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ABSTRACT

The National Aeronautics and Space Administration (NASA) Deep Space

Network operates and maintains the Earth-based two-way communications link for

unmanned spacecraft exploring the solar system. It is NASA's policy to also
make the Network's facilities available for radio astronomy research. Three

percent of Network time is currently reserved for radio astronomy observations.

The Network's microwave communication systems and facilities are being

continually upgraded. This revised document, first published in 1982,
describes the Network's current radio astronomy capabilities and future

capabilities that will be made available by the ongoing Network upgrade.

The Bibliography, which includes published papers and articles resulting

from radio astronomy observations conducted with Network facilities, has been

updated to include papers to May 1987.
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PREFACE

The National Aeronautics and Space Administration develops, operates, and

maintains extensive ground-based radio communications facilities around the

world. Known as the Deep Space Network, these facilities provide and operate

the two-way communications links between the Earth and unmanned spacecraft

exploring the solar system. To maintain and enhance the scientific value of
current and future deep space missions, the Network is continually upgraded to

incorporate the state of the art in microwave technology.

In addition to providing radio navigation data, radio science data, and

two-way spacecraft communications, the Network's facilities are made available
for radio astronomy research. Currently, up to 3 percent of Network time is
made available for radio astronomy observations, which are conducted on a

noninterference basis with scheduled spacecraft view periods.

The experiments that are approved for these facilities are those that

exploit the unique high sensitivities and the geographic locations of the
telescopes. A "Friend of the Telescope," who in each case is a practicing
radio astronomer intimately familiar with the instrumentation and its

capabilities, is available at each of the three Network complexes.

This document was originally published in 1982. It has been updated to

reflect the current capabilities of the Network telescopes, to outline the

cooperative relationships with other radio observatories, and to describe

future capabilities for radio astronomy experiments that will be made possible

by the ongoing Network upgrade. Also included are a history of Network radio

astronomy experiments accomplished over the last 20 years and a chronology of

experiments conducted from May 1967 to May 1987.

Nicholas A. Renzetti

JPL Telecommunications

and Data Acquisition

Science Office
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I. INTRODUCTION

The NASA Deep Space Network is the largest and most sensitive scientific

telecommunications and radio navigation network in the world. It is managed,

technically directed, and operated for NASA by the Jet Propulsion Laboratory

(JPL) of the California Institute of Technology (Caltech) in Pasadena, Cali-

fornia. The Network (Figure i) consists of three Deep Space Communications

Complexes located on three continents: at Goldstone in Southern California's

Mojave Desert; near Madrid, Spain; and near Canberra, Australia. The Network

Operations Control Center, which controls and monitors operations at the three

complexes, is located at JPL in Pasadena. The Ground Communications Facility

provides the communications circuits that link together the complexes, the

Control Center, and the remote mission operations centers.

From its inception in 1958, the principal responsibility of the Network

has been to design and operate the two-way communications link between the

Earth and unmanned lunar, planetary, and interplanetary spacecraft missions.

The Network is also responsible for maintaining and upgrading its facilities

to accommodate all of its users. This includes not only the implementation of

enhancements to improve the scientific return from current spacecraft missions

but also long-range research and development to meet the navigation and

telemetry requirements of future missions.

This ongoing technological evolution has resulted in advanced

radio-frequency instrumentation that can also be effectively utilized as a

unique, Earth-based scientific instrument for certain kinds of astronomical

research. The Network's ultrasensitive high-gain, low-noise transmitting and

receiving systems, diverse polarization capabilities, precision frequency and

time standards, versatile recording instrumentation, and very long baselines

between antenna stations (Figure i) have attracted international attention

from scientists in the fields of radio and radar astronomy as well as from

experimenters in the fields of celestial mechanics, relativity, gravitation,

and Earth physics.

The Network's facilities are available to any qualified scientist on a

noninterference basis with spacecraft mission support. The Network encourages

the utilization of its facilities for those radio astronomy observations that

exploit its unique elements and capabilities. These include highly sensitive

receivers in certain frequency bands and advantageous locations for viewing

specific objects or obtaining particular baselines for very long baseline

interferometry experiments.

To the extent consistent with meeting its other commitments, the Network

provides the fullest possible support to ensure a successful venture for the

experimenter and the Network. A Friend of the Telescope, who is a radio

astronomer, is available at each complex to assist guest investigators with

technical advice and support. At JPL, a radio astronomy support staff is

available to assist with proposal handling, scheduling, and experiment

support. The agreements with Spain and Australia, authorizing the

establishment of Network complexes within those countries, also provide for

their use by host-country scientists. Host-country experiments conducted at

the Canberra and Madrid complexes are accepted and scheduled through the

complex director's office. Approximately 250 hours per year will be made
available to each host country if requested from NASA.
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Figure 1. The Deep Space Network 



A scientist in the United States may obtain the use of Network facilities

by submitting a written proposal to JPL for evaluation by the Radio Astronomy

Experiment Selection Panel, which is composed of distinguished radio
astronomers. The panel will evaluate the scientific merit of the proposal and

determine the suitability of the Network to meet the experiment's performance

requirements. There is no charge to the scientist for the use of Network
facilities. It is assumed that the investigator is funded by non-NASA sources

for data reduction and scientific interpretation.

The inventory of Network telescopes is listed in Table i. The Australian

complex is located 40 kilometers (25 miles) south of Canberra near the
Tidbinbilla Nature Reserve. The Spanish complex is located 60 kilometers

(37 miles) west of Madrid at Robledo de Chavela. The Goldstone complex is

located in Southern California's Mojave Desert on the United States Army's

Fort Irwin Military Reservation approximately 72 kilometers (45 miles) north

of Barstow. The complexes are situated in semimountainous, bowl-shaped

terrain to aid electromagnetic isolation.

Table i. Deep Space Station Inventory

Antenna

Deep Space Station Diameter in
Location number (name) meters (feet) Mount

Goldstone, 12 (Echo) 34 (iii) Equatorial

California 13 (Venus)* 26 (85) Azimuth-elevation

14 (Mars) 70 (230) Azimuth-elevation

15 (Uranus)+ 34 (iii) Azimuth-elevation

16 (Apollo)** 26 (85) X-Y

Canberra, 42 34 (Iii) Equatorial
Australia 43 70 (230) Azimuth-elevation

(Tidbinbilla) 45+ 34 (iii) Azimuth-elevation
46** 26 (85) X-Y

Madrid, 61 34 (iii) Equatorial

Spain 63 70 (230) Azimuth-elevation
(Robledo de 65+ 34 (iii) Azimuth-elevation
Chavela) 66** 26 (85) X-Y

*Deep Space Network research-and-development station
**Earth orbiter subnet

+High-efficiency antenna
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All deep space stations are fully steerable parabolic reflectors with

Cassegrainian optics and are usually equipped for simultaneous reception at

2.3 and 8.5 gigahertz, which are the current United States deep space

frequency bands. More detailed technical information is provided in
Section III.

The 34- and 70-meter-diameter antenna stations are remotely operated from

the complex signal processing center, which houses the various subsystems that

point and control the antennas, transmit commands, and receive, process, and

record spacecraft data. The 26-meter-diameter X-Y mount stations, which

primarily support Earth-orbiting satellites, have not yet been equipped for

remote operation.

As part of the ongoing Network upgrade program, the 70-meter-diameter

antenna stations at Canberra and Madrid (Figure 2), which were originally

64 meters in diameter, have recently been extended to their new dimension.

The 70-meter extension of the Goldstone 64-meter antenna (Figure 3) is

scheduled for completion in June 1988.
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Figure 2. The 70-meter-Diameter Antenna at the Madrid Complex, Spain (1987)
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Figure 3. The 34-meter-Diameter (Front) and 64-meter-Diameter Antennas at Goldstone, California (1987) 



II. EXPERIMENT HISTORY

Over the last 20 years, radio astronomers have used the unique

capabilities of the Deep Space Network to conduct experiments that range from
pulsar timing observations to outer-planet radio emission variations, and from

interstellar scintillation experiments to very long baseline interferometry

surveys of the structure of compact radio sources. At the same time, radio

astronomy has had a valuable synergistic effect on the Network. Astronomical
studies of natural radio sources, the effects of the media, and the

propagation environment have made direct contributions to the technical

development and operational performance of the two-way deep space
con_unicationslink.

