ,   o f f s e t >   o f  a non-fau l ty   p rocessor   working   on   t ask .  

L i k e   f a u l t ,   c o r r e c t - r e a d  is a b s t r a c t   i n   t h e   s e n s e   t h a t  it i s  n o t   a c t u a l l y  

implemented i n   t h e  SIFT so f tware .  It i s  d e f i n e d ,   r a t h e r ,   i n  terms o f   a n  

i d e a l   p r o c e s s o r .  

The  V-funct ion  read(proc1,   proc2,   bus,   task,   offset)   del ivers   the 

r e s u l t   o f  a read  by p r o c l ,   o v e r   b u s   b u s ,   o f   t h e   l o c a t i o n   < t a s k ,   o f f s e t 3  

i n  proc2. I f  a f a u l t   c o n d i t i o n  exists w h i c h   a f f e c t s   t h a t  read (as d e t e r -  

mined  by the   V-funct ion   fau l t ) ,   an   undetermined   va lue  i s  re turned .   Other -  

wi se ,  t h e   c o r r e c t   v a l u e   c o r r e c t - r e a d   ( t a s k   o f f s e t )  is returned.   Note  

t h a t   t h e   v a l u e   o f   r e a d  is comple te ly   de te r in ined   by   the   va lues   o f   fau l t  

and   cor rec t - read;   read  is t h e r e f o r e  a DERIVED V-function. 
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MODULE reade r -vo te r  

DECLARATIONS 

TYPE 
PROC = DESIGNATOR 
TASK = DESIGNATOR 
MACHINEWORD = DESIGNATOR 
PAIR = STRUCTURE(PR0C: proc, i n t e g e r :  b u s )  

END-TYPE 

PROC proc, procl, proc2 
SET-OF PROC s p  
TASK task,  t a s k l ,  t a s k 2  
SET-OF TASK st 
PAIR p a i r ,  pa i r1  
SET-OF PAIR setpairs  
MACHINEWORD word, word  1 
BAG-OF MACHINEWORD v o t e s  
boolean b 
i n t e g e r   b u s ,   o f f s e t  

END-DECLARATIONS 

PARAMETERS 

END-PARAMETERS 

DEF I N  I T  IONS 

MACRO major i ty-opin ion(proc  t a s k  o f f se t )  = word 
LET v o t e s  = 

BAG {word1 I e x i s t s  pair  
pair member-of 'proc-bus-assignments(proc task) '  
and word = 'read(proc  pair.proc pa i r . bus  t a s k  

o f f se t )  1 

i f  e x i s t s  word 1 
word1 member-of v o t e s  

a n d   m u l t i p l i c i t y ( w o r d 1 ,   v o t e s )  > 
( 1 / 2 ) c a r d i n a l i t y ( v o t e s )  

then  word = word1 
e lse  word = undefined 
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MACRO dissenting-pairs(proc  task  offset) = setpairs 
if  majority-opinion(proc  task  offset) = undefined 
then  setpairs = 'proc-bus-assignment(proc task)' 

el  se 
setpairs = 
{pair f pair  member-of 'proc-bus-assignments(proc task) ' 

and  not  'read(proc  pair.proc  pair.  bus  task  offset)' 
= majority-opinion(proc  task  offset) 1 

E N D - D E F I N I T I O N S  

EXCEPTIONS 

MACRO no-proc-bus-assignment(proc1 proc2 bus task) = b 
not  exists  pair 

pair  member-of 'proc-bus-assignment(proc1 task)' 
and  pair  .proc = proc2 
'and  pair.bus = bus 

MACRO bad-offset(task  offset) = b 
offset < : or  offset > max-offset(task) 

