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REAL TIME ESTIMATION AND PREDICTION

OF SHIP MOTIONS USING KALMAN FILTER TECHNIQUES

ABSTRACT

A study of the real time estimation and prediction
of ship motions, velocities and accelerations is presented.
The ship motion estimations are of particular interest for
operations in rough seas such as aircraft or helicopter
landing, transfer of equipment or cargo at sea and off-
shore installations.

In the present study the estimation and prediction of
heave, pitch, roll, sway, yaw motions of a DD-963 destroyer
is considered, using Kalman filter techniques, for appli-
cation in VTOL landing.

The governing equations are obtained from hydrodynamic
considerations in the form of linear differential equa-
tions with frequency dependent coefficients. In addition
non-minimum phase characteristics are obtained due to the
spatial integration of the water wave forces.

The resulting transfer matrix function is irrational
and non-minimum phase. The conditions for a finite-

dimensional approximation are considered and the impact of

the various parameters is assessed.
A detailed numerical application for a DD-963 destroyer
is presented and simulation results of the estimations

obtained from Kalman filters are discussed. The effect of



the various modeling parameters on the rms error is
assessed and simplifying conslusions are drawn.

The models developed are used to predict the motions
a few seconds ahead. An upper bound for prediction time
of about five seconds is established, with the exception
of roll which can be predicted up to ten seconds ahead.
The effect of noise and modeling errors on the rms pre-

diction error is investigated in detail.
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INTRODUCTION

The present study started as part of the effort
directed toward designing an efficient scheme for landing
VTOL aircraft on destroyers in rough seas. A first study
,}}41 showed a significant effect of the ship model used
on the thrust level required for safe landing.

In a landing scheme therefore it would be desirable
to have accurate ship models capable of providing a good
real time estimation of the motions, velocities and
accelerations of the landing area, resulting in safer oper-
ations and with reduced thrust requirements.

The modeling is quite complex and a substantial effort
is required to reduce the governing equations to a finite
dimensional system of reasonable order.

The study contains a first chapter on the equatibns
of motion as derived from hydrodynamics, their form and
the physical mechanisms involved and the general form of
the approximation.

The second chapter describes the modeling of the sea,
which proved to be a crucial part of the overall problem.

The third chapter describes the derivation of the
state-space equations for the DD-963 destroyer.

In the fourth chapter the Kalman filter studies are
presented and the influence of the various parameters is

assessed.
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In the fifth chapter the feasibility of predicting the
ship motions a few seconds ahead in time is studied within
the present formulation.

Finally the appendices provide the characteristics of
the destroyer, hydrodynamic information and some computer

programs used.
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OVERVIEW

The real time estimation of the rigid body motions,
velocities and accelerations of a vessel in rough seas requires
accurate modeling of the wave exciting forces and the hydro-
dynamic coefficients of the ship.

The wave forces are obtained after an integration over
the ship hull of the pressure forces, so that their evalua-
tion requires a seakeeping program, while their magnitude and
phase represent clearly an infinitely dimensional system with
non-minimum phase characteristics.

The complexity of the resulting equations is due pri-
marily to the wave formation as the vessel moves, which is
a mechanism of energy dissipation and additionally it introduces
memory effects.

The wave spectrum contains a rather narrow band of fre-
quencies so that an efficient approximation of the ship charac-
teristics can be achieved within this frequency band.

A DD-963 destroyer was used as the basis for the present
study. First the gebmetric and mass properties of the vessel
were analysed by the M.I.T. Ocean Engineering Department Sea-
keeping program and its hydrodynamic forces and coefficients
were obtained.

Subsequently a finite dimensional approximation was fitted
in this data within the wave frequency range. Two groups of ship
motions were distinguished, the heave-pitch and the roll-sway-yaw
sets of motion, which up to the first order are uncoupled to each
other.

The parameters of the approximations are four:
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The speed of the vessel, the direction of the waves,
the significant wave height and the modal frequency of the
wave spectrum.

These models were used to estimate the ship motions,
velocities, accelerations using noisy measurements of the
motions. The Kalman filter designed for this purpose gives
very good results when a relatively accurate estimate of
the modal frequency of the spectrum is available. The
modal frequency was found to be the most significant para-
meter in the overall scheme since it influences the estimation
error significantly and is the most difficult to estimate.

The ship speed and the wave heading are important para-
meters also, but can be estimated easily and accurately. -

The double peak spectrum, i.e. seas containing swell also,
require separate treatment, because the low frequency peak is

hard to estimate, while its influence is quite important.

The predictability of ship motions has been investigated
within the frame of the present study. First perfect state
information is assumed and by propagating the prediction error
covariance from zero initial value it has been established that
within 25% rms error over rms motion, the prediction time is
about five seconds for all motions with the exception of roll
Which can be predicted up to ten seconds ahead. Simulations
confirmed these results.

The effect of noise and modeling errors is to reduce the
prediction time. Omission of the non-minimum phase zeros has
a particularly pronounced effect.

In summary, the approximations described in the sequel
provide a good model of the quite complex ship equations of
motion within the wave frequency range. The derived models can
be used for a real time estimation and prediction of the ship
motions and other responses using Kalman filter techniques.

Computer programs have been prepared that provide the
required model matrices once the parameter of the problem has
been specified.
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Chapter 1l: EQUATIONS OF MOTION

Definitions

‘The rigid body motions of a ship in six degrees of freednm
are shown in Figure l.l: We define the %12, plane to coincide with
the symmetry plane of the ship, with the z, axis pointing vertically
upwards when the vessel is at rest, and the Yy axis so as to ob-
tain an orthogonal right-hand system,while the origin need not
coincide with the center of gravity. The X Y 2, system is an -
inertial system with XY fixed on the undisturbed sea surface,
while the x y z system is moving with the steady speed of the
vessel (i.e. it follows the vessel but it does not participate
in its unsteady motion). Then the linear motions along the X4
Y,r 2Z; axes are surge, sway and heave respectively. In order to
define the angular motions, we normally require Euler angles, in
Vthe present case, though, we consider small motions so that the
tensor of angular displacements can be replaced bf a vector of
small angular displacements, which are roll, pitch, yaw around
the x

z, axes respectively.

10 Yy
The characteristics of a ship are its slender form, i.e.
L/B>>1, L/T>>1, where L is the length, B the beam and T the draft.

Also, the ship is symmetric about the xz plané and near symmetric

about the yz plane. For this reason

I
yz £ 4
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The value of Ixz is typically small compared with Ix vy

X
The justification of using the linearity assumption is as
follows: The excitation consists of wave induced forces, which
include fluid inertia forces and hydrostatic forces. It is

well established that the wave height to wave length ratio is
small, since at a typical upper value of 1/7 the wave breakes
and loses all its energy [15] (Figure 1.2). As a result, the
major part of the wave force is a linear function of the wave
elevation and can be obtained by a first order perturbation
expansion of the nonlinear fluid equation, using the wave height
. to length ratio as the perturbation parameter [15].

The wave spectrum, as will be shown later, has a frequency
range between typically 0.2 and 2 rad/sec. Given the large mass
of the vessel, the resulting motions, within this frequency
range, are of the order of a few feet, or a few degrees, soO
that the equations of motion can be linearized.

The only motion that requires attention is roll, because

due to the slénder form of the ship, the rolling motion may

become large, in which case nonlinear damping becomes important.

Simple Derivation

We derive the equation of motion for a simple two dimensional
object to demonstrate the overall procedure.

Let us assume that we wish to derive the motion of a two
dimensional cylinder subject to wave excitation, allowed to move

in heave only (Figure 1.3).
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The incoming wave of amplitude a, and frequency Wy will
cause a force on the cylinder, and, therefore, heave motion.

Due to the linearity of the problem, the following decomposition
can be used, which simplifies the problem considerably.

(a) Consider the sea calm and the ship forced to move
sinusoidally with unit heave amplitude, and frequency Wey s and
find the resulting force.

(b) Consider the ship motionless and find the force on the
cylinder due to the incoming waves and the diffraction effects
(diffraction problem).

(c) In order to find the heave amplitude, within linear theory,
we equate the force found in (a) times the (yet unknown) heave
amplitude, with the force found in (b). (Figure 1.4)

The force in (b) can be decomposed further for modeling
purposes, again due to linearity: One part is due to the un-
disturbed incoming waves and the other part due to the diffracted

waves. The first is called the Froude-Krylov force and the

second the diffraction force. The total force is called the

excitation force [15].

The force in (a) due to linearity can be also decomposed:
The first part is simply the hydrostatic force. The second part-
is the dissipative force, caused by the fact that the refraction
waves carry energy from the ship to infinity. For this reason,
we define a damping coefficient B so that the dissipative force

t 1 ' ,
will be -Bx where x is the heave velocity. The third part is —-
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is an inertia force, caused by the fact that the heaving ship

causes the fluid particles to move in an unsteady motion so that
11

we define and "added" mass A and the inertia force becomes -Ax

with x the heave acceleration. If we denote the undisturbed in-

goming wave elevation amidships as n(t):

n(t) = a‘,ei“q't ' (1)

Where the real part of all complex quantities is meant, here
and in the seguel. Then the excitation force will be .
- . F :’Foelw°tea . (2)

-]

s

Where F, is complex (to take 1nto account the phase: dlfference

with respect to the wave elevatlon), ‘and the equation of motion necomes-

" T ) A .
MX = F - Ax - Bx - Cx - (3)
Where M the mass of the cylinder;‘the.motion is also sinusoidal’

so with x, complex:

x(t) = xeief @)

A very 1nportant remark is that g,A B denend on the frequency

of the incoming wave Wo .. ThlS can be ea51ly understood by the .':
fact that at-various frequenc1es the heav1ng cyllnder will nroduce

waves w1th dlfferent wavelength. We rewrlte, therefore, ecuatlon

-(3)'as;

-MX Ldz iw ot {Fo.(wo)é‘o*' [A(wc)m% - im,, B(L\)o) - C] xe}‘elmot.:‘ (3a)
iwet . - .

By - dropping e” r We can rewrite equation (3a) as:

{~M + Awy) ]’ + fw,B(w,) + C} x, = Fo(mb) a, | (3b) -
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The motion of a cylinder in water, therefore, results in an
increase in the mass and damping term. Equation (3b) is used
because of its similarity to a second order system, it is strictly
valid, though, only for a monochromatic wave.

Ultimately, we wish to obtain the response in a random sea, soO
equation (3b) must be extended for a random sea. This can be done

by obtaining the inverse Fourier transform of (3a), i.e.

