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VOLUME 3: ARAMIS OVERVIEW

3.1 INTRODUCTION

3.1.1 Contractual Background of Study

On June 10, 1981, NASA Mérshall Space Flight Center (MSFC)
awarded a twelve month contract (NAS8-3438l1) to the Space Systems
Laboratory and the Artificial Intelligence Laboratory of the
Massachusetts Intstitute of Technology, for a study entitled
"Space Applications of Autoﬁation, Robotics, and Machine Intelli-
gence Systems (ARAMIS)", Phase I. The Space Systems Laborafory
is part of the M.I.T. Department of Aeronautics and Astronautics;
the Artificial Intelligence Laboratory is one of M.I.T.'s inter-
departmental laboratories. Work on the contract began on June
10, 1981, with a termination date for Phase I on June 9, 1982.

Following discussions between M.I.T. and NASA MSFC, the con-
tract was expanded to include several additional tasks specifi-
caliy concerned with structural assembly in space. This "struc-
tural assembly expansion".to the contract started on October 27,
1981, with avtermination date also on June 9, 1982.

At NASA's request, separaﬁe progress reports were produced
for the original contract tasks (called the "main study") and for
the structural assembly expansion. Separate final reports weré
also prepared, though some sections are identical in both,

This document is the final report for Phase I of the ARAMIS
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"main study. The final report for thé structural assembly expansion
of this study is entitled "Automated Techniques for Large Space
Structures”" (also contract number NAS8-3438l).

The NASA MSFC Contracting Officer's Representative is Georg
F. von Tiesenhausen (205-453-2789). The M.I.T. Principal Inves-
tigators are Professor Rene H. Miller (617-253-2263) and Professor

Marvin L. Minsky (617-253-5864). The M.I.T. Study Manager is

David B.S. Smith (617-253-2298).

3.1.2 Organization of the Final Report

Volume 1 of the final report is the Executive Summary.

Volumes 2, 3, and 4 are roughly chronological, in the sense that
the data and results presented were developed in that order by
the study.

Volume 2: Space Projects Overview describes the space

project breakdowns, which are used to identify tasks ("functional
elements") which will be required by future space projects.

Volume 3: ARAMIS Overview gaﬁhers together the information

specifically related to automation, robotics, and machine intel-
ligence systems (ARAMIS). The volume starts with a general dis-
cussion of ARAMIS and the organization of this field into "topics."
It then presents General Information Forms on ARAMIS "capa-
bilities" which are candidates to perform space project tasks.

Volume 4: Application of ARAMIS Capabilities to Space

Projec£ Functional Elements is the pivotal volume in the report,

3.2




since it deals with the relationships between the space project
tasks and the ARAMIS capabilities. Specifically, in Volume 4,
the list of tasks generated in Volume 2,and the background know-
ledge on ARAMIS presented in Volume 3, are combined to define
"candidate ARAMIS capabilities" for each task. Volume 4 then
presents the evaluation of the relative merits of the various
candidates to perform the space project tasks, and the selection
of the promising options suggested for further study.

Thus Volumes 2 and 3 serve to some extent as preparatory

material and appendices to Volume 4, which contains most of the

complexities of the research effort. Therefore a complete de-
scription of the study's objectives and method is included in

Volume 4, while partial synopses of the study method appéar in
Volumes 2 and 3, specifically explaining the production of the
data in those volumes.

The study recipient who wishes to apply the results of this
study to a new space project will principally use Volume 4,
referring to Volume 2 to check further on the definition of a
space project task, and referriqg to Volume 3 for descriptions
of suggested candidate ARAMIS capabilities. In addition, Volume
3 is intended as a general introduction to the field of ARAMIS

and to its complex jargon.



3.1.3 Partial Synopsis of Study Method: ARAMIS Classification .

The overall ARAMIS study method is illustrated in schematic
form in Figure 3.1. The method concentrates on the produétion
of a matrix relating space project tasks (called "generic func-
tional elements"; on the vertical axis in the figure) to pieces
of ARAMIS (called "ARAMIS capabilities”; on the horizontal axis
in the figure). The example in the figure shows that the generic
functional element "Position and Connect New Component"” can be
satisfied by any of three ARAMIS capabilities: Specialized
Manipulator, Human in EVA with Tools, or Dextrous Manipulator.
Note that each ARAMIS capability by itself can satisfy the
generic functional element.

As illustrated in the figure, the generic functional elements (GFE's)
are generated from the space project breakdowns. The breakdown
procedure and the collection of the generic functional elements

are described in Volume 2: Space Projects Overview.

The ARAMIS capabilities are generated by considering each
generic functional element in turn, and defining pieces of
ARAMIS capable of satisfying the element. These definitions
are based on the general backgrqund knowledge and organization
of ARAMIS developed by this study.

A general discgssion of automation, robotics, and machine
intelligence systems is presented in Section 3.2. The method
used by this study to organize the field of ARAMIS is discussed
in Section 3.3. The procedure fbr definition and research of
ARAMIS cépabilities is described in Section 3.4. This includes
discussion of the descriptions of capabilities in General

Information Forms, and of the definition of favorable sequences
3.4
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of ARAMIS development ("technology trees").

The checkmarks on the matrix grid in the figure are for
schematic presentation only. In actuality, each checkmark con-
sists of values of seven decision criteria, with commentary and
data sources, on the potential application of that ARAMIS capa-
bility to that generic functional element. These criteria are
defined and discussed in Section 4.6 (Volume 4).

The ARAMIS study uses a specialized nomenclature, partly
adopted from NASA and partly defined specifically for this'study.
Table 3.1 defines this nomenclature, as well as some acronyms.

Most of the data management functions required by the study
method were implemented on a computer, for ease of access and
display of the information. The use of the computer in the

ARAMIS study is discussed in Appendix 4.F (Volume 4).
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TABLE 3.1: ARAMIS STUDY NOMENCLATURE

ARAMIS - Automation, Robotics, and Machine Intelligence
- Systems

FUNCTIONAL ELEMENT - A small piece.of a space project
(examples: Open Access Panel, Open Supply Valve),
which can be satisfied by a single ARAMIS capability.

"GENERIC FUNCTIONAL ELEMENT LIST (GFE LIST) - A list of all
the functional elements in the four space project
breakdowns; a functional element already collected
from a previous breakdown is not listed again.

ARAMIS TOPIC -~ A part of the overall field of ARAMIS (e.gq.
Manipulators, Machine Vision Techniques, Computer
Architecture); the study group identified 28 such
topics (with considerable overlap between topics)
which collectively cover ARAMIS.

ARAMIS CAPABILITY - A piece of ARAMIS (hardware and/or soft-
ware) which can by itself satisfy a generic func-
tional element; each capability only involves a
small (manageable) part of the wide field of ARAMIS.

DECISION CRITERIA - Indices of the performance of an ARAMIS
capability applied to a generic functional element;
these indices are evaluated for each candidate
ARAMIS capability applied to each generic func-
tional element.

TECHNOLOGY TREES - Favorable sequences of ARAMIS develop-
ment; i.e. early R&D of certain capabilities en-
hances later R&D of other capabilities (e.g. prior
R&D of tactile sensors and microactuators benefits
the development of a dextrous manipulator).

CRITICAL ELEMENT/CAPABILITY (E/C) PAIR - An application of
an ARAMIS capability to a generic functional ele-
ment, for which: the decision criteria values
are favorable; and/or the capabilities are impor-
tant in technology trees. This is therefore a
promising application of ARAMIS.

Gsp - Geostationary Platform
AXAF - Advanced Xray Astrophysics Facility
T™MS - Teleoperator Maneuvering System

SP - Space Platform




3.2 GENERAL DISCUSSION OF ARAMIS

3.2.1 General Comments

Automation, Robotics, and Machine Intelligence Systems are
not a single technology, but rather a field of interrelated
technologies. These range from simple to complex, from human
to machine, and from hardware to software. Examples of human-
related ARAMIS research are the development of mechanical fingers
and tactile sensors, the study of the mechanisms and processes
in human vision, and fundamental research on the process of
human thought. Other ARAMIS technolngies involve the development
of machines, for the purpose of optimizing their non-human abili-
ties: large-scale exact mémory recall, rapid numerical computation,
response to changes at electronic speeds, precisé repeatability,
absence of maintenance, and resistance to adverse environments.

Many of the potentially profitable ARAMIS developments in-
volve the interaction between technoloéies. For example, one
approach to machine vision involves a three-way marriage of
optics, integrated circuits, and hierarchical processing soft-
ware. Thus a ciassification scheme for ARAMIS, although de-
sirable for clarity, is difficult to produce, as discussed in
the next section.

some of the advanced ARAMIS technologies are potentially
high risk, high-yield concepts. For example, it is not yet
clear how difficult it will be to produce a computer able to
understand conversational human speech (computers can now under-

stand single words and preprogrammed phrases, and can produce
3.8



speech). However, if such a system is developed, its applications
are likgly to be numerous, and somé will be revolutionary,
allowing real-time, conversational requests for data and analyses,
from machines with enormous memories- and very fast computation
abilities.

Because ARAMIS is made up of diverse technologies, and because
‘many ARAMIS concepts are on the forefront of knowledge, it is
seldom that one finds a concensus in the "ARAMIS community" on
major issues. For example, there are many discussions on optimum
design of manipulators: one side favors dedicated manipulators
controlled by simple software, in preset and precise worksite.
geometries; another side prefers versatile manipulators with.
flexible o;‘gdaptive conprol, in,uncqnst;a;ngd worksites.; There
are also diffe;ences of opinion on the relative merits of humans
and computers to provide that flexible or adaptive control. Part
of that uncertainty is due to a lack of guantitative knowledge
on human abilities, and to.the difficulty in defining useful.
figures of merit for comparisons.  For example, a desirable’
. figure of merit for structural assembly. in space would be
"accurately assembled kilogram.per safe-person—houf", which
 poses problems in measurement. '

-For the last few years, this country has suffered from a gap
between advanced research on ARAMIS and the use of ARAMIS on the
production line. In some cases, this gap was filled by Japan,
and4U.S._indu;tries,foundnthemselves:purchasing Japanese ARAMIS
hardware and technigques (or- ARAMIS-manufactured products),. which

had been developed from U.S: ARAMIS research. Fortunately; ‘the
3.9



gap in this country is closing, both through increased communi-

cation between research organizations and industrial users, and

through the formation of numerous small companies (e.g. Automatrix,

Machine Intelligence Corp., Apple Computer) specifically for the

purpose of developing commercial applications of recent ARAMIS

research (their engineering sections are typically filled by

recent university graduates). The current upsurge in the market

for industrial manipulators is also boosting old and new robotics

firms (e.g. Unimation, Cincinnati Milacron, IRI), which are

turning to new research to improve their competitive edge.

The study group, after literature review and a number of

consultations, identifies six major thrusts in current ARAMIS

research and applications:

1)

2)

Industrial programmable machines, particularly manipulators,

for use on production lines. One aspect relevant to space
applications is the current attempt to lighten and shrink
industrial devices by using active control techniques~to

achieve close positioning, rather than the traditional

structural bulk. To the knowledge of the study group, however, this
development of manipulators includes very little work on teleopefa—
tion, i.e. on manipulators under human control.. The principal
current application of teleoperators is in the nuclear industry;
their master-slave devices have remained virtually unchanged for

the last ten years.

Machine vision, also for use on production lines, to recognize

parts for sorting and handling, or to identify defects.
Commercial systems tend to use simple optical sensing (e.g.’
planes of laser light) and recognize objects by comparing what

they see to computer models. 3.10



3)

4)

5)

6)

Natural language understanding and speech, to improve communi-

cation between humans and computers. Machines can produce

speech, but can only understand it in limited fashion (e.g.
pre-programmed words and phrases, from a particular human).
The goal of this research is to let the machine receive
human speech and convert it to computer code which is
compatible with its programming.

Knowledge engineering, which is the application of computers,

particularly computer data bases, to current problems. This
includes relatively simple concepts,such as library data
bases (which will soon be privately accessible over phone
lines) and the educatiohal computer systems currently used in
elementary schools.. Knowledge engineering also includes
higher-level concepts such as computer-aided-design, and
relational data bases capable of inferences from partial data
(called "expert systems"). |

Cognition, the fu;aamental issue of how intelligence works.
This includes research into theﬁg}ocess of learning (how

data is accepted, sorted, claséified, stored, retrieved, and
used in logical evaluation), and into techniques of problem-~
solving (how a potential solution to a problem is generated
from the available data, and evaluated by rational means).
Some research projects in this fundamental area explore human
cognition; others consider the potential of machine cognition,
outside the human context. |

Computer architecture, both in hardware and software. This

ranges from the very large, very fast numerical computers
(e.g. the CRAY machines) , through intermediate concepts such

as large-array parallel processors, to applications of micro-
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processor chips to smaller tasks. The latter includes de-
velopment of larger chips, chip-design systems, and applications
to personal computers and videogames. In general, this
research selects hardware and software options appropriate

in scale and complexity to the tasks to be done (e.g. CRAY
machines for simulations of global weather, large-array
parallel processors for computational fluid dynamics modeling

of turbulent flow, microprocessors énd microprocessor hier-
archies for manipulator position feedback evaluation and

manipulator control).

These six general thrusts include most of the current
ARAMIS work. A more detailed and comprehensive classification
of ARAMIS was developed by the study group; it is presented in

Section 3.3.1.

3.2.2 1Issues in Classification of ARAMIS

The study group decided to apply a classificatibn‘scheme to
the field of ARAMIS for three reasons: |

1) to make data accession and cLassification manageable.
Trying to find libfary informétion on‘general areas of ARAMIS
(e.g. sensing,_compuﬁers) would produce large quantities of data,
most of it irrelevant. | | :

2) to define categories on which individual experts could be
consulted. With sufficiently speéific definitions of the subjects
of interest, individual‘eiperts coﬁld be idéntified; a more
general expert (e.g., éh coﬁputers) seldbﬁ had ‘the specifié
information needed byvfhe study'group. .
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3) to provide a framework to transfer information to the
study recipient. The classification system simplifies the task
of describing the ARAMIS technologies and their interrelation-
ships.

However, there are some difficulties inherent in any current
attempt to organize the field of Automation, Robotics, and Machine
Intelligence Systems. First, there is no consistent nomenclature
across ARAMIS. Different research groups define common-usage
terms differently (e.g. "robot" means an industrial programmable
manipulator to some, and a fully autonomous decision-making unit
to others), and similar concepts are labeled differently from
one laboratory to the next. The study group side-stepped some
o; these problems by avoiding the use of certain ambiguous terms,
such as "robot" and "artificial intelligence".

Second, there have been virtually no previous attempts at
comprehensive classification schemes for ARAMIS. The reason for
this, given to the study group in consultations., is that the
overall field is too young to have been so organized - which is
seen by some as a boon, since such a process of classification
can stifle creative mixing betwgen the emerging branches of the
field. 1In many cases, clear-cut distinctions between sections
of ARAMIS are not yet possible, and the rationale for grouping
pieces of ARAMIS into élusters is not yet evident. For example,
it is difficult to draw a clear distinction between automatic
programmers and natural language interfaces: both accept high-level
(e;g. English-language) inputs and communicate them to a computer.

Some classification schemes for parts of ARAMIS exist (e.g. the
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classification developed by Dr. Ewald Heer in Ref. 3.1), but in
general the organizations doing ARAMIS research each have their
own classification schemes, not compatible with each other.

Third, at the time that the study group attempted to or-
ganize ARAMIS, there were apparently no comprehensive directories
of ARAMIS research. There were some data bases, including NASA's
own RECON computer base, which listed some sections of ARAMIS, but the
study group could not find a field-wide catalog of ARAMIS
literature. Neither was there a catalog of organizations or
individuals doing research on the various aspects of ARAMIS. 1In
fact, the "ARAMIS community" is, by its own admission, very oral:
to find out who is working on a particular subject, the study
group would ask someone in the field, who suggested another
contact, and so on, until the needed expert had been located.
The most prevalent communication medium between ARAMIS researchers
appears to be the ARPANET computer network, but that does not
include industrial users of the technology.

Howevér, the study group knows of two general directories
of ARAMIS which were prepared concurrently with this study, for
the benefit of aerospace users. The first, prepared by Dr. William
Gevarter (Ref. 3.2), covers ARAMIS world-wide, concentrating on
U.S. research and on Japanese efforts. The second, produced for the
European Space Agency (Ref. 3.3), concentrates on European work-on

ARAMIS.
In addition, the field of ARAMIS is organizing itself, and

the publications and conferences are becoming more informative
and comprehensive. Section 3.3.2 discusses some useful sources

of information on ARAMIS, and introduces this study's biblio-
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graphy (in Appendix 3.B).

The study group first attempted a "branching-tree" +type of
classification on the whole of ARAMIS. The intention was to
break down ARAMIS into succesively finer levels, until *he
lowest level would contain all the desired categories. Tor
example, ARAMIS could be first broken down into the general
areas of sensing, computation, actuation, and communication;
then each area could be further broken down, and so on.

After some work on the concept, however, the study group
concluded that the branching-tree type of breakdown *endeé to
confuse the organization of ARAMIS rather than clarify it.
ARAMIS can be broken down in a variety of ways, each of which
contains information useful to the reader: a too-specific
breakdown method obscures instructive relationships between
pieces of ARAMIS. For example, a useful classificatiorn fox
sensors distinguishes between proprioceptive sensors {which
sense only within the device, e.g. joint position sensors
in a manipulator) and exteroceptive sensors (which sense the
outside environment, e.g. laser ranging systems); but too nuch
attention to this distinction obscures the fact that some sensors
can serve as both simultaneously, e.g. a camera watchinag both the
position of a manipulator (proprioceptive) and the target being
reached for (exteroceptive).

For these reasons, the study group chose a more versatile
classification scheme for ARAMIS, breaking the £fielé down into

6 general areas and 28 topics, with overlaps between areas and

between topics. These greas and topics are discussed in
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Section 3.3.1.

3.2.3 Human and Machine

One important aspect of the organization of ARAMIS for
space applications is the issue of the respective roles of
humans and machines. Guideline (2) in Section 4.2.3 (Volume 4)
assumes that each space project task has an optimum in terms
of ARAMIS, and that different tasks will have different optima.
In the opinion of the study group, this optimum includes the
optimum mix of humans and machines.

The research team believes that the mix of humans and
machines is one of the significant variables in.the design of
spacecraft hardware and mission procedures. Rather than a
competition between human and machine options, the issue is
the definition of the most appropriate roles for humans and for
machines, so that their partnerships will yield the best
performance of project tasks.

Therefore this study includes human options wherever
appropriate, to cover the range from fully human to autonomous
machines. The classification of ARAMIS (described in the next
section) includes several categofies with various levels of
human involvement, including Human Augmentation and Tools,
Human-Machine Interfaces, and Teleoperation Technigues. Later
in this study, Direct Human Eyesight is considered as an option
for some sensing tasks, and the Human in EVA with Tools is an

option for a variety of functions. Although some earlier studies
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have compared human and machine options for specific space
projects (including the ESA study in Ref. 3.4), this study
takes the more general view that humans (and systems including

humans) are part of the spectrum of available ARAMIS options.
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3.3 CLASSIFICATION OF ARAMIS

3.3.1 System Used in this Study: ARAMIS Topics

Keeping in mind the issues discussed in the previous two
sections, the study group developed a flexible classification
scheme for ARAMIS, breaking the field down into 28 "topics".
There is considerable overlap between topics, a natural (and
probably desirable) result of the active interaction of tech-
nologies in rapid development. Fortunately for clarity, these
topics can be grouped into 6 general "areas", again with
considerable overlap between areas. The topics and areas are
listed in Table 3.2. In addition, brief definitions of the 28

topics are presented in Appendix 3.A: ARAMIS Topics and their

Definitions.

The topics were defined through literature review (e.g. Ref,
3.1), and refined through consultations with Dr. William B.
Gevarter (National Bureau of Standards) and Dr. Ewald Heer
(Jet Propulsion Laboratory). These topics are useful in that
looking up one topic yields a manageable amount of information,
and experts on individual topics can be found for consultation.

The study group tried to make the list of ARAMIS topics
comprehensive, i.e. the 28 topics collectively cover the whole
field of ARAMIS. Some of the topics are therefore very advanced,
possibly beyond the scope of the study (e.g. Self-Replication,
not likely to be available before 1995). Some topics, such as

Deductive Techniques (Theorem Proving) and Reconfiguration and
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Fault Recovery, are in technological infancy: they have not had
significant commercial applications to date. Their contributions
may therefore be limited in the next few years, but may become much
more significant as these technologies mature. This list of topics
was defined to inform the study recipient about the subjects of
current work in ARAMIS; it is also intended to show the potential
directions of R&D in this field. These topics were also used to
assign code numbers to ARAMIS capabilities, as described in Section

3.4.1.

3.3.2 Useful Sources of Information

The study group has come across several useful sources of
information on ARAMIS in general and on some specific ARAMIS
topics.

As mentioned earlier, the ARAMIS researchers appear to
communicate primarily through the computer network ARPANET, or
by word-of-mouth. One of the more productive methods of access
to ARAMIS research information is to become a recognized user on
the ARPANET. This has three principal benefits:

1) The user has access to a wide variety of research reports,
including status reports on current studies, which are only
available from the ARPANET files. In fact, some of these
reports may never exist on paper, since they are created, dis-
tributed, and read (on video terminals) as computer files; the
ARPANET resists attempts at printouts by low-level users, for
security reasons, but will display a large variety of files on
request.

2) The user can set up a selective mailbox, indicating which

keywords (from a large and varied menu) are of special personal
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interest. The network will then automatically notify the user
of any new reports filed under those keywords. Thus the mail-
box collects the latest network inputs of particular interest

to the user.

3) The user can have long-distance discussions with other
ARPANET users,_either in a conversational mode or by exchanging
blocks of text. This allows rapid responses to questions or
reviews of new ideas. A large amount of discussion is handled
in this fashion on the ARPANET every day, and other users can
observe the exchanges without participating. A user can also
request help on a particular topic, and the network will try'
to identify other users with that specialty.

