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SOLUTION OF A SECOND-ORDER LINEAR SYSTEM

BY MATCHED ASYMPTOTIC EXPANSIONS

Mark D. Ardema

NASA Ames Research Center

SUMMARY

For the purpose of giving a clear exposition of the method, matched asymptotic

expansions (MAE) are used to obtain a first-order approximation to the solution of

a singularly perturbed second-order system. A special case is considered in which

the uniform asymptotic solution obtained by MAE is shown to converge to the exact

solution. Ways in which the method can be used to solve higher-order linear systems,

including those which are not singularly perturbed, are also discussed.

INTRODUCTION

One of the simplest singular-perturbation problems is that of finding an

asymptotic solution to a constant-coefficient linear system, with one slow and one

fast variable subject to initial conditions. Such a system is given by

dx

d--_= Ax + By ; x(€,0) =

(i)
_ = Cx + Dy ; y(_,0) =

where x and y are called the slow and fast variables, respectively, and E is

a "small" parameter. In this paper we will obtain an asymptotic solution to this

problem to first order in _ on 0 N t _ T _ = by the method of matched asymptotic

expansions (MAE) under the following two assumptions:

E = AD - BC _= 0 (2)

D < 0 (3)

The first of these assumptions assures the existence of a solution and the second

assures boundary-layer stability, the significance of which will become apparent

later.



The purpose of solving such a simple example is to make as transparent as

possible the use of the MAE method. This method was developed in connection with

certain fluid mechanics problems and is discussed in depth in references i and 2.

Reference 3 adapts and applies MAE to a wide range of problems involving systems of

ordinary differential equations.

There are four steps in the _iAE method: (i) formulation of the outer problem

and its asymptotic solution to the desired order; (2) formulation of the inner

(boundary-layer) problem and its asymptotic solution to the desired order; (3) match-

ing of the outer and inner solutions to obtain unknown constants of integration and

the common parts; and (4) formulation of a composite solution that is uniformly

valid in all dependent variables for 0 _ t _ T _ _.

Although the MAE method is somewhat more cumbersome than other singular-

perturbation techniques that have been developed in recent years, it has two

advantages over the more recent methods. The first is that it explicitly splits the

problem into two (or more) separate ones. The solutions of these problems may be

useful in their own right, in addition to being the constituents of composite

solutions. Further, the inner problem(s) satisfies the boundary conditions as

opposed to most other methods. The second advantage lies in the great flexibility

that is afforded in the form of the assumed stretching transformations and inner and

outer expansions, as well as in the manner in which these expansions are combined to

give the uniform composite solution. This flexibility is often desirable and

occasionally necessary.

The solution to equation (i) will be obtained to first-order, since determination

of thezero-order solution is essentially trivial. The zero-order uniform solution

consists of the solution to the reduced problem [Eq. (i), with E = 0 and the initial

condition on y discarded] added to the solution of the zero-order inner problem

[eq. (i), with t transformed to T = t/£ and £ = 0]. Steps three and four of the

MAE method are then not needed. Further, the first-order solution gives much better

numerical results than the zero-order one, unless € is "very small." This point

is dealt with in the final section (Discussion and Genera2izations).



By definition, f(_) is an nth-order asymptotic approximation to F(€) if

lim IF(g) -f(_)l <
g.0 n+l

OUTER SOLUTION

The outer system associated with equation (i) describes the solution away from

the initial point. It is simply equation (i) without the initial conditions:

dx° = Ax ° + By°
dt (4)

dy = Cxo + DyOdt

To solve this to flrst-order we assume that power-series expansions are valid and

set

=x°(t)+
(5)

o o

y°(a,t) = Yo(t) + Yl(t)€

in equations (4) and retain only first-order terms to get

dx° dx_ Ax° o o o
___qo+ € = + AXl_ + +dt -_- o BYo BYI_

o (6)

dy _ = Cxo + Cx_ + o + odt o DYo DYI£

Equating the coefficients of o gives the zero-order outer problem

dx °

o = Axo + o
dt o BYo

(7)
0 = Cx° + o

o DYo
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The solutions to equations (7) under assumptions (2) and (3), are

E E
--t --t

xo C° D o = _C° C D
= e ; Yo _ e (8)o O o

where C° is a constant of integration that is as yet undetermined. Since
o

equations (7) are a flrst-order system, both of the initial conditions cannot be
C

satisfied (unless, of course, 8 = -_ _). Thus, at best, equations (8) are zero-order

approximations only on 0 < t S T S _, and no initial conditions have been imposed

on the outer problem.

