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ABSTRACT

Kinematic precision is affected by errors which are the result of either

intentional adjustments or accidental defects in manufacturing and assembly of

gear trains. This paper explains a general method for the determination of

kinematic precision of gear trains. The general method is based on the exact
r-
w	 kinematic relations for the contact point motions of the gear tooth surfaces

under the influence of errors. An approximate method is also explained.

Example applications of the general and approximate methods are demon-

strated for gear trains consisting of involute (spur and helical) gears,

circular-arc (Wildhaber-Novikov) gears, and spiral-beve l. gears. Gear noise

measurements from a helicopter transmission are presented and discussed with

relation to the kinematic precision; theory.
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INTRODUCTION	
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Transmission error is a measure of the kinematic precision of gear trains.

Transmission error is defined as the departure of the meshed gear pair (or en-

tire gear train) from a constant ratio of angular motions as defined by the

ratio of tooth numbers. It is true that in a gear pair each gear has a whole

number of teeth and this defines the nominal ratio of angular positions between

the two. But the instantaneous ratio during a meshing cycle can vary slightly

from the nominal ratio. Transmission error is the measure of instantaneous

variation from the ideal nominal value. The precision of gears was investi-

gated by Litvin [1]*, Litvin and Gutman [2], aric Michalec [3].

When the mating teeth in a.gear train have profiles that transmit motion

having no error, they are said to be conjugate pairs. In theory, it is pos-

sible to select an arbitrary shape for a driving tooth and then to find a pro-

file for the driven tooth which will give conjugate action. involute gear

teeth happen to have the same form for driving and driven member teeth. A

benefit of the involute form is that small errors in center distance between

gears will not produce transmission errors. This is not true for other tooth

profile forms [4, 5].

In general, there are many causes for transmission error, and they cannot

be avoided in practice. Such things as shaft misalignment, profile error,

tooth deflections under load, mounting location errors, and gear support

deflections may combine to cause transmission error. The effects of trans-

mission error are most often harmful. These are high vibration and noise,

pitting and scoring of gear teeth, and reduced reliability of the gear train.

Sometimes it is beneficial to introduce small intentional errors into the gear

*Numbers in square brackets denote references.
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tooth profile to compensate for the probable occurrence of accidental and una-

voidable errors in the assembled and operating gear train. Tip relief to re-

duce dynamic loading and combined mismatch in spiral-bevel gears to reduce mis-

alignment sensitivity are two examples of intertional errors which are bene-

ficial.

Baxter has studied the effect of various types of misalignment on tooth

contact in bevel and hypoid gears [6]. Townsend, Coy, and Hatvani have

examined gear train noise as a test of its precision during an intentional

loss of lubricant destruction test [7].

Of course, the effect of all errors (intentional or otherwise) on

transmission error must be predicted analytically if the gear design process

is to remain rational and not collapse into a confusing heap of empiricism.

Errors of manufacturing and assemblage of gears induce kinematic errors

in gear-drives which may be presented by the following function:

"2('#11 oQ)	 (1)

Here 
91 

is the angle of rotation of the driving gear, 1,

oQ = (eql , eq2 . . . .)	 (2)

is the vector of errors, and

°"2 2-- 
"2 - " 2	 (3)

is the kinematic error of the gear drive, represented as the difference betweer the

theoretical and actual angles of rotation of driven gear 2.

In this paper two methods to determine Function (1) are presented: (a) a

numerical method for computer solution and (b) an approximate geometric solution

which leads to simple, accurate results in an analytical form.

3
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NOMENCLATURE

A shortest distance between gear axes of rotation

ee i eccentricity vector of gear i

H 1 . H2 axial settings of gears (see Fig. 2)

Mij angular velocity ratio, gear i, gear j

N i number of teeth on gear i

n (i) vector function representing unit normals of surface of gear i

in fixed coordinate system (f)

dn (i) change in unit normal vector due to errors in gear i

dnr(i) change in unit normal vector due to point motion relative to

gear i

dn(i change in unit normal vector due to transfer point motion with

gear i

nabs
absolute velocity of tip of unit normal vector of surface i

n0) similar to dn (i) and dntr ) but velocities rather than

displacements

n(^)
tr

O i center of rotation of gear i

0 (i) geometrical center of gear i

P pitch point

eq i vector of errors

oq i components of vector of errurs

R vector from ori g in to axis of gear rotation

r b (i) base circle radius of gear i

r (i) vector function representing surface of gear i 	 in fixed

coordinate system (f)

4

{
3



ORKHM PAGE 19
OF POOR QUALITY

fi

rf >>

Si

Sf

ds(i)
_abs

ds(i)
~q

dst^^
_r

ds(i)
tr

T

u 

v M_abs

V ( i)
r

v(')
tr

8i

Oio
Ad

0 

A40(i)

