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ABSTRACT
To study the nonlinear physics of uniform turbulent shear flow, the unav-

eraged Navier-Stokes equations are solved numerically. This extends our pre-
vious work in which mean gradients were absent. For initial conaitions, modi-
fied three-dimensional-cosine velocity fluctuations are used. The boundary
conditions are modified periodic conditions on a stationary thiee-dimensional
numerical grid. A uniform mean shear is superimposed on the initial and boun-
dary conditions. The three components of the mean-square velocity fluctua-
tions are initially equal for the conditions chosen. As in the case of no
shear the initially nonrancom flow develops into an apparently random turbu-
lence at higher Reynoids number. Thus, randomness or turbulence can appar-
eritly arise as a consequence of the structure of tne Navier-Stokes equations.,
Except for an initial period of acjustment, ail fluctuating components grow
with time. The initial equality of the three intensity components is de-
stroyed by the shear, tne transverse components becoming smaller tnan the
longitudinal one, in agreement with experiment. Also, the shear creates a
small-scale structure iii the turbulence. T[he nonlinear solutions are compared

witn linearizeg cnes.
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INTRODUCTION

This is an extension of our work in which the development of isotropic
turbulence was examined numerically.l In that work the nonlinear transfer
of energy to smaller scales of motion and turbulent dissipation were studied.

Another important process is the production of turbulence by a mean
shear. Most turbulent flows, both those occurring in nature and those which
are manmade, are in fact shear flows, where the turbulence is proauced and
maintained by the shear. Becavse ot the added complexity, the nonlinear prob-
lem of turbulent shear flow is even more difficult than that of isotropic tur-
bulence. So 1t 15 not surprising that little progress has been mage in ob-
taining an analyticai solution trom first principles. An attempt to obtain a
numerical solution would scem to pe 1n order.

conceptually, the simplest turbulent snear flow (although certainly not
the simplest to produce experimentallyz) is one in which the turbulence is
homogeneous and unitormly sheared, At least two significant numerical stuaies

3,4 In botn of those

of that type of turbulence have recently been made.
studies random 1nitial congitions with a range of eddy sizes were useda.

In the spirit ot Rei. 1, the present numerical study of uniformly-sheared
turbulence starts with simple determinate initial conditions which possess a
single lengtn scaie, In this way we can study how tne turoulence develops
trom nonturbuient initial conditions.  Moreover wuch higher Reynoldas-number
Tiows can be calculated with a given numerical gria when a single length scale
1s initially present, at least for early and noderate times. Some results
UsIng 3 perturbation series were ovtdined in Refs. 5 and v, but tne calcula-
tions could not be carried very tar in time,  Morcover the componerts ot the

mtial intensities were not equai, as they are here.
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As will be seen, several interesting results which could not be obtained
in the previous work on turbuvient shear flow are obtained in the present
study. One of the signiticant findings 1s that the structure of tne turbu-
lence produced in the presence 0i « strong shear is much finer than that pro-
duced in its absence.

THE +L.0 INEAR PROBLEM
As 1n Ref. i, the Navier-Stokes an¢ cuntinuity equations for an incompres-

sible tfluid are written in dimensionless form as

- [~ - “2».
Ju a(u.u ) ~ RV
_____Q1r\_ap+ 1 (l)
ot X axi axK axk
and
U
B (2
= =Y (2)
N
where

*

N X X .
~ U ~ % ~ U ~ % N L x ) 1
U, = — U., D = - ) o 1 s and X. = —,
t i\ 1 Z 2 1 X
SRV X, . U
U

Nete tnat tne stars on dimensionai guantities are oiitted for corresponding
dimensionless Guantities. The subscripts can take on the values 1, 2, ana 3,

ane a repedted subScript an a term indicates a summdation.  The quantity

~% . . . ; * . . .
d 1$ an anstantancous velocily component, xj 1S d Spdce courdindle, X, 1S
i .

* - . . .
4 Ccharacteristic lengtn, t is the time, p 1s the density, v s the

- ' * . N
Nineliglic viscositly, and  p is the Tnstantaneous pressure.  In orcer o

obtain an expitcrt equation tor the pressure, we ldse Lhe divergenice ot

\

gLy oang apply toe continoity £g. (J) te oget




LT ERER EemmEREmmmmmmmmEn o T AR T e e TS = RS R

3?5, az(alﬂk)

- -
ax‘ QX" 3X‘ axk

. (3)

In the remainder of the analysis it will be found convenient to use the set of
Eqs. (1) and (3), rather than Eqs. (1) and (2).

