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1., INTRODUCTION

1.1 Rotor Blade Design

The design of helicopter rotor blades involves not only considerations of
strength, survivability, fatigue, and cost, but also requires that blade
natural frequencies be sign.lficantly separated from the fundamental aerodynamic
forcing frequencies (e.g. Ref. 1), A proper placement of blade frequencies
is a difficult task for several reasons. First, there are many forcing
frequencies (at all integer-multiples of the rotor RPM) which occur at rather
closely-spaced intervals., For example, 5/rev and 6/rev are less than 20%
apart. Second, the rotor RPM may vary over a significant range throught the
flight envelope, thus reducing even further the area of acceptable natural
frequencies. Third, the natural modes of the rotor blade are often coupled
because of pitch angle, blade twist, offset between the mass center and
elastic axis, and large aerodynamic damping. These couplings complicate the
calculation of natural frequencies. In fact, the dependence on pitch angle
makes frequencies a function of loading condition, since loading affects
collective pitch., Fourth, the centirifugal stiffness often dominates the
lower modes, making it difficult to alter frequencies by simple changes in
stiffness.

In the early stages of the development of the helicopter, it was believed
that helicopter vibrations could be reduced (and even eliminated) by the correct
choice of structural coupling and mass stiffness distributions. However, it
is easy to imagine how difficult it is to find just the proper parameters such
that the desired natural frequencies can be obtained. The difficulties in
placement of natural frequencies have led, in many cases, to preliminary

designs which ignore frequency p.lacement. Then, after the structure is
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"finalized" (either on paper or in a prototype blade), the frequencies are
calculated (or measured) and final adjustments made. Reference (2) describes
the development of the XH-17 helicopter in which a 300-1b weight was added to
each blade in oyder to change the spanwise and chordwise mass distribution and
thereby move the first flapwise frequency away from 3/rev. However, these
types of alterations are detrimental to blade weight, aircraft development
time, and blade cost., In addition, corrections usually are not satis-
factory, and the helicopter is often left with a noticeable vibration problem.
The state-of-the-art in helicopter technology is nmow to the point,
however, that it should be possible to correctly place rotor frequencies
during preliminary design stages. There are several reasons for this. First,
helicopter rotor blades for both main rotors and tail rotors are now being
fabricated from composite materials (Refs. 3 and 4), This implies that the
designer can choose, with limited restrictions, the exact EI distribution
desired. Furthermore, the lightness of com;osite blades for the main rotor
usually necessitates the addition of weight to give sufficient autorotational
blade inertia. Thus, there is a considerable amount of flexibility as to how
this weight may be distributed. Second, the methods of structural optimization
and parameter identification are now refined to the point where they can be
efficiently applied to the blade structure. Some elementary techniques have
already been used for the design of rotor fuselages (Ref. 5). It follows that
the time is right for the use of structural optimization in helicopter blade
design. Some work on this is already under development, and, although not
published, some companies are already experimenting with the optimum way to

add weight to an existing blade in order to improve vibratioms.
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The purpose of the work discussed here is to 1nvangigi 4 ﬁh- possibilitcies
(as well as the limitations) of tailoring blade mass and stiffness distributions
to give an optimum blade design in terms of weight, inertia, and dynamic
characteristics.
The major objectives of the work are:
1) To determine to what extent changes in mass or stiffness distribution
can be used to place rotor frequencies at desired locations.
2) To establish theorrtical limits to the amount of frequency shift,
3) To formulate realistic constraints on blade properties based on weight,
mass moment of inertia, size, strength, and stability.
4) To determine to what extent the hub loads can be minimized by proper
choice of EI distribution,
5) To determine if the design for minimum hub loads can be approximated
by a design for a given set of natural frequencies.
6) To determine to what extent aerodynamic couplings might affect the
optimum blade design.
7) To determine the relative effectiveness of mass and stiffness distribution
on the optimization procedure.
8) To determine to whit extent an existing blade could be optimized with
minimal changes in blade structure.
9) To develop several "optimum profiies" for rotor blades operating under
various standard conditions.
The work is.tc focus on configurations that are simple enough to yiuld
clear, funilamental insights into the structural mechanisms but which are

sufficiently complex to result in a realistic result for an optimum rotor blade.
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1.2 Overview of Optimal Structural Design

