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ABSTRACT

It has been suggested that surface waves may be able to heat the solar

corona. These waves can propagate into the corona and supply the required

energies, and because they are linearly compressive they can be dissipated

by for viscosity and electron heat conduction. In this paper we evaluate

the damping of surface waves by viscosity and heat conduction. For the

solar corona, it is found that surface waves dissipate efficiently only if
	 0

their periods are shorter than a few tens of seconds and only if the back-

ground magnetic field is less than about 10 Gauss. Heating of quiet coronal

regions is possible if the coronal waves have short periods, but they cannot

heat regions of strong magnetic field, such as coronal active region loops.
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I. Introduction

The mechanisms which convert the kinetic energy of the solar photosphere

and convection zone into the thermal energy of the corona have been under

investigation for some four decades. In spite of intensive and imaginative

effort, no successful theoretical solution to the coronal heating problem

has been offered (see recent reviews by Chiuderi, 1979; Hollweg, 1981a;

Kuperus, Ionson and Spicer, 1981; Wentzel, 1981; Withbr2e, 1981).

Coronal heating by MHD waves has been widely investigated. The MHD

slow mode can probably be ignored in this context, since it propagates too

slowly to carry the required energy flux into the corona, subject to the

constraints imposed by the observed amplitudes of non-thermal motions in

the corona and underlying chromsphere (e.g. Athay and White, 1979a, b; Bruner,

1978; Bruner and Poletto, 1981).

The MHD Alfven mode has been investigated in this context for many

years (e.g. Alfven, 1947; Osterbrock, 1961; Piddiugton, 1956). Even though

'.t is strongly reflected by the chromosphere corona transition region, the

Alfven mode does seem capable of carrying the required energy flux into the

corona from below, at least if the wave frequency is not too low (e.g.

Hollweg, 1981b; Hollweg, Jackson, and Galloway, 1982; Leer, Holzer and Fla,

1982; Zugzda and Locans, 1982). The constraints are more severe in active

regions, but Hollweg (1981) and Zugzda and Locans (1982) have shown that

energy can enter coronal active region loops if appropriate resonances in

the coronal active region loops are excited. The effect is similar to anti-

reflectance coatings on camera lenses; Ionson ( 	 ) has discussed it in terms

of resonant LRC circuits. The difficulty with the Alfven mode is the

M
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dissipation mechanism. Alfven waves are noncompressive (to lowest order),

and they therefore do not couple to the radiation field, nor are they

damped to any significant extent by viscosity or heat conduction. Alfven

waves are expected to be only weakly nonlinear in the corona, and nonlinear

mechanisms are probably inadequate (e.g. Chin and Wentzel, 1972; Uchida and

Kaburaki, 1974). A possible exception to this statement has been pointed

out by Hollweg, Jackson and Galloway (1982), who noted that Alfven waves

with periods shorter than a few minutes can steepen into shocks in the

chromosphere, which subsequently enter the corona from below. Hollweg (1992a)

has shown that the shocks can in principle dissipate rapidly enough to heat

coronal holes or quiet coronal regions, but the mechanism fails on coronal

active region loops.

The MHD fast mode has a number of appealing features. Its group velocity

is large and it is therefore in principle capable of carrying a large energy

flux in the corona. It is intrinsically compressive, and therefore subject

to dissipation by viscosity, heat conduction and radiation, or by Landau and

transit-time damping in the high-frequency limit where Coulomb collisions

are ineffective. Habbal, Leer, and Holzer (1979) have pointed out that re-

fraction can focus the wave energy into selected sites in the corona, thus

offering a natural explanation of the observed "structuring" of the corona.

However, Habbal, Leer and Holzer simply postulate the existence of an appro-

priate flux of fast waves at the coronal base. This approach may not be

justified. Ostetbrock (1961) has pointed out that fast waves should undergo

severe refraction in the chromosphere, where the Alfven speed increases

z	 ^
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rapidly with height; the refraction turns the energy flux away from the

corona. In a similar vein, Hollweg (1978) has pointed out that the

known solar motions should lead primarily to fast waves which are

evanescent in the corona. These conclusions have recently been put on	 !

firmer ground by Leroy and Schwartz (1982) and Schwartz and Leroy (1982),

who have investigated the behavior of fast waves in a model solar atmos-

phere which includes the chromosphere, transition region, and corona;

they conclude that fast waves can not supl.1y the required energy flux into

the corona.