To enter the word-of-mouth information circuit, there are
several major conferences each year which attract the foremosf
researchers. These conferences have recently (i.e. in the last
year) become more comprehensive and informative, partly by the
inclusion of tutorials on the state of the art (usually pre-
sented by very knowledgeable sources) and of technical displays
by hardware and software producers. The latter addition has
also set up‘a forum for direct ipteraction between the advanced
research side of ARAMIS, usually pursued in universities and
research institutes, and the commercial application side,
typically handled by industry.

Particularly worth noting are the Interﬁational Joint
Conferences on Artificial Iﬁtelligence (the IJCAI in 1981 was
held in Vancouver, B.C., Canada) and the American Association
for Artificial Intelligence conferences (the AAAI-82 conference
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in August 1982 is in Pittsburgh, Pennsylvania). In general, the
American Association for Artificial Intelligence (AAAI, 445
Burgess Drive, Menlo Park, CA 94025; (415) 328-3123) is emerging
as the most active organization dealing with advanced ARAMIS
research in the U.S..

There are also a number of conferences and workshops on
commercial development of ARAMIS, particularly on industrial
programmable machines. Many of these gatherings are sponsored
by Robotics International of the Society of Manufacturing
Engineers (SME). Also recommended is their magazine, Robotics
Today (One SME Drive, P.O. Box 930, Dearborn, MI 48128; (313)
271-1500) , published in cooperation with the Robot Institute of
America. The magazine concentrates on hardware, and includes
schedules of upcoming workshops, new product descriptions, and
reviews of literature. Subscribing to the magazine alsé puts
the recipient on some useful mailing lists.

Another magazine of potential interest is Robotics Age

(Robotics Age Subscriptions, P.O. Box 358, Peterborough, NH 03458;
(603) 924-7136), which.also discusses hardware but includes
articles on machine intelligence as well. Reviews of new pro-
ducts and literature are also included.

A number of néwsletters, magazines, and journals are
appearing (ranging from the Bache robotics newsletter for in-
vestors to quarterly journals on robotics research) but the
study group has not reviewed these. There are also several
hardware directories now available (e.g. the Robotics Industry
Directory, P.O. Box 725, La Canada, CA 91011l; (213) 352-7937),

but the study group has not reviewed these either.
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The literature reviewed by the study group is listed in

Appendix 3.B: ARAMIS Bibliography. Entries are organized

according to the 28 topics presented in Table 3.2. Since there
is overlap between topics, a number of listings are repeated
under several headings. In addition, there is a section of the
bibliography organized according to the 9 types of generic
functional elements which are defined by this study: power
handling, checkout, mechanical actuation, data handling and
communication, monitoring and control, computation, decision
and planning, fault diagnosis and handling, and sensing. This
section of the bibliography presents literature on those types of.
space project tasks; much of this information is in NASA studies.
[The definition process for generic functional elements (GFE's)
is described in Section 3.13 and in Volume 2 of this report. The
use of the 9 types of GFE's is described in Section 4.4.1 of Volume 4.]
Besides the information sources discussed above, the study
group found much of the literature through catalogs in several
MIT libraries, from references and bibliographies in other
documents, and from consultations with researchers throughout
the U.S.. NASA studies were accessed through the Scientific and
Technical Aerospace Reports catalogs in the MIT Aeronautics and
Astronautics Library, from a NASA RECON database search (initiated
from the KSC library during a visit by study group members), and
from the large amounts of'support documentation provided by the
MSFC technical monitor.
In addition, the study manager reviewed the 1981 NASA Research
and Technology Objectives and Plans (RTOP) Summary, and found 18

items of interest to the study group. Not all of these proposed
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studies are funded, but the RTOP's were used to identify who

was working on ARAMIS-related research within NASA.



3.4 ARAMIS CAPABILITIES

3.4.1 Method of Definition

As described in Section 4.4 (Volume 4), the 330 GFE’'s in
the Generic Functional Element List were reduced to 6° GFE's
selected for detailed study. To define candidate capabilities
for each of the 69 GFE's, the study group experimented with
two methods.

The first involved the production of an exhaustive list of
ARAMIS capabilities, based on the background knowledge of
ARAMIS developed by the study. The intent was to select
appropriate ARAMIS capabilities from this list, to £ill out
the study matrix. However, there was no guarantee thet all
of the relevant ARAMIS capabilities would be in the list. Also.
the level of detail was very uneven within the list: <come items
seemed large and complex enough to fulfill whole space project
activities or even sequences; while other items were sc small
in scope that several would have to be combined tc applv tc a
GFE. Therefore the study group rejected this approach. The
attempt was instructive, however, because it acgquainted the
study group with the scope and variety of options within the
field of ARAMIS.

The study group therefore devised a simple and pragmatic

method to define ARAMIS capabilities. 1In team brainstorm
' .

MrReproduced from £
I best available copy.




sessions, the generic functional elements were éonsidered one

at a time. For each GFE, based on the background knowledge and
the ARAMIS topics developed by the study, the research team
defined candidate ARAMIS capabilities. Additional literature
search, consultation, and conceptual design were done, as needed,
to ensure that all potential candidate capabilities to perform
each GFE were identified. Each ARAMIS capability was assigned
to two (or more) team members for detailed study.

As an examplg of this process, Table 3.3 shows the candidate
ARAMIS capabilities defined for GFE g73 Position and Connect New
Component. Eight capabilities were defined as candidates for
this GFE.

This example illustrates several aspects of the definition
process. Each candidate capability in the example can satisfy,
by itself, the generic functional element. This locks together
the levels of detail of GFE's and ARAMIS capabilities, thus
keeping the production and presentation of the study matrix
straightforward.

TABLE 3.3: CANDIDATE ARAMIS CAPABILITIES DEFINED
FOR ONE GENERIC FUNCTIONAL ELEMENT

@73 POSITION AND CONNECT NEW COMPONENT
2.2 DEDICATED MANIPULATD# UNDER COMPUTER CONTROL
4.1 COMPUTER-CONTROLLED SPECIALIZED COMPLIANT MANIPULATOR
4,2 COMPUTER-CONTROLLED DEXTROUS MANIPULATOR WITH FORCE FEEDBACK

4.

(2]

14.3 HUMAN IN EVA WITH TOOLS
1S.1 SPECIALIZED MANIPULATOR UNDER HUMAN CONTROL
15.2 DEXTROUS MANIPULATOR UNDER HUMAN CONTROL

15.3 TELEOPERATOR MANEUVERING SYSTEM WITH MANIPULATOR KIT

COMPUTER-CONTROLLED DEXTROUS MANIPULATOR WITH VISION AND FORCE FEEDBACK
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Another issue is the possible interpolation or hybridization
between capabilities. In the example above, one could define
a combination of the Human in EVA with Tools and the Specialized
Manipulator under Human Control (the Shuttle RMS) to perform the
GFE. In general, one could form intermediate capabilities or
partnerships between many pairs of capabilities in the matrix.
The study group decided to limit the candidates to those capa-
bilities significantly different from each other, leaving inter-
polations between capabilities to the study recipient. This
kept the number of candidate capabilities manageable. Also, such
interpolations are usually suggested by circumstances specific
to a space project, and thus beyond the scope of this more
general study.

In a number of instances, the research team considered the
issue of the time dependence of capabilities. For example, it
is expected that a machine vision system in 1995 will be sub-
stantially better than in 1985; therefore the applicability of
such a capability would depend on the date of use. Since Phase
I of this study does not concern itself with space mission launch
dates, the study group dealt with this issue in two ways. 1In
most cases, if a capability couid be brought online in 1985 at
the earliesﬁ (following an orderly development program), then
it was defined as it would appear in 1985. For those cases
where significant time variations in capabilities were expected,
near-term and far-term versions were presented as separate
caéabilities. In the example in Table 3.3 above, the Computer-
Controlled Dextrous Manipulator with Force Feedback is a far-term

descendant of the current industrial Dedicated Manipulator under
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Computer Control.

The example also illustrates the human-to-machine span
considered by this study, since the candidate capabilities
range from a human in a pressure suit to a fully autonomous
manipulator. This wide range is in keeping with the study
group's philosophy that the human-to-machine range is one of
the variables to be studied: the optimum mix of humans and
machines will fall somewhere in this range (including, possibly,
at one of the endpoints).

The study matrix, listing the candidate ARAMIS capabilities
defined for each of the 69 GFE's selected for detailed study,
is presented in Appendix 4.D (Volume 4).

To simplify access to, and presentation of, the ARAMIS capa-
bilities, they were grouped by ARAMIS topics (see Section 3.3.1)
and assigned numbers accordingly. These assignments were necessarily
artitrary, since many capabilities could be associated with several
.topics (e.g. Dextrous Manipulator under Human Control, which
could be classified under Manipulators, Human-Machine Interfaces,
or Teleoperation Techniques). The study group assigned each
capability to the topic which seemed to describe the technical
challenge in the capability most écéurately (e.g. the Dextrous
Manipulator under Human Control was classified under Teleoperation
Techniques, because of the.difficulties in closing the multi-
media sensory-motor loop). One result of this procedure was that
several ARAMIS topics do not have any specific capebilities listed
under theﬁ. In the case of topic 5 (Self-Replication), no capa-
bilities were defined with that attribute. In the other cases
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(9. Force and Torque Sensors; 1l2. Other Sensors; 20. Data
Manipulation; 28. Reconfiguration and Fault Recovery), those
capabilities which might have been associated with these topics
were deemed more closely related to other, overlapping topics.

The ARAMIS capability code numbers were assigned by taking
the ARAMIS topic numbers (as listed in Table 3.2 above) and
adding sequential numbers to them. Thus 14.2 Dextrous Manipu-
lator under Human Control is the second capability listed under
topic 14: Teleoperation Techniques.

The study group wishes to emphasize the distinction between
ARAMIS topics and ARAMIS capabilities. The topics were broken
down from the overall field of ARAMIS, and have a considerable
amount of overlap between each other. The capabilities are
specific pieces of ARAMIS, defined as candidates to fulfill
specific generic functional elements. After their definition,
the capabilities were arbitrarily associated with topics, for
the convenience of the study researchers and recipients. Thus
the process of classification of ARAMIS was separate from the

process of definition of ARAMIS capabilities.

3.4.2 Production of ARAMIS Capability General Information Forms

A substantial part of the study effort was devotec tc the
further description of the defined ARAMIS capabilities. This
information is presented through the medium of ARAMIS Capabilityv
General Information Forms (one for each of the 78 capabilities

defined by the study group). An example of such a Form is showr
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in Table 3.4. All of the 78 forms are presented in Appendix 3.C:

ARAMIS Capability General Information Forms.

As shown in the example, each General Information Form
contains: the name of the capability; the capability's code
number; the date on which the Form was filled out; the names
of the researchers contributing to the Form; a definition of
the capability; identification of individuals and organizations
working on the concept; estimates of the dates on which the
capability will reach various technology levels; remarks and
(when available) data sources on the technology levels; esti-
mates (when available) of R&D costs between technology levels;
remarks and data sources on those cost estimates; remarks
on any special aspects of the capability; identification of
which other capabilities should be developed prior to this
one, to enhance its R&D; and a list of the code numbers of
the GFE's to which the capability applies.

The technology levels used in the Form are from the 7-level
scale used by NASA OAST's Space Systems Technology Model. These
levels are defined in Table 3.5. On this scale, a capability
at level 6 or 7 is available to the spacecraft designer at the
technology cutoff date. These levels are straightforward in
their application to hardware development. In software de-
velopment, however, levels 4 and 5 may be included in level 3:
in many cases, the first analytical test of software design

requires an all-up test of the software, equivalent to a "bread-



TABLE 3.4:

ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Computer-Controlled Dextrous Manipulator with Force Feedback
CODE NUMBER: 4.2 DATE: 6/28/82 NAME (S) : Kurtzman/Paige/ferreira

DESCRIPTION OF CAPABILITY: A multipurpose multifingered manipulator, under
computer control, and capable of operating under various geometries. The
system would be reprogrammable and would use input from force-feedback sensors
for final guidance and motion control.

WHO 1S WORKING ON IT AND WHERE: Ewald Heer and Antal Bejczy (JPL) ; Marvin
Minsky (MIT Al Lab); Dan Whitney (Draper Labs); Victor Sheinman (Automatix,
Burlington, MA); Tom Williams (DEC, Maynard, MA).

TECHNOLOGY LEVELS: LEVEL1: Now LEVEL2: Now LEVEL3: Now .
LEVELL: Now LEVEL5: 1986 LEVEL6: 1986 LEVEL7: 1989

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: Present and future levels were
"provided by Marvin Minsky. The intermediate levels were computed bv
interpolation based on the background of the study group.

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A L-5: $10-20 Million S-6: N/A 6-7: $2.5 Mitlion

REMARKS AND DATA SOURCES ON COST ESTIMATES: Dan Whitney suggested a figure of
$10-20 million to develop the whole system to level 6. Cost to go from level §
to level 7 was estimated at $2.5 million by extrapolating from a figure of S!
million to space rate a dedicated manipulator under computer contro! (Robert F.
Goeke, MIT Center for Space Research).

REMARKS ON SPECIAL ASPECTS: None
TECHNOLOGY TREES (PRIOR R&ED OF THESE IS DESIRABLE.): 4.1 Computer-Controlled
Specialized Compliant Manipulator; 15.2 Dextrous Manipulator under Human

Control; 19.1 A/D Converter.

CAPABILITY APPLIES TO (GFE NUMBERS): g27, 93!, g67, 973, gl3L, glL8. ql77.



TABLE 3.5:; TECHNOLOGY READINESS LEVELS

(from the May 1980 NASA OAST Space Sys-
tems Technology Model)

Level 1 Basic Principles Observed and Reported
Level 2 Conceptual Design Formulated

Level 3 Conceptual Design Tested Analytically
or Experimentally

Level 4 Critical Function/Characteristic
Demonstration

Level 5 Component/Breadboard Tested in
Relevant Environment

Level 6 Prototype/Engineering Model Tested
in Relevant Environment

Level 7 Engineering Model Tested in Space

board test in a relevant environment" for hardware. Thus, for
a number of the software-intensive ARAMIS capabilities, several
intermediate technology levels are reached concurrently. Simi-
larly, it can be difficult to pinpoint R&D costs for such inter-
mediate levels. The abbreviation "N/A" indicates either "not
applicable" or "not available" in the Forms.

The General Information Forms present the information which
was available to this general study. More detailed research,
such as the case studies planned for Phase II of this study, could
fill out such forms in greater depth, and improve time and cost
estimates. The format of these Forms was devised to be useable

in more detailed studies.
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The General Information Forms were filled out through
literature search, consultation, and conceptual design. They
were developed-and stored as computer files, and printed out
camera-ready for Appendix 3.C. The use of the computer in

this study is described in Appendix 4.F (Volume 4).

3.4.3 Favorable Sequences of R&D: Technology Trees

As mentioned above, for each ARAMIS capability, the General
Information Form includes a list of those capabilities from
whose earlier development this capability would benefit. 1In
other words, the prior development of the listed capabilities
enhances the R&D of the capability named at the top of the Form.
In some cases, the list can include some fundamental technologies
(e.g. Computer Programming Techniques, Computer Memory Develop-
ment) which also contribute to the R&D effort.

These lists of desirable prior R&D collectively form "tech-
nology trees", favorable sequences of development of ARAMIS
capabilities. The technology trees suggest an evolutionary flow
of R&D, in which early research on simple or fundamental capa-
bilities contributes to the later development of more complex
options.

The study group spent some time developing a straightforward
format for the display of Technology Trees. As it turns out, the
R&D of almost all of the 78 capabilities is interrelated, and

these capabilities also benefit from 12 fundamental technologies.

The study group therefore separated the overall tree into 8 more
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specific Technology Trees, with interconnections between the
trees. One of these 8 Technology Trees is presented in Figure 3.2.
This example illustrates a number of rules used in the
display of the Trees:
1) The Trees are presented as flowcharts, to be read from
top to bottom (i.e. the development of the capabilities and
technologies at the top of the figure enhances the R&D of the
capabilities lower down).

2) Each capability is displayed in a single box, and appears

only once in all the Trees. The fundamental technologies, how-

ever, are displayed in double boxes, and can appear in several
Trees; for example, Computer Programming Technigques appears in
several other Trees, besides the one in the example.

3) A direct enhancement of a capability's R&D by the prior
development of a capability or technology is indicated by a
solid arrow between them. However, capabilities are also con-
sidered to benefit from items further up the trees. For example,
14.2 Human on Ground with Computer Assistance benefits directly
from earlier R&D of 13.4 Computer Printout and of 13.2 Human
Eyesight via Graphic Display. However the Human on Ground with
Computer Assistance, through 13.2, also benefits from development
of 13.1 Human Eyesight via Video and 25.1 Onboard Dedicated Micro-
processor (from another Tree), and so on up the Trees. The
capabilities or technologies up those trees are said to be
"available"” to 14.2 Human on Ground with Computer Assistance.

[See Section 3.4.1 for a description of the capability code

numbers. ]
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4) Although a capability may have several strings of capa-

bilities and technologies "available" to it in the Trees, not
all of these are necessarily useful to the capability's R&D in

a particular . application. For example, some applications of
Human on Ground with Computer Assistance would not benefit from
earlier R&D of 13.2 Human Eyesight via Graphic Display, but
might benefit from Human Eyesight via Video, available through
13.2. Therefore some engineering judgement is needed in evalu-
ating the actual contributions of other capabilities or tech-
nologies. As another example, Human on Ground with Computer
Assistance benefits from the software development behind 25.1
Onboard Dedicated Microprocessor, not from the development of the
space-rated microprocessor itself.

5) In those cases where one of the "available" capabilities
several levels up the Tree is particularly relevant, this is
indicated by a dashed arrow. In the example, 14.7 Onsite Human
with Computer Assitance benefits from 13.1 Human Eyesight via
Video, through 14.2 and 13.2. However, 13.1 is considered to
contribute significantly to the R&D of 14.7, and therefore a
dashed arrow emphasizes the connection.

The study group found that the clearest separation of the 8
Technology Trees came from clustering ARAMIS topics into indi-
vidual trees. 1In the example, topics 13 (Human-Machine Interfaces)
and 14 (Human Augmentation_and Tools) are closely interrelated,
and are therefore displayed together in one Tree. In general,
clustering by topics minimizes the numbers of interconnections
between the Trees, simplifying the overall presentation.
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In the ARAMIS Capability General Information Forms presented
in Appendix 3.C, the lists of capabilities and technologies
which enhance the Form's capability include only those capa-
bilities directly connected to the capability in the Trees.

In other words, only those capabilities which send solid or
dashed arrows downward to the Form's capability in the figures,
are listed in the General Information Forms.

The technology tree information developed by the study group
contributes to the selection of promising applications of ARAMIS.
as described in Section 4.7 (Volume 4).

The 8 Technology Trees are displayed in Appendix 3.D:

Technology Trees.
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APPENDIX 3.A:

ARAMIS TOPICS AND THEIR DEFINITIONS

3.A.1 Notes on this Appendix

As described in Section 3.3.1, the study group organized the
field of ARAMIS into 28 "topics". There is considerable overlap
between topics. For clarity of presentation, these topics were
grouped into 6 general "areas", again with considerable overlap
between areas. Table 3.A.1 lists these areas and topics.

This appendix presents.brief definitions of the 28 topics,
including examples'as needed. The listing of topics and

definitions follows.
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ARAMIS TOPICS DEFINITIONS

MACH INERY

1)  AUTOMATIC MACHINES

Definition: These machines perform a predetermined operation or seguence
without human interaction.

This category includes all automatic machinery, from an air conditioner to a
time clock.

2) PROGRAMMABLE MACHINES
Definition: These are automatic machines which are also reprogrammabie.
Programmable machines are a subset of automatic machines, special in that
they can be reprogrammed, either by a human or by another system. A
numerically-controlled milling machine is an example of a programmable machine;
it can be programmed by a human operator locally, or it can be programmed by a
computer, as in a CAM system.

3)  INTELLIGENT MACHINES

Definition: These are programmable machines whose programs contain explicit
representations for the assumptions and conclusions of the problem, as well as
the rules used and the ways in which they were applied.

Such explicit data structures can give the user confidence that the program
will reach any conclusions it ought to reach, within its domain of knowledge.

Intelligence is not a ''yes or no' quality; a program may deserve to be
considered intelligent only in a certain range of thought. Example: a system
which solves electical circuits by solving a large system of equations is
merely automatic or programmable, but one which knows about various laws such
as Ohm’s law and applies them as appropriate to the circuit diagram has
intelligence in that particular domain.

An intelligent program may use the exact same information about the
particular problem as a noninteiligent one would use, but the information is
explicitly labeled in the intelligent program. For example, an intelligent
circuit-understander might have a datum saying "The voltage at point A is 5§
volts'", whereas a nonintelligent one would have a number 5 stored in a location
which only the program’s author knows represents the voltage at point A.

L) MANIPULATORS

Definition: Mechanical devices used for handling, alignment, and positioning
tasks. ‘

Manipulators include general-purpose and dedicated devices. Dedicated
manipulators are used for a specific task. Examples include sensor-aiming
devices and docking grapples. General-purpose manipulators are those intended
for a wide range of uses.

5) SELF-REPLICATION 4

Definition: The ability of a system to produce functional duplicates of
itself.

A tunar mining facility would have as a part of its output the products
necessary to duplicate itself. |Its manipulator systems could assemble
duplicates and provide them with operating instructions.
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SENSORS

6) RANGE AND RELATIVE MOTION SENSORS
Definition: Sensors that measure the distance to an object and its velocity
and acceleration relative to the sensor.

Range sensors include radars, proximity detectors, sonars, and laser
rangers,

7)  DIRECTIONAL AND POINTING SENSORS

Definition: Sensors that determine the direction of an object in the
sensor ’s reference frame.

These include star-trackers, horizon sensors, and radio direction finders.

8)  TACTILE SENSORS

Definition: Sensors that respond to touch or physical contact.

These include 'whiskers'" and silicone rubber tactile sensors. The former
sense contact at their tips. The latter operate on the principle that applied
pressure increases contact area, decreasing the electrical resistance, and
providing proportional sensing.

9) FORCE AND TORQUE SENSORS

Definition: These sensors measure forces and torques.

