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SUMMARY 

The two-microphone, c ross -spec t ra l   t echnique   for   measur ing   acous t ic   in tens i ty  
was used as a means for   determining  the  acoust ic   t ransmission loss of a i r c r a f t  pan- 
els. The study was aimed a t   i n t e r i o r  noise of p rope l l e r -d r iven   a i r c ra f t ,  so the  
measurements w e r e  r e s t r i c t e d  to  the  frequency  regime  below 1000 H z .  Two a i r c r a f t  
panel   designs  current ly   in   use  and one  advanced  design were s tudied.  The e f f e c t s  of 
added  damping  were also s tudied  €or each  of  the  three  designs. The r e s u l t s   i n d i c a t e  
t h a t   t h e  two-microphone8  cross-spectral method for   measuring  acoust ic   intensi ty   pro-  
v ides  a r e l i a b l e  means of  measuring  net  acoustic power flow  through a i r c r a f t   s i d e -  
walls. This method also  has  demonstrated  advantages  over  the  classical  room acous- 
t ics  method for  measuring  transmission loss. 

INTRODUCTION 

I n t e r i o r   n o i s e   l e v e l s  of l i g h t   p r o p e l l e r - d r i v e n   a i r c r a f t  have  been  measured 
between 84 and 104 dB on the  A-weighted scale .   (See  ref .  1 . )  These  noise   levels   are  
subs tan t ia l ly   h igher   than   the   l eve ls   for   o ther   types  of a i r c ra f t   w i th   conven t iona l  
take-off  and  landing  and  for  ground  transportation  vehicles.  Limited  exposure  to 
these  noise   levels   can  cause a temporary  shiPt   in   the  hear ing  threshold of the lis- 
tener,  and  prolonged  exposure  could  result  in  permanent  hearing damage. 

The d i s t i n g u i s h i n g   c h a r a c t e r i s t i c  of in te r ior   no ise   €or   p rope l le r -dr iven   a i r -  
c r a f t  is the  low-frequency  tonal  nature of the  noise.  The noise is  caused  primarily 
by t h e   f i r s t  few harmonics of the  propeller  blade-passage  frequency  and by the  engine 
P i r ing   ha rmon ics   ( i f   t he   a i r c ra f t  is  equipped  with  reciprocating  engines). Maximum 
sound  pressure  levels   typical ly   occur  i n  the  frequency  range  from 80 t o  200 Hz on the  
A-weighted scale .   (See ref. 1.  ) This  low-frequency  character of the  noise  handicaps 
e fEor ts   to   d iagnose   the   pa th  of the  noise,  and,  because  of  weight  considerations, 
renders many conventional  noise  control  treatments  impracticable.  

Some informat ion   tha t  i s  e i the r   necessa ry   o r   des i r ab le   €o r   des ign ing   an   a i r c ra f t  
w i th   qu ie t e r   i n t e r io r   no i se   l eve l s  i s  as   fo l lows:  

1 .  Transmission loss of the  fuselage  wal ls  

2.  Relative  importance of s t r u c t u r a l  and  acoust ic   paths  of the  noise  

3 .  C r i t i c a l   n o i s e   p a t h s  of the  fuselage 

4 .  Relative  eEEectiveness of var ious add-on noise   cont ro l   t rea tments  

Simple  sound  pressure  level  measurements  are  inadequate  for  producing  this 
information.  Near-field efEects, mul t ip le   no ise   pa ths ,   source   d i rec t iv i ty ,   and  
r e v e r b e r a n t   e f f e c t s   a l l   d e t r a c t  Erom t h e   a b i l i t y  of the  simple sound l eve l   me te r   t o  
determine  the  source  and  path of the  incoming  noise. A t t e m p t s  t o   i d e n t i f y   n o i s e  
paths   in   a i rcraf t   us ing  the  convent ional   lead  wrapping  technique  have  been  unsuccess-  
fu l   because  of the  poor  transmission loss of l e a d   a t  law frequency.  (See  ref. 2.) 
This   s i tua t ion   has   forced   the   no ise   cont ro l   engineer   to   search  €or f a s t e r ,  more eco- 
nomical  methods of i d e n t i f y i n g   a n d   c o n t r o l l i n g   a i r c r a f t   i n t e r i o r   n o i s e .  



Severa l  new n o i s e  source /pa th   ident i f ica t ion   too ls  have come into  widespread 
use   i n   r ecen t   yea r s .  Among the  most  promising  of  these new techniques are severa l  
methods f o r  measuring  the  acoust ic   intensi ty   vector .  The two-microphone,  cross- 
spec t r a l  method ( r e f s .  3 through 5 ) , the  microphone-accelerometer  cross-spectral 
method ( r e f s .  6 through 10)  , and  the  near-field  acoustic-holography method ( r e f s .  1 1  
through 13)  have a l l  been  appl ied  successful ly   to   pract ical   problems of i n t e r e s t   f o r  
noise   source/path  ident i f icat ion  purposes .  The two-microphone  method, i n   p a r t i c u l a r ,  
has   e s t ab l i shed   i t s e l f  as the  s tandard measurement  technique f o r  problems of noise  
source /pa th   ident i f ica t ion   in   the   au tomot ive   indus t ry .   In   cont ras t ,   very  l i t t l e  
research  or  experimentation  has  been  done  to  apply  acoustic  intensity  measurement 
techniques to  in t e r io r   no i se   p rob lems   i n   a i r c ra f t .  

Measurement of ne t   acous t i c  power flow  and  transmission loss i n  narrow  frequency 
bands i s  of c r i t i c a l   i m p o r t a n c e   i n   p r o p e l l e r d r i v e n   a i r c r a f t   b e c a u s e  of t he   d i sc re t e  
frequency  character of propel le r   no ise .   I f  one of the  propeller  harmonics  coincides 
with a s t ruc tu ra l   r e sonance   i n   t he   s idewa l l ,   ve ry   h igh   i n t e r io r   no i se   l eve l s   can  
r e s u l t .  By us ing   acous t i c   i n t ens i ty   t echn iques   t o  measure  transmission loss, the  
ai rcraf t   s idewall   designer   can  locate   the  f requency  bands  in   which  the  s t ructural  
resonances  occur  and  can  determine  the amount  of noise   that   those  resonances  contr ib-  
ute.   Appropriate  measures  can  then  be  taken  to  shift  or smooth the  troublesome 
resonances  through  the  use of add-on  mass, s t i f f n e s s ,   o r  damping t reatments .  

A second  cons idera t ion   in   in te r ior   no ise   cont ro l  of p r o p e l l e r - d r i v e n   a i r c r a f t  i s  
added  weight.  Because  these a i r c r a f t   a r e   s e n s i t i v e   t o   t h e   a d d i t i o n  of extra   weight ,  
the  designer  can  add mass f o r  noise control  purposes  only on the   a r eas  of the  fuse- 
lage where it i s  absolutely  necessary.  The a b i l i t y  of acous t i c   i n t ens i ty   t echn iques  
t o  measure  the  net   acoustic pcwer  flow or   t ransmission loss as  a func t ion  of pos i t i on  
on t h e   a i r c r a f t   p a n e l  is  then  of  paramount  importance.  with  the  information  that 
acous t ic   in tens i ty   p rovides ,   the   a i rc raf t   des igner   can   min imize   the   weight   pena l ty  of 
add-on noise   control   t reatments .  