A remaining possibility takes advantage of observations that the

corona is highly structured. It is possible that the structuring occurs

in the form of very thin tangential discontinuities. Such structures would

have thicknesses of only a few proton gyro-radii, which would be totally

unresolved in any optical observations of the corona. However, it is

worth noting that such tangential discontinuities are very abundant in the

solar wind (e.g. Burla a, 1971; Neubauer and Barnstorf, 1981), occurring

as frequently as 1 hour-1 ; if the solar wind can be used as a guide, the

corona may contain tangential discontinuities (TD's). It has been pointed

out that TD'-- can support MHD surface waves (e.g. Edwin and Roberts, 1982;

Ionson, 1978; Roberts, 1981a, b; Wentzel, 1979). These waves have pro-

perties which may make them capable of heating the corona. They resemble

Alfven waves. Thus, to the extent that Alfven waves are capable of supply-

ing the required energies to the corona, we surmise that surface waves

will be capable of doing so also. But, unlike the Alfven mode, the

surface waves are intrinsically compressive, even in a linearized small ampli-

tude analysis. As pointed out by li.ollweg (1981a), this means that the surface

waves can be dissipated by viscosity, heat conduction, and radiation, or by

Landau and transit-time draping in a collisionless situation.
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In this paper we evaluate the extent to which surface waves can be

collisinnally dissipated in the corona, i.e. we evaluate their dissipation

by viscosity, heat conduction and radiation. (Collisional electrical

resistivity can safely be neglected in the corona.) Since we are consider-

ing collisional dissipation, we will confine our attention to dense coronal

regions, where collisions are frequent; coronal holes will be excluded

from our analysis. For the simple cases considered, we conclude that the

surface waves dissipate in a resonable distance only if their periods are

less than a few tens of seconds, and only if the magnetic field strength

is less than ^aout 10 Gauss. The collisional damping of surface waves may

conceivably serve to heat quiet coronal regions, if the wave periods are

short enough. But the large magnetic field strengths which are presumed

to exist in coronal active region loops imply that the collisional dissi-

pation of surface waves is too weak to heat those regions.

It should be noted that we are not considering surface wave dissipation

by resonance absorption (Ionson, 1978; Lee, 1980; Ral and Roberts, 1982;

Lee, Rae, and Roberts, 1982). Resonance absorption may play a role in

heating the corona, but we will formally exclude it from our present analysis

by considering only true tangential discontinuities, of zero thickness. If

resonance absorption does occur, it will represent an extra dissipation

mechanism, in addition to the collisional mechanisms being evaluated here.
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II. Basic Equations

The dissipation of surface waves in the corona is analysed subject

to a number of simplifying assumptions:

1. Gravity is ignored.

2. The magnetic field pressure in the corona is assumed to dominate

the thermal pressure. We will therefore ignore the effects of thermal

pressure on the lowest-order dynamic properties of the surface waves, i.e.

we employ the cold plasma approximation to calculate the properties of the

surface waves in the absence of dissipation.

3. The surface waves are assumed to be weakly dissipative in the

sense of ki/kz << 1, where k  is the imaginary part of the wave number

and k  is the real part of the wavenumber component along the background

magnetic field, Bo . This permits an approximate procedure for calculating

ki , as follows: The wave properties are first calculated in the absence

of dissipation. Then, given those wave properties it is possible to cal-

culate the volumetric rate at which the waves lose energy to radiation,

and to neat via viscosity and heat conduction. Finally, the damping length

(or k i ) is determined by equating the volumetric energy loss rate to the

divergence of the surface wave Poynting flux. This procedure obviates the

need to calculate a full wave dispersion relation in the presence of

viscosity, heat conduction, and radiation, but it is limited to the weak

damping limit. Details of the procedure are given in Section V.

4. The surface wave properties are calculated via small-amplitude

linearized theory.

5. Consistent with the cold plasma approximation, the background

magnetic field is taken to be uniform, and in the z-direction. The magnetic
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field direction does not change across a TD (c.f. Hollwe , 1982b).

6. The background density is assumed to vary only in the x-direction.
)

Thus we will be considering planar discontinuities. Moreover, we shall

specialize to two specific cases: i. a single TD which separates two regions

of differing density; ii. two parallel TD's which enclose a region where

the density differs from that external to the TD'S.

7. The background flow velocity is assumed to be zero.

Our analysis is similar to that of Edwin and Roberts (1982), Hollweg

(1982b), Roberts (1981a,b), and Wentzel (1979). For clarity and complete-

ness, some of our analysis of the wave properties in the absence of dissipation

will overlap these previous works, but we consider some new features as well.

In the absence of dissipation, the linearized MHD induction equation

is

e s ox Ovx Bo )
	

(1)

where B and v denote magnetic field and velocity, the prefix 'd' denotes a

fluctuat';g wave quantity, and the subscript 'o' denotes the temporally

steady background. The linearized momentum equation le

p o at	
odP + 4n	 az

a6v _	 !oz aaB	
(2)

where p denotes mass density, and 6P is the magnetic pressure fluctuation,

6P	 Bo • 6B/4w
	

(3)

Equation (2) has utilized the fact that B o is constant and in the z- direction.