Most approaches to optimal structural design may be classified into three
categories. (For recent review articles mee Refs. 6 and 7.) One s::ch category
is "variational methods." These generally rely on techniques from the mathe~
matical theory of the calculus of variations, and, whan applicable, often
provide useful physical insight into the nature of an optimal design.
Unfortunately, only relatively simple problems can be solved by this approach,
since the mathematics becomes intractable when complex engineering scructures
are considered.

A second category of structural optimization techniques consists of the
application of mathematical programming methods togetiier with the discreti-
zation of the structure by finite element techniques. This approach to
optimization was founded in 1960 (Ref. 8) with the hope that more complex
structures could be analyzed than were possible when using the analytical
techniques of the calculus of variations. However, in the late 60's it
became apparent that mathematical programming methods had limitations of their
own, namely, unacceptably long computation times occurring when the number of
design variables become large (over 20-100, depending on the type of structure).
Fortunately, several improvements developed over the last few years appear to
have significantly extended the capability of the mathematical programming
approach, and, as a result, it is this approach we intend to draw upon for
solution techniques in the proposed research. In a later section of this
proposal, after our design problem has been formulated, we will discuss these
recent improvements in the approach,

A third co.egory of structural optimization approaches is the "optimality
criterion' approach in which an equation expressing some necessary condition of

optimality is used as the basis for constructing an iterative (successive




re-design) procedure. Originally developed because of dissatisfaction with
mathematical programming techniques, the optimality criterion approach initially
relied on intuitive optimality criteria such as constant stress-ratio and
uniform strain-energy density conditions. More recently, optimality criteria
(and associated re-design equationa) have been derived from the Kuhn-Tucker
conditions (see, e.g., Ref. 9) for a constrained minimization problem,

The optimality criterion approach seems especially well-suited to problems
with a large number of design variables. Since our proposed design probleme
will have a moderate number of variables and since deriving efficient ce-design
equations for our problems is not immediately straightforwar?, we initially
prefer the mathematical programming approach over the optimality-criterion
approach.

A structural optimization computer program, called CONMIN, is available
from NASA, It is this program that is used in our present work. ~CONMIN B
is based on the mathematical nonlinear programming method of feasible directions.

Nevertheless, 1f CONMIN proves to be too expensive computationally (or in

any other way unsuccessful for our work) we may turu co other approaches.
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2., BACKGROUND

2,1 Formulation of Prohblem

Because numerically-based optimization is best carried out with discrete
variables, tl's finite element technique stands as the most logical choice for
the blade model. A recent research project (Ref. 10) has resulted in a finite-
element computer program that is ideally suited to the work proposed here. The
program allows for tapered, twisted finite elements in a rotating environment.
The existing code can calculate natural frequencies, (with or without aero-
dynamic terms) and forced response,

Another important aspect of the rotor blade optimization problem is the
selection of the optimality criteria and constraints to be imposed., Our
dasign problem has certain features which are unusual compared to typical
problems occurring in the structural optimization literature. There are
basically three catepories of c(riteria., In the first class, one would
minimize weight given constraints on the natural frequencies (i.e. frequency
"windows"). In this case, a constraint on rotary inertia is also implied since
a rotor must have sufficient inertia to autorotate. The advantage of this
approach is that it is directly related to the physical realities of design.
The disadvantage, however, is that the first guess will probably not be feasible
(that is will not have frequencies that fall in the "windows"). This can be a
stumbling block to convergence. A second type of criteria is one in which the
objective is to minimize the discrepancies between desired frequencies and
actual frequencies. The constraint then becomes a window on autorotational
inertia. Although this aveids unfeasible solutions, it does not directly
minimize weight (although weight is limited by the autorotational constraint).