Notable radio astronomy achievements accomplished with the Network's
facilities include (i) the first detection of the broadband emissions from

pulsars at 2295 megahertz; (2) variation in the radio emission from Uranus,

indicating a difference in the atmospheric opacity and temperature from pole

to equator (i.e., prediction of the Uranus polar "hole" well before the

Voyager Uranus encounter); (3) the slowing of the spin rate of pulsars and the

propensity of some pulsars to exhibit occasional "jumps" that speed up the

spin rate temporarily; (4) variation in the synchrotron emission from Jupiter;

(5) first detection and high-angular-resolution mapping of 2-centimeter

formaldehyde emission; (6) the detection of recombination lines of sulfur;

(7) precise position determination of southern-sky quasars, leading to their

optical identification, and to the discovery of one of the most distant

quasars; (8) high-angular-resolution observations of ammonia sources in the

southern sky; and (9) interferometric observations using an Earth-orbiting

antenna in conjunction with a Network radio telescope in Australia and the

Usuda radio telescope in Japan. Many non-NASA observatories have collaborated

in successful multiaperture observations over the years, and many lasting
relationships have been established.

I. The Early Years

The Network's first 64-meter-diameter antenna (Figure 3) was completed at
Goldstone in 1966. The antenna provided 6-1/2 times the receiving sensitivity
of the Network's original 26-meter antennas and extended the range of the
Network 2-1/2 times. Recognizing that these performance characteristics also
provided the best instrument available for radio astronomy at that time, NASA
approved the allocation of some of the available antenna time for radio
astronomy research. Notice of the availability of this new facility was
issued to the radio astronomy community, which quickly responded.

Early in 1967, radio astronomersin England reportedthe first
observationsof pulsatingradiationfrom natural sources. By April-May 1967,
A. T. Moffet and R. D. Ekers of Caltech had detected pulsars at 2295 megahertz
using the 64-meterantennastationat Goldstone. In 1968, R. M. Goldsteinof
JPL detectedpulsarsat approximately80 megahertz,initiatinga two-year
investigationinto the feasibilityof using pulsarsas timing referencesfor
stationclock synchronization.A programof constant surveillanceof a number
of pulsarswas carriedout using the Venus 26-meterantenna at Goldstone. The
data from these observationsrevealedthat pulse rates were steadily
decreasingwith time, and that severalpulsarswere undergoingabrupt changes
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in decay rates. These discoveries readily eliminated pulsars as timing

references but generated much interest in the pulsar phenomenon within the

radio astronomy community. (Recent investigations of millisecond pulsars

appear to have reopened interest in the use of these objects as timing

references.)

These first pulsar observations were followed by an ongoing study of

pulse characteristics by G. S. Downs of JPL that lasted until 1983,

representing one of the longest radio astronomy experiments in the Network.

Pulsars represent the neutron star stage in stellar evolution, making them

unique objects for studying dense states of matter. Their pulse periods and

space velocities are important parameters for determining the star's redundant

spin rate and its origin. Observationally, the Network is well suited to the

patrol-like nature of pulsar investigations, as evidenced by the longevity of

the pulsar program and by the volume of data it has acquired, which includes

the longest continuous record of pulse periods ever assembled.

Beginning in July 1967, A. Maxwell of Harvard University conducted
measurements of the intensity variation of several galactic radio sources

during lunar entrance and exit occultation. The data were later processed to

determine the size, brightness, and fine structure of these sources.

A 9-meter antenna at Goldstone (now out of service) was used over a

4-year period as an 18- to 24-gigahertz planetary radiometer for the study of

the absorptive and emissive properties of Venus.

In September 1967, the Network was approached by D. S. Robertson of the

Australian Department of Supply, Space Research Group, who proposed long-

baseline interferometry measurements of a number of galactic radio sources

using the baseline between the Goldstone and Canberra deep space stations.
A baseline of this dimension has a resolving power of about 2 x 10-3

arc-seconds. A. T. Moffet of Caltech joined Robertson as a coexperimenter.
Observations were made in September 1967, November 1967, and May 1968 and
several times thereafter.

Beginning in October 1967, R. D. Ekers of Caltech conducted several
measurements at Goldstone of scintillation effects on known noise sources

caused by passage through the solar corona. These observations made it

possible to infer a measure of the solar wind structure in the region through
which the radio waves passed.

Signals from Quasar 3C273 have been used by the Network to measure the
time difference between two deep space stations at Goldstone to about

30 nanoseconds. The received noise-like signals were correlated, allowing for

the time-of-arrival difference between stations. The additional time

difference measured was the difference between the two station clocks.

By 1969, the volume of radio astronomy requests required the
establishment of the Radio Astronomy Experiment Selection Panel at JPL to

evaluate and select the most appropriate and worthy non-NASA proposals to

compete for the available station time. Members of the Selection Panel were
drawn from distinguished astronomers nationwide. A Radio Astronomy Support

Group was also formed at JPL, and the establishment of these organizations was
announced in December 1969 in technical journals throughout Europe, Africa,

Asia, Australia, and North and South America.
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The year 1969 was also a banner year on the technical front. The number

of regularly observed pulsars doubled by the end of the year, and the first

jump in the pulse period of the Vela pulsar was observed. Very long baseline

interferometry experiments, which had already been carried out at the National

Radio Astronomy Observatory and at the Massachusetts Institute of Technology,
were initiated. S. Gulkis and B. Gary of JPL conducted linear and then

circular polarization measurements of Jupiter. An apparent discrepancy in the

flux stimulated a study, using the Goldstone Venus station, that revealed

long-term variations in the synchrotron radio emissions (1971). Following

this, a Jupiter monitoring program was started at the Venus station and was

then expanded in 1977 to include Madrid, with occasional support provided by
the Goldstone 64-meter antenna throughout the 1970s. The high precision of

the 64-meter antenna polarization and flux data led to an improved refinement

in the Jovian rotation period. Additional linear polarization observations

were made, and the results were combined with data obtained with the
Australian 64-meter antenna at Parkes and with Caltech data to produce a

16-year history of the time variability in the polarization properties of the

synchrotron emission.

2. Deep Space Network Radio Astronomy Formally Established

In 1971, NASA issued formal management instructions setting forth the

policy and responsibilities for "Ground-Based Radio Science" and establishing
a NASA Ground-Based Radio Science Panel to provide assistance and advice to

the Associate Administrator for Space Science and the Associate Administrator

for Tracking and Data Acquisition on matters pertaining to ground-based radio
science. Currently, these are the Office of Space Science and Applications

and the Office of Space Operations. This panel was disbanded in 1973,

although programs are still carried out under the sponsorship of these two
NASA offices.

During 1970-1971, the brightness temperature of Jupiter was measured at

13 discrete frequencies between 20 and 24 gigahertz. At frequencies near the

strongest ammonia absorption, the spectrum supports a model atmosphere in
which ammonia is saturated but not supersaturated, as had been indicated by

some earlier microwave observations. Recent data from the Voyager i and 2

spacecraft have confirmed these results.

Microwave brightness temperature calculations were also made for a number

of model atmospheres for Saturn. The best agreement with the observed

spectrum was found to be models with solar composition of ammonia.

Ground-based studies of Uranus and Neptune show an_nonia-depletion-related

variations. These variations suggest a potentially rich area of investigation.

By 1972, the number and variety of radio frequency experiments had led to
the adoption of the following definitions to prevent confusion: radio science

refers to the acquisition and extraction of information from spacecraft-

originated signals that have been affected by celestial bodies or have
interacted with the propagation media; radio astronomy refers to the

acquisition and extraction of information from signals emitted or reflected by

natural (non-spacecraft) sources. This convention separates current radio-

frequency experiments but does not unravel early Network experiment
references, all of which carry the term radio science.
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High-resolution interferometric experiments with 3C273 and 3C279 resulted

in the unique discovery that both objects exhibit superluminal components. By

1981, six such objects, displaying apparent component velocities from 3 to

i0 times the speed of light, had been identified. Also at this time,

interferometry was used extensively to (I) look at characteristics of variable

quasars (Robertson and Moffet); (2) observe many sources for flux measurements

(Cohen); and (3) study extragalactic radio sources at 3 centimeters with high

resolution. This last experiment involved implementing an interferometric net

with the Goldstone 64-meter station, the National Radio Astronomy

Observatory's 43-meter antenna, and the Center for Astrophysics Observatory's

22-meter antenna, and was the Network's first close cooperative association

with experimenters from the National Radio Astronomy Observatory, Cornell,
Caltech, the Crimean Astrophysical Observatory (Soviet Union), and the
Institute for Cosmic Research (Soviet Union).

Cygnus X-3, a violent radio variable, was observed from the Goldstone
64-meter station at wavelengths of 13.1, 3.55, and 2.07 centimeters to

determine its instantaneous spectrum during an outburst. The resulting map of

the region (0.5 x 0.6 arc-degrees; 8.15 arc-minute resolution) revealed

several nearby partially resolved confusion sources. A search was also made

of several objects to observe variability of radiation over periods less than

one day. Unique to this particular search were simultaneous observations of

3C120, BL LAC, and 0J287 in radio, optical, and infrared wavelengths.

