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ABSTRACT

Exhaust gars temperature, velocity and composition are

measured and combustor efficiencies are calculated in a lean

Premixed swirl-stabilized laboratory combustor. These data

should be valuable in understanding the combustion and fluid

mechanical processes in such a combustor with an aim to

reduce pollutant emissions and maintain high combu.tion

efficiencies in order to develop new combustor designs for

practical applications. This work is part of an overall

combus^ion research program at Cornell University directed

towards the characterization of swirling turbulent reacting

flows.

The combustor consists of two confined co-axial swirling

jets. The inner jet is premixed fuel-air mixture while the

outer jet is air only. The aa,aunt of swirl can be varied in

both the jets. The outer jet can be swirled in the same

direction (co-swirl) or in the direction opposite (counter-

swirl) to that of the inner jet. Combustion is stabilized in

front of a swirl-induced recirculation zone.

In the first phase of measurements, radial traverses

measuring temperature, velocity and gas composition are made

at the exit plane for varying outer swirl conditions using

propane as fuel.	 These data are compared with previous

results	 for	 methane	 firing.	 In	 the	 second	 phase,

measurements	 are	 made	 under	 cold	 flow	 (nonreacting)

conditions to investigate fuel distribution at the inlet and



exit planes. In addition, data similar to those obtained in

the first phase are obtained for methane firing for

comparison with data for propane firing as well as previous

results.

Temperature	 measurements	 are	 made	 with	 an	 uncoated

Pt/Pt-10%Rh fine wire thermocouple.	 A transverse cylindrical

^y probe	 is	 used	 to 'measure	 velocity	 as	 well	 as	 to	 draw	 gas
l
U samples.	 In situ calibration of the probe is found necessary

for	 velocity measurements to correct 	 for turbulence effects.

Samples	 are	 analyzed	 for	 oxides	 of	 nitrogen	 in	 a

chemiluminescence analyzer equipped with an NO 2-NO converter.

Analvs P g	 for	 the	 major	 species	 are	 done	 by	 gas

chromatography.	 A novel	 scheme	 to	 significantly	 reduce	 theu
^

x	 y1l
analysis	 time	 for	 the	 gas	 chromatographic	 analysis	 of	 the

products of propane combustion is developed. 	 1

Results	 show	 significant	 differences	 in	 the	 radial

profiles	 of	 the	 data	 between	 the	 co-	 and	 the	 counter-swirl

E cases.	 Co-swirl cases show evidence of poor turbulent mixing

across	 the	 combustor	 in	 comparison	 to	 the	 counter-swirl	 a

cases.	 NO 	 levels	 are	 low	 in	 the	 combustor	 but	 substantial

amounts	 of	 CO are	 present.	 Combustion	 efficiencies	 are	 low

and	 surprisingly	 constant:	 with	 varying	 outer	 swirl	 in

contradiction	 to previous	 results	 under	 a slightly different 	 {

inner	 swirl	 condition.	 This	 difference	 in	 the	 efficiency

trends is expected	 to be a	 result of the high sensitivity of

the	 combustor	 to	 changes	 in	 the	 inner	 swirl.	 Combustor

I'



operation is found to be the same for propane and methane

fuels.

A mechanism is proposed to explain the combustor operation

and a few important characteristics determining combustor

efficiency are identified. Future experiments to

substantiate the proposed mechanism are suggestfd.
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CHAPTER 1

INTRODUCTION

1.1 Swirl-Stabilized Combustion

Swirling flows have been studied for many years because of

their potential for stabilization of high intensity combus-

tion processes [1,2;1. Swirl has been used to stabilize sub-

sonic combustion systems[3] and is proposed for use in super-

sonic combustion processes as well[U]. The attractive

features of reacting vortex flows are better flame stability

resulting from the formation of one or more recirculating

flow zones, reduced combustion length and increased mixing

through turbulence generation.	 These large scale effects

have been demostrated by numerous experimental 	 studies

involving both diffusion and premixed flame combustors,

e.g. ,13, 5, 6, 7, 81. Unfortunately, the simultaneous presence

of swirl, shear, turbulence and heat release makes the react-

ing vortex flow a very complex object of study and as a

consequence these flows are poorly understood.
c .

Recirculation in flows with swirl is known to depend on

the swirl number S, the ratio of the axial flux of angular

momentum to the axial flux of linear momentum, and the

Reyolds number of the flow[13. As the swirl number is

increased a pronounced deceleration or even a reversal of the

flow along the flow axis may occur. Below a critical swirl

number no back flow occurs.	 Above this critical level of

1
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swirl the phenomenon of vortex breakdown[9,10J occurs which

is characterized by the formation of a free stagnation point

on the vortex axis, followed by reversed flow in a region of

limited axial extent. Various forms of vortex breakdown are

possible[9,11]. Notable among them are the axisymmetric and

the spiral forms, both of which appear capable of stabilizing

combustion[12]. Continued reasearch is required to under-

stand and characterize combustion processes in swirling flows

and to develop combustor designs with such flows.

One of the present	 applications of the swirl-combustor is

in gas turbine engines.	 It is hardly necessary to stress the

increasing role of gas turbines in the present day world.

Gas turbines are the major power systems for military and

commercial aircraft. Also, gas turbines are used for marine

propulsion, in the 'Spruance' class of destroyers, for exam-

ple. A recent application is in electric power generation as

peaking-power units, mid-range and even as baseload power[13]

units. In the combined cycle concept a gas turbine topping

cycle generates power and its exhaust is used to provide heat

to the bottoming cycle[ 1 4J. As a result of the high operat-

ing temperatures possible with new high temperature alloys

and ceramic materials, automotive gas turbines are under ser-

ious consideration[ 151.

1.2 Pollutant Emissions and Control

With the growth in applications and the widespread use of

gas turbines, the problem of pollutant emissions from gas

i
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turbines also has grown. The need to limit pollutant emis-

sions	 from	 combustion	 systems	 is	 widely	 recog-

nized[ 16, 17, 1H, 19, 201. The U.S. Environmental Protection

Agency (EPA) has proposed stringent emission standards for

new aircraft[213 and stationary gas turbines[221. The three

major pollutants from gas turbine combustors are carbon

monoxide (CO), unburned hydrocarbons (UHC) and oxides of

nitrogen (NO X )which comprise nitric oxide (NO) and nitrogen

dioxide (NO 2 ). Soot and sulphur oxides emissions can occur

under certain conditions but do not currently pose problems

for gas turbines.

1.2.1 Unburned Hydrocarbons

Unburned hydrocarbons (UHC) are a direct indication of

inefficient combustion. In addition, they are intimately

connected with oxides of nitrogen in the formation of photo-

chemical smog in the atmosphere. Higher UHC emissions are

caused by increasingly lean conditions which lead to lower

flame temperatures and to thermal quenching of the hydrocar-
e 1

bon breakdown reactions. Thermal quenching can be described

as the cooling of the gases below the temperature at which a

given reaction can effectively take place. Sawyer[231 exper-

imentally determined that the quenching temperature for heavy

unburned hyda•ocarbon oxidation is in the range of approxi-

mately 1500 to 1700 0 K. Also, large droplets with long burn-

ing times can contribute directly to increased UHC as they

may persist into the secondary dilution zone or hit the cool

r
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combustor liner and remain unreacted.	 Thus premixed,

prevaporized combustion in a near stoichiometric mixture is

E	 likely to reduce or eliminate UHC emissions.

1.2.2 Carbon Monoxide

In addition to being highly toxic, carbon monoxide in the

gas turbine exhaust is also an indication of inefficient com-

bustion; It is well accepted that the oxidation of CO to CO2

in combustion systems follows the reaction[241

CO + OH _ CO 2 + H .	 ( 1 . 1)

Reaction (1.1), which proceeds rapidly at high temperatures,

is hindered at low temperatures due to reduced levels of OH.

At stoichiometric conditions the CO concentrations are kept

to a minimum in the primary zone of the combustor where high

flame temperatures are reached and combustion is complete.

CO increases in rich mixtures due to lack of oxygen and in

lean mixtures due to thermal quenching by excess air. This

similarity between HC and CO trends in lean flames is due

mainly to the tendency of oxidation reactions to increase

with temperature. However, since the CO oxidation is slower

than hydrocarbon reactions, CO is more prone to thermal

quenching and persists unreacted for many (5-6) milliseconds

in fuel lean flames (0=0.8)[171. The quenching temperature

for CO has been experimentally determined[171 to be about

1270 0 K at atmospheric pressure and approximately 1500 0 K at 3

atmospheres below which temperature CO can remain unreacted

-i
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indefinitely	 if quenching i3	 fast	 enough. These

observations[173	 are	 consistent	 with	 the	 approximation that

flame generated	 trace species such as	 0,	 H,	 H 2 and	 OH remain

equilibrated among themselves and decay together as the temp-

erature	 falls,	 b.,t CO	 is	 not necessarily	 equilibrated with

the	 others.	 Since the	 CO reaction with OH can	 be slow com-

pared to the decay of the trace species, CO can remain

largely unreacted as the others decay. At high temperatures,

however, CO can occur due to dissociation of CO 2 . Reduction

in CO emissions can be achieved by uniform, stoichiometric or

 lean premixed combustion with reduced thermal quenching

rates.

1. 2. '3 Oxides of r, Ltrogen

NO and NO 2 are highly toxic.	 In addition, they play an

important role in smog formation and depletion of ozone in

the stratosphere[ 161. Since, at ground level, an intercon-

version between NO and NO 2 is possible in the presence of

atmospheric oxygen, there has been little interest in spe-

cific emissions of NO and NO 21 and emissions have been mea-

sured in terms of NOx .	 In the stratosphere the catalytic

ozone destruction cycle promotes a steady-state balance bet-

ween	 the oxides of nitrogen on a relatively short time

scale[19] regardless of the initial amounts of each. Smog

formation, however, may well be affected by high NO 2 levels,

since ozone does not begin to form until NO has been con-

verted to NO 2 in the atmosphere. It has also been suggested



k	

d

I

6

that locally high NO 2 emissions in the lower stratosphere

could, under some conditions, result in a more rapid removal

of NO x via conversion to nitric acid[25]. Thus the relative

amounts of NO and NO 2 are important and in recent studies the

two species are reported separately.

In combustion systems, NO formation is a prerequisite for

NO 2 formation. It is generally accepted that NO formation in

fuel-lean mixtures follows the Zel l dovich mechanism (thermal

NO) where fuel-bound nitrogen is insignifieant[261. Forma-

tion of NO is associated with high temperatures of 1900 0 K and

above[23]. Under lean conditions in a combustor NO increases

with increasing equivalence ratio, following a trend opposite

that of CO and UHC, due to the increase in temperature with

increasing equivalence ratio. But even at high temperatures

NO formation is fairly slow and occurs on a time scale of

several milliseconds. Hence NO is formed in the primary zone

where the two main prerequisites for NO formation are met,

namely, high temperatures and sufficient residence time.

This understanding suggests two methods of NO control.

First, the peak temperatures in the combustor should be low-

ered by methods such as lean premixed combustor operation and

exhaust gas recirculation. In the case of liquid fuels whose

individual droplets burn at locally stoichiometric condi-

tions, prevaporization and premixing of fuel seems necessary.

Second, the residence time in the primary combustion zone

should be reduced by the rapid addition of secondary air

through turbulent mixing. Schefer and Sawyer[26] have pre- 3

i
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sented results for turbulent, lean, premixed combustion, of

their own work as well au others which show substantial

reductions in the levels of NOx emissions over the NO  emis-

sions from current conventional turbulent diffusion flame gas

turbine combustors. Gouldin[27] points out that while turbu-

lent mixing is desirable both to reduce residence times in

high temperature zones and to enhance the stabilization of

the lean combustion suggested above, the intensity and small

scale of the turbulence required could result in a prohibi-

tive combustor pressure drop.

The preceeding discussion applies to NO formed from N 2 in

atmospheric air. Nitrogen is also found in some fuels, espe-

cially in those derived from coal. Fuel nitrogen conversion

to NOx occurs at lower temperatures than reactions with mole-

cular nitrogen and may result in larger am!)unts of NO than in

pure hydrocarbon flemes[28]. It is suggested that flame gen-

erated nitrogeneous species such as HCN, CN and NH  play

important roles in NO x formation in flames of fuels contain-

ing nitrogen compounds[28]. Also, in fuel-rich hydrocarbon

flames, some NO formation proceeds by a mechanism similar to

that for fuel-bound nitrogen involving the formation of

intermediate speciessuch as HCN and CN[29].

The formation of NO 2 is less completely understood than
s

the formation of NO though several explanations have been

tendered. A consistent mechanism for NO 2 formation must beS

able to explain the high fractions of NO 2 that have been mea-

s",
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sured in or near laminar flame fronts[30, 31, 32] as well as in

turbulent combustors[26, 33, 34,35). The most plausible

mechanism for NO to NO 2 conversion invokes Reaction ( 1 . 2) in

quenching zones where the temperature is falling and the free

radical	 concentrations	 exceed	 their	 equilibrium

values[25, 31, 32, 35].

NO + HO  = NO 2 + OH	 (1.2)

Fenimore[32] has shown that with the assumption of local

equilibrium for the Reactions (1.2), (1.3) and (1.4) the

ratio of NO 21NO can be found by assuming equilibrium for

Reaction (1.5) when oxygen atoms are determined by the equi-

libration of Reaction (1.4).

H+0 2 +M =H0 2 +M (1.3)

H + 0 2 = OH + 0 (1.4)

NO + 0 = NO 2 (1-5)

Calculations by Anderson, et al.[251 have shown that under

after burning conditions in a supersonic transport engine,

super equilibrium concentrations of HO  can result in unex-

pectedly large values for NO 	 through Reaction (1.2).

This supports Fenimore's results although in Fenimore's case

the excess H0^ results from hydrocarbon oxidation rather than

from Reaction ( 1 . 3) . Thus, Fenimore's mechanism with excess

H0 2 due to hydrocarbon oxidation appears to be the most plau-

sible explanation of NO 2 formation in gas turbines. Further

,,
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support for this mechanise comes from the study by Chen, ct

al.[36] who showed that when a partially reacted sample con-

taining unburnt fuel is quenched (either by mixing or in a

probe), large concentrations of HO  are produced during low

temperature hydrocarbon oxidation. Reaction ( 1 .2) is there-

fore favored in quenching zones, and the high NO 21NOx frac-

tions can be attributed to quenching zones in the combustor.

1.2.4 Polluticn Control

Some conditions under which pollutant emissions can be

reduced have been mentioned in the preceding subsections.

Pollution control in gas turbines and other continuous flow

combustors has been accomplished by trying to achieve these

conditions primarily by alterations or additions to existing

designs. Since conditions minimizing NO  formation tend to

maximize CO and UHC emissions, and vice versa, a trade off is

inevitable. Flame temperatures have been reduced by leaner

fuel-air mixtures, by steam or water injection into the com-

bustion zone and by exhaust gas recirculation. Fuel injec-

tion has been improved and combustor liners have been modi-

fied to change air flows. Lefebvre[37), in a review of gas

turbine pollution control, concludes, as do Rudy and Reck[161

and many others, that only advanced and radically new combus-

tor designs involving concepts such as prevaporized premixed

combustion, variable geometry and swirl-augmented combustion

can achieve the required emissions reduction levels. These

are the very concepts which form the basis for the swirl-
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stabilized combustion research at Cornell.

1.3 Swirl-Stabilized Combustor Research at Cornell
E

Research at Cornell in this Lrea, going on since the early

seventies, is a continuing program directed towards the study

of the interrelationships between chemical kinetics and tur-

bulent mixing in , a research combustor with premixed pre-

vaporized Fuel and variable swirl.. The aim of the overall

program is to completely characterize the swirling flows in

the combustor under both reacting and nonreacting conditions

and perhaps to develop numerical models to predict these

flows. This characterization of the combustor which entails

flow and turbulence measurements in nonreacting flows and

detailed measurements of velocity, temperature and composi-

tion as well as flow visualization in combusting flows, is

key to developing new and viable combustor designs for prac-

tical applications.

1.3.1 The Swirl Combustor

The combustor under investigation (Figure 1-1) is a lean,

premixed combustor in which the flame is stabilized by a

swirl-generated recirculation zone. The combustor consists

of two co-axial swirling jets confined in a long cylindrical

test section of 10.2 om I.D. The inner jet, 4.8 cm in diame-

ter, consists of premixed fuel and air. Swirl in the inner,

jet is generated by tangential	 air	 injection well upstream of

the combustor inlet. The outer jet	 flow is air only and has
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an outer diameter (Do ) of 10.2 cm. Swirl in the outer jet,

which is generated by varying-angle vanes upstream of the

combustor inlet, can be either co-swirl (outer and inner

swirls in the some direction) or counter-swirl (outer and

inner swirls in the opposite directions), The fuel, commer-

cial grade methane or propane, is injected radially from the

inner jet centerline five combustor diamcters (5D o ) upstream

of the inlet. Ignition is accomplished by a long reach spark

plug. A more detailed account of the combustor can be found

in Chapter 2.

The	 swirl number	 as defined in Section	 1.1	 is	 non-dimen-

sionalized by the outer radius of the jet.	 Thw swirl	 number

for the inner or the outer flow is then given by

2 71N	

r
4 	 °f u v r d r

S
	 ri	

(1.6)

2 1t 4 r	 r°f u 2o	 r d r
ri

M

where r i and ro are the inner and outer radii of the jet

under consideration, u and v are the time-mean axial and tan-

gential velocities respectively. The swirl number is posi-

tive as defined. A negative sign is uvad for the outer .swirl

number under counter-swirl conditions.

The principal operating variables of the combustor are the

inner and outer swirl numbers, the inner and outer jet flow

rates and the fuel Flow rate. The axial velocity ratio is
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the ratio of the volumetric mean axial velocity of the inner

jet to that of the outer jet. The combustor is operated at

atmospheric pressure without preheat.

1.3.2 Results from	 evious Studies

A series of studies as part of the overall program have

been made examining different aspects of combustor operation.

Martin[381, who also built the combustor, and Martin, et

al.[39] measured stability and blow-off limits for methane in

the combustor. Their[38,393 results show that the lean

blow-off limits are very close to the lean inflammability

limits and are independent of outer swirl. The rich blow-off

limits, however, are lower than the rich inflammability lim-

its and show significant variations with outer swirl, the

Limits being higher for higher outer swirl numbers and higher

axial velocity ratios, thus indicating the importance of

swirl-generated recirculation zone size and turbulent mixing

for the rich limits. Al..), flame instability was encountered

in rich mixtures and combustion instability is the likely

cause for blow-off at the rich limits. Their[38, 39,7 visual

observations are the following: co-swirl cases have long

cylindrical flames while counter-swirl cases have much

shorter bubble^,iike flames. The flames for lower axial vel-

ocity ratios are smaller in size than flames under high axial

velocity ratios. They conclude that high rich blow-off lim-

its and best flame stability are achieved under high counter-

swirl conditions.