An objective function could be constructed that combined blass mass and frequency
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placement, but the relative weightings of the two components is not obvious.
The third category of constraint is to minimize vibrations directly without
ragard to frequency placement. Although this appears on the surface to be
the perfect solution, there are problems. First, calculation of vibrations
is an order-of-magnitude more difficult than the calculation of frequencies.
Second, past efforts at this have resulted in strange designs, incompatible
with standard hHelicopter practice. Third, there is still the problem of the
weight-vibraticn trade-off. In this work, we intend to concentrate on the
first two categories with some attention to the third.

Another type of constraint involved in the problem is the limitation on
structural properties. The blade planform, airfoil, and twist ar¢ chosen
by the aerodynamicist on the basis of performance. The structural engineer
must choose his design to fit in the aerodynamic envelope given., There are
five structural parameters to be chosen: 1) flapping stiffness, 2) inplane
stiffness, 3) torsional stiffness, 4) mass, and 5) torsional moment Of
inertia. In practice, these cannot be chosen completely independently.
Figure 1 shows the envelope of a typical blade section, All stiffness is
assumed to reside in a box-beam of dimension b x h with thicknesses s and t.
This beam is placed as far forward as possible (to keep the elastic axis
near the 1/4 chord). Mass properties are due to the box-beam, skin, honeycomb,
and two lumped masses. The lumped mass in the tip is typical of rotor blades
and 1is used to keep the mass center forwgtd of the aerodynamic center. A
second lumped mass is included to allow independent choice of mass and mass-
moment. The constraints of this construction are clear and are listed on the
figure.

In addition, there are minimum constraints on b, h, s, t to hold centifugal

loads ané to remain within manufacturable limits. For example a simple minimum
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constraint on area could come from the centrifugal cunstraint (not considering
bending stress). Thus, if % is the maximum stress and if £ is a safety factor
then

n
2
O 2 €[ L ()0 1/A,

Of course, when we enter the vibratory-response phase of the work (discussed
later) bending stresses will be included.

Similarly, our early work (wnich neglects flutter boundaries) can never-
theless include flutter criteria in a simplified manner. Firet, we can
chonse frequency placement such that no coalescence occurs between flap-lag,
flap~torsion, or lag-torsion. Second, we can constrain the five parameters
in Figure 1 such that tlhie mass center is always forward of the 1/4-chord, a
common design practice to prevent torsion-flutter ir rotor blades.

For specifi: examples, a smaller space of design variables may be used.
For example, in the general case one could force the elastic axis to the
quarter chord by choosing b = C/2 - 2h; or one could choose to allow no lumped
mass in the blade interior (d = 0). This would reduce the number of design
variables from 5 to 4 or 3. If one considers flapping deflection only, then
all variables except t and d may be fixed with no loss of generality. (This
is equivalent to simply using EI and mass as variables.) Similarly, for
inplane one can consider only s and d; and for torsiom, one can consider only
b and a. Thus, for each of the three uncoupled cases one has three possibilities:

1) vary stiffness only, 2) wvary inertia only, 3) vary stiffness and inertia.




2.2 Definition of Tasks

The work, as proposed here, consists ¢f four primary phases:
1) solution of the inverse problem - given a set of frequancies find the mass
and stiffness distribution; 2) solution for optimum forced response - given
a loading condition, minimize blade stresses and hub reactions, subject to
weight restrictions; 3) improvemunts to include flap-lag-torsion coupling;
and 4) application to existing routor blades - given an existing blade,
improve its dynamic characteristics by realistic structural modificaticn.

These phases are described in detail below, In each phase, work can be
performed with nondimensional equations.* Nondimensional quantities to be
considered in optimization are p (mass distribution), ny (flapping stiffness),
n, (inplane stiffness), Ny (torsional stiffness), and € (c.g. - e.a. offset).
'The nondimensional parameters to be included as relatively fixed are
¥ (Lock number), 6 (twist), k (stiffness of control system), & (radius of
Jyration about c,g.) and £ (aspect ratio).