X

P

Ei

^l

^2

0
^2

velocity of contact point

coordinate system i

coordinate system rigidly connected to frame

absolute displacement of contact point of gear i

displacement of contact point due to errors in gear i

displacement of contact point relative to gear i

displacement of contact point in transfer motion with gear i

tangent plane

surface coordinate of gear i surface

similar to 
dsabs• 

dsri ) , dstr ) , but velocities

rather than displacements

angular position of eccentricity vector of gear i

initial angular position of eccentricity vector of gear i

rotation vector represen +i ng position change of gear axis of

rotation

surface coordinate of gear surface i

change in kinematic error function as measured on shaft of

gear i

proportionality factor

radius vector

surface i

angle of rotation of gear 1.

actual angle of rotation of gear 2

theoretical angle of rotation of gear 2

1
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hV 2	 kinematic error function

T 
o	

pressure angle

w i	 angular velocity of gear i

THEORY AND EXACT SOLUTION METHOD FOR KINEMATIC PRECISION

In the process of motion the tooth surfaces of two gears, 
11 and E2

(Fig. 1), are in tangency if the following equations are satisfied:

rf 1) (ul , 491 ,9 1 ) = r(2) ( u2 , e2 , q' 2 )	 (4)

nf l) (u l ,e l ,9 l ) = n f2) ( u2 , a2 ,4 2 )	 (5)

ii

Here r ( ' ) is the position vector of the contact point on gear i; n (i) is
4

the surface unit normal vector at the contact point M; u i , and ai are	 1

the surface coordinates of the gear surfaces; and 9; is the angle of
i
3

i

rotation of gear i. Subscript f denotes a coordinate system which is rigidly
i

connected to the frame.

For a gearset with kinematic errors, represented by eQ l and nQ2 , con-

ditions for tangency may be expressed as 	 N

r(1) ( u l , e1,^ 1 , oQ 1 ) - rf2) ( u2 , 82 ,^ 2 ,eQ 2 )	 (6)

l

n f l) ( u 1 , a 1 ,ip 1 ,eQ l ) = nf2) ( u2 ,a2 , 4P 2 ,oQ2 )	 (7)

z

Equations (6) and (7) yield the functions

'P 2 (1P I ,oQ 1 9eQ 2 ) 	 'P2('Fl) + e;p 2 (4' 1 ,eQ 1 ,oQ 2 )	 (8)-
F
I

u i ( g l ,eQ 1 ,oQ 2 )	 e i ( 4P I ,oQ 1 9eQ 2 )	 (9)

6
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The functions

rf ) W i led ; u i (P 1 ,oQ 1 , eQ2 ), e i (9 1 1 e21 , eQ2 ) ( i - 1 ,2)	 (10)

represent the path of the contact point on gear surface E i corresponding to the

meshing of gears with errors of manufacturing and assembly. Functions

rf u0 0# 1 )9e^0f 1 ))	 u0(^1), ei(a l ) (i = 1,2)	 (11)
C	 I

represent the path of the contact point on gear surface 
Z  

corresponding to

meshing without errors. Comparison of functions (10) and (11) yields the change

of the contact point path induced by errors.

Consider the solution of equations (4) and (5) and (6) and (7). Vector

equations (4) and (5) yield only five independent scalar equations since

In(1)I = 1n(2)1 = 1. These equations may be presented as

f i ( u l ,el ,9 l , u2 , e2 ,'v 0 ) = 0	 (J = 1,2,...,5)	 (12)

It is assumed that

Ifl ,f2,f3,f4,f5 I E C1

The symbol C 1 denotes that functions f 	 have continuous partial deriva-

tives of the first order (at least) by all arguments.

It is assumed that equation system (12) is satisfied by a set of para-

meters

P 	
(ull) ,

8 1 1) ,^i l ) ,u2 1) ,e2 1) ' If	 )	 (13)

and that surfaces s l ands 2 are in tangency at point M o. Surfaces E 1 3

and L
2 

will be in point contact in the neighborhood of M o if by the set of

parameters P 	 following Jacobian differs from zero:

7
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af i af i af i af i afl

D(fl,t2,f3, f4, f5)	 aul ael
8U

2 ae2

u1 ,e1 , u2,e2,P2
4 U	 (14)

af5 af5 af5 af5 af5

aui ae1 au2 802
392

If inequality (14)	 is satisfied, equation (12) may be solved in the

neighborhood of	 P (1)	 with the functions

^u l
(^ l

),e l (C i ), u 2 (' l ), e2 (it ),m2('P i )I a C 1	 (15)

The function g 2(g l ) represents the ideal law of motion. In most cases

(for conjugate tooth action) function 4P 2 ((p i ) is linear.

Equations (6) and (7) also yield a system of five independent equations in

six unknowns (ul'o191l,u2,e2,4P2)

9 j (U 1 ,49 	 = D	 (j = 1.2,...,5)	 (16)

It is assumed that this system is satisfied by a set of parameters

P (2) = ( u 1 2 ),e1 2 ),If1 1 ),u22 ),e22 ),T22> )	 (17)

with the same value of (PM as in the set P (1) . If in the neighborhood of

P (2) the Jacobian

D(91'92,93,94995)
#0	

(18)

u1,e1,u2,e2,g2

then system (16) may be solved with the functions

Iu I 
OP 

I 
AQ) '0 

1 
( ,f C AQ) , u 

2 
OP1960,0 

2 
Of i ') AQ ) "P 2 OP 1 9 4Q) I e C 1	 (19)

8
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Function 
1P2(9 

,Q)  represents the actual law of motion transformation -

the law of transformation of motion which corresponds to errors of manufac-

turing and assembly. Kinematic errors of the gear drive are represented by

the function

692 - 9 2 (9 1 16Q) - 9 2 ('V 1 )
	

(20)

This method of solution can provide, not only the kinematic errors of a gear-

set, but also the new path of the contact point (see functions (10)).