MACRO not-assigned(task) = b 
not  exists  proc 

task  member-of ' task-set(proc) 
MACRO bad-assignment(proc  task  setpairs) = b 

exists  pair 
pair  member-of  setpairs 

and  (pair.bus > maxbusses  or 
exists  pair 1 

pair 1 member-of  se  tpairs 
and  (pair.bus = pair1 .bus 

or  pair  .proc = pair 1 .proc) 1 

MACRO too-many-tasks(proc1 = b 
cardinality(  'task-set(proc) ' >= ma-tasks 

END-EXCEPTIONS 

FUNCTIONS 

VFUN task-set(proc) = st 
( ; set of tasks  assigned  to  processor  proc) 
I N I T I A L L Y  st = { le 1 
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VF UN proc-bus-assignments(proc task) = se tpa i rs  
(; for  each  proc and task ,   y ie lds   se t   o f  PAIRS--one pair 

for each other  processor working on that  task;  the first 
component of each pair  names the  processor,  the second gives 
the bus assignment for  reading from that  processor) 

EXCEPTIONS 
task-not-in-proc(proc  task) 

I N I T I A U Y  undefined 
END-EXCEPTIONS 

VFUN fault(proc1 proc2 bus t ask   o f fse t )  = b 
(; indicates whether or  not a f a u l t   e x i s t s   t h a t  impacts a read 

by procl  using bus bus  of t h e  memory of proc2 a t  t h e  
location  associated w i t h  t ask ,   o f fse t )  

HIDDEN 
EXCEPTIONS 
no-proc-bus-assignment(proc1 proc2 bus task) 
bad-offset(task  offset) 

INITIALLY fa l se  
END-EXCEPTIONS 

VFUN correc  t-read  (task  ofset = word 
(; resu l t   tha t  one would expect from a non-faulty module) 
HIDDEN 
EXCEPTIONS 
not-assigned(task1 
bad-offset(task  offset)  

I N I T I A L L Y  undefined 
END-EXCEPTIONS 

VFUN read(proc1  proc2 bus t ask   o f fse t )  = word 

and offset  i n  proc2 using bus  b u s )  
(;  result  of  procl's  reading  of  location  associated w i t h  task 

DERIVED 
DERIVATION 

i f  fault(proc1 proc2 bus task  offset)  then 

else  word = correct-read(task  offset)  
word = tundetermined 

OVFUN vote-read(proc  task  offset) = word 
( ;  returns  majority  vote on value  associated w i t h  task and 

offset .  i f  vote is not unanimous, disagreements a re  logged. 
if no majority  exists,  returns undefined and s e t s  
fatal-error  f lag) 

EXCEPTIONS 
task-not-in-proc(proc  task) 
bad-offset(task  offset) 

EFFECTS 
END-EXCEPTIONS 

word = majority-opinion(proc  task  offset) 
i f  word = undefined  then fatal-error(proc) = true 
disagreement-set(proc) = 

dissenting-pairs(proc  task  offset) 
END-EFFECTS 
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C F U N  e r ro r -de tec t ed (p roc1  = b 
(; f lag  i n d i c a t i n g   t h a t   d i s a g r e e m e n t  ex is t s )  
DERIVATION 

not   d i sagreement -se t (proc)  = i 1 

VFUN f a t a l - e r r o r ( p r o c )  = b 
(; f l ag  t h a t   i n d i c a t e s   l a c k  of a m a j o r i t y )  
INITIALLY fa l se  

OFUN a s s i g n - t a s k ( p r o c   t a s k   s e t p a i r s )  
(; a s s i g n s  new t a s k  t o  proc- s e t p a i r s   i n d i c a t e s   t h e   o t h e r  

process’ws  working  on  that   task  and  the  busses  t o  be  used 
i n   r e a d i n g  from them) 

EXCEPTIONS 
b a d - a s s i g n m e n t ( p r o c   t a s k   s e t p a i r s )  
too-many-tasks ( proc 

EF  FEC TS 
END-EXCEPTIONS 

t a sk - se t (p roc1  = ‘ t a sk - se t (p roc )*  Union { t a s k )  
proc-bus-assignments(proc , t a s k )  = s e t p a i r s  

END-EFFECTS 

OFUN d e l e t e - t a s k ( p r o c   t a s k )  
( ; d e a s s i g n s   t a s k  t o  p roc )  
EXCEPTIONS 
task-not- in-proc  (proc  task)  

EFFECTS 
END-EXCEPTIONS 

task-se t ( proc = * task-se  t ( proc * - { t a sk1  
proc-bus-assignments(proc t a s k )  = s e t p a i r s  

