NASA CR-167929 FR-10081

DEVELOPMENT OF A LARGE AREA SPACE SOLAR CELL ASSEMBLY

by M. B. Spitzer

SPIRE CORPORATION

(NASA-CR-167929) DEVELOPMENT OF A LARGE N82-30706 AREA SPACE SOLAR CELL ASSEMBLY Final Report, Jul. 1981 - Mar. 1982 (Spire Corp., Bedford, Mass.) 65 p HC A04/MF A01 CSCI 10A Unclas G3/44 28690 -

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA Lewis Research Center Contract NAS 3-22236

Original page is of poor quality

1. Report No. CR 167929	2. Government Access	ion No.	3. Recipient's Catalog	No.
4. Title and Subtitle			5. Report Date May 1982	· · · · · · · · · · · · · · · · · · ·
Development of a Large Area	Space Solar Cell	Assembly	6. Performing Organiz	zation Code
7. Author(s)	· · ·		8. Performing Organiz FR-82-10081	
M. B. Spitzer			10. Work Unit No.	
9. Performing Organization Name and Address				
Spire Corporation Patriots Park Bedford, MA 01730			11. Contract or Grant NAS3-22236	
12. Sponsoring Agency Name and Address			13. Type of Report an Final Repor	
National Aeronautics and Spa Washington, DC 20546	ce Administration	7	14. Sponsoring Agency	
15. Supplementary Notes		<u>.</u>		
Project Manager - Cosmo R. B NASA - Lew Cleveland,	is Research Cente	er .		
16. Abstract				
cover. The important attrib is compatible with a back su cell fabrications. Cell development experi of 2 ohm-cm boron-doped sili experiments and cells with a of the twenty-five best cell An important innovation technique, the coverglass is and cell are then sawed as a since the tolerance on glass procedures are eliminated. Adhesives investigated processing and results are r	rface reflector, ments concerned of con. Process par rea of 34.3 cm ² y s was 13.9% and f in cell encapsu applied before f unit. In this y size is relaxed were EVA, FEP-Te	and integration of continuity of an of rameters were select were fabricated. Th the best cell had an lation has also been the cell is sawed to way, the cost of the , and costly covergl	coverglass appli implantation pro ed based on thes e average AMO ef efficiency of 1 developed. In final size. Th coverglass is r ass/cell alignme	cation and e ficiency 4.4% this new e coverglass educed, nt
		· .		
	·			
17. Key Words (Suggested by Author(s)) Silicon, solar cells, photo	voltaic,	18. Distribution Statement		<u></u>
large area low cost		Unclassified -	unlimited	
19. Security Classif. (of this report) Unclassified	20. Security Classif. (c Unclassifi		21. No. of Pages .	22. Price"
	1	 	l	l

1

* For sale by the National Technical Information Service, Springfield, Virginia 22161

NASA-C-168 (Rev. 10-75)

i

· ·

FOREWORD

Many individuals at Spire Corporation made contributions to this program. The Program Manager was P.R. Younger and the Principal Investigator was M.B. Spitzer. S.J. Solomon provided technical consultation on cell development and M.J. Nowland conducted the lamination studies.

The contributions and support of personnel at NASA-LeRC, particularly C. Baraona, are gratefully acknowledged.

TABLE OF CONTENTS

Section		Page
1	INTRODUCTION	1-1
2	CELL DEVELOPMENT	2-1
	2.1 Back Surface Field Studies	
	2.2.1 Phosphorus Implantation	2-3
	2.2.1.131P+ Implantation in a Preimplanted Surface2.2.1.231P+ Implantation Through SiO22.2.1.3Direct Phosphorus Implantation	2-6
	2.2.2 Arsenic Implantation	2-11
	2.2.2.1Direct Arsenic Implantation2.2.2.2Arsenic Implanted Through SiO2	
	 2.3 Lifetime Enhancement 2.4 Back Surface Reflector 2.5 Summary of Experiments 	2-28 2-30
3	ENCAPSULATION	. 3-1
	 3.1 Assembly Configuration 3.2 Materials 3.3 Stress Analysis 3.4 Lamination 	. 3-1 . 3-2
	3.4.1 FEP-Teflon .	3-4
	3.5 Assembly Sawing	

TABLE OF CONTENTS (Concluded)

Section	Page
4	HIGH EFFICIENCY CELLS AND ASSEMBLIES
	4.1 Cell Fabrication 4.1 4.1 4.2 Assembly Fabrication 4.1
5	COST PROJECTIONS
6	CONCLUSIONS
	REFERENCES R-1
	APPENDIX: AMO CHARACTERISTICS OF 25 BEST SOLAR CELLS

LIST OF ILLUSTRATIONS

Figure		Page
2-1	Furnace Temperature Cycle (a) BSF anneal, (b) Emitter Anneal	2-2
2-2	Spreading Resistance Profiles of Boron, Aluminum and Gallium Implants	2-4
2-3	Comparison of External Quantum Efficiency of ²⁷ Al ⁺ BSF Cell and ¹¹ B ⁺ BSF Cell	. 2-5
2-4	External Quantum Efficiency of a Pre-implanted Cell Compared to a Control Cell	. 2-7
2-5	Dark I-V Characteristics of a Pre-implanted Cell Compared to a Control Cell	. 2-8
2-6	Spreading Resistance Profiles of Phosphorus Implanted Through 800 Å of SiO ₂ at 75, 80, and 85 keV	. 2-10
2-7	Sheet Resistivity as a Function of $^{31}P^+$ Ion Dose \ldots	. 2-12
2-8	Cell Performance as a Function of $^{31}P^+$ Ion Dose \ldots	. 2-12
2-9	Spreading Resistance Profiles of Arsenic for Various Anneal Periods at 900 ^o C	. 2-14
2-10	External Quantum Efficiency of Cells with Direct Arsenic Implantation	. 2-17
2-11	Spreading Resistance Analysis of the Implanted Back surface	. 2-22
2-12	External Quantum Efficiency of Cells with Back Surface Implantation	2-23
2-13	External Quantum Efficiency of AR-Implanted Cell	2-24
2-14	External Quantum Efficiency of Cell Implanted with Argon Followed by Boron	2-25
2-15	External Quantum Efficiency of a Cell Implanted with Boron	2-26
2-16	External Quantum Efficiency of a Cell without Back Surface Implantation	2 -27
2-17	Measured Reflectance as a Function of Wavelength for Two BSR Structures	2-29

LIST OF ILLUSTRATIONS (Concluded)

Figure	·	Page
3-1	Configuration of the Assembly Consisting of a Wafer Containing the Cell and a Coverglass, Prior to Sawing	3-2
3-2	FEP-Teflon Lay-up Configuration	3-5
3-3	EVA Lay-up Configuration	3- 5
3-4	Photograph of the Solar Cell Assembly	3-7
3-5	I-V Characteristics of Laminated Solar Cell	3-10
4-1	Photograph of Completed Assembly Consisting of an Ion Implanted Cell and Coverglass Sawed to Size Simultaneously	4-5
	Simultaneously	4-5

LIST OF TABLES

<u>[</u>	able		Page
	2-1	Point-Probe V _{OC} and Sheet Resistance Measurements for Three BSF Implants	2-3
	2-2	Measured Performance of B, Ga, and Al BSF Solar Cells	2-4
	2-3	²⁸ Si ⁺ Implantation Schedule Consisting of Four Separate Implantations	2-6
	2-4	Three Step Anneal Process	2-6
	2-5	Measured Characteristics of Solar Cells Fabricated From Si Pre-Implanted Emitters	2-7
	2-6	Sheet Resistance for Emitter Formed by $^{31}P^+$ Implantation Through 800 Å of SiO ₂	2-9
	2-7	Sheet Resistivity of Direct 75 As ⁺ Implants	2-15
	2-8	Implant and Anneal Parameters Used for Solar Cell Fabrication	2-16
	2-9	Average AM0 Solar Cell Performance and Dark I-V Data	2-16
	2-10	Sheet Resistance of the Arsenic-Through-Oxide Implantation Matrix	2-18
	2-11	Point-Probe V _{OC} Measurements of Arsenic-Through- Oxide Implantation Matrix	2-18
	2-12	Average AM0 Performance of 75 As ⁺ Implanted Cells	2-19
	2-13	Process Groups for Gettering Study	2-20
	2-14	Measured Performance of AR-Implant Gettered Solar Cells	2-20
	2-15	BOL and EOL Performance of Argon-Implanted Cells	2-21
	2-16	Measured Values of Thermal Alpha for Four BSR Processes	2-28
	3-1	AM0 Performance of Solar Cell at Each Lamination- and-Saw Process Step	3-9
	3-2	AM0 Performance of Assemblies	3 - 9

LIST OF TABLES (Concluded)

<u> Fable</u>		Page
4-1	High Efficiency Silicon Space Cell Process Sequence	4-2
4-2	Average AM0 Performance of Twenty-Five Cells	4-4
5-1	Assumed Starting Material Cost	5-2
5-2	Cost Per Watt of 10 kW Cell Sequence	5-2
5-3	Cost Per Watt for Processing 28.7 kWafers Per Year	5-3
5-4	Cost Per Wafer for Processing Space Solar Cells 28.7 kWafers Per Year	5-4
5-5	Cost for Two Production Levels	5-5

SECTION 1 INTRODUCTION

This is the final report for NASA contract NAS3-22236, a program to develop a large area silicon space solar cell assembly. Significant results were achieved in this effort. Space solar cells of area 34.3 cm^2 that had AM0 efficiency greater than of 14 percent, as measured by NASA-LeRC, were fabricated. In addition, processes were developed that offer substantial cost reduction when employed in large volume production. This report presents the results of the cell and assembly development studies as well as a discussion of cost projections for a space solar cell assembly, assuming kilowatt production lots.

The cell design investigated consisted of a shallow junction n^+pp^+ structure made from 2 ohm-cm boron-doped silicon. The cell thickness was 250 μ m (10 mils). An important feature of the cell design was the use of a high quality back surface reflector (BSR).

In a recent report,⁽¹⁾ the various low-cost terrestrial cell fabrication technologies were examined and ion implantation was identified as a potential low-cost technology applicable to space cell fabrication. The approach taken in this program focused on this application; cell development was based entirely on ion implantation for p^+ and n^+ doping. In addition, a novel encapsulation technology was investigated and found to be not only feasible, but also low in cost.

The use of ion implantation is particularly advantageous for back surface field (BSF) formation in a space solar cell because implantation leaves the physical appearance of the surface unchanged. Thus, a wafer with a polished back can be used for BSR formation without repolishing after BSF fabrication. This should be contrasted with Al-paste processes, which require extensive repolishing before BSR formation.

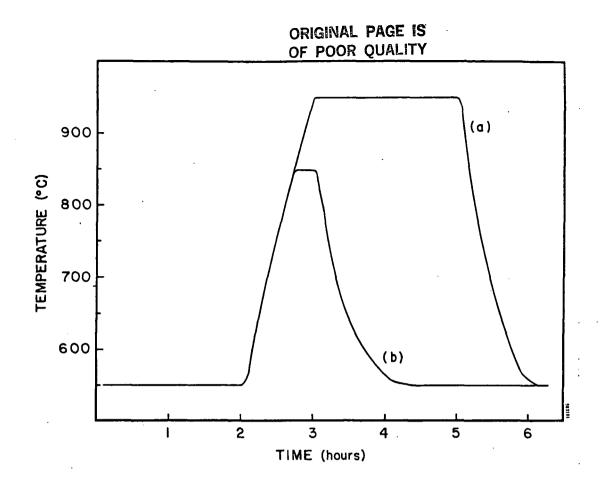
In the new encapsulation technique investigated, the coverglass is applied to the wafer before the cell is sawed to final size. The coverglass and cell are then sawed as a unit. In this way, the cost of the coverglass is reduced, since the tolerance on glass size is relaxed, and costly coverglass/cell alignment procedures are eliminated.