In general, the numerical solution of a system of five nonlinear equations

is a difficult problem which requires many iterations. To save computer time

an effective method of solution was recently proposed by Litvin and Gutman

[2]. The principle of this method follows:

The system of equation (16) ma y be represented as

f 1
(u 1 ,e 1 , g 1 ,u 2 "2 ,

q'
2 , A ,H 1 , H 2 , o0) = 0	 (21)

f 2 (u 1 ,8 1 ,av 1 ,u2 ,a2 , 4v 2 , A ,H 1 , H 2 9 AQ) = 0	 (22)

f 3 (u 1 ,e 1 ,v 1 ,u2 ,e2 ,w 2 , A ,H 1 , H 2 9 AQ) - 0	 (23)

f4 (u 1 ,e 1 ,u2 ,e2 , 4P 2 , oQ) = 0	 (G4)

f 5 (u 1 ,e 1 ,u2 ,e2 ,®2,oQ) = 0	 (25)

Equations (21) to (23) are determined from vector equation (6), and

equations (24) to (25) from vector equation (7). Here, A represents the

shortest distance between the axes of rotation of the two gears and H 1 and

H2 represent the axial settings of the gears (Fig. 2).

9
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Systems S 1
(1

1
,1

1 ,Z 1 ) and S2 (X 2 ,Y 2 ,Z2 ) shown in figure 2 are rigidly

connected to the driving and driven gears, respectively. Now suppose that some

points Mi (ui ,ei ) and M2 (u2 ,e2 ) on surfaces t l and t 2 are chosen.

With a set of known parameters (u l ,el ,u2
,9

2 ), equations (24) and (25) became

a system of two equations in two unknown; which may be expressed as

F 1 ('P 1 ,q 2 ) = 0	 (26)

F 2 (
f# 1 ,4v 2 ) - 0	 (27)

Upon solving for 
Tl 

and 
4P2,one 

checks that the following equations are

satisfied:	 3

A - K 1 (u 1 ,e1 ,TP up, e2 ,w 2 , oQ) = 0	 (28)	
a

i

H l - K 2 (u 1 ,e1 99 1 ,u2 ,e2 ,^ 2 ,oQ)	 0	
(29)

H2 - K 3 (u 1 ,e 1 ,'P 1 ,u2 ,e2 ,4P 2 ,oQ) = 0	 (30)

w0ere A, H 1 , H 2 , and eQ are given values.

In generil, the solution of the above two systems of equations ((26) and

(27) and (28) and (30)) requires an iterative procedure. In practice, one of
i

the four variable parameters (ul ,e l ,u2 ,e2 ) is fixed, and the other 	 4

three are changed such that the two equation systems are satisfied.

The advantage of the above method lies in the ability to divide the system

of five equations ((25) to (30)) into two subsystems of two and three 	
r

equations, and to solve them separately.

This method was applied to investigate the sensitivity of Wildhaber-

Novikov gears to errors of center distance mounting [1]. These gears are

generated by two rack cutters which have normal sections as shown in Fig. 3.

10
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Surfaces of the rack cutters are in tangency along a straight line M - M'

which is parallel to axis Z 	 and passes through point M of the normal

section. In the normal section, the shape of each rack cutter is a circular

arc of radius o f (i - I, II). The location of point M is defined by the

parameter a - s
o
 (Fig. 3). The line M - M' generates a helix on the gear

tooth surface which is the path of contact points. Although the procedure

described above is primarily for numerical solution, in this case analytical

results were obtained.

The investigation showed that the error of center distance bA resulted

in the change of location of the contact point path. The new location of the

path is represented by the equation

AA - 
bII

sin a - --
0 I - oII

R1 -	
( PI 

sin s + r l ) + (o I cos a sin a)	 (31)

Where R 1 is the radius of gear 1 cylinder on which lies the helix of the

new contact point path. Parameters a, 
o i l oII• and b 1 

are shown in

Fig. 3; r 	 is the pitch cylinder radius.

With eA - 0,

sin a0 = o bII 
o	

(32)
II	 I

where a 	 is the parameter corresponding to the desired location of the

contact point path.

11
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KINEMATIC RELATIONS BETWEEN PARAMETERS OF CONTACT POINT MOTIONS

The following relations are the basis of the second method for the

determination of kinematic errors in gear trains. As stated above, the

tangency of gear tooth surfaces is represented by equations ( 4) and (5).