Early in the 1970s, a 15-gigahertz maser was installed at the Goldstone

64-meter station in anticipation that this frequency would be the next

allocation for deep space communications. Initial pulsar observations at

15.1 gigahertz were conducted in 1973, along with simultaneous 2.3- and

8.4-gigahertz observations. The latter frequencies proved not to be as

accurate for dispersion. A jump in the Vela pulsar period was recorded for

the third time in 1975 and again in 1976. The period remained quite regular

until the fifth jump was observed in 1981.

The 15-gigahertz maser also made possible high-angular-resolution

observations of the 211 - 212 k-doublet of interstellar formaldehyde.
N. J. Evans conducted observations with the Goldstone 64-meter antenna that

provided an understanding of the excitation mechanisms for formaldehyde and,

in 1973, resulted in his doctoral thesis.

During 1974 and 1975, the Goldstone 64-meter station was used for a
series of observations of the Orion nebula to map the distribution of ionized

carbon (15.3 gigahertz) with angular resolutions not achievable elsewhere.

The presumption was that the emission arises from a thin layer of dense, cold,

and predominantly neutral gas surrounding the HII region, thus providing a

mappable boundary.

The mid-1970s also saw Network support for ongoing work in planetary

radio astronomy. Model atmosphere calculations of Venus, Jupiter, and Saturn

were compared with then-recent microwave data. Brightness temperatures, weak

emissions, narrow spectral lines, flux, and polarization were all areas of

investigation. Precision measurements of relative flux densities of selected
radio sources were also made.
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During 1977, M. J. Klein and S. Gulkis of JPL and J. A. Turegano of the

University of Zaragoza, Spain, began an 18-month program of measuring

calibration sources at 8420 megahertz to improve the precision of microwave

data for planetary studies. The program resulted in the publication of a

precision calibration source list for radio astronomy use. Also during this

observation program, measurements of Uranus revealed fluctuations indicative

of temperature changes consistent with the problem of ammonia distribution.

3. The Quasar Patrol

The Quasar Patrol was formally so christened in June 1972, after having

been in progress since October 1970. It originally involved only the
Goldstone 64-meter station as an interferometric element in an extensive

interferometry network accumulating data on the structure of--and, in some

cases, the structural changes in--radio sources with small angular diameters.

In some instances, these regular observations enabled experiments that

captured dramatic structural changes on a time scale of a few weeks or less.

Initial attempts to explain some of the observed structural changes
necessitated revisions in theories concerning energy-release mechanisms and

the dynamics of these objects. The results involved a complex scheme of

moving components, each of which may have a time-variable intensity and size

as a consequence of the expansion or acceleration of relativistic electrons.
Several other observations revealed small-scale structure of a partially

resolved halo surrounding an unresolved core (the so-called onion-skin model
for 3C454.3 and the M87 nucleus). With each increase in resolution, a smaller

unresolved core has been revealed.

By mid-1975, the goals of the Quasar Patrol had been solidified into
three succinct areas: (i) the study of the structure, kinematics, and

(insofar as is possible) polarization of compact, continuum extragalactic

radio sources; (2) the determination of the relative positions of these

sources and their proper motions; and (3) the estimations of station

locations, Earth's rotational variations and polar motion, precession and

nutation constants, and the appropriate tidal Love numbers. Results from

these experiments were the first to utilize closure phase to develop improved
structure models of several of the sources. Another technique was to cycle

5-minute scan observations of two sources and then connect the fringe phase

for each source unambiguously over each of four observation periods spanning

nearly 3 years. The differences in the fringe phases for the individual

sources are virtually freed from the effects of clock errors and

propagation-medium variations, thereby allowing the relative positions to be
determined with a high degree of accuracy. Many of these techniques are also

invaluable for ongoing interferometry experiments. The Network's clock

synchronization interferometry is fast emerging as an international standard

for frequency and timing, as well as for universal time and polar-motion
data. Delta-differenced one-way ranging, an interferometric observation

technique originally developed for Voyager spacecraft navigation, has also
come to the forefront in navigation data types, and now augments traditional

Doppler navigation.

By 1979, the Network had become a central participant in some of the most

exciting discoveries of modern astronomy. The Quasar Patrol continued to

investigate compact extragalactic radio sources into 1980. A sample of known

superrelativistic expanding sources was observed in order to monitor their
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evolution, and new candidates for this class of sources were observed with the

intention of witnessing an early stage in their development. Polarization-
sensitive measurements of extended structure in extragalactic radio sources

proved so useful in determining the emission mechanism and magnetic-field
structure in these sources that these types of measurements were applied to

compact sources.

The observing programs carried out in 1980 and 1981 also included SS433,

the cosmic "lawn sprinkler," and 0957+561A and B, the twin quasi-stellar

objects exhibiting properties similar to those of a gravitational lens caused

by an intervening cluster of galaxies. By 1982, reduction of the twin object
data had revealed that the long-sought central image in the lens may have been

found, possibly supporting the mass distribution model for the cluster of

galaxies. These two programs alone point out the Network's role at the exotic
leading edge of astronomical investigations.

4. The Tidbinbilla Two-Element Interferometer

The Tidbinbilla interferometer is the only instrument in the southern

hemisphere capable of carrying out rapid radio source astrometry with
second-of-arc accuracy. The sensitivity of the instrument allows the
measurement of radio source flux densities to the millijansky level.

Observations of quasars, radio stars, and X-ray stars all require this level

of sensitivity.

The interferometer was proposed in 1972 by S. Gulkis of JPL, in

association with D. L. Jauncey and M. J. Yerbury, then of Cornell University.

The proposal was to implement a high-sensitivity, phase-stable, real-time

interferometer using existing Network antennas, preferably at Tidbinbilla in

Australia. The science objective was to measure weak radio source positions

with an accuracy of a few arc-seconds for unambiguous identification with

cataloged infrared and optical objects. The Parkes 2.7 gigahertz surveys of

the southern hemisphere conducted during the late 1960s and throughout the
1970s covered the whole sky accessible to the Parkes 64-meter telescope. The

Parkes catalog lists over 12,000 radio sources with positional accuracies

given to about 15 arc-seconds, which is sufficient for only a limited number

of optical identifications. The Parkes survey also revealed a large number of

flat spectrum compact radio sources that had not been detected in earlier

low-frequency sky surveys. The first optical identifications, which were

accomplished with Palomar sky survey plates, showed that many of the flat

spectrum sources coincided with quasars.

The Tidbinbilla antennas (which in 1972 were 26 and 64 meters in diameter

and are now 34 and 70 meters in diameter) are separated by 195 meters on a

north-south baseline. The baseline, and the availability of low-noise maser

amplifiers and a common operating frequency at 2.3 gigahertz, offered a unique

opportunity to implement at minimal cost a high-sensitivity interferometer
with a positional capability of approximately 2 arc-seconds.

The interferometer was constructed and tested between 1977 and 1979.

Astronomical observations began in 1980. The system was upgraded to operate

simultaneously at 2.3 and 8.4 gigahertz in 1986.
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To date, some 1500 radio sources listed in the Parkes 2.7 gigahertz
catalog have been measured, and over 500 optical identifications have been
made. Compact radio sources have been measured with an rms position error of
less than 2 arc seconds at both 2.3 and 8.4 gigahertz. Optical identifications
are being made on the basis of radio-optical positional coincidence alone,
without recourse to optical color or morphology. Positional coincidence
identifications have revealed quasars with redshifts over 2 that have no
ultraviolet excess, and quasars at the highest redshifts (more than 3) with
colors close to those of normal stars. The identification in 1982 of quasar
PKS 2000-330 (Jauncey et al., 1982), then the most distant yet discovered
(z = 3.78), resulted solely from the accuracy of the position measurement made
with the Tidbinbilla interferometer.

The Tidbinbilla identifications in the -30 to -45-degree declination zone

form a significant part of a complete sample of flat spectrum radio quasars

that are actively being investigated (Savage et al., 1986 and Jauncey et al.,

1987). The complete sample contains approximately 400 sources in the +i0 to

-45-degree declination zone that have 2.7 gigahertz flux densities greater

than 0.5 jansky. Optical identifications using both the UK Schmidt Telescope

Unit and Palomar surveys were completed in 1983. Redshifts have been measured

for some 240 of this sample (Jauncey et al., 1984 and White et al., 1987).

A second area of importance is the search for radio emission from

optically selected (radio-qulet) quasars. The sensitivity of the Tidbinbilla
interferometer will allow searches for radio emissions below the millijansky

level. It is expected that the Space Telescope and other all-sky coverage

astronomical spacecraft will make use of this program; in particular, the

southern quasars and active galaxies identified with the interferometer are

expected to form a significant part of the Space Telescope extragalactic

object observational program.