Force sensors include strain gages (used with material of known properties),
conductive silicone rubber (see Tactile Sensors), and pressure sensors. Torque
sensors may incorporate force sensors in the proper geometric relationship, or
may sense torque directly.

10) IMAGING SENSORS

Definition: These sensors return a two-dimensional information pattern,
forming an image.

Imaging sensors may be electromagnetic like television or radar, and may
operate at many wavelengths. Other imaging sensors include tactile arrays
which return an image of the pressure distribution in the sensor. Sonar is
another imaging sensor.

1) MACHINE VISION TECHNIQUES

Definition: Techniques for the extraction of information from images.

This includes: shape analysis (determination of an object’s dimensions and
characteristics); depth perception (ability to determine distances
perpendicular to the vision plane); lighting/shadow analysis (detection of
reflections, illumination sources, and shadows in an image); motion sensing
(detection and imaging of moving objects); pattern recognition (ability to
correleate a given set of points with a previously defined configuration);
image decomposition (the process of breaking down a large image); image
representation (the identification and characterization of a pattern from a
line arrangment); and labeling (assignment and association of an object to a
given tag).

12) OTHER SENSORS

Definition: This is the miscellaneous category. N

1t includes thermal sensors, radiation sensors, chemical analysers, electric
and magnetic field sensors, and acoustic detectors.
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HUMAN-MACH I NE

13) MAN-MACHINE INTERFACES

Definition: The system which converts information from a remote system to a
form understandable by the human operator, and converts the operator’s commands
into information for the remote system’s components or actuators.

This interface contains displays, operator controls, a communications
subsytem, and control subsystem. ODisplays are the devices which convert
information from the remote devices to a form the human operator can interpret.
Operator controls are the devices which convert commands from the operator to

information for transmission to the remote system. The communications
subsystem transmits the command and sensory information between the remote
system and the operator. The control subsystem coordinates all the sections.
The control subsytem may be entirely within the operator (as in a master-slave
manipulator system with force-feedback), or may involve additional hardware and
software (e.g. a computer in the loop to compute manipulator joint positions,
or to position sensors according to manipulator motions). |f the computer
takes over some operator functions and performs them under occasional human
scrutiny, this is called supervisory control.

14) HUMAN AUGMENTATION AND TOOLS

Definition: Devices and techniques that assist and augment humans in the
performance of a task.

Any method of extending human capabilities may be considered a tool or
augmentation. These include passive tools like a screwdriver and active ones
like a maneuvering unit. Teleoperation may also be considered as a tool, but
is often thought of separately.

15) TELEOPERATION TECHNIQUES

Definition: These are the systems and techniques used to teleoperate a
remote device. A teleoperator always has a human in the control loop, although
the human need not have total control. The prefix "tele' describes the ability
of this man-machine system to project man’s senses and abilities across
distances and through physical barriers.

These techniques determine the hierarchy of control in a teleoperated
system. Supervisory control is one teleoperation technique; force-feedback is
another.

16)  COMPUTER-AIDED-DESIGN

Definition: A technique for automating the design of systems.

CAD systems range from simple automated drafting machines to complex units
which can analyze and predict the impact of a change of one or more components
upon the entire design.

~ DATA HANDLING

17) . DATA TRANSMISSION TECHNOLOGY

Definition: The technology by which data is transmitted from one point to
another.

This includes acoustic couplings, radio links, microwave beams, laser 1inks,
and fiber optic links.
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18) DATA STORAGE -AND RETRIEVAL .

Definition: The hardware and software used for storage and retrieval of
information in advanced data storage systems. This can include the mode!ling
and usage of ''common sense' (facts outside the subject domain).

Intelligent access to data bases is necessary to handle large amounts of
information. Facts are derived from information, which in turn is composed of
data. The deduction of requested facts is complicated by the human use of
‘'common sense'' in database requests. For example, a LANDSAT data retrieval
system might be asked to find and retrieve images recorded at some given
subject domain--say, Columbus, Ohio in August 1979. This request would be
simple to meet, but inclusion of common knowledge in the request (i.e., omit
images that show only cloud cover), may be beyond the capabilities of
elementary database-retrieval systems. '

19) DATA AND COMMAND CODING

Definition: The technique of encoding and decoding information for
transmission or manipulation. .

This includes data compression and encryption schemes, error checking and
correcting codes, and data conversion from one form to another  (such as analog
to digital conversion).

20) DATA MANIPULATION

Definition: A process which operates on and alters a set of data.

This includes: data filtering and enhancement, to improve the accuracy of
the input stream; preliminary operations on the input stream, such as
classifying the input data into a spectrum; onboard evaluations such as
comparision to a world model and identification of anomalous data. !n general,
these are operations to enhance or select information in the data. They may
include large-scale computation, e.g. the numerical processing of a LANDSAT
image.

COMPUTER INTELLIGENCE

21) SCHEDULING AND PLANNING

Definition: Scheduling and planning problems involve finding and specifying
optimal or best case schedules {combinations).

Automated scheduling and pltanning systems find workable schedules while
trying to avoid 'combinatorial explosion" (i.e. attempting to minimize the
increase in problem difficulty with growing problem size). An example of a
scheduling combinatorial explosion could be satellite data access to ground
receiving stations: given widely-varying orbital characteristics for each
satellite, the regular scheduling of needed satellite access to ground stations
may become difficult or impossible as the number of satellites using the
stations increases.
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22) AUTOMATIC PROGRAMMING

Definition: Takes a very "high level" (natural-like) description of a
program’s objectives and produces a program from it.

This category, related to problem solving and the proving of theorems,
concerns the theory and design of ''super compilers'; that is, programs which
write programs to produce specified results.

23)  EXPERT CONSULTING SYSTEMS
Definition: Systems that provide users with "expert" conclusions about
specialized subject areas.

These systems operate on relational data bases, consisting of well-specified
representations of information relevant to the problem and of "rules"
describing relationships between pieces of the data base. These rules are
typically if-then relationships (e.g. if component A fails, then component B
will measure 5 volts in the circuit).

Existing medical diagnosis expert systems (e.g. MYCIN and EMYCIN at
Stanford Al) compare input symptoms to their relational data bases, and compute
probabilities of various potential diagnosies. They can request specific
information to improve their deductions. Such systems currently have
diagnostic abilities equivalent to a first-year intern.

24) DEDUCTIVE TECHNIQUES (THEOREM PROVING)

Definition: The study and development of the deductive process, using
mathematical languages (predicate logic).

A basic problem-solving technology, closely related to automatic
programming. The chief difference between the two is that automatic
programming constructs a path to a given goal, while theorem-proving techniques
verify that the desired results are produced by a proposed path. Theorem
proving involves a network structure of definitely-true if-then statements.
The theorem prover compares a new hypothesis to this structure, attempting to
disprove the hypothesis; if the theorem prover cannot disprove it, the
hypothesis is called true.

25)  COMPUTER ARCHITECTURE

Definition: The design of processor hierarchies and configurations, both in
hardware and software.

An example of this is a control system with a central computer commanding
several microprocessors, each of which controls some individual element or
subsystem of the whole. Another example is parallel processors sharing a task
and resources.

FAULT DETECTION & HANDLING

26) RELIABILITY AND FAULT TOLERANCE

Definition: The part of the design and operation of a system concerned with
overall lifetime, failure rate, and resistance of the total system to failure
once a component has failed.

High reliability is always desirable, but it must be traded-off against
cost. Also, intelligent systems, which can seif-repair or ‘'vote' between
redundant components, may permit use of cheaper, less reliable parts than
non-intelligent systems. Fault tolerant systems may not require active
(intelligent) response to a failure.
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27) STATUS MONITORING AND FAILURE DIAGNOSIS

Definition: Monitoring system conditions and modeling system status to
diagnose failures and detect potential failures.

For example, a spacecraft with a sudden power loss must determine the type
and cause of the problem. It must first check that there was an actual power
loss and not a sensor failure or software error. Then it must decide if it is
a failed solar array, a short in a power bus, or a failed power conditioning
unit.

28) RECONF IGURATION AND FAULT RECOVERY
Definition: Changing the system configuration to allow for maintenance or a
change of operating modes, or to recover from hardware or software failures.
For example, a satellite with a failed attitude control system and a large
pointing error would shut down all nonessential systems to conserve power.
Then it would use the backup attitude control system to reorient the
spacecraft. With the spacecraft’s solar arrays once again receiving power, the
spacecraft could reactivate the systems which were shut down and resume normal
operations.
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APPENDIX 3.B:
ARAMIS BIBLIOGRAPHY

This appendix presents some of the literature found useful
by the study group. Other data sources appear in ARAMIS Capa-
bility General Information Forms (Appendix 3.C) and Application
Forms (Appendix 4.E in Volume 4), and in references listed at the
end of each volume of this report. Other useful sources of
information are discussed in Section 3.3.2.

For ease of accession, this bibliography is presented in two
major sections. The first section, called "ARAMIS Bibliography",
is organized accordiﬁg to the 6 "areas" and 28 "topics" defined
by the study group to classify the field of ARAMIS. These areas
and topics are listed in Table 3.B.l1. Because there are over-
laps between topics, and because some sources deal with several
topics, a number of listings appear several times, under diffefent
topics. The reader may also be referred to other related topics
for data sources.

The second major section, called "Bibliography (organized by
GFE type)", is organized according to the 9 types éf GFE's de-
fined in Section 4.4.1 (Volume 4):

A) Power Handling

B) Checkout

C) Mechanical Actuation

D) Data Handling and Communication
E) Ménitoring and Control
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F) Computation

G) Decision and Planning -
H) Fault Diagnosis and Handling

I) Sensing

Here also, there are overlaps between types of GFE's, and
therefore some listings appear under several different headings.
Some types of GFE's correspond closely to ARAMIS topics or
areas (e.g. C. Mechanical Actuation with the area of Machinery),
and the reader may then be referred to those areas and topics
for data sources.

The two major sections of the bibliography, on Automation,

Robotics, and Machine Intelligence Systems, follow.
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ARAMIS BIBLIOGRAPHY
MACHINERY
1) AUTOMATIC MACHINES

W. E. Bradley, '"Process Automation and Al', Memorandum prepared for NASA
HQ Administrator’s 0ffice, May 2, 1980.

""DeVilbiss-Trallfa Robot", Robotics Today, Winter 1980-81.

R. L. Douglas, '"Programmable and Computer Control for Assembly Machines",
SME, Engineering Technical Paper, 1977.

E. Heer, 'New Luster for Space Robots and Automation', Astronautics &
Aeronautics, September, 1978.

E. Heer, "Report of the JPL Advocacy Group for Autonomous Systems
Technology Research and Bevelopment'!, JPL Report No. 715-128,
June, 1981.

E. Heer, "Robots in Modern Industry", Astronautics & Aeronautics,
Vol.19, No. 9, September, 1981.

J. D. Lane, "Evaluation of a Remote Center Compliance Device", Assembly
Automation, Vol. 1, No. 1, November 1980.

J. C. Lowndes, "USAF Seeks Increased Robot Precision', Aviation Week
& Space Technology, March 1, 1982.

"Mobot Corp'", Robotics Today, Winter 1980-81.

M. Minsky, "Mini-Robot Proposal to ARPA'", M.I.T. Artificial Intelligence
Laboratory, January, 1972.

J. L. Nevins, & D. E. Whitney, et al, '"Categorization and Status of
Assembly Research', C. S. Draper Laboratory, Cambridge, MA.,
June, 1976.

B. D. Osborne, '"Solar Cell Gravity-Stabilization Booms', 1st Aerospace
Mechanisms Symposium, 1960.

T. Ohmi, M. Kanai, & F. Honda, '"Research and Development of a Flexible
Manufacturing System Complex Provided with Laser - A Japanese
National Project', Workshop on Flexible Manufacturing Systems,
Peoria, lllinois, September, 1978.

D. J. Powell, "Automated Fabrication of Large Space Structures',
Astronautics & Aeronautics, Vol. 16, No. 10, October, 1978.

D. G. Powley, & G. B. Brook, 'The Design and Testing of a Memory Metal
Activated Boom Release Mechanism'", Paper Draft received from
L. McDonald Schetky, Technical Director, Metallurgy, International
Copper Research Association, Inc., New York.
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"Robots are Coming to Industry’s Service', The Economist, August 28,

1981.

L. M. Schetky, "Shape-Memory Alloys', Scientific American, November,

19789.

"Special Report: The Speedup in Automation', Business Week, August 3,

1981.

P. M. Will, "Computer Controlled Mechanical Assembly", SME, Engineering

Technical Paper, 1975.

2) PROGRAMMABLE MACHINES

"The Advent of APAS'", Manufacturing Engineering, April, 1979.

“"APAS: Answer for Batch Assembly'", Manufacturing Engineering,

R.

December, 1978.

. Abraham, '"Programmable Automation of Batch Assembly Operations',

The tndustrial Robot, September, 1977.

. Albus, '&§ J. M. Evans Jr., "Robot Systems', Scientific American,

February, 1976.

Bolles, & R. Paul, "The Use of Sensory Feedback in a Programmable

Assembly System'", STAN-CS-396, Stanford Artificial iIntelligence
Laboratory, October, 1973.

. Binford, et al, "Exploratory Study of Computer Integrated Assembly

Systems'', Progress Report, Stanford University, November, 1875.

Cook, "Computer-Managed Parts Manufacture'!, Scientific American,
February, 1975.

. Dallas, '"The Robot Enters the System', Manufacturing Engineering,

february, 1979.

. Douglas, "Programmable and Computer Control for Assembly Machines",

SME, Engineering Technical Paper, 1977.

Elgin, "Computer-Aided Assembly', Engineering Paper, SME, 1975.

. Fernandez, "Application of a Computer Controlled Robot to Remote

Equipment Maintenance', |AS Conferance Record, September 1980.

Heer, "Robots and Manipulators'", Mechanical Engineering, November,

1981.

Hosier, "Arc-Welding Times Slashed by Robot at AiResearch', Welding

Journal, January. 1971.
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S. Motiwella, "Continuous Path Control with Stepping Motors', Robotics
Age, July/August, 1981.

G. E. Munson, '""Robots Quietly Take Their Places Alongside Humans on the
Production Line to Raise Productivity ~ and do the ’‘Dirty Work’",
|EEE Spectrum, October, 1878.

J. L. Nevins, & D. E. Whitney, ''Computer-Controlled Assembly",
Scientific American, February, 1978.

J. L. Nevins, et al, "Exploratory Research in Industrial Modular
Assembly', C. S. Draper Laboratory Report No. R-996, C. S. Draper
Laboratory, August, 1976.

J. L. Nevins, & D.E. Whitney, "Research on Advanced Assembly Automation",
Computer, December, 1977. '

"Robots: A New Force in Continuous Arc Welding", Manufacturing
Engineering, September, 1975.

"Robots Join the Labor Force', Business Week, June 9, 1980.

J. W. Saveriano, '"Industrial Robots, Today and Tomorrow', Robotics Age,
Summer, 1980.

R. N. Stauffer, "A New Concept in Flexible Automation'", Manufacturing
Engineering, January, 1978.

R. N. Stauffer, "Robot V Showcases Many New Developments', Robotics
Today, Winter 1580-81.

P. A. Renkev, '"Looking Ahead to a World of Robotics", Science Press,

1978.

3) INTELLIGENT MACHINES

“"AlAA Sensor Systems for the 80’s'" Conference proceedings, Colorado
Springs, C0., December, 1980.

A. P. Ambler, et al, '"A Versatile System for Computer Controlled
Assembly", Artificial Intelligence 6, North-Holland Publishing Co.,
1975.
[A Description of a versatile assembly system using TV cameras, a
computer-controlled arm, and a moving table.] :

J. Birk, & R. Kelley, "An Overview of the Basic Research needed to
Advance the State of Knowledge in Robotics', April, 1980.
[Description of workshop which identified the scientific knowledge

~ needed for a firm foundation for robotics.]

W. M, Bulkeley, '"Self-Servicing Machines Fast Becoming Reality,

Offering the Appeal of Reliability at Lower Cost', Wall Street
Journal, August 13, 1979,
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Department of Energy, "Workshop to Delineate the Economic, Technical, and

M.

Policy lIssues for Remote Maintenance in Energy Systems', University
of Florida, March, 1981.

Esiri, et al, "A Prototype Intelligent Robot that Assembles Objects
from Plan Drawings", IEEE Transactions on Computers, Vol. C-21,
No. 2, February, 1972.

B. Gevarter, '"An Overview of Artificial Intelligence and Robotics",
U.S. Department of Commerce, National Bureau of Standards,
NBSIR 82-2479, March, 1982.

B. Gevarter, '"Federal Programs in Artificial Intelligence",
Proceedings of the fifth International Joint Conference on
Artificial Intelligence, August 1977.

[Discussion of what robotics and machine intelligence is being
researched by various government agencies.]

Heer, "New Luster for Space Robots and Automation', Astronautics &
Aeronautics, September, 1978.

Heer, "Robots and Manipulators', Mechanical Engineering, November,

1981.

. Heer, "Robots in Modern Industry'", Astronautics & Aeronautics,

September, 1981.

Heer, "Toward Automated Operations in Space", Astronautics &
Aeronautics, May, 1979. :

. B. Heginbotham, P. W. Kitchin, & A. Pugh, "Visual Feedback Applied to

Progammable Assembly Machines'", University of Nottingham,
Nottingham, England.

. Kirk, "Japanese robotics: A Drive for Supremacy", The Boston Globe,

Sunday, February 14, 1982.
[Discussion of Japanese effort to surpass America to become the
number one robot developer in the world.]

E. Long, & T. J. Healy, 'Advanced Automation for Space Missions:
Technical Summary'", NASA/ASEE Summer Study, University of Santa
Clara, Santa Ctara, CA., September, 1980.

. R. McColm, "Robots of Japan', Omni, Vol. 4, No. 4, January, 1982.

J. Nilsson, "Principles of Artificial Intelligence", Tioga Publishing
Co., Palo Alto, Ca., 1980.

J. Nilsson, "Problem-Solving Methods in Artificial Intelligence",
McGraw-Hill Book Co., NY, 1971.



C. F. Ruoff, "PACS - An Advanced Multitasking Robot.System", The
Industrial Robot, June, 1980.

C. Sagan, '"Machine Intelligence and Robotics: Report of the NASA Study
Group', NASA, Washington D. C., March, 1980.

H. A. Simon, "Studying Human Intelligence by Creating Artificial
Intelligence'", American Scientist, May-June, 1881.

"Use of Robots is Picking Up'", New York Times, Business Day,
November 28, 1980.
[Description of General Electric Technical Center in Warren
Michigan.]

P. Weintraub, "Raising the Robot’s 1.Q.", Discover, June, 1981.
[Current research, information, and interviews about industrial
robots.]

K. K. Wiegner, “"The Dawn of Battle', Forbes, October 26, 1981.
[Discussion of Japanese Robotics.]

P. H. Winston, "Artificial Intelligence", Addison-Wesliey, Reading, MA,
1977.

L. S. Yarbrough, "MSFC Automation R&T Program', Research and Technology
Office, Science & Engineering Directorate, NASA Marshall Space
Flight Center, February, 1981.

4) MANIPULATORS
“"The Advent of Turnkey Robotic Systems', Robotics Today, fall, 1980.

F. M. Amram, "Robotics: The Human Touch', Robotics Today, Winter,

1981-82.

A. K. Bejc2y, & G. Paine (JPL), "Displays for Supervisory Control of
Manipulators', in '"Proceedings of 13th Annual Conference on Manual
Control", M.1.T., 1977.

R. H. Cannon Jr., "Automatic Control & Robotics', in "Research Needed to
Advance the State of Knowledge in Robotics", Workshop, Rhode lsland
University, NSF Grant Eng 79-21587, April, 1980.

S. Deutsch, & E. Heer, "Manipulator Systems Extend Man’s Capabilities in
Space'", Astronautics & Aeronautics, June, 1972.

W. L. DeRocher Jr., "integrated Orbital Servicing Study for Low-Cost

* ~ Payload Programs'", Final Report, Vol 1i, Martin Marietta
Corporation, September, 1975.

3B.8



W. L. DeRocher, & J. R. Tufner. “"Orbital Servicing of Space Platforms",
AlAA Conference on Large Space Platforms, September, 1978.

S. H. Drake, '"Using Compliance Instead of Sensory Feedback for High
Speed Robot Assembly', SME, Engineering Technical Paper, 1977.

"Engineering Design - General Numeric’s GNO Robot'", Robotics Today,
Spring, 1981.

“"]st Conference on Industrial Robot Technology', University of
Nottingham, U.K., June, 1973.

J. D. Graham, et al, '"“Space Manipulators Present Capability and Future
Potential”, AIAA/NASA Conference on Advanced Technology for Future
Space Systems, May, 1975.

E. Heer, & A. K. Bejczy, 'Control of Robot Manipulators for Handling &
Assembly in Space', 2nd |FAC-IFIP Symposium on Information Control
Problems in Manipulator Technology, October, 1979.

t. Heer, "Robots and Manipulators', Mechanical Engineering, November,

1981.

B. K. P. Horn, "What is Delaying the Manipulator Revolution?", Artificial
Intelligence Laboratory, M.!.T., February, 1978.

"How to Apply Robots', Presentation by Robot Systems Inc., Norcross,
California.

“"How Japan’s Robot Industry is Shaping Up to the Future'", Industrial
Robot, December, 1980.

J. D. Lane, '"Evaluation of a Remote Center Compliance Device', Assembly
Automation, Vol. 1, No. 1, November 1980.

J. W. Leach, "Development of an Inflatable Radiator System'", Vought
Corporation, Systems Division for NASA, 1976.

G. Lundstrom, "A New Method of Designing Grippers'", 3rd conference on
Industrial Robot Technology & 6th International Robot Technology
Symposium on Industrial Robots, 1976.

P. Neuman, "Application of Optimal and Adaptive Algorithm Control to the
System Robot-Manipulator in Cosmic Space', International
Astronautical Federation, September, 1977.

'""Robots at the Regie Renault", Industrial Robot, Vol. 7, March, 1980.

"Robots Join the Labor Force', Business Week, June 9, 1980.

3B.9



Roth, Rastegar & Sheinman, "On the Design of Computer Controlled
Manipulators', Symposioum on Theory & Practice of Robots &
Manipulators, 1st CISM -1FToMM Symposium, 1979.