Because of the continuity of tangency of these surfaces, it is required that

rf 1) (u 1 ,s1 ,v 1 ) = rf2) (u2 .a2 .r 2 )	 (33)

nf 1) (u 1 .e1 ,^v 1 ,) = of 2) ( u2 , a2 .v 2 )	 (34)

Here rf' ) (i = 1,2) is the velocity of the surface contact point in abso-

	

lute motion (with respect to the frame);	 is the velocity of the tip of

the surface unit normal in absolute motion (also with res pect to the frame).

Henceforth, r ( ' ) is designated as v ( ' ) and n ( ' ) as n(')
_f	 _abs	 _f	 _abs'

The velocity of absolute motion may be represented as the sum of two

components: (a) the velocity of transfer motion (together with the surface)

and (b) the velocity of relative motion (with respect to the surface).

Consequently,

V(1) . v (1) + v (1) ,	 0 2) = v (2) + 02)	 (35)
_tr	 _r

n (1) = n (I) + n (1) ,	 n (2) = r, (1) + n (2)	 (36}_abs	 _tr	 ^r	 _abs	 - tr	 _r

For a surface represented by a vector-function

r(')(ui.ai,vi)	 (i	 1.2)	 (37)

12
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and a surface !snit normal

n(')(ui,ei,ri)	 (i = 1 ,2)	 (38)

the following comes from definitions (a) and (b) above:

ar ( ' ) dip
	

ar(' ) du i	Dr ( ' ) doi

vtr = as i cTt Yr = au i U	 aei Ut	
39

an ( ' ) di	 an(	 du •	 an ( ' ) de•

-tr	 a^ 
i 

cwt	 _r	 aui dt + ae i at

Transfer velocity may also be determined in a kinematical way by supposing

that a gear with surface 
z  

rotates about an axis that does not pass

through the origin 0i of coordinate system S f , which is rigidly connected

to the frame. Vector w ( ' ) is the vector of angular velocity of the gear's

rotation. Then,

v (i) = WO) x r ( ' ) + R ( ' ) x W ( ' )	 (41)_tr

where r ( ' ) is the position vector drawn from origin 0 ; to the contact

point on the tooth surface and R ( ' ) is a vector drawn from 0 i to an ar-

bitrary point on the gear's axis of rotation.

The transfer velocity n tr is represented by the equation

n ( ' ) = w ( ' ) x n ( ' )	 (42)
tr

Equations (33) to (36) yield the following kinematic relations for two

tooth surfaces which are in continuous tangency:

v
( 1 ) + y ( 1 )	 (2) +	 (2)	

(43)
tr	 r	 - vtr	 yr

13
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n (1) + n (1) = - ( 2 ) + n (2)	 (44)_tr	 -r	 -0	 -r

Equations (43) and (44) were first proposed by Litvin (1]. On the basis of

these equations, important problems in the theory of gearing were solved, such

as avoiding tooth undercutting, deriving the relations between curvatures of

two gear tooth surfaces in mesh, and determining the kinematic errors of gear

drives which are caused by errors of manufacturing and assembly.

APPROXIMATE METHOD OF CALCULATION OF GEAR DRIVE KINEMATIC ERRORS

As a general rule, kinematic errors of a gear drive determined by the

exact method must be obtained in a numerical way using a computer. This is a

disadvantage of the exact method. Therefore, an approximate method with the

opportunity to obtain accurate results analytically is now presented.

Figure 4 shows two gear surfaces

cy due to errors of manufacturing and

coincide, position vectors r (
f
l) and

normal vectors n (
f
l) and nf 2) do n

into contact it is sufficient to hold

E 1 and E 2	 which are not in tangen-

assembly. Points M (1) and M (2) do not

r (2) are not equal, and surface unit

Dt coincide. To bring the two surfaces

one gear fixed and rotate the other gear

by an additional small angle. Since the gear with surface E 1 is the driv-

ing gear, it is preferable to fix the position of surface E 1 and rotate

surface 
AT 
2 to bring it back into contact with E 1 . The additional

angle of rotation eT 2 represents the change of the theoretical angle of

rotation ip2 which is exerted by errors of the manufacturing of manufacturing

and assembly. The °V2 is as yet an unknown function of the vector of errors

aQ and varies in the process of motion. Thus

AW 2 = f ( CP 1 1AQ)
	

(45)

14



ORIGINAL PAGE 19

OF POOR QUALITY

The determination of the Function (45) is based on the following kinematic

relations, which are analogous to (43) and (44):

ds (1) + ds (1) + ds (1) - ds (2) + ds (2)+ ds (2)	 (46)
_tr	 _r	 _q	 _tr	 _r	 _q

dn (1)+ dn (1) + dn (1) - dn (2) + dn (2) + dn (2)	 (47)
_tr	 _r	 _q	 _tr	 _r	 _q

where ds (1) is the displacement of contact point and do" ) 'i - 1,2) is

the change in direction of the surface unit normal due to errors of manufac-

turing and assembly. To bring the surfaces into contact, it is sufficient

to rotate only gear 2, holding gear l ' at rest. Therefore, ds tr ) , and dn(i)

are zero, and

ds (1) +
_r

ds (1)
_q

= ds (2)
-tr

+ ds (2)
_r

+ ds (2)	 (48)
_q

dn (1) +
_ r

dn (1)
A

= dn (2)
_tr

+ dn (2)
_r

+ dn (2)	 (49)
_q

To determine relations between dst r2) , dsg l) , and dsg2)	take the follow-

ing scalar products:

n . (ds (1) + ds (1) )= n . (ds (2, ) + ds (2) + ds (g2) )
	