;.
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Oven and Oven, et al.133, 40, 411 have made NO-NO., tempera-

ture and species concentration measurements at various axial

and radial locations in the combustor for methane firing.

Yetter and Yetter and Gouldin[42,431 have made temperature,

velocity and composition measurements at the exhaust with

methane as fuel. These investigators[33,40,41,42,431 report

large concentrations of unburned fuel and CO in the exhaust

which they attribute to quenching in the inter-jet shear

layer, but NOx emissions are low.	 Oven, et al-1333 report

large fractions of NO 2/NOx in the exhaust, especially in

counter-swirl cases, which they attribute to quenching in the

shear layer and turbulent mixing. Yetter's[421 and Yetter

and Gouldin's[431 results show poor combustion efficiencies

in general, though efficiency is significantly improved in

going from high counter-swirl to high co-swirl and as the

axial velocity ratio approaches one. These results are dis-

cussed in greater detail and compared with results from the

present work in Chapter 3.

Lee[44] made Laser Doppler velocity measurements under
e f

cold flow (without combustion) conditions. 	 Results show a

recirculation zone for the counter-swirl case, but no such

zone is seen in the co—swirl case in cold flow. However,

centerline profile measurements[447 under combusting condi-

tions show that a recirculation zone develops for the co-

swirl case as well, while little alteration of the recircula-

tion zone due to combustion is seen in the counter-swirl
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case.	 Visual observations of the ignition sequence, with



i

4

14

video photography at 20 frames per

Halthore[451 show, in combination wi

ment:s[441, that in the counter-swirl case

lized in front of the recirculation zone

swirl case the flame is first stabilized

ignitor electrodes, a recirculation zone

the flame is stabilized in fr-ant of this

second, mad a by

th Lee i s measure-

the flame is stabi-

whereas in the co-

in the wake of the

is then formed and

recirculation zone.

Halthore[45] also made blow-off measurements with propane in

order to compare with Martin's results for methane[387. He

found that the lean blow-off limits for propane are nearly

the same as those for methane and are also independent of the

outer swirl. The rich blow-off limits for propane are how-

ever slightly higher than those for methane. Beyler[46] and

Beyler and Gouldin[47] made emission spectroscopy measure-

ments of the flame for methane firing in order to character-

ize the flame structure and the mechanism of flame stabiliza-

tion. The results of his investigation establish that the

stabilization of combustion occurs in front of the recircula-

tion zone in a region of low velocity which, in the mean, is

largely free of reci rculation zone influence through heat and

mass	 transfer. Beyler	 also found	 that	 the structure of the

reaction	 zone in the forward regions of the combustor is the

same for both co- and counter-swirl conditions but differ-

ences are seen further downstream.

t .
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1.4 Present. Work

The present work is one of the steps in the overall

research program outlined earlier in this section. In the

first phase of the present study the combustor is operated

with prevaporized propane. Temperature, velocity and compo-

sition measurements including NO-NO X are made for varying

swirl conditions along the radius of the combustor at the

exhaust plane, six co.•nbustor diameters (6D o ) downstream of

the combustor inlet. Temperature measurements are made with

an uncoated Pt/Pt-10%Rh thermocouple. A two-holed pressure

probe is used for velocity measurements. 	 Composition mea-

surements other than those of oxides of nitrogen are made

with a gas chromatograph.	 NO and NO  are measured with a

chemiluminescent analyzer used in conjunction with a NO 2 to

NO converter.	 A cylindrical water-cooled probe is used to

draw gas samples for composition measurements. From these

data chemical and thermal efficiencies are calculated for

various operating conditions.

Propane is chosen as the fuel for two reasons.	 First,

propane is more representative of the commercially used fuels

than methane, the previously studied fuel. 	 Second, the
}

results for propane can be compared with the previous results

for methane (see Section 1.3.2) to investigate the effect of
4
9

possible differences in the chemical processes on the combus-

tion of the two fuels in the combustor thereby getting a bet-

ter insight into the operating characteristics of the

e

_? I

t
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combustor. In the second phase of the study cold flow

measurements (without combustion) are made for propane in

order to determine the distrubution of the fuel in the

exhaust plane as well as at the inlet to the combustor. Cold

flow measurements are made for methane fuel also. In addi-

tion, the measurements made in the first phase of the present

study are repeated using methane fuel. These results are

compared with previous results for methane (Section 1.3.2) as

well as the results for propane obtained in the first phase

of the present study.

Chapter 2 of this thesis contains the details of the

experimental set-up and the measurement techniques. Results

are presented and discussed in Chapter 3. Chapter 3 also

contains details of the calculation of combustor efficien-

cies. The conclusions from the present study are noted, and

suggestions for future studies are made in Chapter 4.



CHAPTER 2

EXPERIMENTAL

2.1 Test Facility

A schematic layout of the test facility is shown in Fig-

ure 2-1. Ambient air is supplied to the combustor by a sin-

gle blower, a belt driven Buffalo Forge centrifugal fan,

model 7E, run by a 25 HP General Electric motor. Air sup-

;	 plied by the blower is divided into two streams the inner and

{{
	 outer flows for the combustor. Downstream of the blower each

I'	 stream passes through a metering station, a settling chamber

and a variable swirl generator. Butterfly valves in each

line permits adjustment of the inner and outer flow rates

which are measured with annubar elements (Ellison Instrument

Division, model 710, Dietrich Standard Co.) . Temperature

measurements by copper-constantan thermocouples and pressure

measurements from wall pressure taps are recorded at each

metering station allowing for density corrections of the mea-

sured flow rates. Area integrated mass flow rates, obtained

under nonreacting conditions without swirl, from the combus-

tor exit velocity and temperature profiles were used to det-

ermine the calibration constant for each annubar. The accu-

racy of the calibration is estimated to be t 2	 of the3

instantaneous flow rate. These calibrations were originally
u

made by Martin[38] and were repeated by subsequent research-

ers who have worked on the test rig. The calibrations were

not repeated in the course of the present work.	 Flow

17
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straightening sections are placed upstream of the metering

station to eliminate radial and tangential velocity compo-

nents and to obtain fully developed flow profiles.

Both inner and outer flows pass through separate settling

chambers and variable swirl generators (Figure 2-2). Air

leaves the variable swirl generators and enters the combustor

through two confined co-axial jets . The inner jet, 4.76 cm

in diameter, is premixed with fuel and the outer annular jet,

10.16 cm in diameter, is air only. The combustor test sec-

tion is 58.3 cm long, 10. 16 cm in I. D. , and made of quartz

tubing. The inner diameter of the test section is the

(combustor diameter' (Do ). Variable swirl in the inner flow

is obtained by injecting air both tangentiallj and axially

into a mixing section approximately five combustor diameters

upstream of the combustor inlet. Swirl in the outer jet is

regulated by variable angle vanes with both co- and counter-

swirl conditions possible. A long reach spark-plug is

inserted near the centerline close to the inlet for the pur-

pose of ignition. The exhaust gases exit through a 10.16 cm

T.D. stainless steel tube section and out through a chimney.

Measurements of gas composition, velocity and temperature in

the exhaust were made at a station six combustor diameters

downstream of the combustor inlet, by means of probes

inserted radially and supported by the stainless steel

exhaust tube.

The fuel, either commercial grade propane or methane, is

. 1
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injected radially from the inn

of the combustor inlet through eight orifices symmetrically

positioned around the circumference of a 0.45 em O.D. stain-

less tube. Fuel metering is accomplished by a Brooks (Type

1110-08H2G1A)	 rotameter	 calibrated	 for	 propane	 at

4.8x10 5 N/m 2 (69.7 psia) and 21 0 C. For other metering condi-

tions density corrections are made using the temperature

obtained with a Cmega Engineering (Model 199) iron-constantan

thermocouple and pressure obtained with a bourdon--tube (Maxi-

safe A.T.S.I 316) pressure gauge. Two propane cylinders par-

tially filled with liquid propane supply the fuel. The two

cylinders are placed in a water bath; whose temperature can

be controlled by a flow of suitable amounts of hot and cold

water from the building water lines. The water bath supplies

the heat for vaporization of the fuel. (See Reference 42 for

methane metering.)

The combustor, which is operated at atmospheric pressure

without preheat, has a maximum overall inlet velocity of

45 m/s.	 A more detailed account of the combustor design,

construction	 and	 instrumentation	 has	 been	 given	 by

Martin[381.	 Equations for determining the combustor operat-

ing conditions are listed in Appendix A.

2.2 Composition Measurements

Exhaust gases ai-e sampled from radial locations in the

exhaust plane (6D 0 downstream of the inlet) and analyzed for

nitric oxide (NO), total oxides of nitrogen (NO x), carbon
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dioxide (CO2 ), carbon monoxide (CO), unburnt propane (C3H8),

lower hydrocarbons(e.g., 	 C(eth lane ( C; 2 HO andY	 g sC 2H 6) ^	 Y  

methane (CFI 4 )), oxygen (0 2 ) and nitrogen (N2).

2.2.1 Sampling Probe

A water-cooled cylindrical probe spanning the diameter of

the combustor is used to sample the exhaust gases in this

experiment. A transverse cylindrical probe is felt to have

certain advantages over the conventional L-shaped probe. For

a cylindrical probe, in flows with very low radial veloci-

ties, sample hole alignment to the flow is accomplished by

simply rotating the probe to balance pressures at two taps

located at equal angular displacements on either side of the

sampling hole on the surface of the cylinder. Also the dis-

trubance to the flow is more symmetric with a cylinder span-

ning the diameter than an L-shaped probe inserted into the

flow. Finally, the cooling passage design is simplified,

resulting in a smaller overall probe diameter since cooling

water flows in one direction only.

Oven[40] considered various materials and designs for the

probe and found that the probe shown in Figure 2-3 was best

suited for sampling in the exhaust plane. Considerations in

the choice were coolness of the probe to prevent catalytic

reactions in the hot center piece (i.e. the thermal conduc-

tivity of the center piece material) and minimum probe inter-

ference to the flow.
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The same probe shown in Figure 2-3 is used in the present

work. Two pressure taps, a sampling hole and a cooling water
f

F

hole are drilled into a solid cylindrical brass piece of

7.9 mm diameter. Looking at the cylindrical cross-section,

one sees that the pressure taps are located 59 0 on either

side of the sampling, hole. Pieces of stainless steel tubing,

silver-brazed to this center piece, form the pressure and

sample lines. Stainless steel tubing of 7.9 mm outer diame-

ter forms the outer jacket of the probe, providing a cooling

water flow passage as well as structural support. The sample

line of the probe is connected to the sample train which

draws the sample for analysis. The pressure lines are con-

nected to either ends of a micromanometer enabling pressure

measurements for velocity calculations as well for alignment

of the probe to the flow direction.

The need for rapidly quenching chemical reactions in the

gas sample when once inside the probe to reserve sample^	 p	 P

composition, is widely recognized 130, 42, 48, 491. 	 Hence the

probe is cooled by a water flow through it. Cooling water is
{

supplied to the probe at room temperature. 	 j

Gouldin[50) has shown that low velocity sampling or isoki-

netic sampling are not satisfactory techniques for sampling

in regions of large density and velocity fluctuations such

as, for example, turbulent reaction zones, since the effect

of the above turbulent fluctuations is to cause the probe to

draw a sample which is not truly representative of the mean
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composition in the flow. He suggests either choking the

at the sampling hole or sampling with a large pressure — _r

across the sampling orifice. In the present work a bellows

pump provides a large pressure drop for sampling but the flow

is not choked in general. Moreover, the sampling is done in

the exhaust plane where density fluctuations are much lower

than in the reaction zone.

Alignment tests were performed by Oven[401 to determine

the effect of probe (sample hole) misalignment with the flow

direction on the composition measurements. His results

showed that probe misalignment upto 60 degrees had little

effect on the composition measurements in the present combus-

tor.	 In the present experiment, however, the probe is

aligned with the direction of the flow (see Section 2.3 for
,s	

the method used to determine the flow direction).

The probe is supported horizantally across the diameter of

j	 the combustor by two brass sleeves, fitted diametrically

E
opposite each other, to the walls of the combustor. A scale

attached on the outside, to the combustor wall, and a dial

protractor attached to the cylindrical probe serve to posi-

tion the sample hole and pressure taps at desired radial

locations and to determine the angle of rotation (about its

own axis) of the probe.

2.2.2 Sample Train

Figure 2-4 shows the sample transfer system. As with the
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probe it is necessary to pri

transfer lines in order to preserve sample composition. The

some material and temperature considerations pertinent to the

probe apply to the sample lines. All lines are 6.4 mm O.D.

stainless or polyethylene tubes with stainless steel and

brass fittings.

The main sample line is connected to the probe sample line

and thus draws the sample into the transfer system. The main

line is then divided into branches --(a) th(: NOx analyzer

line and (b) the syringe sampling line. In line (a) a stain-

less steel diaphragm pump (Metal Bellows MB-41) draws off

0.15 1/min. of sample and pressurizes it to atmospheric pres-

sure to pass through the NO  converter. 'rom the converter

the sample is bled across a needle valve to the chemilumines-

cence reaction chamber which is maintained at 5 torr by a

vacuum pump. The main line and the sample lines upto the

reaeticn chamber are resistance heated to 50 0 C by nichrome

wire, to prevent removal of NO 2 by water condensation in the

lines. It is expected that potential reactions in the sample

lines are avoided since stainless steel tubes are nonreactive

with respect to oxides of nitrogen at temperatures less than

100 O (511. The lines are electrically insulated with asbes-

tos material, wrapped with nichrome wire, and wrapped with an

additional layer of asbestos insulation.

Sample gas is drawn into the syringe sampling line (b) by

another metal bellows pump (MB-U1). Since water gives long

^J

u
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tailing peaks on most chromatographic columns, the sample

line (b) posses through two ice baths to condense out the

water. Initially a mixture of dry ice and acetone was used

in the second bath, but it was found that an ordinory ice

bath was able to condense out all the water in this experi-

ment. The syringe sampling port is a septum fitted kw on

fitting in the sampling line.

2.2.3 NO, NO x Measurements

NO and NO, are measured with a chemiluminescent analyzer

constructed at Cornell University in conjunction with a

Thermo Electron (N-CV-1526-36) NO x converter (Figure 2-4).

The NO, converter, a stainless steel tube heated to 1O23 OK,

converts NO 2 to NO. The chemiluminescent analyzer is sensi-

tive to NO only. In combination with the converter the total.

NO can be measured; when the converter is bypassed, NO alone
X

is detected. The difference between the above two measure-

ments gives the amount of NO 2 in the sample. A brief but

comprehensive description of the principle and operation of

the chemiluminiscent analyzer can be found in Reference 52.

In the present study the reaction chamber is maintained at

5 torr by means of a vacuum pump, with approximately

0.15 1/min sample flow and 0.03 1/min ozone/oxygen flow. The

ozone flow is obtained by passing oxygen through a 15 KV

alternating electric field in an ozonator constructed at Cor-

nell. Though a measurement of the amount of ozone produced

was not made in this study, it is expected that a mixture of
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about 2.5 percent ozone in oxygen leaves the ozonator acct

ing to tests conducted by Homan[531. The oxygen pressure

the ozonator is about 1.1300 5 N/m2 (16.4 psia). The output

current from an uncooked EMI photomultiplier tube operated at

900 volts is converted into a voltage drop across a

5.6 Megohm resistance and read out on a Dana digital voltme-

ter. The NOx converter is operated at atmospheric pressure.

It was observed that the output signal from the photomul.ti-

plier tube is very sensitive to the pressures in the ozonator

and reaction chamber and the sample and oxygen flow rates.

Hence care is taken to keep these readings steady and cons-

tant throughout a test run.

As mentioned earlier, all lines in the chemiluminescence

system and the sample transfer lines are maintained at 500C

(323°K) by heating to prevent removal of NO 2 by water conden -

sation in the lines. Significant reduction in measured NO2

has been observed when water vapor is allowed to condense in

the lines[53,54). Tuttle, et al.[551 have reported that par-

ticulate matter, especially soot, trapped in sample filters

affect NO 2 measurements since NO2 is absorbed or reduced by

the carbon and hence larger analysis times are required

before accurate NO 2 readings are obtained. In the present

case, however, no particulates are evident in the exhaust

because of premixing and the nature of fuel used. Even so,

about two minutes are provided for each measurement to allow

the detector to reach its full response and to account for

any effects of particulates which could have been trapped in
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the system during use of the onaly'z4r in other experiment,.

It is now well known that the presence of CO, CO 2 , hydro-

carbons and H 2 cause interference in NO, measurements by

reduction reactions in which NO 2 and NO are reduced to N 2 and

perhaps NH 3 (55,56,57). Interference depends on converter

history and conditioning, oxygen level in the sample or ove-

rall equivalence ratio and converter temperature. Stu-

di.es[55,56,573 indicate that interference is serious only

when the levels of the above mentioned interfering compounds

are high, the fuel-air mixture is rich or when the converter

is not conditioned. The results of Sigsby, et al.[561 and

Breithenbach and Shelef[581 which are also listed in Refer-

ence 55 suggest that as long as the sum of CO and HC concen-

trations in the sample is less than the oxygen level and the

converter is conditioned at close to operating temperature by

flowing air through it for about two hours, accurate NO  mea-

surements can be obtained with the converter operating at

1023 0 K. Sigsby, et al.[561 suggest that preconditioning will

oxidize the metallic surface of the converter and prevent the	 J

exposure of any reducing agents on the surface to the sample

stream. In the present experiment H 2 is not present in the

exhaust gas, combined levels of CO and HC are far less than

oxygen levels in the sample and the sample gas is oxidizing

(oxygen rich) in character. Hence all the above conditions

for reliable and accurate NO x measurements are satisfied. The
f

converter is conditioned at 1023 0 K with air flow for at least

one hour prior to every test run and operated at 10230K. In

i
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addition the entire system including the converter is purged

with air between every data point. In this way oxidation of

the metal surface of the converter is ensured.

Some attenuation in the detector output is caused by col-

lisional deactivation of NO2 by 021 -N2 , CO2 and H 2O. Deacti-

vation by N 2 is accounted for in the detector calibration.