J. W. Saveriano, "Industrial Robots Today & Tomorrow'", Robotics Age,
Summer, 1980.

"Shuttle Flight Operations Manual: Payload Deployment and Retrieval
System', NASA Johnson Space Center Flight Operations Directorate,
Crew Training Division, June, 1981.

P. Slysh, & D. Kugath, "Large Space System Automated Assembly Technique'",
Collection of Technical Papers from NASA/AIAA Conference on
Advanced Technology for Future Space Systems, May, 1979.

R. N. Stauffer, "11th International Symposium on industrial Robots',
Robotics Today, Winter, 1981-82.

"Technical Proposal for Preliminary Design of a Shuttle Docking and
Cargo Handling System', North American Rockwell, Space Division,
April, 1971.

“"Theory and Practice of Robotics and Manipulators', Proceedings of 2nd
International CISM-IFToMM Symposium, 1977.

G. Vasilash, "Engineering Design - A look at Auto-Mace'", Robotics
Today, Fall, 1980.

D. E. Whitney, & J. L. Nevins, '"What is the Remote Center Compliance
and What Can It Do?'", C. S. Draper Laboratory, Cambridge, MA.,
1978.

5) SELF-REPLICATION

W. Chapman, ‘‘Japanese Open 0Offensive for Technological Gains with Robot
Development'", The Washington Post, October 13, 1980.

R. A. Freitas Jr., & W, B. Zachary, "A Self-Replicating, Growing Lunar
Factory", Paper Draft.

J. E. Long, & T. J. Healy, "Advanced Automation for Space Missions:
Technical Summary', NASA/ASEE Summer Study, University of Santa
Clara, Santa Clara, CA., September, 1980.

L. S. Yarbrough, '"MSFC Automation R&T Program', Research and Technology

Office, Science &§ Engineering Directorate, NASA Marshall Space
Flight Center, February, 1981. -

3B.10



G. F. von Tiesenhausen, & W. A. Darbro, "Self-Replicating Systems - A
Systems Engineering Approach', NASA TM-78304, Marshall Space
Flight Center, July, 1980.

G. von Tiesenhausen, "Conceptualization of a Self-Replication Space
System (SRS)', Marshall Space Flight Center, February, 1980.

SENSORS
6) RANGE & RELATIVE MOTION SENSORS

J. S. Albus, "Final Report - Proximity Vision System for Protoflight
Manipulator Arm", NASA-CR-158652, August, 1978.

A. K. Bejczy, "3-D Guidance with Proximity Sensors', NASA Technical Brief
Vol. 5, No 2, ltem 73, JPL Invention Report, NP0-14,521/30.4201,
September, 1980.

R. A. Lewis, & A. R. Johnston, ""A Laser Scanning Rangefinder for a
Robotic Vehicle', NASA Technical Memorandum 33-809, February 15,
1977.

C. A. Rosen, & D. Nitzan, "Use of Sensors in Programmable Automation',
Computer, December, 1977.

7) DIRECTIONAL & POINTING SENSORS

P. Kinnvean, "How Smart Robots Are Becoming Smarter', High Technology,
September/October, 1981.

R. A. Lewis, & A. R. Johnston, "A Laser Scanning Rangefinder for a
Robotic Vehicle'", NASA Technical Memorandum 33-809, February 15,
1977.

8) TACTILE SENSORS
R. Bolles, & R. Paul, "The Use of Sensory Feedback in a Programmable
Assembly System', STAN-CS-396, Stanford Artificial Intelligence
Laboratory, October, 1973.

P. Kinnvean, '"How Smart Robots Are Becoming Smarter", High Technology,
September/October, 1981.

C. A. Rosen, &§ D. Nitzan, "Use of Sensors in Programmable Automation',
Computer, December, 1977.

3B.11



9) FORCE & TORQUE SENSORS

R. Bolles, & R. Paul, "The Use of Sensory Feedback in a Programmable

Assembly System', STAN-CS-396, Stanford Artificial Intelligence
Laboratory, October, 1973.

C. A. Rosen, & D. Nitzan, "Use of Sensors in Programmable Automation',

Computer, December, 1977.

P. Weintraub, "Raising the Robot’s 1.Q.", Discover, June, 1981.

(Current research, information, and interviews about industrial

robots.]

10) 1MAGING SENSORS

"Cruise Missile with Laser Radars Studied", Aviation Week & Space

Technology, December 1, 1980.

T. M. Cannon, & B. R. Hunt, 'Image Processing by Computer', Scientific

American, October, 1981.

L. Driscoll, & J. Levine, "A Contour Recognition Method for ldentifying

Part Orientation in Automatic Assembly", Society cf Manufacturing
Engineers, 1975.

C. A. Harlow, et al, '"Automated Inspection of Electronic Assemblies',

Computer, April, 1975.

P. Kinnvean, "How Smart Robots Are Becoming Smarter', High Technology,

September/October, 1981.

M. Lampton, "The Microchannel Image Intensifier'", Scientific American,

R.

A.

-

November, 1981.

Lewis, &€ A. R. Johnston, "A Laser Scanning Rangefinder for a
Robotic Vehicle'", NASA Technical Memorandum 33-809, fFebruary 15,
1977.

""NASA Mathematician Solves Major Computer Imaging Problem', NASA

Activities, October, 1981.

. Rosen, & D. Nitzan, '"Use of Sensors in Programmable Automation',

Computer, December, 1977.

. Schappell, et al, "Application of Advanced Technology to Space

Automation', NASA Contract NASW-3106, Martin Marietta Corporation,
Denver, Colorado, January, 1879.

3B.12



11) MACHINE VISION TECHNIQUES

G.

J. Agin, & R. 0. Duda, "SR! Vision Research for Advancd Industrial
Automation', 2nd USA-JAPAN Computer Conference, 1975.

. Bolles, & R. Paul, "The Use of Sensory Feedback in a Programmable

Assembly System', STAN-CS-396, Stanford Artificial Intelligence
Laboratory, October, 1973.

M. Cannon, & B. R. Hunt, 'image Processing by Computer', Scientific
American, October, 1981.

Cunningham, ''Segmenting Binary Images', Robotics Age, July/August,
1981.

. Drinan ed., '"Proceedings of the Seventh International Joint

Conference on Artificial Intelligence', 1JCAI-81, Vol. I, 1981.

. Gennery, et al, "Computer Vision', NASA/JPL Publication 81-92,

November 1, 1981.

. Geschke, ''A Robot Task Using Visual Tracking'", Robotics Today,

Winter, 1981-82.

. Gleason, & G. Agin, "The SRI Vision Module'", Robotics Today,

Winter, 1980-81.

. B. Heginbotham, P. W. Kitchin, & A. Pugh, "Visual Feedback Applied to

Progammable Assembly Machines', University of Nottingham,
Nottingham, Engiand.

Hildenbrand, '"Consight: Robot with Vision Automates Parts Handling",
Search, July/August, 1979.

. M. Hollerbach, "Hierarchical Shape Description of Objects by Selection

and Modification of Prototypes', M.1.T. Artificial Intelligence
Laboratory, November, 1975.

K. P. Horn, "Vision Review", M.|.T. Artificial Intelligence
Laboratory, May, 1978.

C. Movich, "Robotic Drilling and Riveting Using Computer Vision",
Robotics Today, Winter, 1980-81.

Nagel, et al, "Experiments in Part Acquisition using Robot Vison',
Robotics Today, Winter, 1980-81.

A. Roser (SR!), "Topics in Programmable Automation', The 2nd
Conference on Remotely Manned Systems (RMS), JPL, June, 1975.

. Speckert, '"Hand Eye Coordination', M.!1.T. Artificial Intelligence

Laboratory, Working Paper 127, July 1976.
3B.13



C. Sheffield, "Earth Watch'", Macmillan Publishing Co., Inc., New York,
New York, 1981.

J. T. Tou, &§ R. C. Gonzalez, "Pattern Recognition Principles",
Addison-Wesley, London, 1974.

S. Watanbe ed., "Proceedings of the International Conference on Frontiers
of Pattern Recognition', Academic Press, New York, 1972.

D. Williams, et al, '"Robotic Vision'", Astronautics & Aeronautics,
May, 1979.

P. Winston, & R. H. Brown ed., "Artificial Intelligence, An M.I|.T.
Perspective", M.I1.T. Press, 1979.

P. Winston, 'Progress in Vision and Robotics", M.l1.T. Artificial
Intelligence Laboratory, May, 1973.

P. Winston, '"Psychology of Computer Vision'', McGraw Hill, 1975,

12) OTHER SENSORS

C. A. Rosen (SRI), "Topics in Programmable Automation', The 2nd
Conference on Remotely Manned Systems (RMS), JPL, June, 1975.

HUMAN-MACHINE

13) HUMAN-MACHINE INTERFACES

A. K. Bejczy, & G. Paine (JPL), '"Displays for Supervisory Control of

Manipulators', in "Proceedings of 13th Annual Conference on Manual
Control', M.1.T., 1977.

A. K. Bejczy, "Sensors, Controls, and Man-Machine Interface for Advanced
Teleoperation', Science, Volume 208, No. 4450, June, 1980.

T. L. Brooks, '"SUPERMAN: A System for Supervisory Manipulation and the
Study of Human/Computer Interaction', M. S. Thesis, M.I.T. Mech Eng
Dept., May 11, 1979.

Essex Corp., "Earth Orbital Teleoperator Systems (EOTS) Evaluation: Year
End Report", Essex Corp., Hunstville, Alabama, 1978.

J. W. Hill, "Study. of Modeling and Evaluation of Remote Manipulation
Tasks with Force Feedback', SRI Artificial Intellegence Center,
Computer Science & Technology Div., March, 1979.

D. G. Jansson, & J. T. Goodhue, "Medical Applications of a New 3-D
Display System', M.i.T. innovation Center, 1981.

E. G. Johnson, & W. R. Corliss, "Human Factor Applications in
Teleoperator Design and Operations', Wiley, 1971.

T. B. Sheridan, W. L. Verplank, & T. L. Brooks, '‘Human/Computer Control
of Undersea Teleoperators', Proceedings of the International
Conference on Cybernetics and Society, |EEE, November, 1978.

3B.14



14) HUMAN AUGMENTATION & TOOLS

Essex

Corp., "Analysis of Large Space Structures Assembly, Volume I:
Large Space Systems Man/Machine Assembly Analysis", Essex Corp.,
Huntsville, Alabama, March, 1981.

General Dynamics, ''Space Construction Automated Fabrication Experiment

Jo T

Definition Study (SCAFEDS) Part |I11", General Dynamics, Convair
Div., San Diego, CA., June 1979.

Josephson, et al, "Manned Maneuvering Unit - A Space Platform
Support System', AIAA Conference on Large Space Systems, September,

1978.

15) TELEOPERATION TECHNIQUES

0. L.

Barron, '"Space Teleoperation Computer System Requirements',
University of Tennessee.

Bejczy, '"Advanced Teleoperators', Astronautics & Aeronautics,
May, 1979.

. Bejczy, & T. L. Brooks, '"Advanced Control Techniques for

Teleoperation in Earth Orbit'", AUVS-80 Conference, June, 1980.

. Black Jr., "Factorial Study of Remote Manipulator with Transmission

Time Delay", M. S. Thesis, M.l1.T., Mech. Eng Dept., December, 1970.

Brooks, '"SUPERMAN: A System for Supervisory Manipulation and the
Study of Human/Computer Interaction", M. S. Thesis, M.!.T. Mech Eng
Dept., May 11, 1979.

S. Deutsch, & E. Heer, "Manipulator Systems Extend Man’s Capabilities in

Essex

Space', Astronautics & Aeronautics, June, 1972.

Corp., "Earth Orbital Teleoperator Systems Evaluation: Year End
Report'", Essex Corp., Hunstville, Alabama, 1978.

. Ferrel, & T. B. Sheridan, '"Supervisory Control of Remote

Manipulation", |EEE Spectrum, Vol. 4, No. 10, October, 1967.

. Hill, & J. K. Salisbury Jr., "Study to Design and Develop Remote

Manipulator Systems', SRI International, NASA Contract NAS-8652,
November, 1977.

. Hill, “Study of Modeling and Evaluation of Remote Manipulation

Tasks with Force Feedback'!, SRI Artificial Intelligence Center,
Computer Science & Technology Div., March, 1978.

. Hill, & A. J. Sword (SR!), "Touch Sensors and Control", Remotely

Manned Systems, E. Heer ed., September, 1972,

3B.15



E. G. Johnsen, '"Man, Teleoperators and Robots: An Optimum Team for Space
Exploration', AIAA Space Systems Meeting, Denver, Colorado, July,

1971.

E. G. Johnsen, & W. R. Corliss, '"Human Factor Applications in
Teleoperator Design and Operations', Wiley, 1971.

E. G. Johnsen, & W. R. Corliss, "Teleoperators & Human Augmentation',
AEC-NASA Technology Survey (NASA SP-5047), December, 1967.

E. G. Johnsen, § W. R. Corliss, "Teleoperator Controls', AEC-NASA
Technology Survey (NASA SP-5070), December, 1968.

N. Leverance, & R. Northouse, '"Ralph - A Microprocessor-based Telerobot',
1975 International Conference on Cybernetics & Society in [EEE,
September, 1975.

"Evaluation of Automated Decision Making Methodology, Development of
integrated Robotic Systems Simuiation’, NASA Contract NAS1-16757,
Martin Marietta Corp., March, 18982.

M. Plainer, "Teleoperation and Automation', EUROSAT, S. A., Geneva, 1981.

J. A. Purbrick, "A force Transducer Employing Conductive Silicone
Rubber', Draft Paper, M.1.T. Artificial Intelligence Laboratory,

1981.

C. A. Rosen (SRI), "Topics in Programmable Automation', The 2nd
Conference on Remotely Manned Systems (RMS), JPL, June, 1975.

D. Saltman, & G. Williams (11, "Magic Mirrors'", Omni, February, 1982.

E. L. Saenger, & C. D. Pegden, '"Terminal Pointer Hand Controller and
other Recent Teleoperator Controller Concepts: Technology Summary
and Application to Earth Orbital Missions'", Remotely Manned
Systems, £. Heer ed., September, 1972.

T. B. Sheridan, W. L. Verplank, & T. L. Brooks, 'Human/Computer Control

of Undersea Teleoperators', Proceedings of the International
Conference on Cybernetics and Society, IEEE, November, 1§78.

16) COMPUTER-AIDED DESIGN

"CAD/CAM: Review and Outlook', Merrill Lynch, September 28, 1981.
[Includes list of organizations marketing CAD systems.]

3B.16



Manufacturing Engineering, January, 1973.
[An entire section of this issue is devoted to Computer-Aided
Design and Manufacture.]

[Several aerospace manufacturers (e. g. Boeing, Lockheed, G. E.) have
developed sophisticated inhouse CAD systems. NASA has an active
program to develop CAD technology at Langley Research Center:
Integrated Programs for Aerospace-Vehicle Design (IPAD). This
program is coordinated with the USAF Integrated Computer-Aided
Manufacturing Program (I1CAM).]

DATA HANDLING
17) DATA TRANSMISSION TECHNOLOGY

R. H. Cannon Jr., "Automatic Control & Robotics'", in '"Research Needed to
Advance the State of Knowledge in Robotics", Workshop, Rhode Island
University, NSF Grant Eng 79-21587, April, 1980.

W. Cook, et al, "An Experiment in High Speed Computer Communications via
Satellite'", AIAA, 1978.

P. Foldes, "Ka-Band, Multibeam, Continuous Coverage Satellite Antennas
for U.S5.", Journal of Spacecrafts and Rockets, Vol. 18, No. 1,
1980.

0. G. Gabbard, & P. Kaul, "Time-Division Multiple Access', AlAA,
New York, 1974.

Ivan Kadar ed., "Satellite Communications Systems', American Institute of
Aeronautics & Astronautics, New York, New York, 1976.

R. M. Lester, '"Telesat: Canada Plans for New Satellite System", Journal
of Spacecrafts and Rockets, Vol. 17, No. 2, 1980.

National Space Club, 'NASA’s Next Decade in Space'", Tyson’s Corner, VA.,
July 28, 1981,

L. Pollack, '"Technology for Future INTELSAT Satellite", Journal of
Spacecrafts and Rockets, Vol. 17, No. 1, 1GBO.

H. B. Poza, "Landsat D Telecommunications Payload: Earth Imaging Data
via TDRS", Journal of Spacecraft and Rockets, Vol. 18, No. 2, 1981.

J. G. Puerte, et al, "Multiple Access Techniques for Commercial
Satellites", Proceedings of the |EEE, February, 1971.

6. Quaglione, "Evolution of the Intelsat System fron Intelsat |V to
Intelsat V", Journal of Spacecrafts and Rockets, Vol. 17, No. 2,

1980.

‘D. 0. Reodink, & Y. S. Yeh, "Rapid-Scan Area-Coverage Communications
Satellite", Journal of Spacecrafts and Rockets, Vol. 17, No. 1,

1980.
3B.17



M. Ross, et al, "Space Laser Communications“, AIAA. 1978.

A. Schnaph, "Tiros-N: Operational,Environmentai Sate]lite‘of the 80'’s",
Journal of Spacecraft and Rockets, Vol. 18, No. 2, 1381.

Y. Watanbe, et .al, "Demand Assigned TDAM for Digital Integrated Service
Network', Journal of Spacecraft and Rockets, Vol. 18, No. 2, 198l.

A. M. Werth, “"Multiple-Access & Demand Assignment Technique', AlAA 3rd
Communications Satellite Systems Conference, Los Angeles, November,

1969.

18) DATA STORAGE & RETRIEVAL

G. F. Amelio, 'Charge-Coupled Devices'", Scientific American, February,

1974.
IBM Journal of Research and Development, Vol. 24, No. 2, March, 1980.
Advertisment is Astronautics & Aeronautics July/August, 1982, Lockheed
Electronics, Plainfield, New Jersey, 07061.
[This describes Lockheed’s involvement in large-scale data base
management research.]

M. Marshall, "Optical Disks Excite Industry', Electronics, May 5, 1981.

D. Moberg, & |. Laefsky, '"Videodiscs and Optical Data Storage', Byte,
June, 1982.

“"Proceedings of Conference on Charge-Coupled Device Technology and
Applications', NASA Office of Aeronautics and Space Technology,
and JPL, California Institute of Technology, November, 1976.
R. M. White, '"Disk-Storage Technology'", Scientific American, August,
1980.
19) DATA & COMMAND CODING

H. Haberle, '"Communication Satellites for the 1970’s: Technology', M.!.T.
Press, Cambridge, MA, 1971.

R. H. Cannon Jr., "Automatic Control §& Robofics”, in "Research Needed to
Advance the State of Knowledge in Robotics', Workshop, Rhode Istand
University, NSF Grant Eng 79-21587, April, 1980.

20) DATA MANIPULATION

G..ﬁ.-Nontﬁkop;i?Resbches Déié Collection by Communication Satellites",
M.1.T. Press, Cambridge, MA., 1971.

- 3B.18



COMPUTER [NTELLIGENCE

21) SCHEDULING & PLANNING

D. L. Akin, ""A Systems Analysis of Space Industrialization', Doctoral
Thesis, Dept. of Aeronautics and Astronautics, Massachusetts
Institute of Technology, August, 1981.

S. P. Bradley, A. C. Hax, & T. L. Magnanti, "Applied Mathematical
Programming', Addison-Wesley Publishing Co., Reading, MA., 1977.

R. H. Cannon Jr., "Automatic Control & Robotics", in '"Research Needed to
Advance the State of Knowledge in Robotics', Workshop, Rhode lsland
University, NSF Grant Eng 79-21587, April, 1980.

S. Kahne, !|. Lefkowitz, & C. Rose, "Automatic Control by Distributed
Inteliligence", Scientific American, June, 1979.

22) AUTOMATIC PROGRAMMING

U. Bartels, W. Olthoff, & P. Raulefs, "APE: An Expert System for
Automatic Programming from Abstract Specifications of Data Types
and Algorithms'", Proceedings of the Seventh Joint Conference on
Artificial Intelligence, University of British Columbia, Vancouver,
British Columbia, August, 1981.

R. H. Brown, '"Automatic Synthesis of Numerical Computer Programs",
Proceedings of the Seventh Joint Conference on Artificial
Intelligence, University of British Columbia, Vancouver, British
Columbia, August, 1981.

K. Furukawa, '"Use of Data Representation Mapping in Automatic Generation
of Data Base Access Procedures', Proceedings of the Seventh Joint
Conference on Artificial Intelligence, University of British
Columbia, Vancouver, British Columbia, August, 1981.

23) EXPERT CONSULTING SYSTEMS

U. Bartels, W. Olthoff, & P. Raulefs, "APE: An Expert System for
Automatic Programming from Abstract Specifications of Data Types
and Algorithms', Proceedings of the Seventh Joint Conference on
Artificial Intelligence, University of British Columbia, Vancouver,
British Columbia, August, 1981.

W. G. Gevarter, "An Overview of Expert Systems', NBSIR 82-2505,
U.S. Dept. of Commerce, National Bureau of Standards, May, 1982.

F. Hayes-Roth, "A Tutorial on Expert Systems: Putting Knowledge to Work',
International Joint Conference on Artificial Intelligence, 1981.

Martin Marietta Corp., '"Evaluation of Automated Decision Making
Methodology, Development of Integrated Robotic Systems Simulation',
NASA Contract NAS1-16757, Martin Marietta Corp., March, 1982.

3B.19



A. Newell, & H. A. Simon, "Human Problem Solving', Prentice-Hall,

Englewood Cliffs, NJ, 1972.

[Analyzes many general and specific tasks and propounds a
comprehensive model of problem solving. Mandatory reading in
cognitive science but somewhat narrow in view.)

. Nilsson, "Principles of Artificial Intelligence', Tioga Publishing

Co., Palo Alto, Ca.,'1980.

. Nilsson, "Problem-Solving Methods in Artificial Intelligence",

McGraw-Hill Book Co., NY, 1971.

P. H. Winston, "Artificial intelligence', Addison-Wesley, Reading, MA,

1977.