Aerodynamics assumptions and other constraints are described in the
individual tasks indicated below.
2,3 Finite~Element Model

Although tapered, twisted elements are within our capabilities, we
introduce here a simpler case which is also of value., The stiffnesses GlI,
El'.zz, EL

yy
mass of the element is assumed to be evenly distributed on the two nodes.

are assumed tu be constant along the length of the element., The
Let the deflection of an element in the y and z directions at a distance

% be denoted as w(x) and ‘v(x), for which the displacement models are assumed

to be polynomials of third degree. The expressions are given as

* ,
Dimensional cases will also be considered, however, to keep insight.
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\'/ v
w(x) = (2% = 32 + 27) + —-g(azxz - 2%%)
23 2"

v V.
- 30 - 20x® 4 2% - B0 - )
) %
v v
wix) = —%(2x3 - Szxz + 23) +-§(3&x2 - 2x3)
) 2

v v
- 20 - 20+ 270 - 200 -
L 2

where Vir Yy Vg and Vg represent the bending degrees of freedom in the
zx plane and Ugy Ugy U, and ug represent the bending degrees of freedom

in the yx plane

(1) The strain energy due to bending deformation ran be expressed as
% EI 32 2 2 .2 EI 2.2
ve/, [-—l'l(-—) +Erzi-¥3‘2’+ 2“3") ldx
Y2 3x* ax X
(11) The potential energy in tension from the centrifugal force field,

which is equivalent to the negative of kinetic¢ enexgy due to radial
displacement, is given by

%

oy
-1 mun S5 1ED% 4 EPax

where T, tension force, is assumed to be constant along each element.

(1id) The kinetic energy due to inplane displacement is given by
2
22
T, = = 1/2 fo mv R dx

which is equivalent to a u = =T
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Meanwhile, the pretwist angle ¢(x), and the torsional deformation 8(x)

are assumed to be polynomials of firast degree, and can be expressed as

$(x) = ¢ (1 = ) + P
8(x) = vg(l = ) + v o (P

where ¢l‘ ¢2 represent the pretwist angle at node 1 and 2, and Ver V10
represent the elastic torsional degree of freedom at each end.
(iv) The torsional energy, due to elastic deformations and centrifugal

terms, can be expressed as

2 )
1,21 2,1, 27T 2,1 2
u-fo{z.mlA((pwe') +2ka2A(¢'+6') +ZGJG' }dx

v 2 2
where ka, = Sf2%dydz = Iyy
2 2
ka, = [Sy“dydz = L

(v) The "torsion-rotation" energy under the effect of rotation is given by

) a%

2 2 2
" o ~-§-(kml - kmz)(¢ + 0)“dx
where km2 kmg

1 are mass moment of inertia which can be expressed as

2
= [[ pz"dydz = pI
[ pzTdydz 2

2
JI py“dydz pI.zz
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Total diplacement energy now cen be used to form the stiffness matrix from

- 1 T
U-zu[K]u

where u is the vector of nodal displacements, in the order as Upy Ugy Ug,
Ugs Ups Ugy Uy Ugy Ugy Uyos (k] is the elemental stiffness matrix of order 10,
(vi) The mass matrix will be obtained by the kinetic energy of an element,

which is given by

m ,ov 2
TK focf 655 (Bt) +9 2 22 (Btax)
2

+51 yy (Btzax) + = 2 (km + km? 5)0'“}dx

Written in matrix form, the kinetic energy can be expressed as

T %-uT [m]u

where [m] is the mass matrix.

R O O L
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3, STATEMENT OF WORK

3.1 Phase 1 ~ The Inverse Problem

The first phase of the research effort will involve solution of an inverse
problem - that is, find the system structure given the eigenvalues. The
solution to the inverese problem is difficult from a mathematical point of view,
The inverse problem that will be treated in this phase will be done in
successive steps. First, a nonrotating cantilever beam will be used to study
bending frequencies. Flapping will be considered iy the first beginning.
Then, in-plane and torsion will be added. No twist or offset will be included
so that the two bending frequencies and the torsion frequency will be uncoupled.
A conventional optimal design formulation of one of the problems might be

(1) minimize total weight

n
w= I |

Ar
gmp 11

With respect to design variables p and n, subject to constraints
2
z riuiAri =]