This report includes the results of cell development and encapsulation development experiments (Sections 2 and 3), a discussion of the fabrication of deliverable cells (Section 4), and a discussion of cost projections (Section 5). Conclusions are presented in Section 6.

SECTION 2 CELL DEVELOPMENT

This section reviews the experiments that led to the development of the large area high efficiency cell. The structure investigated is the n^+pp^+ BSF solar cell, with the n^+ and p^+ regions formed by ion implantation.

Cell development consisted of an investigation of n^+ and p^+ ion implantation parameters, BSR formation techniques, and ion implantation gettering for lifetime enhancement. All development was based on 2 ohm-cm boron-doped (100) wafers that had polished front surfaces, were 7.6 cm in diameter (3 inch), and were 250 μ m thick (10 mils). All large area cells were made from float zone silicon. Some development studies were conducted with Czochralski wafers, as indicated in the subsections that follow.


Solar cell testing was performed under simulated AMO insolation at $25^{\circ}C$ using a Spectrolab X25-MkII solar simulator with a D-550 electronic load. A temperature controlled test block was used for all measurements. Unless otherwise indicated, test cell area was 4 cm².

2.1 BACK SURFACE FIELD STUDIES

The implantation of boron, gallium, and aluminum was investigated for BSF formation. The purpose of this experiment was the identification of the implant species that offers greatest V_{oc} enhancement. To insure maximum activation for each species, a long, high temperature anneal was used. Ordinarily, such an anneal would allow the junction to diffuse to an undesirable depth. To avoid this, the junction was implanted and annealed after BSF formation.

Starting material consisted of Czochralski wafers polished on both sides. The wafers were divided into three groups corresponding to the three implant species. Each group contained wafers of varying thickness to determine whether or not V_{oc} depended on the distance between the BSF and the junction.

Wafers were implanted with either ${}^{11}B^+$, ${}^{70}Ga^+$, or ${}^{27}Al^+$ at 50 keV to a dose of 5 x 10¹⁵ ions/cm² at an implant angle of 10 degrees. To insure uniformity, the ion beam was scanned across the implanted surface as the wafers were rotated.⁽²⁾ The wafers were subsequently annealed in flowing N₂ with the temperature cycle indicated in Figure 2-1(a).

To form test cells, the front surfaces were implanted with ${}^{31}P^{+}$ at an energy of 10 keV and a dose of 2.5 x 10¹⁵ ions/cm², at an angle of 10 degrees. The wafers were then annealed in flowing N₂ with the temperature cycle indicated in Figure 2-1(b).

Table 2-1 indicates the point-probe V_{oc} and sheet resistance measurements for these wafers. Spreading resistance profiles were measured on samples taken from this group. These profiles are shown in Figure 2-2. They indicate that the greatest utilization fraction is obtained with boron.

Ti-Pd-Ag contacts were applied to the wafers and 2 cm x 2 cm cells were cut from each wafer. No AR coatings were deposited. Table 2-2 lists the result of cell testing. Best results were obtained with ${}^{11}B^+$ implantation. No significant dependence on thickness was observed. Figure 2-3 shows a comparison of the external quantum efficiency obtained with boron and aluminum.

2.2 EMITTER DEVELOPMENT

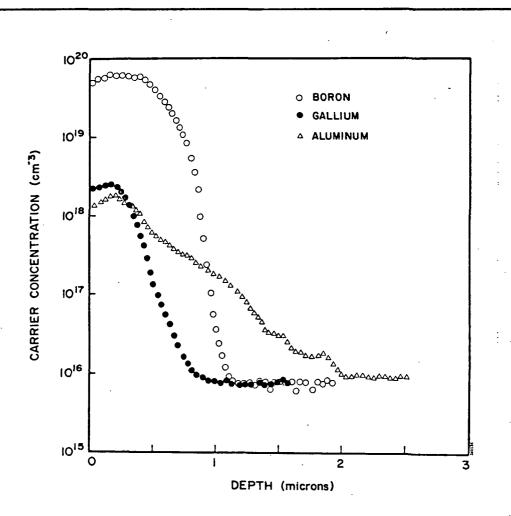
Both phosphorus and arsenic were investigated for front surface emitter fabrication. Various anneals were used to determine the furnace cycle necessary for optimal performance. The desired range of emitter sheet resistance was 50 to 100 ohms per square and the desired range of junction depth was 0.1 to 0.25 μ m. Since our object was the investigation of low-cost terrestrial processes, refinements such as oxide passivation and junction tailoring⁽³⁾ were not pursued.

2.2.1 Phosphorus Implantation

The three types of phosphorus implantation examined were (1) phosphorus implanted into a preimplanted surface, (2) phosphorus implanted through SiO_2 , and (3) direct implantation of phosphorus. Best results were obtained with direct implantation.

2.2.1.1 ${}^{31}P^+$ Implantation in a Preimplanted Surface.

We have examined phosphorus implantation into surfaces that were first made amorphous by silicon preimplantation. Preimplantation was investigated because, by rendering the surface amorphous, it completely precludes channeling effects. In addition, ϵ the amorphous layer yields good epitaxial regrowth during the anneal, since the surface layer has no polycrystalline features.⁽⁴⁾


2

Ion	Thickness (mils)	R _{sheet} ohms per square	V _{oc} (mV)
	7.2	20	560
	7.8	20	579
BORON	9.9	18	590
	10.1	19	595
	11.4	18	592
	11.6	18	581
	7.2	79	566
ALUMINUM	9.6	61	535
	9.6	60	573
	11.2	55	551
	7.6	75	538
GALLIUM	7.7	70	573
	9.5	65	554
	10.2	57	445

Table 2-1.	Point-Probe Voc and Sheet Resistance
	Measurements for Three BSF Implants

BSF	V _{oe}	J _{se}	FF	Eff
(no. of cells)	(mV)	(mA/cm²)	(%)	(%)
Boron	595	27.0	78.7	9.37
(35)	(003)	(0.4)	(1.4)	(0.24)
Gallium	584	26.0	77.4	8.71
(11)	(005)	(0.3)	(4.0)	(0.59)
Aluminum	584	26.2	78.8	9.00
(24)	(003)	(0.3)	(0.8)	(.14)

Notes: Simulated AMO insolation, $T = 25^{\circ}C$. No AR coating. Cell area is 4 cm^2 . Standard deviation shown in parenthesis.

FIGURE 2-2. Spreading Resistance Profiles of Boron, Aluminum and Gallium Implants

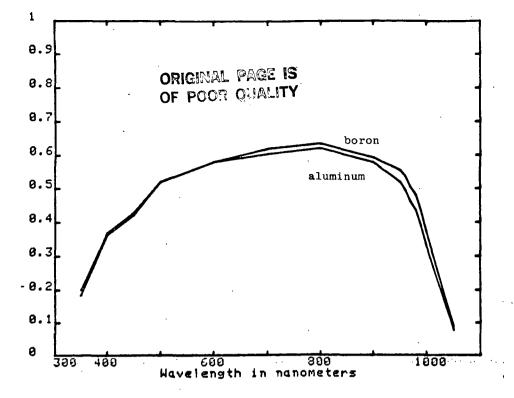


Figure 2-3. Comparison of external quantum efficiency of 27Al^+ BSF cell and $11B^+$ BSF cell

Starting material consisted of 250 μ m thick Czochralski (100) wafers, polished on both sides. The backs were implanted with boron at 25 keV to a dose of 5 x 10¹⁵ ions/cm² at an angle of 10 degrees. The anneal shown in Figure 2-1(a) was then employed. The group was divided in half. One half received the ²⁸Si⁺ implantation shown in Table 2-3 while the other half received no ²⁸Si⁺ implant.

Following Si preimplantation, all wafers were implanted with ${}^{31}P^{+}$ at 10 keV with a dose of 2.5 x 10^{15} ions/cm². All wafers were annealed in flowing N₂ with the three step process indicated in Table 2-4.

Junction depth was measured by the groove and stain technique and was found to be 0.17 μ m in a pre implanted wafer and 0.33 μ m in a control. Sheet resistance was measured with a four-point probe. It was found to be 75 ohms per square for a preimplanted wafer and 71 ohms per square for a control.

Wafers were metallized with Ti-Pd-Ag contacts and sawed to 2 cm x 2 cm size. No AR coatings were applied. Thirty experimental cells and 21 controls were produced. Table 2-5 shows the measured AMO performance for each group. The preimplanted cells have significantly lower V_{oc} .

Although the groove and stain measurements indicate a shallower junction in the preimplanted cells, this is not consistent with the device measurements. Figure 2-4 shows the external quantum efficiency of a preimplanted cell and a control cell. These cells were picked because they each have short circuit current approximately equal to the group average. The difference in quantum efficiency cannot be discerned.

Representative dark log(I)-V characteristics (Figure 2-5) indicate increased saturation current for the preimplanted devices. This is consistent with the decreased V_{oc} shown in Table 2-5. This decrease probably arises from increased emitter current owing to nonannealed defects introduced by the Si preimplantation.

2.2.1.2 ${}^{31}P^+$ Implantation Through SiO₂

The implantation of phosphorus through ${\rm SiO}_2$ was investigated to determine if in this way better control over the doping profile might be obtained. The advantage of this technique is that the peak of the Gaussian distribution which describes the profile of the implanted ions can be placed at the ${\rm SiO}_2$ -Si interface. Subsequent removal of the oxide yields a profile with a peak at the silicon surface. Consequently, no retrograde field exists near the silicon surface. A disadvantage is the introduction of recoil oxygen atoms.⁽⁵⁾

Table 2-3. ²⁸Si⁺ Implantation Schedule Consisting of Four Separate Implantations

Implant Number	Energy (keV)	Dose (ions/cm ²)	Proj. Range (angstroms)
1	50	1×10^{15}	696
2	30	6×10^{14}	413
3	20	3×10^{14}	279
4	10	1×10^{14}	150

Table 2-4. Three Step Anneal Process

 Step	Temperature	Time
1	550 [°] C	2 hours
2	850 [°] C	15 minutes
· 3	550 ⁰ C	2 hours

Table 2-5.	Measured Characteristics of Solar Cells Fabricated
	From Si Pre Implanted Emitters

Group	No. of Cells	V _{oc} (mV)	J _{sc} (mA/cm ²)	FF (%)	EFF (%)
Pre implanted	30	555 (002)	26.8 (0.1)	77.2 (2.2)	8.5 (0.3)
- Controls	21	582 (001)	26.6 (0.2)	78.1 (1.3)	9.0 (.12)

Notes: Simulated AM0 illumination, $T = 25^{\circ}C$, No AR coating. Cell area = 4 cm^2 . Standard deviation shown in parenthesis.

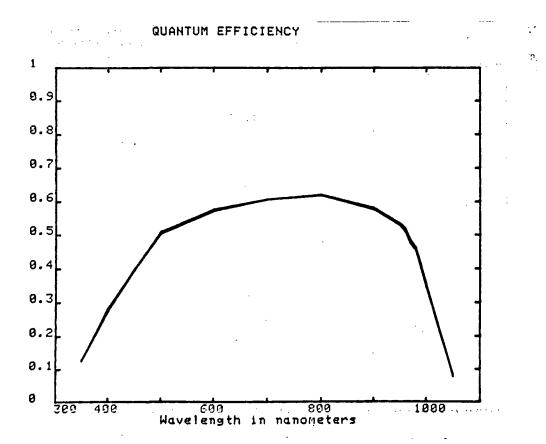
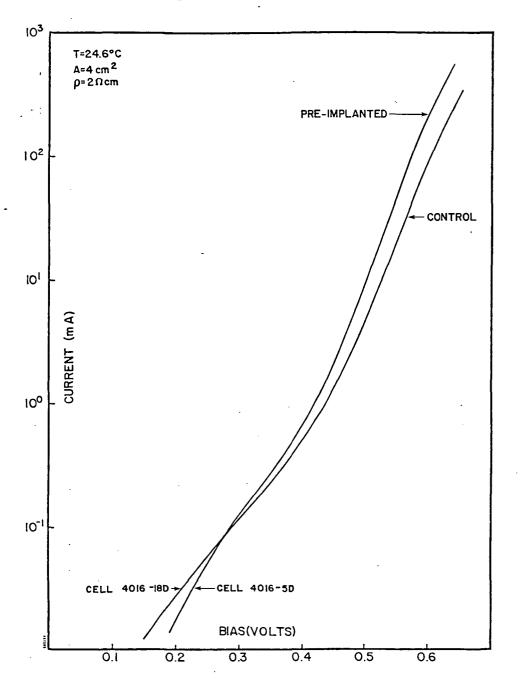
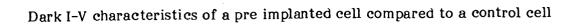




Figure 2-4. External quantum efficiency of a pre-implanted cell compared to a control cell

Starting material consisted of (100) Czochralski silicon wafers with polished front surfaces. Back surfaces were implanted with boron at 50 keV with a dose of 5×10^{15} ions/cm² at an implant angle of 10 degrees. The wafers were oxidized in dry O₂ at 550°C for two hours followed by 950 degrees C for three hours. The resulting oxide was approximately 800 Å thick.