To correct for the remaining species, a quenching efficiency

is calculated for eaoh species based on its respective
x

cross-section for collisional deactivation of NO2 and its

concentration in the sample. Based on the method described

in Reference 59, calculations by Oven[40] show that the com-

bined effects of 0 2 , CO 21 and H 2O attenuate the detector out-

put by less than 3%. It is expected that the results of the

calculations will be no different for the present experiment

due to the similarity in the sample gas composition with

Oven's experiment. Moreover, the sample is predominantly N2

whose effects of collisional deactivation are accounted for

in the calibration. Since the effects of collisional deacti-

vation of NO2 due to other species is expected to be minimal

based on Oven's calculations, no corrections are made to the

NO-NOx data presented in this thesis.

The analyzer is calibrated before and after every run.

The linearity of the instrument is well accepted. Hence a

straight line calibration curve is drawn between the voltage

corresponding to the photomultiplier dark current and that

corresponding; to 423 ppm of NO in N 2 calibration gas. The

3
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analyzer can indicate the concentration to within 0.5 ppm

based on the noise in the voltage signal.

2.2.11 Ana lysis by Gas Chromatography

The objective of the analysis is to obtain the relative

amounts, in a dry mixture of combustion products of propane,

of oxygen, nitrogen, carbon monoxide, carbon dioxide, ur.burnt

propane and other possible hydrocarbons lilts ethane,ethyl.one

and methane, in a simple way preferably with a single inec-

tion of sample and a short analysis time. Samples are trans-

ferred from the sample line to the chromatograph by syringe.

Samuel e Trans fe r Via Syr'tnges

The sampling port, in the sample trensfer line is equipped

with a septum allowing insertion of a syringe needle for sam-

ple extraction. Hamilton 1005 5 ml gas tight syringes are

used to remove and store samples before injecting them into

the gas chromat,ograph for analysis. Syringes are flushed

while inside the sampling line by repeatedly drawing -and

ejecting the gas sample, before finally drawing the sample

for analysis. The septum in the sampling port maintains

air-tightness while Flushing the syringe and collecting the

sample. About 2.5 ml of gas sample is slowly drawn into the

syringe over a period of about, 10 seconds. The pressure in

the sample line at the sampling port is just above atmos-

pheric. Hence when the syringe is taken out of the sampling

port, outside oil- cannot, enter the syringe due to the

.t



slightly higher pressure inside

then immediately inserted into a specially made stand such

that the needle tip pierces a septum, at the bottom of the

stand which blocks the needle hole and prevents air diffusion

into the syringe.

A maximum of g samples are taken during any one test run.

All syringe samples are analyzed within 2.5 hours of sampling

to minimize errors due to leakage. Samples stored for longer

periods of time showed, upon analysis, significant air leak-

age into the syringe. Oppegaard[601 has identified the vari-

ous problems facing a syringe injection with septum and sug-

gested ways to overcome them. The procedures followed in the

present analysis concur with most of his suggestions, except

that the new injector design suggested by him is not used.

Selection of Column and Technique

The problems facing za simplified analysis involving a sin-

gle injection are the Following. Firstly, there is no single

column material which allows complete separation of all the

aforementioned gases in the sample, without requiring a long

time for analysis (50 minutes or more). 	 Secondly, a few

column materials irreversibly adsorb some gases. For exam-

ple, molecular sieve, which is the most efficient column to

obtain nitrogen/oxygen split, irreversibly adsorbs carbon

dioxide. Porous polymers and silica gel which allow separa-

tion of carbon dioxide are incapable of separating oxygen

from nitrogen and of separating carbon monoxide from the com-

I
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posite air peak at room temperature or above.

To overcome the problem of separating carbon dioxide and

carbon monoxide as well. as oxygen and nitrogen, Alltech Asso-

ciates provides a concentric column (CTR column)[611 which is

a column within a column and thus permits the use of two

different packings in parallel. CarUon dioxide is separated

by the inner poropak column while oxygen nitrogen and carbon

monoxide are seperated (in that order) by the outer molecular

sieve column. The separation of any mathane in the sample is

also accomplished by the molecular sieve column with the

methane peak occuring between the nitrogen and carbon monox-

ide peak s . The entire analysis is isothermal, takes about b

minutes and is accomplished with a single sample injection.

The CTR column, h,)wever, is unsuitable for the samples of

interest in the present analysis. Firstly, ethylene and

ethane eluted from the inner poropak column overlap the oxy-

gen and nitrogen eluted from the molecular sieve column.

Secondly, though propane can be eluted from the poropak

within 10 minutes by temperature programming, it takes nearly

80 minutes to elute from molecular sieve. Thus a subsequent

injection of sample is delayed for 80 minutes.

The possibility of two separate injections on two diffe-

rent columns, one a molecular sieve and the other a poropak,

was also investigated. In this scheme the molecular sieve

would separate 0 2 , N 2 , CO and CHIJ, while the second injection

into poropak enables the separation of CH I,, CO2 , C2H 41 C2H6

A



and C 3 EI 8 .	 This scheme also poses problems. 	 The

injected into the molecular sieve column is retain

long time during which a second injection is not possible.

In addition, to obtain concentrations on a relative percent

basis with schemes involving two separate injections, either

exactly equal amounts of sample should be injected with each

of the injections or there should be at least one common peak

in the two chromatograms whose relative areas can then be

used to relate the areas of the other peaks in the chromato-

grams. In the above scheme, the only common peak is that of

methane which may or may not be present in the actual samples

obtained from the combustor. Even if present, it may be in

very small amounts, whereas it is desirable that the common

peak be a major component in the sample. Also, injecting

precisely the same amount in both the injections using syr-

inges is difficult.

Kaiser[62,631 synthesized a new material called the car-

bon molecular sieve, for use in gas chromatography. The use

of carbon molecular sieve for analyses of various gas samples

have been demonstrated by Zlatkis, et al.[641, Bollman and

Mortimore[65] and others. Unfortunately, none of the ana-

lyses produced the oxygen/nitrogen split and at the same time

gave elution of propane in a short time. Bollman and Morti-

more[651 used carbon molecular sieve marketed by Supeloo Inc.

(Bellefonte,PA) under the name of carbosieve B[661. 	 Supelco

introduced	 a	 new	 type	 of	 carbosieve	 called	 carbo-

sieve S[67,65] in 1976.	 Ctarbosieve S is spherical in shape
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and has increased surface area. 	 It is best suited for the

separation of permanent and sulphur gases. 	 Carbosieve S

gives separations similar to carbosieve B and hence Carbo-

sieve S alone cannot solve all the problems posed 	 in the pre-

!.	 sent analysis. Using	 a	 carbosieve S column	 and	 temperature

programming upto 2300 C (503 0 K)	 it	 is possible to	 obtain com-

plete separation of all	 the gases	 in	 the	 sample of interest.

But	 in order	 to get a good	 oxygen/nitrogen	 split	 the	 column

`	 must
i

be	 long	 and the	 initial	 temperature	 must	 be	 close	 to

room temperature. These conditions increase the time of elu-

tion of	 propane to	 approximately	 110	 minutes	 resulting	 in	 a

total cy,.;le	 time (including	 cooling	 of	 the	 oven)	 of	 115 to	 50

minutes.

It is crucial to keep the analysis time per sample, short.

The combustor is allowed to run for a while to reach a steady

state of operation. The samples from about 9 radial loca-

tions are then collected and stored in syringes, over a per-

iod of 115 minutes to 1 hour. It is desirable not to run the

combustor for longer periods of time in order to conserve

fuel. If each sample	 analysis were to	 take 50	 minutes the

total time for analysis	 of	 all the samples collected in	 a

single run would be 7 to 9 hours. Substantial leakage of

ambient air into the syringes during this period of time

would cause unacceptale contamination of the last few sam-

pies. Though it is possible to store samples in evacuated

bottles or sampling bulbs, which makes the sampling system

more complicated, it is nevertheless desirable to havo a
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short analysis time.

To overcome all these difficulties a scheme using two

columns in series, with a 11-part switching valve is used.

After a careful study of the properties of various columns,

it was found that columns of poropak Q and carbosieve S would

be most suitable for the purpose.

Figure 2 -5 shows a schematic of the column arrangement and
the flow path. The 4-port valve switches between the two

flow arrangements, 'A' and C B I . In position 'A' the two

columns are in series and the elutants from the poropak Q go

through the carbosieve S column. In position I B I the carbo-

sieve column is bypassed and the elutants from poropak go

directly to the detector.

The gas chromatograph conditions are as follows.

Column 1	 : Poropak Q, 1/8"x6 ft., SS

Column 2

	

	 : Carbosieve S, 1/8 11 x8 ft., 100/120 mesh, SS

Oven temperature: 50 0 C for 4 minutes and programmed

at 250 C/min, to 1750C

Carrier gas	 : Helium

Flow rate	 : 47 ml/min .

Detector	 : Thermal Conductivity, 270°C, 160 MA,

0.5 mV range

Sample size	 : 0.5 ml.

Figure 2-6 shows	 a	 chromatogram obtained under	 the above

conditions for a	 sample	 withdrawn from	 the combustor. The

..
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time axis between the peaks in the chromatogram is con

to accomodate all. the peaks.

The sample is injected with the 4-port valve in position

'A'. A composite peak of air, carbon monoxide, methane (if

present) and carbon dioxide elutes within 0.8 min. from the

poropak and passes on into the carbosieve column. The valve

is switched to position 'B' at the end of 2 minutes. Ethy-

lene and ethane, which elute in that order at 2.5 minutes

from poropak, pass directly to the detector. (Ethylene and

ethane are not present in the sample and hence are not seen

in Figure 2-6).

The valve is switched back to position 'A' immediately

after the elution of ethane (i.e. after approximately 3

minutes). Oxygen elutes from the carbosieve column at about

3.5 minutes (the exact time depends on how long the valve is

kept in position 'B'), followed by nitrogen and carbon monox-

ide. The valve is again switched at the end of 6 minutes to

position 'B'.	 Propane eluting from the poropak passes

directly to the detector and can be detected at about 6.8

minutes.	 The valve is then switched back to position 'A'.

Methane elutes from the carbosieve at 9.5 minutes followed by

carbon dioxide at 11.2 minutes. The column oven temperature

is then reset to the initial temperature, 50 0 C.	 In this way

the entire sample analysis including propane, ethane and

ethylene can be done within 12 minutes.	 In addition, the

columns are ready for the next sample as soon as they reset
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to the initial, temperature.	 Hence the total cycle time is

only 15 to 16 minutes.

s	 ^
r

Data Reduction and Error Estimation 	 i

The gas chromatograph used for the composition analysis is

a Varian Model 3700. The detector output is recorded on a

Varian Model 9176-02 strip chart recorder which has a

built-in triangular trace electronic integrator. The number

of transverse line crossings of the integrator trace is pro-

portional to the area of the peak. The operating conditions

and the columns used are described in the previous subsection

on technique. Area data of the peaks are reduced by a rels-

tive percent method to obtain concentrations as mole frac-

tions.	 In order to do this, nitrogen, being the major spe-

cies in the sample, is chosen as reference and a response

factor is obtained for each of the other species by calibra-

tion using calibration gases.	 Calibration gases used are
a
j

	

	 mixtures of the gas species of interest, whose concentrations

are known to within ±2% accuracy. The calibration gases were
j

obtained from Alltech Associates and their compositions are

listed in Table 2.1. Response factors (b i ) are defined as

Response(peak area) per unit concentration of N2
b
i
-	 _...__^....	 (2.1)

Y-	 Response per unit concentration of species i

which gives,

Abl_	 N2 a N2 / XcN2	 (2.2):

A i a  / Xci

where:



A = the area of the peak

a = detector attenuation(se

X c = mole fraction of the species in the calibration

gas sample.

It can be seen from the above expression that response

factors can be determined for each species in a calibration

chromatogram indepedent of the the other species. The res-

ponse factor for nitrogen is 1 by definition. With these

response factors the mole fractions(X i ) of the various spe-

cies in a sample gas can b^, determined by,

X = A

l a i bl	
(2.3)i

A  a j b J

In this method the area of each species is converted into an

ti	 quivalent area of a nitrogen peak of the same concentration

as that of the species. The numerator in Equation 2.3 repre-
a

sents an equivalent nitrogen peak area for species i. The

denominator is the sum of all such areas for each species

including nitrogen. Hence the resulting concentration will

be in mole fraction units.

The advantage of the relative percent method is that it is

independent of the sample volume injected. A disadvantage is

that an error i:n measuring the area of one component peak

will propogate through out the numbers for the other compo-

nents as well. Also, since the total of the concentrations

4
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must always add up to 100 percent, unmeasured species can

introduce error if their concentrations are significant.

Results presented in this study should be free of errors of

this type since all the species present in any significant

amount are measured.

A number of calibration injections are done for each of

the ealibrat..on gas mixtures and response factors are calcu-

lated for every calibration injection. These data were sta-

tistically analyzed to obtain standard deviations for the

response factors. The mean of the response factors for each

of the species is used in calculations using Equation 2,3.

Error analysis of Equation 2.3 shows that contributions to

the error in X i come mainly from the error in the response

factor for the species i and the uncertainity, arising from

the detector noise and the least count of the integrator

markings on the chart paper, in determining the area of the

peak for the species i. Neglecting the higher order contri-

butions from cross terms from other species in the sample,

the fractional error in X i is given by

(oxi1Y	 bi /bi)2+ ( UAilAi)2	 (2.4)

where (6'bi lb i ) and ( 6- i lAi ) are fractional errors in b  and

A i respectively. It is seen from Equation 2.4 that the

actual error in X i depends on the actual area of the species.

Representative concentrations of each of the species were

chosen to calculate typical values for errors in X i . Table

2.2 lists the values of the response factors and estimated
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errors in calculated species concentrations. Obviously, the

errors will be slightly smaller for species concentrations

larger than those listed in the table and slightly larger for

lower species concentrations. It should be noted that the

estimated errors do not take into account the possible air

leakaCe into the syringes and the sampling lines which could

be P, serious probl.em if proper care is not taken to prevent

leaks. Response factors for ethane and ethylene are not

listed in Table 2.2 since those species are not encountered

in the exhaust gases.

Based on the noise levels, the lowest attenuation and the

detector response to the various species, the minimum detec-

table amounts were calculated to be 40 ppm for CO 2 and aprox-

imatelY 70 PPM for the other species.

Injection technique and consistency in injection are found

to be critical for good results. Very fast or very slow

injection results in improper peak shapes and erronous data.

2.3 Velocity Measurements

The pressure taps in the sampling probe are used for vel-

ocity measurements also. The taps, 0.8 mm in diameter, are

located 118 degrees apart in the same axial plane. They are

located symmetrically about the sampling hole which is at an

axial distance of 8 mm from the plane of the pressure taps.

The pressure lines from the probe are connected to the two

sides of a micromanometer.
I
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The reference for determining the flow direction ((

taken to be the plane containing the flow direction of

centerline so that 0=0 on the centerline. The axisymmetry of

the 0 values measured from this reference (see Section 3.2)

supports the choice of this reference. The direction (0) of

the mean total velocity (neglecting radial components) with

respect to the reference plane is located by rotating the

probe about its axis, with the two pressure taps facing

upstream towards the flow. When the pressures in the two

taps are equal, as indicated by a null balance on the micro-

manometer, the local flow direction is ali g ned with the

bisector of the angle between the pressure taps. The angle

made by the bisector with the reference plane gives ,which

is read from the circular dial protractor attached to the

probe (see Figure 2-7). One of the pressure lines is then

disconnected from the micromenometer and the pressure at the

other pressure tap, P 59 , which corresponds to the pressure on

the surface of the probe at a 59 0 angle from the flow direc-

tion, is read. The probe is then rotated by 59 0 (see Fig-

ure 2-7) to Malign the pressure tap to the local mean flow and

the total pressure PT is measured.	 The difference between

the two readings gives (P T -P 59 ) .	 Readings are taken along

the radius of the combustor at 5 mm inter,als.

Velocity measurements in turbulent swirling flows using a

transverse cylindrial probe is affected by stream turbulence

and swirl in the following manner. Turbulence in the flow

affects the pressure distribution around the surface of the

L 
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probe in two ways. Firstly, increased turbulence in the flow

accelerates the transition from a laminar to a turbulent

boundary layer[691 and secondly, the ,separation point for the

turbulent boundary layer is further downstream on the probe

surface than for the laminar boundary layer[69). Bence the

calibration of the probe done in a laminar flow may not be

valid in a turbulent flow.

Bilger[ 11$] points out the possibility of secondary flow

along the probe towards the vortex core due to the positive

mean pressure gradient in the radial direction in swirling

flows. The effect of the secondary flow is such that the

velocity measured by the probe at a given radial location

actually corresponds, in the undisturbed flow, to a farther

radial location approximately 0.09 of the probe diameter from

the measurement point[70]. Density gradients in reacting

flows may affect the velocity measurements in a way similar

to swirl by means of pressure gradients in the flow.

The diameter of the probe used in this study is small com-

pared to the diameter of the combustor. Hence swirl and den- 	 I 1

sity gradients are not likely to cause appreciable distor-

tions to the flow when the probe is introduced.

The probe was first calibrated in laminar flow using a

calibration jet of 2 inch diameter, to obtain a relationship

between (PT -P 59 ) and (PT -PS ) where PS is the static pressure.

Whether a correction is required and the magnitude of such a

correction for the turbulent swirling flow in the combustor
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were determineu subsequently. The calibration jet was

swirling and unconfined and hence the static pressures .vu^

atmospheric. Readings of pressures P T and P59 were taken for

various velocities of the jet and the relationship between

( PT - P 59 ) and (P T -PS ) was found to be

(P T "PS ) l = 0.76075 ( PT -P 59 ) + 0.0042	 (2.5)

in the velocity range of interest, where (P T -P S ) 1 and

( PT -P 59 ) are in inches of water. The subscript 1 denotes

that the calibration was done in a low turbulent intensity

(laminar) jet.

Using the values of PT°P59 obtained from the probe read-

ings and Equation 2.5, the values of ( P T - P S ) l , which are the

dynamic pressures, are calculated.	 The mean total velocity

at each radial location is calculated from the dynamic pres-

sure as follows

v1 = (2?mghRaT/PS)

where

Q = density of the manometer fluid (water)=1 gm/cc

g = acceleration due to gravity = 9.81 m/s

h = dynamic head = (P T -P S ) l x0.0254 meters

R  = Gas Constant for ai- = 2154.69 (mm-Hg)cm 3 /gmoK

T = local pas temperature in 0 

(2.6)

PS =local pressure, assumed atmospheric.(see Section 3.3.2).

Substitution of the above values gives

vi = ^ (1073.9(PT-PS)lT/Patin)
	

(2.7)
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Where (P T -Ps) l is in inches of water and Patin is in ruin of Hg.