A sensitive survey of the brighter southern hemisphere stars that are
candidates for radio emission was initiated in 1986 (Batty et al., 1986). The

survey is being conducted at 8.4 gigahertz where the chance of confusion with

background galactic sources is greatly reduced by the narrowness of the beam.

To date, over I00 stars have been observed; of these, radio emissions have

been detected from 7 or 8 objects. The known flaring RS CVn star AB Doradus

(HD 36705) has been detected on each of three occasions. The accuracy of the

radio position measurement has uniquely identified this object with HD 36705

(White et al., 1987).

As well as studying such objects for their intrinsic astrophysics, the

radio star survey will be of considerable value in establishing stars for

inclusion in the Astrometry Satellite Hipparcos program. The identification

of bright stars that are radio sources (and can have milliarc-second radio

positions determined by interferometry) will permit the radio and optical

position reference frames to be tied together via the Hipparcos position
measurements.

5. Host-Country Programs

The growth of multiaperture observations is a measure of the increase in

radio astronomy activity at the Network overseas sites. In addition to the
Radio Astronomy Experiment Selection Panel activities, each Network facility
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may support observations conducted by cooperating agencies sponsored by the

local government; i.e., the "host country" agreement. A primary host-country

activity in Spain is the Instituto Geografico Nacional Interferometric Survey

project, which is primarily concerned with interferometric measurements of

baseline parameters of the European Geodetic Net. A similar survey of

geodetic and geophysical parameters for the Australian continent was performed

in early 1982. The primary host-country activity supported in Australia has

been pulsar observations conducted for the Commonwealth Scientific and
Industrial Research Organization. Since 1975, a program of pulsar

observations has been conducted using a 26-meter antenna at the Canberra

complex; use of a similar 26-meter antenna at Honeysuckle Creek (now

deactivated) began in 1980. The objective of this program was to determine

accurate positions and pulsation periods for a set of southern pulsars and to
monitor variations in the observed period. The program was inaugurated in

time to capture the third and fourth jumps in the Vela pulsar in addition to
valuable data on other pulsars. By 1978, pulsar observations were also being

carried out in Spain.

6. Organized Network Support

The late 1970s also mark the emergence of an established Deep Space

Network technical and administrative organization to support radio astronomy.

Even though NASA and JPL managements have consistently recognized the

importance of radio astronomy, formally organized Network support was slow in
developing until a sharp increase in radio astronomy activity emphasized that

a formal support organization was necessary. The position of Network

Operations Project Engineer was established as an interface between

experimenters and the Network. Similarly, a Network Development and Radio

Astronomy Unit was established to provide real-time expertise and support at
Goldstone.

1983 saw the remodeling of the Network with updated, centralized computer

control of antennas and concomitant systems, which required each facility, in

turn, to be taken out of service. Prior to the onset of this upgrade, a
concentrated number of astronomical observations took place, coinciding with

the discovery of the Iras-Araki-Alcock comet. These observations included

continuing research into gravitational lenses and examination of the galactic
center.

The monitoring of Uranus and Jupiter, which began in 1972, is continuing

through the 1980s. Uranus has been of particular interest to observers who
have used the Network for a number of years to investigate its ammonia

depletion, unusual atmospheric warming, and polar opacity. The Voyager 2
Uranus encounter data will certainly augment the ground-based data. Jupiter

data are still being acquired and combined with the efforts of the

international Jupiter watch for ongoing investigations.

7. Very Long Baseline Interferometry Using a Telescope in Earth Orbit

The first use of an Earth-orbiting satellite as part of an

interferometric network was successfully accomplished in July and August 1986,

when fringes were detected on three sources. The experiment was conducted at

2.3 gigahertz using the 4.9-meter antenna of a geosynchronous NASA Tracking
and Data Relay Satellite and its ground station in New Mexico; the Network's
64-meter antenna in Australia; and the 64-meter telescope of the Institute for
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Space and Astronautical Science at Usuda, Japan. In January 1987, 23 of 24

extragalactic sources were detected on baselines as long as 2.15 Earth
diameters.

The increased resolution from these baseline lengths provided much better

sensitivity to high brightness temperatures than has been achieved with
Earth-based interferometers, which are limited by the physical dimensions of

the Earth. Brightness temperatures one to four times the 1012 kelvin

inverse Compton limit were measured for 12 sources, suggesting bulk
relativistic motion in these sources. Coherence values of approximately 85

percent were obtained for integration times of 360 seconds.

The success of these experiments has positive implications for the future

of orbiting interferometry. These observations, using a satellite designed

for an entirely different purpose, confirm the results of design studies for

dedicated orbiting interferometry spacecraft, which have concluded that no new

technology is required. The feasibility of orbiting very long baseline

interferometry has been shown by demonstrating that:

(i) A ground-based frequency reference can be accurately transferred to

an orbiting interferometric spacecraft.

(2) Radio astronomical signals can be acquired by a spacecraft,

coherently amplified, transmitted, and recorded at a ground
terminal.

(3) Adequate orbit determination measurements can be made with existing

systems and used for data correlation.

(4) An existing interferometry correlator with minor software

modifications can process orbiting interferometric data.

8. Other Recent Experiments

The ongoing Jupiter Patrol (since 1971) continues to record variations in
the radio emission from the Jovian radiation belts. The set of observations

defined a nonperiodic intensity variation of about 30 percent with time scales

of months to years. When combined with measurements by other observers, the

data set provides a record that extends over 24 years (2 Jovian "years"). The
combined data reveal considerable variability that may be directly related to

the high-energy electron population of the inner magnetosphere. Preliminary
results of a search for plausible relationships between the Jovian synchrotron

emission and solar-related phenomena indicate that a positive correlation may

exist with one or more solar wind parameters. The ion density is a prime

candidate for verification and further study. If this correlation is correct,
it will be the first evidence that the solar wind has a major influence on the

energetic electronics in Jupiter's radiation belts.

Supernova 1987A, a rare event in its proximity to the Milky Way galaxy as

well as in its physical characteristics, is under regular observation at the

Australian complex. The initial supernova burst was detectable in the

microwave region of the spectrum but quickly faded below that level of

detectability. An increase in emissions is anticipated; until then,

monitoring continues at 8.4 and 2.2 gigahertz.
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The 1986 reappearance of Halley's comet was observed by the Australian

complex during the comet's period of closest approach. Although no ammonia

was detected, an upper limit on its detectability was established. The Halley

radio astronomy observations provided the Network with a great deal of

engineering information about the 24-gigahertz aperture efficiency; a

considerable quantity of high-quality calibration data was acquired.

The Canberra 64-meter antenna (now 70 meters) has been used to study the

structure of, and the physical conditions in, regions of star formation.
Observations of ammonia transitions have yielded data on the temperature and

density of these regions. The antenna's high angular resolving power revealed
structure not discernible with the lower-resolution 22-gigahertz system at

Parkes.

Installation of a 1.6-gigahertz receiver to support the Soviet Vega

spacecraft balloon mission to Venus and its Pathfinder navigation mission at

Halley's comet, coupled with a microwave link between the Canberra complex and

Parkes, has permitted interferometric research into the structure of the

envelopes of evolved stars and the regions around newly formed stars, using

oxygen-hydrogen maser emissions as a probe of these regions.

Recent work also includes a study of sulfuric acid effects in the

atmosphere of Venus. In a collaboration with P. Steffes (Georgia Institute of

Technology), a coordinated set of measurements were made at Goldstone and the
National Radio Astronomy Observatory to study the effect of gaseous sulfuric

acid on the microwave opacity of the Venus atmosphere between 8 and

22 gigahertz (3.75- to 1.35-centimeter wavelength).

Over the years, significant benefits have accrued to the Network from

radio astronomy users. Radio astronomy experiments have served as a rigorous
testing vehicle for both research and development and in-place operational

systems. By exercising Network systems and facilities to their performance

limits, radio astronomers have provided the technical experience essential to

ensuring state-of-the-art operational performance for spacecraft missions.

Radio astronomy techniques have been adapted to spacecraft navigation, timing

standards, antenna pointing and gain calibrations, and spectral analysis of

spacecraft signals.
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III. PRESENT CAPABILITY

The Network's ability to support radio astronomy observations is an

outgrowth of the following:

(I) The availability of high-sensitivity radio telescopes developed for

communication with, and orbit determination of, planetary

spacecraft.

(2) Radio astronomy techniques for rapidly measuring the performance of

radio telescopes (i.e., rapid boresighting and radiometry).

(3) The emergence of very long baseline interferometry as a spacecraft

navigation data type.

(4) The recognition by NASA that the Network is a unique resource for

certain kinds of radio astronomy research.