Similarly, the first-order problem is obtained from the coefficients of € in

equations (6) as

dxI o

dt - AXl + BYl

(9)
o

= O

dY°dt Cx_ + Dy 1

Since y_(t) is a known function from the solution of the previous order, this is a

flrst-order problem. Using (8),

dx_ _ t
E o _ C° CB___EEeD

d---_= D Xl o D3

(i0)
E
-- t

o = _C° CE eD C o

Yl o 7 - D Xl °

which has solution

E E
--t --t

o o eD _ C° CBE D

Xl = CI o D3 t e



E E E

o _C° CE e_ t -- t --= o C D C° C2BE D t

Yl o 7 - C1 _ e + o D4 t e (ii)

o

where CI is another as yet unknown constant of integration.

INNER SOLUTION

Because the purpose of the inner system is to model the solution near the initial

point, its solution is required to satisfy both initial conditions. Postulating that

the inner motion occurs on a time scale of order €, we stretch the independent

variable by

t
= -- (12)T

E

Substituting equation (12) in (i) gives the inner (boundary-layer) equations

dx I
cIAx I + Byl_ ; x (_ 0) =

dT

i (13)

dy = Cxi + Oyi i 0) BdT ; y (s, =

To solve this to first-order, assume a power-series expansion and set

xi(s'T) = xi(T)o + X_(T)S

(14)
i i

yi(E,T) = Yo(T) + YI(T)E

in (13) to get

dx i dx_ i

_.__O+dT_ s = Axiso + Byos ; xi(0)o_- + x_(0)si =

(15)i i

dY°dT+ s = C + CXlS + Dy° + DYlS ; y (0) + y (0)s = B
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The zero-order problem from (15) is

dx m
o i

dT 0 ; x (0) =o

i (16)

dYo i i i

T = CXo + DYo ; Yo(0) = 8

with the solution

i
X = (X
O

Yo +- e - -_- (17)

i
Note that x is a constant. In effect, the boundary-layer motion is so rapid that

o

to zero-order the slow variable has not had time to begin its motion.

The first-order problem is

dxl
dT = Axi + io By° ; x (0) = 0

(18)
i

i
y_ (0) : 0dYl = Cx_ + Dy1

o

dT '

which has the solution

xI =_T +D +-- -
(19)

i _ ECct DT Be ECc_ + + eDT BC

Yl D3 e - 7 +- eD_ T ....- -- - _-_ D3 D D

Note that to first-order there is a variation in the slow variable x in the

boundary layer.



MATCHING

Matching is the key step in the MAE method. It identifies any faulty assumptions

regarding the form of the asymptotic expansions and stretching transformations and

serves to determine the unknown constants C°o and CI.o Matching essentially requires

that the behavior of the outer solution as t . 0 is the same as that of the inner

solution as T . _, that is, the outer solution extended into the inner region must

agree with the inner solution extended into the outer region. This "limit matching

principle" may be stated as

lim [x°(€,t) - xi(€,T)] = 0 (20a)
t.0

T.oo

_0

lim [y°(_,t) - yl(_,T)] = 0 (20b)
t.0

T-+_o

_.0

These equations are to be regarded as shorthand for the requirement that the outer

and inner solutions must agree in an "overlap region" between the inner and outer

regions.

o o
The limiting behaviors of x and y are obtained by expanding equations (8)

and (i0) about t = 0; for small t,

o )x _C +_t+ ..o

Yo _ oD +_t + ..

(21)

)Xl _ C + _ t + ... - -- + ...
o D3

° -C° CE (i E .) ° C (i E ) C° C2BE (t ")Yl _ o 7 + _ t + .. - CI _ + _ t + ... + o D4 + ""

For large T, (17) and (19) are approximately



i

o

i C

Yo_-_ e

(22)

xI - +

i - EC---_ _ EC----_Be <8 _)Yl _ D2 "r D3 + 7 +

DT
By assumption (3), terms involving e do not appear in (22).

Using equations (5), (14), (21), and (22) in equation (20a), we now match x to

first-order:

lim{CoO + cO E (C1 o E cO CBE t .)t.0 o D t + ... + € + C1 _ t + ... - o D-_ - ""

E.O [__ B (8
- _ - _ aT -_ + = 0 (23)

Noting that _ goes to zero faster than t, and using equation (12), equation (23)

can be true only if

C° - a = 0 (coefficients of t°£°) (24a)
o

cOE_E
o D D _ = 0 (coefficients of tl_°) (24b) (24)

CI _ + = 0 (coefficients of t°€ I) (24c)

Equations (24a) and (24c) give

o
C =
O

oCI = - _ +- (25)
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and (24b) is then satisfied trivially. Terms in equation (23) that involve higher

powers of tmc n than t° i€ are not matched at this order of approximation.

i

It is now clear why assumption (3) is necessary. If D > 0, then Yo grows

exponentially and cannot be matched by any algebraic term. It is in fact a general

requirement of singular-perturbation analysis that the zero-order boundary-layer

equations, equations (16) in our case, be asymptotically stable. In the MAE method,

this requirement arises naturally from the matching relation.