Since the turbulent intensities in the combustor , are high

(about 10% of the mean 	 `low velocity) there is a need to

check the vclidity of the probe calibration (Equation 2.5) in

the combustor. Loser Doppler Velocity (L. D. V.) , described in

Reference 71, was used to measure velocities in the combustor

(without the probe in place) and compared with the velocities

measured by the probe using the calibration in Equation 2.5.

It was found that the velocities measured by L.P.V. were

about 20% Lower than those obtained by the laminar calibra-

tion of the probe. Hence the velocity obtained by Equations

C.5 and 2.7 has to be multiplied by a correction factor, fc,

in order to get-, the correct velocity, V. 	 It was found that

fc was a function of Vl alone. The fe value ^ obtained with

varied outer swirl and at various radial .locations under both

hot and cold flow coua'itions are plotted gainst V 1 in Fig-

ure 2-8. It is found that f  changes very slightly with V1

and is in the range the range of 0.73 to 0.88 for all operat-

ing conditions in this study.. Since the fe values were not

found to depend on the swirl condition or the temperature

gradients in the flow, it can be concluded the presence of

swirl and density gradients in the flow does not affect the

measurement of velocity using the cylindrical probe. The

correction factor fc corrects for any probe blockage effects

also since L. n. V. measurements are made without the probe in

place and then compared with the probe measurements to obtain

f0.
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The corrected mean total velocity (V), and the horizon-

tal (u) and vertical (v) components of the mean velocity are

calculated from

V = V 1 xfc , u = V CosO and v = V Sin© .	 (2.$)

Obviously, calculations of vel;>oities require local temp-

erature information (Equation 2.7). Measurement of tempera-

ture is described 'in the next section.

Figure 2-9 shows the prew ;ure distribution on the surface

of the cylincrical probe as measured by the two pressure taps

for a typical flow condition in the combustor. 0 is the

angle subtended by the bisector between the two pressure taps

with the flow direction. The Figure shows a symmetric pres-

sure distribution around the probe. The peaks at +59 and -59

degrees correspond to the total pressure measured by the two

pressure taps. Each of the two pressure taps measures the

same pressure when the bisector is aligned with the flow

direction (i.e. at 0=0 in the figure) indicating that the

probe can measure the flow direction accurately. Measure-

ments of flow direction with L.D.V and with the cylindrical

probe agree to within half a degree.

Detailed additional measurements in cold flow comparing

cylindrical probe velocity measurements with L.D.V. and mea-

surements with a 5-hole pitot probe previously tested in cold

ff

	 swirling flows[72,73] show that while perturbations to the
F E
a	 .y

flow due to either of the probes are negligible in counter-

s	 swirl, in co-swirl, under cold flow conditions, both probes

Fr-



alter the flow drastically. T

by the two probes and L.D. V (with the probe in place) resem-

ble those in front of a recirculation zone with strong decel-

eration on the centerline. The reason for the drastic flow

alteration is the following. For the co-swirl case in cold

flow there is no recirculation zone formed near the inlet and

flow is on the verge of vortex breakdown. Therefore, intro-

duction of any probe in the flow can cause a drastic flow

alteration resulting in the formation of a recirculation

zone .

2. 11 Temperature Measurements

An uncoated fine wire Pt/Pt-10%Rh thermocouple probe is

used to measure temperatures at radial locations in the

exhaust plane (Figure 2-10). The thermocouple bead was

formed by butt welding 0.127 mm diameter Platinum and Plati-

num- 10% Rhodium wires. The thermocouple lead arms are made

of 0.25 11 mm diameter wires for rigidity and support. Mean

thermocouple e.m.f is obtaind by putting the thermocouple

output through a TSI averaging circuit. A time constant of

10 seconds is used and each measurement is averaged for

approximately 1 minute.	 Averaging is required due to large

temperature fluctuations (of the order of 100 0 K), especially

in the hot central core of the combustor exhaust. 	 j

The possibility of catalytic reactions on the thermocouple

junction was investigated by comparing an SiO2 coated thermo-

couple	 and	 an uncoated	 thermocouple. A difference of	 about
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5 o was found around 1300 0K. At, higher temperatures and

higher velocities in the core it was found that the coating

could not last long; enough to obtain any meaningful data.

However, since the observed difference is small, an uncoated

thermocouple is used throughout the experiment.

The measured temperatures can be corrected for thermocou-

ple radiation losses to the surroundings, by equating the

heat transferred from the gas to the probe to that lost by

the probe due to radiation. The correction is[211]

Tg -Tc = Ea'd(T" ..Tw)/2k	 (2.9)

where E is the emissivity of the wire material, a- the Steph-

en-Boltzmann Constant (5.S x10 -5 erg cm-2 o K sec
-1)

' d the

diameter of the bead and k the thermal conductivity of the

gas. The temperature subscripts w,c and g refer to the wall,

thermocouple and gas, respectively. C-6' (Tc -TW) is the heat
I
t	 loss rate by radiation per unit area of the probe. 	 For a

small diameter spherical bead such that the Reynolds number

is much less than 1, the heat transferred by the gas per unit

area of the bead is given by (2k/d)(Tg -Td.

The emissivity ,E, is a function of temperature. Though

values of E for platinum are not available in literature for

the entire range of temperature, values listed in References

74 and 75, which are collections of data, suggest a value of

about 0.1 at 1000 0 K and about 0.2 at 2000 0 K with almost e

linear variation with temperature.	 The value of k also
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depends on the temperature. Since air and nitrogen have

approximately the same thermal conductivity as well as the

fact that the exhaust gas is mostly nitrogen, the values of

thermal conductivity for nitrogen listed in Reference 76 for

various temperatures were used. With a maximum value of

E=0.2 for the entire calculation and wi';h values of k from

Reference 76 the temperature corrections were found to be

89.50K for T,=1923 O K and 0.60K for Tc =460 0K with Tw =340°K.

The corrections are quite small upto about 800 0 K. Hence the

corrections do alter the temperatures but only in the hot

central core of the combustor. These corrections did not

significantly alter the velocities nor the cGlculated thermal

efficiency.	 The velocities on the centerline increases by

approximately 2%, anu the thermal efficiency increases by

less than 2%. The reason for this is that the temperature

correction affects only a small central region and does not

contribute greatly to altering the efficiency. The tempera-

ture profiles presented in this work have not been corrected

for radiation losses unless otherwise noted.

.

A method for obtaining corrections for conductions losses

has been presented by Frock, et 81.177]. The expression is

(Tg -Tc ) 	 (T g -Tw)/(Cosh 2akh^ )	 (2.10)

where h is the film coefficient of heat transfer for a wire

of diameter d, A is the thermal conductivity of the wire and

a is the depth of immersion from the junction to the probe

supporting tube. The thermocouple used in the present study
I n
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has a small wire diameter and a long immersion do

1.3 em making the conduction losses negligible.

2.5 Experimental Proccdure and Test Conditions

Exhaust composition, velocity and temperature data are

taken for varying outer swirl, keeping the equivalence ratio,

inner swirl, axial velocity ratio and overall axial velocity

at the inlet more or less constant for all the runs. It was

intended to study variations due to outer swirl since it was

believed, based on previous results[41,42], that the outer

swirl was the single most important parameter affecting the

operation of the combustor. The actual test conditions are

shown in Table 2.3.

The apparatus is allowed to warm up and reach steady state

by running the blower for about half an hour before igniting

the combustor. After ignition the combustor is allowed to

run for about 10 minutes to reach steady state operation.

Measurements are then taken along a radius at intervals of

5 mm starting from 1 mm away from the wall. 	 The pressure

taps are first moved to the desired radial location, the flow

direction determined and the pressure readings taken. The

sample hole is then moved to the radial location and aligned

to the flow. After allowing about a minute for the sample

line to flush completely NO and then NO  measurements are

taken. A sample is collected in a syringe at the sample port

for gas chromatographic analysis. The pressure taps in the

probe are then moved to the next radial location and the



I I

i

48

entire procedure is repeated. In the intervals between tak-

ing data, the NO  converter is flushed with ambient air

through a side valve to preserve the oxide coating on the

converter walls. After traversing the entire radius the

combustor is turned off to remove the sample probe and intro-

duce the thermocouple probe. The combustor is re- ignited and

temperature measurements are made at the same radial loca-

tions used for velocity measurements. Either probe can be

positioned at the desired radial location to better than 10.5

mm accuracy. Gas chromatographic analysis of the sample is

not made at all the radial locations to keep the total analy-

sis time short, but is restricted to 10 mm intervals and in

regions of large concentration gradients to 5 mm intervals.

It was seen after a few runs and analyses of data that

combustor operation is highly reproducible (to within 3% of

each other as seen by temperature and velocity profiles for

repeated runs). Hence it was possible to make individual

measurements of composition, temperature and velocity from

separate combustor runs instead of in the same run. This

reduced the duration for which the samples are stored in the

syringes.

The exi-symmetry of temperature, velocity and composition

in the combustor have been established in previous experi-

ments by Oven[40], Yetter[42] and other authors[44,461.

Hence data in the present study are taken only across half

the diameter of the combustor and symmetry is assumed in cal.-



culations. Additional data,	 taken	 in the	 present	 study,	 to

support the assumption of axi--symmetry are	 presented	 in	 Sec-

Lion 3. 2.

In the second phase of experiments, data are taken for

combustor operation with methane as the fuel. This is done

for comparison with the propane runs as well as with results

obtained by Yetter(42]. The test conditions for methane are

also listed in Table 2.3. In addition, composition measure-

ments are made for cold flow (without combustion) for propane

at the exhaust plane to study the fuel distribution. Fuel

distribution at the inlet is also studied for propane and

methane without combustion. To measure the inlet fuel dis-

tribution a simple hypodermic stainless steel tube in the

shape of an L, with the hole facing the flow, is used to

withdraw samples.

Swirl numbers are obtained by integration of inlet velco-

ity profiles measured under nonreacting conditions using a

five-hole pitot probe. These measurements were originally

performed by Martin[38] and repeated for calibration checks

by Yetter[42] and Halthore[45]• These measurements were not

made in the present study.



CHAPTER 3

V

RESULTS AND DISCUSSION

3.1 Introduction

The results are presented and discussed in two stages;

results for propane firing (Phase 1) followed by those for

cold flow and methane firing (Phase 2). The presentation of

results is preeeeded by two other sections. Section 3.2

deals with the axisymmetry of conditions in the combustor and

with the reproducibility of results. In Section 3.3 the

methods for calculating average exhaust composition values

and efficiencies are given.

The results for propane firing (Phase 1) are presented in

Section 3.4. In Section 3.5 the propane results are compared

with previous results for methane firing[40,421. The compar-

ison shows some disagreements between the two sets of data.

In an attempt to resolve these disagreements Phase 2 experi-

ments were performed as follows. Cold flow measurements were

made and the results of these measurements are presented in
i

Section 3.6. However, the results of the cold flow measure-

ments could not explain the differences. Hence experiments

were done with methane as the fuel. 	 The methane firing

results are presented and discussed in Section 3.7. A

mechanism for the operation of the combustor which can

explain the previous and the present results is proposed in

Section 3.8.

50
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Composition results are 1

Figures (3-11 - 3-18,3-25,3-26) and on a wet basis in the

Tables (3.2-3.5,3.7,3.8).

The folowing terminology will be used in the discussion.

'Quenching' refers to the reduction in reaction rates due to

cooling (thermal quenching) as well as to the freezing or

stopping of the reactions by the decay and removal of active

free radicals. Quenching occurs due to the 'dilution' with

the cold outer air, of zones where reactions are occuring.

'Combustion zone' refers specifically to the region close to

the combustor inlet (upto about 1.5D 0 axial distance from the

combustor inlet) where most of the combustion is taking

place. The region downstream of the combustion zone will be

referred to as the 'post-combustion zone'. The oxidation of

CO to CO2 and NO to NO2 , which takes several milliseconds and

is slower by orders of magnitude compared to the fuel

break-up reactions, occurs in the post,-combustion zone.(See

Section 1.2 in support).

3.2 Axisymmetry and Reproducibility of Results

Axisymmetry and reproducibility of results in the combus-

tor are discussed in Section 2.5. Additional results to

demonstrate axisymmetry and reproducibility of combustor

operation are presented in this section.

Figure 3-1 shows the temperature profile across the entire

diameter of the combustor. A traverse along each half of the
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combustor was done from either side of the combustor. The

temperature values at the same radial distances on either

side of the combustor centerline differ by less than 3% of

each other. Table 3.1 shows the axisymmetry of flow direc-

tion. (The 0 values on opposite sides of the combustor are

opposite in sign due to swirl). It can be seen from

Table 3.1 that the asymmetries in the © values are less than

1 degree. These results ,justify the assumption of axisymme-

try at the measurement station. Hence all the results are

presented for half the diameter of the combustor.

Measurements in this study were made over a period of

approximately one year. Hence reproducibility of results is

important to ensure consistency. Figure 3-2 shows the repro-

ducibility of a temperature profile. The two profiles were

measured 4 months apart. The local differences in tempera-

tures are less than 3%. Table 3.1 also shows reproducibility

of flow direction measurements to within 1 0.

3.3 Calculation of Average Values and Efficiencies

3.3.1 Composition on a Wet Basis

At each radial location the amount of water vapor present

in the exhaust is determined from a local carbon atom balance

with the assumption that all H from the burnt fuel is oxi-

dized to H2O. For every mole of CO 2 or CO in the exhaust,

4/3 moles of water vapor for propane and 2 moles of water

vapor for methane are present. 	 Therefore, the amount of
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water vapor in the exhaust for every mole of dry exhaust gas

is given by

X1 H20" 
( 14/3)( X, CO2 + XI CO)
	

(propane),	 ( 3 .1a)

X1 H20= 2 ( X I 
CO2* 

XI 
CO)	

(methane),	 (3.1b)

where XICO2 and XI COare local mole fractions of CO 2 and CO

on a dry basis. The mole fraction of species i on a wet

basis, denoted by X i , is then given by

X^
Xi =	 i	 ► 	 (3.2)

1 * XIH20

where i refers to 0 2 , N 2 , C 3H p , CH I , CO, CO 2 or HGO.

3.3.2 Average Values

Average values of temperature and concentrations in the

exhaust are obtained on a mass flux weighted basis. Average

mass fractions are given by

R
0°f q u Yi 2 n r dr

4

	

	 (3.3)

R 

0 
f Q u 2 T^ r d 

where Yi is the lo-,al time mean mass fraction of species i on

a wet basis, 4 is the local density, and R° (=D° /2) is the

radius of the combustor. Also Y i -X i M i /M s where M  is the

molecular weight of the species i nd M5 is the local molecu-

lar weight of the exhaust gas mixture. 4 =(PM s/RT) where P

rt

i`



(3.5)

7^

and T are the local sta

respectively and R is the universal gas constant. By substi-

tution Equation 3.3 becomes

,,,,_ M

Xi = Xi -	 '	 c
M s

Ro

f (PMs /RT)uXi (Mi /Ms )2TCr dr0 
Ro

0
f (PMs/RT)u2nr dr

(3. 11)

The static pressure inside the combustov is very nearly

atmospheric and changes only slightly (by less than 5 cm of

water column, i.e. 7.4x10 3 N/m2 ) across th. combustor as seen

from the pressure readings for velocity measurements.

Further, the major component of the exhaust gas is air and

the local molecular weight is approximately equal to that of

k
	 air. For example, at the location where maximum combustion
r

products are encountered in this entire study, namely the

centerline for the high co-swirl propane case (Table 3.2),

the difference between the molecular weights of the local gas

mixture and that of air is only 1.6%. Hence ' and M s are

assumed constant for the integration in Equation 3.4, which

then reduces to

Ro^
(u/T) X i r dr

_	 M 	 Mi 0

Ms - MS R°( u/T) r dr
0^
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Hence the average (mass flux weighte,^) mole fraction in the

exhaust is calculated by

R
0°f WT) X i r dr

X

i	 R
_	 (3.6)

7 (u/T) r dr
0

Based on Equation 3.6 the mass flux weighted average

exhaust temperature is calculated by

Ro
f (u/T) T r dr
0 

T -

	

	 (3.7)
R
0 °f (u/T) r dr

Simpson's rule is used for integration from r=0 to

r=5.0 cm, with a step size of 0.5 cm. 	 The velocity at the

wall (r=R o =5.1 cm) is assumed to be zero. The trapezoidal

rule for integration is used between r=5.0 and r =5.1 cm and

the value is added to the integral. obtained from the Simp-

son's rule. An error analysis of the integration shows that

Simpson's rule gives the value of the integral to better than

0.5% accuracy. The reason for this accuracy is that the pro-

tiles of the integrands are quite smooth and Simpson's rule

which uses a second order polynomial fit is sufficient to

evaluate the integral accurately.

..l
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3.3.3 Efficiencies

Combustion efficiencies are calculated by three methods.

In the first method, a chemical efficiency, Y^^,is calculated

based on the amount of unburnt fuel in the exhaust; 	 p

,1

	

'	 f1	 (3.8)

	

Yla	 [F]

where X f is the average mole fraction of fuel (propane or

methane) in the exhaust calculatd by Equation 3.6 and [F] is

the average mole fraction of the fuel entering the combustor,

determined from calibrated rotameter settings.

The second method is an improvement on the first one. It

relates chemical efficiency, vjc , to CO in the exhaust as

well as unburnt fuel since CO not going to CO2 is lost sensi-

ble energy.

r

Ylc = 1 - X  + XCO(gC0/qf)

[F]
(3.9)

where qCO is the heat release per mole of CO going to CO 2 at

the inlet temperature, T in , and of is the lower heating value

per mole of fuel at Tin . For ease in the actual calculations

the values of q CO and of at STP (67.63 and 484.22 (propane)

or 189.76 ( methane) Kcal / gm mole respectively) are used since
^I

the difference between the inlet temperature and the standard

temerature is only about 20°K and the values of q CO and o f at

Tin are not significantly different from those at STP.

uW	
i
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In the third method the exit sensible enthalpy flux is

compared with the lower heating value of the fuel to define a

thermal efficiency,
T

measured increase in sensible enthalpy
flux in the working fluid. 	 )

f	 qT =	 (3.10)
f	 ( lower heating value of the fuel )x m fs

E'	 =	 H e / m f q ' f r

'$	 where

R
He = °r Q u (7- Y i h i ) 27Sr dr	 (3.11)

0	 i

and

T
h i = f c

Tin

h i	is the	 increase	 in	 sensible	 enthalpy per	 unit mass of the

species i in going	 from temperature T in to the local tempera-

ture	 T,	 c pi	 is	 the	 specific	 heat	 capacity	 of	 he	 species	 i,

m f	 is	 the	 fuel	 mass	 flow rate	 into	 the	 combustor	 and	 q1	 is
f

ti the low heating value per unit mass of the 	 fuel	 at the inlet

'y temperature,	 Tin .	 The	 kinetic	 energy	 terms	 u 2 /2	 are	 small
4

compared	 to	 the	 species	 enthalpy changes,	 h i ,	 and	 therefore,

are neglected.	 By substituting for Y i and 3	 as shown in Sec-

„_,
i

tion	 3.3.2,	 Equation	 3.11	 simplifies	 to

I

R°H	 (P/RT)u(F X,	 f	 C	 dT)2Tir	 dr	 (3.12)
j w

e	
0	 i 

p 
1

in

where	 C pi	 is	 the molar	 heat	 capacity of the	 species	 i.	 The

i

values of	 Cpi	 as a function of temperature 	 are obtained	 from

i
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sixth order polynomials fitted by Prothero[78] for various

species.