This   paper  i s  concerned  primarily  with  the  results  of  the  noise  transmission 
loss s t u d i e s  of s i x  a i rc raf t   pane l   des igns   ob ta ined  by using  the two-microphone, 
c ross -spec t ra l  method of measuring  acoust ic   intensi ty .  The purpose of the  study was 
twofold: 

1. To ga in   fu r the r   i n s igh t   i n to   t he   no i se   t r ansmiss ive   p rope r t i e s  of a i r c r a f t  
panels 

2.  To determine  the  possible   appl icat ions  and  uses  of a c o u s t i c   i n t e n s i t y  methods 
as n o i s e   p a t h   i d e n t i f i c a t i o n   t o o l s   f o r   p r o p e l l e r - d r i v e n   a i r c r a f t  

AW 

C xy 

C 

D/D t 

e 

SYMBOLS 

s m i  of surface  area of wal l s  i n  receiving room of  transmission loss chamber 

real p a r t  of cross  spectrum  (cospectrum) 

speed of sound i n   f l u i d  medium 

s u b s t a n t i a l   d e r i v a t i v e   o r   t o t a l   d e r i v a t i v e  

inverse  natural   logar i thm of 1 
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Gxx 

i 

k 

NR 

P 

P 

Prms 

Qw 
R 

A r  

SPL 

TL 

TLFI 

t 

V 

frequency 

auto  spectrum  or power  spectrum 

cross  spectrum 

acce le ra t ion  due to   g rav i ty ,  lg = 9.8 m/sec 

acous t i c   i n t ens i ty   vec to r  

i n c i d e n t   a c o u s t i c   i n t e n s i t y  

t r ansmi t t ed   acous t i c   i n t ens i ty  

square  root  of -1  

wave number 

noise   reduct ion 

Fourier  transform of pressure  

instantaneous  pressure 

root-mean-square  pressure 

imaginary  part  of cross  spectrum  (quadrature  spectrum) 

room cons tan t  

spacing  between  microphones  for  acoustic  intensity  probe 

sound p res su re   l eve l  

transmission loss 

f ie ld   inc idence   t ransmiss ion  loss 

time 

Fourier  transform of a c o u s t i c   p a r t i c l e   v e l o c i t y  

in s t an taneous   acous t i c   pa r t i c l e   ve loc i ty  

Fourier  transform of dummy var i ab le  x 

dummy var iab les   o r   Car tes ian   coord ina tes  

ac tua l   r e l a t ive   phase  between  microphones 

wavelength 

dynamic f l u i d   v i s c o s i t y  

dens i ty  of a c o u s t i c   f l u i d  medium 
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@ measured r e l a t ive   phase  between  microphones 

0 phase error introduced by instrumentat ion 

w radial frequency 

V g rad ien t  operator 
.. 

VL Laplacian operator 

* asterisk denotes complex conjugate 

< >  t r iangular   brackets   denote   an  average  over  space or time 

METHODS O F  m A S U R I N G  ACOUSTIC TRANSMISSION LOSS 

Th i s  study w a s  conducted in   t he   t r ansmiss ion  loss apparatus   in   the  Langley  Air-  
c r a f t  Noise Reduction  Laboratory. A transmission loss (TL) f a c i l i t y  is  t r a d i t i o n a l l y  
used to measure the transmission loss of panels  or  o t h e r   s t r u c t u r a l  members. The 
conventional TL f a c i l i t y   c o n s i s t s  of two adjoining  hard-wal led  reverberant  chambers. 
The ad jo in ing  w a l l  of the t w o  chambers i s  made of  thick,  massive materials and i s  
constructed so t ha t  the panel  or s t r u c t u r a l  member t o  be tested i s  mounted  between 
the two rooms. T h i s  ensures  t ha t  the  pr imary  acoust ic  path  for sound t r a v e l l i n g  f r o m  
one room i n t o  the ad jo in ing  room i s  through the panel   being tested. One of the two 
adjo in ing  rooms, designated the "source room," i s  where the sound  source  operates. 
The other room i s  designated  the  "receiving room," and i s  used  to  measure  the  sound 
transmitted  through  the  panel.  

Transmission loss is  defined by the  equat ion 

where Ti i s  the i n c i d e n t   i n t e n s i t y  on the panel  and It i s  the in t ens i ty   t r ans -  
mitted  through  the  panel.  

+ 

Room Acoustics Method 

The most widely  used  technique  for  measuring  transmission loss w i t h  a TL f a c i l -  
i t y  i s  through  the  use of the classical room acous t i c s  method. This  method r equ i r e s  
only two sound  pressure  level (SPL) measurements  and a knowledge of the absorpt ive 
c h a r a c t e r i s t i c s  of the   rece iv ing  room t o  implement  transmission loss ca lcu la t ions .  
The difference  between  source-room  and  receiving-room  sound  pressure  levels i s  called 
the   no ise   reduct ion  (NR) and is  given as follows: 

NR = SPLsource room SPLreceiving room 
- 
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Transmission loss is then   ca lcu la ted   us ing   the   equat ion  

AW 
TL = NR + 10 log lo  i;- 

where Aw is the  area of the w a l l s  i n  the rece iv ing  room and R i s  the room con- 
s t a n t  of the   rece iv ing  room. References 14 through 16 provide more details on t h i s  
measurement  technique  and  on  the  relationship  between  equations ( 1 )  and (3). 

When using the classical room acous t i c s  method for  measuring  transmission loss, 
the  requirements  necessary  for  accurate  measurement are as follows: 

1.  The r eve rbe ran t   f i e lds   i n   t he   sou rce   and   r ece iv ing  rooms are d i f f u s e   i n   t h e  
frequency  range  of  interest .   (See  refs.  17 through 23 f o r  more information 
regard ing   th i s   essent ia l   requi rement . )  

2. The introduct ion  of  test panels  mst no t   s ign i f i can t ly   i n f luence   t he   acous t i c  
abso rp t ive   cha rac t e r i s t i c s  of the rece iv ing  space. 

3. The space averaged  sound  pressure  level  measurements  must be performed a t  
l e a s t  one  major  source  dimension away from the   pane l   i n   t he   r ece iv ing  room 
and a t  least  one major source  dimension away from  the  sound  sources i n   t h e  
source room. (The  measurements  must  be made under   reverberant   f ie ld  
condi t ions.  ) 

Acous t ic   In tens i ty  Method 

Recent  advances in   mu l t i channe l   d ig i t a l   s igna l   p rocess ing  have  provided  quick, 
r e l i a b l e  methods for   measur ing   acous t ic   in tens i ty .  The  time-averaged  acoustic 
in tens i ty-vec tor  1 is  defined by 

-* 

+ -+ 
I = <pv> 

t 

where p i s  the  instantaneous sound pressure,  v is  the   i n s t an taneous   pa r t i c l e  
veloci ty ,   and < > t  r ep resen t s  a t ime-averaged  quantity.   In  the  frequency domain, 
the  magni tude  of   the  acoust ic   intensi ty   vector   in   the  direct ion of t h e   p a r t i c l e  
ve loc i ty  i s  given by 

-+ 

where  P(f 1 i s  the  complex Fourier   t ransform of the   p ressure  signal, V*(f)  i s  the  
complex  conjugate  of  the  Fourier  transform  of the par t ic le -ve loc i ty   s igna l ,   and  

cPV ( f  1 i s  the  real part  of  the cross spectrum. 

The acous t ic   in tens i ty   approach  is a t t r a c t i v e   f o r   t h r e e   b a s i c   r e a s o n s :  

1. It i s  based  on the p r i n c i p l e s  of conservat ion of  energy  and i s  the re fo re  
mathematically complete. 

2. I n t e n s i t y  is a vector   quant i ty   and   therefore   p rovides   d i rec t iona l   in format ion  
t h a t  sound pressure  level  measurements  cannot.  

5 
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3 .  It  fu rn i shes  a method for   determining the i n t r i n s i c   a c o u s t i c   t r a n s n i s s i v e   a n d  
acous t ic   absorp t ive  properties of materials. 