R, ~eE<w, < Qi + €

i i

ui ? umin

nmin >n?> nmax
T
xini

X mxy

where k¥ and m are structural stiffness and mass matrices with the rigid
degrees of freedom removed, x is the eigenvector corresponding to the natural

frequency, and Wy is the prescribed natural frequency.
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The solution of the above optimization procedure is effected by the
optimization program, CONMIN, The efficiency of that program is greatly
improved when the derivative of the constraints (with respect to the parameters)
is known. Thus, we must consider the derivative of frequency, with respect to
the parameters:

om_

T (3K _ T
a(wi) %y bl %y - % 8“1] *4 .
T T -
i x:l m xj

3.2 Phase 2 - Forced Response

In phase two, we will solve for blade structures that minimize forced
response. In this step a very simplified model will be used in that we will
simply apply a given forcing function. We will not take into account that
the blade motions themselves may affect this loading, except that aerodynamic
damping will be included. We will assume a very simple lift distribution, such
as u = rz \HT:-;E , that oscillates with integer-multiple frequencies

10

Lift = X wnu(r)e
n=]

iny

We will then formulate the problem as:
4) Minimize (e |root shear| + |root moment|); that is, minimize
n

L

Ar (1 + er))
=1 L i

(wiui - v1ui)max

<
given constraints O .. < 0. 4ii0a90

n

2
T y,rjAr, =1, u, >y
Pl ok tk! 1 Ymin

The forcing functions will be weighted probably as w, = (.3)i or some similar

decreasing weightings. The o0 will include tension stress plus the oscillatory
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stress. One of the major purposes of this will be to decide if minimizing hudb
loads iz equivalent to spacing frequencies half-way between integers. If this
is so, then future optimizations would get by without a complicated loads
calculation. There is some reason to suspect that this is so. Conceptually,
the hub loads could be expressed as

Le 1 —4
ilj l-wi/J

Thus, minimizing loads is similar to maximizing (l-wz)(l-w2/4)...

(1-w2/n2). The simple factor (l-wz)(l-wzlb) has a maximum at w = 1,58 and
the factor (1-w2/4)(1-w2/9) has a maximum at w = 2,56, Thus, at (or slightly
above) these points may well be optimum.

3.3 Phase 3 - Improvements to Model

In phase three, two parallel efforts are planned. In the first one, the
blade structural model will be expanded so as to fuclude twist and c.g. offset.
These will couple flap, inplane, and torsiori. Therefore, uncoupled analyses
will no longer be adequate. We already have computer programs that do this
(Ref. 10) but the coupling will mean a more difficult convergence task for
the optimization programs. In this phase, c¢.g. offset will be included as a
variable parameter. This implies that '"no flutter" must be an added
constraint (Ref. 13).

A parallel effort in Phase 3 will be the improvement of the aerodynamic
model to include aerodynamic coupling between flap, lag, and torsion. The
extent of this work will be partially determined by the results of Phase 2.
Phase 4 - Application to Existing Designs

Finally, these two parallel improvements (structural coupling and aerodynamic

coupling) will be combined in a general program. Phase 4 will be to apply this
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program to existing rotor-blade designs to determine what structural
modifications would be recommended. The fact that our programs already agree

well with existing results constitutes a strong starting point for structural

improvements.




-17-

4, ILLUSTRATIVE EXAMPLES OF STRUCTURAL OPTIMIZATION

4.1 Cantilever Beams with Given Frequency

Some simple examples will be examined and discussed before the utilization
of the program CONMIN. In each case the results will be compared with those
obtajned by previous researchers, if it is available.

The first limiting example is the problem of determining the optimal design
of an elastic cantilever beam, such that with a specific natural frequency, the
weight of the structure attains the Winimum value,

We start with a uniform beam, mcdeled by ten elements, with a given
length of 10 inches, E = 1.0 1b-inZ, EI = 10 lb-in, density = 0,042 1b/in’,
and a specified first lowest natural frequency = 0.6489 rad/sec. We obtain
the final stiffness profile shown in Figure 2. Figure 2 is the present
result with ten elements.