Equations (1) and (3) combine to yield

a6 P . - B. 2 ( adv. + a6vv 1
at	 47r	 c ax	 ay	 J (4a)
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We will find that 6vz - 0 for the problem at hand, and thus (4a) becomes

adP_ Bog D
• 6v	 (4b)

at	 4n

We next differentiate (2) with respect to time. The quantities

6B and 6P can then be eliminated with the aid of (1) and (4b). In

virtue of assumption (6), the resulting differential equation for 6v has

coefficients which are independent of y, z and c. We Fourier analyse in

those variables, with solutions of the following form:

6vx - +SVkx (x) cos (kyy) exp (ikzz-iwt)	 (5a)

6v  - -6Vky (x) sin (kyy) exp ( ikz z-iwt)	 (5b)

6vz - +6Vkz (x) cos (kyy) exp (ikzz-iwt)	 (50

where ky , kz , and w are constants. If these equations are inserted into

the differential equation for Sv, we obtain

C dV - k B 

2 a6V^ B 2 a 26Vkx	(6)
kx	 y o ax	 o	 a--

g2 6Vky - ky a2x
kx

	
(7)

6Vkz - 0	 (8)

The following quantities have been defined:
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E  - 4np0 (x)w 2 - k z 2 Bog	 (9)

q2 - kV2 - c/ B02	 (10a)

- k2 - W2 /vA2	(10b)

k2 - ky2 + kz2	 (11)

vA2 - B0 2 /4np0	(12)

Equations (6) and ( 7) combine into the fundamental equation of this

paper:

a	

36
8x ( q2  BxV^ - e6V

kx - 0	 (13)

Equation (13) is a special case of similar equations which have appeared

previously (Edwin and Roberts, 1982; Hollweg, 1.982b; Ionson, 1978; Roberts

1981a,b; Wentzel, 1979).

Up to now p 0 (x) is an arbitrary function. We now specialize to cases

where p0 (x) is constant except at the TD's, where p o (x) jumps discontinuously.

At a discontinuity, equation (13) must be solved subject to the following

jump conditions:

6V kx  - constant	 (14a)

e 36Vkx

of
 3x - constant	 (14b)

Equation (14a) permits both sides of the discontinuity to move together, while

(14b) can be obtained by integrating (13) across the discontinuity.
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III. The Single TD

Consider the case where 
po pol for x

< 0, and po M 
pot 

for x> 0, where

901 
and pot are constants. We seek surface wave solutions of the form

6Vkxl a A exp (+ig l ix), x<0
	 (15a)

6VkX2 - A exp (-lg2 lx), x>0
	

(15b)

The subscripts ' 1' and ' 2' denote x <0 and x>0, respectively. It has been

assumed that q 1 2>0 and q , 2>0 (see below). The quantity A is an arbitrary

constant. Inserting equations (15) into (14b) yields the dispersion relation:

^--^^ -	 (16)
1911	 Ig21

squaring both sides of (16) and using equations (10) yields

(E1-E2) Cy2 Bo2 (E 1 +E 2 ) - E l E 2] - 0	 (17)

Consider first the root E
1	 2
- E . This requires that either p ol M 

pot 
or

W2 . 0. The former case eliminates the discontinuity and thus the surface

wave, while the latter case merely corresponds to a new steady state. This

then leaves the following for the surface wave dispersion relation:

ky2Bo2	
EE1 E	

(18)

1	 2

Defining new variables X kz 2VAl 2 , Y = w2 , Z - ky 2vAl 2 , equation (18) takes

the form

Z a (Y-X)(BY-X)	 (19)
(g+1)Y-2X
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where B $ p0 2 /p0l . in 
(19) we will regard 0 and Z as given, so that Y can be

determined as a function of X. Without loss of generality we assume tk8<l,

and we confine our attention to the first quadrant of the X-Y plane. Fros (19)

it is easily shown that Z is positive only above the line Y - X/8, or between

the lines Y - X and Y - 2X/(1+6); since Z is positive definite by assumption,

allowed solutions are restricted to these two regions. However, valid surface

wave solutions require q
1	 2 -
2>0 and q 2>0. By combining equations (10) and (19),

it can be shown that these conditions are satisfied only below the line

Y - 2X/(1+0), and thus valid surface wave solutions are confined to the second

of the two regions specified above. (It is easily shown that c  and c 2 have

opposite signs in this region, as required by (16). Thus restricting our

attention to this region eliminates the extraneous root which was introduced

when (16) was squared.)