The expression assumed for the initial disturbance is, in dimensionless

form
~ n n dU1
u.= a; cos % + 831 [ Xy (4)
n=
where
n X0 *n 2n 3
;=5 3 3 =X
and

*
L
\Y

y i

i
The quantity aj" is an initial velocity amplitude or Fourier coefficient

. R .
of the disturbance, 3 " js an initial wave number vector, U;* 1is a mean

velocity component, and §ij is the Kronecker delta (equals 1 for i = j and

, o > > >n > n
0 for i 4 j). The quantities Qq"*x are dot products (q *x = q] x]

+ qg X5 + qg x3). Equation (4) reduces to the initial condition in Ref, 1
for dUlldx2 = 0 (no shear). In order to satisfy the continuity condition,

Eq. (2),

nn
a;q; = 0. (5)

i

For the present work, as in Ref. 1, we set
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ali - k(2, 1, 1), a§ - k(1, 2, 1), a:j. k (1, 1, 2),

(6) ,
G = (L L), (L -1 ), and @ = (1, 1, D), r

where Kk is a quantity that fixes the Reynolds number. In addition to satis-

fying continuity, Eqs. (6) give !

Zz_ 27 7 27 :

Ul = Uz = u3 = uo (7) “

at the initial time, where wu, = Gi - 8,1 U; and the overbars indicate g
4

i

averaged values. Thus, Eqs. (4) and (6) give a particularly simple initial
condition, in that we need be concerned with only one component of the mean- E
square velocity. Note that it is necessary to have at least three terms in V
the summation in Eq. (4) to satisfy Eq. (7).

In order to carry out the numerical solution of Eqs. (1) and (3) subject
to initial conditions (4) and (6), we use a stationary cubical grid with a
maximum of 323 points and with faces at X; = 0 and 2x. For boundary

conditions we assume modified periodicity. That is, we let

(ui)xj=2n+bj = (ui)xj=bj t 84 84p 2 dUy/dx, (8)

and

~

(p)xj=2**b3 = (p)xj=bj (9)
for any bj. Note that Eq. (8) is not a tensor equation. It is the usual
periodicity condition, but with a superimposed mean shear, and is consistent
with the initial condition given by Eq. (4). Equation (8) is used to calcu-

late numerical derivatives at the boundaries.




The spacial- and time-differencing schemes are essentially those used by
Clark et al.7 and in Ref, 1. That is, for the spacial derivatives in
Eqs. (1) and (3) we use centered fourth-order difference expressions.8 For
time-differencing we use a predictor-corrector method with a second-order
(leap-frog) predictor and a third-order (Adams-Moulton) corrector.9 The
Poisson equation for the pressufe (Eq. (3)) is solved directly (no iteration)
by a fast Fourier-transform method. This method preserves continuity quite
well (V°t = 0).

Some of the results will be extrapolated to zero mesh size in an effort to
obtain more accuracy. The method of fourth-order extrapolation in Ref. 1,
wiich is consistent with fourth-order differencing, is used here. However to
increase the accuracy, more of the grid-point spacings are chosen close to

3

zero: 327, 243, and 163 grid points, rather than the 323, 163, and 83 points

in Ref. 1 are used. Equation (10) in Ref. 1 must then be replaced by

t.= 1.6814 ty - 0.7182 t, * 0.0368 t3, (10)

where t], tp, and t3 are respectively values of t calculated for
323. 243. and 163grid points at a fixed ;?, and tC is corrected value
of t at that :?.

In order to study the processes occurring in sheared turbulence, it is
convenient to break the instantaneous velocities and pressures in Eqs. (1) and
(3) into mean and fluctuating components; thus, set Gi = Ui * uj and B
= P + p. Then, if averages are taken, and the averaged equations are sub-

tracted from the unaveraged ones, we get, for uniformly-sheared homogeneous

fluctuations

2

dU1 dUl aui 3 ap ) u1
Si1dx, Y2 " 9x, %2 o (ugu ) - * (11)
2 2 Xl axk 1 ax‘- 3Xk an

au

1. = —
at




and

2
a2 ' dU1 u, 2 (uku‘)

P _ _ - :
ax, aX, 2 o, X~ X ex, (12)

For Eqs. (11) and (12) the initial and boundary conditions given by Eqs. (4),

(8), and (9) become

u; = a? cos §M%, (13)
=
(u;), = (uUs), n s (14)
i xj-2n+bj i xj‘bj
and
(p)x.=2n*b. = (p)x. (15)
J J J
for any bj‘

From Eqs. (11) and (12) written at a point P and similar equations writ-

ten at a point P', we can construct the following two-point correlation equa-

tions for uniformly-sheared homogeneous fluctuationslo:

du du du
LI e g 1l 5or - s Loy Lo 9 Teer
at 1§ T Tildx, 273 T %l dx, Ti2 Tdx, 2 ary i
) 3 —r P 32 Uiu.
| L L] LA
" ar, (Ujujuy = Uuuy) * gp PUj - o Ut 2 T (16)
i L 2y
L Tp" &, 2 TuT o TuTur
L. 2 ikt (17)
ark ar, dx2 arl ark arl
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and
2 ==y ur 2 ey
3 puj . dUl 3 wu ) 3 u‘ukqi. (18)
ark r, ‘sz arl ar‘ ark

where the unprimed and primed quantities are measured at P and P',
respectively, and ry= x% - X5 Equations (16) to (18) show that the two
point correlations for uniformly-sheared turbulence are functions only of [
and not of %¥. That is, the turbulence is homogeneous. That is not the case
for nonuniformly-sheared turbulence, for instance for U1 proportional to

xg instead of to X

A single-point correlation equation for u].uj can be written as

dUl du

2 _ 1 _y 2P, 2P
3t Yi¥5 = %01 ax, Uglly = 653 %, YiHa = ¥y ax. iy ]
'] l.l,| aqu (
+u * U, 19)
Joax, ax, iax, ax,