4.2 Cantilever Beam with Given Weight

A related problem has also been treated by Niels Olhoff [11]. He seeks
the design of a cantilever beam that yields a maximum value of a particular
higher natural frequency v, (i.e., of specified order, n) with the volume
and length of the beam specified. His work is the dual prcblem of the example
shown in Figure 2. Optimization with respect to the fundamental frequency
under the constraint of volume is similar to the one of minimizing weight
(or volume) under the constraint of specified natural frequency.

Figure 3 gives the profile of the optimal cantilever for n = 1 by Olhoff.
One can see that the shapes in Figures 2 and 3 are very similar,

4.3 cCantilever with Tip Mass
Another example problem is to minimize the weight of a cantilever carrying

a mass at the tip, subject to the constraint that the fundamental natural
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Figure 2. Area Moment of Inertia for Optimum Beam in
Present Vork.
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Figure 3. Area Moment of Inertla for Optimum Beam
from Reference 1.




frequency must be greater than or equal to a specified value, The problem was

originally formulated by Turner [12].

Kahn and Willmert [14) used an optimality criterisn method to solve

Turner's problem. In thie example, four finite elements are used, with the

areas of each as the design variables, as jllustrated in Figure 4. The

specified natural frequency is 17,752 rad/sec. The other initial data are

Modulus of elasticity
Mass density

Radius of gyration (Al)
Radius of gyration (Az)
Radius of gyration <A3)
Radius of gyration (A;)
Concentrated masq
Length of each element

where I = A (radius of gyration)z.

10.3 x 10 pat

2.5 x 1074

1b-8%/4n"
2.0
1.5
1
0.5
2
1 1b-8%/in

60 in
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The results of the optimization are shown in Table 1. The feasible

starting design is described by A1 = 200, Az = 150, A3 = 60 and A4 = 35,

Table 1
Comparison of Cantilever Beam with Concentrated Mass
Ref.[12] Ref. [13) This Paper

Iteration - 23 10

Ay 136,81 136.63 134.60

A, 118.73 118.7 116.58

Ay 83.591 83.586 82,734

A, 34,427 34,608 34,898
Weight 2243.0 2242.9 2214.41

It can be seen that excellent results have been obtained using the present

CONMIN optimization program.
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5. PRELIMINARY CALCULATION FOR ROTORS

5.1 Wind Turbine Blade

The next example is the optimization of a wind turbine rotor blade at
30 rpm. A ten-element model is used. Only the flapping is considered. The
area moment of inertia, I, and the lumped weight of each element are taken
as the design variables. Young's Modulus, E = 0,2 x 108 lb=in, and
density = 0,0334 lb/;!.n3 are assumed to be constant. Blade radius, R = 750 inches.

Table 2 shows the profile of moment of inertia and the distribution of
added weight Zor the initial and final configurations.

The final profile of the area moment of inertia along the hlade is
similar as the one in the previous example. The lumped mass is concentrated
at the tip of the blade as might be expected given a minimization of weight
with a fixed moment of inertia. That is, the moment of inertie remains at
the minimum value, as expected. We also note that most of the lumi:ed mass
is removed so that only mass necessary to the stiffness elements (or necessary
for the autorotation constraint) is maintained,

5.2 Other Considerations

An important aspect of the optimization problem is the existence (or lack
of it ) of a feasible solution. A "feasible solution" is defined as any set of
design variables that satisfy the constrpints (whether or not that particular
solution 1is an optimum). Tt is possibhle that, if the problem is poorly
formulated, that no feasible solution exists., What is more often the case,
however, is that there are feasible solutions } t that the optimization scheme
may not be able to find them. Thus, it is advantageous to have a feasibie
initial guess so that one is assured that at least a local optimum is possible.

For example, Table 2 illustrates that the first guess is feasible

(wl > 2.82 per/rev). Here we found that CONMIN was able to move from this
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first guess through the space ol feasible solutions. In other cases, however,
when the firast guess is not feasible we have found that CONMIN is not able to
reach a solutior. In such cases, one must add or remove some weight (or add
or remove some EL) from the first guess to move into the feasible space. From
there, optimization is obtained.