24L) DEDUCTIVE TECHNIQUES (THEOREM PROVING)

Al Magazine, Vol. 2, No. 1, Winter 1980-81.

[Problem-Solving Issue.]

R. Bellman, "An Introduction to Artificial Intelligence: Can Computers

F.

Think?", Boyd & Fraser Publishing Co., San Francisco, CA., 1978.

. Cannon Jr., "Automatic Control & Robotics', in "Research Needed to

Advance the State of Knowledge in Robotics', Workshop, Rhode Island
University, NSF Grant Eng 79-21587, April, 1980.

Hayes-Roth, "A Tutorial on Expert Systems; Putting Knowledge to Work",

International Joint Conference on Artificial Inteliligence, 1981.

Martin Marietta Corp., "Evaluation of Automated Decision Making

Methodology, Development of Integrated Robotic Systems Simulation",
NASA Contract NAS1-16757, Martin Marietta Corp., March, 1982.

H. A. Simon, "Studying Human Intelligence by Creating Artificial

Intelligence'", American Scientist, May-June, 1981.

25) COMPUTER ARCHITECTURE

G. D. Carlow, "Architecture of the Space Shuttle Primary Avionics

Software System (PASS)'", IBM, Technical Directions, Federal
Systems Division, Spring, 1981.

. James, "Evolution of Real-Time Computer Systems for Manned

Spaceflight", IBM Journal of Research and Development, Vol. 25,
No. 5§, September, 1981,

S. Kahne, |. Lefkowitz, & C. Rose, '"Automatic Control by Distributed

Intelligence"”, Scientific American, June, 1979.

J. Matisoo, "The Superconducting Computer', Scientific American, May,

1980.
3B.20



R. T. Schappell, et al, "Application of Advanced Technology to Space
Automation", NASA Contract NASW-3106. Martin Marietta Corporation,
Denver, Colorado. January. 1979.

P. Staken, '"One Step Forward: Three Steps Backup: Computing in the U.S.
Space Program'', Byte, September, 1981.

FAULT DETECTION & HANDLING

26) RELIABILITY & FAULT TOLERANCE
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Dept. of Electrical Engineering, 1978.

E. F. Moore, & C. E. Shannon, '"Reliable Circuits Using Less Reliable
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The Franklin Institute, Philadeliphia, 1956.
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Final Report'. NASA CR-164076. Jet Propulsion Laboratory,
California Institute of Technology, February, 1981.

J. Von Neumann, "Automata Studies', Princeton University Press,
Princeton, New Jersey, 1956.

27) STATUS MONITOR!ING & FAILURE DIAGNOS!S
M. H. Marshal, et al, 'Autonomous Spacecraft Maintenance Study Group:
Final Report', NASA CR-164076, Jet Propulsion Laboratory,
February, 1981.

E. !. Pritchard, "On Orbit Checkout Study: Final Report', Aerospace
Corp., E1 Segundo, CA., NASA Contract No. NASW-288L4., January, 1977.

R. T. Schappell, et al, "Application of Advanced Technology to Space

Automation', NASA Contract NASW-3106, Martin Marietta Corporation,
Denver, Colorado, January, 1979.

28) RECONFIGURATION & FAULT RECOVERY

See 26) & 27)
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BIBLIOGRAPHY (ORGANI!ZED BY GFE TYPE)
A) POWER HANDLING

J. R. Graves, '"Space Power Subsystem Automation Technology", NASA
Conference Publication 2213, Marshail Space Flight Center, Alabama,
October, 1981.

[Reviews several current space projects.]

TRW, '"Space Power Distribution System Technology Study: Power Management
Subsystem', Phase !l Oral Review, NASA Contract No. NAS8~33198,
TRW Defense and Space Systems Group, October, 1981,
[This study’s monthly reports are also very useful.]
B) CHECKOUT

E. |. Pritchard, "On Orbit Checkout Study: Final Report", Aerospace
Corp., El Segundo, CA., NASA Contract No. NASW-2884, January, 1977.

Also see the FAULT DETECTION & HANDLING area of the ARAMIS BIBLIOGRAPHY.
C) MECHANICAL ACTUATION

R. T. Schappell, F. A. Vandenberg, C. A. Hughes, "Study of Automated
Rendevous and Docking Technology: Final Report', NASA Contract

NAS7-100, Martin Marietta Corporation for Jet Propulsion
Laboratory, October, 1979.

Also see the MACHINERY area of the ARAMIS BIBLIOGRAPHY.
D) DATA HANDLING AND COMMUNICATION

"Tracking and Data Relay Satellite System (TDRSS) User Guide',
Revision 4. STDN No. 101.2, Goddard Space Flight Center,
Greenbelt Maryland, January, 1980.

HMSFC’s Remote Satellite Services Program Planning Summary', Space
Systems Group/PSOL, NASA Marshall Space Flight Center, February,
1981. .

Also see the DATA HANDLING and COMPUTER INTELLIGENCE areas of the
ARAMIS BIBLIOGRAPHY.

E) MONITORING AND CONTROL

E. |. Pritchard, "On Orbit Checkout Study: Final Report!, Aerospace
Corp., E1 Segundo, CA., NASA Contract No. NASW-2884, January, 1977.
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F) COMPUTATION

See topic 27) and the COMPUTER INTELLIGENCE area of the ARAMIS
BIBLIOGRAPHY.

G) DECISION AND PLANNING

See topics 21), 23), & 24) in the ARAMIS BIBLIOGRAPHY.
H) FAULT DIAGNOSLIS AND HANDLING

See the FAULT DETECTION & HANDLING area of the ARAMIS BIBLIOGRAPHY.
1) SENSING

A. K. Bejczy, "Sensors, Céntrols, and Man-Machine Interface for Advanced
Teleoperation', Science, Volume 208, No. 4450, June, 1980.

See the SENSORS area of the ARAMIS BiBLIOGRAPHY,
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APPENDIX 3.C:
ARAMIS CAPABILITY GENERAL INFORMATION FORMS

3.C.1 Notes on this Appendix

This appendix presents 78 ARAMIS Capability General Informa-
tion Forms, each of which describes one of the ARAMIS capabilities
defined by the'study group. Each General Information Form
contains: the name of the capability; the capability's code
number; the date on which the Form was filled out; the names of
the researchers contributing to the Form; a definition of the
capability; identification of individuals and organizations
working on the concept; estimates of the dates on which the
capability will reach various technology levels; remarks-and
(when available) data sources on the technology levels; estimates
(when available) or R&D costs between technology levels; remarks
and data sources on those cost estimates; remarks on any speqial
aspects of the capability; identification of which other capa-
bilities should be developed prior to this one, to enhance its
R&D; and a list of the code numbers of the GFE's to which the
capability applies.

As described in Section 3.4.1} the ARAMIS capabilities were
grouped by topics and numberea accordingly. These assignments
were necessarily arbitrary, since many capabilities could be
associated with several topics. In each case, the study group
selected the topic which described the technical challenge in
the éapability most accurately. For example, Dextrous Manipulator
under Human Control was classified under topic 14: Teleoperation
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Techniques; as the second capability listed undér that topic,
it received the number 14.2. One result of this procedure was
that several ARAMIS topics (nos. 5, 9, 12, 20, and 28) do not
have any capabilities listed under them; other topics were
deemed more appropriate. For the convenience of the reader, the
ARAMIS topics and their numbers are listed in Table 3.C.1l.

The technology levels used in the Form are from the 7-level
scale used by NASA OAST's Space Systems Technology Model. These

levels are defined in Table 3.C.2. On this scale, a capability

TABLE 3.C.2: TECHNOLOGY READINESS LEVELS

(from the May 1980 NASA OAST Space Systems
Technology Model)

Level 1 Basic Principles Observed and Reported
Level 2 Conceptual Design Formulated

Level 3 Conceptual Design Tested Analytically
or Experimentally

‘Level 4 Critical Function/Characteristic
Demonstration

Level 5 Component/Breadboard Tested in
Relevant Environment

Level 6 Prototype/Engineering Model Tested
in Relevant Environment

Level 7 Engineering Model Tested in Space

at level 6 or 7 is available to the spacecraft designer at the
technology cutoff date. These levels are straightforward in their
application to hardware development. In software development,

however, levels 4 and 5 may be included in level 3; in many
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cases, the first analytical test of software design requires an
all-up test of the software, equivalent to a "breadboard test in
a relevant environment" for hardware. Thus, for a number of the
software-intensive ARAMIS capabilities, several intermediate
technology levels are reached concurrently. Similarly, it can
be difficult to pinpoint R&D costs for such intermediate levels.
The abbreviation "N/A" indicates either "not applicable" or “not
available" in the Forms.

The 78 ARAMIS Capability General Information Forms follow,
in the order of the capability code numbers. [Note: there are
no capabilities 1.4 and 1.5 in the listing; although originally

defined, they were later found unnecessary.]



-

ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABIL!TY NAME: Stored Energy Deployment Device
CODE NUMBER: 1.1 DATE: 6/L/82 NAME (S): Thiel/Katz

DESCRIPTION OF CAPABILITY: A device that deploys or extends an object or array
using energy stored in an elastic medium.

WHO IS WORKING ON IT AND WHERE: This type of device has been used by virtually
all spacecraft manufacturers. Various studies can be found under the heading
of large space structures, but much of this work uses motors rather than energy
storage devices.

TECHNOLOGY LEVELS: LEVEL1: NOW LEVEL2: NOW LEVEL3: NOW
LEVELL: NOW LEVELS: NOW LEVELGE: NOW LEVEL7: NOW
REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: None

R&D COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A

3-4: N/A L-5: N/A E-6: N/A 6-7: N/A

REMARKS AND DATA SOURCES ON COST ESTIMATES: Although the technology is
developed, individual units are still expensive beause each one is unique to
each particular spacecraft design.

REMARKS ON SPECIAL ASPECTS: Limited to reasonably small arrays due to
mechanical limitations. Has limited growth potential beyond present uses
(Harold Bush, LaRC). -

TECHNOLOGY TREES (PRIOR R&ED OF THESE 1S DESIRABLE.): None

CAPABILITY APPLIES TO (GFE NUMBERS): g27, g31
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Shape Memory Alloys
CODE NUMBER: 1.2 DATE: 6/29/82 NAME (S) : Kurtzman/Katz

DESCRIPTION OF CAPABILITY: Metals that can be plastically deformed at one
temperature and completely recover their original shape upon being raised above
a certain higher temperature are used to make spacecraft antennae which can be
reduced (compacted) to a small volume and then expanded to their desired shape
upon heating.

WHO IS WORKING ON IT AND WHERE: David Goldstein, U.S. Navy Surface Weapons
Laboratory; Martin Marietta (Denver); Goodyear Aerospace; Aerojet General; G.
B. Brook, Fulmer Research institute Ltd. (Stokes-Poge, England); DB. G. Powley,
British Aircraft Corporation Ltd.

TECHNOLOGY LEVELS: LEVEL!: Now LEVEL2: Now LEVEL3: Now
LEVELY: Now LEVELS: N/A LEVELE: See below LEVEL7: See below

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: The Goodyear Aerospace
Corporation has built a demonstration antenna to illustrate the function of the
shape memory material (See L. McDonald Schetky, '"Shape-Memory Alloys,"
Scientific American, Volume 241, Number 5, November 1979). |t would probably
take 6 months to design and test a small antenna, and 2 years to expand the
methodology to large antennas (L. McDonald Schetky, Technical Director,
Metallurgy, International Cooper Research Association, Inc., 708 Third Avenue,
New York, New York 10017 (212) €97-9355).

R&D COST ESTIMATES BETWEEN LEVELS; 1-2: N/A

2-3: N/A
3-4: N/A L-5: N/A - 5-6: Not available 6-7

: Not available
REMARKS AND DATA SOURCES ON COST ESTIMATES: None.

REMARRS ON SPECIAL ASPECTS: Shape-memory alloys have also been used to make a
latching device which rapidly and reliably triggers the release of spacecraft
instrument booms. In this capacity, the shape memory alloy functions as part
of an Onboard Deployment/Retraction Actuator, and hence is not part of this
capability. See "The Design and Testing of a Memory Metal Actuated Boom
Release Mechanism' by D.G. Powley and G.B. Brook.

TECHNOLOGY TREES (PRIOR R&D OF THESE 1S DESIRABLE.): None.

CAPABILITY APPLIES TO (GFE NUMBERS): g27
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ARAMIS CAPABILITY GENERAL INFORMATION FORM

CAPABILITY NAME: Inflatable Structure
CODE NUMBER: 1.3 DATE: 6/24/82 NAME (S) : Marra

DESCRIPTION OF CAPABILITY: Balloon-like structures are inflated with gas.
The object to be deployed may be attached to the inflatable structure or be
inflatable itself.

WHO 1S WORKING ON IT AND WHERE: See below

TECHNOLOGY LEVELS: LEVELl: Now LEVEL2: Now LEVEL3: Now
LEVELL: Now LEVELS: see below LEVELG: see below LEVEL7: see below

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: All the necessary technology is
currently avaiable. No one is currently trying to develop such a system. |f
work should begin, it would not take long for the system to be developed.

Work would be done using space-rated equipment. (Vought Corporation Systems
Division; George Sarver, M.I1.T., Space Systems Laboratory)

R&6D COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A L-5: N/A 5-6: see below 6-7: see below

REMARKS AND DATA SOURCES ON COST ESTIMATES: Cost estimates were not available
to the study group. Costs are dependent on the nature of the application.
REMARKS ON SPECIAL ASPECTS: In order to make large inflatable structures
feasible a system must be developed to keep then in constant repair. One -
proposition is the development of free flying robots inside the inflatable
structure. Such robots would have the capability of detecting and repairing
leaks by themselves. Such robots would not be very hard to develop (George
Sarver, M.l.T. Space Systems Lab).

TECHNOLOGY TREES (PRIOR R&D OF THESE 1S DESIRABLE.): Space-Rated Polymers

CAPABILITY APPLIES TO (GFE NUMBERS): g27
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Automatic Switching Systems
CODE NUMBER: 1.6 DATE: 6/15/82 NAME (S) : Thiel/Marra

DESCRIPTION OF CAPABILITY: Automatic switching systems are devices which are
capable of decision making and control operations, but only on a limited scale.
They may be as simple as a thermostat or as complicated as an attitude control
system. The difference between a very complicated Automatic Switching System
and a computer is the ability of the computer to be reprogrammed. The
Automatic Switching Sytem is a hardwired device and its programming cannot be
changed.

WHO 1S WORKING ON IT AND WHERE: Any spacecraft manufacturer uses several
devices of this kind on virtually every spacecraft so any spacecraft company
maintains the capability to produce Automatic Switching Systems of various
levels of complexity.

TECHNOLOGY LEVELS: LEVEL1: NOW LEVEL2: NOW LEVEL3: NOW
LEVELL: NOW LEVELS: NOW LEVEL6: NOW LEVEL7: NOW

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: These devices are a well
developed technology. Future technology advances will make more sophisticated
Automatic Switching Systems possible, but they will probably be made
obsolescent by computers.

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A

3-4: N/A 4=5: N/A 5-6: N/A 6-7: N/A

REMARKS AND DATA SOURCES ON COST ESTIMATES: The technology for these systems is
available as off-the-shelf hardware, but it usually has to be custom made for

each spacecraft type.

REMARKS ON SPEC!AL ASPECTS: Limited capability due to limits imposed by
hardwired devices and lack of reprogrammability.

TECHNOLOGY TREES (PRIOR R&D OF THESE 1S DESIRABLE.): None

CAPAB!LITY APPLIES TO (GFE NUMBERS): g83, g87, g150, g239, g240, g24l
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ARAMIS CAPABILITY GENERAL INFORMATION FORM

CAPABILITY NAME: Onboard Deployment/Retraction Actuator
CODE NUMBER: 2.1 DATE: 6/21/82 NAME (S) : Marra/Paige

DESCRIPTION OF CAPABILITY: Dedicated mechanical system which is directly
attached to the deployable member. The Actuator can deploy and retract the
member many times throughout the mission. Examples of such actuators include
extendable booms and motor driven winches.

WHO IS WORKING ON |T AND WHERE: William B. Paimer, TRW Defense and Space Group;
Charles R. Griffin, Goddard Space Flight Center; Robert L. James Jr, Langley
Research Center.

TECHNOLOGY LEVELS: LEVELI: Now LEVEL2: Now LEVEL3: Now
LEVELL: Now LEVELS: Now LEVELG6: Now LEVEL7: Now

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: William B. Palmer (TRW):
Charles R. Griffin (NASA, GSFC). ‘

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A 4L-5: N/A 5-6: N/A 6-7: N/A

....... REMARKS AND DATA SOURCES ON COST ESTIMATES: N/A

REMARKS ON SPECIAL ASPECTS: The Onboard Deployment/Retraction Actuator is a
dedicated device. That is, for whatever application the actuator is

designed, it will only be able to be used for onhe particular task. One
exception is the possibility for actuators to be used for both as a deployment
device and an attitude control device (e.g. to deploy and point solar arrays).

TECHNOLOGY TREES (PRIOR R&D OF THESE IS DESIRABLE.): 1.6 Automatic Switching
Systems

CAPABILITY APPLIES TO (GFE NUMBERS): g27, g31, g67, glu8, g177
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Dedicated Manipulator under Computer Control
CODE NUMBER: 2.2 DATE: 7/12/82 NAME (S): Dalley/Ferreira

DESCRIPTION OF CAPABILITY: Manipulator which performs a pre-assigned task,
using a specific end effector within a specific worksite geometry, making use
of force and proximity sensing, under computer control.

WHO IS WORKING ON IT AND WHERE: John Birk, U. of Rhode Island; Sinclaire
Scala, GE Re-entry and Environmental Systems; JPL; IRI, Carlsbad CO; Tom
Williams, DEC; Unimation; General Motors Research Lab; Automatix, Burlington,
MA; Neville Hogan, MIT Mech. Eng.; Ken Fernandez, NASA MSFC. .

TECHNOLOGY LEVELS: LEVEL1: Now LEVEL2: Now LEVEL3: Now
LEVELY: Now LEVEL5: Now LEVELG6: 1984 LEVEL7: 1986

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: Current tevel from general
literature., Estimate to level 6 from study group’s background research.
Robert F. Goeke of MIT Center for Space Research estimated 2 years to space-
rate such a manipulator.

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-L4: N/A L-5: N/A 5-6: see below 6-7: see below

REMARKS AND DATA SOURCES ON COST ESTIMATES: Ken Fernandez stated that a
dedicated manipulator had been built by Martin Marietta under a contract from
MSFC for $50,000, which was now at Tech. level § and could be ready for use in
space in two years. This manipulator lacks feedback, however.

REMARKS ON SPECIAL ASPECTS: A dedicated manipulator is designed for one
purpose, and for one purpose only. If the need should arise to perform a
different task, a new manipulator must be designed.

TECHNOLOGY TREES (PRIOR RED OF THESE IS DESIRABLE.): 2.1 Onboard Deployment/
Retraction Actuator; 25.1 Onboard Dedicated Microprocessor.

CAPABILITY APPLIES TO (GFE NUMBERS): g27, g31, g67, g73, gl134, glL8, gl177
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Automated Docking Mechanism

CODE NUMBER: 3.1 DATE: 5/28/82 NAME (S): Glass/Ferreira/Spofford

DESCRIPTION OF CAPABILITY: System for docking two spacecraft under
preprogrammed control, including activation of docking motors and latches.

WHO IS WORKING ON IT AND WHERE: The Soviet Space Program; NASA MSFC (mostly on
teleoperated docking).

TECHNOLOGY LEVELS: LEVEL1: now LEVEL2: now LEVEL3: now
LEVELL: now LEVEL5: now LEVEL6: now LEVEL7: now

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: Aviation Week and Space
Technology (for Soviet docking systems).

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A 4-5: N/A 5-6: N/A 6-7: N/A

REMARKS AND DATA SOURCES ON COST ESTIMATES: None.

REMARKS ON SPECIAL ASPECTS: While this capability has been demonstrated
already, development is necessary to adapt it for use with current U.S.
hardware.

TECHNOLOGY TREES (PRIOR RED OF THESE IS DESIRABLE.): 6.1 Optical Scanner
(Passive Cooperative Target); 6.3 Radar (Passive Target); 6.5 Onboard
Navigation And Telemetry; 15.4 Teleoperated Docking Mechanism; 25.3 Onboard
Deterministic Computer Program.

CAPABILITY APPLIES TO (GFE NUMBERS): glhé
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Computer-Controlled Specialized Compliant Manipulator
CODE NUMBER: 4.1 DATE: 6/22/82 NAME (S) : Ferreira/Dalley/Marra

DESCRIPTION OF CAPABILITY: A Computer-Controlled Specialized Compliant
Manipulator is a manipulator with a compliant wrist capable of molding itself
to small amounts of error. It has no active feedback and relies only on an
accurate dead reckoning model stored in its computer. The manipulator is also
capable of changing its own end effector, and is able to execute several

tasks without outside interaction.

WHO IS WORKING ON IT AND WHERE: Dan Whitney, Automation Research, Draper
Laboratory, Cambridge, Massachuesetts

TECHNOLOGY LEVELS: LEVEL1: Now LEVEL2: Now LEVEL3: Now
LEVELL: Now LEVELS: Now LEVELG: 1983 LEVELT7: 1985

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: Levels 1-§ Whitney (Draper
Labs), Level 7 Robert F. Goeke estimates two years to space rate such a system.

R&D COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-L: N/A 4-5: N/A 5-6: see below 6-7: see below

REMARKS AND DATA SOURCES ON COST ESTIMATES: Whitney estimates 10-20 million
dollars to bring this system up to level 7

REMARKS ON SPECIAL ASPECTS: The difference between a Computer-Controlled
Specialized Compliant Manipulator and a2 Dedicated Manipulator under Computer
Control, aside from the compliance, is that a dedicated manipulator can
only do one task, while a specialized manipulator is only limited by the
number of end effectors it has.