In order to place the implant profile peak at the Si-SiO₂ interface, the ion range must be selected to match the oxide thickness. The projected range of 80 keV phosphorus ions in SiO₂ is 792 Å. Therefore, implantation was conducted at 75, 80, and 85 keV. Since one half of the implant profile resides in the oxide, the dose was increased to 5 x 10^{15} ions/cm². The implant angle was 10 degrees.

We examined annealing with and without the oxide present. The temperature cycle used for the anneal of the phosphorus implant is shown in Figure 2-1(b). Table 2-6 indicates the sheet resistance for the emitters produced in this way. Since the phosphorus is not soluble in the oxide, it diffuses into the silicon during the anneal. This explains the lower sheet resistance occurring in samples for which the oxide was not removed until after the anneal.

Figure 2-6 shows the spreading resistance analysis of the wafers processed in this way. In all cases, the junction depth is greater than the desired depth of between 0.1 and 0.25 μ m. Because better results were obtained with direct phosphorus implantation, we chose to terminate studies of implantation through SiO₂.

It is interesting to note the change in the profile slope occurring at an impurity concentration of approximately 3×10^{18} cm⁻³. We attribute this profile to concentration dependent diffusion. The mechanisms governing diffusion during the anneal are not well understood and should perhaps be the object of further study.

		Sheet Resistan	ce(Ω/□)
Energy (keV)	Projected Range (Å)	Oxide Removed Before Anneal	
75	740	69	60
80	792	58	50
85	. 844	53	48

Table 2-6.	Sheet Resistance for E	mitter Formed by ³¹ P ⁺
	Implantation Through	800 Å of SiO ₂

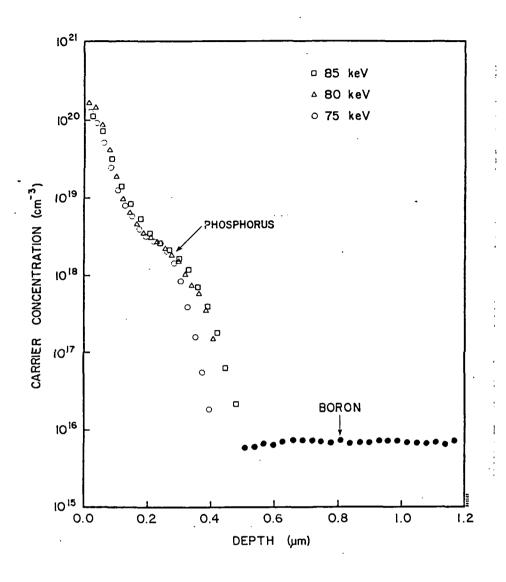


Figure 2-6.

Spreading resistance profiles of phosphorus implanted through 800 Å of SiO₂ at 75, 80, and 85 keV

2.2.1.3 Direct Phosphorus Implantation

Based on the results of the control cells in the preimplantation studies, we examined direct implantation of phosphorus. Since the integral of the spreading resistance profiles consistently indicated that large amounts of the implanted phosphorus were not activated, we considered implantation at reduced dose (< 2.5×10^{15} ions/cm²).

Starting material consisted of (100) float zone silicon wafers which were polished on both sides. The backs were implanted with ${}^{11}B^+$ at 50 keV to a dose of 5 x 10 15 ions/cm² at 10 degrees. The wafers were then annealed using the cycle shown in Figure 2-1(a).

The wafers were divided into two groups for front implantation at 5 and 10 keV. The dose was varied between 1×10^{15} and 2.5×10^{15} ions/cm² within each group. Figure 2-7 shows the results of a measurement of sheet resistivity for each energy and dose. Note that above 2×10^{15} ions/cm², the sheet resistivity is insensitive to further increase in dose. We infer from this that above 2×10^{15} ions/cm² the dose exceeds the solid solubility.

Solar cells were fabricated from wafers implanted at 5 keV. Cell area was 34.3 cm². Metallization consisted of patterned Ti-Pd-Ag on the front and full area Al-Ti-Pd-Ag on the back. No AR coatings were used.

Cell performance was measured under simulated AMO insolation. Performance data is graphed in Figure 2-8. The dashed lines indicate a fit to the data by the method of least squares. Note that FF is approximately constant between 1.5 x 10^{15} and 2.5 x 10^{15} ions/cm², which is consistent with the sheet resistivity measurements in Figure 2-7. V_{oc} increases in this range, indicating that non activated phosphorus is in some way important to cell performance. This needs to be studied in greater detail.

2.2.2 Arsenic Implantation

We investigated the use of arsenic for shallow junction formation. The projected range of arsenic in silicon is much less than that of phosphorus. Consequently, junction depth should be considerably less than that which is achieved with phosphorus implantation. In these studies, we investigated both direct and indirect arsenic implants, with very shallow junctions obtained in each case.

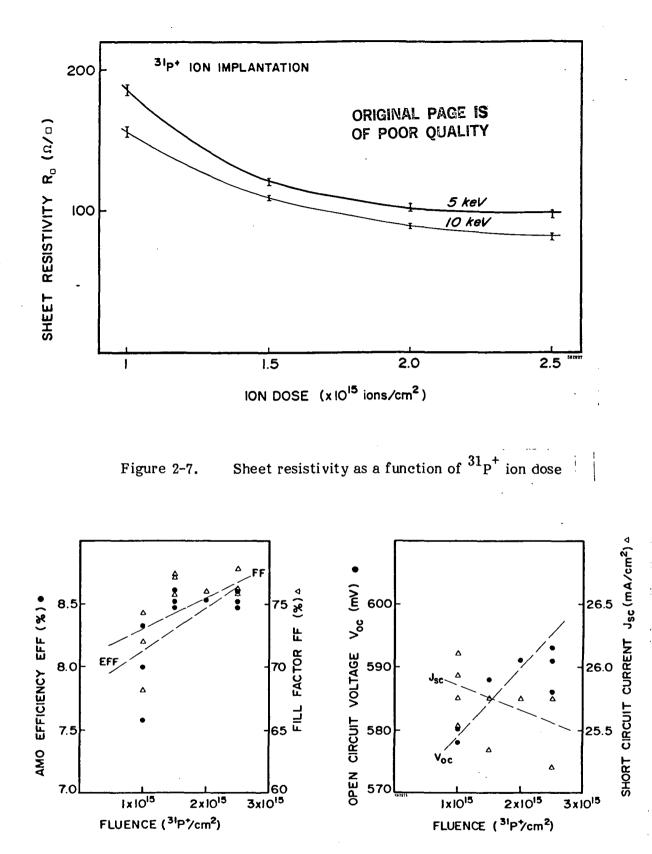


Figure 2-8. Cell performance as a function of ${}^{31}P^+$ ion dose

2.2.2.1 Direct Arsenic Implantation

Starting material consisted of (100) Czochralski silicon wafers with thickness of 380 μ m (15 mils), and polished fronts. The wafers were implanted with $^{75}As^+$ and annealed at 900°C in flowing oxygen. A range of implantation energy, dose, and anneal cycles was studied. The resulting sheet resistivity is shown in Table 2-7. All parameters studied yielded acceptable sheet conductivity. Figure 2-9 shows the spreading resistance analysis for emitters annealed at 900°C for various durations. In all cases, the junctions are approximately 0.1 μ m.

Solar cells were fabricated using implantation and anneal parameters selected on the basis of the data in Table 2-7. These parameters are indicated in Table 2-8. A back surface field was formed by boron implantation. A single anneal served to regrow front and back surfaces simultaneously. Wafers were metallized using patterned Ti-Pd-Ag contacts, and were sawed to final size (2 cm x 2 cm). No AR coatings were employed.

Dark and light I-V characteristics were obtained for all cells. These are summarized in Table 2-9. Examination of the dark log (I)-V characteristics indicates that the predominant current transport mechanism is diffusion ($n \approx 1$). V_{oc}, however, was lower than that obtained by phosphorus implantation.

The external quantum efficiency for these cells is shown in Figure 2-10. Comparison to the external quantum efficiency of phosphorus cells indicates that these cells have better blue response but poorer red response. We infer from this data that the arsenic junctions are performing well and that cell performance is limited by low bulk lifetime.

2.2.2.2 Arsenic Implanted Through SiO₂

We examined the implantation of arsenic through a thin layer of SiO_2 . The advantage of this technique was described briefly in Section 2.2.1.2.

Starting material for this experiment consisted of polished (100) Czochralski wafers that were 380 μ m thick. Each wafer was oxidized in flowing dry O₂ at 900^oC for 90 minutes. The resulting oxide was 100 A thick.

The fronts of the wafers were divided into three groups and implanted with $^{75}As^+$ at 70, 75, and 80 keV with a dose of 10^{16} ions/cm² at an angle of 10 degrees. The anneals shown in Table 2-10 were carried out in flowing N₂. Four-point probe measurements of sheet resistance are also shown in the table. Table 2-11 shows the point-probe V_{oc} measurement data.

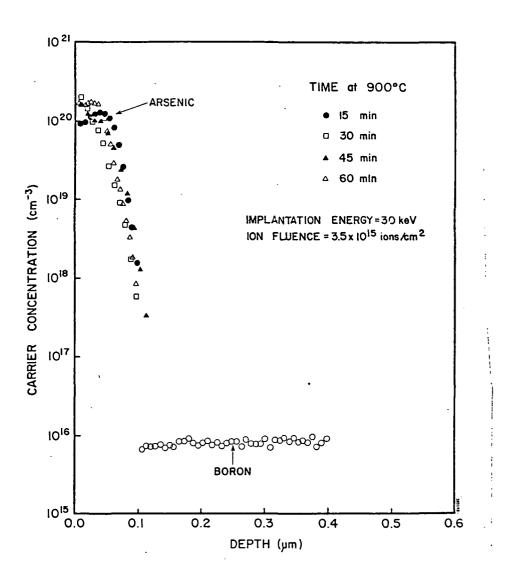


Figure 2-9. Spreading resistance profiles of arsenic for various anneal periods at 900°C.