Equations (16) to (19) are useful for studying the processes occurring in uni-
formly-sheared turbulence.
THE LINEAKIZED PROBLEM

Equations (11) and (12) are linearized by neglecting the terms
a(uiuk)/axk and az(uku,‘)/axk ax, . The numerical solution, with initial and
periodic boundary conditions given by Eqs. (13) to (15), then proceeds as in ;
the nonlinear case.

We can obtain an analytical solution for unbounded linearized fluctuations
by using unbounded three-dimensional Fourier transforms as in Ref. 10. The
solution does not satisfy constant periodic boundary conditions. Instead of

working with the averaged equatiois used in Ref. 10, it is instructive to work
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with the unaveraged ones, and use the initial condition given by Eq. (13),
instead of those in Ref. 10. In this case the Fourier transforms must be gen-
eralized functions (a series of delta functions), but the method of solution
is the same as that in Ref. 10. Since U, is the velocity component which

is critical in maintaining the fluctuations against the dissipation,u’12 we
will, for brevity, calculate only that component. Equation (11) for u,

and Eq. (12), when linearized, are independent of uy and us. The solu~

tion obtained by using the initial condition (13) is

3
Uy= E Ug cos H" - aqltxz) (20)
- .
s1n E" - aqftxz) (21)
N=
where
2
a,q 2 2
US — 2 ~— exp -t(én - aq?qgt * % azq? 2) , (22)
q - 2aq1q2t + azqf t2
_2aa"q"g" ) 2
ph ., 2% —7 et " - adlapt + 3 aa) t) |, (23)

2
(Fn - 2aq)q,t + azqf é)

2 2 2 2

n n n n n n .
a= dUllde, q = q1 + q2 + q3 , and the ai and q_i are as given in the
initial conditions (Eqs. (13) and (6)). Mean values are obtained by

integrating over all space. For instance,

puU, = % PnUg. (24)

=

Ll o L o R e e e
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It is clear from the form of Eqs. (20) and (21) that the solution does not
satisfy constant periodic boundary conditions. By omitting the term
-(dU,/dxz)xzauilax1 as well as the nonlinear terms in Eqs. (11) and (12), we

can, however, obtain a simple analytical solution which satisfies those

conditions:
3
n_n
q,q 2
u, = E ag exp|t | 2a —izg - qn cos E"-i, (25)
n=1 q
3
2aq q q 2
p = ———%—g exp|t 2a<———§ - qn sin ﬁn-?. (26)
n=1 q q

This solution is useful for checking the numerical calculations and for study-
ing the effect of the term (dUl/de)xzauzlax1 on the fluctuations.

For discussing the linearized case for constant periodic boundary condi-
tions, it is convenient to convert Eqs. (11) and (12) to a spectral form by
taking their three-dimensionai Fourier transforms. This gives, for Uy, on

neglecting nonlinear terms,

39 2 2
2 1 . 2
and <3 03(k1%p = K3ux3) - (q? tet qg)'

L0
-3

where

’
v5(2) “3/ dx, f[ d"l X3

10
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W"(2) - E ﬂ-.g(:)e“" de) deg, (26a)
e 0

3 3

up = Z ups ¥ = Z v (29)

n=-3 -3

2 is the wavenumber vector, and ¢p is the Fourier transform of wuj.

Note that a finite transform is used in the xz-direction in order to satisfy
periodic boundary conditions at x» = -r,x. The initial condition on

9 2 is given by

('g) - % a6 ‘(‘1 - q?)‘(‘% = q’3‘) (30)
0 .

where &(x) is the Dirac delta function (I 5(-:1 = q;')f(xl)dxl = f(q;‘))