By examining the discriminant (e.g. Thomas, 1960, Section 9-10) of (19),

it is easily shown that (19) generates hyperbolas. Only the branch lying

between the lines Y - X and Y - 2X/(1+6) need be considered, for the reasons

given in the preceding paragraph. This bra.._h has the asymptote

Y-0. X+Z
	

(20)

and it passes through the origin with a slope 2/(14$). The phase velocity,

w/kz , is therefore ^2/(1+B)] ^vAl for low-frequency waves satisfying
w2 « Z/(1+$), and asymptotically approaches vAl at high-frequencies.

00
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IV. The Slab of Plasma

Consider two TD ' s located at x- -a and " +a. Let Po • poi for (x{ >a,

and p0 m pot for {x{<a, where p oi and 9 o2 are constants. The subscripts '1'

and '2' will refer to {x{>a and (x{<&, respectively. We consider only solu-

tions which are localised to the vicinity of the TD's. We therefore sea=*

qi 2>0, and look for solutions to (13) of the form

6Vkx - Ai exp(-lq l {x), x>a
	

(21a)

01m - U, axp (+{ql {x), x<-a
	

(21b)

Here Av is an arbitrary constant , • and the t in (21b) allows for an arbitrary

choice of parity.

The quantity y2t can now be positive or negative. If q^ 2>O, equation

(13) has the following two solutions in region 2 which we distinguish with

the labels ' Case I' and 'Case II':

6V
kX2

0 A2 sinh ( q2 {x, Case I
	

(22)

bV
kX2

" A2 cosh { q2 {x, Case II
	

(23)

On the other hand, if g 2 2<0, equation (13) has solutions (Cases III and IV).

6V1=2 a A2 g i rl 
1g

2 1x, Case III	 (24)

6Vkx2 - A2 cos { q 2 1x, Case IV	 (25)

Here A2 is a constant which in 4ch case is related to A I by applying (14a)

at x a a or at x - -a. (Mote that Cases I and :II have odd parity, so that
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the minus sign must be chosen in (21b). Cases II and IV require the plus

sign in (21b).)

The dispersion relation is obtained by applying (14b) at x - a or at

a - -a. For the four cases defined by equations (22) - (25), we have the

following dispersion relations:

Case I:	 E - -coth ( jq2 1a) (26)

Case II:	 E - -tank ('q2 'a) (27)

Case III: E - cot	 (+g2 1a) (28)

Case IV:	 & - -tan (jg2 1a) (29)

where
el	 121

= e2	 (qd

Note that equations (26) and (27) reduce to the dispersion relation for a

single discontinuity (equation 16) in the limit a-+- , which is expected since

the two TD's do not interact with one another in that limit.

Figures la - d plot m 2a2 /vA2 vs. kz2 a2 for kya - 2 and Pot/Po2 
0.25.

The figures are generated as follows: The quantities k ya and p p1 /P o2 are

first chosen. The quantity Ig2Is is then allowed to vary, so that each value

of Iq 2 ja yields one point in Figures 1 a-d. For each value of jq 2 1a, the quan-

tities e 2a2/Bo2 and ^ can be calculated via equations (10a) and (26) - (29),

respectively. From the definition of &, it is then possible to determine the

value of (c 1 a2 /Bo2 ) (Ig 1 ja) -1 . Writing e 1a2 /B02 in terms of Ig1j2a2 via

equation (10a) then yields a quadratic equation for 1,41 12a2. We solve this

equation for jq 1 ja, and e I a 2 /Bo 2 is then determined via(10a). Finally,

equation (9) is then used to determine

0
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w2a2	
(1- pol )-1 

(E 

2a2 	E1a2

v g

	

2	 p	 am - B-T)
A2 	o2	 0	 0

and

k2a 2 = w2a2 - 
e2a2

zvA2 2	 B0^

Several features of the solutions are worth noting:

1. For Cases I and II, we obtain w 2>0 and kz2> 0 for lq2l<(:-)ky, if pol<(>)po2•

2. For Cases I and II, w 2-}0 and kz2-*0 as Iq2I->k
Y . 

In this limit,

it is readily shown that

kz2v^ 2r1 + coth (kya)]	 (32)
W2 ti

(pol/po2) 
+ moth (kya)

for Case I. (For Case II, the coth in (32) must be replaced with tanh.)

3. For Case I with pol < po2' w 2+- and kz 2-*°°as (g2 1-0-0. In this

limit

w2a2
v 2 ti kz2a2+ 

ky2a2	 (33)
A2

(see equations (31) and (10a).