LK (e~ 1) X (r)drt+_{ Ka(f - 1) x (1) dr +

Cw | ' ; : | ‘- ' (5)
+C x(t) =_f K (t -~ TIn(t)dr : |

Whe;e Ky Ky s K the inverse Fourier transform oﬁifp?[M + A(Q)]q
'in(m),and Fo(m)'respe¢tively. The random undisturbed wave elevation;
is denoted by n(t). Equation (5) is not'popular with hydrodynamiéists,ﬂ
because the effért requiied to eealuate the kernels.Ka, Ku’ Kf is by
- far greater than that required to find the added mass, damping ana
e#citation force. For this reason, equation (5) is rewritten in a
hybrid form as follows:

— M+ A(] X(6) + Bl@) x(£) + C x(£) = F(w)n(t) e

This is an integro-differential equation (orAdifferential
equation wifh'frequency dependent coefficients), whose meaning is

in the sense of equation (5).
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Strip Theory

The evaluation of A(w), B(w), F(w) is not an easy task for
complex geometries, such as the hull of a ship. The hydrodynamic
particulars can be found in a later section, but we can give é
simple description here of a technique used to simplify the

derivations: [15]1,1[17]

The ship can be divided in many transverse strips as shown
in Figure(l-SXDue to‘its elongated form and for high frequencies,
each strip has small interactions with the other strips, except
near the ends. Uéually these erd effects ere small, so that
instead of solving the overall three dimensional problem, we can
solve many two dimensional problems (one for each strip) and
sum up all the partial results. For the case of heave, for example,
if A{w,x) B(w,x) are the added mass and damping in heave of a strip

at location x, then

L/2
Alw) = [ A(w,x) dx (7)
"'L/2
L/2
B(w) -~ [/ B(w,x) dx (8)
-1/

The strip theory has larger errors at smaller frequencies.
It so happens, though, that at small frequencies the hydrostatic
forces are predominant, so that the motion error is quite small.

Comparison with experiments has shown that for slender ship
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configurations, the strip theory provides very good predictions

(151, [17].

Relation Between Added Mass And Damping

~ The added mass and damping coefficients are not indepen-
dent of each other, because their frequency dependence is caused

by the same refraction waves. If we define

T(w) = w? (A(w) - B (9)

w

Then T(w) is an analytic function [16]. As a result, A(w),
B(w), which are real, are related by the Kramers-Kronig - relations,
in order to describe a causal system. This fact will be used
later to obtain a single approximation for T(w) instead of two

separate approximations for A(w), B(w).

Speed Effects

As it can be seen in Figurel.6 when the ship is heaving with
a small angle 9 and at the same time is moving forward with speed
U, then a heave velocity results, which is ; = U6. The effect of
the forward speed, therefore, is to couple the various motions
by speed dependent coefficients. As it can be found in Appendix 1,
there are simplified expressions for the added mass, damping and

exciting force with a parametric dependence on the speed U. Then
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expressions greatly facilitate the evaluation of the ship motions.

Frequency Of Encounter

An additional effect of the ship speed is the change in the
frequency of encounter. If the incident wave has a frequency

and a wave number k, then the frequency of encounter Wg is
w, =0+ k U cos ¢ (10)

Where ¢ is the angle between the x axis of the ship and the
direction of wave propagation (Figurel.7). In deep water, the

dispersion relation for water waves is

kg (‘ll)

w? =
so that we can rewrite (10) as
— wz v 1
W, = m-k?; U cos ¢ (12)

A very important consideration ip the difference between
frequency of encounter and wave frequency is the following: The
ship motions due to linearity will be of frequency We so that thé
refraction waves are of frequency Wy and the added mass aﬁd damping

can be written as A(we), B(me).

The amplitude of the exciting force though, consists of
the Froude Krylov part which depends on w and the diffraction
and speed dependent parts which depend on Wg e 'Thé time dependence

is again wétg i.e.



21

F(t) = a.F (u, we,v)'e1“°t (13)

with a, the incident wave amplitude.

This is a very crucial observation and can cause significant

errors if not taken into account.
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Equation of Motion

Following the notation of Appendix 1, we write the equations
of motion. It should 5e noted that, due to the slenderness of the
ship, the surge motion is left out as a second order motion. This
is in agreement with experiments [ 17]. within linear theory and

using the ship symmetry, the heave and pitch motions are not coupled

with the group of sway, roll, yaw motions. This is not to imply.

that the motions are independent, because they are excited by the
same wave, so there is a definite relation hoth in amplitude and

phase.

(1) Heave - Pitch Motions

{[M°]+[A33Aas 1) gv_}_[,BasBss];{ +

o Iy Asy Ass Bss Bss =v
C3s3 C35 F
+ = 3
Leisceed s =D I (14)
(2) Sway - Roll - Yaw Motion
MM, M, Azz Azy Az e :
1 1]
l\%zlx IXZ +. Ays Ayy Ang Eu +
N{zIxz I, Ag2 Asu Ass
B2z By Bz g . O O o
]
{ Buz Buyw By Xy t o Cuy O . (15)
L.B“ Bgy Bse 0 0 0
: |- —
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Where A .. B..C... the added mass, dampinag, hydrostatic co-
iy iyTiy - - 2

efficient matrices; F. the exciting forces; n the wave elevation;

¥
|

{x3, Xs}T (16)

= {%p, Xus Xel© (17)

L]

u
The frequency and velocity dependence is not written explictly,

but is understood, as described in the previous sections.
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Heave - Pitch Approximation

We start with the heave and pitch motions approximation.
As it is obvious from eguation (14), it involves two stages:
(a).Approximation of the exciting force
(b) Approximation of the added mass and damping coefficients
Data are provided by the hydrodynamic theory for both compon-
ents and within the wave fregquency range.

A. Exciting Force Approximation

Figure 1.8 shows the exciting heave force on a box-like ship
[25]. This information is important to demonstrate several zeros
of the amplitude of the heaving force. Figure 1.9 shows the ampli-
tude and phase of the exciting force on a destroyer, where, again,
the same zeros appear, accompanied in the phase plot by jumps in
the phase.

The transfer function between the wave elevation and the heave
force cannot be represented as a ratio of polynomials of finite
degree as evidenced by Figure 1.9. Similar plots can be obtained
for the pitch moment. Within the wave frequency range, though, only
the first zero is important, while the remaining peaks are of minor
significance. This is not true for other types of vehicles such as
the semi-submersible, but for ships it is valid for both heave force
and pitch moment, so it will be used to simplify considerably the
modeling procedure.

As it was mentioned before, the exciting force changes with

frequency W but its amplitude is determined on the basis of the

frequency w. The following variables must be included in an
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appropriate modeling of the exciting forces

(1) frequency ®
(2) speed V

(3) wave angle ¢

F; (0w, $)a, ej"“’et (18)

F3 (tl ao' ¢l U)

iwet (19)

Fs (t, (¢ ) b U) = {FS (w, ¢) + f3:(we'¢)} e

where a, the wave amplitude, £, the heave diffraction force. Equa-
tions (18), (19) show that the hcave force Aoes not depend on the

ship speed, whereas the pitch moment does, in a linear fashion.

"In order_tq_approximate Fg(&,¢}h Fs(@{¢),fdwemw we use the
plots in Figure 1.9 as well as Figure 1.10, which show the approx-

imate influence of the wave angle on the excitation force.

In order to model the DD963 destrover, the M.I.T. five degrees
of freedom seakeeping program [27 | was used to derive hydrodynamic
results. The following model was derived to model shape of the

heave force at V = 0 and ¢ = 0 (no speed, head seas)

a, n
= S S‘ 2 .
[:l + ZJ——-—w + —-z—w ] (20)
a a

Where J = 0.707,0;: a constant to be determined from hydro-

F3(S)

dynamic data, n the wave elevation and Wy the corner frequency.
Remembering the analysis above concerning the dependence of the

force on w and Figure 1.10, we can derive.
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- 2n1g + 2
a Lcosd + B Lcosd + B

U cos¢ (21)

where L is the ship length, B the beam.

Before we establish a relation similar to (20) above, we have to

discuss Figure 11, where it is shown that for long waves, the heave

force and the pitching movement are 90° out of phase. This means

that the transfer function between heave and pitch is a nonfminimum
phase one, because the amplitude is constant, while the phase is
90°. We choose to attribute the non-minimum phase to pitch. Also,
the pitch angle tends to the wave slope for large wavelengths, so

the pitching moment ' can be written as

1l - s/w, s’ cosé

) St <

1 + s/w, [1 + 20— + 5,7
w w
a a

Where o, a constant to be determined, W, is the same (for

Fs = a n (22)

simplicity) as in equation (21) and w, is an artificial frequency
to model the non-minimum phase. It will be chosen to be equal to
the wave spectrum modal frequency, so we defer the discussion until

the corresponding section.

B. Added Mass and Damping

By using equation (9), we can rewrite the equations of motion
as

*& s? + Ms? + C T + UsT + Css -
33‘ 33 35 33 3 [X3} - [;3_}” (23)
Tss st - UsT33 + C35 Is? + Tss s - U2T33 + Cs5 Xs S ‘

——
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Here we construct a simplified model where

. . Bij
Tij= Aij-~ -Iﬁl

with Aij,Bij to be evaluated from the hydrodynamic data.

tion (23) can be written, after we define

in the form:

Y2

Yu

where

Ajz; Ajs

As3 Ass

Y
Ys
Y

rd
Cis
rd

Css

»
Css

(-]
X3 Yo = X3

-}
Xs Yo = X5

{YIIYZ:Y31YH}T

C33 Byy C3s Bas

Cs3 Bss Cs5s Bss

Css = U Ajzs

Css = U x Ajy

(24)

Then equa-

(25)

(23a)

(26)
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Sway-Roll-Yaw Approximation

Next we approximate the sway-roll-yaw group of
motions, which is uncoupled to first order from the

heave~pitch group of motiagns. Again a two stage app-
roximation is required, i.e.:

(a) Approximation of the exciting force

(b) Approximation of the added mass and
damping coefficients

Data are obtained by using the sea-keeping program.

A. Exciting force approximation

The same infinite-dimensional form is obtained for
the exciting force as seen in Figure 1.12 (l7abc) for all
three motions, as in the case of pitch and heave. Again,
within the wave frequency range, a finite dimensional
approximation can be achieved, and of reasonably small
order.

The important fact that the exciting force depends
on the wave frequency rather than the frequency of en-
counter, is used, while the following three quantities

define the exciting force amplitude and phase

(1) wave frequency
(2) Speed V
(3) wave angle ¢

In Appendix 1 the strip theory approximation of the
sway, roll,yaw forces can be found. Using the M.I.T. five
degrees of freedom seakeeping program the following finite
dimensional approximation was found in case of V=0, ¢ =

90° for sway, roll and yaw
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F, (5) = (27)

A S
S o+ 27— + 1
Wy
{
A s?
F_ (S) = (29)
6 s |2 S
- } + 2Jg — + 1
We We
where w = 0.65 J = .5
2 2 '
wy = 0.85 Jy, = .3
weg = 0.85 Je = .3 (30)

and A;,A,,As are obtained from hydrodynamic data.
We redefine the value of w;, wy,we such that

it will be valid for angles ¢ other than 90°, and
speed other than 0:

w'j = (wj + w% % cos¢) sing (31)

where j = 2,4,6 and mj is given above.