END-EFFECTS 

OFUN cause- fau l t (proc1   proc2   bus   t ask  o f fse t )  
(; produces a fau l t  t h a t  affects  reads   by   p roc l   over   bus  b u s  

H I D D E N  
EXCEPT I O N S  
b a d - o f f s e t ( t a s k  o f f se t )  

EF  FEZ TS 

of l o c a t i o n   i n   p r o c 2   a s s o c i a t e d   w i t h   t a s k ,  o f f se t )  

END-EXCEPTIONS 

fau l t (p roc1   p roc2   bus   t a sk  o f f se t )  = true 
END-EFFECTS 
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. . .. . . . . 

OFUN change-correct-read(task offset word) 
(; updates correct-read to give correct  result for current 

HIDDEN 
EXCEPTIONS 
not-assigned(task) 
bad-offset(offset) 

EFFECTS 

iteration) 

END-EXCEPTIONS 

corect-read(task offset) = word 
END-EFFECTS 

END-FUNCTIONS 

ENDAODULE 
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APPENDIX A 

MARKOV PROCESSES 

There i s  a s imple ,   e legant ,   and   powerfu l   theory   for   handl ing  

models of t h e   t y p e   c o n s i d e r e d   i n   t h i s   r e p o r t - - p r o v i d i n g   t h a t   t h e  

fo l lowing   cond i t ion   ho lds .  The p r o b a b i l i t y  P i j  of  making  any state 

t r a n s i t i o n  i s  independent  of t h e  manner. i n  which state w a s  reached.  

(The t r a n s i t i o n   p r o b a b i l i t i e s  are h i s t o r y   i n d e p e n d e n t ) .   I n   t h i s  case 

t h e  model i s  s a i d   t o   h a v e   t h e  Markov p rope r ty  and t o   d e f i n e  a Markov 

p rocess .   No te   t ha t   abnorma l   even t s   o f   t he   t r ans i en t   o r   spon taneous  

f a i l u r e   t y p e   h a v e   t h i s   c h a r a c t e r ,   b u t   f a i l u r e s   i n   e q u i p m e n t   t h a t  
II wears ou t "   l i ke   an   au tomobi l e  do no t .  

Markov p rocesses   can   be   t r ea t ed  as e i t h e r   d i s c r e t e  t i m e  o r   con t in -  

uous t i m e  p rocesses .   In   t he   fo rmer   ca se ,  t i m e  i s  assumed to   p roceed  

in   d i scont inuous   " t icks"   where   one  state t r ans i t i on   mus t   occu r  a t  

each  t ick.   For   example,   consider   the  fol lowing  model   for  a c o i n  

f l i pp ing   expe r imen t   i n   wh ich  the o b j e c t  i s  t o   o b t a i n  two  "heads" i n  a 

row. 

The state diagram i s :  

1 2 3 

Tail Either 

Tail 
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and  the  whole  process  can  be  described  by  the  transition  matrix of P ij 

Given  the  probabilities of occupancy of a particular  state  at  time n, say 

then p (n+l) is given  by p . Or, given p , (n>, ('1 then p(n) = p(0)pnm 

For  example,  with 

P (O) = (1 0 0) 

One  easily  gets 

and so forth.  The  general  solution  for p!"' is  known to be of the  form 
1 
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A closed  form  expression  for  the  probability  of  occupancy of each 

state  may  now  be  easily  obtained  using  the  initial  probabilities  for 

p"), p(l) and P(~). For  example,  the  probability 'of being  state  3  after 

n steps  (tosses)  is 

We show  the  above  example  in  some  detail  for  comparison  with  the 
continuous-time  formulation  below. 

A continuous-time  Markov  process  may  be  derived  as  a  limiting  case 

of  a  discrete-time  process  in  which  the  ticks  of  time  become  infin- 
itesimal;  however, we take  a  slightly  different  approach.  Since we are 
less  interested  in  particular  transition  probabilities  than we are  in 

probabilities of state  occupancy, we derive  an  expression  for  the  prob- 

ability  of  being  in  a  state g at  time t via  another  limiting  argument. 