The parameters of the Network's 70- and 34-meter-diameter radio telescopes
and the Goldstone 26-meter-diameter antenna are listed in Tables 2, 3, and 4,

respectively.

Radio astronomy research with Network facilities is made possible by

equipment that has been installed for that purpose or for related purposes by

the Network, by engineering or scientific research groups at JPL, or by guest

radio astronomy investigators. The available equipment and level of on-site

support vary from station to station.

The present capability of the Network to support radio astronomy research

can be conveniently divided into two configurations: (i) single-aperture

support, which runs the gamut from precision radiometry to microwave

spectroscopy; and (2) multiaperture support, in which two or more Network and
non-Network antennas can be configured as an interferometer.

The 26-meter Venus antenna at Goldstone (Figure 4) is reserved exclusively

for research and development and therefore is exempt from the spacecraft

tracking schedule. The station is equipped with 2.3- and 8.4-gigahertz

receivers and has generally been more available for radio astronomy. Some of

the heavy-element recombination-line experiments carried out in the previous
decade used this station as much as 8 hours per week on a continuous basis, or

on three consecutive days at greater intervals. There is no percentage
restriction on the amount of time the Venus station may be used for radio

astronomy.

The following paragraphs are an overview of current capabilities; bear in
mind, however, that these are constantly changing as the programmatic needs

and funding of these investigations change.

I. Radiometry

All station receivers are equipped with precision power monitor

assemblies. The power monitor modulates noise diodes to compute real-time
estimates of operating (system) temperature. The controller can be accessed

by authorized nodes on the complex local area network or via its maintenance
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Table 2. 70-meter-Diameter Antenna Technical Data

Antenna Diameter 70 meters (230 feet)

Antenna Mount Azimuth-elevation

Sky Coverage Full azimuth; 6-88 degrees elevation

Maximum Slew Rate 0.2 degree per second

Pointing System Master equatorial or azimuth-elevation encoders

Pointing Accuracy Master equatorial: 0.002 degree each axis
Azimuth-elevation encoders: 0.006 degree each

axis

Optics Cassegrainian, tricone

Frequency Standard Redundant hydrogen masers

Band L SI XI K

Frequency Range (gigahertz) 1.66-1.675 2.2-2.3 8.4-8.52 18-24

Antenna Gain (decibels, 58.8 63.1 74.0 81.2

isotropic) (at 45 degrees
elevation)

Antenna Beamwidth 10.8 6.5 1.8 0.75

(arc-minutes)

Aperture Efficiency 60 72 65 50

(percent)

Sensitivity (kelvin 0.84 1.00 0.90 0.70

per jansky)

Feed Polarization 3 RC RC, LC, RL RC, LC LC

Low-Noise Amplifier FET 4 maser maser maser

System Temperature 35 18.3 21 55
(kelvins)

Intermediate Frequencies i0, 55, 325 55, 325 55, 325 505

(megahertz)

iSimultaneous S- and X-band capability with two circular polarizations

2At Mars station, research-and-development maser: 7.9 to 8.7 gigahertz

3RC - right circular, LC - left circular, RL - rotatable linear
4Field-effect transistor

5Canberra 70-meter station, 150 megahertz
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Table 3. 34-meter-Diameter High-Efficiency Antenna Technical Data

(Deep Space Stations 15, 45, and 65)

Antenna Diameter 34 meters (IIi feet)

Antenna Mount Azimuth-elevation

Sky Coverage Full azimuth, 6-90 degrees elevation

Maximum Slew Rate 0.4 degree per second

Pointing System Azimuth-elevation shaft encoders

Pointing Accuracy 0.010 degree (approximately)

Optics Cassegrainian

Frequency Standard Hydrogen maser

Band S X X

Frequency Range (gigahertz) 2.2-2.3 8.4-8.5 8.2-8.6

Antenna Gain (decibels, isotropic) 55.8 68.1 68.1

(at 45 degrees elevation)

Antenna Beamwidth (arc-minutes) 16.2 4.2 4.2

Aperture Efficiency (percent) 57 72 72

Sensitivity (kelvin per jansky) 0.19 0.24 0.24

Feed Polarization I RC, LC RC, LC RC, LC

Low-Noise Amplifier FET 2 maser FET 2

System Temperature (kelvins) 55 21 60

Intermediate Frequencies i0, 50, 300 i0, 50, 300 300

(megahertz)

IRC - right circular, LC - left circular
2Field-effect transistor

port. In rare instances, the station director may authorize a bypass to
control the appropriate noise diode assembly with the investigator's own

equipment.

Currently, all stations are also equipped with noise-adding radiometers

(designated BP 80). These are stand-alone, nonprogr_ble controllers that
modulate noise diodes, read the output from the appropriate square-law

detector, and provide a real-time display of operating (system) temperature.
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Table 4. Goldstone Venus 26-meter-Diameter Antenna Technical Data 

Antenna Diameter 26 meters (85 feet) 

Antenna Mount Azimuth-elevation 

Sky Coverage Full azimuth; 5-88.2 degrees elevation 

Maximum Slew Rate Azimuth: 0.20 degree per second 
Elevation: 0.05 degree per second 

Pointing System Azimuth-elevation shaft encoders 

Pointing Accuracy 0.010 degree (approximately) 

Optics Cassegrainian 

Frequency Standard Hydrogen maser 

Band S X 

Frequency Range (gigahertz) 2.26-2.40 8.2-8.6 

Antenna Gain (decibels, isotropic) 53.6 
(at 45 degrees elevation) 

Antenna Beamwidth (arc-minutes) 22 5.5 

Aperture Efficiency (percent) 5 9 42 

Sensitivity (kelvin per jansky) 0.11 0.08 

Feed ~olarizationl RC, LC RC, LC 

Low-Noise Amplifier HEMT~ HEMT~ 

System Temperature (kelvins) 3 1 3 3 

Intermediate Frequencies 
(megahertz) 

100-500 100-500 
center center 
frequency = 300 frequency = 300 

IRC - right circular, LC - left circular 
2~~~~ - high-electron-mobility transistor 

The metric data assembly can also be configured as a noise-adding 
radiometer. It is normally used for automated antenna pointing-error 
determination. Time-tagged system temperature values are stored continuously 
on disk during a track. Antenna gain analysis software is available to 
combine these data with antenna pointing-command data to produce tables of 
boresight and efficiency data. This capability exists at all complexes. 



. - 7  

* h 
'I' 

-krau -* - - 
% @ 

-.*" &* 

- a *;** -a, 
* .  ** - . * -", " - -k  -. - :> 

C 
-;-. p 

- .  %P >- -*- ':a$*% %$" - *  .. , + * a= ?, ;; 

Figure 4. The 26-meter Research-and-Development Antenna Station at Goldstone, California (1987) 



The optimum system for a given application depends on the investigator's

requirements. Investigators select their configuration, or establish their

own, in consultation with the network operations project engineer, the local

Friend of the Telescope, or the station staff.

2. Very Long Baseline Interferometry

The complexes are equipped with the Network version of the Mark III data

terminal. Although the computers and the integration into the receivers are
different from what is in common use in the interferometry community, the data

rates and formats are compatible. Any station in a complex (but normally only
one at a time) can be used as an interferometric network node. It is possible

to provide operations personnel experienced in interferometric procedures, so
that an investigator is not normally required on-site for data acquisition.

3. Connected-Element Interferometry

At the Canberra complex, the 70-meter antenna and one of the 34-meter

antennas are configured as a connected interferometer capable of phase-stable

measurements at 2.3 and 8.4 gigahertz. Delay lines, correlators, and a

computer controller are available for interferometric data acquisition.

The Canberra complex is connected via an Australian Telecom microwave link

to the Parkes Radiotelescope, forming the Parkes-Tidbinbilla Interferometer.

A number of interferometric experiments have already been carried out. It is

planned that the link will soon be capable of supporting broadband, phase-
stable interferometry. Eventually, Canberra will be an occasional element in

the extended Australia Telescope.

The 70-meter and 34-meter stations of the Goldstone complex are being

linked by broadband optical fibers to permit telemetry data arraying for

future planetary encounters. Phase-stable, connected interferometry will be

possible in principle. For example, the high-speed data acquisition subsystem
described below will be configurable for cross correlation.

4. Spectroscopy

In the area of spectroscopy, the Network offers extremely high sensitivity

in selected frequency bands, as well as the largest and most sensitive antenna

in the Southern Hemisphere. Some examples of current projects that exploit

these unique capabilities include mapping of southern molecular sources at

wavelengths between 1.2 and 1.8 centimeters and measurements of 3He+ at

8664 megahertz. In general, the Network complements the spectroscopic capa-
bilities of radio observatories because the latter have sensitive receivers

selected for radio astronomy bands but rarely in the space communications

bands. Thus observations, particularly of complicated large organic molecules

with many transitions throughout the microwave spectrum, can benefit from the

high sensitivity available at non-radio-astronomy frequencies.