It should be noted that the sway,roll %nd yaw forces
are proportional to the wave slope, i.e. 90 out of phase
with respect to the wave amplitude. This means that they
belong to the same group with pitch, and the same non-

minimum phase transfer function:

S = Wo

s + Wy

must be used for all three of them, when the total
system (all 5 degrees of motion) is considered.
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B. Added Mass and Damping

The amplitude of the transfer function between the wave
elevation and the rolling motion has a very narrow peak so that
the coefficients can be approximated as constant [17]. Using

Appendix 1l:

o e 0 — 0
Bgy = Py Bys = Bag
= a0 = o
gy = By Byo = Byy
| v
A, = + — B

Ao
46 46 w? 24

Byg = Bgg ~ V By (32)

using the value of @ at the roll peak. It should be noted
that roll involves a significant nonlinear (viscous) damping,
which is aﬁproximated by introducing an additional "equivalent"

damping coefficient Bz4 (31

b ——— et o ab— b o



cimilarly, we calculate the sway, yaw coefficients at
the same frequency:

Bao

26
B26
62
62
66

66

2
S {Aij+Mij} +

where Cij =

+ 1 =
constant, 1.e. C44

= 0 = ¢
Y B2 Ba»
Vo
= { 4 - Bt
Bog © .72
(.
(1}
=  Byg =V By
A 0
= A° - — B..
26 ~ 2 22
o 0 1]
= BZG + VvV Azz
V2
= 0 + — 0-
A66 szZZ

- (33)
66 w? 22
X, F, :
S{Bij} +'{cij} X, = r, % = 2,4,6
X F j=2,4,6
s 6 (34)

0 except for C44, which is the roll hydrostatic

A+ (GM) with A the ship displacement and (GM)

the metacentric height.

Due to the special form of the matrix C, a zero-pole

cancellation results from a direct state space representation of

the equation above. After some manipulations, the following

representation can be obtained which avoids zero-pole cancellation

problens:
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‘X=T

where
. E = N

X+ UF
.£=V.{x2 ’
{rr,, F, ,
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° .
T
xl, ’ xl. 'l XG}

F, s

" IFG’ Fs}

- (35)

where /F indicates the time integral of F and T ='{tij}and
U = {uij} , with:

r . r ...r{z‘ . r
£t = H2p P ti, = 22  §,.= — P-P £, o= 12p
1 Y, 21 11 712 T, ’ 13 Y22 22 12 ’ 14 :
. . Y32 AAraz ..r;z
tyy = P -P yo=— ! ty3= =P = P tyy = =P =P
Y22 21 31" r Ya2 22 32’ Y22 23
. .,
t,, =Pt Bty t, = Bt Byt P
: t£3 = _P21t13— Pt 500,
jtzu = =P, bt Poaty,
t;; =0 except for t,, =1
' - Lya T2y
U.. =0 except for U, =r -
ij 11 11 r
. 22
r..r
U =y - 12723 U =r 32 21
14 13 o 'S} 31 r .
22 23
U =r--3223 Uy =-P U =
[N 33 ¥ 21 11 23 41
22
U =Y ? U =X ? U = - - U
22 217 23 227 T2y 21 14 23 4b4
Uy, =Ty
where R={r..}=[amM]"!, P={P..} =RB

(36)

(37)

(38)



33

Figures 1.13 through 1.15 show the actual force and moments
versus frequency and the achieved finite dimensional approximation
for zero speed and beam seas (¢=90°). It should be noted again
that the approximation is not as good outside the wave frequency
range.

Figures 1.16 through 1.18 show the same quantities for speed
U= 15.5 ft/sec and 45° angle of incidence. From these figures it
can be seen that above 1 rad/sec the approximation is poor, none-
theless no significant wave energy is contained in that range, soO
the approximation is acceptable.

Figures 1.19 through 1.21 show the overall transfer function

between the corresponding motion and the sea elevation.
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Figure 1.1

Ship Reference Systems
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Figure 1.5
strip Subdivision of Ship Hull

Figure 1.6

Effects of Ship Speed
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Figure 1.13

Sway Force Versus Frequency for the DD963 Destroyer and Its
Finite Dimensional Approximation (dotted line) for Speed
U = 15.5 ft/sec and 45° Angle of Incidence ‘
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Pigure 1.15

Yaw Moment for DD963. Same conditions as in 1.13.
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Figure 1.16

Sway Force Versus Frequency for the DD963 Destroyer and Its
Finite Dimensional Approximation (dotted line), for Speed
U = 15.5 ft/sec and 45° Angle of Incidence
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Figure 1.17

Roll Moment for DD963. Same conditions as in 1l.16.



Amplitude (dB)

85.00

88.080

75.088

78.00

65.080

68.88

55.008

58.88

47

YAW MOMENT
=
1 3 1 L | I L 1 1 - |
- I l i {
7 ro ® 4 a o o a ~
9 ul ) o S ) o o) a
S S e ® S e 0 ] o
Omega (dB)

Figure 1.18

Yaw Moment for DD963.

Same conditions as in 1l.16.
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Figure 1.19
Sway Transfer Function for the DD963 Destroyer and Its

Finite Dimensional Approximation (dotted line), for Speed
U = 15.5 ft/sec and 45° Angle of Incidence
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Figure 1.21

Yaw Transfer Function for DD963. Same conditions as in 1.19.
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Chapter 2: SEA MODELING

The sea waves are generated by the wind, except for very few
cases. The process of wave generation is of importance in model-

ing, so we will outline, briefly, a simple theoretical model:

When the wind starts blowing over a calm water éurface, it
contains gust components of high frequency, which cause wavelets
on the surface. This is due to the inherent instability of the
wave air interface. As soon as the surface becomes rough, a
significant drag force develops hetweer air and water, which
becomes zero only if the average wind speed (which causes the
major part of the drag) equals the phase wave velocitv. As a
result, the steady-state condition of the sea develops slowly
by creating waves whose phase velocity is close to the wind speed.
Since the process starts with high frequencies, we conclude that
a young étorm will contain a peak at high frequency. We usually

distinguish between a developing storm and a fully developed

storm.

As soon as the wind stops blowing, then the water viscosity
dissipates the high frequency waves so that the so called swell
(decaying seas) forms, which consists of long wavés (low fregquency
content), which travel away from the storm that originates them.
For this reason, swell can bBe found together with another local

storm (Figure 2.1).
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A storm usually contains one peak (except if swell is present
- when it contains two peaks) and the peak frequency W is called

the modal frequency (Figure 2.2). Also, the intensity of the storm.

is required, which can be described in a number of waves: Beaufort

Scale, Sea State, Wind Average Velocity, Significant Wave Height.

The best is the significant wave height H defined as the statistical

average of the 1/3 highest waveheight. For a narrow band spectrum

of area M,
He=4 /M, ' : - (39)
From our discussion on sea storm generation, we conclude that

it is important to model a storm by both H (intensity) and W

(duration of storm). For this reason, the Bretschneider Spectrum

will be used defined as:

u

w : w
sw) =222 w2 —B- exp { - 1.25 (3" ) (40)

The spectrum was developed by Bretschneider forvthe North
Atlantic, for unidirectional seas, with unlimited fetch, infinite
depth and no swell. It wés developed to satisfy asymptotic
theoretical predictions and to fit North Atlantic data. It was
found to fit reasonably well in any sea location. Also, by
combining two such spectra, we can model the swell as well. 1Its

main limitations are unidirectionality and unlimited fetch.
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It was felt, however, that it could provide an adequate descrip-

tion for the present application for open sea.

As it has already been mentioned, the forward speed of the
vessel causes a shift in the wave frequency to the frequency of
encounter. The spectrum, now, can be defined for ship coordinates

as follows

S(me) = _i.(_q)_)...__ a (4]_)
dme/dw w = f(w )
e
where
/ Ticosd
w=f) =27 F e TG (42)
U
2 = ¢Co
5 cosd

A rational approximation was found to (29) suhject to (30) in

the following form

4
(w_ /w_ )
Sa(we) —mri— H®° B{a) e -
' 1+ (—m) (43)
Yo
where Sa(me) the approximate spectrum
= U
a = g mm cosd (44)

B(a), Y(a) functions given in table 2.1
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Now a transfer function can be deriven from (43) such as to

provide an output with the spectrum in (40). when dfiven by white

noise. It is easy to see that

2
(S/wo)

s s 2|3 (45)
s ]

H_ (s) = VS,

where

s = 125 g
(-]
e B2 B(a) | (46)
Wy = Y(a) &)m . (47)
J = 0.707

A plot of the spectrum for various wind speeds is given
in Figure 2.3, while the spectrum and its rational approximation

is plotted in Figure 2.4 for fully developed seas and H1/3= 3 m.

Important Remark

It is customary to define the power spectral density as the

Fourier transform of the autocorrelation R(T)

(-]

S(w) =/ R(1)e

-imT .
drt (48)
In wave theory, the spectrum is defined one sided (for positive
frequencies only) as follows

w0

SB(w) = —%— f R{T)e

-0

“T gy W >0 (49)



55

For this reason, the relation between the spectrum S(w) as
required for the present application and the Bretschneider spectrum

S,{w) is:

8

T Se(m) w >0

S(w) = (50)

T SB(-w) w <O

Therefore, the intensity of the white noise required for
driving the transfer function (33) is 7 (or equivaléntly we can

multiply the_transfér function by YT ).



56 -
TABLE 2.1

Sea Spectrum Coefficients

o Y (o) 8 (o)
. 00 LIS3E 1. 8861
.10 1.6962 1.6110
.20 1.120%9 1. 3827
.30 1.2717 1.2118
.40 1.2€626 1. 6765
.50 1,453%9 LHTL1E
.60 1.544% 8645
.78 1.6360 L8116
.86 - 1.7272 , 749¢€
.96 1.8182 , E9EE
1,80 1.9095 . €509
1.10 2.8008 £16€
1.20 2.891¢ 5756
1.30 ‘2.1833 5434
1,46 2.2744 5156
1.56 2.REST . 4895
1.660 2.4567 $EE4
1.76 2.54¢€1 ., 4454
1.89 2. 6395 4262
1.96 2.7366 . 40ES
2. 60 z.8218 . 3923
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We proceed to derive a state-space form of the
equations of motion. Starting with the sea, we can construct the

following representation (three cascaded second order systems)

o 1 o o o o | 0
-w? -2Jw, O wy 0 0 0
o | O 0 0 1 0 0 0 (51)
X3 ' xg * g
0 0 =~ -2Jw, 0 o} 0
o o0 ©0 0 o 1 0
0 0 0 0 -uw? -2Ju, 1
n=[ /5,00000] x
or
Xg = Bg Xg + B ?
n= Cg Xg

Heave-Pitch Model

The following model is derived for the force (some algebra

was involved to reduce the dimension of the state).
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[0 1 o o o o |
—w, -2Jw, & 0 0 0
) o o o0 1 o 0
=10 0 -wb-2Jw, O e A
8y 82 83 8y 1 0

or written in short

o
Xg = Bg Xg + B
F,
= C X
. £ Xt

The inertia model can be written as follows:

o 1 0 0 o 0|
;(m - Bl BZ 63 qu. xm + D1 D2
- 0 0 0 1 - 0 0

LPS Bs B Bs D; Dy

(53)
(54)
F,
Fs
(55)
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where —
Dy D; Az Ass o1
= (56)
D, Dy Ass Ass
gt g% 83 * D1 D» Cas3 B3z C3s Bis
s a6 7 8 = - (57)
B 8 B B8 D3 Dy Css Bsz3 Css Bss
and we can write in short
- Fj
Xn = Bp ¥p * B { ]
Fs
(58)
X3
X = CmIQm
Now the total model can be constructed as follows:
[«
X A X, + By W
(59)
X3
Xs = Ct Et
where .
A = f_As o o ;
t ! . i
i O A B C.!
! !
i Bsz 0 A_E_J
= T
B, Pas 0 cﬂ (60abc)
Ct = [O Cm (¢]
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Data were obtained for the DD-963 destroyer from the M.I.T.
Seakeeping Program and are given in Appendix 2. Appendix 4 lists

a computer program that produces the A Bt' C, matrices once the

t’ t
ship speed, wave heading, significant wave height and modal
frequency were specified. The output can be used directly as
input to the LIDS control and filter design package.