For example, Table 3 presents data for the same wind turbine as in Table 2,
but the constraint on the first natural frequency has been lowered to remove
it from the dangerous 3/rev range. This implies that the first guess in Table 2
is no longer feasible, In order to overcome this, a lumped mass is added to
station 9 (225.4 vs 49,50), This lowers wy below 2,621 rev but also lowers
W, to 0.25/rvev., This could be alleviated in one of two ways: 1) move the
mass to the node of the second mode, or 2) simply widen the v, window, We have
done the latter. It iz interesting that the added weight is ultimately
rearrangea to other places and other weight removed such that the new design
18 no heavier than the optimum in Table 2. Furthermore, Wy is rai_ ed to 8,57
so that the "widened window" had no effect on the solution.
5.3 Helicopter Blade

The design and analysis of a helicopter blade is discussed. Similar to
Section 3, only flapping is considered and a ten-eiaiient model is used. Density
is constant along the blade and equal to 0,18 x 10'3 sluga/ina. Young's

7 lb-in2 at the root equal to 0.585 x 10 1b-1n2

Modulus is equal ko 0.49 x 10
elsewhere. Blade radius is equal to 193 inches. Results are given in Table
4 and 5.

In Table 4, vy is in the desired range but Wy is too small. Furthermore,
the autorotational inertia is larger than necessary. In this case, the CONMIN

program is able to remove mass and stiffness in such a way to raise Wy and

lower Wy The minimum I set as a constraint (0.4) is reached at & ury point
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except the root. The root remained high to keep "1.3 1.05, The new blade is
one-third the original mass. 1In Table 5, a stiffer initial guess is used and
the frequency v, is restrained from significant decrease. Furthermore, vy is
near its maximum value, In this case, the program CONMIN would like to
decrease EI and m, but any removal of material could lower vy beyond its lower
bound of l.24/rev . To counter this, the optimization scheme adds EI near the
root (to maintain w, > 1.24/rev). Furthermore, the lumped mass necessary

to maintain antorotational constraint is moved slightly inboard to have less

effect on W, (keep it high) but more effect on vy (keep it low).
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6. SUMMAR

————————————

Thus far we have completed the following objectives:

1) Define the optimization problem and obtain physically reasonable
constraints.

2) Make CONMIN operational on our own computers and successfully apply
it to beam problems with known solutions.

3) Apply optimization procedures to typical rotor configurations
for flapping.

What remains in the first year is

1) Try many more flapping optimization runs to determine the effects
of mass versus EI varjations, to study the limits on range of frequency
placement, to study the limit on number of frequencies placed, to
determine to what extent a feasible first guess is necessary.

2) Determine the feasibility of using frequency~-placement as an objective
function rather than as a constraint

3) Try inplane and torsion optimization.

After this, we intend to follow the statement of work as planned.
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8, NOTATION

slope of lift curve, rad~!

gize of tip masa, m

width of box beam, m

blade chord, m

width of lumped mass, m

weighting function

safety factor

height of box beam, m

nondimensional mass/unit length, m R/m
G3/mR3

EI /mzn3
y

EIz/mzR3
lock number, pEcRé/I

control system stiffness, N-m/rad

K/m?R

blade twist, rad

nondimensional c.g. elastic-axis offset (offset/R)
radius of gyracion'J}x/IﬁRz
inverse aspect ratio c/r
density of air

small parameter

fit

rotating speed

maximum stress

mass of skin kg/m

density of lumped mass, box beam, honeycomb kg/m3

E: EARA A



EIy
EI

GJ

k-1

Ar

-

8,t

u(r)
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necessary inertia for autorotation, ks-nz

torsional mass moment of inertia (about c.g.)
per unit length, kg-m
flapping stiffness, N-n2
inplane stiffness, N—m2
torsional stiffness, N—n2
mass/unit length, kg/m
reference mass, I/Rz, kg
x/R

length of element, m

hlade radius, m
thicknesses of box beam; m
lift distribution, N/m
displacements, m

weighting functions

length along blade, m
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