The Goldstone complex has a variety of radio frequency spectrometers. A

65,536-channel, 20-megahertz spectrometer is part of the Radio Frequency

Interference Surveillance System normally residing at the 26-meter Venus site.

It can be connected by microwave or fiber-optic links to the various Goldstone
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stations. There is limited real-time data display capability. The JPL Radio

Astronomy Group has software on its VAX computer at JPL for processing data

acquired with this system.

The high-speed data acquisition subsystem, which is nearing completion at
the Goldstone 70-meter station, includes sixteen 256-iag correlators capable

of a 10-megahertz clock rate. These will be configurable in various ways, yet

to be determined, and depending in part on available funding. Also, because

no funding has yet been identified, there are currently no plans to write
software dedicated to radio astronomy observations.

The Canberra complex has a 10-megahertz, 256-channel digital spectrometer

along with some real-time data processing and display capability. Software
for more extended data reduction is available at Mount Stromlo Observatory

(c/o John Reynolds), Commonwealth Scientific and Industrial Research

Organization Radiophysics (Rick Forster), JPL (Tom Kuiper), and Steward
Observatory (Bill Peters). While normally connected to the 70-meter antenna

K-band receiver, the spectrometer can be connected with relative ease to any

receiver in the complex.

5. Polarimetry

Operational 2.3- and 8.4-gigahertz masers may be configured to amplify

simultaneously the two orthogonal outputs from the orthomode feeds. This

potential for deriving polarization data has not been utilized in recent

years. However, the high-speed data acquisition subsystem described above

will be configurable for cross correlation so that the potential exists for

making polarimetric measurements.

6. Pulsar Timing

A program for monitoring pulsar timing was discontinued when the program

funding was stopped. However, users with appropriate recording equipment have

the potential to measure transient events. Interested astronomers may also

wish to investigate whether spectral analysis equipment is configurable for

their application.
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IV. FUTURE CAPABILITIES FOR RADIO ASTRONOMY

Future Network capabilities for radio astronomy depend, to a large

extent, on the ongoing upgrade program. Five drivers for Network enhancement,

which may result in greater radio astronomy capabilities, are:

(i) The requirement for ever-larger effective aperture area has led to
the extension of the 64-meter antennas to 70 meters and to the use

of collocated Network antennas in real-time array configurations,

along with the arraying of cooperating radio astronomy
observatories for critical spacecraft mission events.

(2) The requirement for improved navigation accuracy has resulted in

the implementation of interferometry as a Network navigation type

and the use of hydrogen masers as frequency standards.

(3) New missions will require the use of the 32-gigahertz deep space
communications band. To facilitate the installation of this band

and to improve the performance at other bands, beam waveguide feeds
will be employed. Beam waveguides will make it less expensive to

use other desired radio astronomy frequencies.

(4) The NASA Search for Extraterrestrial Intelligence program will

require frequency coverage from I to i0 gigahertz, along with other

discrete bands at higher frequencies. The Search for

Extraterrestrial Intelligence will also employ very advanced

spectral analysis equipment with potential for unique radio

astronomy applications.

(5) Orbiting interferometry may require the Network to provide direct

support for radio astronomical observations. These developments
are described in the following paragraphs.

I. Interferometry Arrays

In January 1986, during the Voyager spacecraft encounter with Uranus, the

need to achieve high data rates across a communications distance of 3 billion

kilometers (1.9 billion miles) led to the cooperative use of the Parkes

64-meter radio telescope in Australia as an element in a real-time array with

the Canberra complex. As a result of this successful collaboration, an

agreement was reached to utilize the Parkes-Tidbinbilla Interferometer for
radio astronomy observations, providing an opportunity for a real-time
connected-element interferometer in the Southern Hemisphere. The utility of

this interferometer is now being demonstrated by observations of Supernova
1987A.

For the Voyager encounter with Neptune in 1989, the Very Large Array in

New Mexico will be arrayed with the Goldstone complex in California. The
Parkes-Tidbinbilla Interferometer will again be used for telemetry

enhancement, and in addition, the 64-meter facility of the Institute for Space

and Astronautical Science at Usuda, Japan, will be used for the acquisition of

radio science data. Spacecraft signal combining was designed to maximize the

communication signal-to-noise ratio and to eliminate angular information.
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The availability of Network interferometric equipment that is compatible
with both Mark II and Mark III data terminals makes it possible to use Network

antennas with existing interferometry consortia as additional elements for

selected observations, or as part of an ad hoc array for a specialized

activity. It is anticipated that Network facilities may also be used, as

appropriate, with future arrays, such as the Australia Telescope, which will

become operational in December 1988, and the Very Long Baseline Array, which

will start operations in 1992. The Very Long Baseline Array will consist of
i0 dedicated 25-meter radio telescopes located in the United States from

Hawaii to the Virgin Islands. The Australia Telescope will consist of the

Compact Array, located at Culagoora, with six 22-meter antennas movable over
6 kilometers, and the Long Baseline Array, which will tie in antennas at

Sydney Springs and Parkes. The Long Baseline Array also has provision for

tying in the Canberra complex by means of the Parkes-Tidbinbilla microwave
link. The former NASA antenna from Orroral Valley, now operated by the

University of Tasmania near Hobart, will also be a part-time member of the

Australia Telescope.

2. Beam Waveguides and Low-Cost Frequency Diversity

The 32-gigahertz band has been allocated for deep space use in the United

States, Spain, and Australia. To implement this band, the Network will employ

a beam waveguide configuration, which will provide a very good gain/system

temperature ratio for all Network communication bands, and at the same time

provide the operational convenience and low-cost frequency diversity inherent

in this design concept.

Starting in 1988, a new 34-meter-diameter research-and-development

antenna will be built to replace the Goldstone 26-meter Venus antenna, which

has been in operation since 1962. Initial radio frequency testing is
scheduled for 1990. The new antenna will be equipped with a beam waveguide to

facilitate the use of various receivers. A 32-gigahertz receiving system will

be available in 1991. The new antenna surface panels will be adjusted to

achieve 30 percent efficiency at 90 gigahertz, which may be compared to an

aperture efficiency of 53 percent measured for the 30-meter telescope in

Granada, Spain. Recent holographic measurements of the 34-meter high-

efficiency antenna at the Madrid complex indicate that achieving this

percentage is a realistic expectation. Even without further panel alignment,
the Madrid 34-meter antenna has an efficiency of 52 percent at 32 gigahertz.

3. Enhanced Spectral Analysis

The Network's wideband spectrum analyzer currently under development will

have 2 million channels covering 40 megahertz. It will normally reside at the

Goldstone Venus site but may be used elsewhere in support of spacecraft or
Search for Extraterrestrial Intelligence requirements. The spectrum analyzer

will have software suitable for real-time display and analysis of radio

astronomy spectra. It will be equipped with a multiuser interface and is
scheduled for field testing in late 1989.

The Search for Extraterrestrial Intelligence will cover the spectrum from

i to i0 gigahertz and at some higher spot bands. This program will use very

extensive spectral analysis receiver equipment, which will have sufficient

versatility to permit its use for various radio astronomy applications. This
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equipment will provide 30-hertz resolution for spectral observations over

bandwidths as large as 300 megahertz.

4. Improved Resolution, Sensitivity, and Gain

The attractiveness of Network facilities for spectroscopy will increase

greatly when all three upgraded 70-meter antennas are operating. Performance

predictions indicate that the new antennas will have a sensitivity of

1.4 kelvins per jansky, equal to the Bonn 100-meter telescope at wavelengths
of i centimeter and below. The 70-meter antenna at the Canberra complex will

be the only high-resolution, high-sensitivity, centimeter-wavelength telescope

in the Southern Hemisphere for the rest of this century, and probably much

longer. The addition of 32-gigahertz masers, optimally designed with wide

tunability, will offer further unique opportunities. The 70-meter antennas

can also be used to complement existing arrays such as the Very Large Array

and the Australia Telescope by providing data for the short spacings that are

missing in these arrays (i.e., by removing the "high-pass" spatial filtering

inherent in maps made with these arrays).

One promising area of research yet to be exploited is the search for

increasingly complex organic molecules, investigating the extent to which

interstellar chemistry may lead toward the formation of prebiotic and biotic

molecules. Another area opened up by the upgraded 70-meter antennas is the

study of molecular clouds in the Magellanic Clouds, a subject of interest

stimulated by indications that the chemistry in these nearby galaxies is much
less fertile than that in our own.