-

and 5qr is again the Kronecker delta (%‘ & f(:z) = f(é?)).
&
RESULTS AND DISCUSSION
As mentioned earlier, the uz-component of the velocity fiuctuation (in
the direction of the mean velocity gradient) is crucial in maintaining the
turbulence against the dissipation.ll'12 Therefore when, for brevity, only
one component of the velocity fluctuation is discussed, that component is

chosen as U, . More will be said about the maintenance of tne turbulence

later, 1/2
—
u

Figure 1 shows the evolution of u2/ 0 at a fixed point in space for

a high Reynolds number, as calculated from the full nonlinear equations. In

11

—




spite of the nonrandom initial conditions (Eqs. (13) and (6)), the velocity

fluctuations have the appearance of those for a random turbulence. The dashed
1/2

curves for uzlag are for initial conditions perturbed apprcximately

0.1 percent. The perturbed curves at first follow the unperturbed ones but
eventually depart sharply. Although the appearance of the curves in Figs. 1(a)
and in 1(b) differs considerably, the perturbed curves in the two figures take
about the same length of time to break away from the unperturbed ones. A very
small perturbation of initial conditions causes a large change in the values
of Uy except at small times. On the other hand the root-mean-square

values of the velocities change smoothly with time and are unatfected by the
perturbation of the inital conditions. These features are characteristic of
turbulence. (Although the root-mear-square curve in Fig. 1(a) appears hm i-

zontal, it eventually goes smoothly to zero when extended.)
1/2

A striking feature of the curves for uzlzg in Fig. 1 is the small
scale structure exhibited for sheared turbulence (Fig. 1(b)) when compared with
the structure for no shear (Fig. 1(a)). This shear-related small-scale struc-
ture is produced by the term -(dUj/dxp)xp auj/ax]; in Eq. (11), from which
is obtained the term -(dUlldxz)rzdﬁ;G}Tarl in the correlation Eq. (16).
[f we take the Fourier transform of that term we get the mean-gradient trans-
fer term in the spectral equation corresponding to Eg. (16).10 Its effect
in transferring energy to smali-scale components is similar to that of the
nonlinear transfer term (the Fourier transform of the triple-correlation term
in £q. (16)). The production of the small-scale structure by the shear might
be thought of as due to a stretching of the random vortex lines in the turbu-

lence by the mean gradient.

12
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Although we first discussed a mean-gradient transfer term in 1961,10 the
present results give the first graphic demonstration of the ef “‘ectiveness of that
term in producing a small-scale structure in turbulence. G5ince that is a linear
effect, we can study it either by the full nonlinear solutions already considered
in Fig. 1 (which contain linear as well as nonlinear effects), or by linearized
solutions. Velocity fluctuations obtained by the latter are plotted in Fig. 2
(Eq. (20)). The presence of small structure in the curves for dUlldx2 = 4434,
and its absence in those for dUlldx2 = 0 are apparent. The curve for no
shear decays monotonically to zero when extended. This is in contrast to the
nonlinear case in Fig. 1(a) for no shear, where at least larger fluctuations
are present. The linearized curves for dUlldx2 = 4434 in Fig. 2 follow
closely the nonlinear ones in Fig. 1(b) for small times. Likewise the linear-
fzed curves in Fig. 2 for periodic boundary conditions follow closely those
for unbounded conditions for small times. For larger times the fluctuations
for unbounded conditions continue to decay, whereas those for ccnstant peri-
odic boundary conditions grow. The development of structure in the curves for
unbounded conditions is produced by the term aq?tx2 in the argument
of the cosine in Eq. (20) (a = dUlldxz). This term arises from the term
-ax, au2/ax1 in Eq. (11), as is evident from its absence in Eq. (25),
where the term - ax, au2/ax1 has been neglected. For constant periodic
boundary conditions, small-scale structure in the fluctuations or the transfer
of energy hetween wave numbers is produced by the term containing the summation
over «x.}

2
in Eq. (11). From its form we see that it can produce a complicated inter-

in Eq. (27). That term is the Fourier transform of -axp aup/ax,
wavenumber interaction. The quantity ¢2 at each <) interacts with vg

at every other allowable Koe Evidently a difference between the solutions

for unbounded conditions and those for constant periodiclconditions is that

13




only fluctuations at integral values of x, are possible when periodic
conditions are imposed, whereas for unbounded conditions, fluctuations are
possible at all values of Ko

Although the linear term -ax, auzlax1 is effective in producing
oscillations, even in the absence of nonlinear effects (Fig. 2), the curves
lack the random appearance of those in Fig. 1(b). Evidently the only way we
can have a linear turbulent solution is to put the turbulence in the initial
ccnditions, as in Ref. 10. Both -ax, auzlax1 and the nonlinear terms
in Eq. (11) are necessary to produce the small-scale turbulence in Fig. 1(b)
from nonrandom initial conditions. The former acts like a chopper which chops
the flow into small-scale components. While the latter also do that, their
most visible effect here is to produce randomization. As in Ref. 1, the ran-
domization might occur as a result of the presence of strange attractors in
the flow, by proliferation of eddies or harmonic components (with the loss of
identity of the individual eddies), or by both (see Ref. 1 for a discussion of
these possibilities).

According to Eq. (20), the manufacture of small-scale fluctuations takes
place only in the Xo= direction. Figure 3 shows how this has taken place
at a moderate time for a linearized case. A similar plot for the nonlinear
case is shown in Fig. 4. The randomizing effect cf the nonlinear terms is
evident. 1/2

Figure 5 shows uzfag for the nonlinear case, plotted against X1
rather than against x, as in Fig. 4. The curves show some development of
small-scale structure in the X1~ direction due to the interaction of the
directional components in the nonlinear case. For the linearized flows devel-

opment of structure occurs only in the xp- direction.