For this  purpose we temporarily  assume  that  the  probability  of 

transition  from  any  state i to another  state j is  proportional  to  the 
time  spent  in  state  for  sufficiently  small  times.  That  is 

Pij = P At J At + 0 

where P is  a  constant  with  dimensions  time  and  value 0 P <-. -1 

This  assumption  is  necessarily  true  for  uniformly  distributed 
random  stochastic  events  that  occur  at  an  average  rate p independent 

of past  history  (the  Markov  property). 

For  any  state q 
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we can then  write 

n m 

FZq L i#q 

or taking  the  limit,  At 4 0 

n  m 

The  above  system  of  linear  differential  equations,  together  with  an  ini- 

tial  vector  of  state  occupation  probabilities,  say P = (1,0,0,0 ... 0 ) ,  

completely  determines  the  state  of  the  system  for  all  time. 
i 

To observe  the  correspondence  between  this  formulation  and  the  dis- 
crete time  case  (and  also  to  greatly  facilitate  solution  of  the  system) 

one  can take  the  Laplace  transform of each  equation.  With  transform 
m 

variable S and = C 8 .  the  above  becomes 
q 1  1 

or  more  neatly  as  the  matrix  equation P ( S )  X M = P(O), as follows. 
-1. * 

X 

(S + B,) - CY -CY 

(S + 8,) - 
12 13 - ... CY In 

2n -CY 21 23 - ... cy 
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Observe 

1. 

2. 

3 .  

4 .  

that: 

The  differential  equations  above  are  similar  but  not  identical 

to  the  Chapman-Kolmogorov  equations  which  describe  transition 

probabilities.  Our  equations  describe  occupation  probabilities. 

The  transform  technique  moves  us  into  a  purely  algebraic 
domain  where  approximations  and  limits,  may  be  made  before 

inverting  to  obtain  solutions  in  the  time-domain. 

The  general  solution  of  the  system of equations  is  given  (as 

in  the  discrete  case)  by P (t) = C a.e  where hi are  the 
roots  of  the  polynomial  equation  Det. M = 0 .  

hit 
4 1 

Two  limiting  cases  of  behavior  are  immediately  apparent: 

a. As t -+ 03 P (t) -, alehlt where h is  the  numerically  largest 
9 1 

eigenvalue. 

b. Since P (S) = N ( S ) / D ( S ) ,  a  ratio  of  polynomials, we have 
4 9 

4 
that  as S -, OD P (S) + A S-(k+l) k + 0 ,  1, 2 . . . where 
A is a  constant.  Therefore  as t + 0 ,  Pq(t) -+y A k  t k. 

The  latter  limit  theorem  is  one  of  several  kinds  of  argument  that  can  be 

used  to  deduce  general  features of a  solution  without  actually  obtaining 

it. 

Examples : 

A. -0 
Det M = S(S + a)  roots 1, -a 

* 
pl(s) = s] 1 0  

Det M = - 1 
S + a  

* (S + a) 
P2(S) = [ -; 3 Det M = a 1 1 S(S + a) S S + a ="- 
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P,(t) = e , P2(t) = 1 - e -at -at 

P,(t) + P2(t) E 1. (This  is  the  simple  exponential  occupation 
distribution  for  state 1) 

B .  

-C 

M =  ( S  + b + c) 0 Det M = S ( S  + a) (S + b + c) - acS 
-b S '1 

* ab ab 
'3") = S ( S  + a)(S + b + c) - acS 3 as S -)a 

1 2 P3(t) M y abt  as t -)O 

There  are  opportunitis  for  automation of the  solution  process.  Where 

the  transition  rates  are  numeric  quantities,  the  explicit  solutions  are 

easily  obtained  by  machine  using  linear  equation  solvers  and  eigenvalue 

routines. One can  also  use  algebraic  manipulation  programs to obtain  the 

parameterized  expressions Pn(S). For  state  graphs  without  cycles,  the 

individual P. (S) are  easily  obtained by a  "chain  rule." 