(50)

Since vectors ds 1(i) and ds(2) must lie the common tangent plane T, equation

(50) is reduced to the following:

n . ds (2) = n . (ds (
q
l) — ds

(
q
2) )	 (51)

The vector ds (2) may be represented by the following cross product:

15
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(52)

where dip 
(2) 

is the incremental angle of rotation of gear 2 and r (
2
M) is the

position vector drawn from an arbitrary point of the axis of rotation to the

contact point M.

Equations (51) and (52) yield

do (2) r (
2 M) n 

= dsgl) - dsq(2)	 n	 (53)

Equation (53) is the basic equation for the 6etermination of kinematic erro;-s

of gear drives. Its application will be demonstrated in the following sections.

Analogous scalar products can be composed on the basis of equation (49).

It can be proven that these scalar products are zero because the vectors in

equation (49) all belong to the tangent plane. Hereinafter, the following

notations will apply:

zagi l) = es (	2)	 2)gl) ,	 zaq^	 = esg,

where r aq( 1) and Eaq ^ 2) represent the sum of linear-error vectors due to

manufacture and assembly of gears 1 and 2, respectively.

In many cases, however, errors in gear trains do not result from linear

displacements, but rather from angular displacements. For instance, kine-

matic errors may result from the misalignment of gear shafts.

Figure 5 shows the axis of gear 2 rotation a-a in its ideal position.

Suppose that, due to an error of assembly, axis a-a is rotated about a

nonintersecting axis B-B. Such an error of assembly may be represented by

the vector ea, which is directed along axis B-B, where the direction of

A6 corresponds to the direction of rotation by the right-hand rule.

16
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With the given vector ea the displace ment aq(2) of contact point M may

be determined as follows:

(a) Vector as, directed along the axis B-B, is replaced by an equal vector

a6, which passes through the origin 02 and the vector-moment R x ea. Here

R is a position vector drawn from 02 to an arbitrary point on the lire of

action of vector a6 (Fig. 5).

(b) The displacement aq (2) corresponding to a6 may be represented by

aq (2) = a6 x r2 (M) + R x ea - a6 x (r( M) - R)	 (55)

A similar equation may be developed to determine the displacement of the contact

point M exerted by an angular error corresponding to gear 1.

With notations (54) the equation (53) for the determination of kinematic

errors may be represented as follows:

(0 (2) x r (
2
M) + saq) . n (M) = 0

	
(56)

where saq - taq ^ 2) - raq^ 1) and n(M) is the surface unit normal at the contact

point M.

The location of the contact point M and the direction of the unit normal

n(M) change in the process of motion. A further simplification of equation

(56) results by assuming that in all positions the contacting tooth surfaces

have a common normal which passes through the contact point M and the pitch

point P. This is the fundamental law for uniform motion transmission. For

planar dears the pitch point P coincides with the point of tangency of the

pitch circles (gear centrodes). The pitch point for bevel gears is located on

the line of tangency of pitch cones. In both cases the surface unit normal n

11
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r (
2
M) = r (

2
P) + ^3P	 r2 P) + an (M)	 (57)

Equations (56) and (57) yield

	

(0 (2) x r
(
2
P) + Eeq) . n (M) = 0	 (58)

because

(a* 
(2) 

x r (
2
M) ) . n (M) =	 a9 (2) x ( r(2P) + xn(M) )	 n(M))

-	
[-	

-	 -	
]

= (ep (2) x r2P) ) . n (M) + eyv(2)an(M)n(M))

= lecv (2) x r
(
2
P) )	 n (M) )	 (59)

Application of equation (58) in place of equation (56) has the advantage

that the location of the pitch point may be considered as a constant (r2P)

= const). However, the direction of the surface unit normal is a function of

T i . Three types of gears - involute (spur and helical) and Wildhaber-

Novikov - are exceptions to this statement. For these gears the unit normal

of the gear surfaces at their contact point does not change its direction.

Because of kinematic errors, the angular velocity ratio fluctuates as the

gear teeth pass through mesh. Figure 6 shows functions for two types of kine-

matic errors. The first is a piecewise, nonlinear, periodic function which

has a period that depends on the ratio

N 2	 h	
(60)

ml   =^= a

where N i (i = 1,2) is the number of gear teeth and b and a are the

18
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minimum integral numbers with which the ratio m12 can be expressed. The

angle of rotation of gear I corresponding to the period of function e*(2)(rl)

is equal to 2va.

Such functions of kinematic errors are caused by (a) the eccentricity of gears and

(b) the crossing of the theoretical axis with the axis of rotation of gears. (The
	

i

shortest distance between these axes rotates in the process of motion.)