The  theory  of the two-microphone, cross-spectral   method of i n t e n s i t y  measurement 
i s  w e l l  documented i n   t h e   l i t e r a t u r e .  (See refs. 3 to 5 .  ) For the  convenience  of 
t he  reader, however, a de r iva t ion  of the fundamental  equations from the first p r inc i -  
ples i s  presented   in   appendix  A. Addi t ional ly ,  a b r i e f   d i scuss ion  of the most common 
sources  of  measurement error encountered when us ing   t he   acous t i c   i n t ens i ty  method is  
presented  in   appendix B. 

Application of the two-microphone, c ross -spec t ra l  method to  transmission loss 
measurements i s  simpler than  the classical room acous t i c s  method,  and  the  require- 
ments for  the  implementation  of the measurements are less s t r ingen t .  Recall the  
d e f i n i t i o n  of transmission loss given by equation ( 1 ) .  The i n c i d e n t   i n t e n s i t y  

'i f o r  the panel   being tested may be  calculated from the  measured space-averaged 
sound  pressure   l eve l   in  the source room. Assuming tha t  the  reverberant  sound f i e l d  
i n  the source room i s  diffuse  over  the  frequency  range of i n t e r e s t ,   t h e   r e l a t i o n s h i p  
between the sound pressure   and   inc ident   in tens i ty  i s  given by 

-+ 

where p c  i s  t h e   c h a r a c t e r i s t i c   a c o u s t i c  impedance,  and p,, i s  the  space-averaged 
e f f e c t i v e   p r e s s u r e   i n  the source room. See  reference 16 for  a de r iva t ion  of t h i s  
equation.  Equation (6) assumes t h a t  the sound  impinging  on  the  panel  approaches a t  
angles  of . incidence from Oo t o  90° w i t h  equa l   p robab i l i t y  (random  incidence). A more 
realist ic estimate of the  intensi ty   impinging on the  panel  i s  given by "field i n c i -  
dent"  intensity,   which assumes angles  of incidence from Oo t o  78O. The corresponding 
equat ion   for  f ie ld  inc iden t   i n t ens i ty   can  be d e r i v e d   i n   t h e  same manner a s  equa- 
t i o n  (6). The r e s u l t  i s  

Once the  space-averaged  effect ive  pressure  in  the source room i s  measured  and  the 
i n c i d e n t   i n t e n s i t y  is  ca lcu la ted ,  one  needs  only to  measure the t r ansmi t t ed   i n t ens i ty  
us ing   the  two-microphone, c ross -spec t ra l  method i n   o r d e r  t o  complete the transmission 
lo s s   ca l cu la t ions .  The requirements for  t h i s  measurement  technique are as follows: 

1. The reverberant   acous t ic  f i e ld  of the  source room must be  diffuse.  (See 
r e f s .  17 through  23.) 

2.  The r e s t r i c t i o n s  on the two-microphone i n t e n s i t y  method as d i scussed   i n  
appendix B. 

N o  r e s t r i c t i o n s  are placed on the  q u a l i t y  of the sound f i e l d  or on the  absorp- 
t i v e   c h a r a c t e r i s t i c s  of the receiving room. T h i s  advantage  over   the  c lass ical  room 
acous t i c s  method has been  verified  experimentally.  (See ref. 24 . )  Measurements  have 
shown that neither  reverberant  nor  anechoic  conditions are necessa ry   i n   t he   r ece iv ing  
s p a c e   t o   o b t a i n   a c c u r a t e   r e s u l t s   u s i n g  !his measurement  technique.  The two- 
microphone  method has the added  advantage of measuring  transmission loss i n  narrow 
frequency  bands  (ref.  25) , and i s  capable   of   local iz ing the noise   t ransniss ion  of a 
panel. (See refs. 24 and  25.) 
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EQUIPMENT AND PROCEDURES 

Transmission  Loss  Apparatus 

Figure 1 i s  a sketch of the  t ransmission loss appa ra tus   i n   t he   Lang ley   A i rc ra f t  
Noise  Reduction  Laboratory (ANRL)  and  the  instrumentat ion  used  for   the  acoust ic  
i n t e n s i t y  measurements.  Table I i s  a l i s t i n g  of some of t h e   p h y s i c a l   c h a r a c t e r i s t i c s  
of the  source room and  receiving room of the  transmission loss apparatus.  

TABLE 1.- PHYSICAL CHARACTERISTICS OF TRANSMISSION  LOSS  APPARATUS 

r 

Surf  ace 
area, m Dimensions, m Volume ,  m 2 3 

Source room 

1.86 1.22 x 1.52 Porthole  between 

32 62 2.74 x 2.90 x 4.06  Receiving room 

42 73 3.73 x 2.90 x 3.89 

rooms 

These t w o  hard-walled rooms do  not meet the   p re fe r r ed  minimum  room volume 
(70 m ) for   p rec ise   de te rmina t ion  of  sound  power l e v e l s  of  broad  band  noise a t  and 3 

below the  250-H~~  1/3-octave  frequency band. (See  ref.  26.)  Since  the  most  trouble- 
some noise  sources on p r o p e l l e r - d r i v e n   a i r c r a f t  are the  propeller harmonics i n   t h e  
80-200 Hz frequency  range,   the   re la t ively mal l  volumes of the  tes t  chambers were of 
considerable  concern  during  the  planning  stages  of  this  research. As mentioned i n  
the   p receding   sec t ion ,   the   appl ica t ion  of the  two-microphone i n t e n s i t y  method t o  
transmission loss measurements  requires a d i f f u s e   a c o u s t i c   f i e l d   i n   t h e   s o u r c e  room. 
Consequently, a preliminary  study aimed a t   q u a n t i f y i n g   t h e   a c o u s t i c   p r o p e r t i e s  of the  
source  and  receiving rooms ( r e f .  23) was undertaken. The r e s u l t s  of t h i s   s tudy   i nd i -  
c a t e   t h a t   t h e   a c o u s t i c   d i f f u s i v i t y  i n  the  source room i s  adequate   for   t ransmission 
loss measurements  over  the 200-2000 Hz frequency  range.  Measurements  of  transmission 
loss below 200 Hz  may be  suspect  because  of  the low acous t i c  modal d e n s i t y   i n   t h e  
source room. 

Another  possible  cause  for  concern i s  t h e   e f f e c t  of t h e   r e v e r b e r a n t   f i e l d   i n   t h e  
rece iv ing  room on the  measurement  accuracy of the two-microphone i n t e n s i t y  method. 
I t  i s  genera l ly   agreed   tha t   the  two-microphone  method p roduces   accu ra t e   r e su l t s   i n  
d i r e c t  and   f r ee - f i e ld   s i t ua t ions .  However, s ince   the  two-microphone probe  measures 
t h e   n e t   i n t e n s i t y   i n  a s ing le   d i r ec t ion ,   r eve rbe ra t ion   can  have a d e t r i m e n t a l   e f f e c t  
on measurement  accuracy.  Results  published i n   r e f e r e n c e  24 suggest  that  any  unfavor- 
able e f f e c t s  due to   reverbera t ion   can  be n e g l i g i b l e   i n  practice, and a t  worst   the  
errors introduced  can  be  controlled by taking  preventive  measures.  Consequently, as 
an   added   precaut ion ,   e igh t   f iberg lass   pane ls  were p l aced   i n   t he   r ece iv ing  room as 
shown i n   f i g u r e  1. These  panels w e r e  1.22 m X 2.44 m X 0.102 m. The f i b e r g l a s s  
pane l s  had the  added  benefi t   of   reducing  the  ambient   noise   level   in   the  receiving 
space. 
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Instrumentat ion 

I n  the two-microphone cross -spec t ra l  method, i n t e n s i t y  is  ca l cu la t ed  by us ing  
two closely  spaced  microphones  near the noise   source   o f   in te res t .  The microphone 
configurat ion is  shown i n   f i g u r e  2. A dual-channel Fast Fourier   analyzer   processes  
the   p re s su re   s igna l s  from two microphones,  and a computer i s  used to ca l cu la t e   i n t en -  
s i t y .  Measurements of i n t e n s i t y  are performed i n  practice by sweeping  the  hand-held 
two-microphone  probe  over the noise  source  while  the Fast Fourier  analyzer  system 
gathers  the  data.   This  technique  provides a space average  and a t i m e  average  simul- 
taneously. A block diagram of the  instrumentat ion i s  shown i n   € i g u r e  3. 