4. For Case II with 
pol < po2' 

w2 and k 2 approach maximum values as
z

lq2 l-r0. This maximum value is evident in Figure lb. It is readily shown

that these maximum values are

1+(k a) 2 [1+(1+4k -2a-2) 3/21 2
W2 = 2 2	 Y	 Y
max	 y °A2	

1 - (pol/po2)	
(34)

2	 7_ (po1/po2) + (kya)2 I,+(1+4ky-2a-2)1/2,/2
k	 k	 (35)
Z ,max	 Y	

1 - (po1/po2)

(30)

(31)
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5. Cases III and IV exist only when p oi < p02' Then 
vA2<vAl' 

and

the region between the two TD ' s can act as a waveguide for the fast MHD

mode, with total internal reflection occuring at the TD's. Strictly speaking,

Cases III and IV are not true surface waves, but trapped body waves (Edwin

and Roberts, 1982). We include Cases III and IV for completeness.

6. The point indicated by the arrow in Figure ld (Case IV) is for

Ig2 I -0. It is identical to the maximum values of w and k  found for Case II

(equations 34 and 35).

7. For Cases III and IV, equations (28) and (29) show that 	 m

for certain values of Ig 2 Ia. For these values of Ig 2 Ia, it is easily shown

that

w2a2	 Ig2I2a2

VA22	
1_(Po1/Po2)	

(36)

and

k 2a 2= (poi/po2)Ig2I2a2	 2 a 2	 (37)
z	 1-(P01 1P02)	

- ky 

Some of these points are indicated by the x's in Figures lc and 1,', (there

are some additional points with kz2<0, in virtue of equation 37, which are

not shown in the figures).

8. For Cases III and IV, equations (28) and (29) show that	 for

certain values of Ig 2 Ia. For these values of Ig 2 Is, it is easily shown that

w 2 -+W and k 2+_ , withz

W2a2ti kz2a2 + ky2a2 + I g 2 I 2a2

	

(38)

asymptotically (see equations 31 and 10a).

OF
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V. Collisional Dissipation.

As discussed in the Introduction, we wish to calculate the dissipation

of the surface waves by viscosity, heat conduction, and radiation. We will

do the calculation for the plasma slab (see Section IV); the case of a

single discontinuity can then be obtained by letting a -►

The volumetric heating rate due to viscosity, Qvis, 
is given by

Braginskii (1965, egvation 2.28):

a (V • 6v) 2	(39)
Qvis 3

where it is assumed that 6vz - 0 and that the ions undergo many cyclotron

orbits between collisions. The viscosity is due mainly to the protons.

From Braginskii's equations (2..i) and (2.22) we have

rlo - 1.0 x 10 16 
TO5/2

in c.g.s. units; T is temperature (degrees Kelvin) and the Coulomb logarithm is

taken to be 22.

The heat conduction flux is carried maimv by the electrons. If the

electrons are magnetized, the volumetric heating rate due to heat conduction

is (Braginskii, 1965, p.303)

36T 2	 -1
Qther	 K n,e az ) To

where K 11,e is the electron heat conductivity along B o . From Braginskii's

equations (2.12) and (2.5e) we have

K	 - 8.4x107T5/211 	 O

in c.g.s. units; the Coulomb logarithm is again taken to be 22. If the wave

(40)

(41)
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frequency is very small, then the waves induce nearly adiabatic compressions

in the plasma, and we have

I STI - (y-1) Tow-'jV•SvI
	

(42a)

and equation (40) becomes

Other s Kll.e (7Z)2 To (y-1 ) 2 (V • 6v) 2 	(42b)

(y is the usual ratio of specific heats, which we shall take to be 5/3).	 On

the other hand, heat conduction can smear out the temperature fluctuations of

higher-:requency waves. In the limit of very high frequency, one has

16T  - n KT k -21C
 
-1 IV • SvI	 (43a)

0 o z	 It , e

and

Qther	 no2K2Tokz-2Kn,e (V
• 6v) 2	(43b)

where K is Boltzmann's constant. At intermediate frequencies neither (42) nor

(43) is applicable. We will not do the calculation at this level of detail,

however. Instead, we shall use equations (42) if 
w<wcond' 

and equations (43)

if 
w>Wcond' 

where 
wcond 

is the angular frequency at which (42b) and (43b) are

equal, i.e.

2
K11, ekz (y-1)W

cond	 noK

Finally, we assume that the plasma is optically thin, and radiates

An` erg cm- -'s-1 , where n is the electron number density and A is a tempera-

ture-dependent factor which we shall take to be 10 -22 erg cm3 s-1 at coronal
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temperatures (e.g. Rosner, Tucker and Vaiana, 1978, Figure 10). For the

purposes of this analysis, we consider only the radiation induced by the

waves. The volumetric rate at which radiation extracts energy from the

waves is given by

Qrad = A (an)2
	(44a)

But mass conservation implies

(gn) = no V•dv	 (44b)
W

and thus

Qrad = Ano 2
m-2 (V • dv) 2	(440

Equations (39), (42b) or (43b), and (44c) are the desired expressions

for the volumetric rates at which the waves lose energy to the plasma and

radiation field. To evaluate :.ese expressions we need to know V • Sv. From

equations (5)-(8) we obtain

V • dv - (e/B
0
2 ) ky-1 gy

ky
 cos(kyy)exp(ikzz-iwt) (45)