14
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Cross-correlation coefficients U u./uj (i 4 j) are plotted

i Y

against dimensionless time for the nonlinear case in Fig. 6. Although ;f
= ;g-- ;g at t = 0, the initial cross correlations are not zero but are all
positive and equal. However because of the apparent randomization of the flow
E;ﬁ; and iIE; approach zero as time increases. On the other hand the values
of the turbulent shear stress UIU; change from positive to negative and
remain negative because of the dynamics of the imposed mean shear. The
presence of the mean velocity gradient dUlIdx2 causes u; to be likely
negative when u, is positive, so that UIEZ, the correlation between the
two, is negative. The waviness in the curves in Fig. 6, as well as that in
some of the curves in later figures (e.g., Fig. 9), is probably caused by non-
random structure in the flow, possibly that produced by the linear term
—(dUlldxz)x2 auilax1 in Eq. (11) (Fig. 2).

The evolution of the mean-square components of the velocity fluctuations
is plotted in Fig. 7. After an initial adjustment period all of the compo-

13 and the

nents increase with time, in agreement with experiment
numerical results in Ref. 3. The numerical results in Ref. 4, on the
other hand, show :g and ﬁg— decreasing at all times. Those results are
apparently related to the use of periodic boundary conditions on a sheared
numerical grid rather than on a stationary one. Reference 3 also used a
sheared grid but applied a correction (the grid was remeshed), so that the
results are similar to the present ones in Fig. 7 for a stationary grid.
Our ;g. - component is the largest of the three, :g is smallest, and
:g lies slightly above :g, in agreement with experiment13 and previous
numerical results.

The effect of discretization error on the numerical results for ;g is

3

shown in Fig. 8. Curves are plotted for 163, 24, and 323 grid




points, together with a fourth-order extrapolation to zero grid-point spacing
(an infinite number of grid points). The differences between the results for

323

points and the fourth-order extrapolation are small, but increase some-
what at large times.

Figure 9 shows the evolution of velocity pressure-gradient correiations.
(Parts of some of the curves are omitted to avoid confusion.) The velocity
pressure-gradient terms in the one-point correlation equation (Eq. (19)), to-
gether with the production terms, are responsible for maintaining the turbu-
lence against the dissipation (given by the last two terms in Eq. (19)).
;g)at and Qaglat

e — 2 2
(611 “j“z aullax2 and Gjl Uy aUI/ax2 are zero) . Thus u2 and u3

There are no production terms in the equations for 2

generally receive energy only from the ;g-- component, whose equation has

a nonzero production term. Equation (19) shows that in order to do that,
U}‘?ETEI; and 32_557313 must be negative for i= j = 2, 3 and positive

for i=Jj=1. Figure 9 shows that is actually the case for constant periodic
boundary conditions except for an initial adjustment period, so that the turbu-
lence is maintained (Fig. 7). The maintenance of the ;g - Or u,-compoi ent is
particularly critical because if u, goes to zero, the Reynolds shear stress
2

ulu2 in the production term of the u1

zero and there will be nothing to keep the turbulence going. All the compo-

- equation (see Eq. 1Y)) will go tc

nents will then eventually decay. That is what happens in the linearized
analysis for unbounded turbulence in Fig. 9 and Ref. 10.

A comparison between the nonlinear results for :g and various linearized
solutions is given in Fig. 10. The same initial conditions are used for all
the cases (Eqs. (4) or (13) and (6)). For all of the results, except those for

the unbounded linearized case (obtained by using unbounded Fourier transforms

component eventually increases, so that the

(Eq. (20)), the crucial :g

1o
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turbulence or fluctuations are maintained. In the unbounded linearized case
;g decreases at all times. That was expected, since the Zg'- results for
that case in Refs. 10 and 11 (for different initial conditions) decreased

at all times. Somewhat unexpected are the linearized results for constant
periodic boundary conditions, which show that the fluctuations ai: maintained
for those cases. Whereas Fig 9. shows that in the unbounded case the

velocity pressure-gradient correlations remove energy from the ;g‘- component
and cause the fluctuations to decay as in Ref. 10, the imposition of constant
periodic boundary conditions changes the sign of those correlations and brings
energy into .;g, so that the fluctuations are maintained. Equation (25),

which satisfies periodic boundary conditions, shows that, at least when the

term -(dUlldxz)x2 au]./ax1 in Eq. (11) 1is neglected, :g increases at large

times if 2aqfq; > qn for at least one n.