The matching relation for y to first-order is

O D- o n-2 t - "" - g n-3+ o D4 t + ... + C1D + C1 7 t + ...

€.0

This implies

-C °C05+ =0

_ C° CE ECe =o7+7 0
C° CE o C EC_ BC (8 C_e_

_- Cl_+ \ + D/ = 0o 7 D2

which agrees with (25). In general, matching the slow variables is sufficient to

determine all unknown constants of integration.

The fact that we have been able to match both x and y validates our

selection of the linear stretching transformation (12) and power-series expansions (5)

and (14). If matching had not been possible with these assumptions, more general

transformations and expansions would be required.

9



From equations (25), (8), and (i0) the outer solution is

E E
--t --t

o D o C D

X = C_e ; -Yo - c__euo

E E

oxI = - _ + - _ _ t (28)

E E E

oYl = - _-_eD +7 B + + _--_-- t e

FORMATION OF COMPOSITE SOLUTION

We now have a representation for the solution of (i) near t = 0, as given by

equations (14), with (17) and (19), and a representation away from t = 0, as given

by (5), with (28). However, it is generally more useful to have one solution that

is valid everywhere, and this is the purpose of composite solutions. The most common

composite solution (in principle the number of solutions is infinite) is-the additive

one formed by simply adding the inner and outer solutions. The result must be

adjusted by subtracting out the "common part," that is, the portion of the solutions

that explicitly cancels in the matching relation; otherwise, this portion would be

added in twice. In particular, the initial conditions would not be met. Thus, the

additive composite has the form

xa(_,t) = xO(E,t)+ xi(s, t)_ CPx(_,t)
(29)

ya(_,t) = y°(s,t) + yi(€, _)- CPy(€,t)

To flrst-order,

a o o xi i

-iY = Xo + XlC + o + XlC - CPx I

(30)
i i

a = o o + Yo + CPYl Yo + Yl € Yl_ -
Yl

I0



From equations (23) and (26), or equivalently (24) and (27), the common parts

to first-order for the problem at hand are

CPxl _ + _ et - _ +

(31)

-7 +7 +

Note that although the matching of y is not required for determining constants,

it is required for determining common parts. According to (30), the first-order

additive composite solution is

a = _ t CBE t B £

xI _ e - c 8 +-- + e _ + _ _ + e (32)

E E

Yl -a_e +_ a +_ + +a 7 e

+ 8 + e_ + _ --_ D2 + +-c- 8 +--- --€ e. (33)

This solution is a first-order, uniform asymptotic approximation to the problem (i),

that is, if x(g,t) "and y(€,t) are the exact solutions, then

a

Ix(g,t) - Xl(_,t)I
lira <2
€.0 €

a

y(€,t) - yl(_,t) l
lira <

2
€.O

on the interval 0 S t S T < _.

ii



A SPECIAL CASE

In this section, a special case is considered for the purpose of easily

determining higher-order approximations and comparing the approximate solution with

the exact one. Specifically, consider (i) with C = O:

dx
- Ax + By ; x(s,O) =dt

(34)

dy = Dy ; y(_,0) = 8
dt

In this system, the second equation is uncoupled from the first and the exact solution

is easily obtained as

e At BB At _ eE

x = _ e (D/_ - A)
(35)

D
-- t

e €
y =Be

Solving the outer and inner problems associated with (34) gives

o C° Atx. = . e ; j = 0,1,2, ...
3 3

o

yj = 0 ; j = 0,1,2, ...

xI = AaT +_- eDT

i i A2 2 _ AB____B AB_ ( - 0 (36)x 2 = "_ ct'r D T + 7 eDT

i DT

Yo B e

i
y. = 0 ; j = 1,2, ...
J

12



Forming the additive composite for y gives

D
--t

a

yj B e ; j = 0,1,2, ... (37)

so that

a e

yj = y ; j = 0,i,2, ... (38)

This will happen whenever the fast equation does not contain slow variables and the

initial condition on y does not depend on _.