The distance  between the two microphones  used for  t h e   a c o u s t i c   i n t e n s i t y  mea- 
surements is  a func t ion  of the  frequency  range  of interest .  An aluminum bracket  w a s  
constructed t o  hold two microphones  (1.27 cm i n  diameter) apart a t  a f ixed   d i s tance  
of 5 cm. Th i s  spacing was selected as the  optimum microphone  spacing for  i n t e n s i t y  
measurements  over  the 100-1000 Hz frequency  range. As an   added   precaut ion   for   s igna l  
conditioning,  the  microphone brackets were equipped  with  nylon  sleeves to electri- 
c a l l y  isolate the  microphone  casings. 

Test Panels  

The noise  transmission properties of s i x   d i € € e r e n t  aircraft  pane ls  were s tud ied  
us ing   t he   acous t i c   i n t ens i ty  measurement  technique. A br i e f   desc r ip t ion  of the phys- 
ical  characteristics of each of the  s i x  aircraft  pane ls   inves t iga ted  follows: 

Panel  #2. A second  skin-stiffened aluminum p a n e l ,   b u i l t   t o  the exac t  specifica- 
t i o n s   a s   t h e  first panel ,  was tested w i t h  the add i t ion  of a commercially 
ava i l ab le  sound  damping tape. The mass per u n i t   a r e a  of the  sound damping 
tape w a s  1.44 kg/m . This  self-adhesive  damping-tape material was added t o  
the receiving-room side of the  panel,   completely  covering the aluminum skin of 
the panel ;  The s t r ingers   and  frames of the panel  were l e f t  unt rea ted  
(exposed). A t o t a l  of 2.04 kg of  damping-tape material w a s  added to  the 
panel,  which  amounts t o  a 29-percent   increase   in   pane l  mass. 

2 

Panel #3. The t h i r d   p a n e l  tested was a sk in-s t i f fened  aluminum panel   with 
p l e x i g l a s s  windows. A sketch of the  panel  as  viewed  from the rece iv ing  room 
i s  shown i n  figure 5. The design of t h i s  panel  i s  bas i ca l ly   t he  same as  the 
skin-s t i f fened aluminum panel.  Th i s  panel,  however, has   three  horizontal  
s t r i n g e r s  t ha t  have  been  omitted and has   th ree   p lex ig lass  windows t h a t  have 
been  added. The mass per u n i t   a r e a  o f  the p l e x i g l a s s  i s  3.61 kg/m . The 
windows are 3.05 mm thick  and are b o l t e d   i n  place on the  panel .  The windows 
are sealed w i t h  a 12.7-mm-wide, 0.8-mm-thick rubber  gasket  between  the  plexi-  
glass   and  the aluminum skin. 

2 

Panel  #4. A second  skin-stiffened aluminum panel  w i t h  windows (same specifica- 
t i o n s  as the f i r s t  windowed panel )  w a s  tested with  the  addition  of  sound 
damping tape. This  self-adhesive  damping-tape material was added t o  the  
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receiving-room side of the  panel  i n  a similar manner a s   be fo re   w i th   t he   p l a in  
sk in - s t i f f  ened  aluminum  panel. Only the   windms,   s t r ingers ,  and  frames  of  the 
panel  were l e f t   un t r ea t ed   ( exposed)  . Approximately 1.36 kg  of  damping-tape 
mater ia l  was added to   t he   pane l  which  amounts t o  a 19-percent  increase i n  
panel  mass. 

Panel #5. A sk in-s t i f fened  aluminum panel modeled a f t e r   a n  advanced  turboprop 
s idewall   design was a l s o   b u i l t  and tes ted .  A sketch of the  panel   as  viewed 
from the   rece iv ing  room i s  Shawn i n  f i g u r e  6. This  panel  has  a 0.127-cm- 
thick aluminum s k i n  wi th   four   ver t ica l   f rame  s t i f feners  and e igh t   ho r i zon ta l  
s t r i n g e r s .  A n  ana ly t i ca l   s tudy  of noise   cont ro l  by fuselage  design  techniques 
f o r  advanced  turboprop  aircraft  was the  source of the  panel  design.  (See 
r e f .  27.)  

Panel  #6. A second  advanced  design  panel   ( ident ical   specif icat ions)  was b u i l t  
and tes ted   wi th   the   addi t ion  of  sound  damping  tape. The damping tape was 
added i n  a .   s imi l a r  manner as with  panels  #2 and #4. Only the   s t r i nge r s  and 
frames of the panel were left   untreated.   Approximately 2.04 kg  of  damping- 
t ape   ma te r i a l  was added to   t he   pane l ,  which  amounts to   a   17-percent   increase 
i n   p a n e l  mass. 

A summary of t h e   p h y s i c a l   c h a r a c t e r i s t i c s  of t h e   s i x   a i r c r a f t   p a n e l s   t e s t e d  i s  
presented i n  t ab le  11. The exposed  area i n  the  source room of a l l   p a n e l s  i s  1.69 m . 2 

TABLE 11.- PHYSICAL CHARACTERISTICS OF AIRCRAFT PANELS 

Panel 

#1 

#2  

#3 

#4 

#5 

#6 

Source 
of  panel 
de s ign  

Current  
commercial 

general  
av ia t ion  

panel 
de sign 

c Plex ig la s s  
windww s 

added 

I J I I J 

Damping 
tape  
added 

J 

J 

Tota l  
panel 

.mass, kg 

6.82 

8.86 

7.27 

8.63 
~~ ~ ~ ~ ~~ 

Advanced 

14.09 J design 

- turboprop 
12.05 

Measurement  and Analysis 

The f i r s t   s t e p  i n  the  measurement  procedure w a s  the  magni tude  cal ibrat ion of t he  
microphones. A pis tonphone  provided  a   cal ibrated  noise   source of 124 dB a t  250 Hz.  
Secondly,  the  two-microphone  intensity  probe w a s  phase-cal ibrated  using  the  apparatus  
shown i n  f i g u r e  7. The appara tus   cons is t s  of a brass tube (2.54-cm inner   diameter)  
w i t h   p o r t h o l e s   a t  Qne  end t o   f l u s h  mount two microphones. A white  noise  generator 
and acous t ic  driver provided  a  broadband  noise  source  for  the  brass  tube.  The b ras s  
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tube w a s  v ib ra t ion - i so l a t ed  f r o m  the   d r ive r   u s ing  a f l e x i b l e  piece of p l a s t i c   t u b i n g  
as seen i n   f i g u r e  7 .  The apparatus   produces  accurate  phase ca l ibra t ion   in format ion  
in   the  f requency  range below the cut-on  frequency of the   acous t i c  cross modes i n  the 
brass tube (8000 H z ) .  The r e l a t i v e  phase between the two microphones w a s  measured 
and stored by the  computer. 

Once the  microphones were ca l ib ra t ed ,  the t w o  microphones  used for  t h e   i n t e n s i t y  
measurements were placed i n   t h e   b r a c k e t  shown i n   f i g u r e  2, the  microphone boom i n  the 
source room was turned  on  with a sweep rate of 16 seconds,  and  the speakers i n  the  
source room were turned on. (See f i g .  1.) The microphone boom ca r r i age  w a s  posi- 
t i o n e d   i n   t h e   c e n t e r  of the room a t  a he ight  of 1.53 m. The boom swept a 2.5-m- 
diameter c i r c l e  a t  an  angle of 40° from hor izonta l .  The closest   approach of the  boom 
t o  the  boundaries  of the  room w a s  0.6 m, and  the  microphone w a s  a t  no p o i n t  closer 
than 1.2 m t o  either of the speake r s   i n  the source room. 