The second type of function eb (2) ( bl ), shown in Fig. 6(b), has a period of
of bl = R. This function is exerted by (a) errors in the generating process

Ni
of gear teeth and (b) errors of gear axis location which do not change in the

process of meshing, etc.

APPLICATION OF THEORY TO ECCENTRICITY OF INVOLUTE SPUR GEARS

Fi „ -P 7 shows base circles of radii r
(
b
l) and r(2) for two involute

spur gears. The rotation centers of the gears are denoted 0 (l) and 02.

If the centers of base circles O i coincide with centers of roation P)
(i = 1,2), and then vectors of gear eccentricity ae i = 00)0i are zero. The

involute curves are in tangency at a point M of the line of action KL.

To model the meshing of gears with eccentricity, gears 1 and 2 are trans-

lated from their theoretical positions by O m o f = ne i (i = 1,2). Now, the

center O i will be offset from the center of rotation P ) . Because of

this displacement of the gears, the tangency of their involute curves is brok-

en: the curves will wither interfere with each other (intersect) or lose con-

tact. To bring the involute curves into the contact once again, it is suffic-

ient to rotate gear 2 by a small angle eip (2) . According to equation (58)
the angle ap (2) may be determined with the equation

( e'P (2) x r (
2

P) ) . n (M) _ ( ee l — ee2 ) . n (M) )	 (61)

The triple product results in (Fig. 7)

(4 (2) x r2P) )	 n (M) = e9 (2) r2P) Cos * o	(62)
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where bo is the pressure angle.

Vectors of eccentricity eel and eel form angles 
01 

and 
02 

with vector

0(1)0(2) ; these angles are measured in the direction of gear roatation (Fig. 7).

The dot products yield

ael . n (M) = eel sin(0
1
 + *o)

eel . n (M) = he  sin(* o - p2 )	 (63)

It results from equations (61) to (62) that

ab(2) = ee
l sin(0 1 + * o ) + he  sin( 0 - *0)	

(64)
rb

where

r(2) _ r (P) cos 0
	 (65)

is the radius of the base circle of gear 2.

The center O i (i = 1,2) of the base circle rotates in the process of meshing;

Oi l) and 0
I
^
2) are two instantaneous positions of this center (Fig. 8). Angles

0 1 and 02 can be represented as follows:

01 = 010 + 'P l ,	 02 = 020 + 9 2	 (66)

where 010 and 
020 

correspond to the initial positions of centers 0 1 and 02,

with V1 = T 2 = 0.

Equations (64) and (66) yield

n^ 
(2) - ne l sin(g 1 + Y 1 ) + ee2 sin(

'P2
 + Y2)

( 67)67

r(2)

where

Y1 = (0 10 + * o ) ; Y2 = (0 20 - #o)

For convenience, consider the kinematic error function to have zero magnitude at

q1(1) = (P(2) = 0 . Then, the kinematic error becomes

20
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106(2) = OW (vi) - 'W (2)(0)

eel [sin(bl + Y l ) - sin YO	 he  [sin(b2 + Y2 ) - sin Y21

=m21 +	 (68)
rb	r 

where
(1)

w2 rb Nl
m21=W =

r(2)aN
1 b 2

Equation (68) represents the kinematic error of a gear train with two gears as

the sum of two harmonics. The periods of these harmonics are equal to the

periods of complete revolutions of the gears.

Equation (68) may be made symmetric as follows:

610 (2) = ee
l [sin(,p l + Yl ) - sin Yl]	 he2[sin('F2 + Y2 ) - sin Y2]

r(1)	

m21+	
r(2)	

m22

b	 b

2 eei [sin(b i + Yi ) - sin Y
i]

= i^1	 r(i)	 m 2

b

Here, m22 = 1 and "2 = 
9 1 m21

Equation (69) can be generalized for a train with n gears as follows:

es(n) = E 
ae i [sin(4p i + Y i ) — sin Yi]

i=1	 r i	 mni	
(70)

b

where e10 (n) is the resulting kinematic error of the gear train represented

as the angle of rotation of gear n (the output gear).

A complicates gear train is a combination of pairs of gears. The parameter

Yi may be represented as

(69)
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Y i = sio +#o

for the driving gear of the pair, and as

Y i = B io - *0

for the driven gear of the pair. For instance, for computational purposes, a

train of three gears must be replaced by two pairs of gears. The idler (inter-

mediate gear) is considered as the driven gear in the first pair, and as the

driving gear in the second pair.

Designate the kinematic error exerted by the eccentricity ee i of gear

number i as

ee. = ee
i [sin(fo i + Yi ) - sin Yi ]	 (71)

^	 r(i)
b

where ea i is the error of the rotation angle V i . The maximum

possible value of this error is

2 eei
ee

i,max - eei,min `2(72)
rb^ )

The kinematic error of the train may be represented as

n
ee (n) _	 eei mni	 (73)

i=1

Usually gear trains are applied for the reduction of angular velocities

and thus mni is less than 1. It results from equation (73) that the last

gears of a train (numbers n, n - 1, n - 2) induce the largest part of the

resulting kinematic error 	 ee(n) . Therefore, the precision of these gears

must be higher than the others.
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The largest value of the kinematic error function 
as 

(n) and its distri-

bution above and below the abscissa depend on the combination of parameters

Yi (i = 1, 2, ..., n). Figure 9 shows the distribution of a function as 

( #i ) exerted by eccentricity of gear i of the train.