The next step in the calculation requires knowledge of the Poynting

flux carried by the wave. If the wave electric field is given by
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dB — dv x B
0
 /C	 (46)

(c is the speed of light) and if 6v  - 0, then the z-component of the Poynting

flux is

S  - Boz 6v-dB	 (47)
4n

But equation (1) gives

	

6B  - - kzBOz dvx/w	 (48a)

and

	

SBy - - kzBOzdvy/w	 (48b)

Inserting (48) into (47) gives

BOZ 2 kz	 2	 2
Sz	

47t	 w	
(dvx + dvy )	 (49)

Equation (49) is the desired result for the Poynting flux; it is easily shown

that the time averages of S  and Sy vanish if the solution has the form of

equations (5).

The damping length of the waves is calculated by equating the volumetric

heating and radiation rates to the negative of the divergence of the Poynting

flux. However, we first average all quantities over time and over the y-

coordinate. And, because the waves vary in x, it is necessary to first in-

tegrate over the x-coordinate. Thus, if we denote the e-folding distance

for the Poynting flux by Lz , we have

<Sz>dx
L
z

= '°°	
-	 -

J	 ^is + Qther + Qrad ' dx
	 (50)

where the overbar denotes the average over time and the angle brackets denote

the average over the y-coordinate.
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Evaluation of the integrals in (50) is somewhat tedious, and we merely

quote the result. For cases I-IV we find

Bo6kz N
L ^ — — —	 (51)z 4n w D

For Case I, N and D are

NI - Ig 1 I -1 (1 + ky2/q12) sinh2lg2la

+ (sinh 2Ig 2 Ia - 2sIg2la )/(2Ig2I)

+ ky2 (sinh 2Ig 2 Ia + 2s I g 2 I a ) / ( 2 I g 2 I 3 )	 (52)

DI - 
E22d2 (

sinh 2Ig2 Ia + 2sIg2Ia )/(2Ig2I3)

+ e 1 2d 1 sinh2(Ig2Ia)/Ig113	
(53)

where s - +1. If w<wCond, the quantity d is

d = 3 + K ip a (Y
-i) 2 To (^Z ) 2 + An° 2 /w2	 (54)

If w>wcond, kz/w is replaced by kz/wcond on the right-hand side of (54).

The damping length for Case II is given by a similar expression, which we will

not write down; it is obtained from (52) and (53) by taking s - -1 and by replacing

sinh2 lg 2 la with cosh 2 lg 2 Ia. For Case III we find

VIII	 Ig 1 1 -1 (1 + ky2 /q 1 2 ) sin2 l g2Ia

+ (-u • sin 2Ig 2 Ia + 2Ig2Ia) /(2Ig2I)

+ ky 2 (u-sin 2Ig 2 Ia + 2 I g 2 Ia)/(2Ig 2 1 3 )	 (55)

DIII - e
2 2 d2 (u-sin 2Ig 2 Ia + 21g2ia)/(2Ig2I3)

+ e 
1 

2d 
1 

sin2 ( Ig 
2 
Ia) /Iq 

1 

1 3
	 (56)

where u - + 1. The damping length for Case IV is given by a similar expression
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it is obtained from (55) and (56) by taking u -1 and by replacing sin2lq
2 
la

with cos2jq
2 
la.

The behavior of L  as a function of wave period is illustrated in Figures

2a-d for Cases I-IV. We have taken pol/po2 0.25, k y 
a - 1.0, Bo - 10 Gauss,

a s 108cm, not m 5 x 109cm- 3 , and Tol - T 0 - 2 x 10 6K. Except perhaps for

the magnetic field strength, these parameters might correspond to a solar active

region or to a dense quiet region. The effect of radiation turns out to be

totally negligible for this choice of parameters, and the damping is almost

entirely due to viscosity and heat conduction.

Figure 2 shows that the damping length tends to become very large for

long wave periods. This is particularly evident in Figure 2a, where it is

seen that L  a 4 at the long periods. (This dependence on w results from

the frequency dependence of these 
2 
2 and e 2 factors appearing in equations (53)

1

and (56). These factors reflect the frequency dependence of the compressive-

mess of the waves, i.e. equation (45): low-frequency surface waves are only

weakly compressive, and thus only weakly dissipative. This fact severely

restricts the ability of surface waves to heat the corona. A survey of para-

meters of interest to the corona has revealed that only waves with periods less

that a few tens of seconds will be able to dissipate their energy before pro-

pagating a few tenths of a solar radius.