Comparison of the linearized case for periodic boundary conditions in
Fig. 10 with the corresponding nonlinear case shows that the nonlinear terms
have a stabilizing influence. That is, the values of ;g increase more
slowly for the nonlinear case. Moreover comparison of the curve for the
linearized case with periodic boundary conditions and with the term
—(dUlldxz)x2 auzlax1 in Eq. (11) missing (Eq. (25)) with the corresponding
curve for that term included shows that the presence of that term also has a

stabilizing influence. Since neglect of that term is equivalent to neglecting
10

the mean-gradient-transfer term in the spectral equation for :g , we can
consider the latter term as stabilizing. Thus both the honlinear transfer term
associated with triple correlations and the linear mean-gradient transfer term
in the spectral equation for :g are stabilizing. The reason is that both

terms transfer energy to small eddies where it is dissipated more easily.

17
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It is of interest that the one-point correlation equation for auiujlat
(Eq. (19)) contains neither a term associated with velocity-gradient transfer
nor with nonlinear transfer. That is, both of those processes give zero

direct contribution to the rate of change of "i“j;

distribution of energy among the various spectral components or eddy sizes.

they only change the

This spectral transfer, of course, still affect the way in which E;EE
evolves (see Fig. 10). Even though Eq. (19) contains no transfer terms, the
transfer of energy among the various spectral components of the velocity alters
the terms that do appear in Eq. (19), so that dG;UEYat is affected indirectly.
That is not a small effect.

The modified linear solution given by Eqs. (25) and (26) (dash-dot-dot
curve in Fig. 10) is the simplest solution in which the fluctuations can be
maintained against the dissipation. In obtaining it the only mean-gradient
term retained in the equations for u, (Egs. (11) and (12), i = 2) is
-2(dU1/dx2)au2/ax1, a source term in the Poisson equation for the pressure.

I[f that term is also neglected, u, decays and, as discussed earlier, all of
the components of the fluctuations decay. Moreover, as shown in Fig. 10 and
already discussed, the term -(dUl/dxz)x2 aui/ax1 in Eq. (11) is stabilizing,
so it is of no help in maintaining the fluctuations. Thus, at least in the
linearized case, the presence of the source term -2(dU1/dx2)au2/ax1 in the
Poisson equation for the pressure is necessary for maintaining the fluctua-
tions. That term should play a similar important role in the maintenance of
nonlinear turbulence, although in that case it is hard te separate the linear
effects from the nonlinear ones. In particular, the role of the nonlinear

source term in the Poission equation for the pressure remains unclear, al-

though it may have an effect similer to that of the linear source term.
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Figures 11 and 12 show the approach to isotropy of nonlinear uniformly
sheared turbulence when the shear is suddenly removed. Although the shear
produces considerable anisotropy, the components ';g of the mean-square
fluctuation approach equality upon removal of the shear and remain equal. The
velocity pressure-gradient correlations in Eq. (19) are thus successful in
transferring energy among the various directional-components in such a way that
equality of the ;g is produced. We note that ;g continues to increase
for a short time after the shear is removed, probably because it receives
energy from both ;g and :g.

In addition to equality of the 'Eg , Zero cross-correlations U;UE are
required for isotropy. Figure 12 shows that UIUE, which is nonzero when the
turbulence is sheared, approaches zero when the shear is removed, and along
with the other cross-correlations, remains close to zero. The destruction
of EIEE; apparently by nonlinear rancomization effects, occurs over a finite
time period rather than instantaneously on removal of the shear.

Another expected effect of removai of the mean shear is that the small
scale structure produced by the term -(dUlldxz)x2 aui/ax1 in Eq. (11) should
die out. According to Fig. 13, that occurs almost immediately when dUllcxz
goes to zero, evidently because of the large fluctuating shear stresses between
the small-scale eddies.

CONCLUDING REMARKS

According to our results for both sheared and unsheared flow at higher
Reynolds number, the nonlinear structure of the Navier-Stokes equations is
such that an apparently random turbulence can develop from nonrandom initial

conditions. The presence of a mean gradient, in addition to producing a non-

zero turbulent shear stress, produces small-scale fluctuations in the flow.
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These can be attributed to a mean-gradient transfer term in the spectral equa-

tion for the velocity fluctuations,10

or to an equivalent term in Eq. (16)
or (11). However the small-scale fluctuations produced by that term alone
(linear solution) are essentially nonrandom. Evidently the only way we can
have a linear turbulent solution is to put the turbulence in the initial con-
ditions, as in Ref. 10. In order to produce the observed small-scale turbu-
lence from nonrandom initial conditions, the presence of both the linear mean-
gradient transfer term and the nonlinear terms in the equations is necessary.
The former term, or its equivalent in Eq. (16) or (11), acts like a chopper
which chops the flow into small-scale components, and the latter terms, while
they also produce small-scale components, act most visibly here as randomizers.
In all of the cases calculated with constant periodic boundary conditions,
including both linear and nonlinear flows, the velocity pressure-gradient cor-
relations are successful in distributing the energy among the directional com-
ponents (Fig. Y), so that the turbulence or the fluctuations are maintained.
This is in spite of the presence of a production term in the equation for only
one of the components. Both the linear mean-gradient transfer term and the
nonlinear terms mentioned in the last paragraph have a stabilizing effect.
That is, they cause the fluctuations to increase at a slower rate. It is
snown that, at least for the linearized solution with constant periodic boun-
dary conditions, a mean-gradient source term in the Posisson equation for the
pressure is necessary for maintaining the fluctuations against the dissipa-
tion. That term should play a similar important role in the maintenance of
nonlinear turbulence, although in that case it is hard to separate the linear
eftects from the nonlinear ones. In particular, the role of the nonlinear