Table 3.1 provides the numerical values of matrix A for

speed 20 knots, angle 0° (head seas), significant wave height

10 ft. and modal frequency 0.72 rad/sec (sea state 5).
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Sway-Roll-Yaw Model

The sway, roll, yaw exciting forces and moments are essentially
driven by the slope of the sea elevation, which for regular waves
equals the wavenumber times the amplitude, or for deep water we

can write

W
Slope = —a
Pe = 3

i.e. in the time domain:

Slope = - % (61)

As outlined in Chapter 1, the fact that only roll has a.
spring constant causes zero pole cancellation problems, which can
be avoided by introducing the matrices T and U described by

equations (36) through (38). The original equation is in the form

11 |
MR) x; *+ By TG4 TR (62)
where 51 is of dimension 3:
sway iz gz
X = roll | = xh » By F“ (63)
vaw 6 6

M is the mass matrix, A and B the added mass and damping
matrices respectively, C is the hydrostatic matrix and F the vector
of exciting force and moments. Then

1 1 1

Cxy + [M+A] T F (64)

8251 = - [M+A]~ sXy = [M+A] "~ 1
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By letting

T |}
X" = [x2 , Xy 4, Xy , Xe]

FT

[‘F,, F,, Fy, 'Fy, Fel (65ab)

and using the T and U matrices of equations (36),(38) we obtain
a state space description of (64) without zero-pole cancellation,

in the form

% -

=Tx+UF (66)

The state space representation of equations (27) through (29)

is in the form

= _p X. + n (67)
j 373

= 2 | 5 (68)

A, ¢ g
Ap= |8 By P (69)
] g Ag

]
and a matrix BF driving the force dynamics with n , i.e. using the
sea model, which is exactly the same as in the case of heave,

pitch (6 states), so
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B (i,3) =0

except

By (2,2) = Ay w3

Bp (4,2) = -Aywh (70abcd)
Bp (6,2) = -Ag WE

Then using the same sea model described in equations (52ab) we

obtain the overall model as

(16x16) (16x1)
]
Et = At §t + BtW
(71ab)
X2 (3x16)
Xy{ = C, X
Xe t =t
where
A
s
A, = | B Bp g
U T
T _ T
Bt = [ BS 21 (72abc)
.1 000
Ct = g . 0010
* 0001

Data for all guantities involved are given in Appendix 2, while
Appendix 4 lists the computer programs that can produce the matrices
At, Bt' Ct once the ship speed, wave heading, significant wave

height and modal frequency are specified.
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Table 3.1 provides the A_ matrix for speed 15.5 knots,

t

heading 45°, significant wave height 10 ft. and modal frequency

0.72 rad/sec (sea state 5).
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Chapter 4: KALMAN FILTER AND SIMULATION

The heave-pitch approximation resulted in a 15 state system
and the sway-roll-yaw approximation in a 16 state system. Given
that 6 states describe the sea, the total system required for
5 degree of freedom motion studies would contain 25 states. If the
sea spectrum contains two peaks then a 31 state model is required.

The heave-pitch group is not coupled with the sway-roll-yaw
group so that the study of each group can be independent. This
is not to indicate that in a total design the two groups must

remain independent, since they are excited by the same sea.

Heave-Pitch Motions

It is assumed that the heave and pitch motions are measured.
The gyroscopes can provide accurate measurements of angles,
up to about 1/10 degree. The noise therefore is due to structural
vibrations, which in the longitudinal direction canvbe'significant
due to the beam-like response of the vessel. As a result the
measurement noise was estimated based on data from ship vibrations.
The same applies to the heave measurement noise.

ft/sec and waves

A Kalman filter was designed for speed V = 21
coming at 0° (head seas) with significant wave height H = 10 ft.
and modal frequency w. = 0.73 rad/sec (sea state 5). The measure-

ment noise intensity matrix was selected from ship vibration
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data to be

0.75 0

<
1l

0 0.0003

The model poles are shown in table 4.1, while the filter poleé are
within a radius of 1.3 rad/sec as seen in table 4.2. Typical
simulation results are shown in Figures 4.1 and 4.2. 1In ﬁhese
figures exact knowledge is assumed for the significant wave height
and modal frequency. The accuracy of the filter is very good both
for heave and pitch.

Subsequently, the same filter was used combined with a ship
and sea model different than the nominal one, to investigate the
sensitivity to the following parameters:

The influence of the significant wave height is very small
when the modal frequency is accurately known. On the contrary,
the influence of the modal frequency is quite critical; particularly
for pitch (see Figures 4.6 and 4.7). The same conclusion is
reached when a double peak sea spectrum is used [2231,123].

The effect of the forward speed and wave direction was found
to be unimportant particularly for heave, while for small changes
in wave angle (+ 15°) the pitch prediction error was not affected

significantly [22].
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Sway-Roll-Yaw Motions

As in the case of heave and pitch, the measurement noise
consists primarily of structural vibrations rather than instrument
noise. For roll such vibrations are quite small for a destroyer
vessel and similarly for sway and yaw the vibrations are smaller
than in the case of heave and pitchf '

The noise intensity used was nonetheless similar to the
heave, pitch noise, so as to bound the filter eigenvalues below
2 rad/sec, which is the typical wave bandwidth.

A specific example has’been worked out for a forward ship
speed of 15.5 ft/sec and waves at 45° and sea state 5 (significant
wave height of 10 ft. and modal fregeuncy of 0.72 rad/sec). The

measurement noise intensity matrix was

diag {0.1 £ft2 , 2x107%(rad)? , 2x107"(rad )?}

The simulation shows very good estimation as seen in figures 4.3,

4.4, and 4.5. Yaw is very small and the measurement noise is large
relative to the yaw motion, nonetheless the yaw estimation based

primarily on the roll, sway measurements is very good.

Table 4.2 presents the results of a sensitivity study of the
influence of the various parameters involved. The most critical
parameter is again the modal frequency. The ship speed and the wave
direction are not critical for the estimation error. This is a
very important conclusion as fér as the wave direction is concerned,
because in reality, seas are directional and very difficult to

measure, or even model appropriately.
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The influence of systematic measurement errors was studied
by using a calibration factor. This factor is defined to be the
ratio of the measurement fed to the filter over the actual
measurement, thus introducing a systematic error. If C is the
calibration factor,then the systematic error as a percentage of
the actual measurement is 100+ (1-C). In the case of a 10% error,
the most significant change was found in the case of the roll
motion. 1In the case of a calibration factor 0 (indicating a dis-
connected measurement) éignificant errors resulted, especially
for roll in the case of disconnected roll measurements (Table 4.3).

Table 4.4 presents the poles of the model used, while Table
4.5 shows the poles of the Kalman Filter derived for the nominal
condition as described above. Figures 4.8 through 4.10 are sim-
ulation results and show the significant effect of the modal fre-
quency on the estimation error. Finally, Figure 4.11 shows the

simulation of the sway motion estimation when the roll measurement

is disconnected.
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Ship Speed: U = 21 ft/sec Heading angle: 0°
| . H= _ rad _ _ rad
SEA: H=10 ft, W = 0.72 soc H=10 ft, W= 0.52 Sec
Pl,2 = -0.199 +1.1111 same
P = -0.286 + 1.0161% same

3,4 -
P5 = -1.058 P5 = -0.696
P6,7 = ~0.576 + 0.5761 same
P = -0.576 + 0.576 1 same

8,9 -
PlO,ll = -0.863 + 0.863¢ P10,11 = -0.571 0.571¢
P12'13 = -0.863 + 0.8631 P12,13 = ~-0.571 0.571¢
Pl4,15 = -0.863 + 0.863¢ Pl4,15 = -0.571 + 0.571¢

TABLE 4.1: Pole

s of the heave, pitch model
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Ship Speed: U = 21 ft/sec, Heading angle: 0°

SEA: H = 10 ft Wm = 0.72 rad/sec
Py, = "1.289 # 0.5401
Py 4 = -1.134 # 1.0331
Pg = -1.340
Pg 7 = =0.903 + 0.7280 1
Pg g = =0.777 + 1.376 1
Pig,11 = ~0-273 * 1.572 1
Pyy 13 = "0.248 # 0.9181
P1g,15 = —0.0936 + 0.09401

TABLE 4.2 Poles of the heave, pitch Kalman Filter



TABLE 4.3 Sensitivity of the RMS error of sway, roll, yaw motion,
to changes in the parameters of the ship-sea model.
C (sway) indicates a calibration coefficient in the
sway measurement (and similarly for the other motions),
to handle systematic errors in the measurements.

Parameter Changed| Errér'Sway (ft) | Error Roll (deg)Error Yaw (deg)
'Basic Case 0.241 . 0.56 0.0776

U=20 ft/sec 0.245 0.568 0.0963
wm=0.52 rad/sec 0.314 0.91 0.0858

$=60° 0.296 0.624 0.112
C(sway)=0.9 0.255 0.586 0.081
C(roll)=0.9 0.247 0.708 0.0808

C (yaw)=0.9 0.242 0.56 0.0777
C(sway)=0.0 0.518 1.21 0.1408
C(roll)=0.0 0;376 4,08 0.158

* | c(yaw)=0.0 0.242 0.563 0.0785

RMS values of : :

the motions 0.60 4.56 0.227 i
(nominal case) !
Measurement

noise intensity (.316 ft)? (.81°)*2 (.81°)2




76

Ship speed : U=15.5ft/s Vieve headino anale @ ¢=45°
SEA : H=1l0ft wm=0.72rad/s SEA : E=12:It u)m=0.v-’-;807rad/s
Ship model poles
By, = 0.7%4 2 0.754 1 Py,, = 0.470 ¢ 0.470 1
Py, = 0754 ¢ 0.754 1 Py, = 0470 ¢ 0.470 {
Py g = “0:754 0.754 1 Py g = 0.470 0.470 1
P, g = 0-223 0.873 1
Py 10 = -0.335 + 0.5881
Pi1,12 = -0.260 ¢+ 0.440 1 SAME
Pyy 14 = ~0-00983 : 0.484 L
Pig 1 = 00204 ¢ 0.0597 4

TABLE 4.4 : Poles of the sway, roll, yaw model
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SER  H=1C0ft um=0 72rad/s
¥elman filter poles
. = - + . 1
Py 5 1.067 ¢ 1.086
= - 5 + .
p3l4 0.457 1.312 L
= - b4 14
5 6 1.279 0.477
Pog = -0.210 = 0.934 1
!’
Pg 19 = ~0-365 : 0.523 L
By, 1 = 0-087 ¢ 0.446 1
Dy 14 = “0-159 =  0.165 1
= -0.0203 ¢ 0.05954
P15 16 0.0203 5

TABLE 4.5: Poles of the sway, roll, yaw Kalman filter
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Figure 4.1

Results of Heave Simulation and Its Kalam Filter Estimate
(dotted line), Using Accurate Model at U=21 ft/sec and 0°
Angle of Incidence and in sea state 5.
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Results of Pitch Simulation and Its Kalman Filter Estimate.
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Results of Sway Simulation and Its Kalman Filter Estimate
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Results of Roll Simulation and Its Kalman Filter Estimate.
Same conditions as in 4.3.