All calculations were performed with a Digital Equipment

Corporation PDP-11/3 11 computer. A listing of the program

AVG.FTN is given in Appendix B. The program calculates the

amount of water, mole fractions on a wet basis in ppm, the

average values and the chemical efficiencies. The programs

EFF.FTN and EFFM.FTN which calculate the thermal efficiencies

for propane and methane firing respectively are also listed

in Appendix B.

3.3.4 Atom Balance

As a check on the composition measurements, an atom

balance was attempted. The amount of water in the exhaust at

any radial location can be calculated from the dry gas compo-

sition at that location by two methods. The amounts of water

calculated by the two methods are compared to check the accu-

racy of the composition measurements. The first method of

calculation invokes a carbon atom balance. Based on this

method the number of moles of water present per mole of dry

exhaust gas is given by Equations 3.1a and 3.1b.

The second method is based on an oxygen atom balance and

the relative percentage of oxygen and nitrogen in air. For

this method

X1 
H20 - 2[(XN2/3.77) - (X02+XCO2+XCO/2)]
	 (3.13)

d r
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for both propane and methane. Since Equation 3.13 involves a

difference between two large and nearly equal numbers, small

errors in composition measurements result in large variations
i

in the amounts of water calculated by this method. A statis-

tical error analysis for Equation 3.13 based on the uncer-

tainties Listed in Table 2.2 yields values of uncertainties, 	 ?
t

for the amount of water calculated, as high as 200% or more

r	especially at large radial distances where small amounts of

water are present. 	 Similar analyses of Equations 3.1a and

3.1b yield uncertainties of less than 4%. Hence only the

first method gives reliable values for X, 
H20 

and is used !'or

the calculations. Due to the large uncertainties in the sec-

and method a meaningful atom balance cannot be obtoined.

Though a check on the composition measurements cannot be

r made at every radial location an overall check on the mea-

surements can be made by comparing the measured mass fluxes

of carbon at the exhaust as fuel, CO 2 and CO with the inlet
5

} carbon mass flux. Such a comparison shows that the mass

fluxes of carbon at the exhaust are lower than at the inlet

by less than 10%. The lower value for the exit mass flux of

carbon, calculated from the exhaust gas composition profile,

may, in part, be due to air leakage into the sample train or

syringes during composition measurements.

{ P
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3. 11 Phase 1: Propane Results

3. 11.1 Visual Features

Visual features of the flame are the same as reported by

Martin[381 and Yetter[ 1123. Photographs of the combustor

operating under the four different test conditions in the

present study are presented in Figures 3-3 to 3-6. The visi-

ble flame is small in diameter but very long, extending even

past the sampling station, for the high co-swirl (550 ) case.

The flame diameter remains almost constant along its length

and hence appears as a long, cylindrical, luminous core in

the combustor. For the moderate co-swirl case (300 ) the

visible flame has similar features as for the high co-swirl

case except that for 30 0 co-swirl the flame is shorter and

the diameter of the flame near the entrance to the combustor

is larger and gets smaller downstream. The flame looks like

an extended bubble. In both the co-swirl cases the flames

are smooth and appear to be less tu-bulent than in the coun-

ter-swirl cases.

A 1

The counter-swirl cases are characterized by greater noise

and appear more turbulent. The flame surface is not smooth

but is broken and shows rapid fluctuations indicating higher
E

levels of turbulence. The flames are much larger in diame-

tar, shorter in length and appear as luminous bubblea. The

luminous bubbles are indicative of the recirculation zones.

	

	 rF..r

x



3.1.2 Temperature and Velocity

The temperature and velocity profiles for the four test

conditions listed in Table 2.3 are presented in Figures 3-7

through 3-10.

Profiles for the co-swirl cases (Figures 3-7 and 3-8) show

steep temperature and velocity gradients. The high co-swirl

case has a slightly higher centerline temperature and shows

steeper gradients than the 30 0 co-swirl case. The axial vel-

ocity profile for the 55 0 co-swirl case (Figure 3-7) shows

almost a step change in axial velocity in the region of

rtRo s0.5 indicating a hot and fast moving core of fluid con-

fined to the center of the combustor and bears out the visual

observation of a long cylindrical core of hot gases. The

profiles for the 30 0 co-swirl case show graaients which are

spread over a slightly larger radial thickness and are less

steep (than for the 55 0 co-swirl case) indicating a greater

mixing of the hot, high velocity central core with the outer

annular jet. In each case the axial velocity gradient is

confined to a narrow annular region (the shear layer). This

shear layer is caused by the accelaration of the inner core

due to reaction. The fact that there is such a shear layer

which is confined to a narrow sheet in each of the co-swirl

cases indicates that turbulent mixing across the combustor is

poor. Turbulent mixing would smooth out the steep velocity

and temperature gradients. The tangential velocity profiles	
U
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show high tangential velocities for the 55 0 case and moderate

velocities for the 300 case as expected.

The counter-swirl cases show more gradual radial varia-

tions in temperature and velocities (Figures 3-9 and 3-70).

Gradients are spread out across the entire radius indicating

a high degree of trubulent mixing of the outer air with hot

combustion products. As a result, the temperatures near the

centerline are much lower than in the co-swirl cases and the

temperatures near the wall are higher than in the co-swirl

cases. The axial velocities vary gradually across the whole

radius of the combustor. A pronounced shear layer is not

seen in the counter-swirl cases. In both the counter-swirl

cases the outer swirl completely overpowers the inner swirl

and hence the tangential veocities near the centerline are in

the same direction as the tangential velocities in the outer

flow. Lee's[441 cold flow measurements also demonstrate the

dominance of outer swirl by the time the flow approaches 2

diameters downstream of the inlet.

It is seen from the temperature and velocity profiles (as

well as from the composition profiles discussed in the next

sub-section) that im going from co-swirl to counter-swirl,

turbulent mixing is enhanced. Two mechanisms may account for

this increase: first, the tangential slip velocities across

the inter-jet shear layer are increased in going from co-

swirl to counter-swirl increasing turbulence generation in

the shear layer; and second, swirl in the presence of a



i

63

strong positive radial density gradient, as in the co-swirl

cases, suppresses turbulence production which in turn dampens

the turbulent exchange of mass and momentum between the two

jets .

A comparison of Figures 3-9 and 3 -10 shows that the axial

velocity and temperature profiles are flatter and the center-

line temperature is lower in the 30 0 counter-swirl case than

in the 55 0 counter-swirl case indicating a greater mixing in

the former case. This fact may be attributed to the greater

suppression of trubulent mixing in the presence of density

gradients due to the larger swirl in the high counter-swirl

case.

3.4.3 Exhaust Gas Composition

{	 Composition profiles on a dry basis are presented in

Figures 3-11 through 3-14.	 Composition results are also

presented on a wet basis in Tables 3.2 through 3.5 along with

the mass flux weighted average values for each case. The

average values for all the cases are listed in Table 3.6 for

comparison. Figures 3-11 through 3-14 also show the profiles

sof the local equivalence ratio 0 treated a	 a conserved
scalar. is calculated from the local ratio of the total

carbon atoms in the product species to the total oxygen atoms

in the product species relative to the stoichiometric carbon

to oxygen ratio. At the inlet cP=0.8 in the inner jet and<P=0

in the outer jet. Therefore, the profile of 9 5 at the exit

gives an indication of the extent of mixing between the inner

4 l
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and outer jets. The values of the overall equivalence

f

`loa are also shown for each case.

A significant feature of the exhaust gas composition data

is that no intemediate lower hydrocarbons are present in

detectable quantities. Lower hydrocarbons and alcohols are

typically present in substantial amounts in the low tempera-

ture oxidation or pyrolysis of hydrocarbonsL79,80,811.

Results of the present study, however, indicate that once the

propane molcule is broken to initiate reaction, the reaction

proceeds quickly to form CO or CO 2 . Reaction quenching rates

in the combustor are not high enough to freeze the reactions

of intermediate hydrocarbon species.

Composition profiles also show turbulent mixing trends

similar to those shown by the temperature and velocity pro-

files. Inspection of the :^ profiles (Figures 3-11 and 3-12)

shows that the value of (P is close to 0.8 near the center and

falls steeply near r/R 0=0.4 in the co-swirl cases showing

that there is little mixing between the inner and outer jets.

For the 55 0 co-swirl case the temperature and equivalence

ratio fall steeply near r/R 0=0.3 and 0.7. This region

defines the extent of mixing between the inner and outer ,jets

and will be called the mixing layer. The mixing layer is

thicker for the 30 0 co-swirl case and extends between

r /R0 =0.2 and 0.7. The mixing layers are denoted by arrows in

Figures 3-11 and 3-12.	 The 0 profiles for counter-swirl

cases, Figures 3-13 and 3-14, are much flatter and the I
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values are close to the q'oa value across the entire radius of

the combustor. Hence the mixing layer extends from the cen-

terline to almost the wall of the combustor in the counter-

swirl cases. The ^P profiles also show a slightly better mix-

ing in the 300 counter-swirl case compared to the 550

counter-swirl case.

The co-swirl composition profiles (Figures 3-11 and 3-12)

have steep concentration gradients with little evidence of

mixing with the high co-swirl, case showing the steepest gra-

dients. These gradients occur within the mixing layer bet-

ween the hot inner jet of combustion products and the cold

outer air jet as is to be expected. There is little or no

fuel in the central hot core indicating combustion. Corres-

pondingly, low concentrations of oxygen and large amounts of

combustion products namely CO and CO 2 are seen in the central

core. The concentrations of CO and CO 2 fall steeply while

the concentrations of fuel and oxygen increase steeply across

the mixing layer. CO concentration decreases less rapidly

than the CO2 concentration in the mixing layer due to the

quenching of CO oxidation reactions in the mixing layer as a

result of dilution,	 as demonstrated by Fenimore and

Moore[17]. Outside the mixing layer, negligible amounts of

CO and CO 2 are found. The unburnt fuel in the exhaust comes

from the outer edges of the inner inlet jet (mechanism is

discussed in Section 3.8). Hence the maximum unburnt fuel

concentration is expected in the mixing layer between the

inner and outer jets. As a result of poor mixing in the co-
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swirl cases, most of the unburnt fuel is confined within the

narrow mixing layer. The steep decline in fuel concentration

near the wall (r/R o«0.7) indicates the edge of the mixing

layer. The steep decrease in fuel concentration towards the

centerline is a result of combustion.

The counter-swirl composition profiles are more uniform,

with smaller gradients, and they show evidence of a greater

degree of mixing. Substantial amounts of oxygen and unburnt

fuel can be seen on the centerline as a result of greater

mixing. The unburnt fuel in the counter-swirl cases also

comes from the outer edges of the inner inlet jet, but it is

distributed across the entire diameter at the exit as a

result of mixing in the post combustion zone. The mixing,

however, is not sufficient to produce very uniform concentra-

tion profiles across the entire diameter of the combustor.

The concentration of CO and of CO 2 decrease towards the wall

but some amount of CO and CO 2 can be found close to the wall

unlike the co-swirl cases. Fuel concentration decreases near

the wall but not as Zteeply as in the co-swirl cases.

The composition profiles also point to a slightly greater

mixing in the moderate counter-swirl case than in the high

counter-swirl case; oxygen and propane concentrations are

higher on the centerline and their profils are much flatter



3.4.4 NO-NOx

Radial distributions of NO, NO x and NO 2 for the four test

conditions are presented in Figure 3-15 through 3-18 as well

as listed in Tables 3.2 through 3.5. The overall. NO and NOx

values (Table 3.6) ore quite low in agreement with previous

resul.ts[26, 33, 1IO, u23 for lean premixed combustion.

The NO  values follow the temperture values closely. Max-

imum local values of NO  occur in the co-swirl cases for

which the maximum temperatures are observed, with high cen-

terline NO  values decreasing rapidly to nearly zero in the

miring layer where temperatures are lower. NO  values on the

centerline in the counter -swirl cases are nearly 10 times

lower than in co-swirl cases due to the lower centerline

temperatures in counter-swirl as well as due to the increased

mixing in counter-swirl cases which causes the NO  to be dis-

tributed across the entire diameter of the combustor.

The importance of quenching in the NO to NO 2 conversion

(discussed in Section 1.2.3) is clearly demonstrated by the

profiles. In the co-swirl caseS, NO  is predominantly NO in

the central core where quenching is minimal. Maximum amounts

of NO are found in this region due to the high temperatures

and reduced quenching.	 NO 2 , however, predominates in the

mixing layer. The NO 2 profiles peak in the mixing layer,

with the peak being more pronounced in the 55 0 co-swirl case

indicating a thinner mixing layer, than in the 30 0 case.
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The NO  in the counter-swirl cases is predominantly NO2

over the entire radius at the exit. The large fractions of

NO 21NO, can be attributed to quenching across the combustor

in the post-oor►tibustion zone (see Section 1.2.3) by the mixing

of the hot combustion products and unburnt fuel with the

outer air.

Since large H0 2 concentrations are required for large

NO 2/NO x fraet =s (Equation 1.2), the reduced levels of oxy-

gen, which may limit H0 2 formation (Equation 1.3), may also

be a factor in the reduced NO 2 values on the centerline in

the co-swirl cases.

Table 3.6 shows that inspite of locally high values of NO 

in the co-swirl cases the mass flux weighted average of NOx

values in the exhaust is of the s?me order for all the swirl

conditions with slightly higher values for co-swirl cases.

But, a larger fraction of NO  is NO 2 in the counter-swirl

cases.

It is believed that the use of cooled probes for sample

withdrawl especially near reaction zones can result in the

measurement of erronously high values for NO 2 concentration

due to the reaction of NO with radicals in the sample probe

druing the quenching process[301. In the present study it

can be concluded that the large fractions of NU21NO X measured

in the counter-swirl cases are real and not a result of

quent.!.hing in the probe since large NO 2/NOx fractions are not

measured in co-swirl cases under the same probe quenching.

f
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conditions. Moreover, probe formed NO 2 is expected to be low

in the present study since sampling is done well downstream

of the combustion zone at a location where radical concentra-

tions are expected to be low.	
t

3.4.5 Efficiencies

Figure 3-19 shows the efficiencies obtained under the var-
t

jt

	

ious swirl conditions. The chemical efficiencies plotted in

the figure are based on unburnt fuel with correction for CO

n the exhaust.	 Efficiencies are also listed in Tabls 3.2

through 3.6.

Efficiencies are quite low since a lot of fuel is trapped

in the mixing layer and in the outer flow and remains unburnt

due to dilution and the resultant quenching. An important

observation is that the efficiencies do not change signifi-

cantly in going from counter-swirl to co-swirl though discus-

sion in the preceding subsections suggested decreased mixing

and therefore decreased quenching in the co-swirl cases. The

almost constant efficiency seen in the preset study is in

contradiction to the trend observed by Yetter[42) where the

efficiency increased in going from counter to co-swirl.

Hence additional results are required to explain the constant

efficiencies observed in the present study. The additional

experiments and their results are discussed in the following

sections.
1;

It can be seen from Figure 3-19 that the thermal effi-

a
R

v_
	 R
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ciency is much sower than the chemical efficiency for each

case. Since the thermal efficiency is calculated based on

the sensible enthalpy flux at the exit, the heat loss from

the uninsulated combustor test; section can account for the

difference in chemical and thermal efficiencies. It is pos-

sible to estimate the heat loss required to account for the

difference as

Q1 = m f q' f ( YA0 - YtT )
	

(3.14)

It is seen that a heat loss of about 5 Kcal/s in each case

can completely account for the difference in the efficien-

cies.

Heat can be lost from the hot gases by convection and gas

radiation to the test section wall. This heat is transported

by conduction across the wall thickness and is lost to the

ambient. For the co-swirl cases the temperature profiles,

Figures 3-7 and 3-8, suggest that convection to the wall is

negligible (temperature profiles are flat near the wall; in

	

fact the wall seems to be slightly hotter than the gas near	
4 ,

the wall). However, due to the long luminous flame and high

temperatures j.n the core, heat loss through radiation to the

wall can be significant. In the counter-swirl cases the

flames are shorter and the centerline temperatures are not

very high near the exit. Hence radiation is important only

near the inlet. The temperature profiles, Figures 3-9 and

3-10, show gradients near the walls suggesting that convec-

tive heat loss is important in the counter-swirl cases. Sim-
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plif',ed heat transfer analyses are done to estimate the mag-

nitudes of the convective and radiative heat losses to ascer-

tain whether a heat loss of 5 Kcal/s from the combustor is

possible for each of the swirl conditions.

Co-swirl: Heat loss is almost entirely due to radiation.

Combustion products, especially CO 2 and water vapor, emit at

infrared wavelengths [82 1 83]. Visible and ultraviolet band

spectra of flames arise from electronic transitions of free

radicals like OH, CH, C 2 , CN and HCO in hydrocarbon flames.

The reaction zone also emits continuous spectra, produced by

recombination of dissociated molecules. For a first approxi-

mation in calculations, the flame is often considered as a

black body, and the fact that this is not entirely true is

corrected for by an empirical factor smaller than 1[8111.

The flame in the co-swirl cases is approximated by a cyl-

inder of radius 2.5 cm (from Figures 3-7 and 3-8) and length

n61 cm (upto the measurement station) and an average tempera-

ture of 1800 OK. The wall temperature is 340 0 K. Since the

flame is a clean hydrocarbon flame the emissivity will be
f,

considerably lower than 1 and hence a value of 0.3 for the

emissivity is reasonable to assume. The Stefan-Boltzman law

is used to calculate the radiative loss, with the surface

area obtained from the flame dimensions mentioned above. The

heat loss is found to be 4.1 Kcal/s. It should be noted that

the flame temperatures near the inlet are much higher and the

heat loss can be greater than the 4.1 Kcal/s calculated
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above.	 Therefore, it is possible to account for the heat

loss of approximately 5 Kcal/s for the co-swirl cases.