The fas t  Fourier   t ransform (FFT) analyzer-computer  instrumentation  system shown 
i n   f i g u r e  8 w a s  used to  d i g i t i z e  and  record  the  sound  pressure  signal  from the micro- 
phone boom i n   t h e  source room. Four  hundred  ensemble  averages (IO complete revolu- 
t i o n s  of the boom) were obtained by the FFT ana lyzer   to   ensure  t ha t  a r ep resen ta t ive  
space-time average  of t he  sound f i e l d   i n  the source room w a s  obtained. The sound 
pressure  information w a s  then  s tored by the computer. A n  example  of the  space-time- 
averaged  sound  pressure  level spectrum i n   t h e   s o u r c e  room i s  g i v e n   i n   f i g u r e  9. A 
measurement of the source room SPL w a s  performed each time a d i f f e r e n t   p a n e l  w a s  
tested. The s p e c t r a l   c h a r a c t e r i s t i c s  of the  sound f i e ld  i n  the source room were 
i d e n t i c a l  €or each of the s i x   p a n e l s  tested, and the o v e r a l l  SPL repeated to  wi th in  
0.5 dB. 

Once the  source room SPL information was measured  and stored, the acous t i c  
intensi ty   t ransmit ted  through the ai rcraf t  pane l   i n to  the rece iv ing  room was measured 
us ing   the  two-microphone probe.  Four  hundred  ensemble  averages were completed for  
each space-time-averaged  measurement of acous t ic   in tens i ty .   This   ensured  tha t  the  
random por t ion  of the  s t a t i s t i c a l  measurement error was less than 5 percent  (assuming 
t h a t  the coherence  between the two microphone s i g n a l s  i s  u n i t y ) .  The in t ens i ty   p robe  
w a s  hand-held  and  slowly swept over  a select po r t ion  of the a i rcraf t  panel   with  an 
approximately  constant  distance of 0.12 m between the cen te r  of the probe  and  the 
panel .   Six  intensi ty   measurements   were  performed  for   each  a i rcraf t   panel  tested. 
The s i x   a r e a s  of the  panel  t ha t  were separa te ly   ana lyzed   a re  shown i n   f i g u r e  10. 
This   par t icular   arrangement   of   selected  areas  of a n a l y s i s  was dictated by the design 
of the  panels .  Two of t he   s ix   pane l s  tested had p l e x i g l a s s  windows i n   t h e  areas 
d e s i g n a t e d   i n   f i g u r e  IO. The data were s to red  by the computer as  cross spectra.  
The data were analyzed  using the  equat ions  in   appendix A in   conjunct ion   wi th  equa- 
t i o n s  (1 ) and (7). A l l  phase  and  magnitude  calibration factors were automatical ly  
inc luded   i n  the computer  calculations. 

MEASUREMENT mSULTS AND D I S C U S S I O N  

Transmission L o s s  Measurement Resul t s  

The r e s u l t s  of t he  transmission loss measurements for  t h e   s i x   p a n e l s  are given 
i n   f i g u r e s  1 1  through 16. Each f igu re   r ep resen t s  narrow-band transmission loss data  
which w a s  space-averaged  over  the  entire area of the panel. The bandwidth i n   e a c h  of 
these   s ix   f i gu res  i s  2.5 Hz. Each f igu re  i s  p lo t t ed   ove r  the frequency  range from 
100-1000 Hz. Transmission loss data were a v a i l a b l e  below 100 Hz, b u t  were not  con- 
sidered accurate  because  the sound field i n  the source room is  no t   d i f fuse  a t  low 
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frequency. A summary of overall transmission loss levels, a long  with mass l a w  com- 
pa r i sons  for  each of t h e   s i x   p a n e l s   t e s t e d ,  i s  g i v e n   i n  table 111. 

TABLE 111.- OVERALL TRANSMISSION LOSS LEVELS FOR PANELS 

Panel  

#1 
#2 
#3 ' 
#4 
#5 
#6 

~~ - 
~ ~- 

TLFI, dB, for  - 
~ 

100-1000 HZ I 100-400 HZ 

Measured 
I 

17.5 
20.4 
18.7 
21.4 
20.7 
25.2 

Mass l a w  

15.3 
17.3 
15.8 
17.1 
19.8 
21.1 

Measured 

12.9 
13.4 
13.7 
15.3 
13.7 
17.2 

Mass l a w  

11.5 
13.5 
12.0 
13.3 
15.9 
17.1 

400-1000  HZ 
I 

Measured 

18.0 
21.6 
19.3 
22.2 
22.1 
27.3 

Mass l a w  

22.7 

26.9 

Figure 1 1  shows the  t ransmission loss of the  sk in-s t i f fened  aluminum panel  
(panel  #I) over the 100-1000  Hz frequency  range. The transmission loss curve of 
f i g u r e  1 1  shows fou r   l a rge   s t ruc tu ra l   r e sonances   i n  the p a n e l   i n   t h e  100-200  Hz f r e -  
quency  range. ( A  s t ruc tura l   resonance   cor responds   to  a "dip" in   t he   t r ansmiss ion  
loss curve.)  The frequency  ranges  in  which the f irst  two s t ruc tu ra l   r e sonances  occur 
(122-128  Hz and 135-143 Hz) correspond  to   panel   resonances measured a t  121,  123,  126, 
134.5, and 142 Hz us ing  "tap tests" i n  a previous  study of the   pane l  dynamics. (See 
r e f .  28.) Other resonances or combinations of resonant  modes which radiate substan- 
t i a l  amounts of no i se   occu r   i n   t he  162-168 Hz and 200-205 Hz frequency  ranges. The 
overa l l   t ransmiss ion  loss of t h e   p a n e l   i n  the 100-1000  Hz frequency  range i s  17.5 dB. 

The dashed  curve i n   f i g u r e  1 1  r ep resen t s   t he  mass l a w  f o r   t h i s   p a n e l .  T h i s  
curve shows t h e  t ransmission loss t h a t  a panel  would produce if it had the  same mass 
per u n i t  area a s  panel  #1 and w a s  homogeneous, w a s  i n f i n i t e   i n   e x t e n t   ( n o  boundary 
cond i t ions ) ,  and  had  no s t i f f n e s s   o r  damping p rope r t i e s   (pu re  mass). Mass l a w  is  t h e  
maximum transmission loss t h a t  a limp-mass, s ingle-wal l   panel   can  a t ta in .  The nodal 
proper t ies   (caused  by antiresonances)  can sometimes  cause  the  transmission loss 
behavior of a s t i f f ened   pane l   t o   exceed   t he  mass l a w  curve. (See f i g .  11.) 

The r e s u l t s  of the  t ransmission loss tests on  the damped, s t i f f e n e d  aluminum 
panel   (pane l  #2) are g i v e n   i n   f i g u r e  12. The overall transmission loss of this panel  
i n   t h e  100-1000 Hz frequency  range w a s  20.4 dB. This  w a s  a 2.9-dB i n c r e a s e   i n   t r a n s -  
mission loss compared w i t h   t h e   f i r s t   p a n e l .  Table I11 i n d i c a t e s   t h a t  most of t h i s  
i n c r e a s e   o c c u r s   i n  the 400-1000 Hz frequency  range.  Calculations of the   d i f f e rences  
i n   o v e r a l l   t r a n s m i s s i o n  loss between the  mass l a w  c u r v e s   i n  figures 1 1  and 12 (see 
table 111) i n d i c a t e   t h a t   t h e   i n c r e a s e   i n  mass of the   pane l   accounts   for  a 2.0-dB 
i n c r e a s e   i n   o v e r a l l   t r a n s m i s s i o n  loss. The remain ing   increase   in   t ransmiss ion  loss 
can be a t t r i b u t e d  to  damping e f f ec t s   and  to  the  more i s o t r o p i c   d i s t r i b u t i o n  of pane l  
mass. However, from t h e  overall t ransmission loss levels given i n  table I11 and f r o m  
the  overal l   appearance of the  two t ransmission loss curves, one can   conclude   tha t  
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t h e   p r i n c i p a l  effect of the  damping tape i s  t h a t  of an  added mass. Any damping 
effects tha t  e x i s t   t e n d   t o  be small and are limited to  the higher  frequency  ranges 
(600-1000 H z ) .  