5. Orbiting Very Long Baseline Interferometry

The Network has successfully participated in a feasibility demonstration

of the orbiting interferometry technique using the NASA Tracking and Data

Relay Satellite System. There are several orbiting interferometry flight

missions being considered; the Network may participate by communicating with

and tracking the spacecraft, by serving as part of the ground array, or by

participating in both functions.
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APPENDIX A

NETWORK RADIO ASTRONOMY EXPERIMENT CHRONOLOGY

Part I. 1967-1971

Experiment Investigator Telescope Date

Pulsar measurements A.T. Moffet Mars Apr. 1967

(2295 M_z) R.D. Ekers May 1967
Mar. 1969

Lunar occultation of A. Maxwell Mars July 1967

radio sources J.H. Taylor Pioneer Oct. 1967

(2295 MHz) Jan. 1968
Apr. 1968

Very Long Baseline J.S. Gubbay Mars Sept. 1967
Interferometer A.J. Legg Pioneer Nov. 1967

(narrow data D.S. Robertson Echo May 1968

bandwidth, S-band) A.T. Moffett Woomera June 1969
B. Seidel Tidbinbilla

Study characteristics R.D. Ekers Pioneer Oct. 1967
of radio source

signals after

passage through
solar corona

(2295 MHz)

Planetary radio D. Jones Venus 9-meter 1967-1971
metric observations B.L. Gary

M. J. Klein

Jupiter occultation B.L. Gary Hartebeesthoek Sept. 1968
of radio sources G.D. Nicolson

(2295 MHz)

Jupiter polarization B.L. Gary Mars Apr. 1969

experiment S. Gulkis May 1969
(2295 MHz)

Solar scintillation R.D. Ekers Mars Apr. 1969

(2295 MIIz) L. Little (CIT) Pioneer
Echo

Venus
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APPENDIX A

NETWORK RADIO ASTRONOMY EXPERIMENT CHRONOLOGY

Part I. 1967-1971 (Contd)

Experiment Investigator Telescope Date

Very Long Baseline M.H. Cohen Mars June 1969
Interferometer A.T. Moffet Tidbinbilla

(NRAO wideband D.B. Shaffer

terminal, S-band) B.G. Clark
K. I. Kellerman

D. L. Jauncey
S. Gulkis

General relativity D.O. Muhleman Mars Oct. 1969
interferometer R.D. Ekers Venus

experiment E. Fomalont

Very Long Baseline J.S. Gubbay Mars Dec. 1969
Interferometer A.J. Legg Pioneer June 1970

(narrow data D.S. Robertson Tidbinbilla Jan. 1971

bandwidth, S-band) A.T. Moffett
B. Seidel

SCO-XR-I observations M. Lampton Mars June 1970

S. Boyer
J. Welch

G. Grasdalen

X-band pulsar A.T. Moffet Mars July 1970

General relativity B. Burke Mars Oct. 1970
VLBI (X-band) T.A. Clarke Haystack Feb. 1971

R. M. Goldstein

A. Rogers

I. I. Shapiro

Pulsar polarization A.T. Moffet Mars Oct. 1970
measurements R.D. Ekers Apr. 1971

Indian Ocean VLBI D.S. Robertson Woomera Nov. 1970

(narrow data G.D. Nicolson Hartebeesthoek

bandwidth, 2295 MHz)

VLBI (2295 MHz, NRAO J.J. Broderick Venus Nov. 1970

recording terminals) B. G. Clark NRAO 42-meter
M. H. Cohen

D. L. Jauncey
K. I. Kellermann
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APPENDIX A

NETWORK RADIO ASTRONOMY EXPERIMENT CHRONOLOGY

Part i. 1967-1971 (Contd)

Experiment Investigator Telescope Date

Earth physics VLBI P.F. MacDoran Echo Jan. 1971

(S-band) Mars

X-band VLBI K.I. Kellerman Mars Feb. 1971

M. H. Cohen Haystack
B. G. Clark

D. L. Jauncey

Jupiter radiation-belt S. Gulkis Mars Mar. 1971

study B.L. Gary
M. J. Klein

Part 2. 1971-1987

Radio Astronomy Experiment NASA-Sponsored
Selection Panel Research Ground-based Radio Astronomy Programs

1971-1987 1972-1987

67 Proposals o Interstellar microwave spectroscopy

60 Experiments o Planetary radio astronomy

(See Appendix B) o Hipparcos VLBI

o Quasar and galactic nuclei VLBI

o Tidbinbilla interferometer

(See Appendix C)
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APPENDIX B

RADIO ASTRONOMY EXPERIMENT SELECTION PANEL RESEARCH

Experiment Investigator Telescope Date

RA i00 Very long J.S. Gubbay Mars June 1971

baseline A.J. Legg Woomera Jan. 1972

interferometry D.S. Robertson Feb. 1972

(medium data June 1972

bandwidth,

S-band )

RA 128 Spiral galaxy H. Arp Venus Oct. 1971

mapping Mars Dec. 1971

Apr. 1972

RA 129 Quasar T.A. Clark Mars June 1971

structure by R.M. Goldstein Haystack Sept. 1971

X-band H.F. Hinteregger Oct. 1971

C. A. Knight Jan. 1972
G. E. Marandino Feb. 1972

A. E. Rogers Mar. 1972

I. I. Shapiro May 1972

D. J. Spitzmesser

A. R. Whitney

RA 130 X-band VLBI J.J. Broderick Mars Feb. 1971

B. G. Clark Haystack Nov. 1971
K. I. Kellerman Feb. 1972

D. L. Jauncey Mar. 1972
M. H. Cohen Apr. 1972

D. B. Shaffer May 1972
June 1972

RA 131 Small-scale R.L. Carpenter Mars Jan. 1972
variations in S. Gulkis Feb. 1972

cosmic T. Sato Mar. 1972

background May 1972
radiation

RA 132 Weak radio D.L. Jauncey Mars June 1972

source M.J. Yerbury
observations J.J. Condon

D. J. Spitzmesser

RA 134 Transcontinental T. A. Clark Mars Mar. 1972

baseline VLBI H.F. Hinteregger Haystack 37-meter Apr. 1972

C. A. Knight NOAA May 1972

S. Lippincott Alaska 26-meter June 1972

A. E. Rogers

I. I. Shapiro

A. R. Whitney
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RADIO ASTRONOMY EXPERIMENT SELECTION PANEL RESEARCH (Contd)

Experiment Investigator Telescope Date

RA 135 Pulsar T.A. Clark Mars May 1972

observations G.S. Downs NRAO Greenbank
N. C. Erickson 42-meter

P. E. Reichley

N. R. Vandenberg

RA 141 Ionized hydrogen J. G. Hills Mars May 1972
observations M.J. Klein

RA 146 North-south A.T. Moffet Robledo Apr. 1973

baseline VLBI I. Pauliny-Toth Effelsberg,
G. Nicholson Hartebeesthoek

A. J. Legg

RA 151 K-band mapping H.N. Ross Mars May 1973
of weak extended June 1973

sources with

variable

components

RA 152 Survey of weak, H.N. Ross Mars April 1973

compact R.T. Schilizzi Sept. 1973

components in K.Y. Lo
extended M.H. Cohen

extragalactic
radio objects

RA 153 Mapping C. Lada Mars Apr. 1974

formaldehyde A.E. Lilley June 1974
radiation in MI7

RA 154 Galactic dark A.H. Barrett Mars May 1974

cloud R.N. Martin

RA 155 Cosmic microwave J. C. Pigg Mars Feb. 1975

background A.T. Moffet
radiation

RA 156 Extragalactic M.H. Cohen Mars Aug. 1974
source VLBI Haystack
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RADIO ASTRONOMY EXPERIMENT SELECTION PANEL RESEARCH (Contd)

Experiment Investigator Telescope Date

RA 157 Interplanetary W.A. Coles Pioneer Sept. 1974
scintillations B.J. Rickett Echo Oct. 1974

S. L. Scott Mars, OVRO

RA 160 Goldstone/OVRO R.T. Schilizzi Pioneer, OVRO May 1976
VLBI

RA 163 Dark cloud G.R. Knapp Mars Aug. 1975

lines T.B.H. Kuiper Dec. 1975
R. L. Brown

RA 164 VLBI K. ¥. Lo Mars Apr. 1976

observations of R.T. Schilizzi Fort Davis, July 1976

the compact M.H. Cohen Greenbank, Hat Sept. 1977
radio source in A.C.S. Readhead Creek, Haystack, Feb. 1977

the galactic H.N. Ross NRL, OVRO, VRO
center

RA 168 Galactic center K. I. Kellerman Mars June 25,

VLBI D.L. Jauncey NRAO, Haystack 1977

RA 169 Compact nuclei K.I. Kellerman Mars Feb. 1980
VLBI D.L. Jauncey Tidbinbilla