Counter-swirl: Heat transfer is primarily through convec-

tion. An estimate for the turbulent thermal conductivity of

the gas near the wall, k', is obtained from k'= qc p u'1, with

.x turbulent Prandtl number=l, where u' and 1 are the turbulent

velocity and length scales respectively. Measurements of

mean velocities made by Dep.sky[711 show that u' is of the

order of 3 m/s. 1 is taken to be 0.005 m which is approxi-

mately the thickness of the boundary layer as see ,,i from the

E mean axial velocity profiles for the different swi;.l condi-

tions. The values of c  and ? at 350 0K are 0.24 Kcal/kg °K

and 0.998 kg/m 3 respectively[84], which give a value of

k'=3.6x10-3

is given by

of the test

from Figure

be noted th

Kcal/s m °K. Heat loss by cony

QC = k'A(dT/dr), where A is the

section. (dT/dr) is estimated

3-9 and Q  is found to be 5.22

at the temperature gradient at

ection to the wall

inner surface area

to be 7.4x10 3 °K/m

Kcal/s. It should

the wall near the

,t

inlet will be lower and the convective loss will be lower.

But the radiation losses are higher near the inlet. Hence it
	 x 1

is reasonable to expect a heat loss of about 5 Kcal/s in the

counter-swirl cases also.

As an additional check, the average temperature difference

across the thickness of the quartz test section required to

lose 5 Kcal/s of heat is found to be 28°C (Thermal conductiv-

ity of quartz = 2.2x10` 3 Kcal/s m° K, wall thickness =
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0.0025 m). It is reasonable to expect this temperature

difference in actuality since the outside of the test section

is exposed to the ambient air (295 0 K) while the inner wall is

exposed to a temperature of about 340 0K at the exit. How-

ever, actual measurements have not been made to determine the

exact temperature difference across the wall thickness. (The

ambient temperature is marked in the Figures 3-7 to 3-10

along with the temperature profiles).

It', should also be noted that the estimate of 5 Kcal/s heat

loss to account for the difference in the chemical and ther-

mal efficiencies is based on the assumption that the chemical

efficiency is the correct efficiency. However, air leakage

into the samples during composition measurements results in a

lower value for the mean unburnt fuel fraction and hence the

chemical efficiency are overestimated. Therefore, the actual

heat loss required is less than 5 Kcal/s. It is also to be

noted that the thermal efficiencies would be about 2% higher

than what are shown in Figure 3-19 if the temperature pro-

files are corrected for radiation losses from the thermocou-

ple.

It is concluded that the difference between the calculated

chemical and thermal efficiencies is due to the heat loss

from she combustor. It is seen, based on the chemical effi-

ciency, that the heat loss of 5 Kcal/s is about 25% of the

heat generated in the combustion process. It is possible
r^
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that this heat loss by itself could partly account

low efficiencies observed in the present study.

3.5 Comparison with Previous Results for Methane in the

Combustor

Yetter's[421 and Oven's[401 results with methane fuel in

the combustor, are compared in this section.

Temperature and velocity results in the present study are

qualitatively similar to Yetter's results which also show

steep gradients for co-swirl eases (Figures 3-4a and 3-5a in

[421). The maximum (centerline) temperatures in the co-swirl

cases in the present study, after the addition of radiation

correction of approximately 90 0 K, are within 1.5% of the max-

imum temperatures observed by Yetter. The absolute values of

the velocities in Yetter's study are much higher than in the

present study (See Figure 3-26). Since the same probe was

used in both the studies and the calibration done by Yetter

was also in a jet of low turbulent intensity, his velocity

data need to be corrected as described in Section 2.3.

Yetter's results	 (Figures 3-1a	 and 3-2a	 in [421) also show

a	 slightly lower	 centerline temperature	 and flatten tempera-

ture and velocity profiles for 30 0 counter-swirl case than

the 55 0 counter-swirl case indicating better mixing in the

30 0 case.	 The 55 0 counter-swirl centerline temperature in

the	 present study	 is significantly higher	 than in	 Yetter's

results,	 but the wall temperatures in the present study espe-

a I



75

cially in the counter-swirl cases are lower.

A significant observation is that the maximum temperature

and velocity gradients in Yetter's results are found at lar-

ger radial distances than in the present study at correspond-

ing axial stations, indicating that Lhe central hot core is

larger in diameter, in Yetter's tests.

Though a number of similarities in composition profiles

can be seen between Yetter's and the present results, there

are some significant differences. YetterIs composition

results show that the fuel concentrations do not peak near

r/Ro =0.5, rather they peak at the combustor wall. This fact

seems to imply a significant difference between the way the

fuel is mixed and burnt under his test conditions and the

present test conditions. Yetter s s results also show pro-

pounced CO peaks in the mixing layer indicating quenching of

the CO oxidation reactions in the mixing layer. The relative

locations of CO gradients in the two studies also indicates

that the mixing layers in Yetter's study are at larger radial

distances and hence the central hot core is larger in diame-

ter.

There are no significant differences in the NO-NO x results

between the present study and Oven's results. Oven's results

for high co-swirl (Figure 16 in [401) also show low NO2/NOx

ratios in the central core and an NO2 peak in the mixing

layer while almost all of the NO x is NO
2
 in the counter-swirl

case (Figure 18 in [401). Average NO 2 values in the exhaust



are not available from previous

son. Though Oven[40] has not made velocity measurements, the

radial measurements of temperature and composition at various

axial locations upto 6Do downstream from the combustor inlet

show trends which are consistent with observations at 6Do

made in this study.

The largest differences between results of the present

study and Yetter's results are found in the efficiency

values. Firstly, the efficiencies in Yetter's study are, in

general, higher and secondly they increase significantly in

going from counter-swirl to co-swirl (Figure 3-19). This

trend is a serious deviation from the nearly contant effi-

ciencies seen in the present study. The only significant

differences in the operating conditions between the two stu-

dies are in the inner swirl number and axial velocity ratio.

Yetter used S i =0.523 and U i /Uo =1.5 for his study. The

slightly lower axial velocity ratio (=1.3) in the present

study should, if anything, increase the efficiency according

to the study of the effect of axial velocity ratio condubted

by Yetter[42]. Effects of changes in inner swirl on combus-

tor performance have not been studied so far.

n
The chemical and thermal efficiencies in Yetter's study

are in good agreement with each other indicating a lower heat

loss than in the present study.	 It is possible that the

erronous high values for the velocities reported in Yetter's

study, which contribute to an increase in the sensible
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enthalpy flux, have caused overestimates of the thermal

efficiencies, thereby underestimating the heat loss.

3.6 Phase 2: Cold Flow Measurements

Differences in the fuel distribution in the exhaust plane

between Yetter's results and the present study suggest dif-

ferences in the way the fuel is mixed and burnt in the com-

bustion zone. Oven[ 1101 has performed measurements at the

inlet under cold flow conditions to test the efficacy of

fuel-air premixing in the inner jet. His results indicated

that the maximum fuel concentration occurs on the centerline

and concentrations at the edge of the inner jet are 35% lower

than the maximum (Figure 2$ in [401). One of the causes for

such a distribution was thought to be the centrifugal forces

in the swirling jet differentially forcing the air, which has

a higher molecular weight than methane, towards the outer

edge of the jet. Such a distribution was considered benefi-

cial to the combustor efficiency since less methane would be

diluted at the outer fringes of the inner jet in the inlet

region of the combustor.

As a first step in the cold flow measurements, in the pre-

sent study, the fuel distribution at the exit was measured

for one of the operating conditions. Figure 3-20 shows the

radial distribution of propane at the exit plane (6D 0 ) in

cold flow under the 30 0 counter-swirl condition. The figure

shows that the extent of mixing is not sufficient to produce

a uniform concentration of propane across the exit. Propane
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concentration at the wall is 50% lower than the maximum con-

centration occuring on the centerline. The profile rein-

forces the observations in the hot flow of decreasing fuel

concentrations neat/ the combustor wall.

Possible	 differences in the injection	 mechanism	 and	 pre-

mixing in the inner jet due to different molecular weights of

propane and methane were examined by inlet plane measure-

ments. Results of these measurements, presented in Figure

3-21, show that the mixing of propane and methane in the

inner jet are not significantly different. The inlet distri-

bution of the fuels in slightly different from that observed

by Oven in that the concentration at the edge of the inner

jet is only 20% lower than on the centerline

study, in comparison to 35% in Oven's study.

that more fuel could be diluted at the outer

inner jet causing lower efficiencies in the

But the differences in the variation of effici

swirl still remains to be explained.

in the present

This may mean

fringes of the

present study.

.eney with outer

The cold flow measurements suggest that the differences

between the efficiencies observed by Yetter and in the pre-

sent study are not likely to be due to differences in the

premixing of the fuels propane and methane. 	 Measurements

were therefore performed with methane fuel in the combustor
r

for similar test conditions as for propane in order to *om-

pare directly with Yetter's results and to determine if the
ti

differences in the efficiencies between the two studies are
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due to the differences in the chemistry of combustion of

propane and methane.

Phase 2: Methane Results

Results are presented for the two test conditions listed

in Table 2.3.	 Temperature and velocity profiles are pre-

sented in Figures, 3-22 and 3-23. Composition profiles are

presented in Figures 3-2 14 and 3-25. Concentrations in ppm on

a wet basis, the average values and the efficiencies are

listed in Tables 3.7 and 3.8. Average values are compared in

Table 3.6. NO-NO x measurements were not performed for meth-

ane.

The temperature and velocity profiles are almost identical

to the profiles for propane for corresponding swirl condi-

tions (Figures 3-7 and 3-9). The maximum temperature and

velocity gradients occur at identical radial locations.

Composition profiles for methane are qualitatively identi-

cal to the profiles for propane. Steep concentration gradi-

ents (especially CO gradients) occur at the same radial loca-

tions for propane and methane for the respective swirl

conditions. Hence all the remarks in the discussion of pro-

pane results in Section 3. 14 are pertinent to methane results

also, with the exception that the CO peaks are more pro-

nounced in the methane results.

Efficiencies for the methane case (Figure 3-19) are

approximately 5% higher, but as in the case of propane the
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efficiencies do not change significantly in going from coun-

ter to co-swirl. The temperature profile corrected for radi-

ation losses from the thermocouple for the high co-swirl

methane case is shown and compared with the uncorrected temp-

erature profile in Figure 3-22. Only the high temperatures

close to the centerline are altered by the radiation, correc-

tion. The value of the thermal efficiency goes up by only 2%

when the corrected temperatures are used for the calculation.

This increase no doubt brings the value of thermal efficiency

closer to the respective chemical efficiency, but does not

alter the conclusion that efficiency is not significantly
R

changed by variation of outer swirl for the test conditions

studied.

A comparison of temperature and velocity profiles reported

by Yetter and in the present study is shown in Figure 3-26.

It is aprarent from Figure 3-26 that for Yetter's operating

condition, the central core is hotter and larger in diameter

which strengthens the same observation made in Section 3.5.

The value of inner swirl number for Yetter (S i =0.523) is

only slightly different from S i =0.4g5 used in this study.

However, even a small change in S i seems to affect the

combustor operation substantially.

3.8 Proposed Mechanism for the Combustor Operation

^ Y'

	

	 The following mechanism for the combustion operation is

proposed which will consistently explain the observations in



the present study as Well as Yetter + s study.

It is proposed that most of the fuel burnt is b!

front and on the sides of the recirculation zone, in a region

very close to the combustor inlet. Fuel from the inner

regions of the inner jet is burnt in this region of low to

moderate velocities, thus forming the intense reaction zon4

(shown in Figure"1-1) which will be referred to as the

'flame' in the ensuing discussion. (It has been estab-

lished[ 117,711 that the role of the recirculation zone is to

stabilize the flame by providing a region of low velocity

flow in front of the recirculation zone) .	 Inefficiency in

th° oombustor is caused by the inability to burn the fuel

flowing at the edges of the	 inner ,jet which flows	 around	 and

at	 large radial	 distances	 from	 the recirculation	 zone and	 is

lost	 to the	 combustion	 process. High	 efficiencies result

from	 the ability of	 the	 flame	 to propagate	 radially outward

in	 order to	 burn	 the	 fuel	 flowing in	 the outer	 edges of the

inner ,jet.

The following four characteristics are considered impor-

tant in determining how much fuel is burnt in front of the

recirculation zone and the ability of the flame to propagate

radially: 1) The size of the recirculation zone, 2) inlet

turbulence, 3) velocities around the sides of the recircula-

tion zone and 4) the local equivalence ratio on the sides of

the recirculation zone.
''a
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Beyler's[471 mean CH radiant emission data are pl+

with the reverse flow region as measured by Depsky[713, in

Figure 3-27. The elliptical are represents the reverse flow

region (the other symbols in the Figure are explained later

in this section). The extent of the recirculation zone is

about the same as that of the region of reversed flow[711.

It is seen from Figure 3-27 that the recirculation zone is

larger for the counter-swirl case than for the co-swirl case.

Since a larger recirculation zone has a larger region of

reduced velocity in front of it, it is proposed that a larger

amount of fuel is burnt in front of the recirculation zone 1n

the counter-swirl case than in the co--swirl case. The above

hypothesis is necessary to Lxplain the constant efficiencies

observed in the present study as will be seen later in this

section. A rigorous check on this hypothesis would be to

clearly delineate the reaction zone in front of the recircu-

lation zone, draw streatntubes from the inlet jet and deter-

mine what mass of fuel-air mixture enters the reaction zone

for each of the outer swirl conditions. Unfortunately, suf-

ficient data near the inlet is not available at present to

make this check.

A recent study by Moreau and Borghi[$5] of a turbulent

premixed flame shows large changes in combustion efficiency

for small changes in inlet turbulence. Lee's[44] measure-

ments in the present combustor for cold flow show large r.m.s

values for axial and tangential velocities near the inlet for

counter-swirl compared to the oo-swirl case, which might also

,y . fij
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contribute to a larger amount of fuel being burnt in front of

the recirculation zone in the counter-swirl case than in the

co-swirl case. It should be noted that in Lee f s[441 cold

flow measurements there is no recirculation zone for the co-

swirl case, whereas under combusting conditions there is a

recirculation zone for the co-swirl case also. Depsky!s[711

measurements under combusting conditions show large values of

r.m.s axial and tangential velocities at the inlet for co-

swirl also. It is worthwhile to make more detailed mAasure-

meets of the inlet turbulence (in front of the recirculation

zone) to characterli.ze its effect on the flame.

The ability of the flame to propagate radially outward

depends greatly on the local velocity and equivalence ratio

on the sides of the recirculation zone. In Figure 3-27 the

circles represent the peaks in the mean CH radiant emission

profiles and the squares represent the half maximum points

from Reference 47. The triangles represent the location of

the axial velocity peaks and the vertical bars represent the

region of steep radial gradients of axial velocity from

Reference 71 for nearly the same operating conditions includ-

ing the same inner swirl number as in Reference 47 and in the

present study. The peaks in the axial velocity (Figure 3-27) 	 j

are, in part, a result of the acceleration of the flow around

the recirculation zone as opposed to combustion induced

acceleration and are seen in Lee l s[441'cold flow measurements

as well.. Chemiluminescent emission from CH has been estab-

lished as a signature of the reaction zone in the combus-

i
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tort 117 1. Figu re 3-27 shows that the maxima of mean CH emis-

3ions occur outside the recirculation zone but well interior

to the region of peals axial velocity. This implies that the

flame is not able to propognte across the region of high vel-

ocities.	 The peaks iii L-110 axial velocities are as high as

I - 25u i where U i is the average axial veloeity in the inner

Jet. The flame is able to propagate radially until the steep

gradients in velocity are encountered. Then the radial pro-

pagation is slower since the flame is almost parallel to the

flow direction due to the high flow velocities. This slower

radial propagation as the flow moves downstream is possible

only if the local equivalence ratios are above the local

inflamm%ability limits determined by the local turbulence,

temperature and velocity conditions. For both the co- and

counter-swirl cases the peolc velocities are nearly the same

(1.250) near the inlet but the peak value is slightly lower

and the peak i.-, bronder by the tiIiie the flow reaches 1D 
0

downstreom as a result of increased momentum transport due to

greater mixing in the counter-swirl case (Figures 7 and 11 in

[71]). In the co-swirl oases, however, the local equivalence

ratios 
in 

the region of the steep gradients of axial velocity

are expected to be higher- than the local inflammability lim-

its due to reduced mixing with the outer jet. Therefore, the

flame can pro pagate radially outward though it does so very

gradually on account of the high axial velocities and the

flame being almost parallel to the flow. In oounter-swirl,

in addition to the velocities on the sides of the recirouln-

661.
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Lion	 zone	 being	 high,	 the local	 equivalence	 ratios	 in	 that

region	 are	 expected	 to	 decrease rapidly	 as	 we go downstream

due	 to increased	 mixing with the outer air. 	 Hence the flame

cannot	 propagate	 radially outward	 as	 the	 flow	 moves	 down-

stream.	 Figure	 3-27 shows that the	 frame	 as denoted	 by the

peaks of mean	 CH emissions does	 not	 propagate radially 	 out-

ward	 to the ex'^nnt it does in the co-swirl case. 	 The greater

the radial propagation of the flame,	 the larger the number of

streamtubes it is likely to cut, thereby burning more fuel.
h
4
L

Based	 on	 the mechanism discussed	 above,	 a	 smaller	 amount

of	 fuel	 is burnt	 in	 front of the	 smaller	 recirculation zone

in the co-swirl case than in the counter-swirl case.	 But more

fuel	 is burnt	 on	 the	 sides of the	 recirculation	 zone	 in	 the

co-swirl case than in the counter-swirl case.

In the present study, it so happens that the amounts of

fuel burnt in front and on the sides of the recirculation

zone add up to approximately the same amount in the co- and

oounter-swirl cases resulting in the same efficiency. As

seen from the discussions above, this insensitivity of the

efficiency to outer swirl does not imply that the combustion

mechanism is unaffected by outer swirl. It could be consid-

ered fortuitious that the operating conditions set in the

present study resulted in a constant efficiency with varying

outer swirl. On the other hand, with flow conditions result-

ing in a smaller recirculation ,:one in co-swirl than in the

present study, one can possibly achieve higher efficiencies

4 9
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for counter-swirl than for co-swirl though there is more

dilution from the outer air in the counter-swirl than in the

co-swirl case. There are also operating conditions for which

the efficiencies for co-swirl are greater than those for

counter-swirl.

Yetter v s[42] observation of a higher efficiency for

co-swirl than for counter-swirl may be explained as follows.