YAW (deg)

82

actual

- —— estimated

-.90 F ‘

~.75 b v l

-1.00 ! Il - \ L .
& n [+2] ~ o o] w [N
S 8 < o ® o ()
S S S [\ ) S S
5] S S S S S S
m m m m m m m
& & & & & & &
5] ® (] ® S [ -

TIME (sec)

Figure 4.5

Results of Yaw Simulation and Its Kalman Filter Estimate.
Same condition as in 4.3.
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Results of Heave Simulation and Its Kalman Filter Estimate

(dotted 1line).

The actual wave spectrum model frequency is

0.52 rad/sec, while the value used in the Kalman Filter is

0.72 rad/sec.

All other parameters as in 4.1.
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Results of Pitch Simulation and Its Kalman Filter Estimate.

Same condition as in 4.6.
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All other parameters as in 4.3.
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Same conditions as in 4.8.
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Results of Yaw Simulation and Tts Kalman Filter Estimate.

Same conditions as in 4.8.
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Figure 4.11

Results of Yaw Simulation and Its Kalman Filter Estimate
(dotted line), using noisy measurements (light line) when the

roll measurement is disconnected. Same other conditions as
in 4.3.
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Results of Sway Simulation and Its Kalman Filter Estimate
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angle of incedence is 60° and the value used in the Kalman
Filter is 45°. Same other conditions as in 4.3.
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Chapter 5: SHIP MOTION PREDICTION

It is of interest to use the models developed in the previous
sections to forecast the behavior of the vessel within a few seconds.
The feasibility to predict the motions could assist significantly
the pilot in committing the aircraft to landing under favqrable
conditions.

An automatic landing does not require within LOG theory such
information since the predictable part of the motions is included
in the state and therefore used directly. MNonethless the prediction
is of primary importance for pilot landing or semi-automatic landing.

Similarly for offshore operations a display of a prediction
of the most critical vessel motions could reduce the Qperation risk
significantly. The operator could choose a time window of minimal
motion or acceleration and then transfer cargo or personnel.

The subject has been considered in the literature [61, [11],

[24] using both frequency and time domain technigues.

Theoretical Background

The first to treat the subject of developing a predicting
filter was Wiener [29]. If a random process has power spectrum S(w)

a spectral factorization is first required, i.e.

Aw) = Plw) v* () (73)

where * denotes complex conjugation and ¥ (s) is an analytic function
of s with the exception of a finite number of poles in the left
half plane. Then the transfer function of the optimal predictor

K(w), in the sense of minimizing the expected value of the error, is
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given by the expression:
- . -iwt
K(w) =\y(w) . Y(t+a)e dt (74)

where Y(t) is the inverse Fourier transform of Y (w) and a is the
prediction time. The importance of this result is to provide a
number of intuitive results, such as the fact that a narrow band
process is predictable while at the extreme a wide band process is
unpredictable. The disadvantage of this approach is that it may
require differentiators in its implementation, depending on the
form of the spectrum [29].

The alternative is to use state space models where no such
problems appear. In fact the predictive filter has a very simple

form. If the system has a state space description

[+]

(75ab)
¥ = Cx + W,

where w, and W, are white noise signals, it is not hard to see that
if the state x is perfectly known at t then the predictable part of
x(t+1), denoted by §p' is

X, (t41) = BT x(t) (76)

If the state is not available the Kalman filter estimate is

used instead [5],[8]:

x, (t47) = ™" x () (77)
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i.e. the propagation of the equation

[}

2<-p(t+”r)

A x_(t+1)
P (78ab)
§p(t) = x (t)

For a stable matrix A,§p(t+1) > 0 as T+, reflecting the fact
that the influence of the driving white noise completely alters the
state of the system, once the homogeneous solution has died out.

The covariance of the error

e = X_ - X
denoted as Pp is governed by the equation
[+
5 T
P = AP (1) +P_(1) A" +V 79
o (1) (1) + P (1) 1 (79)

When the state is perfectly known the initial condition is:
P (o) =0 80a
p( ) ( )

While in the case of using the Kalman filter estimate

Pp(o) = P(t) (80b)

where P(t) is the error covariance of the Kalman filter at the
"present"” time t.

The two models developed for the vertical and horizonatl motions
have been used to study the predictability of the ship motions. |
Figures 5.1 through 5.5 show simulation results assuming perfect
state knowledge. Similarly perfect state knowledge has been
assumed and the covariance has been propagated using equations (79),
(80). Figure 5.6 is a plot of the heave, pitch motions rms error

versus prediction time, while Figure 5.7 depicts the sway, roll,



93

yaw rms erros versus prediction time. The error has been non-
dimensionalized with respect to the corresponding rms motions.

As expected, the error tends to 100% for large prediction
times. Roll is a narrow band process and as expected it is the
most predictable motion, up to ten seconds ahead. The remaining
four motions are predictable up to five seconds ahead.

These results hold in the ideal case. The actual performance
will be lower due to the presence of noise in the measurements,
fewer measurements than states and modeling errors.

To assess the effect of measurement noise some simulations were
made, whose results are shown in Figures 5.8 through 5.10. A rather
extreme case was considered: In the case of the vertical motions
only two measurements were available, heave and pitch, and in the
case of the horizontal motions, only the sway, roll, and yaw motions
were available. As seen in the figures, the same noise used to
derive the Kalman filter gains was used, which is quite significant.
As expected, the performance deteriorated although roll is still
predictable up to eight seconds. The other four motions are pre-
dictable up to about two seconds.

In the case of modeling errors, let the correct model be

x = AX + W (81)

while the prediction model is
o
X = A* X (82)
P
with A* = A + §A. Then the error e = Ep - X is governed by the

equation

é = A*e +8A x - W (83)
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or by letting X = v[e]T

o A*  §A -W
217 Lo A Y1 w (84)

so by denoting:

p=E{ee’}, V=E{xe'} ,V=E{xx } (85
the following equations are obtained = o

o]

P = A% P+PA*T+6A°V+VT'6AT+V1

[}

\ 'V=AV+VA*T+U°5AT—V1
0 T
=AU UA +T (86abc)

3\ U, the covariance of the vessel model, can be assumed to be in
steady state so the first two equations can be used to propagate
V and P. Figures 5.12, 5.13, and 5.14 depict the error covariance
of the vessel motions when the model used is different than the
actual one. Since one of the most critical parameters is the modal
‘frequency, its effect has been studied: The nominal value is 0.52
rad/sec, while the value used in the prediction filter is 0.72 rad/
sec. The covariance at the inifial time is assumed to be zero
(perfect state knowledge).

As can be seen from these figures, the effect of modeling error

is important in the case of the modal frequency, providing a re-

duction of about 30-50% in the prediction time within prescribed

confidence limits.
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The sinusoidal behavior of the covariance propagation at
about twice the motion natural frequency (as seen in the case of
roll, for example) can be explained by the form of the covariance

equation
° T
P=AP+PA -V (87)

For example the unforced equation

° T
P=AP+PA
(88ab)
P(O) = Q
has the solution
T
() = eAthA t (89)

which is composed of exponentials in the form

where Ai_ame the eigenvalues of A. As a result 2Ai will appear and
in the case of roll it is obvious that twice the roll natural fre-

guency dominates the response.
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Reduced Number_of States

Another aspect of interest is omitting states. In such a case
we denote by x the nominal state of dimension n and by x* the
implemented state of dimension m, nzm. We assume that x* is

obtained by simply omitting some states, so that

x* = Wx (90)

where
W= [I_: #] (91)

with I, the unit (mxm) matrix. The nominal system equation is

o
X = A x + BW

-1
(92ab)
z =Cx + W
= = —2
while the prediction filter is
<]
x = A* X
_p —
(93ab)
z = C*%* x
—Pp —-Pp

where X5 has dimension m, A* is the mxm reduced system matrix and
C* the reduced observation matrix. Then we define:

SA = WX A* W -A (94)

and we obtain the covariance equations [8]:

= WEeRA*eWeP + PeWLeA*TeW + SAV + VIss AT + V

go
|

1

AoV + VeWLsA*TeW + US AT = V (95abc)

AU + UAT + vy

<o
i

1

o
i
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where P, V, and U are the same quantities defined before, ex-

cept that the error is defined as:

e =W x - X (96)
—p —

Note that we may eliminate any row from the original system,

so its is convenient to set all the rows to be eliminated at the

end by performing a row permutation. The matrix that interchanges

rows has the form

S={00 ...010 ...0 (97)

where each row has only one nonzero entry equal to one, and no row
is the same as any other one.

The inverse of S is ST thus minimizing the computational effort.
Once the appropriate permutations have been established, it is easy

to construct S and equation

1
x = Ax + BW

1
(98ab)
y = ¢Cx
becomes
(99ab)
=C_z
Yy =©C, 2
where
z = Sx
A_ =S A ST
P
B =SB (100abcd)
P
C._. =20C ST
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Then we proceed to determine the error covariance as explained
“above using Ap, Bp’ and CP as the system matrices. |

The inclusion of non-minimum phase zeros was considered to be
an important part of the overall modeling. This was confirmed by
studying the effect of omitting these zeros on the prediction error
covariance. This is seen in Figure 5.15, where the heave and
pitch rms error, non-dimensionalized over the corresponsing rms
motion, is plotted versus prediction time. As expected, pitch error
increases substantially, since pitch lags heave at low freqﬁencies
by 90°. Because heave and pitch are coupled, the error in heave
.is also affected, resulting in poor prediction of both heave and

pitch.
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Sway Simulation Results and Its Prediction (dotted line starting
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Perfect state knowledge is assumed.
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PREDICTION ERROR

12.58E+81

18.99E+81

?5.88E+28

58.08E+88

25.80E+88

RMS ERROR/RMS MOTION (PERCENT)

08.08E-081

po°ee
e0°se s

TIME(SEC)

Figure 5.6
RMS Prediction Error Over RMS Motion Versus Prediction Time

£ i = =
or Heave and Pitch, U=21 ft/sec, Wm—0.72 rad/sec, sea state 5.
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RMS Prediction Error Over RMS Motion Versus Prgdiction Time for
Sway, Roll, Yaw. U=15.1 ft/sec, ¢=45°, sea state 5.
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Figure 5.9
Sway Simulation Results, Its Kalman Filter Estimate (up to 40

sec) and Its Prediction Using the Kalman Filter Estimate

(after t=40 sec). Sam conditions as in 5.3.
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Roll Simulation and Prediction.