	40 keV 1.4x1016cm ⁻ 2	82	75	64	60
Implant Energy and Dose	40 keV 2x1015cm-2	91	40	74	69
Implant En	30 keV 1.4x1016 cm ⁻ 2	113	83	80	64
	30 keV 7x10 ¹⁵ cm ⁻ 2	100	88	81	80
	30 keV 3.5x1015cm ⁻ 2	105	95	89	89
	Anneal 30 ke Time (min) 3.5x10	15	30	45	60

;

OR:GINAL PAGE IS OF POOR QUALITY

Group	Emitter	BSF	Anneal
6	$75As^+$, 30 keV $7x10^{15}$ ions/cm ²	$11B^+$, 25 keV 5x10 ¹⁵ ions/cm ²	550°C - 2 hrs, 850°C - 1/2 hr, 550°C - 2 hrs flowing N ₂
3	75As ⁺ , 30 keV	11B+, 50 keV	900°C - 1/2 hr
	3.5x10 ¹⁵ ions/cm2	5x1015 ions/cm2	flowing O ₂
7	75 _{As} +, 30 keV	11 _B +, 50 keV	900°C - 1/2 hr
	7x10 ¹⁵ ions/cm ²	5x10 ¹⁵ ions/cm ²	flowing O ₂

Table 2-8. Implant and Anneal Parameters Used for Solar Cell Fabrication

Group	No. of Cells	V _{oc} (mV)	J _{sc} (mA/cm ²)	FF (%)	Eff (%)	Jo (mA/cm ²)	n-factor
6	4	568 (001)	25.4 (1.2)	73.4 (4.2)	7.9 (0.8)	3x10 ⁻⁷	1.24
3	6	567 (001)	24.2 (0.9)	77.3 (0.1)	7.9 (0.4)	7.3x10 ⁻⁸	1.13
7	6	555 (001)	22.5 (0.1)	78.0 (0.3)	7.2 (0.1)	1.2x10 ⁻⁷	1.16
			0			$r = 25^{\circ}C$	

Table 2-9. Average AM0 Solar Cell PerformanceAnd Dark I-V Data

Notes: Cell area is 4 cm². No AR coatings were used. $T = 25^{\circ}C$. Standard deviation is shown in parenthesis.

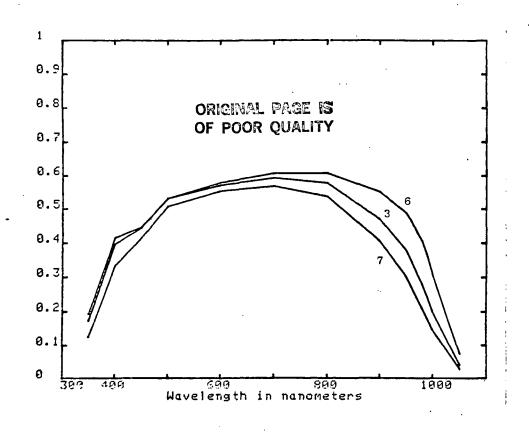
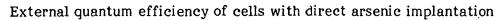



Figure 2-10.

Implant Energy	900°C-75 min	Anneal 950°C-16 min	1000°C-10 min	1000°C-5 min
70 keV	45	37	25	26
75 keV	48	. 38	27	28
80 keV	44	35	24	26

Table 2-10. Sheet Resistance (ohms per square) of the Arsenic-Through-Oxide Implantation Matrix

Table 2-11. Point-Probe V_{oc} Measurements (mV) of Arsenic-Through-Oxide Implantation Matrix

Implant Energy	900°C-75 min	Anneal 950°C-16 min	1000°C-10 min	1000°C-5 min
70 keV	480	472	432	441
75 keV	390	473	460	426
80 keV	514	523	403	368

Implant Energy	No. of Cells	V _{oe} (mV)	J _{se} (mA/em ²)	FF (%)	Eff (%)
75 keV	12	562 (002)	22.0 (0.1)	78.6 (0.5)	7.2 (0.1)
80 keV	10	561 (006)	21.9 (0.4)	76.7 (3.4)	7.0 (0.4)

Table 2-12. Average AM0 Performance of ⁷⁵As⁺ Implanted Cells

Notes: Standard deviation in parenthesis. No AR coating. Cell area is 4 cm^2 . T = 25° C.

Cells were fabricated in two groups using 75 and 80 keV implantation with a fluence of 7 x 10^{15} ions/cm². Backs were implanted with ${}^{11}\text{B}^+$ at 50 keV with a fluence of 5 x 10^{15} ions/cm². The wafers were annealed in dry N₂ for 16 minutes at 950 °C followed by 550 °C for two hours. Ti-Pd-Ag contacts were applied and 2 cm x 2 cm cells were sawed from each wafer.

AMO test data for these cells is shown in Table 2-12. Dark log (I)-V curves were also examined; the average n-factor was 1.22 with a standard deviation of 0.09. We infer from this that these devices are essentially the same as the arsenic emitter cells discussed in the previous section. Measurement of external quantum efficiency indicated poor red response which we attribute to low bulk lifetime.

2.3 LIFETIME ENHANCEMENT

An experiment was undertaken to evaluate the effect of implant-gettering using argon back-surface damage. Back surface damage has been reported to getter oxygen in silicon,⁽⁶⁾ and it was thought that lifetime enhancement might be possible using such a process.

The starting material was 250 μ m thick Czochralski silicon. The wafers were divided into four groups, as shown in Table 2-13. Argon was implanted on the backs of wafers in groups 1 and 2 at 10 keV to a dose of 10^{16} ions/cm². The boron was implanted at 50 keV to a dose of 5 x 10^{15} ions/cm². The anneal of the back surface consisted of a ramp from 550°C to 950°C; 950°C for one hour, followed by a ramp to 550°C, all in flowing N₂ (Figure 2-1(a)).

Group	Wafers	Back Implant
1	1-4	Argon
2	5-8	Argon followed by boron
3	9-12	Boron
4	12-16	None

Table 2-13. Process Groups for Gettering Study

Table 2-14. Measured Performance of AR-ImplantGettered Solar Cells

Back Imp.	No. of Cells	V _{oc} (mV)	J _{se} (mA/cm ²)	FF (%)	. EFF (%)
Ar	18	.579 (.003)	26.2 (0.3)	76.6 (1.5)	8.6 (0.2)
Ar + B	24	.592 (.002)	27.3 (0.7)	77.2 (1.7)	9.3 (0.3)
В	20	.592 (.002)	27.7 (0.3)	77.5 (1.7)	9.4 (0.2)
None	24	.582 (.002)	26.3 (0.3)	76.9 (1.9)	8.7 (0.2)

Notes: Cell area = 4 cm^2 . Temperature = 25° C. No AR coating was used. Standard deviation shown in parenthesis. Junctions were formed by phosphorus implantation (10 keV, 2.5 x 10^{15} ions/cm²) and were annealed using a three-step ramped anneal that consisted of 550°C for two hours, ramp to 850°C, 850°C for 15 minutes, ramp to 550°C, 550°C for two hours, as shown in Figure 2-1(b). Figure 2-11 shows the spreading resistance analysis of the back surface. The implantation of Ar does not change the B profile.

Table 2-14 shows the measured AM0 performance of the finished 2 cm x 2 cm cells. The argon would appear to play no role in solar cell performance, either with or without a boron BSF. External quantum efficiency was also measured (Figure 2-12). It shows no difference between boron and argon-plus-boron cells. It is concluded that the above back surface implantation process does not improve performance.

Since the process could result in oxygen gettering without improved performance, we examined the radiation hardness of one cell from each group by subjecting the cells to $4.2 \times 10^{14} \text{ e/cm}^2$ at 1 MeV. Table 2-15 shows the change in efficiency for these cells, and Figures 2-13 to 2-16 show the changes in external quantum efficiency. These results indicate that no enhanced radiation hardness was achieved. However, a sample of statistically significant size was not tested.

Cell No.	Back Implant	V _{oe} (mV)	J _{SC} (mA/cm ²)	FF (%)	Eff (%)
2F	Ar	582	26.6	78.1	8.9
		547	23.0	70.6	6.6
8C	Ar,B	595	27.8	78.5	9.6
	•	553	23.1	77.3	7.3
9F	В	596	28.2	78.2	9.7
		550	23.2	76. 3 ′	7.2
14C	None	582	26.2	79.7	9.0
		547	22.8	77.2	7.1

Table 2-15.	BOL and EOL	Performance	of Argon-Implanted Ce	lls
-------------	-------------	-------------	-----------------------	-----

Notes: Simulated AM0. No antireflection coatings employed. $T = 25^{\circ}C$.

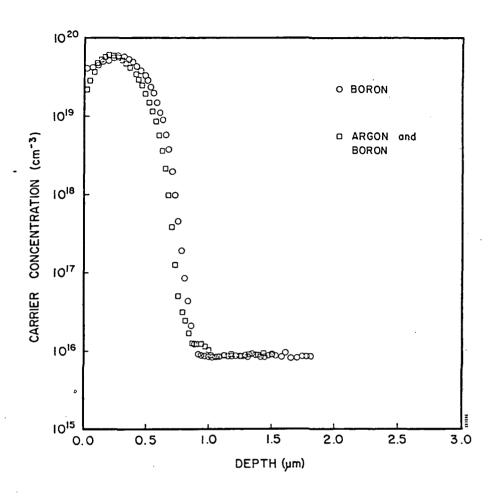


Figure 2-11. Spreading resistance analysis of the implanted back surface

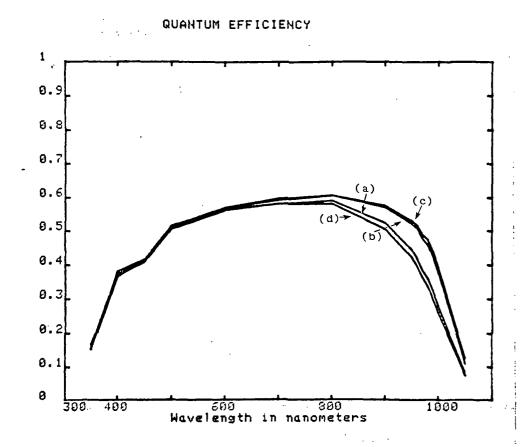
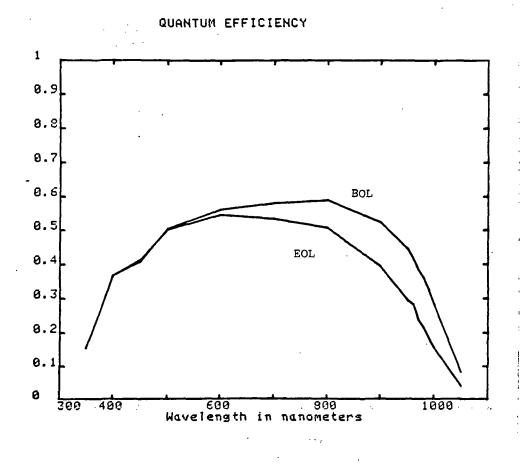
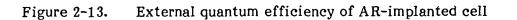
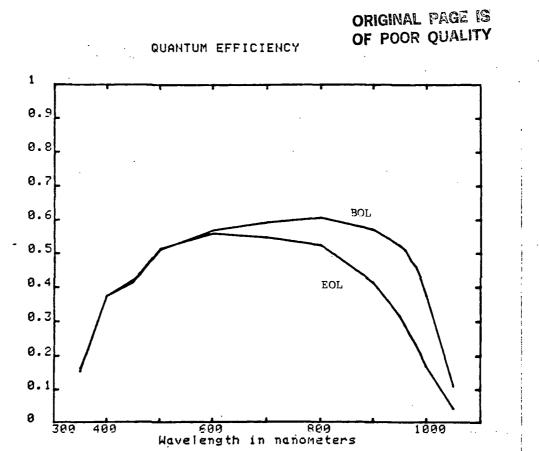





Figure 2-12. External quantum efficiency of cells with back surface implantation: (a) argon cell, (b) argon followed by boron, (c) boron, and (d) none

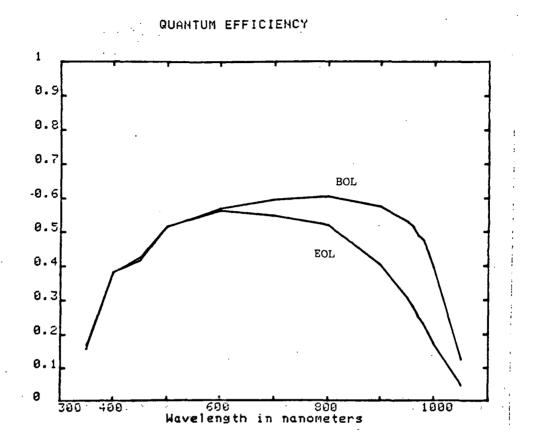
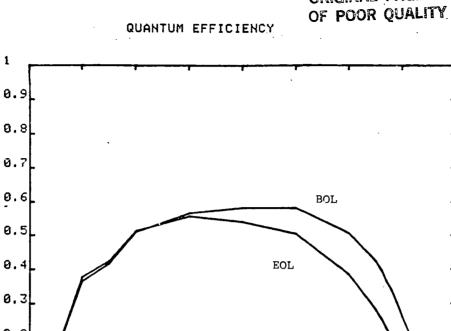




Figure 2-14.