TECHNOLOGY TREES (PRIOR R&D OF THESE iS DESIRABLE.): 7.1 Dead Reckoning from
Stored Model; 15.1 Specialized Manipulator under Human Control; 25.2 Onboard
Microprocessor Hierarchy

CAPABILITY APPLIES TO (GFE NUMBERS): g27, g31, g73, gi3L, gl48, gi77
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Computer-Controlled Dextrous Manipulator with Force Feedback
CODE NUMBER: 4.2 DATE: 6/28/82 NAME (S): Kurtzman/Paige/Ferreira

DESCRIPTION OF CAPABILITY: A multipurpose multifingered manipulator, under
computer control, and capable of operating under various geometries. The
system would be reprogrammable and would use input from force-feedback sensors
for final guidance and motion control.

WHO 1S WORKING ON 1T AND WHERE: Ewald Heer and Antal Bejczy (JPL); Marvin
Minsky (MIT Al Lab); Dan Whitney (Draper Labs); Victor Sheinman (Automatix,
Burlington, MA); Tom Williams (DEC, Maynard, MA).

TECHNOLOGY LEVELS: LEVEL1: Now LEVEL2: Now LEVEL3: Now
LEVELL: Now LEVEL5: 1986 LEVELG6: 1986 LEVEL7: 1989

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: Present and future levels were
provided by Marvin Minsky. The intermediate levels were computed by
interpolation based on the background of the study group.

R&D COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A L-5: $10-20 Million 5-6: N/A 6-7: $2.5 Million

REMARKS AND DATA SOURCES ON COST ESTIMATES: Dan Whitney suggested a2 figure of
$10-20 million to develop the whole system to level §. Cost to go from level §
to level 7 was estimated at $2.5 million by extrapolating from a figure of $1
million to space rate a dedicated manipulator under computer control (Robert F.
Goeke, MIT Center for Space Research).

REMARKS ON SPECIAL ASPECTS: None
TECHNOLOGY TREES (PRIOR RED OF THESE IS DESIRABLE.): 4.1 Computer-Controlled
Specialized Compliant Manipulator; 15.2 Dextrous Manipulator under Human

Control; 19.1 A/D Converter.

CAPABILITY APPLIES TO (GFE NUMBERS): g27, g31, g67, 973, gl3L, gl48, g177.
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ARAMIS CAPABILITY GENERAL INFORMATION FORM

CAPABILITY NAME: Computer-Controlled Dextrous Manipulator With Vision and Force
Feedback

CODE NUMBER: 4.3 DATE: 6/29/82 NAME (S): Kurtzman/Paige

DESCRIPTION OF CAPABI!LITY: A multipurpose maneuvering arm with a multifingered
hand combined with force-feedback sensors and an imaging camera system, under
computer control, and capable of performing autonomous manipulative operations.
This capability approaches artificial intelligence in its control system.

WHO 1S WORKING ON |IT AND WHERE: Little work has been done which combines

both force-feedback and vision systems. Vision and/or manipulator researchers
include: Hans Moravec, Carnegie-Mellon University, Schenly Park, Pittsburgh,
Pennsylvania 15213, (412) 578-3829; Carl Ruoff, Group Supervisor, Jet
Propulsion Laboratory, L4LB0OO Oak Grove, Pasadena, California 91103, (213)
354-6101; Gerald Gleason and Gerald Agin (SRi1); R. Brooks and Tom Binford,
Stanford University Robotics Laboratory, Stanford, California; Frank Glaser (U.
of Mass.); James Albus, Director of Robotics Research, National Bureau of
Standards, Gaithersburg, Maryland.

TECHNOLOGY LEVELS: LEVEL1: Now LEVEL2: Now LEVEL3: 1985
LEVELL: 1986 LEVEL5: 1990 LEVELG6: 1994 LEVEL7: 1997

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: Marvin Minsky (MIT Al Lab) -
Level 7 could be reached in 15 years but a concentrated effort might reduce
this to 10 years. Tom Williams (DEC) estimated level 7 in year 2000. The
other levels were estimated by interpolation and the study group’s own
background) .

R&D COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-L4: N/A L~5: see below 5-6: see below 6-7: see below

REMARKS AND DATA SOURCES ON COST ESTIMATES: Cost estimates are not available
for the individual levels, but combining an estimate from Ruoff of $20 miltion
for a vision system and and estimate from Daniel Whitney (Draper Labs) of
S$S10-20 million for computer-controlled dextrous manipulator gives and estimate
of $30-40 million. 1If a great deal of autonomous intelligent behavior is
expected, this figure could be larger.

REMARKS ON SPECIAL ASPECTS: NASA needs inhouse expertise in order to
intelligently oversee development of this capability (Carl Ruoff - JPL).

TECHNOLOGY TREES (PRIOR R&D OF THESE 1S DESIRABLE.): 4.2 Computer-Controlled
Dextrous Manipulator with Force Feedback; 11.2 Imaging (Non-Stereo) with

Machine Processing.

CAPABILITY APPLIES TO (GFE NUMBERS): g27, g31, g67, 973, gl34, gl48, gl177.
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ARAM!S CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Optical Scanner (Passive Cooperative Target)
CODE NUMBER: 6.1 DATE: 7/5/82 NAME (S) : Thiel/Katz

DESCRIPTION OF CAPABILITY: This system uses a laser to determine position and
velocity information for a passive cooperative target. This target does not
actively respond to the laser radiation, but has corner cubes (retroreflectors)
at strategic locations to reflect laser radiation to a detector near the laser
source,

WHO 1S WORKING ON IT AND WHERE: GTE Sylvania PATS (Precision Automated Tracking
System) being developed for the military. |ITT, RCA and Lockheed have worked on
similar devices. Lockheed presently has a device being developed for JPL which
is specifically designed for space use.

TECHNOLOGY LEVELS: LEVELI: NOW LEVEL2: NOW LEVEL3: NOW
LEVELL: NOW LEVELS5: NOW " LEVELG: 1984 LEVEL7: 1986

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: Glenn Overstreet of GTE
Marketing estimates 4 years to modify PATS for short-range work and to space
rate the system. The Lockheed system could probably be ready in two years
since prototype versions for ground test already exist.

ReD COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-L: N/A L-5: N/A 5-6: 8.5 Million 6-7: 1.5 Million

REMARKS AND DATA SOURCES ON COST ESTIMATES: Jimmy Lamb at GTE estimates that 10
Million would be necessary to modify PATS and to space rate the system.

" Lockheed estimates that it can finish development for 1.5 Million and sell the
units for 0.5 Million.

REMARKS ON SPECIAL ASPECTS: The laser device has important growth potential.
First, it could be modified to read identification codes similar to the laser
scanners currently in use at many grocery stores. This would allow easy
identification of components on a spacecraft. Second, it could be made to work
in parallel with a machine vision system and greatly reduce the information
processing requirements by eliminating the need for the vision system to
'recognize'" spacecraft components.

TECHNOLOGY TREES (PRIOR RED OF THESE IS DESIRABLE.): 16.1 Computer Modeling and
Simulation; 25.1 Onboard Dedicated Microprocessor; Laser Technology.

CAPABILITY APPLIES TO (GFE NUMBERS): g33, gL9, g69, g132, g243, g245
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Proximity Sensors
CODE NUMBER: 6.2 DATE: 6/29/82 NAME (S} : Katz/Kurtzman

DESCRIPTION OF CAPABILITY: Short range photo-electric sensor able to determine
if it is within or beyond a designated range of a target.

WHO IS WORKING ON IT AND WHERE: James S. Albus, National Bureau of Standards
(NBS) ; Dr. Antal K. Bejczy and Alan R. Johnston, Jet Propulsion Laboratory,
4800 Dak Grove, Pasadena, California 91103.

TECHNOLOGY LEVELS: LEVEL1: Now LEVEL2: Now LEVEL3: Now
LEVELL: Now LEVELS: Now LEVELG6: Now LEVEL7: See below

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: The present NBS system is
currently at level 6 (See James S. Albus, '"Proximity-Vision System For
Protoflight Manipulator Arm," National Bureau of Standards, 1979, NBSIR
78-1576) . To progress to level 7 requires adaptation for automation and space
rating, which the study team estimates would take approximately 3 years.

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A L-5: N/A 5-6: N/A 6-7: See below

REMARKS AND DATA SOURCES ON COST ESTIMATES: Study team estimate: approximately
$2 million.

REMARKS ON SPECIAL ASPECTS: Proximity sensors will usually be used in
conjunction with other (e.g. imaging) sensors if they are to be used in
performing the applicable functional element (See NBSIR 78-1576).

TECHNOLOGY TREES (PRIOR R&D OF THESE 1S DESIRABLE.): 25.1 Onboard Dedicated
Microprocessor,

CAPABILITY APPLIES TO (GFE NUMBERS): g69
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Radar (Passive Target)
CODE NUMBER: 6.3 DATE: 3/19/82 NAME (S): Jones-Oliveira/Katz/Ferreira

DESCRIPTION OF CAPABILITY: Miliimeter wave radars and data processors are used
in finding, identifying and locating noncooperative targets. Use of radar in
“"near fields," i.e., in ranges within 200 meters, is limited by the angular
resolution required to perform the given task. This is more difficult for
smaller objects.

WHO 1S WORKING ON |IT AND WHERE: Defense Advanced Research Projects Agency
(Project Assault Breaker); US Air force (WASP - Wide Area Sensing Projectile);
Sperry; Raytheon; Bendix; Hughes; and Honeywell (Defense Systems Division,
Minneapolis).

TECHNOLOGY LEVELS: LEVELl: now LEVEL2: now LEVEL3: now
LEVELL: now LEVEL5: 1983 LEVEL6: 1986 LEVEL7: 1987

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: Aviation and Space Technology
1/29/79, 9/24/79, 3/9/81; Bendix Corp. - Marketing; Raytheon - Theodore Hudson.
The levels were assigned relative to the engineering estimates projected for
Radar (Active Target).

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A

2-3: N/A
3-4: N/A L-5: N/A 5-6: See below 6-7:

See below

REMARKS AND DATA SOURCES ON COST ESTIMATES: RED cost estimates are difficult
to acquire due to high security maintained on this military-related research.
It is agreed that this capability can be developed based upon already
established technology; however, because this capability is more difficult to
produce than its Active Target counterpart, R&D costs will be higher.

REMARKS ON SPECIAL ASPECTS: For some applications, this capability is more

difficult to develop than Radar (Active Target); this is because the signals
generated have twice the distance to travel and must therefore be stronger.

This, in turn, will require more powerful and sensitive equipment.

TECHNOLOGY TREES (PRIOR RED OF THESE IS DESIRABLE.): 6.4 Radar (Active Target)

CAPABILITY APPLIES TO (GFE NUMBERS): gl132, g243, g245
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Radar (Active Target)
CODE NUMBER: 6.4 DATE: 3/19/82 NAME (S): Jones-Oliveira/Katz

DESCRIPTION OF CAPABILITY: Radar is an electronic device for the detection and
location of objects. The active (cooperative) aspect presupposes that the
target is capable of emitting and/or amplifying a signal, thereby affording the
tracker with a stronger signal to lock onto. Use of radar in ''near fields,"
i.e., in ranges within 200 meters, is limited by the angular resolution
required to perform the given task. This is more difficult for smaller
objects.

WHO IS WORKING ON IT AND WHERE: Raytheon, in Wayland, MA; Bendix, in Detroit;
Hughes, in Fulierton, CA; and Honeywell, in Minnetonka, Min.

TECHNOLOGY LEVELS: LEVEL1: now LEVEL2: now LEVEL3: now
LEVELL: now LEVELS: now LEVEL6: 1982 LEVEL7: 1985

REMARKS AND DATA SQURCES ON TECHNOLOGY LEVELS: Prof. J. Francis Reintjes
(MIT/EEECS) ; Bendix Corp. - Norman Anschuestz; Raytheon - Theodore Hudson.

ReED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A L-5: N/A 5-6: See beilow 6-7: See below

REMARKS AND DATA SOURCES ON COST ESTIMATES: Hudson (Raytheon) - To bring
current prototypes to an unmanned space rating, 3 years of RDT&E are necessary,
i.e., approximately 60 man-years.

REMARKS ON SPECIAL ASPECTS: Reintjes (MIT/EE&CS) - Technologies developed by

the FAA for air-to-air collision avoidance may be directly applicable. This
technology is easier to develop than Radar (Passive Target).

TECHNOLOGY TREES {PRIOR R&D OF THESE IS DESIRABLE.): 25.1 Onboard Dedicated
Microprocessor

CAPABILITY APPLIES TO (GFE NUMBERS): @132, g243, g245
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ARAMIS CAPABILITY GENERAL INFORMATION FORM

CAPABILITY NAME: Onboard Navigation and Telemetry
CODE NUMBER: 6.5 DATE: 7/9/82 NAME (S): Kurtzman/Thiel

DESCRIPTION OF CAPABILITY: Orbital position and velocity will be determined
with the use of the NAVSTAR Global Positioning System (GPS). GPS is a passive
all-weather navigation satellite system proposed for operation after 1985. The
system uses highly accurate atomic frequency standards to enable determination
of three-dimensional position, velocity, and time instantaneously on a
continuous world-wide basis. Range and range-rate measurements will be reduced
to determine those parameters. A total of twenty-four satellites with twelve
hour orbits (altitude 20,183 km) in three orbit planes will be available for
navigation, giving accuracies and availability far exceeding the current Navy
Navigation Satellite System or Transit System which GPS is designed to replace
for navigation. Signals are transmitted at two L-band frequencies (1227 and
1575 MHz) . With the number of satellites in view always exceeding the required
number for navigation, the user may select a subset of four based on some
criterion which optimizes the geometric strength of the navigation solution.
Navigation fixes can be made in time intervals of from tens of seconds to
several minutes. See Patrick J. Fell, "Geodetic Positioning Using a Global
Positioning System of Satellites," NASA-CR-163609, June, 1980.

This capability also includes processing on-board the spacecraft and
telemetry between spacecraft, so that the relative positions of spacecraft can
be determined from the GPS data. This information is used either for final
approach before docking, or for avoidance of potential collisions.

WHO [S WORKING ON IT AND WHERE: Applications to satellite navigation: A. J.
Fuchs, NASA Goddard Space Flight Center; Joan B. Dunham, Computer Sciences
Corporation, El Segundo and Sunnyvale, California. NAVSTAR receiver
production: Stanford Telecommunications; Texas Instruments; Magnavox; Rockwell
International, Collins Division.

TECHNOLOGY LEVELS: LEVEL1: Now LEVEL2: Now LEVEL3: Now
LEVELL4: Now LEVELS: Now LEVELG6: Now LEVEL7: 1985
REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: The GPS system is organized
into three phases of operation; Phase | is concept validation, Phase Il is
system validation, and Phase |ll consists of production and validation. GPS is
currently at the Phase |l stage, and Phase i1l is scheduled to begin in 1985
(ibid.) .

R&D COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A

3-4: N/A L-5: N/A 5-6: N/A 6-7: Not available

REMARKS AND DATA SOURCES ON COST ESTIMATES: None.

REMARKS ON SPECIAL ASPECTS: The NAVSTAR system will be useful in
collision-avoidance systems, navigation, survey and mapping, aircraft
rende2vous, aircraft landing, and many other applications. The system will
give absolute position accuracy to within 10 meters rms. Relative position
o error between two receivers, as would be employed for collision-avoidance,
should be as small as two meters. For a good nontechnical overview of NAVSTAR
system operation and construction, see Tom Logsdon, '"Satellites Bring New
Precision To Navigation," High Technology, July/August 1982, Volume 2, Number
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TECHNOLOGY TREES (PRIOR R&D OF THESE IS DESIRABLE.): Global Positioning
System; Communications Techniques.

CAPABILITY APPLIES TO (GFE NUMBERS): g243.
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ARAMIS CAPABILITY GENERAL lNFORMATION»FORH

CAPABILITY NAME: Dead Reckoning fFrom Stored Model
CODE NUMBER: 7.1 DATE: JUNE 26, 1982 NAME (S): Glass/Marra

DESCRIPTION OF CAPABILITY: Given desired location coordinates in a known
working area, this capability finds a possible path to the location.
Maneuvers are calculated to avoid known hazards (barriers, sun exposure, etc.)
by referring to desired points’ locations in a previously stored computer
model of the working area.

WHO IS WORKING ON IT AND WHERE: General Motors; Japanese robotics companies
(most current industrial robots use this kind of guidance system, on a very
basic level)

TECHNOLOGY LEVELS: LEVEL1: Now LEVEL2: Now LEVEL3: Now
LEVELL4: Now LEVEL5: Now LEVEL6: Now LEVEL7: Now

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: N/A

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A L-5: N/A 5-6: N/A 6-7: N/A

REMARKS AND DATA SOURCES- ON COST ESTIMATES: N/A
REMARKS ON SPECIAL ASPECTS: None.
TECHNOLOGY TREES (PRIOR R&D OF THESE IS DESIRABLE.): 16.1 Computer Modeling

and Simulation; 25.3 Onboard Deterministic Computer Program

CAPABILITY APPLIES TO (GFE NUMBERS): g69
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Tactile Sensors
CODE NUMBER: §.! DATE: 6/24/82 NAME (S) : Ferreira/Paige/Spofford

DESCRIPTION OF CAPABILITY: A sensor capable of sensing pressure distribution
in a matrix. The sensor consists of a conductive rubber grid pattern, with
contact resistance proportional to pressure. The resistance at each grid
intersection gives information about the pressure applied at that point.
Resolutions of 0.6 mm have been demonstrated in a 16 by 16 array. The data may
be displayed graphically on a video screen, used to actuate piezo-electric
actuators (for telepresence), or may be machine-processed.

WHO (5 WORKING ON !'T AND WHERE: D. Hillis and J. Purbrick at the M.!.T.
Artificia) !ntelligence Laboratory; M. Raibert and R. Eskenazi at JPL.

TECHNOLOGY LEVELS: LEVELIl: now LEVEL2: now LEVEL3: now
LEVELL: now LEVELS: 1983 LEVELG: 1984 LEVEL7: 1984

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: Patent application from
M. Raibert and R. Eskenazi (NASA contract NAS7-100).

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A L-5: N/A 5-6: N/A 6-7: N/A

REMARKS AND DATA SOURCES ON COST ESTIMATES: Estimates are not yet avaiable.
REMARKS ON SPECIAL ASPECTS: None.

TECHNOLOGY TREES (PRIOR RE&D OF THESE 1S DESIRABLE.): 25.1 Onboard Dedicated
Microprocessor.

CAPAB!LITY APPLIES TO (GFE NUMBERS): g69
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ARAMIS CAPABILITY GENERAL INFORMATION FORM

CAPABILITY NAME: Thermal Imaging Sensor With Human Processing
CODE NUMBER: 10.1 DATE: 7/12/82 NAME (S) :  Kurtzman

DESCRIPTION OF CAPABILITY: Use of thermal infrared imaging sensors
(thermography) to obtain a thermal profile of a structure in order to evaluate
the object’s thermal behavior. The sensor output is given to a human via a
graphic display to show the object’s temperature characteristics, usually in a
color-coded form. The human then evaluates and monitors the object’s thermal
profile and makes any necessary actions based upon those observations.

WHO 1S WORKING ON IT AND WHERE: Flir Systems, Inc., Oswego, Oregon; Texas
Instruments; Martin Marietta Corporation, Denver.

TECHNOLOGY LEVELS: LEVELl: Now LEVEL2: Now LEVEL3: Now
LEVELL: Now LEVELS: Now LEVELE: Now LEVEL7: See below

REMARKS AND DATA SOURCES ON TECHNDLOGY LEVELS: It would take an estimated two
years to space-rate a thermal imaging system.

R&D COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A 4-5: N/A 5-6: N/A 6-7: See below

REMARKS AND DATA SOURCES ON COST ESTIMATES: Study team estimate: $3 million.
REMARKS ON SPECIAL ASPECTS: Flir Systems has developed a system where a
scanner signal is processed and supplied to a standard television monitor in an
aircraft cockpit where a real-time black-and-white, high-resolution image is
displayed. Such a system can be used for search and rescue, security
surveillance, power line and substation inspection, forest fire control,
structural surveys, pipeline patrol and many agricultural uses. See William B.
Scott, "Civil Thermal Imaging System Developed,' Aviation Week & Space
Technology, March 29, 1982, Volume 116, Number 13, p. 52-53. NASA has
conducted thermal imaging tests to study the space shuttie upon reentry, and a
temperature profile accurate to within 10-20K has been obtained. See Richard
G. O’Lone, "NASA Studying Data On Reentry Heating Of Columbia,”" Aviation Week &
Space Technology, April 12, 1982, Volume 116, Number 15, p. 68-71. Thermal
imaging may also be used to evaluate structural characteristics such as stress
contours and crack development. See D. S. Mountain, J. M. B. Webber, '"Stess
Pattern Analysis by Thermal Emmission (SPATE)," in Fourth European
Electro-Optics Conference, October 1978, Utrecht, Netherlands, SPIE Volume 164.

TECHNOLOGY TREES (PRIOR R&ED OF THESE 1S DESIRABLE.): 13.2 Human Eyesight via
Graphic Display; 19.1 A/D Converter; Communications Techniques.

CAPABILITY APPLIES TO (GFE NUMBERS): gi8.
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Imaging (Stereo) With Machine Processing
CODE NUMBER: 11.1 DATE: 6/29/82 NAME (S) : Kurtzman/Glass

DESCRIPTION OF CAPABILITY: To recognize and track known objects, in the space
environment, via an imaging camera-computer system, by means of triangulation
between two or more views from different perspectives to give three dimensional
imaging information. Stereo imaging can be achieved through the use of several
configurations, including: 1) two or more cameras; 2) one camera on a movable
arm; or 3) one camera with an attached mirror arrangement.

WHO 1S WORKING ON IT AND WHERE: Carl Ruoff, Group Supervisor, Jet Propulsion
Laboratory, L4800 Oak Grove, Pasadena, California 91103, (213) 354-6101; Hans
Moravec, Carnegie-Mellon University, Schenly Park, Pittsburgh, Pennsylvania
15213, (412) 578-3829; Clifford Geschke, Coordinated Science Laboratory,
University of 11linois at Urbana-Champaign; R. Brooks and T. Binford,

Stanford University Robotics Laboratory, Stanford, California; Gerald Gleason
and Gerald Agin (SR!); Berthold K. P. Horn, Artificial Intelligence Laboratory,
Massachusetts Institute of Technoiogy.