A study of the size of the recirculation zone formed from a

single jet for varying swirl numbers made by Syred and

Beer[21 shows that the recirculation zone increases in size

with increasing swirl numbers. This suggests that for

operating conditions in [4 11, the recirculation zones were

probably bigger than in the present study due to the larger

inner swirl in [42). This means that in co-swirl cases in

[u2], a larger amount of fuel is burnt in front of the

recirculation zone as well as that the flame propagates

farther radially than in the present study since the high

velocity peaks occur at larger radial distances due to the

larger recirculation	 zone	 resulting	 in	 much	 higher

efficiencies (Figure 3-19) and a larger central hot core

(Figure 3-26) than in the present study. The increase in

efficiency in the counter-swirl cases is not much (Figure

3-19). There seems to be an upper limit to the efficiency in

the counter-swirl cases as a result of dilution from the

outer air. Beyond a certain size, an increase in the size of

the recirculation zone in the counter-swirl cases is of no

use, since, eventhough the flow conditions are suitable for

h
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more combustion, the loci,

a result of dilution.

Therefore, it appears that even small changes in inner

swirl can cause Large changes in efficiency. Exploratory

measurements performed by the a ►ithor, the results of which

are not presented here for want of systematic date, show that

minor adjustments of the butterfly valve Controlling the

inner swirl causes changes in centerline temperature at the

exit of the order of 150 0K. Tile experiment done for the mod-

erate co-swirl case demonstrates that the combustor is very

sensitive to inner swirl..

The oxidation of CO and NO in the combustor to CO2 and NO2

respectively is explained as follows. The CO to CO 2 and NO

to NO 2 conversions being slower reactions are determined by

conditions downstream of the combustion zone in the post-com-

bustion zone. Inspection of the time mean isotherms i_n the

combustor measured by Oven, et al.[41) (Figure 3-28) shows

that cooling rates on the centerline for the counter-swirl

case can be as high as 250 0K per millisecond (an axial veloc-

ity of 50 m/s is assumed). This cooling rate is much higher

than the minimum cooling rate of 700K per millisecond at

12700K specified by Fenimore and Moore[171 for CO remaining

permanently quenched. There is little or no cooling of the

hot core in the co-swirl case (Figure 3-28). Hence large

amounts of CO are found at the exit in the counter-swirl

cases compared to the co--swirl cases. Inspection of the time

,i
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mean isopleths of 100 measured by Oven, et al.[413 and

presented in figure 3-29 shows CO being rapidly converted to

CO 2 in the central core of the post-combustion zone for the

co-swirl case whereas large amounts of CO are quenched in

this zone and mixed across the combustor for the counter-

swirl. cases. Large fractions of NI,/NO X in the counter-swirl

cases are a result of the increased quenching in the post-

combustion zone in the counter-swirl: cases promoting the for-

mation of HO  which oxidizes NO to NO2.
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CHAPTER 4

CONCLUSIONS

The measurements reported in this work in combination with

results	 from	 previous	 measurements	 in	 the	 swirl	 combustor

lead	 to	 the	 following	 major	 conclusions	 and	 suggest	 future

experiments	 designed	 to	 understand	 specific	 aspects	 of	 the

combustor uperation.

The	 exhaust from	 the	 combustion of propane	 in	 the	 combu-

stor	 is	 free	 from	 lower	 hydrocarbons	 like	 ethane,	 ethylene
ff"

and methane.

There	 is no difference in	 the combustor operation 	 for the
i

rr
!i 

fuels propane	 and	 methane.	 The	 use	 of either	 of	 the,	 fuels

results in	 nearly the	 same temperature 	 and velocity profiles

to and the	 same efficiency for	 a given operating	 condition sug-

gesting that differences in	 the chemistry of combustion bet-

ween propane and methane do not affect the overall combustor

operation.

Practically all the combustion occurs in the region close

to the combustor inlet upto about 1.5D 0 from the inlet,

called the combustion zone. The CO to CO 2 and NO to NO 2 con

Rversions occur in a region downstream of the combustion zone

called the post-combustion zone.

`

	

	 Turbulent mixing in the combustor is enhanced in going

from high co-swirl to counter-swirl with the 30 0 counter-

Y
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swirl showing the greatest degree of mixing. The mixing

trends are a result of interactions between tangential shear

between inner and outer jets and swirl in the presence of

positive radial densit , gradients.

The NO  levels in the exhaust are low as a result of lean

premixed combustion. Large fractions of NO2/NOx ,are found as

a result of quenching in the post.-combustion zone due to

dilution from the outer air jet especially in the counter-

swirl cases. Quenching of f+) oxidation reactions in the

post-combustion zone is the cause for the large amounts of CO

in the counter-swirl cases.

Combustion efficiencies in the present study are low and

remain constant with varying outer swirl.. 	 A mechanism for

the combustor operation is proposed which explains the cons-

tant efficiencies in the present study as well as the

increase in efficiency in going from counter to co-swirl.

observed by Yetter[ 112]. The flame (intense reaction zone) is

stabilized in front of the recirculation zone. Inefficiency

in the combustor stems from the inability of the flame to

propagate radially outward and burn the fuel from the outer

edges of the inner jet. The following four fluid-mechanical

characteristics are considered important in determining the

efficiency of the combustor:

1) The size of the recirculation zone

2) Inlet turbulence

3) Velocities around the recirculation zone

r
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4) Local	 equivalence	 ratio	 on	 the	 sides	 of	 the

re:irculation zone.

It is apparent that these flow characteristics should be

investigated in detail and rel p ted to the operating

parameters of the combustor as a 'viable means to control

combustion.

It is evident that the combustor operation is very sensi-

tive to even small changes in the inner swirl number. It is

therefore necessary to study the effect which the inner swirl

has on the above mentioned four flow characteristics for

different outer swirl conditions.

i
A few measurements are suggested for the future aimed at

n achieving the objectives mentioned above. It is necessary to

delineate the flame precisely and draw streamtubes for the

flow in the combustion zone to determine how much of fuel is

burnt, where in the combustion zone. It is important to use

non-intrusive optical techniques for the measurements. Laser

Doppler Velocimetry is suggested for making extensive mean

and r.m.s velocity measurements especially in front of the

recirculation zone. Temperature measurements using the Ray-

leigh scattering technique will provide information on the

local densities. The local velocity and density information

can be used to draw streamtubes based on mass flow. Measure-

ments of CH emissions using Emission Spectroscopy can be used

to delineate the flame. Measurement of major species concen-

trations in the oudibustion zone using techinques such as

1	 }.

n
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Raman Spectroscopy provid

equivalence ratios. These measurements should	 performed

for varying in^Ier and outer swirl conditions. Effects of

other operating condritions like inner jet equivalence ratio

and inner to outer ,het axial velocity ratio on the combustor

performance can also be studied. There are, however, numer-

ous problems in the practical utilization of the suggested

techniques like signal processing, noise, biases in measure-

ment, maintaining uniform scattering cross-sections for Ray-

leigh scattering mrMasvrements, spatial resolution, signal to

noise ratio especially for low concentrations, laser beam

quality and reliability, etc.	 Most of these problems are

being overcome and the techniques are becoming available for

accurate and reliable measurements. 	 Optical access to the

region of interest in the combustor is necessary. Figures

3-3 to 3-6 show that the combustion zones extend into the

inner tube of the combustor posing the problem of optical

access to that region. But in general, the configuration of

the present combustor provides good optical access and is

well suited for optical techniques.

Measurements similar to those suggested above can be per-

formed in the post-combustion zone to study the dynamics of

the CO to CC  and NO to NO 2 conversions. Conventional sam -

pling and velocity probes are nevertheless still effective

tools for analysis in regions far away from reaction zones

like near the exit. New techniques using acousto-optic fil-

ters (SMART sensors)[$6,$71 for absorption spectroscopy are

rt
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being developed which may prove . ,-,*, y valuable in combus tion

research on account of their speed and ruggedness of opera-

tion The development and application of these techniques

wIll help in understanding the combustor better.

Some modifications to the coc,^austor design could be

attempted. For example $ a shield can be provided around the

Piel injector so that fuel is injected only into the central

region of the inner jet. This will improve the combustor

efficiency since little or no fuel is diluted on the outer

edges of the inner ,jet. Another modification could be to put

a diffuser-like 4'^^4ield over the inner jet and the recivoula-

tion zone to delay the mixing of the outer jet with the in;1er

,jet. With a better understanding of the present combustor,

suitable designs for practical applications of premixed pre-

vaporized swirl combustors can be developed.

. - I
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Table 2. 1.

Compositions (in % by volume) of

Calibration gas mixtures

Mixture No. 1	 2 4
(air)

02 20.9	 5.0

N2 79.1	 72.38 90.0	 99.0

00 7.02

CO2 15.6

Cx4

C 3x$ 10.0	 1.0

—3—

99.0

1.0
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Test Conditions

Outer Swirl So Ui U/Uo Uoa Ii 4oa
[m/s] [m/s]

PROPAM

55oCo - +0.56 30.0 1.32 24.3 0.81 0.214

300co - +0.20 30.3 1.25 25.6 0.80 0.210

30oCt - -0.20 30.1 1.26 25.3 0.80 0.210

55oCt - -0.56 30.2 1.37 23.9 0.80 0.224

METHAM

550Co - +0.56 31.5 1.33 25.4 0.81 0.218

30oct - -0.20 31.6 1.28 26.2 0.80 0.213

S i = 0.495	 Qf	 3.4 SCFM (Propane)

= 8.5 SCFM (Methane).



Table 3.1.r

© values on either lido of the centerline

for the 550 co-swi.ri, propane case
showing axisymmetry at the measurement station

and reproducibility of combustor operation

©(o)
r cm g(o) separate run

5.0 -19.5

4.o -22.5 -22.0
3.0 -21.0 -20.0

2.0 -16.o -15.5

1.0 -10.5 -10.5

0.5 -6.o -6.o

0.0 060 0.0

0.5 6.o 5.5

1.0 11.0

2.0 16.5

3.0 21.0

4.o 23.0

5.0 20.5

x,
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Figure 2-5: Schematic diagram of column arrangement and
flow paths in the gas chromatograph for valve
positions A and B.
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Figure 2-6. Sample chromatogram. ( The numbers on the sides
of the peaks indicate detector attenuation.

.The sample injection point (I) and points of

valve switching to positions A and B are in-

dicated. The time axis is compressed between
peaks. The integrator trace at the bottom

shows the number of line crossings).
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'The difference between ( b) and (c) gives
PT-P59

Figure 2-7: Velocity measurement scheme.	
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Figure 3-10 Mean temperature profiles for the 550 co-swirl,

propane case showing axisymmetry in the com-
bustor.

Lia--



r/Ro

ORIGINAL PAGE. 12
OF POOR QUALITY

2000

180

160

140

120
T (N)

100

80

60

40

20 G

0

0

0

0

0

0

0
Tm = 19135 °K

0

o- two seporote runs

0

1.0 0.6 06 0.4 0'2 00 0.2 0_4 nA n A n

Figure 3-21 Mean temperature profiles for two separate
runs of the 30 0 co-swirl case showing repro-
ducibility of combustor operator.
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Figure 3-3, Photograph of the combustor in operation
under 55 co-swirl propane firing.

Figure 3-4i Photogra81, of the combustor in operation
under 30 co-swirl propane firing.
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Figure 3-5: Photograph of the combustor in operation
under 30 counter-swirl, propane firing.
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Figure 3-6: Fhotogragh of the combustor in operation
under 55 counter-swirl, propane firing.
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30 co-swirl, propane case.
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Figure 3-161 Mean concentration profiles of oxides of
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APPENDIX A

Equations for Determininfi Combustor -Operating Conditions

Subscripts

i - inner jet

o - outer jet

oa - overall

f fuel

1. Inner Jet Mass Flow Rate (lbm/min)

thi = Ai ( Aim) i
	 (A.1)

Where Ai = Constant = 24.1285 (determined from pitot

tube measurements)

h = differential pressure across the annubar

(inches of water column)

p = static pressure at the annubar (psis)

T = temperature at the annubar (°R)

2, Outer Jet Mass Flow Rate (lbm/min)

ffio = A2 (	 ,1 )0	(A.2)

Where A2 = constant = 59,5491 (determined from pitot

rube measurements)

3. Volumetric Air Flow Rate (CP0

Q = IV 	 (A.3)

150



Where p = density in the corresponding ,het (1bm/ft3)

4.	 Inner Jet Mean axial Velocity (ft/sec)

Ui - (Qi + Qf) /Ai

= 0.8692 [8.916(A -M) i + Qf ) (A.4)

Where Ai - inner Jet area - 0.8789v in2

Qf - fuel flow rate from rotameter readings (CFM)

5.	 Outer Jet Mean Axial Velocity (ft/sec)

Up Q0/A0 = 5,602(Y	 )o (A.5)

Where Ap ;- outer jet  area = 37r in2

6.	 Overall Combustor Mean Axial Velc city (ft/sec)

Uoa = (Qi + Qo + Qf)/Ac

_ .1910 (Qi + Qo + Qf) t, .k. 6)

Where Ac = area of the combustor = 41r in2

7.	 Inner Jet Equivalence Ratio

^i = [ (Qf ) scfm/ (Qi ) scfm ) / (F/A) st
= 0 .07501(Qf /mi)/(F/A) st (A.7)

Where (F/A) st is the sto3.chiometric fuel.-air

ratio = 0.105 for methane

= 0.042 for propane

p = 0.07501 ( lbm/ft3) for air at STP

8. Overall Equivalence Ratio

boa = 0.07501 [Qf/( fai + mo)]/(F/A)st (A. 8)

A
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Listings of Programs AVG.FTN, EFF.FTN and EFFM.FTN
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C	 PROGRAM AVG P2114

C
C	 THIS PROGRAM CALCULATES THE MASS FLUX WEIGHTED AVERAGES
C	 FOR T14F X(I,J) VALUES FOR AN OPERATING CONDITION
C	 X CORRESPONDS TO 021 N2o CO, FUEL, CO2o NO, NOX# T AND
C	 H2O FOR 1-1 TO 7 RESPECTIVELY (X(9oJ) IS CALCULATED
C	 IN THE PROGRAM)	 J VALUES DENOTE THE RADIAL LOCATIONS
C	 AT 0 5 CM INTERVALS WITH J mtl FOR R-0.0 AND J a ll FOR
C	 RoD 0 CM FOR Iml TO 5 THE X VALUES ARE SPECIFIED AS
C	 A FRACTION OF THE RCSPrCTIVE MAXIMUM VALUES XMAX,
C	 WHICH ARE SPECIFIED IN PERCENTAGE BY VOLUME NO AND
C	 NOX ARE SPECIFIED IN PPM AND T IN K
C----------------------------------------------------------

DIMENSION R(11),U(11)#X(91l.i),PROD(11)#XMAX(5)iRHOUR(II)
I	 sS0M(9)oAVG(9)
INTEGER FUEL
LOGICAL NAMER(13)#NAMEU(13)#NAMEX(13)#NAMEXM(13)#RUN(25)

C
C	 ASSIGN LOGICAL UNIT NUMBERS TO FILE NAMES AND READ
C	 FROM FILES
C

WRITE(5*1)
I	 FORMAT(' INPUT R VALUES, TYPE FILE NAME R DAT')

READ(5#100)NAMER
100	 i—QRMAT(I3AI )

CALL ASSIGN(3#NAMER)
READ(3i *) (R(I), 1=1, 11)
WRITE(5o2)

2	 FORMAT(' INPUT U VALUES#TYPE FILE NAME C***U.DAT')
READ(5o100)NAMEU
CALL ASSIGN(4#NAMEU)
READ (4o*) (U(I)oI=II1)
WRITE(5#4)

4	 FORMAT(2Xo'INPUT X(IjJ) VALUES, TYPE FILE NAME C***X.DAT')
READ(5, 100)NAMEX
CALL ASSIGN(IoNAMEX)
DO 3 1-1, 8
READ(Is M) (X(Is J)o J zjlo 11)

3	 CONTINUE
WR I TE (Do 5)

5	 FORMAT(' INPUT XMAX ARRAY * TYPE FILE NAME C***XM.DAT')
READ(5sI00)NAMF-XM
CALL ASSIGN(2,NAMEXM)
READ (2, *) ( XMAX (I)i I-It 5)

C
C	 READ DATA FROM TERMINAL
C

WRITE (5,14)
14	 FORMAT(' INPUT INLET FUEL(PPM) AND FUEL 	 I=C3HBo 2=CH4')

READ (t)i *) F, FUEL
WRITE (5, 15)

15	 FORMAT(' INPUT RUN CONDITION')
READ (5i151) RUN

I S	 i
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151	 FORMAT(25A1)
WRITE (6o 16) RUN

16	 FORMAT(20X, ,7.1)A1, / )
C
C	 CALCULATION OP MOLE FRACTIONS ON A DRY BASIS
C

DO 110 Ix1,5
DO 110 J=I'll
X (i, J)=X (I, J) *XMAx (I )1100

110	 CONTINUE
C
C	 CALCULATION OF WATER,MOLE FRACTIONS ON A WET BASIS
C	 AND CONVERSION OF ALL MOLE FRACTIONS TO PPM.
C

DO 130 J m Is 1 1
IF (FUEL. EG . 2) GO TO 110
X(9, J)	 4. /3. *(X(3, J)+X(5, J) )
CO TO 1191 I
	 X(9, J)= 2. *(X(3) J) aX(5) J) )

119	 DO 120 1=1,5
X(I,J)= X(I,J)*1000000./(1+X(9,J))

120	 CONTINUE
X(9, J)= X(9, J)*1000000. /(1+X(9, J) )

130 CONTINUE
C
C	 OUTPUT OF MOLE FRACTIONS (IN PPM),VELOCITY AND TEMPERATURE.
C

WRITE(6o6)
6	 FORMAT(1X, ' R 's 2X, ' 	 U	 ', 3X, ' 02	 ', 3X, ' N2	 ', 2X, ' CO	 ',2X)

i	 'FUEL', 2X, ' CO2 ', 2X, ' 	 NO	 ', 1X, '	 NOX	 ', 1X, '	 T
', IX,

2	 '	 H2O	 ', /, IX, 'CM ', 2X, ' M/S ', 3X, ' PPM ', 3X, ' PPM
3 2X, ' PPM ', 2X, ' PPM', 2X, ' PPM ', 2X, ' 	 PPM	 I t Ix,
4	 '	 PPM	 ', 1.X, '	 K	 ', 1X, '	 PPM
DO 7 J=1,11
WRITE(6, 8)R(J), U(J), (X(I, J), I=1, 9)

8	 FORMAT(1X, F3, 1, 2X, F5. 2, 1X, 2 (1X, F7. 0), IX, F5. 0, 2(1X, F6, 0),
1	 1 X, F6. 2, 2X, F6. 21 2X, F5. 0, 1 X, F7. 0)