External quantum efficiency of cell implanted with argon followed by boron

.

ORIGINAL PAGE IS

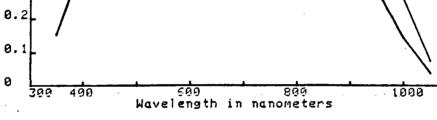


Figure 2-16.

0

External quantum efficiency of a cell without back surface implantation

2.4 BACK SURFACE REFLECTOR

In order to obtain thermal alpha of less than 0.70, we investigated the use of a back surface reflector (BSR).⁽⁷⁾ A particular advantage of the use of ion implantation for BSF formation is that the process leaves the appearance of the back surface unchanged. Thus, BSR formation is quite simple, since no repolishing or other techniques are needed to recover specular reflection.⁽⁸⁾

To evaluate this advantage quantitatively, a BSR was formed on test samples by electron beam evaporation of Al-Ti-Pd-Ag. Starting material consisted of 250 μ m Czochralski silicon, polished on both sides. The wafers were divided into four groups, corresponding to the four types of processing shown in Table 2-16. The samples had a TiO₂ AR coating, but no metallization or junction. Table 2-16 also lists the thermal alpha values measured by Henry Curtis of NASA-LeRC. In all cases, this value was less than 0.70. Figure 2-17 shows the reflectance data for two of the samples.

It is important to note that the metallization is deposited over the implanted and annealed surface with <u>no</u> repolishing or other postimplant surface treatment. This results in a significant reduction in process cost.

Back Implantation	Metallization	Thermal Alpha
None	Not sintered	0.64 + 0.02
None	Sintered, 400°C	0.66 + 0.02
11 _B +	Not sintered	0.67 + 0.02
11 _B +	Sintered, 400°C	0.68 + 0.02

Table 2-16. Measured Values of Thermal Alpha for Four BSR Processes.

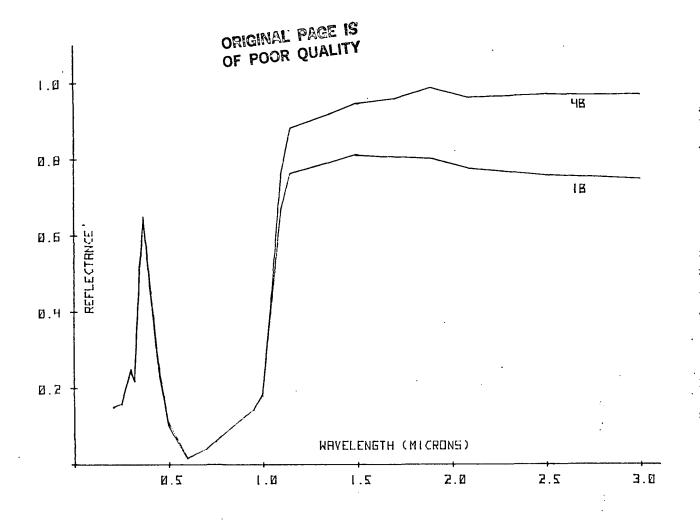


Figure 2-17. Measured reflectance as a function of wavelength for two BSR structures: (1b) boron implantation and sintered BSR contact, (4b) no implantation and no contact sinter of the BSR metallization.

2.5 SUMMARY OF EXPERIMENTS

This section has reviewed the experiments used for solar cell development. For emitter fabrication, best results were obtained with direct phosphorus implantation. Arsenic implantation was found to be promising, but needs further study. For BSF formation, boron implantation was shown to be superior to gallium or aluminum implantation. Separate anneals were used for front and back implants. Although these anneals can probably be combined into a single furnace schedule, this was not investigated explicitly.

Argon implantation was investigated for back surface gettering. No improvement in cell performance or radiation hardness was achieved.

Back metallization consisting of Al-Ti-Pd-Ag was investigated for BSR formation. Excellent results were achieved for evaporated layers on implanted surfaces, without any postimplant polishing.

These results have been combined to form a cell fabrication sequence. This is discussed in Section 4.

SECTION 3 ENCAPSULATION

A major reduction in assembly cost will be achieved by using the new procedure for attaching glass coverslips developed in this program. Standard practice has been to bond a precisely cut coverslip to a finished cell. The demands on cell and glass tolerance and on precision alignment of the coverslip with respect to the cell during assembly add substantially to the assembly cost. To reduce this cost, we have developed a process in which the glass cover is bonded to the wafer before sawing the cell to its final size. In this way, cell and glass are sawed to size as a unit, using a wafer dicing saw. This obviates the need for precision in both coverslip preparation and alignment, without loss of registration, and so results in a major cost saving. We believe that this is the first demonstration of this technology. This section discusses the technique and the results obtained.

3.1 ASSEMBLY CONFIGURATION

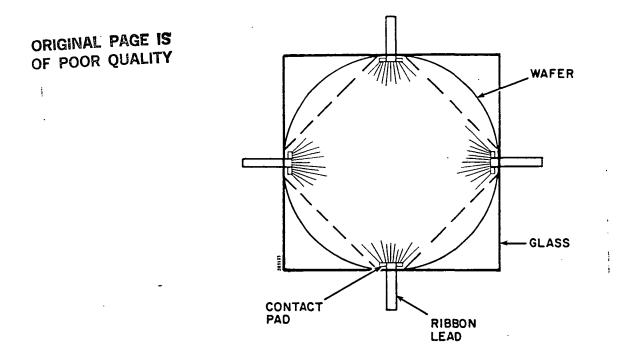

The assembly is formed in three process steps. These are (1) weld leads to wafer, (2) laminate wafer and glass, and (3) saw unit to size. In order to saw the unit to size, a contact configuration must be chosen that allows the leads to remain free of the path of the saw.

Figure 3-1 illustrates the contact configuration used in this work. The final cell is square with a connection pad at each corner. Note that the corners of a truly square cell of the size indicated would actually extend beyond the edge of the wafer, since the diagonal of the square is larger than the wafer diameter. The actual corners are therefore rounded and are formed by the edge of the original wafer. This edge is never removed.

If it is desirable to remove all outer edges of the wafer, the rounded corners can be sawed prior to lamination. This might be necessary if the process used for cell fabrication introduces edge shunting. Ion implanted cells, however, do not require edge removal.

3.2 MATERIALS

Two types of glass microsheet were investigated for use as covers: Corning 0211 and Corning 7070. The Corning 0211 glass was nominally 150 μ m thick, and the Corning 7070 was nominally 100 μ m thick. Best results were obtained with Corning 7070, owing to its coefficient of thermal expansion, which is approximately equal to that of silicon.

Figure 3-1. Configuration of the assembly consisting of a wafer containing the cell and a coverglass, prior to sawing. The dotted lines indicate the saw cut positions.

Three types of adhesives were investigated: Dow Corning 93-500, ethylene vinyl acetate (EVA), and FEP-Teflon sheet. EVA may be unsuitable for applications in space owing to darkening in ultraviolet radiation environments. The FEP-Teflon was nominally 50 μ m thick and the EVA was nominally 250 μ m thick.

3.3 STRESS ANALYSIS

The stresses in a three layer laminate composed of glass as the top layer, a relatively soft adhesive as the middle layer, and a silicon solar cell as the bottom layer were calculated. The maximum stress in the top layer of glass is given approximately by the expression

$$\sigma_{1} = \frac{\underline{E}_{1} \ \Delta \alpha \ \Delta T}{1 + \frac{\underline{E}_{1} t_{1}}{\underline{E}_{2} t_{2}}}$$

Here E_1 and E_2 are the effective tensile moduli of the glass and silicon, t_1 and t_2 are the glass and silicon thicknesses, Δa is the differential expansion coefficient of the two materials, and ΔT is the total temperature range to which the laminate is exposed.

For the case of Corning 0211 potash soda zinc glass 150 μ m thick and a silicon solar cell that is 375 μ m thick, the Teflon encapsulation process leads to calculated stresses of

 σ_1 11,700 psi tension in the glass,

and σ_2 4,700 psi compression in the silicon

Since the usual maximum working stress for untempered glass is about 1000 psi, it can be seen that the 0211 glass stress is much too large. The very high stresses occur because 0211 glass has a much larger thermal expansion coefficient than silicon.

Because Corning 7070 glass has an expansion coefficient more closely matched to that of silicon, we chose to use it for large area space cell covers. Calculations were made for 150 μ m thick covers of both Corning 7070 and Corning 7740 glass laminated with FEP-Teflon to 250 μ m thick silicon solar cells. The results are

1.	7070 covers	q_1	=	564 psi tension in the glass
		$\hat{\sigma_2}$	=	338 psi compression in the silicon
		L		
2.	7740 covers	σ,	=	805 psi tension in the glass
		σ_{2}	=	483 psi compression in the silicon
		- <u>Z</u>		

The cell size and adhesive thickness have a negligible effect on the stresses.

3.4 LAMINATION

Various methods of wafer-to-glass lamination were investigated for each adhesive. The most successful are described below.

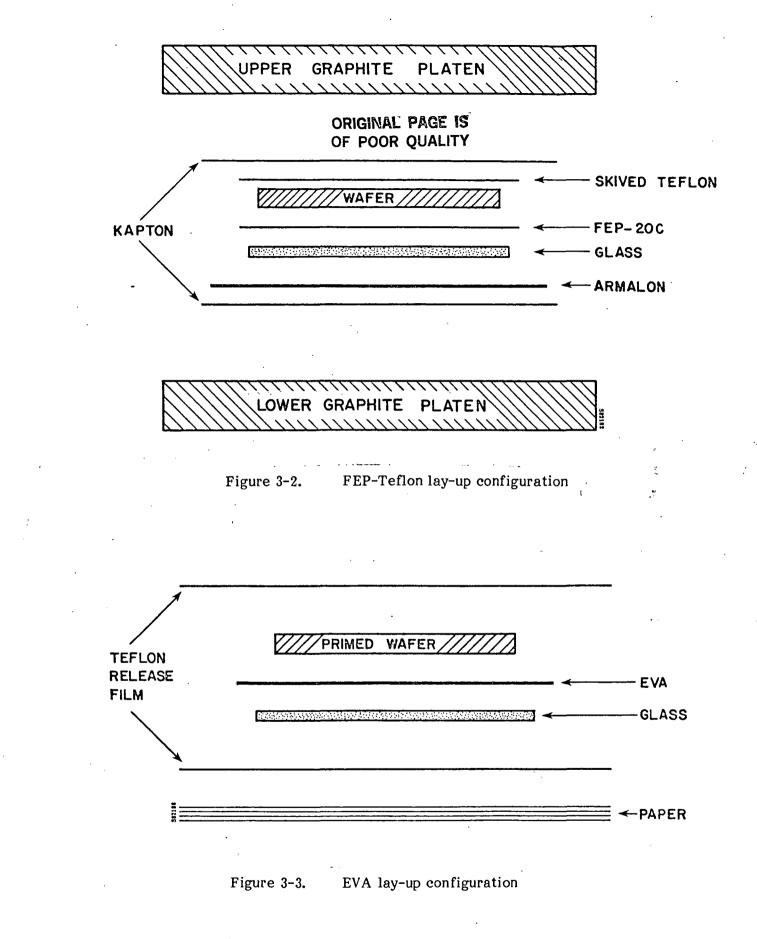
3.4.1 FEP-Teflon

The FEP-Teflon lamination sequence consisted of two steps: (1) lay-up of assembly, and (2) temperature/pressure cycle. Figure 3-2 shows the lay-up configuration. The cell, adhesive (FEP-20C), and glass are placed between skived TFE Teflon (\cong 25 μ m),

adjacent to the cell, and Armalon, adjacent to the glass. This assembly was placed between Kapton (25 μ m). The Armalon, Kapton, and skived Teflon serve as release agents.