suurce term in the Poisson equation for the pressure remains unclear, although
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it may have an effect similar to that of the linear source term. For the lin-
earized unbounded solution (obtained by using unbounded Fourier transforms)
the fluctuations decay, as expected from the results of Ref. 10.

When the mean-velocity gradient is suddenly removed, the turbulent shear
stress goes to zero in a finite time period, and the velocity pressure-
gradient correlations cause the turbulence to attain the isotropic state. The
intensities of the directional components become and remain equal. In addi-
tion, the small-scale structure produced by the mean-gradient transfer term
quickly vanishes.

ACKNOWLEDGMENT

I should 1ike to acknowledge the considerable work of Frank Molls in carrying
out the programming and numerical computations for the results given in the
“paper.

REFERENCES
1. R. G. Deissler, Phys. Fluids 24, 1595 (1981).
2. F. H. Champagne, V. G. Harris, and S. Corrsin, J. Fluid Mech. 41, 81
(1970).
3. R. S. Rogallo, NASA TM-81315 (1981).

S

. S. Shaanan, J. H, Ferziger, and W. C. Reynolds, Rept. No. TF-6,
Thermosciences Div., Dept. of Mech. Eng., Stanford Univ. (1975).

5. S. Corrsin and W. Kolimann, in Turbulence in Internal Flows, edited by S.

N. B. Murthy (Hemisphere, Washington, 1977). p. 11.

6. R. G. Deissler and B. M. Rosenbaum, NASA TND-7284 (1973).

7. R. A. Clark, J. H. Ferziger, and W. C. Reynolds, J. Fluid Mech. 91, 1
(1979).

8. J. M. McCormick and M. G. Salvadore, Numerical Methods in Fortran

(Prentice-Hall, Englewood Cliffs, New Jersey, 1964), p. 38.

21




9. F. Ceschino and J. Kuntzmann, Numerical Sclution of Initial Value Problems

(Prentice-Hall, Englewood C1iffs, New Jersey, 1966), p. 141, example 2,

and p. 143,
10. R. G. Deissler, Pbvs. Fluids 4, 1187 (1961).
11. R. G. Deissler, Phys. Fluids 13, 1868 (1970).
12, R. G. Deissler, Phys. Fluids 15, 1918 (1972).

13. V. G. Harris, J. A. H, Graham and S. Corrsin, J. Fluid Mech. 81, 657

(1977).

22

T TR T P e o

T |




UJu_gm o8 l_‘glfz/u_glfz

e

S ORIGINAL PAGE IS
OF POOR QUALITY
1R
/ 2 | _ar
a— Uz(Y F 2
\“2 Ug
2 — gy
/ -
/ N = \_/, \\ \;
o— = \
\\ /
\ //
\\/
| UNPERTURBED INITIAL CONDITIONS
K — — — — INITIAL CONDITIONS PERTURBED ~ 0, 1%
-4}—
-6 | | | | | | | |
0 0005 ~0010 0015 0020 0025 .00% .0035 .0040

t
(@) dU)|dx ~ 0

Figure L. - Effect of uniform shear on calculated evoiution of nonlinear turbulent velocity fluctuations (normalized by initial

3 ol )
condition) for a high Reynolds number(us v = 1108/. Root-mean-square fluctuations are spacially averaged. Ax;
m16. x| = Xp = 98, x5 = 38 for unaveraged fluctuations.

f I
i ; .
ol VRV IRY (I Iy s
7 [
g 8 [u | e ]

WAzt | 4

N
2|~ 1 w !
UNPERTURBED INITIAL CONDITIONS I' =|,|
— ——— INITIAL CONDITIONS PERTURBED~ 0, 1% h g |=:
I 1
y |;
e !
f
= :
6L SR I | N B B I B J
0 0005 ) 0015 .00 005 .00 .00% 0040 0045

t
(b) dU ,Idx.‘, < 4434,

Figure 1. Cencluded,

T




ST e v e - - —_ R T T e e T e e ] ST R T T —
.

ORIGINAL PAGE IS
OF POOR QUALITY

8 —
=== CONSTANT PERIODIC BOUNDARY CONDITIONS
= = UNBOUNDED (Egs. (20) AND (22))
& . aU, fix,
5 :
3 0 L}

Y R U I S E—
0 W00 .02 000 .00 0050
t

Figure 2. - Calculated evolution of linearized velocity
fluctions (normalized by initial condition),
1k
U Mxy - M4, u'6

/\'- 1108. x) " xp* 9 /8,
l,')xl& Axl'ﬂlb.'o !