J- 

9; 

1 

For  example,  no  consideration of the  associated  matrix M was  required 
in  the  system  below. 
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C. 

P1(S) = 1 
* 1 

(S + a + b)  

P;(S) = bP:(S)/(S + c) 

p;(s) = [aP;(S) + cPi(S)]/(S + d) 
J. 

Pi(S) = dP2(S)/S 
-k 

Furthermore,  questions  concerning  the  "dependency of P (t) on the  value 
of a'' can  be  answered  by  taking  the  appropriate  partial  derivitives  in 

2 

the S domain. To illustrate 

a 9; 

aa (S + a + b)  (S + d) - P2(S) = P1(S)?(S + d) = 
>k 1 

or 

- P (t) - t a 
aa  2 as t '0 

4 .  Incorporation of Non-Markov  Behavior 

The  pure  Markov  model  is an  excellent  approximation  to  the  situation 

where  all  state  transitions  in  the  model  correspond  to  stochastic 

(usually  abnormal)  events  such  as  component  failure  or  the  onset of a 

transient.  However,  there  are  three  other  types of behavior  that we 
would  like  to  be  able  to  handle  and  it  seems  particularly  important  to 

try  to  incorporate  these  events  into  a  pure  Markox  model so that  our 

powerful  analysis  techniques  will  still  be  applicable: 
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a. P rocesses   o f   f i xed   du ra t ion   ( such  as the   runn ing   o f  
a p rogram)   t ha t   occu r   e i t he r  (1) p e r i o d i c a l l y   i n  t i m e  
o r  (2) i n   r e s p o n s e   t o   a n o t h e r   e v e n t .  

b. P rocesses   w i th   nonexponen t i a l   p robab i l i t y   dens i ty  
func t ions ,   such  as t r a n s i e n t s   w h i c h  may have a narrow 
d i s t r i b u t i o n   o f   d u r a t i o n  times. 

The two types   o f   p rocess   i n  a. a b o v e   m i g h t   b e   c a l l e d   d e t e r m i n i s t i c  

i n   t h e   s e n s e   t h a t   t h e y   i n v o l v e   b e h a v i o r   t h a t  i s  d e f i n i t e l y   h i s t o r y -  

d e p e n d e n t .   F i r s t   c o n s i d e r   t h e   f o l l o w i n g   s i t u a t i o n :  

n 

d 

Suppose  there  i s  a d i agnos t i c   check   t ha t  i s  v e r y   b r i e f   i n   d u r a t i o n   a n d  

i s  execu ted   pe r iod ica l ly   w i th  a low d u t y   c y c l e .   S t a r t i n g   i n  state 1 w e  

have two p o s s i b i l i t i e s .  I f  a n   e r r o r   o c c u r s   d u r i n g  a pe r iod  when t h e  

d i agnos t i c   check  i s  not running  then w e  w i l l  go t o   s t a t e  3.  I f ,  on t h e  

o the r   hand ,   t he   d i agnos i s   rou t ine   happens   t o   be   ope ra t ive  when t h e   e r r o r  

occurs   then  w e  f i n d   o u r s e l v e s   i n  state 2 where   t he   e r ro r  may o r  may n o t  

b e   d e t e c t e d .   I f  i t  is, w e  r e t u r n   ( i n   t h i s   s i m p l i f i e d   s i t u a t i o n )   t o  s ta te  

1 otherwise  we go t o  s ta te  3 .  Now s u p p o s e   t h a t   t h e   d i a g n o s t i c   r o u t i n e  

r u n s   f o r  a pe r iod  T and i s  invoked  wi th   per iod  7 >> T Further   sup-  

p o s e   t h a t   t h e   a c t u a l   e r r o r  r a t e  i s  p and t h a t  p C 1/7 ( e r r o r s   o c c u r  

less f r equen t ly   t han   t he   d i agnos i s   pe r iod ) .  Under these   c i rcumstances  

it i s  a n   e x c e l l e n t   a p p r o x i m a t i o n   t o   a s s u m e   t h a t   e r r o r s   a r e   c o m p l e t e l y  

u n c o r r e l a t e d   w i t h   t h e   i n i t i a t i o n   o f   t h e   d i a g n o s t i c  t e s t .  Therefore  we 

may a s s i g n   t o   t h e   t r a n s i t i o n   r a t e s  a and b t h e   v a l u e s  