Forming the additive composite for x to second-order,

D t a2 AB8 At e_
a eAt BB At eg - - (39)

x2=_ -_- - D-_

From this we conjecture that

a eAt BB At _ es
xj = c - -_- (40)

This clearly shows the need for Ie(A/D) I < i. By the binomial expansion:

co

(D/€ - A) = (41)
k=l

From (35) and (41),

e At BB At _ (42)
X = (_ e --_ - e

/ k=l

13



Comparing equations (40) and (42) we see that

a e
lim x. = x (43)

so that the uniform asymptotic expansion resulting from the method of MAE converges

to the exact solution.

DISCUSSION AND GENERALIZATIONS

We now return to the problem stated in the Introduction. The fact that the

solution (32) obtained by MAE is a first-order, uniform, asymptotic approximation

to the exact solution gives no assurance either that the asymptotic expansion is

convergent or that it is numerically close to the exact solution. The first question,

that of convergence, is relatively unimportant. (This is somewhat surprising in view

of the heavy emphasis placed on convergence in elementary mathematics.) The second

question, that of numerical accuracy, is obviously of great importance in practical

applications and will be taken up now.

The solution (32)consists of two types of terms, those with factor exp[(E/D)t]

and those with factor exp[(D/_)t]. The first type arises from the outer solution

and the second from the inner. The more rapidly the inner terms decay relative to

the outer terms the better the approximation (32) will be. Thus, it is not the

absolute magnitude of € that is important for numerical accuracy but rather the

size of ID/_I relative to IE/DI. The larger ID/_I is relative to IE/DI, the

better will be the approximation. We write this accuracy requirement as

<
Now suppose _ = i, that is, the system is given by

dx = Ax + By ; x(g,O) = e (45a)
dt

dy = Cx + Dy ; y(s,0) = B (45b)
dt

14



Then (44) becomes, using (2),

IAD - BC I _D 2 (46)

This will be true if

IDI >> Max(IA I,IBI,ICI) (47)

Thus we can solve the nonslngularly perturbed problem (45) by MAE, provided (47)

holds. The solution to first-order is (32) with s = i. The condition (47) may

also be deduced by studying the eigenvalues of the coefficient matrix of (45).

These eigenvalues are

I I + 4BC]½1 (48)XI,X 2 = _ A + D _+ [(A - D) 2

If (47) is satisfied, one of these elgenvalues will be approximately equal to D,

a large negative number, and the other will be relatively small in magnitude,

exactly the situation we require.

Solution of (45) by MAE may be viewed another way. Let

Max(IAl IBI ICI)

iN] (49)

Multiply (45b) by € to get the system

dx

d-_ = Ax + By ; x(s,0) =

(50)
€ dy = C' D'

at x + y ; y(€, 0) =

and let

E' = AD' - BC' (51)

15



r

where

C' = _C ; D' = cD (52)

We now have a problem to which the MAE method may be applied, and the flrst-order

solution is given by (32), with C, D, and E replaced by C', D', and E'.

Transforming back into unprimed quantities then gives (32), with _ = i. Therefore,

the same answer is obtained by simply artificially inserting € in front of dy/dt

in (45b), applying MAE, and then setting £ = i. This technique greatly broadens

the applicability of singular-perturbatlon methods.

Since there is no distinction between x and y in equations (45), we conclude

that for a valid and useful solution of (45) by MAE (or any other singular-perturbation

method) it is sufficient that either

IDI > Max(AI,IBI,IcI) , and D < 0 (53)

or

IAI >> Max(DI,IBI,IcI) , and A < 0 (54)

It is obvious that these conclusions may be easily extended to higher-order

systems. Consider

dx
I

-- = A(_,t)x + B(€,t)Z ; x(s,0) = e
dt - =

(55)
d!

- C(_,t)x + D(€,t)! ; !(_,O) = B --
dt = - -

, C _where A(€,t) B(€,t), C(s,t), and D(€,t) are of class in t and have

asymptotic power-series expansions in €. A valid and useful solution of this

problem can be obtained by MAE, provided the solution consists of combinations of

fast decaying and slow modes. This will occur when the eigenvalues of D

(or equivalently, of A) have real parts that are relatively large (in absolute value)

negative numbers. Therefore, we can give the following general procedure for solving

16



linear systems by MAE: (i) put the system in a form such that eigenvalues of D

havethe required properties by rearranging the equations or transforming the

variables, or both; (2) insert E in front of dy/dt to create a singularly

perturbed system; (3) apply the four steps of MAE; and (4) set € = i.
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