7	 CONTINUE
C
C	 CALCULATION OF AVERAGE VALUES.
C

C	 DENOMINATOR
C

DO 9 I=1,11
RHOVR(I) = R(I)*U(I) /X(e,I)

9	 CONTINUE
C	 INTEGRATION
C	 SIMPSON'S RULE FOR INTEGRATION BETWEEN R=0,0 AND R =5. O

CALL SIMPS(RHOUR,SUMO)
C	 TRAPEZOIDAL RULE BETWEEN R = 5.0 AND 5,1 WITH VALUE AT 5,1 EQUAL
C	 TO ZERO

SUMO = SUMO +0.05 *RHOUR(11)
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C.
C	 NUMERATOR
C

00 11 l m l1 9
DO 10 J=1,11
PROD (J)-RHOUR(J)*X(ILJ)

10	 CONTINUE
C	 INTEGRATION

CALL SIMPS (PR0D, SUM(I) )
SUM(I)-SUM(I)+0,05MPROD(1I)

C
AvG (I) + SUM ( I) / SUMO

C
It	 CONTINUE
C
C	 OUTPUT OF AVERAGE VALUES,
C

WRITE (6, 12) (AVG( I ), I=1, 9)
12	 FORMAT(/,6X,'AVG=',ZXi2(1XoF7.0)t1XiF5.0)2(IXtF6.0)r1X,F4 2,

1	 2X, F6. 2, 2X, F5, 0, 1 X, F7. A )
C
C	 CALCULATION OF EFFICIENCIES.
C

EFF1= (1,—AVG(4)/F)*100.
C

IF ( FUEL, E0, 2 ) GO TO 20
C

EFF2= (1,—(AVG(4)+AVG(3)*67.63/464,22)/F)*100.
GO TO 30

C
20	 CONTINUE

EFF2- (1.-(AVG(4)+AVG(3)*67.63/189.76)/F)*100.
C
30	 CONTINUE
C
C	 OUTPUT OF EFFICIENCY VALUES.
C

WRITE (6,17) EFFI,EFF2
17	 FORMAT(/, 6X, 'CHEMICAL EFFICIENCY (UNDURNT FUEL ONLY) -'#F7.3#

1 '%',/,6X,'CHEMICAL EFFICIENCY (UNAURNT FUEL AND CO)-',F7.3,
2	 '%',//)

C
STOP
END
SUBROUTINE SIMPS(Y,SUM)
DIMENSION Y(11)
SUM=O
DO 10 I=1,4

10	 SUM = SUM+4*Y(2*I)+2*Y(2*1+1)
H=0.5
SUM=H/3*(Y(I)+SUM+4MY(10)+Y(Il))
RETURN
END

9
t
a

t^

if

k

x
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C
C	 PROGRAM EFF. FTN
C	 **************^►
C
C	 THIS PROGRAM CALCULATES THE 'THERMAL EFFICIENCY FOR A
C	 PROPANE FIRED RUN. THE VARIABLE NAMES AND THE DATA
C	 INPUT FORMAT ARE THE SAME AS FOR AVG.FTN.
C--------------------------------------------------------

rIMENSION R( 11),U( i l),X(9,11) , XMAX ( 5),pROD(11),H(11)
LOGICAL NAMER(13),NAMEU(t3),NAMEX(13)rNAMEXM(13),RUN(13)

C
C	 ASSIGN LOGICAL UNIT NUMBERS TO FILE NAMES AND READ
C	 FROM FILES,
C

WRITE(5o1)
1	 FORMAT(' INPUT FILE R.DAT')

REAO(5,100)NAMER
100	 FORMAT(13A1)

CALL ASSIGN(1,NAMER)
READ(1, *)(R(I), I=1, 11)
WRITE(5,2)

2	 FORMAT(' INPUT FILE C***U.DAT')
READ(5,100)NAMEU
CALL ASSIGN(2,NAMEU)
READ(2, *) (U(I), I=1, 11 )
WRITE(5, 3)

3	 FORMAT(' INPUT FILE C***X.DATI)
READ(5,100)NAMEX
CALL ASSIGN(3,NAMEX)
DO 4 I=1#8
READ (3, *) (X (I, J) # J=1, 1 I )

4	 CONTINUE.
WRITE(5, 5)

5	 FORriAT(' INPUT FILE C***XM. DAT')
READ (5,100)NAMEXM
CALL ASSIGN(4,NAMEXM)
READ (4, *) (XMAX ( I ), I=1, 5 )

C	 READ DATA FROM TERMINAL.
WRITE(5, 6)

6	 FORMAT(' INPUT RUN CONDITION')
READ(5o100)RUN
WRITE(5,8)

8	 FORMAT(' INPUT (INLET TEMP)/1000,FUEL MASS RATE,P IN MM OF HG')
READ(5, * )TI, FM, P

C
C	 COEFFICIENTS FOR CP FOR 02, N2, CO, C3H8, CO2, H2O
C

A1=7.361111
B 1=-5. 369589
C 1=20. 54179
Dl=-25,86526
E1=15. 94566
Fl=-4. 85889

v
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G 1 xO, 5861501
A2n7. 709928
D2--5.503897
C2-13,12136
D2=-11. 67^55
E2-5.233997
F2--1,173105
G2=0, 103883
A3-7.812249
113= -6. 668293
C3-17.28296
D3=-17, 28709
E3=8. 860125
F3=2, ,) 4819
03=0.2447785
A4=6.8008
04=28.71
C4=62.349
D4 107.19
E4=69.802
F4--21.101
G4-2.4476
A5-4,324933
D5=20,80895
C5--22.9459
D5=16.84463
E5--7.935665
F5=2. 121672
05=-0,2408713
A9=7.98866
B9=-1.506271
C9=6. 661376
D9=-4.65597
E9=1.696464
F9=-0,3706212
09=0,03992444

C
C	 CALCULATE MOLE FRACTIONS ON A DRY OASIS.
C

DO 9 I =1, 5
DO 9 J=1,11
X(I, J)=X (I, J)*XMAX(I)/100. 0

9	 CONTINUE
C
C	 CALCULATE WATER AND MOLE FRACTIONS ON A DRY BASIS.
C

DO 10 J=1,11
X (9, J) =4, 0*(X(3, J)+X(5, J) )/3
DO 20 I = 1, 5
X(I, J)=X(I, J) /( 1+X(9, J) )

20	 CONTINUE
X (9, J)=X (9, J) / (I+X (9, J) )

10	 CONTINUE
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WRITE(61200)RUN
200	 FORMAT('-', 10X, 'THERMAL EFFICIENCY', 10X, 'RUN. ', 13AI///IOX, ' R '

1	 , 5X, '	 H	 ', 10X, '	 C	 ', 3X, '	 PROD '/)
C
C	 EVALUATE INTEGRAND AT EACH RADIAL LOCATION,
C

AO 12 Jx I, 11
T-X(B,J) 11000,0

C
C	 COEFFICIENTS rOR CP VALUE AT THE RADIAL LOCATION J•

A=X(1, J)*A1 +X(2, J)*AZ+X(3, J)*A3 +X(4, J)*A4 +X(5, J)*A5+X ( 9, J)*A9
B s (X(1, J)*B1+X(o!, J)*D2+X(3, J)*D3+X(4,J)*1)4+X(5, J)*DS+X(9r J)*D9)
1 /2

CQ(X(1,J)*C1+X(2,%J)*C2+X(3,J)*C34'X(4,J)*C4+X(5,J)*C5+X(9,J)*C9)
1 /3
D=tX(1,J)*DI+X(2, J)*D2+X(3, J)*D3+X(4,J)*D4+X(5, J)*D5+X(9, J)*D9)
1 /4
E-(X(1,J)*E1+X(2,J)*E2+X(3,J)*E3+X(4,J)*E4+X(5,J)*ES+X(9,J)*E9)
1 /5
F=(X(I,J)*Fi+X(2,J)*F2+X(3,J)*F3+X(4,J)*F4+X(5,J)*F5+X(9,J)*F9)
1 /6
G=(X(i,J)*Gi+X(2,J)*G2+X (3, J)*G3+X(4)J)*04+X(5,J)*G5 +X(9, J) *09 )
1 /7

C
C	 SENSIBLE ENTHALPIES AT THE LOCAL AND INLET TEMPERATURES.

HT2=T*(A+T*(B+T*.(C+T*SD+T*(E+T*(F+T*O))))))
HT1=TI *( A+TI* ( B+T1*(C+TI *( D+TI*(E+TI*(F+TI*G))))))

C
C	 INCREASE IN SENSIBLE ENTHALPY AT RADIAL LOCATION J.

H(J)=(HT2-HTI)
C
C	 INTEGRAND ( CONSTANT FACTORS ARE MULTIPLIED LATER)

PROD(J)=R(J)*U(J)*H(J)/X(R,J)
WRITE(6,I1)R(J),H(J),C,PROD(J)

11	 FORMAT( 10X, F3. 1, 5X, F7 4, lQX, F7. 4, 3X, F7 5)
12	 CONTINUE
C
C	 EVALUATE INTEGRAL OVER THE RADIUS.
C

CALL SIMPS(PROD,SUM)
C	 TRAPEZOIDAL RULE FROM R=5.0 TO R=5.1 CM

SUM=SUM+0.05*PROD(11)
C
C	 MULTIPLY CONSTANT FACTORS.
C	 HE= INCREASE IN SENSIBLE ENTHALPY FLUX AT THE EXIT.
C	 HE=SUM*100*(P/R)*2*PI=SUM*P*O 01007, R=62400 MM.HG°CC/GM MOLE°K
C	 P IN MM. OF HG 1 100 CONVERTS M/S TO CM/S.
C

HE=0.01007*SUM*P
C
C	 HEATING VALUE AT INLET TEMP Ti
C	 HV= VALUE AT STP, 0= VALUE AT TI
C	 (HV IN KCAL/GM MOLE, 0 -IN KCAL/GM).

1^t



159

,

opir,114M. PA-37. 1

U!F	 R QUAMY,

C
HV=494. 22
A=5*AI+A4-3*A5-4*A9
0-( 5*B 1+{)4-3*n5-4*1)9) /2. 0
G F (5*CI+C4-3*C5-41(C9)/3. 0
Dm (5*D1+D4-3*D5-4*D9) /4. 0
E=(5*El +E4-3ME5-4*E9)/5.0
F-(5*F1+F4-3*F5-4*F9)/6 0
G=(5*G1+G4-3*G5-4*G9)/7.0
HT2=TI*(A+TI*(B+TI*(C+TI*(D+T1*(E+TI*(F+TI*G)))1))
T-0.293
HT1=T*(A+TI*(D+T1*(C+Ti*(D+TI*(E+TI*(F+TI*G))))))
0=(HV+HT2-HTI)/44.0

C
C	 CALCULATE THERMAL EFFICIENCY (%).
C

EFF=100*HE/(Q *FM)
WRITE (b, 13) SUM, HE, Q

13	 FORMAT( 'O's lOk, 'SUM=', F6. 4, 5X, 'HE=', F7. 4, 5X, 'G=', F6. 3/)
WRITE (6, 14) EFF, T i, FM, P

14	 FORMAT('IOX, 'EFF='. F7. 3/// 10X, 'T1=', F5. 3, 3X, 'FM=', F6. 4, 'P='r F6. 2)
STOP
END

C
C

SUBROUTINE SIMPS(Y,SUM)
C	 SIMPSONS RULE FOR 11 POINTSi STEP SIZE=0.5

DIMENSION Y(li)
SUM=O. 0
DO 10 I=1,4

10	 SUM=SUM+4*Y(2*1)+2*Y(2*I+1)
H=0.5
SUM=H/3*(Y(1)+SUM+4*Y(10)+Y(11))
RETURN
END



C
C	 PROGRAM EFFM, FTN
C	 ^►*************rw
C
C	 THIS PROGRAM CALCULATES THE THERMAL EFFICIENCY FOR A
C	 METHANE FIRED RUN COMMENT CARDS FOR EFF FIN APPLY
C	 FOR THIS PROGRAM ALSO.

DIMENSION R(II),U(11),X(9,11),XMAX(5),PROD(11),H(11)
LOGICAL NAMERt13),NAMEU(13),NAMEX(13),NAMEXM(13),RUN(131)
WRITE(5i1)

1	 FORMA"(' INPUT FILE R.DAT')
READ(5,100)NAMER

100	 FORMAT(13A1)
CALL ASSIGN(I, NAME)O
READ( 1,*)(R(1), I 12 1, 11>
WRITE(5, 2)

2	 FORMAT(' INPUT FIDE C** *U.DAT')
RFAD ( 5,100)NAMEU
CALL ASSIGN(2,NAMEU)
READ(,, *) (U(I ), I=1, 11)
WRITE(5, 3)

3	 FORMAT(' INPUT FILE C* *X DAT')
READ(3,100)NAMEX
CALL ASSIGN(3,NAMEX)
DO 4 I=I,B
READ (3,M)(X(I,J),J=1, 11)

4	 CONTINUE
WRITE(5, 5)

5	 FORMAT(' INPUT FILE C***XM.DAT')
READ(5,100)NAMEXM
CALL ASSIGN(4,NAMEXM)
READ(4,*)(XMAX(I), I+=1,5)
WRITE(5, 6)

6	 FORMAT(' INPUT RUN CONDITION')
READ(5,100)RUN
WRITE(50 (3)

8	 FORMAT(' INPUT ( INLET TEMP) / 1000 , FUEL MASS RATE) P IN MM OF HG')
READ (5, *) T I, FPt, P

C
C	 COEFFICIENTS FOR CP FOR OD, N.^, CO, CH4, CO2, 1120

Al=7. 361141
01=5. 369589

C i =20. 54179
Dl=-25,86526
G 1=15. 94566
FI -4.858139
01=0 5861501
A2 -7 709928
112 -5 503897
C2-13.12136
D2tr -1) . 67955
E2=5 233997

160
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l
r

F2=-1.17318D
y
	 02-0. 103803

A3 m7. 812249
03--6.66(3293
C3=17.28296
D3=-17 28709
E3=8. 860125
F3w2 314819
03=0 2447785

A4 n7.918404
04--1 1. 4172'
C4-63.73457
D4=-75. 25691
E4=43. 29269
F4--12 5673.
04-1,49695

A5-4.324933
115=20.80895
C,5=-22, 9459
D5=16,84483
ED--7.935665
F5-2.121672
05-0.2408713
A9-7, 98886
B9;=-1,506271
C9=6.661376
D9=-4. 65597
E9=1,696464
F9=-0.3706212
49=0 03992444
DO 9 1=105
DO 9 J=1,11
X( I, J) = X(I, J)*XMAX(I)/100, 0

9	 CONTINUE
DO 10 J=1,11
X (9, J)=2*(X(;) , J)+X(5,J))

10	 CONTINUE
WRITE ( 6,200)RUN

200	 FORMAT(///, 10X, 'THERMAL EFFICIENCY', IOX) 'RUN: ', 13A1///10X, ' R
1	 , 5X, '	 H	 ', 1OX, '	 C	 ', 3X, '	 PROD
DO 12 J=1,11
T=X(B)J)/1000.0
A=X( 1, J) *A 1 +X (2, J) *A2+X (3, J) *A3+X (4, J) *A4+X (5, J) *A5+X (9) J) *A9
0=(X(1,J)*BI+X(2,J)*02+X(3,J)*D3+X(4,J)*04+X(5,J)*OD+X(9,J)*09)
I /2
C=(X(1, J)*C1+X(2, J)*C2+X(3) J)*C3+X(4r J)*C4+X(5, J)*C5+X(9,J)*C9)
1 /3
D=(X(1, J)*D1+X(2, J)*D2+X(3)J)*D3+X(4, J)*D4+X(5, J)* p 5+X(9, J)*D9)

1	 /4
E=(X(1, J) *EI+X(2, J',*E2+X (3, J)*E3+X(4, J)*E4+ X(5, J)*E3 +X(9, J)NE9)
1 /5
F=(X(1, J)*FS+X(2, J)*F2+X(3, J) *F3+X(4, J)*F4+X(5, J)*F5+X(9, ,))*F9)
1 /6

l
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of POOR QUALITY

QR( X(1,J)*01+X(2;J)*02+X(3,J)*03+X(4;J)*G4+X(5,J) *Qv+X(9)J)*09)
1 /7
HT2=T*(A+T*(P +T*(C+T*(D+T*(E+T*(F+T*G))))))
HTINTI*(A+TI*(D+TI*(C+TI*(D+TI*(E+TI*(F+TI*G))))))
H(0)=(HT:-HT1)
PROD(J)wR(J)*U(J)*H(J)/X(S,J)
WRITE(6, 11)R(J)r H(J), Ci PROD(J)
FORMAT(10X, F3, 1, 3X, F7 41 10X) F7, 41 3X, F7. 5)
CONTINUE
CALL SIMPS(PROD;SUM)
SUM=SUM+O.OD*PROD(I1)
HE=SUM*100*P/R*2*PI-SUM*P*O 01007; Rj+62400 MM.HG-CC/QM MOLE-K
P IN MM, OF HO.
HE=0.01007*SUM*P
HEATING VALUE AT TEMP TI
HV-189.76

A=2*A1+A4-A5-2*A9
D=(2*D1+D4-D5-2*09)/2 0
C=(2*C1+C4-05-2*(:9)/3.0
D=(2*01+D4-D5-2*D9)/4.0
E=(2*E1 +E4-E5-2*E9)/5.0
F= (2*F 1+F4-F5-2*F9) /6. 0
G=(,d*G I+G4-G9-2*G9) /7. 0
HT2=TI*(A+TI*(D+TI*(C+TI*(D+TI*(E+TI*(F+TI*G))))))
T-0,293
HTI-T*(A+TI*(U+TI*(C+TI*(D+Ti*(E+Tl*(F+TI*G))))))
0=(HV+HT2-HTI)/16.0
EFF=100*HE/(Q*FM)
WRITE (6, 13) SUM; HE, Q
FORMAT ('O' 1 IOX, 'SUM=', F6. 4, 5X; 'HE w , F7. 4, 5X, 'Q- l i F6. 3/ )
WRITE(6, 14)EFF: TI, FM, P
FORMAT(IOX, 'EFF='# F7. 3///10X) 'TI=', F5. 3, 3X, 'FM -'t F6. 4, 'P=', F6. 2)
STOP
END

SUBROUTINE SIMPS(Y,SUM)
SIMPSONS RULE FOR 11 POINTSi STEP SIZE-0.5
DIMENSION Y(11)
SUM=0.0
DO 10 1=1,4
SUM=SUM+4*Y(2*1)+2*Y(2*I+1)
H=O. 5
SUM=H/3*(Y(i)+SUM+4*Y(10)+Y(11))
RETURN
END

13
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