Figure 13 shows the t ransmission loss of the   sk in - s t i f f ened  aluminum panel   wi th  
windows (panel  #3) measured  over the 100-1000 Hz frequency  range. The spectral char- 
acteristics of t h i s   f i g u r e  are similar t o  the spectral characteristics of the   t rans-  
mission loss of the   p l a in   sk in - s t i f f ened  aluminum pane l  ( f ig .  11). The s t r u c t u r a l  
resonances of t he  windowed panel  below 400 Hz occur i n   e x a c t l y   t h e  same frequency 
reg ions  as the  resonances of t he   p l a in   sk in - s t i f f ened  aluminum panel.  The overall 
t ransmission loss of the  windawed p a n e l   i n   t h e  100-1000 Hz frequency  range i s  
18.7 dB. This  i s  a 1.2-dB grea ter   t ransmiss ion  loss over t h e  same frequency  range 
than   the   pane l   wi thout  windows. T h i s  i nc rease   i n   t he   t r ansmiss ion  loss may be 
p a r t i a l l y   a t t r i b u t e d  t o  the   increased  mass of the panel .  The panel   wi th  windows i s  
7 percen t   heav ie r   ove ra l l   t han   t he   p l a in   sk in - s t i f f ened  aluminum panel. Th i s  rela- 
t i v e l y  modest i n c r e a s e   i n   p a n e l  mass, however, does   no t   fu l ly   exp la in   t he  1.2-dB 
d i f f e rence   i n   t r ansmiss ion  loss, because the d i f f e r e n c e   i n  the mass l a w  curves  of 
f i g u r e s  1 1  and 13 (see t a b l e  111) accounts for  only a 0.5-dB d i f f e r e n c e   i n  overall 
t ransmission loss. 

The r e s u l t s   o f  the t ransmission loss measurements fo r  the damped, windowed pane l  
(panel  # 4 )  over   the 100-1000 Hz frequency  range are g i v e n   i n   f i g u r e  14. Comparison 
of f i g u r e  14 w i t h  the  t ransmission loss curve of the undamped, windowed panel  
( f ig .  13) i n d i c a t e s   t h a t   t h e   e f f e c t  of the damping tape i s  to  increase  and smooth t h e  
t ransmission loss c u r v e   i n   t h e  400-1000 Hz frequency  range. The overa l l   t ransmiss ion  
loss i n   t h e  100-1000 Hz frequency  range of t he  damped, windowed panel  is  2 1.4 dB. 
T h i s  i s  a 2.7-dB i nc rease   i n   t he   t r ansmiss ion  loss compared wi th   the  undamped case. 
The mass l a w  curves of f i g u r e s  13 and 14 (see t a b l e  111) account fo r  1.3 dB of   the 
d i f f e r e n c e   i n   o v e r a l l   t r a n s m i s s i o n  loss. The remain ing   increase   in   t ransmiss ion  loss 
can be a t t r i b u t e d   p r i m a r i l y  t o  the  more i s o t r o p i c  mass d i s t r i b u t i o n .  

The r e s u l t s  of the  t ransmission loss tests for  the  advanced  panel  design 
(panel  #5) are shown i n   f i g u r e  15. S t r u c t u r a l   r e s o n a n c e s   i n  the p a n e l   t h a t  are 
r e s p o n s i b l e   f o r  much of the  noise   t ransmission occur i n   t h e  120-128 Hz, 160-173 Hz, 
and 330-350 Hz frequency  ranges. The overa l l   t ransmiss ion  loss of the p a n e l   i n   t h e  
100-1000 Hz frequency  range i s  20.7 dB. The overall appearance of the  t ransmission 
loss curve i s  somewhat more "jagged"  than the c u r v e s   f o r  the four   pane ls   d i scussed  
previously.  The reasons €or t h i s   a p p a r e n t   i n c r e a s e   i n  the q u a l i t y  factor of t h e  
resonances is  unclear.  

The r e s u l t s  of the  t ransmission loss measurements for  the damped, advanced 
panel  design  (panel #6) are g i v e n   i n   f i g u r e  16. The overall transmission loss i n   t h e  
100-1000 Hz frequency  range of t h i s  panel  w a s  25.2 dB. T h i s  is  a 4.5-dB i n c r e a s e   i n  
t ransmission loss compared with  panel  #5. Table I11 i n d i c a t e s   t h a t  much of t h i s  
i n c r e a s e   i n   t r a n s m i s s i o n  loss o c c u r s   i n   t h e  400-1000 Hz frequency  range.  Comparison 
of f i g u r e  16 wi th   f i gu re  15 i n d i c a t e s  that the effect of the damping is to  increase  
and smooth the t ransmission loss curve i n  the 300-1000 Hz frequency  range. The 
increased damping effects (the smoothing of the  t ransmission loss curve) i s  more 
pronounced  and  occurs  over a much larger  frequency  range (300-1000 Hz) than w a s  mea- 
su red   fo r   pane l s  #2 and #4. These pane l s  showed possible increased damping only 
i n   t h e  600-1000 Hz frequency  range. The d i f f e r e n c e   i n  the mass l a w  curves of f i g -  
u r e s  15 and 16 (see table 111) account for  1.3 dB of the d i f f e r e n c e   i n   o v e r a l l   t r a n s  
mission loss. Hence, most of the   i nc rease   i n   t r ansmiss ion  loss can   be   a t t r i bu ted  to  
the  increased damping e f f e c t s  and to  the  more isotropic mass d i s t r i b u t i o n  of t h e  
damped, advanced  design  panel  (panel #6). 
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Comparison  of  Localized  Acoustic  Intensity  Measurements 

The space-averaged  acoust ic   intensi ty   t ransmit ted  through  the  ent i re   skin-  
s t i f f e n e d  aluminum panel   (pane l  #1) i s  shown i n   f i g u r e  17. This   curve i s  repre- 
s e n t a t i v e  of t he   spec t r a l - in t ens i ty   p lo t s   ob ta ined  from t h e   s i x   d i f f e r e n t  areas of 
the  panel .   Figure 18 i s  a comparison  of  the.   overall   acoustic  intensity  over  the 
2.5-1000 Hz frequency  range  transmitted  through  each of t h e   s i x  areas of the  panel .  
(See f i g .  10 for  a ske tch  of t h e   s i x  areas.) Figure 18 shows t h a t   t h e  measured 
acous t ic   in tens i ty   t ransmi t ted   th rough.   the   s ix  areas d i f f e r e d  a t  most by 0.9 dB. 

The   ove ra l l   a cous t i c   i n t ens i t i e s   t r ansmi t t ed   t h rough   t he   s ix   d i f f e ren t  measure- 
ment areas of   the   sk in-s t i f fened  aluminum panel   wi th  windows (panel  #3)  are shown i n  
f i g u r e  19. The lower ha l f  of the   pane l  (areas 4, 5 ,  and 6 )  t r a n s n i t s   a b o u t   t h e  same 
amount of noise  as the  upper   half  of the  panel  (areas 1, 2, and 3 ) .  T h i s   r e s u l t  i s  
expected s ince   t he  mass per u n i t  area of t he  aluminum sk in  (0 .214 g/cm ) i s  no t  
s i g n i f i c a n t l y   d i f f e r e n t  from the  mass per u n i t  area of t h e   p l e x i g l a s s  windows 
(0 .361 g/cm2). 