TECHNOLOGY LEVELS: LEVELl: Now LEVEL2: Now LEVEL3: Now
LEVELYL: Now LEVELS: 1985 LEVEL6: 1987 LEVEL7: 1990

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: Ruoff - The processing of stereo
images is computationally harder than non-stereo, but requires less ‘'smart"
software. |t should therefore take an approximately equivalent effort.
Technology currently under development can track simple objects at 1-2 Hertz.

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A L-5: see below 5-6: see below 6-7: see below

REMARKS AND DATA SQURCES ON COST ESTIMATES: Ruoff - From present to Level 7
should cost $10-20 million for a specific effort.

REMARKS ON SPECIAL ASPECTS: In many of its applications a vision system will

be part of a larger system, such as a manipulator, which can alter the
environment which it senses. Ruoff - It should be possible to develop a robust
stereo system as the computational problems are well defined. Ruoff believes
that this option will be the capability ultimately used in many of its
applications. Technology will probably proceed to level § without a specific
NASA effort, but it will take several years longer. A vision system, by virtue
of its resolution and recognition capabilities, will have many other uses which
a radar or optical scanner system will not have. NASA must obtain in-house
expertise in order to intelligently select and oversee the development of a
vision system.

TECHNOLOGY TREES (PRIOR R&D OF THESE IS DESIRABLE.): 11.2 Imaging (Non-Stereo)
with Machine Processing.

CAPABILITY APPLIES TO (GFE NUMBERS): g33, g49, g69, g132, g243, g245.
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Imaging (Non-Stereo) With Machine Processing
CODE NUMBER: 11.2 DATE: 6/29/82 NAME (S) : Kurtzman/Glass

DESCRIPTION OF CAPABILITY: To recognize and track known objects, in the space
environment, via an imaging camera-computer system, by means of computer
interpretation of one camera (monocular) imaging information.

WHO IS WORKING ON IT AND WHERE: Carl Ruoff, Group Supervisor, Jet Propulsion
Laboratory, 4800 Oak Grove, Pasadena, California 91103, (213) 354-6101; Hans
Moravec, Carnegie-Mellon University, Schenly Park, Pittsburgh, Pennsylvania
15213, (412) 578-3829; Clifford Geschke, Coordinated Science Laboratory,
University of l1linois at Urbana-Champaign; R. Brooks and T. Binford,

Stanford University Robotics Laboratory, Stanford, California; Gerald Gleason
and Gerald Agin (SRl); Berthold K. P. Horn, Artificial Intelligence Laboratory,
Massachusetts Institute of Technology.

TECHNOLOGY LEVELS: LEVELl: Now LEVEL2: Now LEVEL3: Now
LEVELL: Now LEVEL5: 1985 LEVEL6: 1987 LEVEL7: 1990

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: Ruoff - The processing of
non-stereo images is computationally easier than stereo, but requires a
“"smarter' recognition system. It should therefore take an approximately
equivalent effort.-

R&ED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A 4-5: see below 5-6: see below 6-7: see below

REMARKS AND DATA SOURCES ON COST ESTIMATES: Ruoff - From present to Level 7
should cost $10-20 million for a specific effort.

REMARKS ON SPECIAL ASPECTS: In many of its applications a vision system will

be part of a larger system, such as a manipulator, which can alter the
environment which it senses. Ruoff - It is possible that a cooperative
(1abeled) target will be necessary to achieve this capablity in some of its
applications by 1990 without stereo. Technology will probably proceed to level
6 without a specific NASA effort, but it will take several years longer. A
vision system, by virtue of its resolution and recognition capabilities, will
have many other uses which a radar or optical scanner system will not have.
NASA must obtain in-house expertise in order to intelligently select and
oversee the development of a vision system.

TECHNOLOGY TREES (PRIOR R&D OF THESE 1S DESIRABLE.): 19.1 A/D Converter; 25.2
Onboard Microprocessor Hierarchy; Computer Memory Development.

CAPABILITY APPLIES TO (GFE NUMBERS): g33, gL9, 969, g132, g243, g245.
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Thermal Imaging Sensor With Machine Processing
CODE NUMBER: 11.3 DATE: 7/12/82 NAME (S) : Kurtzman

DESCRIPTION OF CAPABILITY: Use of thermal infrared imaging sensors
(thermography) to obtain a thermal profile of a structure in order to evaluate
the object’s thermal behavior. The sensor output is then processed by a
computer which evaluates and monitors the objects thermal characteristics and
makes any necessary actions based upon those observations.

WHO |S WORKING ON IT AND WHERE: Flir Systems, inc., Oswego, Oregon; Texas
Instruments; Martin Marietta Corporation, Denver.

TECHNOLOGY LEVELS: LEVEL1: Now LEVEL2: Now LEVEL3: Now
LEVELL: Now LEVEL5: 1984 LEVEL6: 1986 LEVEL7: 1988

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: The thermal imaging sensor is
currently at level §, but no effort has yet been made to apply machine vision
techniques to thermal data for evaluation.

ReED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A L-5: See below 5-6: See below 6-7: See below

REMARKS AND DATA SOURCES ON COST ESTIMATES: Study team estimate: $10-20
million to level 7.

REMARKS ON SPECIAL ASPECTS: Flir Systems has developed a system where a
scanner signal is processed and supplied to a standard television monitor in an
aircraft cockpit where a reai-time black-and-white, high-resolution image is
displayed. Such a system can be used for search and rescue, security
surveillance, power line and substation inspection, forest fire control,
structural surveys, pipeline patrol and many agricultural uses. See William B.
Scott, "Civil Thermal Imaging System Developed,'" Aviation Week & Space
Technology, March 29, 1982, Volume 116, Number 13, p. 52-53. NASA has
conducted thermal imaging tests to study the space shuttle upon reentry, and a
temperature profile accurate to within 10-20K has been obtained. See Richard
G. O’Lone, '"NASA Studying Data On Reentry Heating Of Columbia,'" Aviation Week §
Space Technology, April 12, 1982, Volume 116, Number 15, p. 68-71. Thermal
imaging may also be used to evaluate structural characteristics such as stress
contours and crack development. See D. S. Mountain, J. M. B. Webber, '"Stess
Pattern Analysis by Thermal Emmission (SPATE)," in Fourth European
Electro-Optics Conference, October 1978, Utrecht, Netherlands, SPIE Volume 164.

TECHNOLOGY TREES (PRIOR R&D OF THESE IS DESIRABLE.): 10.1 Thermal Imaging
Sensor With Human Processing; 11.2 Imaging (Non-Stereo) with Machine

Processing.

CAPABILITY APPLIES TO (GFE NUMBERS): gu8.
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Human Eyesight Via Video
CODE NUMBER: 13.1 DATE: 5/5/82 A NAME (S) : Glass/Spofford

DESCRIPTION OF CAPABILITY: A human operator looks at the image from remote
camera(s) on a video screen. The work scene is illuminated by spotlights.

WHO 1S WORKING ON IT AND WHERE: Thomas Sheridan, MIT Mechanical Engineering;
Thomas Binford, Stanford; Ewald Heer'’s group at JPL; Essex Corp., Huntsville.

TECHNOLOGY LEVELS: LEVEL1: now LEVEL2: now LEVEL3: now
LEVELYL: now LEVELS5: now LEVELG: now LEVEL7: now

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: J.R. Tevel & R.A. Spencer, AlAA
paper 78-1665; Essex EOTS reports.

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A L-5: N/A 5-6 N/A 6-7: N/A

REMARKS AND DATA SOURCES ON COST ESTIMATES: N/A
REMARKS ON SPECIAL ASPECTS: None.

TECHNOLOGY TREES (PRIOR R&D OF THESE IS DESIRABLE.): 14.1 Direct Human
Eyesight.

CAPABILITY APPLIES TO (GFE NUMBERS): g33, gL9, 969, 9132, g243, g245
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Human Eyesight Via Graphics Display
CODE NUMBER: 13.2 DATE: June 1982 NAME (S) : Howard/Marra

DESCRIPTION OF CAPABILITY: Observation of environment by human using a2 graphic
display. This includes the display hardware as well as software, which
isolates and presents the relevant information in an effective manner. Data
from a variety of sensors may be combined and analyzed in this process.

WHO IS WORKING ON IT AND WHERE: A. Bejczy, G. Paine at JPL; Warren A HManison,
MITRE Corp., MclLean, Virginia -

TECHNOLOGY LEVELS: LEVELl: Now LEVEL2: Now LEVEL3: Now
LEVELL: Now LEVELS: Now LEVELG:- Now LEVEL7: Now

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: Examples are the CRT displays
in modern fighter aircraft, and the shuttle cockpit displays.

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A

3-4: N/A  L4-5: N/A  5-6: N/A  6-7: N/A

REMARKS AND DATA SOURCES ON COST ESTIMATES: N/A

REMARKS ON SPECIAL ASPECTS: One useful feature not yet fully exploited is the
potential of reducing the data rate required for image transmission by
extracting the relevant geometric features from a scene and presenting them

graphically, rather than the whole video image.

TECHNOLOGY TREES (PRIOR RED OF THESE 1S DESIRABLE.): 13.1 Human Eyesight Via
Video; 25.1 Onboard Dedicated Microprocessor

CAPABILITY APPLIES TO (GFE NUMBERS): g69, gl09, g132, 9221, 922k, g2k3, g245
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Docking Under Onsite Human Control
CODE NUMBER: 13.3 DATE: June 1982 NAME (S): Howard/Glass

DESCRIPTION OF CAPABILITY: Final approach, docking motors, and latches are
activated and controlled by an onsite human operator.

WHO !S WORKING ON |IT AND WHERE: Various NASA Centers (e.g. JSC, MSFC).

TECHNOLOGY LEVELS: LEVELl: Now LEVEL2: Now LEVEL3: Now
LEVELL: Now LEVELS: Now LEVEL6: Now LEVEL7: Now

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: TRW Space Platform and
Materials Experiment Carrier studies.

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A L-5: N/A - 5-6: N/A 6-7: N/A

REMARKS AND DATA SOURCES ON COST ESTIMATES: N/A

REMARKS ON SPECIAL ASPECTS: This capability usually requires the astronaut to
be able to view the docking operation either through a window or via video.

TECHNOLOGY TREES (PRIOR RED OF THESE 1S DESIRABLE.): 6.2 Proximity Sensors;
13.2 Human Eyesight via Graphic Display; 13.5 Computer-Generated Audio; 13.6
Stereoptic Video; 13.7 3-D Display; 14L.8 Onsite Human Judgment

CAPABILITY APPLIES TO (GFE NUMBERS): glké

3C.28



ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Computer Printout
CODE NUMBER: 13.4 DATE: 6/29/82 NAME (S): Kurtzman/Thiel
DESCRIPTION OF CAPABILITY: The output of data on paper, from a computer system.

WHO 1S WORKING ON T AND WHERE: [IBM, as well numerous other manufacturers of
computer peripherals.

TECHNOLOGY LEVELS: LEVEL1l: Now LEVEL2: Now LEVEL3: Now
LEVELL: Now LEVELS5: Now LEVEL6: Now LEVEL7: Now

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: N/A

R&ED COST ESTIMATES BETWEEN LEVELS; 1-2: Now 2~3: Now
3-4: Now L-5: Now 5-6: Now 6-7: Now

REMARKS AND DATA SOURCES ON COST ESTIMATES: This is a currehtly available
capability (for on ground) although research is still done to manufacture less
expensive, faster, and more reliable printers. The Space Shuttle currently has
a teletype, and it would not be difficult to adapt similar hardware for
computer printouts.

REMARKS ON SPECIAL ASPECTS: None.

TECHNOLOGY TREES (PRIOR R&D OF THESE IS DESIRABLE.): None.

CAPABILITY APPLIES TO (GFE NUMBERS): gl109.
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ARAMIS CAPABILITY GENERAL INFORMATION FORM

CAPABILITY NAME: Computer-Generate¢ Audio
CODE NUMBER: 13.5 DATE: June 1982 NAME (S) : Howard/Kurtzman

DESCRIPTION OF CAPABILITY: The use of an audio signal to indicate information
to a human, such as proximity of a manipulator to its target, amount of force
being exerted, etc. This information can be conveyed by varying volume, pitch,
or modutation. This also includes the use of computer-generated verbal
information.

WHD IS WORKING ON IT AND WHERE: James L. Flanagan, Bell Telephone Laboratories

TECHNOLOGY LEVELS: LEVELYl: Now LEVEL2: Now LEVEL3: Now
LEVELL: Now LEVELS: Now LEVEL6: Now LEVEL7: Now

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: At the basic level, the
hardware exists; it is merely a matter of further implementation. Audio
enunciators are already used in the space shuttle for a variety of functions.
There are still significant technical problems with true computer speech
synthesis, and gquantitative cost estimates to overcome them are not available.
Source: '"The Synthesis of Speech,'" James L. Flanagan, Scientific American
v.226 no.2, Feb. 1972, pp. L48-58.

R&D COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
e 3-4: N/A L-5: N/A 5-6: N/A  6-7: N/A

REMARKS AND DATA SOURCES ON COST ESTIMATES: N/A

REMARKS ON SPECIAL ASPECTS: The operating environment is a critical factor:
distractions may be too great. Only one or two quantities can be continuously
monitored this way at one time.

TECHNOLOGY TREES (PRIOR R&D OF THESE 1S DESIRABLE.): Computer Programming
Techniques; Computer Memory Development

CAPABILITY APPLIES TO (GFE NUMBERS): g109
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Stereoptic Video
CODE NUMBER: 13.6 DATE: L/13/82 NAME (S) : Spofford/Howard

DESCRIPTION OF CAPABILITY: A video display system which simulates a
three-dimensional display for a human viewer. The video information comes from
a pair of co-located remote cameras. One example of a stereoptic display uses
two images projected on a Fresnel screen which has a precisely determined
matrix of exit pupils. Other examples use polarization or color to encode the
two images, and may require special viewing hoods or glasses.

WHO 1S WORKING ON IT AND WHERE: Robert L. Wernli, Naval Ocean Systems Center
(San Diego); Dr. Roger T. Schappell, Martin-Marietta Aerospace (Denver).

TECHNOLOGY LEVELS: LEVEL1: now LEVEL2: now LEVEL3: now
LEVELL: now LEVELS: now LEVELE: now LEVEL7: now

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: The hardware has been tested
for undersea teleoperator applications, which involve display requirements

very similar to space applications. The level seven assesment assumes that the
display is located on the ground, with the cameras in orbit.

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A L=-5: N/A 5-6: N/A 6-7: N/A

REMARKS AND DATA SOURCES ON COST ESTIMATES: None.

REMARKS ON SPECIAL ASPECTS: The three-dimensional effect is achieved at the
expense of a restricted viewing angle or location. Also, for many common data
displays, three dimensions are unnecessary. Older stereoptic system often led
to operator fatigue and headaches; newer systems are expected to be more
comfortable.

TECHNOLOGY TREES (PRIOR R&D OF THESE IS DESIRABLE.): 13.1 Human Eyesight Via
Video.

CAPABILITY APPLIES TO (GFE NUMBERS): g109
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ARAMIS CAPABILITY GENERAL INFORMATION FORM

CAPABILITY NAME: 3-D Display

CODE NUMBER: 13.7 DATE: 6/30/82 NAME (S} : Thiel/Marra

DESCRIPTION OF CAPABILITY: There are several methods for displaying a 3-D
image. The technique described here is considered to be the most promising.
Holographic projection is not discussed because it is not feasible in the
foreseeable future. The technology considered here uses a flat LED array
spinning at high speed to generate the image. A computer controls the
activation and intensity of each LED. The persistence of the image in the
human eye causes the illusion of a2 3-D image. Unlike most other attempts at
3-D disptay this technique allows the viewer to move and see another part of
the image, e.g. look at the right side and then move and look at the left,
top or bottom etc.

WHO 1S WORKING ON IT AND WHERE: Professor David G. Jansson (MIT Innovation
Center) and Dash, Straus, Goodhue Inc.

TECHNOLOGY LEVELS: LEVEL1: NOW LEVEL2: NOW LEVEL3: NOW
LEVELL: NOW LEVEL5: NOW LEVELG: N/A LEVEL7: N/A

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: "Medical Applications of a New
3-D Display System', Jansson and Goodhue, MIT, 1981. (MIT Innovation Center
Document) . '

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-L4: N/A L-5: N/A 5-6: N/A 6-7: N/A

REMARKS AND DATA SOURCES ON COST ESTIMATES: The developers of this device are

currently in the development, investment, and marketing process; therefore
cost estimates are not available.

REMARKS ON SPECIAL ASPECTS: This device is desirable because it offers a 3-D image
that can be viewed from multiple locations. |ts major drawback is the high
bandwidth data tranfer through a rotating interface.

TECHNOLOGY TREES (PRIOR RED OF THESE 1S DESIRABLE.): 13.1 Human Eyesight via
Video; 19.1 Analog/Digital Converter; 25.1 Onboard Dedicated Microprocessor.

CAPABILITY APPLIES TO (GFE NUMBERS): gl09
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ARAMIS CAPAB!ILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Direct Human Eyesight
CODE NUMBER: 14.1 DATE: June 1982 NAME (S) : Howard/Marra
DESCRIPTION OF CAPABILITY: Estimation of position, velocity, or configuration
of target by human observer with direct line-of-sight. [Illumination will be
provided by spot lights. Observer may be in EVA or observing through window.
WHO 1S WORKING ON IT AND WHERE: Data Sources: The Eye, Physiology Dept.,
University College, London, England, 1976, Ed. Hugh Davson; Helimholtz'’s
Treatise on Physiological Optics, 1962, James P.L. Southall, editor.

TECHNOLOGY LEVELS: LEVEL1l: Now LEVEL2: Now LEVEL3: Now
LEVELL: Now LEVELS: Now LEVEL6: Now LEVEL7: Now

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: N/A

R&ED COST ESTIMATES BETWEEN LEVELS; 1t-2: N/A 2-3: N/A

3-4: N/A L-5: N/A 5-6: N/A 6-7: N/A

REMARKS AND DATA SOURCES ON COST ESTIMATES: N/A

REMARKS ON SPECIAL ASPECTS: This capability carries an 'overhead'" of training,
human safety and life support, to be traded off with versatility and
selectivity, particularly in evaluating 3-D scenes. The human eye’s abilities
are most useful if the data is to be used by the human (i.e., transferring the
information to another device is slow and cumbersome) .

TECHNOLOGY TREES (PRIOR R&D OF THESE 1S DESIRABLE.): None.

CAPABILITY APPLIES TO (GFE NUMBERS): g33, gL9, g639, gl132, g243, g2i45
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ARAMIS CAPABILITY GENERAL INFORMATION FORM

CAPABILITY NAME: Human On Ground With Computer Assistance
CODE NUMBER: 14.2 DATE: 3/18/82 NAME (S) : Spofford/Howard

DESCRIPTION OF CAPABILITY: Decisions are made by a human with the aid of
computer routines for data handling, analysis, and mission simulation. The
computer software of this capability is not as advanced as that of other
capabilities such as Computer Modeling And Simulation (16.1).

WHO 1S WORKING ON IT AND WHERE: |IBM and many other companies; NASA Centers
(JSC, MSFC, KSC, ARC); JPL.

TECHNOLOGY LEVELS: LEVELl: now LEVEL2: now LEVEL3: now
LEVELL: now LEVELS: now LEVELG: now LEVEL7: now

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: None.

R&ED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3~4: N/A L-5: N/A 5-6: N/A 6~7: N/A

REMARKS AND DATA SOURCES ON COST ESTIMATES: None.

REMARKS ON SPECIAL ASPECTS: This is one of the traditional methods of
monitoring, decision-making, and control of spacecraft functions. This
et capability is extremely versatile, in that it is a candidate for 30 of the §9
' GFE’s researched in detail by this study.

TECHNOLOGY TREES (PRIOR ReD OF THESE IS DESIRABLE.): 13.2 Human Eyesight Via
Graphic Display; 13.4 Computer Printout; 25.4 Deterministic Computer
Program On Ground.

CAPABILITY APPLIES TO (GFE NUMBERS): g1, g5, g10, g24, g37, 938, gL7, g56,

g57, g58, g60, gé6L, 965, g83, 987, 988, g92, g93, g94, g97, g98, gl103, gli07,
gll0, gi84, 9185, g221, g24k4, g318, g325.

3C.35



ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Human In EVA With Tools
CODE NUMBER: 14.3 DATE: June 1982 NAME (S) : Howard/Akin

DESCRIPTION OF CAPABILITY: A human directly operating manual or power-assisted
tools at worksite (EVA or IVA, with or without mobility aids).

WHO 1S WORKING ON 1T AND WHERE: NASA JSC, NASA MSFC, NASA Langley, Lockheed
Missiles & Space, MIT Space Systems Lab, Essex Corp. (Huntsville, Alabama),
Hamilton-Standard (Windsor Locks, Connecticut)

TECHNOLOGY LEVELS: LEVELI: Now LEVEL2: Now LEVEL3: Now
LEVELL: Now LEVELS: Now LEVELGE: Now LEVEL7: Now

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: N/A

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A

3-4: N/A L-5: N/A 5-6: N/A 6-7: N/A

REMARKS AND DATA SOURCES ON COST ESTIMATES: N/A

REMARKS ON SPECIAL ASPECTS: This capability carries an ''overhead" of trainihg,
human safety, and life support, to be traded off with very high versatility and
fault recovery. Also, it is easier to provide in certain orbits (e.g. LEO vs.

GEO) .

TECHNOLOGY TREES (PRIOR RE&D OF THESE 1S DESIRABLE.): 14.7 Oncsite Human With
Computer Assistance; EVA Tools

CAPABILITY APPLIES TO (GFE NUMBERS): g23, g27, g31, gci48, 967, 973, gl3k, gli6,
glu8, g177, g260
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Human With Checklist
CODE NUMBER: 1L.4 DATE: June 1982 NAME (S) : Howard/Akin
DESCRIPTION OF CAPABILITY: A human on the ground following a preplanned
sequence of operations, which includes decision points directing him to
alternate sequences, based on information gathered in each operation.

WHO 1S WORKING ON IT AND WHERE: Various NASA Centers.