The assembly was laminated between the parallel graphite platens of Spire's research electrostatic bonder. This bonder allowed us to obtain precise temperature and pressure in a controlled environment. No electrostatic field was used, and precise control of temperature and pressure is not required. The apparatus was used because of the relative ease with which the lamination could be carried out within it.

The temperature/pressure cycle was implemented with the following sequence. The graphite platens were preheated to 290° C. The assembly was then placed on the lower platen. The chamber was pumped out and the platens were pressed so as to apply 45 psi to the assembly. Pressure and temperature were applied for five minutes. The temperature was then reduced to 200° C while the pressure was maintained. When the temperature reached 200° C, the sample was removed from the apparatus.


It was found that Corning 0211 glass was unsatisfactory for this temperature excursion. The differential thermal expansion created significant residual stress which led to both bowing of the assembly and spontaneous coverglass cracking. This problem was not observed with Corning 7070 covers. Such a result is consistent with the calculations in Section 3.2

3.4.2 Dow Corning 93-500

We achieved excellent results with DC 93-500 adhesive. No lamination equipment was required for this process.

To prepare the wafers for lamination, we first attached blue tape to the cell back. This tape prevented excess adhesive from forming on the back of the cell. Such formations are themselves not a problem, but they degrade the flatness of the back surface and in this way interfere with the vacuum chuck on the wafer dicing saw.

The second step concerns the preparation of the adhesive. The DC 93-500 is mixed and de-aired in a bell jar. The adhesive is then poured onto the wafer surface and de-aired a second time.

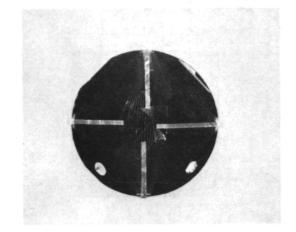
The coated wafer is placed on a Teflon release film and a cleaned coverglass is applied to the wafer manually. Note that precise alignment procedures are unnecessary. The glass is pressed manually to remove air and to spread the adhesive. The adhesive is then allowed to cure at room temperature for 24 hours.

The fourth and final step is an accelerated cure at $150^{\circ}C$ for 15 minutes, after which the DC 93-500 adhesive is fully cured.

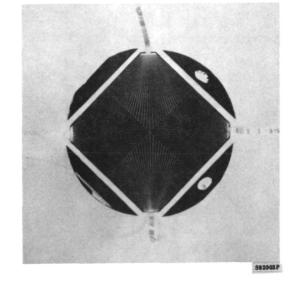
3.4.3 EVA -

The EVA lamination is straightforward. Both wafer and glass are first coated with GE SS-4179 primer. The EVA sheet is cut into a four inch circle.

FEP Teflon release films are used with the wafer, EVA, and glass, which are assembled as shown in Figure 3-3. The lint free paper was used as a cushion.


The entire assembly is placed in the Spire SPI-LAMINATORTM. The apparatus consists of a vacuum bag and heater assembly for application of pressure and temperature. A pressure of 15 psi and temperature of 140° C are used to form a bond between the cover glass and the wafer.

3.5 ASSEMBLY SAWING


After lamination, the assemblies were sawed to size. In order to prevent interconnect destruction, the leads were taped to the front of the assembly. This is shown in Figure 3-4(a). The assembly was then mounted on the vacuum chuck of a Tempress wafer dicing saw and both cell and glass were sawed to size (Figure 3-4(b)).

It was found that wafer bowing interfered with the vacuum chuck on the wafer dicing saw. It is therefore necessary to minimize this bowing. Wafer bowing is absent when DC 93-500 is used with a room temperature curve. Expansion matched glass must be used with processes involving temperature cycling to avoid bowing. If this is not possible, the assembly must be fixed to the saw chuck by some other means. Attaching it to a flat temporary substrate is one possibility. Such variations were not investigated.

ORIGINAL PAGE IS OF POOR QUALITY

(A)

(B)

Figure 3-4 Photograph of the solar cell assembly.
(a) Before sawing, with the ribbon leads folded over the front surface; (b) After sawing, with the ribbon leads removed from the front surface.

3.6 TESTING

An experiment was carried out that simulated the lamination sequence developed for DC 93-500. The vehicle for this test was a completed 37.6 cm² solar cell. By using a functional pre cut cell, the conversion efficiency could be monitored at each step of the lamination-and-saw sequence. In this way, the effect of each step was determined. To evaluate the actual sawing process, the saw recut the glass and cell as a unit, with a consequent reduction of four percent in cell area.

Table 3-1 lists the cell performance at each step. Figure 3-5 shows the I-V curves from which these data are taken. The data show that there is a small decrease in performance resulting from this type of processing. The DC 93-500 process is conducted at room temperature. Thus, temperature effects, if present in the FEP-Teflon and EVA lamination, would not be detected by this test. It is believed that the small decrease in efficiency results from edge damage caused by the coarse grit saw blade used in this test. Subsequent work with a more suitable blade indicated that this decrease in performance can be avoided.

Laminated nonfunctional assemblies with each type of adhesive were temperature cycled between $77^{\circ}K$ and $373^{\circ}K$ ten times. No degradation in the lamination was observed.

Functional assemblies were fabricated and the feasibility of each in this application was demonstrated. Table 3-2 lists the best results achieved with each adhesive. Owing to the simplicity of the DC 93-500 lamination, we selected it for deliverable assembly fabrication. It is recommended, however, that future work utilize FEP-Teflon sheet, for it is less costly and its sheet form will be highly desirable for production applications.

Ste	p	V _{oc} (mV)	J_{sc} (mA/cm ²)	FF (%)	EFF (%)
1.	Bare Cell	584	36.4	77.2	12.1
2.	Cell with Ribbon Lead	581	35.6	77.2	11.9
3.	Laminated Cell	584	36.4	77.2	12.2
4.	Sawcut Cell (Area = 36.0 cm ²)	581	36.4	76.1	11.9

Table 3-1. AM0 Performance of Solar Cell at Each Lamination-and-Saw Process Step

1

					ν.
Adhesive	Cover	V _{oc} (mV)	J _{sc} (mA/cm ²	FF (%)	EFF (%)
FEP-Teflon	C7070	591	38.4	77.6	12.8
DC 93-500	C7070	603	39.6	75.1	13.1°
EVA	C0211	592	40.1	77.4	13.4

Notes: Area = 34.3 cm^2 , T = 25° C, measured at NASA-LeRC courtesy of R. Hart.

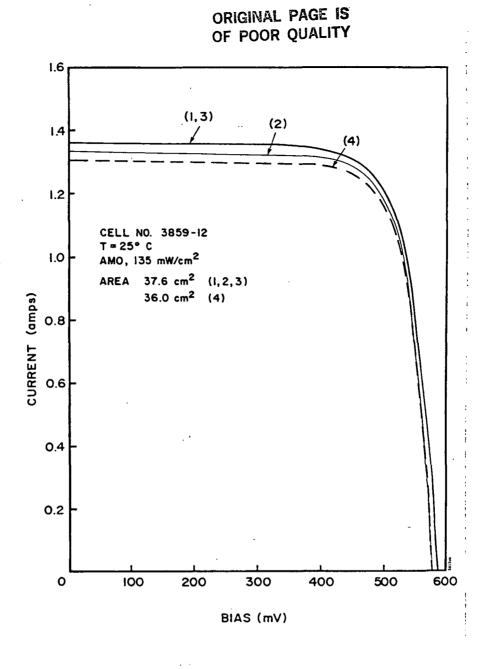


Figure 3-5. I-V characteristics of laminated solar cell. Curve numbers correspond to process steps shown in Table 3-1.

SECTION 4

HIGH EFFICIENCY CELLS AND ASSEMBLIES

4.1 CELL FABRICATION

The cell development experiments discussed in Section 2 were used to form a fabrication process sequence. This sequence is outlined in Table 4-1. Starting material consisted of 2 ohm-cm boron-doped float zone (100) silicon obtained from Wacker. The wafers were thinned to 250 μ m and chemomechanically polished on both sides.

Implantation consisted of boron for the p^+ BSF and phosphorus for the n^+ junction. A separate anneal was used for the boron to allow it to diffuse to a depth of approximately 1 micron. All anneals were ramped to maintain high minority carrier lifetime. Process parameters are indicated in Table 4-1.

Metallization consisted of full area sintered Al-Ti-Pd-Ag on the back and lift-off patterned sintered Ti-Pd-Ag on the front. The front contacts were plated to a height of approximately ten micrometers. An AR coating of Ta_2O_5 was applied by reactive e-beam evaporation.

The back surfaces of wafers processed in this way exhibited the high degree of specular reflectivity characteristic of polished wafers. Consequently, the thermal alpha of these cells is low. Cell 71-4 has a measured value of $0.66 \pm .02$ (courtesy of Henry Curtis of NASA LeRC).

Twenty-five cells were fabricated and delivered to the NASA Lewis Research Center. These cells were measured under simulated AMO insolation (courtesy of R. Hart); average performance is given in Table 4-2. Standard deviations are shown in parentheses. The cell area is 34.3 cm^2 . Complete data is listed in Appendix A.

4.2 ASSEMBLY FABRICATION

Experiments on the development of encapsulation procedures indicated that all three adhesives (DC 93-500, FEP-Teflon, and EVA) could be used for the encapsulation process under investigation. Use of FEP-Teflon probably offers the lowest cost. We chose to use DC 93-500 for deliverable assemblies, however, because the process is simple and requires no specialized equipment.

STARTING MATERIAL 1. Resistivity 2 ohm-cm Growth Float zone Surface (100), polished front and back Thickness 250 micrometer Diameter 3 inches 2. CLEAN 3. BACK IMPLANT 11_{B}^{+} Ion Species Energy 50 keV 5×10^{15} ions/cm² Dose 4. ANNEAL 550°C - 2 hours Ramp to 950°C, 8°C/minute 950°C - 2 hours Ramp to 500°C 5°C/min 5. FRONT IMPLANT 31_p+ Ion Species Energy 5 keV Dose $2.5 \times 10^{15} \text{ ions/cm}^2$ ANNEAL 6. 550°C - 2 hours Ramp to 850°C, 8°C/min 850°C - 15 min. Ramp to 550°C, 5°C/min 550°C - 2 hours 7. BACK METALLIZATION Electron beam evaporation of Al-Ti-Pd-Ag 8. SINTER

9.

PHOTOPATTERN FRONT

 Table 4-1. High Efficiency Silicon Space Cell Process Sequence

4-2

÷

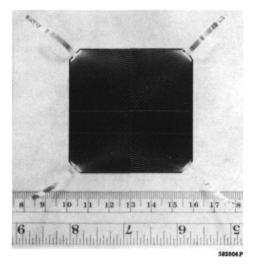
Table	4-1 (Concluded)
10. FRONT METALLIZATION	Electron beam evaporation of Ti-Pd-Ag
11. METAL LIFTOFF	
12. SINTER	
13. PLATE FRONTS	10 micrometers Ag
14. AR COATING	Reactive electron beam evaporation of Ta ₂ O ₅
15. SAW CELL TO FINAL SIZE	
16. TEST	

....

		· · ·		
 V _{OC} (mV)	J _{se} (mA/cm ²)	FF (%)	Eff (%)	
608 (002)	40.2 (0.3)	77.6 (1.3)	13.9 (0.3)	

Table 4-2. Average AM0 Performance of 25 Cells

Notes: Area = 34.3 cm^2 . T = 25° C, measurement conducted at NASA-LeRC (courtesy of R. Hart).