2 

The ove ra l l   a cous t i c   i n t ens i t i e s   t r ansmi t t ed   t h rough   t he   s ix   d i f f e ren t  areas of 
the damped, windowed panel   (panel  #4) are shown i n  f i g u r e  20. I t  i s  e v i d e n t   t h a t   t h e  
upper   port ion  of   the  panel  (areas 1, 2, and 3)  t r ansmi t s  more noise   than  the lower 
half  of the   pane l  (areas 4, 5 ,  and 6). 

A comparison of t h e   o v e r a l l   a c o u s t i c   i n t e n s i t i e s  (2.5-1000 Hz) t ransmi t ted  
through  the lower and  upper  halves of the damped and undamped windowed pane l s  
(pane l s  #3 and #4)  i s  shown i n   f i g u r e  21. T h i s   f i g u r e  shows tha t   once   the  damping 
tape has  been added t o  the   pane l ,   f u r the r  add-on t rea tments  of mass o r  damping t o  t h e  
s k i n  of the   pane l  may be ineffect ive,   because  the windows have become the   p r inc ipa l  
con t r ibu te r  of the  t ransmit ted  noise .  

CONCLUDING "ARKS 

Several   conclusions  can  be drawn a b o u t   t h e   a i r c r a f t   p a n e l s  tested. The measure- 
ment r e s u l t s   i n d i c a t e   t h a t   t h e   n o i s e   t r a n s m i s s i v e   p r o p e r t i e s  of a l l  pane ls  tested 
could be improved i n i t i a l l y   i f   t h e y  had a more i s o t r o p i c  mass d i s t r i b u t i o n .  The 
addi t ion  of  damping materials could   a l so  be b e n e f i c i a l  t o  a l l  panel  designs.  The 
add-on  damping t reatment  appeared t o  be p a r t i c u l a r l y   e f f e c t i v e   i n   r e d u c i n g   t h e   n o i s e  
transmission  of  the  advanced  design  panel  (panel #5). In   gene ra l ,   t he   e f f ec t iveness  
of  damping treatment  depends on the  f requency  range  and  the  qual i ty   (severeness)  of 
the   resonant   noise   t ransmission.  The  damping t reatment  i s  mos t   e f f ec t ive   fo r   t he  
high-frequency  range  (above 600 Hz). 

The r e s u l t s  also i n d i c a t e   t h a t   t h e   a d d i t i o n  of p l e x i g l a s s  windows improved the  
noise   t ransmission loss of t h e   p l a i n   s t i f f e n e d  aluminum panel.   This improvement w a s  
s l i g h t ,  however, and w a s  probably  caused by t h e  added mass of t h e  windows. The tests 
also show t h a t  when damping  and e x t r a  mass are added t o   t h e  windowed panels ,   the  
windows rap id ly  become the   p r inc ipa l   no i se   e l emen t s   o f   t he   pane l .   Th i s   f ac t   can  be 
important when des ign ing   an   i n t e r io r  t r i m  pane l   fo r   an  aircraft sidewall .  The 
designer  must be c a r e f u l   n o t  to  direct h i s   n o i s e   c o n t r o l   e f f o r t s   s o l e l y  a t  t he  metal- 
l i c  p o r t i o n s  of the  panel .  

The noise   t ransmissive properties measured i n   t h i s  paper are probably  not repre- 
s e n t a t i v e  of the   ac tua l   t ransmiss ion  Loss of similar pane l s   unde r   f l i gh t   cond i t ions .  
T h i s  i s  because of t h e   s i g n i f i c a n t   d i f f e r e n c e s   i n   t h e   n o i s e   s o u r c e s   a n d   t h e  boundary 
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condi t ions  on the  panel.  The e f f e c t s  of the boundary  conditions are most important 
i n  the low-frequency regime. Therefore, the s t ruc tura l   resonances   observed   in   the  
pane ls  tested would  probably  be  "shifted" t o  different   f requency  regimes  on similar 
panels  tested i n   f l i g h t .  

The r e s u l t s  of the s tudy   ind ica te  t ha t  the  two-microphone, cross-spectral method 
of a c o u s t i c   i n t e n s i t y  measurement i s  a powerful   noise   source/path  ident i f icat ion 
tool. This  method provides  a qu ick ,   r e l i ab le  means of measuring  net  acoustic power 
flaw  through a i rcraf t  sidewalls,   and  has  demonstrated  advantages  over  the  classical  
room acous t i c s  method for  measuring  transmission loss. The t h r e e   p r i n c i p a l  advan- 
tages  of the i n t e n s i t y  method are: 

1. Measurement  of  transmission loss i n  narraw  frequency  bands 

2. Measurement of t ransmission  loss  as  a func t ion  of p o s i t i o n  on the test  panel  

3. No special requirements are placed on t h e   a c o u s t i c   q u a l i t i e s  of the rece iv ing  
space. 

The a b i l i t y  of the acous t i c - in t ens i ty  measurement  technique t o  measure  net 
acous t i c  power flaw  independent of t h e   a c o u s t i c   q u a l i t i e s  of the   rece iv ing  space w i l l  
become more important as  t i m e  progresses  and new s t u d i e s  are performed. Since  the 
i n t e r i o r  of  an a i r c r a f t   c a b i n  is nei ther   an  anechoic   nor  a reverberant   rece iv ing  
space, the acous t i c - in t ens i ty  method holds   considerable  promise for   de te rmining   the  
noise   t ransmiss ive   p roper t ies  of a i rcraf t  sidewalls unde r   f l i gh t   cond i t ions .  

Langley  Research  Center 
National  Aeronautics  and Space Administration 
Hampton, VA 23665 
J u l y  2, 1982 

- .  
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APPENDIX A 

THEORY OF TWO-MICROPHONE,  CROSS-SPECTRAL METHOD O F  

ACOUSTIC  INTENSITY  MEASUmMENT 

The Navier-Stokes  equation  of momentum conservat ion  for   incompressible ,  
constant-viscosi ty  flaw i s  given by 

Dv -+ 
-+ 

p,,= pg - VP + pv v 
2+ 

where p i s  the   dens i ty  of t h e   f l u i d  medium, p i s  the   coef fkc ien t  of  dynamic vis- 
cos i ty ,  V i s  the   g rad ien t   opera tor ,  V2 2s the  Laplacian,  g i s  the   acce le ra t ion  
due  to   gravi ty ,   and D / D t  i s  the   subs tan t ia l   der iva t ive   g iven  by 

I f   t h e   e f f e c t s  of grav i ty   and   v i scos i ty  are neglected,   equation ( A i )  becomes 

+ 
Dv 1 
D t  

- - vp 
P 

- =  

Making a mall  per turbat ion  assumption  (neglect ing  higher  order terms) changes  equa- 
tion (A31  t o  

aZ 1 
a t  - =  - - vp 

P 

I f   t he   ana lys i s  i s  conf ined   to  a single  dimension,  equation ( A 4 1  becomes 

Making a f in i te -d i f fe rence   approximat ion   for   the   p ressure   g rad ien t   y ie lds  

where A r  is the  spacing  between two microphones. I f   the   Fourier   t ransform i s  
defined as  
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and t h i s  transform i s  appl ied   to   equa t ion  ( A 6 1 ,  then 

I n t e g r a t i n g   t h e   l e f t  side of  equation (A8) by p a r t s   y i e l d s .  