Same conditions as in 5.9.
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RMS Prediction Error Versus RMS Motion Versus Prediction Time
for Sway. Actual Wm=0.52 rad/sec, used Wm=0.72 rad/sec. All
other conditions as in 5.3.
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in 5.12.
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U=21 ft/sec, ¢=0°, sea state 5.

nonminimum phase zero have been omitted.

In the ?rediction model the
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CONCLUSIONS

A satisfactory approximation of the ship motion equations
as provided by hydrodynamic theory has been achieved. The
approximation is valid within the wave frequency range and for
seas described by the Bretschneider spectrum, whose major
limitations are

(a) uni-directional seas

(b) unlimited fetch, deep water

The resulting two groups of motions, i.e., heave-pitch and
sway-roll-yaw can be approximated separately requiring 15 and 16
states respectively. If both must be used a 25 state system is
required.

The model depends parametrically on the ship speed, the
wave angle and the significant wave height and modal frequency.

The Kalman filter is designed using as measurement noise
intensity, values from ship vibration amplitudes. For sway-
roll-yaw the vibration levels are small, nonetheless, to bound
the filter eigenvalues below 2.0 rad/sec similar values were
used, as for heave-pitch.

It should be remembered that heave and pitch are related
by a non-minimum phase transfer function, resulting in reduced
filter accuracy. Actually, heave is 90° out of phase for low

frequencies with respect to all the other motions.
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A sensitivity analysis of the filter performance indicates
that the most critical parameter is the spectrum modal fre-
quency. It should be remembered that a sea spectrum may contain
more than one peak, in which case it is essential to obtain an
accurate estimate of both peak frequenices.

Of particular interest is the fact that the wave direction
does not have a significant influence on the estimation error.
This means that although our modeling used a uni-directional
- Bretschneider spectrum, it can be applied in its present form
for directional seas.

The models derived herein can be used to predict the ship's
motions up to 5 seconds ahead in time for all motions and 10
seconds for roll. When modeling errors and noise are taken into
account, a more realistic estimate of 2-3 seconds for all motions
and 6-8 seconds for roll.is obtained.

Again, the modal frequency of the sea spectrum is the most
critical parameter. Also, the nonminimum phase zeros can deterio-

rate the performance of the predictor significantly if omitted.
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APPENDIX 1

Hydrodynamic Theory

In the text, the simple one dimensional eqﬁation of heave
motion was derived to demonstrate the principleé.involved. Here
we will praoceed to write the overall equations of motion.

We will avoid extensive hvdrodynamic theory developments
since [15 ] and [17 ] provide an in depth coverage. Within linear
theory, we intend to write the added mass, damping and exciting

force terms.

The equations of motion can be written as

{-w?> [M+ A]l+ iw B + C} x = Fn ( (1)

where

We can find the various matrices from hydrodynamic théory
[15 ], [ 17] and dynamics. We omit surge as a second order

quantity so that x is a vector of dimension ficzl

N

3
O
1
=)
N
o]
O

@]
=

o
@)
O
A

M =

~-mz o} I 0 I (3)
C XX X2z
0 o 0 0
Yy
o) 0 I, © I,

% _— —
(4
with m the masZ‘of the ship, z the distance of the center of
C
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gravity, vertically, from the origin.

—— a—

AR, O Ay, O Prg |

8] A3y O Ass O
A = A, O Ayy O Ay
(4)
o] As; O Ass O
Ag2 O Agy O Ags
— —
B2 O B2y O Bos
0 B3y O Bss O
B = Byz O  Byw O  Bus. (5)

Bg2 O Ben O Bs s

o} (o) 0

pgAmp 0 Css
0 A(c;M)’T o] (6)

Csz O A(GM)L

6] 0 o)

0O o O O O
| |

0
0
lo o o o ol

with Amp the waterplane area of the ship, A the displacement,
(GM)T the transverse metacentric height and (GM)L the longitudinal
metacentric height.

The following relations hold true within strip theory [17]



A33 = A°
33
B = B°
33 a3
A = A°
35 3 s
Bgs = B°
35
A53 = A°
3s
B53 = B®
as
©
Ass = Ass
-]
Bes = Bss

The superscript O denotes quantities at zero speed. X

A

quantities are important only for cruiser stern ships.

B?.
1]
Similarly, we can find:

o

By, = Az

By = B2

123

bijare its sectional added mass characteristics.

<+ U(xé\z

U .,A
azbas
+ U a3,
U U A u? A
- @t @ *albu w %3
° v A
+ UAj,y - Ux, 033 = 2 b
° 8] A
+ = By + = X, bis
o
- UAj3s _UXA 33
u? _.° U A U? A
+ w2 Az; - azxz by; + o2 ¥a %33
uz _o° A u? A
+ 52 Bas * lei o33 + 2% Pas

Ais
A

the distance to the aftermost cross-section of the ship and aij'

These last two

The A;- ?

can be found using the M.I.T. Seakeeping Program [27].
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with B,, the equivalent nonlinear damping
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° v ° U ., A U A
= , - +
Ags Age + > D o2 *a b, o Xa %z
© Uz (-] A U2 A
Bgg = Bgg + — By + Uxi OG22 + 72 Xp b2,

Fz = Qo Df (fz + hz) d£+ G, P hf‘

iw

*q

s =a, p/ [E (f2 +hy) + 10— h, 1dE + a, p 7 %, b3

: A
Fu=a°pf(f.,+hg)d§+aopz%-hu

u
iw

n%

F; = pay, / (f; + hy) dE + p o,

U U A
-pa, S [E(f3 + h3) + = —h3]dE - p ag 70— X,h3

+
n
!

where fj is the sectional Froude-Kryloff force and hj the sectional

diffraction force.
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GM

XCG
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Vertical Center of Gravity = - 4.6 ft.
(from waterplane)
Metacentric Height = 4,16 ft.

Longitudinal Center of Gravity = 1.07 ft. AFT
( from admidships)

Displacement = 6,800 ton

Block Coefficient = 0.461
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APPENDIX 2

The M.I.T. Sea-keeping Program [27] was used to
derive the hydrodynamic data. The values used to develop
the simple models for heave-pitch and sway-roll-yaw (as
already mentioned, to first order heave and pitch are
uncoupled from sway, roll and yaﬁl

All units are consistent such that the forces
are obtained in tons, the moments in ton-ft., the
linear motions in ft. and the angular motions in radians.
The programs change the angular motions and express them

in degrees only in the final (output) stage.

Heave-Pitch Characteristics

M = 214 Cyy = 587
032— 0 -

A°%33 281 B3, 260
A%35= 15500 Bgs = 15500
Cys = 260
T = 3.76%10° A = 4.20%10°
=55 . ] 55 :

6 6

= * = *

Be . 3.8*%10 Cee 9.53%10
Al = 550

A2 =120000

The principal ship characteristics have as follows

LBP = Length between perpendiculars = 529 ft.
B = Beam = 55 ft.
T = Draft = 18 ft.
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44
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24

46
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66
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Sway - Roll - Yaw Characteristics

22,800
104,000

800

28,800

-760

181,000
220
4.16%10°
3.8 * 10
130,000
14,500
380
2,400

23,000

6

24
46
22

26

-50

= 5,600

10

= 370
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APPENDIX 3

Simulation

The simulation of a continuous system

X = AxX + BWl

Y Cx + W

2

where the white noise signals Wl, W., have intensity V

2 1’
V2 respectively, is performed by constructing the equivalent

discrete system

x(T+8t) = Ak x(t) + Bk Wkl

y(t) = C x(t) + W

k2
where Ak = eA(St =1 + A-8t + A2-6t2/2 1+ 0 .
. _ t+8t A(t-T)
Bkwkl = i e BWl(T)d

An approximation would be

x(t+d8t) = (I+A'6t)x(t)+(B°6t)Wkl

y(t) = Cx(t) + sz

N .
where Wkl’ sz discrete white noise of intensity Vkl’ sz

respectively, given by:
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Vkl = Vl/ét

sz = V2/6t

If a random number generator is provided with a range be-

tween 0 and 1, the following relation provides Wkl (and simi-

larly sz)

Wkl = (RND-0.5) - lZ'Vkl

where RND is a random number between 0 and 1.

Higher order approximations to A, may be necessary in some
cases. Problems appear in particular with lightly damped systems,
i.e., when the matrix A possesses eigenvalues -a + ib where
O0<a<<b. Such for example, is the case of voll whose damping
is typically around 10% of the critical value.

The approximation:

e(mafib) 8t | (1 a.st) + ib-st

is valid provided
a«§ t<<l

bes, t<<1

The next order term is:

(—a+ib) 2 —%E

so for accuracy we require,

2
| @®-p%) 85| <<ast

ab8t2<<b6t
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which results in a single additional condition

It is easy to see that when a<<b then

st<< min (= , & + (3]

This requirement may be veryi demanding for simulation by
imposing an extremely small time step. If an appropriate step
is not chosen then the real part of the (neglected) second order
term reduces the first order real part, thus resulting in a re-
duction of the already small damping. By using a higher order

approximation, in the form

Me, M
A0t I iaese s . . L4 ASE
= m!
such problems are resolved. In the present case, the sway-

roll-yaw model requires such treatment for efficient simulation.
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Appendix 4

Computer Program Listing



2000

VOLEL FORTRAN A VW,/SP COMVERSATIONAL MONITOR SYSTEM

DIMENS ION A{15.15).C(2,15),SIGMA(15,15),XI(2,2)
rX(X)=5.*(—Xta4+1.)#(1.+2.tX*ALFA)-2.*ALFA*X-*5

WR1TE(6,2000)

FOPMAT (3X, 'INPUT THE SPEED (FT/SLC) AND WAVE ANGLE (DEGREES)')

RELL(S ,*)U, T1

T=71%x3.14159/180.

5=232.2

WRITE(6,2010)

MODGOO10
M0ODQ0020
MOCQOC30
MODD0040
MODO0005S0
MOCJ0060
MCD0O0070
mMoDQ0080

2010 FORMAT (3X, ' INPUT THE SIGN. WAVE HEIGHT (FT) AND MODAL FREQ. (RAD/SMOD0D090

1EC) ")

READ(5,%;22, OMM
ALFA=J/GiONI*COS(T)

Ui=.2

us=5,

AR=FX{U1)

UMz (U14U2) .5
IF(ABS(L1=UJ2).LT..00C1*UM) GO TO 301
CC=F{{UM)

IF(AA«CC.GT.0.) GO TC 302
U2:=UM

GO 10 903

Ut=UM

AL=CC

GO 1O 903
2S=UM+ UM = 2= ALFA
CAN=Z5%2,%%.25
251=2(1.4(25/CAN ) **4)**x3/2S*%4
ZE0=EXP(=1.25/UM*»4) /UM *5/(1.+2.%ALFA*UM)
BE1=251+252

A33=495.