R. A. Preston NRAO, Haystack

RA 170 Radio emission D.B. Shaffer Mars June 1978

VLBI D.L. Jauncey NRAO, Haystack
A. Harris

R. A. Preston

RA 171 M87 ISS A.C.S. Readhead Mars May 1978

W. L. W. Sargent Robledo Feb. 1980
M. H. Cohen OVRO

K. ¥. Lo

RA 174 VLBI of a D. Jones Mars Feb. 1980

compact source N. Cohen Tidbinbilla
in M82 D. Stinebring

P. Clark
J. R. Houck
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RADIO ASTRONOMY EXPERIMENT SELECTION PANEL RESEARCH (Contd)

Experiment Investigator Telescope Date

RA 175 VLBI A.E. Neill Venus May 1979

investigation R.A. Preston Mars May 1980
of SS 433 T.G. Lockhart Tidbinbilla

Robledo

Haystack, NRAO,
Onsala,

Hartebeesthoek,

VLA, OVRO,
Hat Creek

RA 176 VLBI M.V. Gorenstein Mars Feb. 1980

observations of J.M. Marcaide Robledo Mar. 1981

0957 + 561A, B N.L. Cohen Effelsberg, NRAO,
and B.E. Corey Haystack, OVRO

1038 + 528A, B E.E. Falco

I. I. Shapiro
R. A. Preston

R. A. Porcas

RA 177 A statistical R.A. Preston Mars Mar. 1981

VLBI M.V. Gorenstein Robledo Mar. 1981

investigation of I. I. Shapiro
milliarc-second

nuclei in

quasars and
galaxies

RA 178 Superluminal M.H. Cohen Robledo Nov. 1981
radio sources R.S. Simon Onsala, Jodrell

at 13 cm S.C. Unwin Bank, Greenbank,
R. S. Booth Fort Davis, OVRO

P. N. Wilkinson

RA 180 Nuclei of M81 N. Bartel Mars May 1983

and MI04 at 2.3 B.E. Corey Robledo 64-meter

and 8.5 GHz I.I. Shapiro MPIFR, Onsala, NRAO,
A. E. E. Rogers Fort Davis, Haystack

I. I. K. Pauliny-
Toth

R. A. Preston

RA 181 Black hole N. Barrel May 1983

candidate

CYG X-I
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APPENDIX B

RADIO ASTRONOMY EXPERIMENT SELECTION PANEL RESEARCH (Contd)

Experiment Investigator Telescope Date

RA 182 VLBI M.H. Cohen Venus 1982

observations of

the galactic
center

RA 183 VLBI B. Geldzahler Mars May 1983

observations of A. Niell Haystack, NRAO,

SS433 at 1.3 cm J. Romney VLA, OVRO, MPI
C. Walker

RA 184 VLBI M.V. Gorenstein Mars May 1983
observations of J.M. Marcaide Robledo 64-meter

0957 +561A, B N. Bartel Effelsberg, Onsala,

and R.J. Bonometti OVRO, Greenbank,

1038 +528A, B M.L. Cohen Haystack, Fort Davis
at 3.6 and 13 cm E. E. Falco

(second EPOCH) B.E. Corey

I. I. Shapiro
R. A. Preston

RA 185 Simultaneous J.M. Marcaide Mars May 1983
3.6/13-cm and N. Bartel Robledo 64-meter

very sensitive M.V. Gorenstein Effelsberg, Haystack,

3.6-cm I. I. Shapiro Greenbank, OVRO,
observations of R.A. Preston Fort Davis

the galactic
center

RA 186 Compact sources N. Bartel Mars May 1983

in M82 B.E. Corey Robledo 64-meter

M. V. Gorenstein Onsala, Effelsberg,

J. M. Marcaide OVRO, Fort Davis,

A. E. E. Rogers Greenbank, Haystack

I. I. Shapiro

J. D. Romney

RA 187 Mapping of the K.Y. Lo Mars May 1983
galactic center D.C. Backer NRL, Hat Creek,

compact radio M.H. Cohen OVRO, Fort Davis,
source at NRAO, Haystack
8.5 GHz

B-5



APPENDIXB

RADIO ASTRONOMYEXPERIMENTSELECTIONPANEL RESEARCH (Contd)

Experiment Investigator Telescope Date

RA 188 High-resolution, K. I. Kellerman Mars

sensitivity, and J. D. Romney Haystack, NRAO, OVRO,

dynamic-range I. Pauliny-Toth Bonn, Onsala, Crimea,
observations of J. Benson VLA, ARO, Itapatenga

3C273 C. Walker

RA 189 Observation of J.M. Moran Mars

an extragalactic D. C. Backer OVRO

source seen L. Rodriquez

through a

galactic H II

region

RA 190 Mapping of the K.Y. Lo Mars

SGR, a compact K.I. Kellermann Haystack, NRAO, OVRO,
radio source at D.C. Backer VLA

1.35 cm M.H. Cohen
R. D. Ekers

J. M. Moran

RA 191 Search for G.M. Heiligman Mars May 1983
3.46-cm D.G. York

hyperfine
emission from

cosmic 3HE+

RA 192 Weak R.W. Porcas Mars May 1983

superluminal Robledo 64-meter

quasar 3C179

RA 194 Mesospheric S. Gulkis Venus Jan. 1984

water vapor G.S. Levy
measurements P.N. Swanson

from Goldstone, W.J. Wilson

California R.M. Bevilacqua
P. R. Schwartz

J. J. Olivero

RA 195 Superluminal S.C. Unwin Venus
sources at a M.H. Cohen Robledo 64-meter

wavelength of J.A. Biretta Onsala, Jodrell Bank,
13 cm P.N. Wilkinson Haystack, NRAO,

R. S. Booth Fort Davis, OVRO,

Hat Creek, Arecibo,
Hartebeesthoek
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APPENDIX B

RADIO ASTRONOMY EXPERIMENT SELECTION PANEL RESEARCH (Contd)

Experiment Investigator Telescope Date

RA 200 VLBI J.J. Broderick Mars July 1986

_ observation of J.J. Condon Tidbinbilla 64-meter

2300-189: D.L. Jauncey Robledo 64-meter

a quasar with a G.D. Nicolson Haystack,

jet of known R.A. Preston VLA, Nobeyama, Hartrao
orientation in

space

RA 204 3.6-cm mapping K.Y. Lo Mars May 1987
of the SGR, a D.C. Backer

compact radio K.J. Johnston
source M.H. Cohen
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APPENDIX C

NASA-SPONSORED GROUND-BASED RADIO ASTRONOMY PROGRAMS

Experiment Investigator Telescope Date

Interstellar microwave T.B.H. Kuiper 1972-

spectroscopy F.F. Gardner Mars Ongoing
J. B. Whiteoak Venus

G. M. Heiligman Tidbinbilla 70-meter
W. L. Peters

J. E. Reynolds

Planetary radio M.J. Klein Mars, Venus, 1972-

astronomy S. Gulkis Echo Ongoing
E. T. Olsen Tidbinbilla 70,

B. T. Tsurutani 34-meter

D. L. Jauncey Robledo 70,
A. Rius 34-meter

Hipparcos VLBI R.A. Preston Mars 1981-
J. F. Lestrade Tidbinbilla 70-meter Ongoing

R. Mutel Robledo 70-meter

Quasar and galactic R.A. Preston Mars, Venus 1972-
nuclei VLBI D.L. Jones Tidbinbilla Ongoing

R. P. Linfield

D. L. Meier

J. S. Ulvestad

D. G. Payne

D. L. Jauncey

Tidbinbilla inter- S. Gulkis Tidbinbilla 1972-

ferometer; southern D.L. Jauncey 70, 34-meter Ongoing

hemisphere radio J° E. Reynolds

source positions
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APPENDIX C

NASA-SPONSORED GROUND-BASED RADIO ASTRONOMY PROGRAMS (Contd)

Experiment Investigator Telescope Date

Tracking and Data Relay G. S. Levy Tidbinbilla 64-meter July, Aug.

Satellite System R.P. Linfield Usuda 1986

(NASA) orbiting VLBI J.S. Ulvestad Kashima Jan. 1987
demonstration C.D. Edwards TDRSS satellite and

J. F. Jordan, Jr. ground station

S. J. DiNardo

C. S. Christiansen

R. A. Preston

L. J. Skjerve
L. R. Stavart

B. F. Burke

A. R. Whitney

R. J. Cappallo

A. E. E. Rogers

K. B. Blaney
M. J. Maher

C. H. Ottenhoff

D. L. Jauncey
W. L. Peters

T. Nishimura

T. Hayashi
T. Takano

T. Yamada

H. Hirabayashi
M. Morimoto

M. Inoue

T. Shiomi

N. Kawaguchi
H. Kunimori
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