The performance of the best encapsulated assembly, as measured by R. Hart of NASA-LeRC under AMO insolation at $25^{\circ}C$ is shown below.

V _{oc}	J _{sc}	FF	Eff	
603 mV	39.6 mA/cm ²	75.1%	13.1%	· ·

The area of this assembly is 34.3 cm^2 . A photograph of a similar assembly is shown in Figure 4-1.

The fabrication process sequence used to fabricate this assembly is shown in Table 4-1, with the simple variation that between steps 13 and 14, welding of the interconnects is inserted, and between steps 14 and 15, lamination is inserted. It can be seen that the encapsulation steps are compatible with the cell fabrication sequence and can be added with a minimal increase in process cost.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 4-1.

Photograph of completed assembly consisting of an ion implanted cell and coverglass sawed to size simultaneously

SECTION 5

COST PROJECTIONS

This section discusses the projected cost of production of the space solar cells developed in this program. This development was based on modifications to Spire's terrestrial cell process sequence. Modifications have been introduced to satisfy the particular requirements of space-quality cells. Low-cost features, however, have been retained. Owing to the general similarity of Spire's space and terrestrial cell processing, cost projections estimated for terrestrial processing, with some modification, can be applied to the projection of cost for space solar cell production.

Under contract to the Jet Propulsion Laboratory⁽⁹⁾ Spire prepared a summary of the Standard Assembly-Line Manufacturing Industry Simulation (SAMIS) estimated price for the Spire Block IV module. This study included the fabrication cost of the ion implanted terrestrial cell. This element of the SAMIS study can be used for a projection of space cell cost. The SAMIS study was based on cost in 1975 dollars. In this report, we use a multiplier (1.5) to convert 1975 dollars to 1981 dollars.

A major assumption in the SAMIS study is that the unused capacity of the production equipment is completely utilized by other types of production. This is justifiable because there is considerable demand for the services of costly machinery (such as an ion implanter). Thus, a profitable service business can insure the complete utilization of the more expensive machines. The cost involved in underutilization of equipment for which there is little demand is neglected. This is believed to introduce little error. For a further discussion of the actual SAMIS study, the reader is referred to Reference 9.

Table 5-1 lists the silicon wafer and wafer polishing cost. This cost is a major driver of the actual cell price. The 1982 costs indicated in the table are the actual prices paid for material used in this program. Conversion to 1975 dollars is made for consistency with the SAMIS study.

Table 5-2 is an excerpt from Table 1 of Reference 9, which lists the cost per watt for each process step in the cell fabrication sequence. These costs have been calculated with SAMIS for 10 kW/year terrestrial production. It is assumed that the resulting module is composed of 152 cells and provides 53 watts. Using this ratio, the cost per watt shown in Table 5-2 can be converted to cost per wafer; this is shown in Table 5-3.

	1975 \$	1982 \$
Wafer Cost	2.92	4.38
Thinning and		
Polishing Cost	4.20	6.30
Total	7.12	10.68

Table 5-1. Assumed Starting Material Cost

Note: The 1982 cost is Spire's actual direct material cost for cells delivered in this program.

Process	Capital	Labor	Mat'l	Util		Value	
Element	(\$/W)	(Direct)	(Direct)	(Direct)	Indir*	Lost**	Total
Clean	1.37	0.23	0.03	0	2.05	0	3.68
Implant	3.00	1.55	0.46	0.14	3.12	0	8.27
Anneal	0.12	0.14	0	0.04	0.25	0	0.54
Photo	1.53	2.63	0.17	0.01	3.59	0.07	8.00
Evap.	0.95	1.03	0.57	0	1.62	0.25	4.44
Remove	0.56	0.66	0.02	0	1.17	0	2.44
Sinter	0.16	0.19	0	0.07	0.30	0	0.72
Plate	0.58	1.02	0.05	0	1.38	0	3.04
AR	0.21	0.20	0	0	0.30	0	0.71
Saw	0.33	0.58	0	0	0.77	0.72	2.40
Test	0.10	0.14	0	0	0.23	0.76	1.22

* Includes all taxes and miscellaneous.

****** Value lost is due to nonunity process yield.

Process	Capital	Labor	Mat'l	Util		Value	
Element	(\$/W)	(Direct)	(Direct)	(Direct)	Indir*	Lost**	Total
Clean	0.48	0.08	0.01	0	.71	0	1.28
Implant	1.05	0.54	0.16	0.05	1.09	0	2.89
Anneal	0.04	0.05	0	.01	0.09	0	0.19
Photo	0.53	0.92	0.06	.01	1.25	.02	2.79
Evap.	0.33	0.36	0.20	0	0.56	.09	1.54
Remove	0.20	0.23	0.01	0	0.41	0	0.85
Sinter	.06	0.07	0	.02	0.10	0	0.25
Plate	.20	0.36	0.02	0	0.48	0	1.06
AR	.07	0.07	0	0	0.10	0	0.24
Saw	.12	0.20	0	0	0.29	0.25	0.86
Test	.03	0.05	0	0	0.08	0.27	0.43

Table 5-3. Cost Per Wafer for Processing 28.7k Wafers Per Year (1975 dollars)

* Includes all taxes and miscellaneous.

** Value lost is due to nonunity process yield.

Table 5-4 lists the costs per wafer for the space cell process sequence developed in this program. Note that the list of process elements has been changed to correspond to the space cell process sequence described in Section 4 of this report.

Implant and Anneal appear twice in Table 5-4 because separate implants and anneals are used for BSF and junction formation in the space cell sequence. In fact, the terrestrial implantation is composed of two sequential implants corresponding to the BSF and junction. These parts are represented in Table 5-2 together as "implant". In Table 5-4, the cost has been split between the two implant elements. The total amount of furnace time used for annealing for the space cell sequence is approximately three times that which is assumed for terrestrial processing. The process cost has therefore been tripled for each anneal process element.

Process	Capital	Labor	Mat'l	Util		Value	
Element	(\$/W)	(Direct)	(Direct)	(Direct)	Indir*	Lost**	Total
					·		
Starting Silicon			7.12				7.12
Clean	0.48	0.08	0.01	0.	.71	0	1.28
Implant	0.53	0.27	0.08	0.03	0.55	0	1.46
Anneal	0.12	0.15	0	0.03	0.27	0	0.57
Implant	0.53	0.27	0.08	0.03	0.55	0	1.46
Anneal	0.12	0.15	0	0.03	0.27	0	0.57
Evap.	0.17	0.18	0.10	0	0.28	0.05	0.78
Remove	0.20	0.23	0.01	0	0.41	0	0.85
Sinter	0.06	0.07	0	0.02	0.10	0	0.25
Photo	0.53	0.92	0.06	0.01	1.25	0.02	2.79
Evap	0.17	0.18	0.10	0	0.28	0.05	0.78
Remove	0.20	0.23	0.0	. 0	0.41	0	0.85
Plate	0.20	0.36	0.02	0	0.48	0	1.06
AR	0.07	0.07	0	0	0.10	0	0.24
Saw	0.12	0.20	0	0	0.29	0.25	0.86
Test	0.03	0.05	0	0	0.08	0.27	0.43
Total	3.53	3.41	7.59	0.15	6.03	0.64	21.41
Total	3.53	3.41	7.59	0.15	6.03	0.64	

Table 5-4. Cost Per Wafer for Processing Space Solar Cells28.7k Wafers Per Year (1975 dollars)

* Includes all taxes and miscellaneous.

****** Value lost is due to nonunity process yield.

The evaporation process element in Table 5-2 consists of front and back evaporations. For the purposes of Table 5-4, the cost is split into two evaporation elements. Note that extra remove and sinter elements have been added to accurately portray the space cell sequence. The remaining process elements are identical.

If one assumes that the final cell has an AMO efficiency of 14 percent and an area of 34.3 cm^2 , the solar cell cost is projected to be \$32.9 per watt, in 1975 dollars. The production level, which would be 10 kW/year for terrestrial application, is 18.7 kW/year for space application.

In Reference 9, the SAMIS study for 100 kW/year production (287 kwafers/year) is presented. The introduction of automated high throughput equipment is assumed. The cost is consequently lower. Using the method described above, the cost at 187 kW/year can be estimated. In 1982 dollars, this cost is \$30.3 per watt. Table 5-5 summarizes the cost for the two levels of production.

Level	1975 \$	1982 \$	
18.7 kW/year	32.90	49.35	
187 kW/year	20.19	30.29	

Table 5-5. Cost (dollars per watt) for Two Production Levels.

The novel encapsulation process investigated offers a reduction in cost of the completed assembly. The actual amount of this cost reduction cannot be easily estimated. It is clear, however, that the cost must be less than the cost of the conventional approach for the following reasons:

- 1. The relaxed tolerance on coverglass size reduces the cost of the coverglass material.
- 2. The relaxed tolerance on cell/cover alignment simplifies the encapsulation process, thereby reducing the amount of labor required.
- 3. The process introduces no additional costs.

Thus, we conclude that the process offers reduced cost when compared to the conventional encapsulation technique. This reduced cost has not been calculated.

SECTION 6 CONCLUSIONS

This report has described the result of a program to develop a large area space quality solar cell based on low-cost ion implantation processes. The characteristics of the best cell⁽¹⁰⁾ produced in this way are:

Area:	34.3 ${\rm cm}^2$			
Efficiency:	14.4% AM0			
Resistivity:	2 ohm-em			
Thickness:	250 micrometer			
Thermal alpha:	0.66			

The average AM0 efficiency of the 25 best cells is 13.85 percent; and the standard deviation of this average is less than two percent.

It was found that the best junction was formed by phosphorus implantation and the best BSF was formed by boron implantation. The effect of argon back surface implantation was investigated for lifetime enhancement, but no change in cell performance was observed. It was found that a highly effective BSR could be formed on the boron-implanted back surface without any repolishing or other surface treatment.

A novel encapsulation technique was investigated and found to be feasible. This technique integrates the encapsulation step within the cell formation process, thereby achieving a significant reduction in encapsulation cost. Representative assemblies were fabricated with AMO efficiency in excess of 13 percent.

Cost projections, based on a SAMIS analysis of terrestrial cell fabrication, were carried out. It was found that 187 kW/year production offers a cost of approximately 30 per watt.

It is concluded that ion implantation is a process capable of junction and BSF formation in high efficiency silicon space solar cells. Large area cells can be fabricated with this technique, with high cell-to-cell uniformity. As production levels increase, this technology becomes increasingly economical, and therefore, increasingly important.

REFERENCES

- 1. J. Scott-Monck, P. Stella and P. Berman, "Space Applicable DOE Photovoltaic Technology - An Update," JPL Publication 81-91, November, 1981.
- 2. For a description of the implanter, see: "Development of Pulsed Processes for the Manufacture of Solar Cells," JPL Contract 954786, Interim Report No. 1, Spire Report IR-77-10052-1.
- 3. J. Minnucci, A. Kirkpatrick, and K. Matthei, "Tailored Emitter, Low Resistivity, Ion Implanted Silicon Solar Cells," IEEE Transactions on Electron Devices, <u>ED-27</u>, 802 (1980).
- 4. L. Czepregi, E. Kennedy, S. Lau, J. Mayer and T. Sigmon, "Disorder Produced by High-Dose Implantation in Silicon", Appl. Phys. Lett. 29, 645 (1976); see also B. Crowder, "The Role of Damage in the Annealing Characteristics of Ion Implanted Si", J. Electrochem. Soc.: Solid State Science, May 1970, page 671.
- 5. L. A. Christel, J.F. Gibbons and S. Mylroie "Recoil Range Distributions in Multilayered Targets," Nucl. Instrum. Methods 182/183, 187 (1981).
- 6. T. J. Magee, C. Leung, H. Kawayoshi, B.K. Furman, and C. A. Evans, "Gettering of Mobile Oxygen and Defect Stability Within Back-Surface Damage Regions in Si", Appl. Phys. Lett. 38, 891 (1981).
- 7. A. Chai, "Back Surface Reflectors for Solar Cells," Record of the 14th IEEE Photovoltaic Specialists Conference, 1980, page 156.
- 8. K. D. Rasch, K. Roy, R. Schilling and H. Fischer "Compatibility of BSR and BSF Solar Cell Technology," Record of the 14th IEEE Photovoltaic Specialists Conference, 1980, page 141.
- 9. P. R. Younger and A. R. Kirkpatrick, "SAMIS Price Report, Design, Fabrication, Test Qualification and Price Analysis of Third Generation Design Solar Cell Modules," JPL LSA Project (TASK V) Contract Number 955405, Spire Report SAM-10063-01, (1980).
- 10. The best cell was #34-5. The thermal alpha is inferred from a measurement of cell #71-4.