B33=260.

C33=537.

A3L=1550C.
B35=11700.+280.*UY
C3%=260.*U+17239.
£53=15500.
B53=117C0.-280.*U
CHU==2601U+17250.
A55H=7,92110 . 448
B55=3.8410%=6G
C55=-280.%U**249.53%10.%x*6
D:433% AE5--A35%453
D1=AS5/D

D2=-A35/D

L3=-A53/D

D4=A33/0
21=-(D1*B33+D2*B53)
22=-(D1+(C33+D2*C53)
23==(D14F35+D2+B55)
24==({D1*035+D2+¥C55)
25:=-(D3*xBE23+04+B53)

262~ (D3+C23+D4#C53)
27=-(D3%B25+D4*335)
Z8=~(D3*C353+D4+C55)
RL=523.

MODO0100
MOD00110
MODOC120
MODC0130
MOD00 140
MOD00150
MODO0 160
MOD00170
M0OD00 180
MOD00190
MOGC00200
A0C00210
MOD00220
MOD00230
MODO0G240
MOD00250
MOD00260
MODO00270
mMoD00280
MGD00290
MODO00300
MODO00310
M3000320
MOD00330
MCD00340
MOD00350
MOD00360
MOD00370
MOD00380
MQOD00390
MCD00400
MODD0410
mMQODC0420
MOD00430
MOD0O0440
MOD00450
1/0D00460
MCDOC470
MoD00480
MOD00490
MOD00500

© MODO0S10

MGOD00520
MOD00530
MODC0540
MODO0550

PAGE 001

Program to prepare

matrices for the heave-

pitch motions.
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FILE:

800

MODEL FORTRAN A VM/SP CONVERSATIONAL MONITOR SYSTEM
B=55. MOD00560
FO:SQRT(Q.*3.14159*5/(RL*CGS(T)+B))+2.*3.14159/(RL*COS(T)+B)*U*COSMODOOS7O
(7T} MOD003580
27=.7071 MOD00590
OMNE = ONM+OMM*%25U /32.2%COS(T) MODO0G00
TH1=(2.*ZT*FO**5+FO**4*OMNE) MOD00610
TH2=(FO**4*(4.*ZT**2—1.)+2.*ZT*F0**3*OMNE) MOD00620
TH3=—(DMNE*FO**4+2.*ZT*FD**5) MODO0G30
THA=FQ**4 MCDO0E40
A1=550. MODO0S50
A2=1200C0. MODODEGD
THS=D1*A1*FO**2 MODO0&S70
TH6=D2*A2+C0S(T) MGD00S80
THT=D3¥A1*xFC**2 MODO0690
THS=D4*A2=COS(T) MODO0700
OMN=0MM*CAN MOD00710
S0=1.25/4.%2Z++2/0MM=x5*BET MOD00720
VPi=0MN*+2 MODO0730
VP2=CMN*2.%2T MOD00740
VPa=VP1*SQRT (S0) MCDOO750
00 800 I=1,15 MCDO0760
DO 800 d=1,15 MODO0770
ALI,J)=0. MOD00780
Ar1,2)=1. MQoD00790
£(3,4)=1. MOD00800
A{5,6)=1. MOD00310
A(T,8)=1. MoD00820
A{9,10)=1. MODo0O830 |
ALi1,12)=1. MOD00840
A(13,14)=1. MODO0OC850
Ai15,15)=—-0MNE mM0D00860
AE,7)=22 MoD0o0870
A18,8)=21 MGoD00380
Ai8,9)=2Z4 MOD0O0B90
A(8,10)=2Z3 MODO03900
Ai10,7)=I86 MODO0910
A110,2)=£5 MQD00920
A(10,3)=28 M0OD00930
A{10,10)=27 MOD00940
A(3I5,11)=T+1 MODO0350
AL15,12)=TH2 MOD00S60
A(15,13)=TH3 MODQ0970
A{35,14)=TrH4 M0OD00S80 -
A{8,11)=TH> MOD00990
AL8,15)=TiH6 MODO1000
A(10,11)=TH7 MODO01010
A(10,15)=TH8 MOD01020
A(2,1)=-VP1 MODO01030
A(2,2)=-VP2 MGOD01040
AL2,4)=VP1 MODO 1050
A{4,3)==VP1 MODO1060
A(4,4)==VP2 MODO1070
A(4,8)=VP1 MOD01080
A{D,5)=-VP1 McoD01090
A(6,6)=-VP2 MODO1100

)
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FILE:

2400
€90

VODEL FIRTRAN A
A(12,11)=-FO%=*2
A(12,12)=-2xZT+F0

A(12,13)=FJ%*2
A(3d,13)=-FO¥*2
A(14,148)==2x%F0=*ZT
At14,1)=VP3
WRITE(6,2220)

FORMAT ('** A MATRIX')
DO 890 I=1,15
WRITE(9,2400) (A(I,J),d=1,15)
FORMAT (BE10.4)
CONTINUE

END

VM/SP CONVERSATICNAL MONITOR SYSTEM

MODO1110
MODO1120
MODO1130
MCDO1140
MCD01150
MODO1160
MODO1170
Maoo1180
MCDO1190
MODO1200
MODO1210
MOD01220
MOD01230

PAGE 003
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FILE: SRY FORTRAN A

)

C

C MODEL FOR THE SWAY ROLL YAW MOTIONS OF A DD-963 DESTROYER
C REVISED VERSION ’

C LAST CORRECTED SEPTEMBER 11 1981

C

[ XeNe)

[eNeNe]

o000

o000

DOUBLE PRECISION A(16.16),XI(16.16).C(3.16),CV(3.16).CA(3.16)
DOUBLE PRECISION THETA(3,3)

DOUBLE PRECISION AH(3,3),BH(3,3)

DOUBLE PRECISION P(3,3),R(3,3),T(4,4),U(4,6)

DOUBLE PRECISION ZET(16,16) ,WR(16),WI(16),APS(16, 18)

SPEED, ANGLE AND SEA STATE INPUT

WRITE (6,100)

100 FORMAT(2X, ‘INPUT THE SPEED (FT/SEC) AND ANGLE (DEGREES) ‘)
READ(5,*)V,T1
T1=T1/57.29578
WRITE(6, 101)

101 FORMAT(2X,’INPUT THE SIGNIFICANT WAVE HEIGHT (FT) ',
1/AND MODAL FREQUENCY (RAD/SEC)‘)
READ(5,*)ZZ,0MM

SEA MODEL

ALFA=V/32.2*0MM*COS(T1)
ZETTA=0.707

DELTA=SQRT(1.-2.*2ETTA**2+SQRT(9.-4.*ZETTA**2+4.*ZETTA**4))/2.

OMN=ABS(OMM=*(1.+ALFA)/DELTA)

BET=((4.-DELTA**2)##2+4 *ZETTA*+2+DELTA**2)**3/DELTA**4
BET=ABS(BET*EXP(-1.25)/(1.+2.%ALFA))
S0=0.3125%xZZ**2/0MM+BET

VP 1=0MN**2

VP2=0OMN*ZETTA*2

HYDRODYNAMIC DATA
FORCES

A2=310.*SIN(T1)

A4=21420.*SIN(T1)

A6=11300.*SIN(T1)

ZET2=0.72*SIN(T1)

ZET4=0.7*SIN(T1)

ZET6=0.35*SIN(T1)
OM2=(0.6+V*COS(T1)/89.444)*SIN(T1)
OM4=(0.76+V+C0OS(T1)/55.748)*SIN(T1)
OM6=(0.96+V*COS(T1)/34.939)*SIN(T1)

ADDED MASS - DAMPING

OMES=(0.425+V*C0S(T1)/178.27)**2
AH(1,1)=223.

AH(1,2)=-759.

AH(2, 1)=-759.

AH(2,2)=22900.

BH(1,1)=10.6

VM/SP CONVERSATIONAL MONI}OR SYSTEM

SRYO0010
SRY00020
SRYO00030
SRYC0040
SRYQO0050

- SRYO0060

SRYO0070
SRY0O0080
SRY000S80
SRYO0100
SRYO0110
SRY00120
SRY00130
SRYO0 140
SRYO0150
SRYO0160
SRY0OO170
SRY00180
SRYO0190
SRY00200
SRY00210
SRY00220
SRY00230
SRY00240
SRY00250
SRY00260
SRY00270
SRY00280
SRY00290
SRYOO0300
SRYO0310
SRY00320
SRYOO0330
SRY00340
SRY00350
SRYO0360

. SRYO0370

SRY00380
SRYO0390
SRY00400
SRYQ04 10
SRY00420
SRYQ0430
SRY00440
SRY00450
SRYO0460
SRY00470
SRY00480
SRY00490
SRYO0500
SRYQ0510
SRY00520
SRYO0S530
SRY00540
SRYOQO0550

PAGE 0O1

Program to prepare matrices

for the sway-roll-yaw motions
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FILE: SRY FORTRAN A VM/SP CONVERSATIONAL MONITOR SYSTEM
BH(1,2)=-55.4 SRY00560
BH(2,1)=-55.4 SRYOO0570
BH(2,2)=887. SRY00580
AH(1,3)=14600.+V*BH( 1, 1)/0OMES SRY00590
AH(3,1)=14600.-V*BH( 1, 1)/0OMES SRYO0600
AH(2,3)=182000.+V*BH(1,2)/0OMES SRYOO06 10
AH(3,2)=182000.-V*BH(2, 1) /OMES SRY00620
AH(3,3)=4.18E6+V**2+AH( 1, 1)/OMES SRY00630
BH(1,3)=423.-V*AH(1,1) SRY00640
BH(3, 1)=423.+V*AH(1,1) SRYO0650
BH(2,3)=6270.-V*AH(1,2) SRY00660
BH(3,2)=6270.+V*AH(1,2) SRY00670
BH(3,3)=144000.+V+*2*BH(1,1)/0MES SRYQ0680

c NONLINEAR ROLL FACTOR SRYQ0690
FBV=3. SRYO0700
BH(2,2)=BH(2,2)*FBV SRYOO710

c SRY00720

C  MASS AND SPRING CONSTANT SRY00730

c SRY00740
AH(1,1)=AH(1,1)+215. SRY00750
AH(1,2)=AH(1,2)+988. SRY00760
AH(1,3)=AH(1,3)-230. SRYOO770
AH(2, 1)=AH(2, 1)+988. SRY00780
AH(2,2)=AH(2,2)+104000. SRY00790
AH(3,1)=AH(3,1)-230. SRYO0800
AH(3,3)=AH(3,3)+3.76E6 SRYO0810
C44=28800. SRY00820