1 2 1' 

2 .  
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T 1 b = p -  
2' 

where, of course,  a + b = p .  Moreover,  if  the  probability  that  error 

detection  actually  occurs when reaching  state 2 is 2, then  the  rates 

are  a good  approximation  to  actual  transition  probabilities.  That is, 

with p = 1 one  would  expect  on  the  average  one  transition  from 2 to 3 
in the T and  this,  by  definition  gives  the  corresponding  transition 

rate C.  Generally,  the  above  treatment  must  be  quite  satisfactory so 

long  as p CK 1 / T 2  e< 1hl, as  will  frequently be the  case  since  typical 
values  for  these  quantities  are 

1' 

p - 10 - 3  hour -1  

The  second  form  of  deterministic  behavior  we  need  to  adequately 

handle  is  the  case  in  which  fixed  delays  occur.  Consider  the  following 

situation: 

( GOOD) 
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Here w e  assume t h a t   t h e   e v e n t   o f  a f a u l t  when i n  s ta te  1 causes   t he  

s y s t e m   t o   e n t e r  a state 2 i n  which a reconf igura t ion   program i s  s t a r t e d  

up.   This   program  runs  for  a f i x e d  t i m e  7 .  If a n o t h e r   f a u l t   o r   e r r o r  

occurs  during  the  running  of  the  program, w e  e n t e r   a n   u n s a t i s f a c t o r y  

s ta te  3 .  O t h e r w i s e   a f t e r  t i m e  T w e  e n t e r  a s a t i s f a c t o r y  state 4 .  The 

a c t u a l   o c c u p a t i o n   p r o b a b i l i t i e s   f o r  states 2, 3, and 4 are as shown below: 

An a t tempt  to a p p r o x i m a t e   t h i s   s i t u a t i o n  by a s s ign ing  a cons t an t  

t r a n s i t i o n   r a t e   t o  i s  no t  a very good s t r a t egy   because  p would  then 

appea r   a s  shown below: 
4 

p4 

1 " 

-7 

which  would a s s i g n  a r e l a t i v e l y   l a r g e   p r o b a b i l i t y  t 

t o  4 dur ing   t he   pe r iod  when t h i s  i s  n o t   p o s s i b l e .  

:o a tr a n s i t i o n   f r  o m 2  

An a r t i f i ce   fo r   improv ing   t he   approx ima t ion  i s  t o   r e p l a c e  state 

by a chain  of states, a s o r t  o f   p r o b a b i l i s t i c   d e l a y   l i n e :  

2 
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n 

now  the  easily  computed  transform  of  the  probability  to  be  in  state 4 

is  of  the  form l /S (B /S  + B)n and  in  the  time  domain p now  appears  as 

f 01 lows : 
4 

p4 

1 ” 

which is a  much  closer  approximation  to  the  desired  behavfor. 

General  Probability  Distribution  Function 

In general,  if we wish to  approximate  some  probability  distribution 
function.  (say  behavior  of  a  particular  type  of  transient),  it  is  always 

possible  to  obtain an arbitrarily  close  approximation  by  replacing  the 
state  having  the  odd  behavior  with  a  series-parallel  combination  of 

states  having  real  positive  transition  rates  as  depicted  below: 
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Construction  of  these  approximations  is  much  like  the  problem  of 

synthesizing  passive  electrical  networks  having  prescribed  transfer 

characteristics. The "best"  approximation  to  a  given  probability  func- 

tion  for  a  fixed  number  of  states  would  lead  to  the use of  complex 

rather  than  real  transition  rates.  This  is  an  interesting  possibility 

to  consider  in  future  research. To effectively  employ  such  techniques 

we would  need  some  theorems  that  say  when  it  is  safe  to  use  an  approx- 

imation  that  would  lead  to  nonphysical  occupation  probabilities  for 

some of  the  fictitious  states  involved  in  the  synthesis. 
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