Figure 3, - Linearized solution for u IUS
VS X) for unbounded fluctuations (tq,
(20), l] - Qﬂm, l’ = 3:18 dU]Mlz .

i

a3, u'é lo/v * 1108.




ORIGINAL PAGE IS
OF POOR QUALITY

2 [ [ S
0 4 .8 1.2 L6 2w

X

2

Figure 4 - Nonlinear solution for u;lu—ﬁ VSXy. X|*
12

9B, x3 = 3w, dU kx, - 4434, le
m/v- 108. Ax; = w/l6.

\\ ;

N8
‘

asol Lo 11 L,
0 A .8 1.2 1.6 2n

k 12
Figure 5. - Nonlinear solution for UZ/JS
VX)L Xyt 9B, xy 3mh. dUjdx, -
oy
a3, g xo/v - 1108, Ax; * n/l6,




ORIGINAL PAGE 15
OF POOR QUALITY

o .00l .002 .003 . 004

Figure 6, - Calculated cross-correlation coefficients plot-
ted against dimensionless time.
\»

) hax - 44, u'f lo/v - 1108, Ax; * xNl&

Figure 7. - Calculated evolution of mean-square velocity
1R
components, dUkdx; = 4434 u'E "0/” * 1108,
Ax; * n/l6




Uidp/dxl”

ORIGINAL PAGE IS
OF POOR QUALITY

NUMBER OF
&b GRID POINTS

EXTRAPOLATION)

Figure 8, - Effect of numerical grid-point spacing on

_ IR
u5. dU,fx, - 4434 7 va - 1108

a0’
A\ [\
J\/
L &
/
,\l i1
g paem

UNBOUNDED, ’

13\’4’: i = 2 (Eq, 20) /\/
\

-':NONLINEAR SOLUTION, CONSTANT
/q PERIODIC BOUNDARY CONDITIONS

LINEARIZED,
CONSTANT PERIODIC \

BOUNDARY \ 1)
-2}— CONDITIONS, i=2 - \ Q[n\l

\

| S S N —

0 .001 .002 .003 .004
t

Figure 9. - Calculated evolution of velocity pressurc-grad-
N A

ient correlations, dUldx2 = 4434, u's 10/\1 « 1108.
Ax; = /16,




WP -

ORIGINAL PAGE IS
OF POOR QUALITY

LINEARIZED SOLUTION, ,
CONSTANT PERIODIC
BOUNDARY !
CONDITIONS . _ ’
I
\\\|
 LINEARIZED, MEAN- I
 GRADIENT TRANSFER |
~ TERM MISSING,
15" 21— | CONSTANT PERIODIC /
BOUNDARY
1 CONDITIONS {
/ * NONLINEAR SOLUTION,
1 CONSTANT PERIODIC
BOUNDARY CONDITIONS
td
N~ LINEARIZED, UNBOUNDED (iq. (20))
[ Sad 1 | ]
0 .001 002 .003 .004
?
Figure 10. - fvolutior of ug for various ll;?ur and non-
linear solutions, Uy xp - 434 u'§  xgfv - 1108
‘n_lﬂo
|

| . 1
0015 005 003 0045 0055 0065 00T

Fiqure 11. - Calculated approach to isotropy of uniform-
ly-sheared turbulence upon sudden removal of the

1R
lo/v = 1108,

Ly,
shear, u 0

P T T i Py AT ———



® i %4 0

= R

sL®y %

L0015 .0025 .003%5 .00&5 .0055 .0065 0075
t

Figure 12. - Calculated evolution of cross-correlation
coefficients upon sudden removal of uniform shear,
12

u'j Xo/.) - 1108.

| I I | J
0015 0025 L0035 0045  .0055 0065

Figure 13. - Effect of removal of uniform shear on struc-
1”2

ture of turbulence. u_'a "D/V = 1108,




	GeneralDisclaimer.pdf
	1982024758.pdf
	0086A02.pdf
	0086A03.pdf
	0086A04.pdf
	0086A05.pdf
	0086A06.pdf
	0086A07.pdf
	0086A08.pdf
	0086A09.pdf
	0086A10.pdf
	0086A11.pdf
	0086A12.pdf
	0086A13.pdf
	0086A14.pdf
	0086B01.pdf
	0086B02.pdf
	0086B03.pdf
	0086B04.pdf
	0086B05.pdf
	0086B06.pdf
	0086B07.pdf
	0086B08.pdf
	0086B09.pdf
	0086B10.pdf
	0086B11.pdf
	0086B12.pdf
	0086B13.pdf
	0086B14.pdf
	0086C01.pdf
	0086C02.pdf
	0086C03.pdf