By the same token, equation (45) shows that the compressiveness is

strongly reduced if Bo is increased. We can therefore anticipate the result,

to be demonstrated below, that the surface wave damping becomes neglible if

B exceeds 10 Gauss or so.0

Figures 2c and 2d show that the trapped fast waves do dissipate rapidly.

If fast waves can be generated in the corona, they can heat the corona. But it

must again be recalled that the sun may not generate waves of such high frequency.
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How do different choices of parameters affect Figure 2? A survey of

parameters ir._ the vicinity of those used in Figure 2 has revealed the following:

1. If only k  is changed: The curves in Figures 2a and 2b move up

roughly in proportion to ky 2 , and to the right roughly in proportion to

ky-1 . On the other hand, the curves in Figures 2c and 2d are not strongly 	 1

modified by changes in ky , except that smaller values of k y allow the curves I

to extend to longer periods and larger values of L  (and vice-versa for larger

values of ky). Overall, we have found that values of k 
y 
a between about 0.5

and 2 lead to the "best" surface wave dissipation in Cases I and II. For

smaller values of k 
y 
a the curves are moved up to very large values of LZ,

while for larger values of kya the curves are moved to the left to very high

frequencies.

2. If only a is changed while k  and all other quantities are held

fixed: Figure 2a is essentially unchanged, while Figure 2b is changed mainly

by extending to higher (lower) frequencies if a is increased (decreased).

The curves in Figures 2c and 2d move to the right roughly in proportion to a,

and at high frequencies they move up roughly in proportion to a2 ; the maximum

levels reu,hed by the curves in Figures 2c and 2d do not respond strongly

to changes in a.

3. Increasing (decreasing) Bo increases (decreases) LZ . For Cases I

and II at low frequencies, where L Z a 4 , we find that L  scales as Bo7

at a given value of w. (This result is in part dependent on our being in a

parameter regime where equations (42) apply at low frequency, and heat con-

duction dominates viscosity in equation (54). If Ts - 2 x 106K, heat con-

duction will dominate viscosity if w/k Z < 1500 km s-1 .) At high frequencies

in Figures 2a-d, we find that L  a Bo . This means that the waves dissipate

much less efficiently in regions of strong magnetic field, and vice-versa.
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The ability of surface waves to colliatonally damp and heat the corona will

therefore be limited to weak magnetic fields, as in quiet coronal regions.

Our survey of parameters has revealed that the damping lengths become un-

acceptably large if Bo > 10 Gauss. Coronal active regions are presumed to

have field strengths well in excess of 10 Gauss, and this mechanism fails

in those regions.

4. We have also investigated the consequences of changing n ot 
and noil

while not/no t and all other quantities are held constant: The effects of

changing the density are difficult to categorize in detail. But we have

found that in general denser regions have shorter dissipation lengths, and

are more prone to heating by collisional wave dissipation.

Finally, it is useful to note that in most cases where the wave dissi-

pation is significant, the bulk of the heating occurs in the denser region.

To illustrate this point, we plot in Figures 3a-d the ratio of the integrated

heating rate in region 2 to that in region 1, for Cases I-IV, i.e. we plot

e

the quantity

a _	 _

R = o^4vis + Qther'dx
	 7)

a<Qvis + 4ther'dx

vs. wave period.. (For Case I, R is formally equivalent to the ratio of the

first term on the right-hand side of (53) to the second term with A taken to

be zero in d and d . For Case III, R is the ratio of the first to the second
2	 1

term in (56), and similarly for Cases II and IV.) It is clear from the

Figures that the heating occurs primarily in region 2.
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Equation (39) for the viscous heating rate is valid for a collisional

plasma. In the present context, this requires

WT <1
	

(58)
p

where T  is the prGton collision time. From Braginskii's equation (2.51) we

find

Tp - 0.75 Tp3/2 P 1 s	 (59)

for a Coulomb logarithm of 22 (the subscripts 'p' denote protons).

Similarly, equation (40) for the heating due to heat conduction is

valid only if the electron mean-free-path, A e , is short enough so that

k a <1	 (60)
Z e

If le 
= T  (KTe/me) where K is Boltzmann's constant, me the electron mass,

and T  the electron collision time (Braginskii's equation 2.5e), we have

Xe - 4.9 x 103 Tee ne-1 cm
	

(61)

Figure 3 shows that the dissipation occurs mainly in region 2, and we

therefore evaluate (58)-(61) in that region. We also note that (60-(61) will

be more important at lower frequencies, where the heat conduction dominates

the viscosity, while (58)-(59) will be more important at higher frequencies,

where viscosity dominates heat conduction.

Overall, (58)-(59) turns out to be the most relevant constraints for

parameters in the vicinity of those used in Figures 2 and 3. They restrict

the validity of our calculations to wave periods greater than 3 seconds or so.