R-1

APPENDIX:

AM0 CHARACTERISTICS OF TWENTY-FIVE BEST SOLAR CELLS

⊭EF. GELL A+163 AREA~(CM↑2) 34.3 IEMP (C) 25 E0. AIRMASS Ø 151.9

ORIGINAL PAGE IS OF POOR QUALITY

.

.

CÈLL	ISC	VOC	IMAX	VMAX	PMAX .	FILL	EFF.	
~	100	700	110075	11110		1 4 6- 5-		
		······		<u> </u>	<u></u>	<u> </u>		
	.38443	-0.607	-1.29895	-0.520	675.38	80.3	14.37	
	.39597	-0.609	-1.29461	-0.510	660.46	77.7	14.05	
	.39621	-0.609	-1.28388	-0.511	656.27	77.2	13.97	•
	38841	-0.609	-1.27629	-0.514	656.59	77.7	13.97	
	.38866	-0.607	-1.29084	-0.508	655.67	77.8	13.95	. '
	.37285	-0.608	-1.28349	-0.508	652.42	78.1	13.88	
	.36986	-0.610	-1.28306	-0.517	663.47	79.5	14.12	
	.36793	-0.609	-1.28373	-0.505	648.71	77.8	13.80	
	.36434	~0.609	-1.26905	-0.512	649.91	78.2	13.83	
34-2 -1	5 .38091	-0.605	-1.25525	-0.507	636.27	76.1	13.54	
	į							
73-1	.36896	-0.604	-1:24499	-0.505	629.21	76.1	13.39	
73-4	.38025	-0.609	-1.27607	-0.507	647.45	77.0	13.78	
- 73-Ş	.37608	~0.609	-1.24760	-0.518	646.06	77.1	13.75	
73-8	.37655	~0.609	-1.26736	-0.527	668.43	79.7	14.22	
73-1 -:	0 .37130	-0.609	-1.25845	-0.510	641.65	76.9	13.65	
73-i -1	9 .35835	-0.610	-1.24317	-0.523	. 650.50	78.5	13.84	•
٤						· •• · ·		
71-4						· .		
	.38201	-0.612	-1.28421	-0.518	664.60	78.6	14.14	
	.137704	~0.607	-1.28010	-0.510	653.26	78.1	13.90	
	. ¹ 37068 A	~0.608	-1.27599	-0.515	657.01	78.8	13.98	1
	.38969	~0.608	-1.25751	-0.511	643.07	76.2	13.68	
	.37819	-0.607	-1.26882	-0.508	644.65	77.1	13.72	
	.39357	-0.611	-1.28885	-0.508	655.24	77.0	13.94	
	.38609	-0.608	-1.29368	-0.505	653.18	77.5	13.90	
	.37170	-0.606	-1.22831	-0.502	616.12	74.2	13,11 -	
	- ,02475	-0.607	-1.28169	-0.509	652.47	77.6	13.88	

DISTRIBUTION LIST

June 1982

FINAL REPORT CR 167929 Contract NAS3-22236

Spire Corporation

Development of Large Area Space Solar Cell Assembly

NASA HEADQUARTERS

National Aeronautics and Space Aomin. Technology Utilization Office, Code %T Washington, DC 20546

National Aeronautics and Space Admin. Attn: Jerome P. Mullin, Code RTS-6 Wasnington, DC 20546

National Aeronautics and Space Admin. Attn: Lynwood Randolph, Code RTS-6 Washington, DC 20546

National Aeronautics and Space Admin. Scientific and Technical Information Facility Attn: Accessioning Dept. (30 copies) P. O. Box 8757 Baltimore/Wasnington Airport, MD 21240

LEWIS RESEARCH CENTER

NASA-Lewis Research Center Attn: Mr. Cosmo R. Baraona, MS 302-1 21000 Brookpark Road (20 copies) Cleveland, OH 44135

NASA Lewis Research Center Attn: Mr. Anthony Long, MS 500-305 21000 Brookpark Road Cleveland, OH 44135

NASA Lewis Research Center Attn: Dr. J. Stuart Fordyce, MS 49-5 21000 Brookpark, Road Cleveland, OH 44135

NASA Lewis Research Center Attn: Dr. Irving Weinberg, MS 302-1 21000 Brookpark Road Cleveland, OK 44135

NASA-Lewis Research Center Attn: N. T. Musial, MS 500-318 51000 Brookpark Road Cleveland, OH 44135

NASA-Lewis Research Center Attn: Mr. A. F. Forestieri, MS 302-1 21000 Brookpark Road Cleveland, OH 44135

NASA-Lewis Research Center Attn: Dr. H. W. Brandhorst, Jr., MS 302-1 21000 Brookpark Road Cleveland, OH 44135

NASA-Lewis Research Center Attn: Library, MS 60-3 (2 copies) 21000 Brookpark Road Cleveland, OH 44135

NASA-Lewis Research Center Attn: Report Control Office, MS 5-5 21000 Brookpark Road Cleveland, OH 44135

MARSHALL SPACE FLIGHT CENTER

NASA Marshall Space Flight Center Attn: Mr. William Crabtree Code A¥E-ASTR-EPN Huntsville, AL 35812

NASA Marsnall Space Flight Center Attn: Mr. L. E. Young Code EC-12 Hunstville, AL 35812

NASA Marshall Space Flight Center Attn: Mr. J. L. Miller, Code EC-12 Huntsville, AL 35812

LANGLEY RESEARCH CENTER

NASA Langley Research Center Attn: Mr. Gilbert H. Walker, MS 231A Hampton, VA 23665

LYNDON B. JOHNSON SPACE CENTER

NASA L. B. Johnson Space Center Attn: Mr. James L. Cioni, Code EP5 Houston, TX 77058

GODDARD SPACE FLIGHT CENTER

NASA Goddard Space Flight Center Attn: Mr. Luther W. Slifer, Jr., Code 761 Greenbelt, MD 20771

NAVY

Mr. R. L. Statler, Code 6603F Naval Research Laboratory Washington, DC 20390

ARMY

Mr. Donald Faehn, AMKFB-E USAMERDC Fort Belvoir, VA 22060

U.S. COAST GUARD

Commandant (G-DET/TRPT) U.S. Coast Guart COMOT Attn: Lloyd Lomer 400 7th Street, SW Washington, DC 20590

0TA

Mr. John Furber 1717 18th Street Washington, DC 20009

AIR FORCE

Mr. Joseph Wise, APAPL/POE-2
Wright-Patterson Air Force Base, OH 45433
Mr. E. E. Bailey, NASA Technical Liaison APAPL/DO
Wright-Patterson Air Force Base, OH 45433
Mr. L. D. Massie, APAPL/POE-2
Wright-Patterson Air Force Base, OH 45433
Dr. Patrick Rahilly APAPL/POE-2
Wright Patterson Air Force Base, OH

Wright-Patterson Air Force Base, OH 45433 SAMSO SAFSP-8

P.O. Box 92960 Worldway Postal Center Los Angeles, CA 90009

JET PROPULSION LABORATORY

Mr. John Scott-Monck, MS 125-231 Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, CA 91103

Dr. Bruce Anspaugh, MS 198-220 Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, CA 91103

Mr. Walter A. Hasbach, MS 198-220 Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, CA 91103

Mr. Paul Stella, MS 125-231 Jet Propulsion Laboratory 4800 Oak Grove Drive

PRIVATE ORGANIZATIONS

Dr. Sigurd Wagner SERI 1536 Cole Blvd. Golden, CO 80401

Dr. Donald G. Schueler Division 5133 Sandia Laboratories Albuquerque, NM 87115

Dr. Andrew Meulenberg COMSAT Labs P.O. Box 115 Clarksburg, MD 20734

Dr. Denis Curtin COMSAT Labs 22300 COMSAT Drive Clarksburg, MD 20734

Mr. George J. Rayl Space Systems Dept. G. E. Space Center P.O. Box 8555 Philadelphia, PA 19101

Mr. Aaron Kirpich Electrical Systems General Electric Company Space Systems P.O. Box 8555 Philadelphia, PA 19101

Dr. Lan Hsu Rockwell International Space Division, MS SL-10 12214 Lakewood Blvd. Downey, CA 90241

Mr. D. Bailey Union Carbide Corporation Chemicals and Plastics P.O. Box 180 Sistersville, WV 26175

Mr. G. Zerlaut Desert Sunshine, Inc. Box 185 Black Canyon Stage Phoenix, AZ 85020

Mr. Gene Ralph Spectrolab, Inc. 12500 Gladstone Avenue Sylmar, CA 91342

Mr. Isadore M. Sachs Optical Coating Laboratory, Inc. P.O. Box 1599 Santa Rosa, CA 95403 Mr. Peter Iles Applied Solar Energy Corp. 15251 E. Don Julian Road City of Industry, CA 91749

Mr. Hans Rauschenbach, M1-1406 TRW Systems One Space Park Redondo Beacn, CA 90278

1

Mr. I. Rubin Sensor Technology 21012 Lassen Street Chatsworth, CA 91311

Mr. Richard Addiss Solar Power Corporation 23 North Avenue Wakefield , MA 01880

Mr. Bernard G. Carbajal Texas Instruments Inc. 13500 N. Central Expressway Dallas, TX 75222

Mr. Henry Oman The Boeing Company Research (Engineering Division P.O. Box 3999 Seattle, WA 98124

Mr. Sidney Silverman The Boeing Company Research & Engineering Division P.O. Box 3999 Seattle, WA 98124

Mr. A. D. Tonelli Department A3-253-MS 13-3 McDonnell Douglas Astronaution Co. Huntington Beach, CA 92647

Dr. Leon D. Crossman Dow Corning Corporation 12334 Geddes Road Hemlock, MI 48626

Mr. J. R. Davis Westinghouse R&D Beulah Road Churchill Boro Pittsburgh, PA 15235

Mr. John Goldsmith SOLAREX Corp. 1335 Piccard Dr. Rockville, MD 20850

Dr. J. W. Yerkes ARCO Solar 9701 Durline Avenue Chatsworth, CA 91311 Mr. Donald C. Briggs WDL Division MS G80 Philco-Ford Corporation 3939 Fabian Way Palo Alto, CA 94303

Dr. 8. Williams RCA Laboratories David Sarnoff Research Center Princeton, NJ 08540

Mr. E. Philofsky Motorola Inc. Semiconductor Products Division 5005 East McDowell Road Phoenix, AZ 85008

Dr. Edwin Stofel Hughes Aircraft Co. P.O. Box 92919 Los Angeles, CA 90009

Mr. George Wolff Hughes Aircraft Co. P.O. Box 92919 Los Angeles, CA 90009

Mr. Larry Chidester Lockheed Missiles ∉ Space Company P.O. Box 504 Sunnyvale, CA 94086

Mr. Dan Lott Lockheed Missiles ¢ Space Company P.D. Box 504 Sunnyvale, CA 94086

Mr. Ron Given Lockheed Missiles ∉ Space Company P.O. Box 504 Sunnyvale, CA 94086

Mr. Paul Dillard Lockheed Missiles / Space Company P.O. Box 504 Sunnyvale, CA 94086