If these  terms  are  rearranged,  then 

i 
d t  = - 

X 
pw A r  [P2(w) - P1(W)1 

The term on t h e   l e f t  side of equation (A1 0 )  is  the  Fourier   t ransform of t h e   p a r t i c l e  
velocity.   Therefore,  

V(w) = - i 
pw A r  [P2(w)  - P 1 ( W ) ]  

Equation ( A l l )  i s  an  approximation of t h e   p a r t i c l e   v e l o c i t y   a t  a po in t  midway between 
two microphones. The pressure  midway between two microphones  can  be  estimated by 

Subs t i t u t ing   i n to   equa t ion  ( 5 )  then  yields  

= R e i  2pw A r  (PIP; - P2P; + P2P; - P;P,y 
(A1 3) 

The terms  inside  the  parentheses  are  recognized  as  the  auto  spectra and cross   spec t ra  
between  microphone s igna l s  1 and 2. (See  ref.  29 f o r   d e t a i l s .  ) The d e f i n i t i o n s   f o r  
auto  spectra  and c ross   spec t r a   a r e   a s  follws: 

Gxx = P:Px ( A 1 4 1  
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These   def in i t ions   can   be   used   to  write equation (A131 as follows: 

(A161 

If  the  real par t  of t h e   r i g h t   s i d e  of equation (A1 6)  i s  t aken   a s   i nd ica t ed ,   t he  
r e s u l t  i s  

where  412 i s  the  imaginary  part   of  the cross spectrum  between  microphones 1 and 2 
( the   quadrature  spectrum) . 
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APPENDIX B 

SOURCES OF ERROR ASSOCIATED WITH ACOUSTIC INTENSITY MEASUREMENT TECHNIQUE 

There   a re   four   p r inc ipa l   sources  of e r r o r   a s s o c i a t e d  w i t h  t he  two-microphone, 
c ross -spec t ra l  method. They a re   a s   fo l lows :  

1. Instrumentation  phase  mismatch 

2. F in i te -d i f  f e r ence   e r ro r  

3.  D i r e c t i o n a l   e f f e c t s  and e r r o r s  of i n t e r p r e t a t i o n  

4. Near-f ield e f f e c t s  

For  the  convenience of the  reader,  a b r i e f   d i scuss ion  of each  type of e r r o r  i s  
presented  here.  More de ta i led   d i scuss ions   a re   conta ined  i n  re ferences  30 through 32. 

The cross  spectrum Gw (eq.  (A1511  was defined by the  conjugate   mult ipl icat ion 
of the complex Fourier  transforms P,(w) and P y ( w ) .  These  complex Fourier   t rans-  
forms may be  expressed i n  complex p o l a r  form as   fo l lows:  

Equation (A151 can  then  be  writ ten  as 

G = lPxl F Y I  @xP[ i (@x - 
Xy 

and equation ( A 1 7 1  can  be  rewritten 

4)y) 1 

a s  

I t  is  obvious  from  equation (B3) t h a t   t h e  magnitude of t he   i n t ens i ty   vec to r  is  pro- 
po r t iona l   t o   t he  s i n e  of the  re la t ive  phase  difference  between  the two microphones. 
The r e l a t ive   phase   d i f f e rence  ( @  - @2 o r  A @ )  has two components  and may be w r i t t e n  
a s  follows: 1 

’@ = Aephysics -t “instruments 

where @ i s  the  measured  relative  phase,  ‘physics i s  the   ac tua l   re la t ive   phase ,  

and +instruments 
phase  mismatch. Th i s  e r ror   occurs   p r imar i ly  i n  the  low-frequency  regime.  Elimina- 
t i o n  o€ instrumentation  phase mismatch m y  be  approached i n  one of two ways. One 
method proposed by Chung e t   a l .   ( r e f .  5) uses  a  microphone  interchange  technique  to 

i s  the  re la t ive  phase  error   introduced by the  instrumentat ion 
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e l i m i n a t e   t h i s   t y p e  of error. The more common method i s  to  ca re fu l ly  measure the  
instrumentation  phase  mismatch  and  compensate  for it in  subsequent  computer 
ca l cu la t ions .  

The  second  type  of error introduced by the  two-microphone  method is  the error 
associated  with  the  f ini te-difference  approximation  of   equat ion ( A 6 ) .  This  error 
occurs pr imar i ly   in   the   h igh- f requency  regime. To a s s u r e   t h a t   t h i s   e r r o r  i s  small, 
it should be requi red  that 

k A r = - A r = -  w 271 A r  << 2 
C h 2 

or 

Ar << - 1 
h 4 
- 

where A r  is the  spacing  between  microphones,  and A i s  the  wavelength 

The th i rd   t ype   o f  measurement e r r o r  stems Prom mis in t e rp re t a t ion  of 

of i n t e r e s t .  

r e s u l t s .  
D i r e c t i o n a l   e f f e c t s  and   mu l t ip l e   sou rces , can   r e su l t   i n   t he  measurement of components 
of in t ens i ty   vec to r s   un in t ended  by the  measurer.   Careful  planning  and  excecution of 
the  measurements  can  help t o  prevent   the   acquis i t ion  of data. contaminated  with 
a c o u s t i c   i n t e n s i t y   v e c t o r  components  from  unwanted  sound  sources.  Reference 30 con- 
t a i n s  a computer study of t h i s   t y p e  of error. 

The fourth,   and  probably least  experienced,  type  of  error i s  near - f ie ld  measure- 
ment error. I n   t h e o r y ,   t h e   l a r g e   p r e s s u r e   g r a d i e n t s   i n   t h e   n e a r   f i e l d  of higher  
o rde r   acous t i c  sources such a s  d ipoles   and   quadrapoles   can   cause   cons iderable   e r ror  
i n   t h e  measurement accuracy o€ the  two-microphone  method. For a de ta i l ed   d i scuss ion  
of t h i s   t y p e  of error, see reference  31. 
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Figure 1 .- Sketch of AN% tranmission loss apparatus. 
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Figure 2.-  Intensity probe. 
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Figure 3 . -  Receiving-room  instrumentation. 
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Figure 4.- Skin- s t i f f ened  aluminum test panel   (panel  # I ) .  Aluminum 
sk in  i s  0 .0813  c m  th ick .  
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121 c m  

Figure 5.-  S t i f f e n e d  test panel  with windows (panel  #3). Aluminum sk in  i s  
0 .0813  c m  thick; plexiglass windows are 0 .305  cm th ick .  

Figure 6.- Advanced des ign  panel   (panel  #5). Aluminum sk in  
i s  0.127 c m  th ick .  
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Figure 7 . -  Phase calibration  device. 
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Figure 8.- Source-room instrumentation. 
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Figure 9.- Typical sound pressure level in source room. 
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Figure 10.-  Selected panel  areas. 
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11.- Transmission loss of sk in-s t i f fened  aluminum panel   (pane l  # I ) .  
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12.- Transmission loss of skin-stiffened  panel  with  added damping 
(panel  #2). 
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Figure 13.- Transmission loss of skin-s t i f fened aluminum panel   with windows 
(panel # 3 ) .  
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Figure 14.- Transmission loss of skin-s t i f fened  panel   with windows 
and damping (panel # 4 ) .  
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Figure 15 . -  Transmission loss of advanced  design  panel  (panel # 5 ) .  
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Figure 17.- Space-averaged  acoustic  intensity  transmitted  through  panel #1.  
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Figure 18 .- Noise transmitted  through  various  parts of s k i n - s t i f  f ened 
aluminum panel  (panel # 1 )  f o r  2.5-1000 Hz. 
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Figure 1 9 . -  N o i s e  transmitted  through  various  parts of windowed panel 
(panel  #3) for 2.5-1000 HZ. 
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Figure 20 . -  Noise transmitted  through  various  parts  of damped, 
windowed panel   (panel  #4)  for 2.5-1000 Hz. 
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F i g u r e  21.- Comparison of t r a n s m i t t e d  n o i s e  for  panels w i t h  windows for  2.5-1000 Hz. 
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