The resulting errors of a gear train may be compensated for in part, by

definite rules of assembly of gears with eccentricity. For instance, for gears

with tooth numbers N, - N2 and equal eccentricities hel	 ae2 the
A

resulting kinematic error will be approximately zero if eccentricity vectors

ae l and ae2 (Fig. 7) are directed opposite each other.

APPLICATION OF THEORY TO ECCENTRICITY OF SPIRAL BEVEL GEARS

For spatial gears the word "eccentricity" is used to describe that the

geometric axis of a gear is parallel to, but does not coincide with, its axis

of rotation (Fig. 10). As the eccentric gear rotates its geometric axis gener-

ates a cylindrical surface of radius ae. The eccentricity vector se is a

vector which rotates about the gear axis. The initial position of vector

ae (its position at the beginning of motion) is given by angle a (Fig. 10).

Figure 11 shows coordinate systems S l (X I ,Y l ,Z l ) and Sf(Xf'Yf,Zf),

which are rigidly connected to gear 1 and the frame, respectively. System

Sh is an auxiliary coordinate system, which is also rigidly connected to

the frame. Driving gear 1 rotates about axis Z h . The position of eel

in coordinate system S 1 is given by the angle a l , which is made by

he  aijd axis X 1 . The current position of Ae l in coordinate system S 

(or SO is defined by the angle (VI + a l ) and the matrix equality

[ae (1) 1 = [Lfh^ ^Aehl)I

	

cos Y1	 0	 sin Y1	 he  cos(® I + al)

0	 1	 0	 -Ael sin0p 1 + a 1 )	 (74)

	

-sin Y1	 0	 cos Yl	 0
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Here [ae (
h
l) ] is the matrix of vector ae l in terms of its projections on

on the axes of coordinate system S h. The 3 by 3 matrix [lfn] trans-

	

forms elements of the column matrix 	 aeh l) to coordinate system Sf

from coordinate system Sh.

Matrix equality (74) yields

ael cos(g l + al )cos Y1

	

[aef l) ] _	 -ael sin(v l + a l )	 (75)

-ae lcos(ff1 + al)sin Y1

The vector of eccentricity of the driven gear can be defined in a similar

way. Figure 12 shows coordinate systems S 2 and S 	 rigidly connected to

gear 2 and the frame, respectively. The auxilliary coordinate system S p is

also rigidly connected to the frame.

Vector he (f2) is represented by matrix equalities

[aef 2) ] 	 [ Lfp ] [ae(p2)]

	

cos Y2	 0	 -sin Y2	 he  cos(® 2
 + 02)

=	 0	 1
	

0	 he  sin (912 + a2)
	

(76)

	

sin Y2	 0
	

cos Y2	 0

which after matrix multiplication gives

he  cos(4P
2 + a2 ) cos v2

[aef2) j =	 ee2 sin 
(;P

2 
+ 

02)
	

(77)

he  cos(4
P2 + 0

2 ) sin Y2

Kinematic errors induced by gear eccentricities may now be found by applying

Equation (58) as follows:
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Here aef l) and aef 2) are given by matrices (75) and (77); vector a9f2)

(Fig. 12) is represented by the matrix

[49 (2)] - [Lfp ] [aqp2)]

cos Y2 0 -sin Y2	 0

=	 0	 1	 0	 0

sin Y2 0	 cos Y2 	 692

-a® 2 sinY2	(79)

s	 0

64P2 
cos Y2

Victor 
p(
f
2) represents the position vector of the contact point which

belongs to the line of action and o f represents the common unit normal of the

gear surfaces at their point of tangency.

Equations (78) and (79) yield

n  Laex + n  taey + n  taez

692 =	 -	 (80)
-y cos Y2 + (x cos Y2 + z sin _Y2 )n- y sin Y2 nz

where Eae x = ae (l) - ae (2) , taey = aeyl) - aey2) , Lae. - ae (i) - ae (2) and

the subscript f was dropped.

Projections ny and nz of the surface unit normal n, and coordinates

x, y, ano z of the contact point change in the process of motion. But since the
t

changes in these variables are relatively small, they may be neglected (Fig. 13).

o f = sin c c i f + cos c c (cos a j f + sin s kf)

{81)

X  = 0, y f . 0, z f - L
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Equations (80) and (81) yield

6o 2 (t l ) =	
A(91)

L sin Y2 cos * Cos 0

where

A(9 1 ) = a, sin (91 + a,) + b, COs (91 + a,) +

a2 sin (02 + a 2 ) + b2 COs (102 + a)

al = -&el cos 
*C 

Cos B

a2 = -ee2 cos 
*c 

cos a

b, = ee,(cos Y, sin 
*C - 

sin Yl cos * c sin B)

b2 = -ae2 (cos Y2 sin * c + sin Y2 cos * c sin 9)

N1

9 2 w *1 W 22

It is concluded from the firm of equation (82) that kinematic errors in-

duced by the eccentricity of spiral-bevel gears may be represented as the sum

of four harmonics: the period of two harmonics coincides with the period of

revolution of gear 1; the period of the other two coincides with the period of

revolution of gear 2.