c SRY00830

C CONSTRUCTION OF THE MATRICES T AND U SRY00840

c SRYOO850
CALL RINV(AH,R) SRY00860
CALL RMUL(R,BH,P) SRY0O0870
DO 400 I=1,4 SRY00880
DO 401 J=1,4 SRYO0890

401 T(I,J)=0. SRY00900
DO 400 J=1,6 SRY00910
400 U(I,J)=0. SRY00920
T OT(1,1)=R(1,2)*P(2,1)/R(2,2)-P(1,1) SRY00930
T(1,2)=R(1,2)/R(2,2) SRY00940
T(1,3)=R(1,2)*P(2,2)/R(2,2)-P(1,2) SRYO0950
T(1,4)=R(1,2)*P(2,3)/R(2,2)-P(1,3) SRY00960
U(1,1)=R(1,1)-R(1,2)*R(2,1)/R(2,2) SRY00970
u(1,5)=R(1,3)-R(1,2)*R(2,3)/R(2,2) SRY00980
T(4,1)=R(3,2)*P(2,1)/R(2,2)-P(3.1) SRYQ0990
T(4,2)=R(3,2)/R(2,2) SRY0 1000
T(4,3)=R(3,2)*P(2,2)/R(2,2)-P(3,2) SRY01010
T(4,4)=R(3,2)*P(2,3)/R(2,2)-P(3,3) SRY0 1020
u(4,1)=R(3,1)-R(3,2)*R(2,1)/R(2,2) SRYO1030
U(4,5)=R(3,3)-R(3,2)*r(2,3)/R(2,2) SRY01040
T(3,2)=1 SRYO 1050
T(2,1)=-P(2,1)*T(1,1)-P(2,3)*T(4,1) SRY0 1060
T(2,2)=-P(2,1)*7T(1,2)-P(2,3)*T(4,2)-P(2,2) SRYO1070
T(2.3)=-P(2,1)*T(1,3)-P(2,3)*T(4,3)-R(2,2)xC44 SRYO 1080
T(2.4)=-P(2,1)*7(1,4)-P(2,3)*7(4,4) SRYO 1090
u(2,1)=-P(2,1)*U(1,1)-P(2,3)*U(4,1) SRYO 1100

PALE QUL

LET



FILE:

c

C CONSTRUCTION OF THE MODEL MATRICES

C

402

405

406
404

403

]

SRY FORTRAN A

u(2,2)=R(2,1)
u(2,4)=R(2,2)

u(2,5)=-P(2,1)*U(1,5)-P(2,3)*u(4,5)

u(2.6)=R(2,3)

DO 402 I=1,16

DO 402 J=1,16
A(I,J)=0.
XI(I,J)=0.
X1(6,6)=50%3.1415926
A(1,2)=1. _
A(2,1)=-VP1
A(2,2)=-VP2
A(2,4)=VP1
A(3,4)=1.
A(4,3)=-VPi
A(4,4)=-VP2
A(4,6)=VP1
A(5,6)=1.
A(6,5)=-VP1
A(6,6)=-VP2
A(7,8)=1.
A(8,2)=A2*0OM2*%*2
A(8,7)=-0M2*%2
A(8.8)=-2.%ZET2+0M2
A(9,10)=1.
A(10,2)=A4*0OMa**2
A(10,9)=-0OM4xx2
A(10,10)=-2.*ZET4*0M4
A(11,12)=1.
A(12,2)=A6%0OME**2
A(12,11)=-0M6%%2
A(12,12)=-2.%*2ET6*0OM6
DO 404 I=1,4
1P=1+12

DO 405 J=1,6

JP=J+6
A(IP,UP)=U(I,J)

DO 406 J=1,4
JP=U+i2
A(IP,UP)=T(I,J)
CONT INUE

OUTPUT MATRICES

DO 403 1=1,3

DO 403 U=1,16
c(1,J)=0.
cv(I,d)=0.
CA(I,J)=0.
c(1,13)=1.
c(2,15)=1.
c(3,16)=1.
cv(2,14)=1.

DO 407 1=1,6

VM/SP CONVERSATIONAL MONITOR SYSTEM

SRYO1110
SRYO1120
SRYO1130
SRYO1140
SRYO1150
SRYO1160
SRYO1170
SRYO1180
SRYO1190
SRY01200
SRYO1210
SRY01220
SRYO1230
SRY01240
SRY01250
SRY01260
SRY01270
SRY01280
SRY01290
SRYO 1300
SRY01310
SRYO1320
SRYO1330
SRYO1340
SRYO1350
SRYO1360
SRYO1370
SRYO 1380
SRY01390
SRY01400
SRY01410
SRY01420
SRYO1430
SRYO 1440
SRY01450
SRY01460
SRYO1470
SRYO1480
SRY01490
SRYQ1500
SRYO1510
SRY01520
SRYO1530
SRY0O1540
SRYO1550
SRYO1560
SRYO1570
SRY01580
SRY01590
SRYO1600
SRYO1610
SRY01620
SRYO1630
SRYO1640

SRYO1650
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SRY FORTRAN A

FILE: VM/SP CONVERSATIONAL MONITOR SYSTEM
IP=1+6 SRY01660
cv(1,1P)=U(1,1) SRYD1670
CVv(3,IP)=U(4,1) SRY01680
CA(1,IP)=-P(1,1)*U(1,1)-P(1,3)*U(4,1) SRY01690
CA(2,1P)=U(2,1) SRYO 1700
CA(3,IP)=-P(3,1)*U(1,1)-P(3,3)*U(4,1) SRYO1710
407 CONTINUE SRY01720
CA(1,8)=R(1,1) SRY01730
CA(1,10)=R(1,2) SRYO1740
CA(1.12)=R(1,3) SRY01750
CA(3,8)=R(3,1) SRY01760
CA(3,10)=R(3,2) SRY01770
CA(3,12)=R(3,3) SRYO1780
DO 408 I=1,4 SRY01790
IP=I+12 SRYO1800
CV(1,IP)=T(1,1) SRYO1810
cv(3,1IP)=T(4,1) SRY01820
CA(1,IP)=-P(1,1)*T(1,1)-P(1,3)*T(4,1) SRYO 1830
CA(2,1IP)=T(2,1) SRYO 1840
CA(3,1P)=-P(3,1)*T(1,1)-P(3,3)*T(4,1) SRYO 1850
408 CONTINUE SRYO 1860
CA(1,14)=CA(1,14)-P(1,2) SRYO1870
CA(1,15)=CA(1,15)-R(1,2)*C44 SRY01880
CA(3,14)=CA(3,14)-P(3,2) SRYO 1830
CA(3.15)=CA(3,15)-R(3,2)*C44 SRY0 1900
c SRY01910
C OUTPUT SRY01920
c SRY01930
GO TO 399 SRY01940
1IER1=0 SRYO1950
1ER2=0 SRY0 1960
CALL TRNATB(16,16,16,16,A,APS) SRYO1970
CALL LYPCND(16,16,16,APS XI,2ET,WR,WI,1ER1,IER2) SRY0 1980
DO 174 I=1,16 SRY01990
XI(I.1)=-XI(1,1) SRY02000
174 WRITE(9,175)XI1(I,1) SRY02010
175 FORMAT(D11.5) SRY02020
399 CONTINUE SRY02030

WRITE(9,310) SRY02040

310 FORMAT(10X,’--------- MATRIX A  ==-=-----=< ) SRY02050
WRITE(9,320)((A(I,J),u=1,16),1=1,16) SRY02060

320 FORMAT(BE14.4) SRY02070
WRITE(9,330) SRY02080

330 FORMAT(10X,’--------- MATRIX C =---===-=---- ‘) SRY02090
WRITE(9.320)((C(1,v),u=1,16),1=1,3) SRY02100
WRITE(9,340) SRY02110

340 FORMAT(10X,’--------- MATRIX XI =--==-=--<- ‘) SRY02120
WRITE(9,320) ((XI(I,J),u=1,16),1=1,16) SRY02130
DO 350 I=1,3 : SRY02140
DO 350 J=1,3 SRY02150

350 THETA(I,J)=0. SRY02160
WRITE(6,360) SRY02170

360 FORMAT(2X, 'INPUT THE SWAY-ROLL-YAW NOISE INTENSITIES (3 NUMBERS )’ )SRY02180
READ(S,*)THETA(1,1),THETA(2,2) ,THETA(3,3) SRY02190

SRY02200

WRITE(9,370)
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FILE:

370

100

j N

END

SRY FORTRAN A VM/SP CONVERSATIONAL MONITOR SYSTEM
FORMAT(10X, -~=====~-~ MATRIX THETA =----------- ") SRY02210
WRITE(9,320) ((THETA(I,J),J=1,8),1=1,3) SRY02220
END SRY02230
SUBROUTINE RINV(A,B) SRY02240
3X3 MATRIX INVERSION . SRY02250
DOUBLE PRECISION A(3,3),8(3,3),C(3,3) SRY02260
C(1,1)=A(2,2)*A(3,3)-A(3,2)*A(2,3) SRY02270
c(1,2)=A(2,1)*A(3,3)-A(3,1)*A(2,3) SRY02280
c(1,3)=A(2,1)*A(3,2)-A(3,1)*A(2,2) SRY02290
c(2,1)=A(1,2)*A(3,3)-A(3,2)*A(1,3) SRY02300
c(2,2)=A(1,1)*A(3,3)-A(3,1)*A(1,3) SRY02310
c(2,3)=A(1,1)*A(3,2)-A(3,1)*A(1,2) SRY02320
c(3,1)=A(1,2)*A(2,3)-A(2,2)*A(1,3) SRY02330
C(3,2)=A(1,1)*A(2,3)-A(2,1)*A(1,3) SRY02340
C(3,3)=A(1,1)*A(2,2)-A(2,1)*A(1,2) SRY02350
DET=A(1,1)*C(1,1)-A(1,2)*C(1,2)+A(1,3)*C(1,3) SRY02360
B(1,1)=C(1,1)/DET SRY02370
B(1,2)=-C(2,1)/DET SRY02380
B(1,3)=C(3,1)/DET SRY02390
B(2,1)=-C(1,2)/DET SRY02400
B(2,2)=C(2,2)/DET SRY024 10
B(2,3)=-C(3,2)/DET SRY02420
B(3,1)=C(1,3)/DET SRY02430
B(3,2)=-C(2,3)/DET SRY02440
B(3,3)=C(3,3)/DET SRY02450
RETURN : SRY02460
END SRY02470
SUBROUTINE RMUL(A,B,C) SRY02480
3X3 MATRIX MULTIPLICATION SRY02490
DOUBLE PRECISION A(3,3),B8(3,3),C(3,3) SRY02500
Do 100 I=1,3 SRY02510
DO 100 JU=1,3 SRY02520
c(1,J)=0 SRY02530
DO 100 K=1,3 SRY02540
C(I.,J)=C(I,U)+A(I,K)*B(K,J) SRY02550
RETURN SRY02560
SRY02570

0%T