The left -most portions of Figures 2 and 3 siwuld therefore be disregarded.
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VII. Discu30ion

Wave theori4z of coronal heating face the dual challenge of identifying

a wave mode which is simultaneously able to propagate the required energy

flux into the corona, and to dissipate that energy there. 8ollweg (1981a)

has suggested that HO surface waves can in principle satisfy these require-

ments. Their propagation is similar to that of Alfven waves, which appear

capable of propagating energy into the corona Hollwe , 1981b). And they

are compressive even in linearized theory, and therefore capable of heating

the plasma via ordinary viscosity and heat conduction.

In the preceding Sections we have discussed coronal surface waves with

the intent of assessing whether they can in fact dissipate rapidly enough

to heat the corona. We have considered only planar geometries and two cases:

a single discontinuity separating two regions of different density, and two

parallel discontinuities which enclose a denser region. (The case of two 	 i

parallel discontinuities admits solutions which are really trapped fast waves,

rather than surface waves. We have included these trapped fast wave solutions

for completeness.) We have assumed that the discontinuities are structureless,

so that resonance absorption need not be considered. And we have assumed that

the magnetic pressure dominates the thermal pressure, so that the wave dynam-

ics can be approximately calculated by assuming the plasma to be cold. (Some

of our numerical examples have stretched this latter assumption somewhat. For

example, the parameters in Figures 2 and 3 imply that the total (electron plus

proton) thermal pressure is two thirds of the magnetic pressure.)

We have carried out the analysis under the assumption that the wave

periods are long enough for the plasma to be collision-dominated. For the

t
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parameters of interest, this restricts the analysis to wave periods longer

than a few seconds. W#i have also only approximated the functional behavior

of the temperature fluctuations in the presence of heat conduction. Our

approximation is good in the high and low frequency limits, but we believe

it to be generally adequate for the present purposes.

We have found that the surface wave dissipation lengths are smaller

than a few tenths of a solar radius only if the wave periods are less than

a few tens of seconds. Longer period surface waves have very long damping

lengths, and the waives are then not suitable for coronal heating. The trapped

fast waves can have short damping lengths, of the order of 109ca or less, and

they can heat the corona. But the trapped fast waves exist only for short

wave periods, 10 seconds or less in our example, and it is not clear if the

sun generates such waves.

The requirement of such high-frequency waves is a fundamental difficulty.

There is no evidence that the convection zone generates motions with such

hi.^i frequencies. Even if motions in the required frequency range were

generated by the convection zone, they wou7.1 probably dissipate in the photo-

sphere and chromosphere, and not penOLrate into the corona as high-frequency

waves. On the other hand, Brueckner (1980) has reported observations of rapid

changes in the chromosphere-corona transition region, occurring on time scales

shorter than 20s; but it is not clear whether these motions are waves; they

seem rather to be impulsive in nature. It is also possible that high-fre-

quency waves can be excited on coronal loops, by the resonances pointed out

by Hollweg (1981b), Ionson (1982 ), and Zugzda and Locans (1982); as yet there

is no observational evidence that these resonances are excited.



I '.	 * .

Another difficulty with this mechanism is its extreme sensitivity to

the magnetic field strength. Increasing Bo slightly can drastically increase

L  for the surface waves. And increasing Bo means that the trapped fast waves 	 !

can exist only at even higher frequencies, which makes their presence in the

corona even less likely. On the whole, we find that the waves considered in

this paper do not dissipate effectively if B o> 10 Gauss. Larger field

strengths are presumed to exist in active region loops, and the mechanism

investigated here fails in those regions.

Unless the sun generates coronal surface waves with periods shorter than

a few tens of seconds, we conclude that the collisional dissipation of surface

waves is not an effective means-of heating the corona, contrary to the suggestion

of Holl eg (1981a).
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Fixture Captions

Fig. 1. The wave dispersion relations, w2a2 /vA2 2 vs. ka2a2 , for surface

waves (Cases I and II) and trapped fast waves (Cases III and IV). The 	 l

graphs are for the case of two parallel TD's, with pol/pot 0.25 and kya 2.

F".g. 2. The dissipation length, L z, vs. wave period for surface waves

M,,ses I and II) and trapped fast waves (Cases III and IV). The graphs 	 a

are for the case of two parallel TD's. The parameters for all four cases are

_4
given in (a). For the surface waves, it is found that L Z R w at periods

longer than a few tens of seconds. Surface waves with periods longer than

a few tens of seconds can not heat the corona.

Fig. 3. The ratio of the integrated wave energy loss in region 2 to the

integrated energy loss in region 1, for the case of two parallel TD's. All

parameters are the same as in Figure 2. There is a strong tendency for most

of the wave: energy loss to occur in the denser region.
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