The function 69 2 (9,) represented by equation (82) is a smoothed,

continuous function which serves as a first approximation. In reality the true

function 
*2(9 1

)  breaks as different sets of teeth come into rash. This

break can be discovered if 692 (9 1 ) is determined by equation (80).

GEAR TRAIN VIBRATION AND NOISE MEASUREMENT

To illustrate the principles discussed on the subject of gear train preci-

sion. Figs. 14 and 15 are used. These figures show some frequency spectrum

measurements made on a helicopter transmission running in a test stand L7].

The transmission had a spiral-bevel input stage with 15 teeth on the pinion

26
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and 71 teeth on the gear. The pinion was turning at 6200 rpm and the output

shaft at 355.5 rpm. The output stage was a spur p lanetary arrangement with a

?7-tooth sun, 3 ' planet gears, each with 35 teeth and a 99-tooth ring gear which

was splined to the transmission housing. An accelerometer was mounted on the

case immediately outside the spline.

Figure 14 shows a broadband frequency spectrum measurement of the vibra-

tion signal. The spur mesh frequency was 583 Hz and the spiral bevel mesh

frequency was 1963 Hz. The spiral-bevel vibration signature was much stronger

than the spur signature. This indicates that the meshing accuracy was better

for the spur mesh than for the spiral-bevel mesh. There are also other peaks

in the spectrum at multiples of the fundamental frequencies of 1963 Hz ano 583

Hz. These other peaks are the higher harmonics due to the noise and vibration

pulsations as the teeth mesh being different from the pure sinusoidal shape as

shown in Fig. 9.

Fi gure 15, an expanded region of the autospectrum plot given in Fig. 14,

shows many peaks that are symmetrically located about the spur gear mesh fun-

damental frequency peak at 583 Hz. These peaks locate the sideband frequen-

cies which are due to sources of modulation in the time dependent vibration

waveform. Each source of modulation may produce one pair of sidebands if it

is a harmonic modulator. If nonharmonic, the side bands will repeat many

times, as in the case in Fig. 15.

SUMMARY OF RESULTS

Kinematic precision is affected by errors that are the result of either

intentional adjustments or accidental defects in the manufacturing and assem-

bly of gear trains. A general method for the determination of kinematic pre-

cision of gear trains has been explained. The general method is based on the

exact kinematic relations for the contact point motions of the gear tooth sur-
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faces under the influence of errors. An approximate method was also explained.

Example applications of the general and approximate methods were demonstra-

ted for gear trains consisting of involute (spur and helical) gears, circular

arc (Wildhaber-Novikov) gears, and spiral-bevel gears. Gear noise measurements

from a helicopter transmission were presented and discussed with relation to

the kinema`ic precision theory. The following results were obtained:

1. The exact numerical iterative procedure for finding kinematic errors,

nb2 , is as follows: From equation (20) find

°92 = 4F 2 (T 1 , eQ` - v2(v1)

where the angles
9 2
 and 4p 2 have been determined from an iterative

solution of the nonlinear algebraic system of five equations, which are separ-

able into two systems of two and three equations each as follows:

Fi('P1. '0 2 ) = 0, i = 1,2

A - K 1 (u 1' e 1 I' 4P 1 ,u2 ,e2"m 2 ,nQ) = 0

H 1 - K2 (u1 ' e 1 , 1P 1' u 2' e2'V 2 1oQ) = 0

LH 2 - K 3 (u 1" 81"' 1' u2 " 2 ,P 2 .oQ) = 0

where A, H 1 , H 2 , and aQ are given values and 
V2 is determined by solving with

eQ = 0, whereas 
(P2 is determined by the full solution of the five equations.

2. The approximate equation for kinematic error AV (2) is

(eb (2) x r (p) x Saq) ' n (M) = 0

where r (	is the radius vector to the pitch point, n (M) is the surface normal

vector at the contact point M, and Eaq is the sum of known error vectors.

28



3. Application of the formulas showed that Wildhaber-Novikov gears are sen-

sitive to any errors which cause changes in the center distance. A formula for

the location of the gear-tooth contact point was given.

4. It was found that for a pair of spur gears the kinematic error function

due to eccentricities is a sum of two side harmonics. For a multistage speed

reducer, it was concluded that accuracy in the final stages has the most impact

on kinematic error. for gears with approximately equal known eccentricities,

the kinematic error may be compensated for by directing the eccentricities

opposite one another.

5. For a pair of spiral-bevel gears, the kinematic error function due to

eccentricities is a sum of four harmonics.

29
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Figure 15. - Narrow band frequency spectrum showing sidebands
around the spur mesh frequency.
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