TECHNOLOGY LEVELS: LEVELl: Now LEVEL2: Now LEVEL3: Now
LEVELL: Now LEVEL5: Now LEVEL6: Now LEVEL?7: Now

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: N/A

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A L-5: N/A - 5-6: N/A 6-7: N/A

REMARKS AND DATA SQURCES ON COST ESTIMATES: N/A

REMARKS ON SPECIAL ASPECTS: All the work is done in advance, with every
possible alternative planned for. This capability carries an "overhead” of -
training and support costs (including salary) to be traded off with versatility
and ‘selectivity. If 2 human on ground is making decisions that affect in-space
operations, there is also the associated cost of a communications system and
communications delays.

TECHNOLOGY TREES (PRIOR R&D OF THESE IS DESIRABLE.): None.

CAPABILITY APPLIES TO (GFE NUMBERS): g24, g37, g38., gi7, g57, @58, g60, gébk,
983, 987, 993. 994, g97, g105, gl10, g184, g185, giSkL, g220
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ARAMIS CAPABILITY GENERAL INFORMATION FORM

CAPABILITY NAME: Human Judgment on Ground
CODE NUMBER: 14.5 DATE: 6/29/82 NAME (S) : Kurtzman/Akin

DESCRIPTION OF CAPABILITY: The use of Earth-based human perception and
comprehension to form an opinion or evaluation of a situation.

WHO |S WORKING ON IT AND WHERE: NASA.

TECHNOLOGY LEVELS: LEVEL1: N/A LEVEL2: N/A LEVEL3: N/A
LEVELL: N/A LEVELS: N/A LEVEL6: N/A LEVEL7: N/A

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: N/A

R&ED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A

-3: N/A
3-4: N/A L-5: N/A 5-6: N/A 7

N/A

o N
t

REMARKS AND DATA SOURCES ON COST ESTIMATES: None.

REMARKS ON SPECIAL ASPECTS: This capability is a currently available
technology. This capability carries an 'overhead'" of training and support
costs (including salary) to be traded off with versatility and selectivity. If
a2 human on ground is making decisions that affect in-space operations, there is
also the associated cost of a communications system and communications delays.

TECHNOLOGY TREES (PRIOR R&D OF THESE 1S DESIRABLE.): 1L.4 Human with
Checklist.

CAPABILITY APPLIES TO (GFE NUMBERS): g57, ¢58, 960, g65, g77, gl07, glB84,
glg4, 9223, g2uk.
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ARAMIS CAPABILITY GENERAL INFORMATION FORM N
CAPABILITY NAME: Manual Testing On Ground
CODE NUMBER: 14.6 DATE: June 1882 NAME (S) : Howard/Glass
DESCRIPTION OF CAPABILITY: Sample instructions or other input is given to the
system under study, either prior to launch or to a ground-based mock-up system.

System performance is compared to expected performance.

WHO IS WORKING ON 1T AND WHERE: NASA Centers; many contractors {(Hughes, TRW,
Ford Aerospace)

"TECHNOLOGY LEVELS: LEVEL1: Now LEVEL2: Now LEVEL3: Now

LEVELL: Now LEVELS: Now LEVELGE: Now LEVEL7: Now

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: Sources: NASA KSC Guides;
Materials Experiment Carrier experimental package test procedures in TRW study

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A  2-3: N/A
3-4: N/A L4-5: N/A  5-6: N/A  6-7: N/A

REMARKS AND DATA SOURCES ON COST ESTIMATES: N/A

REMARKS ON SPECIAL ASPECTS: This requires a large amount of personnel-time,
particularly for a complex system.

TECHNOLOGY TREES (PRIOR R&D OF THESE 1S DESIRABLE.): 14.5 Human Judgment of
Ground

CAPABILITY APPLIES TO (GFE NUMBERS): gl, g5, gl0
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" ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Onsite Human With Computer Assistance
CODE NUMBER: 14.7 DATE: June 1982 : NAME (S): Howard/Spofford

DESCRIPTION OF CAPABILITY: This is a human onboard the shuttle orbiter,
assisted by the standard shuttle computer system.

WHO 1S WORKING ON |T AND WHERE: 1BM Corporatioﬁ, NASA Centers

TECHNOLOGY LEVELS: LEVELl: Now LEVEL2: Now LEVEL3: Now
LEVELL: Now LEVELS: Now LEVEL6: Now LEVEL7: Now

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: N/A

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A "2-3: N/A
3-4: N/A L-5: N/A 5-6: N/A 6-7: N/A

REMARKS AND DATA SOURCES ON COST ESTIMATES: N/A

REMARKS ON SPECIAL ASPECTS: Since the critical flight software is run in these
computers, their availability may be restricted at certain times of the
mission. Also, there is a substantial overhead cost in writing and modifying
sof tware, since it must be thoroughly checked for interference with critical
rouytines. This capability should not be confused with Equipment Function Test
by Onsite Human, or Equipment Data Checks by Onsite Human, which use dedicated
microprocessors to-support the onsite human (instead of the orbiter computers).

TECHNOLOGY TREES (PRIOR RED OF THESE IS DESIRABLE.): 13.1 Human Eyesight via
Video; 14.2 Human on Ground with Computer Assistance; 14.8 Onsite Human
Judgment

CAPABILITY APPLIES TO (GFE NUMBERS): g23, g24, g33, g35, g7, gi8, gi9, g50,

g51, g52, g5u4, g56., g57, 958, 960, g65, ¢92, g150, gl185, gi94, g2LL, g260,
g318, g325
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ARAMIS CAPABILITY GENERAL INFORMATION FORM

CAPABILITY NAME: Onsite Human Judgment
CODE NUMBER: 14.8 DATE: 6/29/82 NAME (S) : Kurtzman/Akin

DESCRIPTION OF CAPABILITY: The use of on-location human perception and
comprehension to form an opinion or evaluation of a situation.

WHO IS WORKING ON IT AND WHERE: NASA.

TECHNOLOGY LEVELS: LEVEL1: N/A LEVEL2: N/A LEVEL3: N/A
LEVELL: N/A LEVELS: N/A LEVEL6: N/A LEVEL7: N/A

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: N/A

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A

2-3: N/A
3-4: N/A L-5: N/A . 5-6: N/A 6-7:

N/A

REMARKS AND DATA SOURCES ON COST ESTIMATES: This is a currently available
technology, but considerable investment is still being made into human support
in space.

REMARKS ON SPECIAL ASPECTS: This capability carries an "overhead" of training,
human safety and life support, to be traded off with versatility and
selectivity.

TECHNOLOGY TREES (PRIOR R&D OF THESE IS DESIRABLE.): 14.5 Human Judgment on
Ground. .

CAPABILITY APPLIES TO (GFE NUMBERS): g57, 958, 960, g6é5, g185, gi19L, g2Ll,
g325.

+
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Specialized Manipulator under Human Control
CODE NUMBER: 15.1 DATE: 6/23/82 NAME (S) : Marra/Paige

DESCRIPTION OF CAPABILITY: Manipulator remotely controlled by a human operator
and designed for specific functions, in specific work-site geometries. The
number of degrees of freedom is determined by the function(s) for which the
manipulator is designed. The manipulator may have interchangable end-effectors’
for various tasks.

WHO 1S WORKING ON IT AND WHERE: Thomas Sheridan M.1.T., Man-Machine Systems
Lab; Don Peiper, Automatix; Sinclaire Scala, General Electric, Reentry and
Environmental Systems; Carl Ruoff, JPL. The Shuttle RMS is a low-level version
of this capability (no end-effectors). ’

TECHNOLOGY LEVELS: LEVELI: Now LEVEL2: Now LEVEL3: Now
LEVELL: Now LEVELS5: Now LEVELE: Now LEVEL?7: 1984

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: Robert F. Goeke (M.|.T. Center
for Space Research) estimated two years to space rate such a device.

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A 4-5: N/A - 5-6: N/A 6-7: $1,000,000

REMARKS AND DATA SQOURCES ON COST ESTIMATES: Robert F. Goeke estimates
$1,000,000 to space rate such a device.

REMARKS ON SPECIAL ASPECTS: The operator may be in space or cn the ground. If
on the ground , the non-recurring cost will be higher because of the need of a
real-time communications system, but the recurring cost will go down. There
may also be time-delay problems. The Capability Application Forms have been
completed assuming that the operator is in space.

TECHNOLOGY TREES (PRIOR RED OF THESE 1S DESIRABLE.): 2.2 Dedicated Manipulator
under Computer Control; 6.2 Proximity Sensors; 13.1 Human Eyesight via Video;
13.2 Human Eyesight via Graphics Display; 13.5 Computer-Generated Audio; 13.6
Stereoptic Video; 13.7 3-D Display; 14.8 Onsite Human Judgement; Manipulator
End-Effectors; Supervisory Control

CAPABILITY APPLIES TO (GFE NUMBERS): g27, g31, gé67, 973, gl3L, glu8, g177
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ARAMIS CAPABILITY GENERAL INFORMATION FORM

T CAPABILITY NAME: Dextrous Manipulator Under Human Control

CODE NUMBER: 15.2 DATE: 6/30/82 NAME (S) : Spofford/Marra

DESCRIPTION OF CAPABILITY: A multi-fingered multi-purpose manipulator under
remote human control. This manipulator is capable of operating in various
geometries.

WHO 1S WORKING ON IT AND WHERE: JPL, Carnegie-Mellon, University of Rhode
Isiand, and other manipulator research organizations. The current level of
dexterity is low, and little effort is being applied to improving it.

TECHNOLOGY LEVELS: LEVEL1: now LEVEL2: now LEVEL3: now
LEVELYL: now LEVELS: see below LEVELG: see below LEVEL7: see below

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: Estimates not available yet.

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A L-5: see below 5-6: see below 6-7: see below

REMARKS AND DATA SOURCES ON COST ESTIMATES: Estimates not available yet.

REMARKS ON SPECIAL ASPECTS: The operator may be in space or on the ground. |If
the operator is on the ground, the non-recurring costs will be higher because
of the need for a real-time communications and control system (possibly

------ including predictive displays) but the recurring costs will go down.

TECHNOLOGY TREES (PRIOR RED OF THESE IS DESIRABLE.): Microactuators;

‘8.1 Tactile Sensors; 15.1 Specialized Manipulator Under Human Control;
25.5 Onboard Adaptive Control System.

CAPABILITY APPLIES TO (GFE NUMBERS): g27, g31, gé67, §73. gli3L, glu8, g177
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Teleoperator Maneuvering System With Manipulator Kit
CODE NUMBER: 15.3 DATE: 6/30/82 NAME (S) : Spofford/Paige

DESCRIPTION OF CAPABILITY: This capability incorporates a dextrous manipulator
kit mounted on a Teleoperator Maneuvering System (TMS) spacecraft. This
analysis considers the TMS to be developed and operational, so the TMS RED
costs are not carried by this capability. Essentially, this capability has a
set of dextrous manipulators on a free-flying platform, all of which is
remotely operated by a human. Visual feedback is provided by the TMS cameras,
and optionally by the manipulator kit. |f the manipulators are dextrous,

other types of feedback may also be included.

WHO IS WORKING ON IT AND WHERE: Vought Corp. and Martin Marietta (on the
TMS) ;NASA MSFC and JPL (on dextrous manipulators).

TECHNOLOGY LEVELS: LEVEL1: now LEVEL2: now LEVEL3: now
LEVELL: now LEVELS: see below LEVELG: see below LEVEL?: see below

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: Estimates not available yet.

R&ED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A 4L-5: see below 5-6: see below §£-7: see below

REMARKS AND DATA SOURCES ON COST ESTIMATES: Estimates not available yet.

REMARKS ON SPECIAL ASPECTS: The operator may be in space or on the ground. |f
the operator is on the ground, the non-recurring costs will be higher because
of the need for a real-time communications and controi system (possibly
including predictive displays), but the recurring costs will go down.

TECHNOLOGY TREES (PRIOR R&D OF THESE 1S DESIRABLE.): Communications techniques;
6.1 Optical Scanner (Passive Cooperative Target);: 6.3 Radar (Passive
Target); 6.5 Onboard Navigation And Telemetry; 14.3 Human In EVA With
Tools; 15.2 Dextrous Manipulator Under Human Control; 15.4 Teleoperated
Docking Mechanism.

CAPABILITY APPLIES TO (GFE NUMBERS): g27, g31, g67, o973, gl3L, gl48, gl177.

3C.44



ARAMIS CAPABILITY GENERAL INFORMATION FORM

CAPABILITY NAME: Teleoperated Docking Mechanism
CODE NUMBER: 15.4 DATE: 5/27/82 NAME (S) : Glass/Spofford

DESCRIPTION OF CAPABILITY: A docking mechanism teleoperated by a remote
operator. This operator receives visual! feedback (and possibly other types of
feedback), and controls the docking actuators. The worksite is illuminated by
spotlights.

WHO (S WORKING ON IT AND WHERE: Martin Marietta (Denver): NASA MSFC, JSC;
Essex Corp. (Hunstville, AL).

TECHNOLOGY LEVELS: LEVEL1: now LEVEL2: now LEVEL3: now
LEVELY: now LEVEL5: now LEVEL6: 1983 LEVEL7: 1987

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: TRW and McDonnell-Douglas
Space Platform studies. ’

R&ED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A

3-L: N/A 4-5: N/A 5-6: $2M 6-7: $2M

REMARKS AND DATA SOURCES ON COST ESTIMATES: Study‘group estimates.

REMARKS ON SPECIAL ASPECTS: Depending on the locations of worksite and
operator, time delays in transmission may pose problems, requiring
move-and-wait strategies or supervisory control. Real-time feedback to the

operator requires a substantial data rate (minimum of 3 kilobits/sec for a
black-and-white TV picture).

TECHNOLOGY TREES (PRIOR R&D OF THESE 1S DESIRABLE.): Communications techniques;
Supervisory control; 13.3 Docking Under Onsite Human Control.

CAPABILITY APPLIES TO (GFE NUMBERS): glL6
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ARAMIS CAPABILITY GENERAL INFORMATION FCRH
CAPABILITY NAME: Computer Modeling And Simulation
CODE NUMBER: 16.1 DATE: 3/19/82 NAME (S) : Spofford/Akin/0liveira

DESCRIPTION OF CAPABILITY: An interactive computer-based modeling and
simulation system. The computer maintains a database containing a geometric
and/or functional model of the system being simulated. A
computer-aided-design system is a3 limited example of such a system. The
simulation can be run in accelerated time, to predict outcomes of spacecraft
procedures, prior to actual functions.

WHO S WORKING ON IT AND WHERE: Intermetrics, TRW, Rockwell, Martin Marrieta,
JPL, Draper Laboratories. :

TECHNOLOGY LEVELS: LEVEL!l: now LEVEL2: now LEVEL3: now
LEVELYL: now LEVELS: now LEVEL6: now LEVEL7: now

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: The data base must be
developed for each new application, but these techniques are in use today.

R&D COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A L-5: N/A 5-6: N/A 6-7: N/A

REMARKS AND DATA SOQOURCES ON COST ESTIMATES: The cost to develop a data base
depends on its scale and complexity.

REMARKS ON SPECIAL ASPECTS: None.

TECHNOLOGY TREES (PRIOR R&D OF THESE IS DESIRABLE.): Computer memory
development; 25.4 Deterministic Computer Program On Ground.

CAPABILITY APPLIES TO (GFE NUMBERS): gl, g5, g6k, g77, 997, ¢gl110, gl94
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Tracking and Data Relay Satellite System
CODE NUMBER: 17.1 DATE: 6/15/82 NAME (S§): Jones-Oliveira/Kurtzman

DESCRIPTION OF CAPABILITY: TDRSS is a digital transmission system operating in
the S & K bands, 6 megabits and 300 megabits respectively. Each satellite can
provide L video links simultaneously. The limitations of TDRSS are not
presented by the TDRSS, but rather by the capacity of the ground systems to
manage the information sent down for processing( e.g. the system is limited by
capabilities of ground transmission of the data from the ground station to the
computers designated the task of analysis). Therefore, in order to optimize
TDRSS, data compression is a2 necessity, and immediate recognition of bad data
is essential. (With improvements in ground-to-ground data transmission
techniques/capacities, TORSS may be expanded to the X band by the year .2000.)
There will be one user per antenna, i.e., Single Access (SA) using steerable
parabolic antennas. However, if there is more than one user within a given
field of view, it can provide services on each band. There are two satellites
proposed with a third as a spare. By 1989-1990, B0% user orbit coverage will
be achieved, and the third satellite can increase that capacity by 50%, i.e.,
to 90% user orbit coverage. There are also available Multiple Access (MS)
downlinks using a TDRS array antenna with ground implemented phasing; however,
it is not ca able of using the K band.

WHO 1S WORKING ON IT AND WHERE: NASA/0STS, Goddard Space Flight Center

TECHNOLOGY LEVELS: LEVELi: now LEVEL2: now LEVEL3: now
LEVELL: now LEVEL5: now LEVEL6: now LEVEL7?: 1983

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: Eugene Ferrick, NASA/OSTS.
Tracking and Data Relay Satellite System (TDRSS), User’s Guide, Revision k.

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A

2-3: N/A
3-4: N/A L-5: N/A 5-6: N/A 6-7:

See below

REMARKS AND DATA SOURCES ON COST ESTIMATES: The R&ED phase is coming to
completion with a January 1983 expected delivery date to orbit.

REMARKS ON SPECIAL ASPECTS: Three signif%cant benefits of TDRSS are its

capacity, near to 100% orbit coverage, and the necessity of fewer ground
stations,

TECHNOLOGY TREES (PRIOR R&D OF THESE IS DESIRABLE.): Communications
Techniques.

CAPABILITY APPLIES TO (GFE NUMBERS): g79
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Direct Transmission To/From Ground
CODE NUMBER: 17.2 DATE: 5/12/82 NAME (S): Thiel/Marra

DESCRIPTION OF CAPABILITY: By using the STDN and sometimes the DSN the
spacecraft communicates directly with the ground (as opposed to transmitting
via the orbiter or TDRSS).

WHO 1S WORKING ON |T AND WHERE: The ground station network is usually operated
by NASA and in some cases DoD. The spacecraft side of the link is the
contractor’s responsibility. This technology is well developed, although there
is much room for improvement as communications technology advances.

TECHNOLOGY LEVELS: LEVEL1: NOW LEVEL2: NOW LEVEL3: NOW
LEVELL: NOW LEVELS5: NOW LEVEL6: NOW LEVEL7: NOW

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: This is the present technology
for spacecraft communications. More advanced methods (20-30 GHz) are being
developed, but this is an evolving technology. The basic technology is
operational today.

R&D COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A L-5: N/A 5-6: N/A° 6-7: N/A

REMARKS AND DATA SOURCES ON COST ESTIMATES: Technology already in use.

REMARKS ON SPECIAL ASPECTS: For many NASA operations this communications method
will be replaced by TORSS.

TECHNOLOGY TREES (PRIOR R&D OF THESE 1S DESIRABLE.): Communications Techniques

CAPABILITY APPLIES TO (GFE NUMBERS): g79
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Direct Transmission To/From Orbiter
CODE NUMBER: 17.3 DATE: 7/3/82 NAME (S): Thiel/Marra

DESCRIPTION OF CAPABILITY: Direct communication between a spacecraft and the
orbiter via S-band communications link or the Ku-band communications/radar
system.

WHO 1S WORKING ON IT AND WHERE: Rockwell International is responsible for
overall system integration and has several subcontractors for the S-band
system. Hughes Aircraft Co. is responsible for the Ku-band communications/radar
system.

TECHNOLOGY LEVELS: LEVELI: NOW LEVEL2: NOW LEVEL3: NOW
LEVELL: NOW LEVELS: NOW LEVEL6: NOW LEVEL7: 1983-1984

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: Both communications systems have

been developed and are awaiting an opportunity for testing in space, expected
to occur soon.

R&D COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A

3-4: N/A L-5: N/A 5-6: N/A 6-7: N/A

REMARKS AND DATA SOURCES ON COST ESTIMATES: The S and Ku-band systems are
developed. Both are awaiting the opportunity to be tested in space. The exact
cost, if any, of such a test is not available since the test will be part of
other operations.

REMARKS ON SPECIAL ASPECTS: The Ku-band system is also designed to be the main
mode of communications with TDRSS.

TECHNOLOGY TREES (PRIOR R&D OF THESE IS DESIRABLE.): None

CAPABILITY APPLIES TO (GFE NUMBERS): g79
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Direct Communication To/From Orbiter Via Cable
CODE NUMBER: 17.4 DATE: 6/24/82 NAME (S) : Marra/Spofford

DESCRIPTION OF CAPABILITY: Data is passed directly to or from the orbiter
through a communications cable.

WHO IS WORKING ON iT AND WHERE: NASA JSC, KSC

TECHNOLOGY LEVELS: LEVEL1: Now LEVEL2: Now LEVEL3: Now
LEVELL: Now LEVELS: Now LEVEL6: Now LEVEL7: Now

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: N/A

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A L-5: N/A 5-6: N/A 6-7: N/A

REMARKS AND DATA SOURCES ON COST EST!MATES: In order to use this capability,
the spacecraft with which the orbiter is communicating must be close enough to
the orbiter to allow a cable to be connected between them.

TECHNOLOGY TREES (PRIOR R&D OF THESE 1S DESIRABLE.): Communications Techniques

CAPABILITY APPLIES TO (GFE NUMBERS): g79
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Onboard Data Recorder
CODE NUMBER: 18.1 " DATE: 6/3/82 NAME (S) : Thiel/Spofford

DESCRIPTION OF CAPABILITY: This device is almost identical to 18.3 Magnetic
Tape (in some cases it is the same) except that the Onboard Data .Recorder is
only used to take data and store it for later playback. The Magnetic Tape
device is more sophisticated because it is part of a computer memory system
which may access parts of the tape while ignoring others. 1In most cases the
difference is not in the hardware, but in its application.

WHO |S WORKING ON IT AND WHERE: The two major manufacturers of tape units for
space use are RCA and Odetics.

TECHNOLOGY LEVELS: LEVELI1: NOW LEVEL2: NOW LEVEL3: NOW
LEVELL: NOW LEVELS: NOW LEVELG: NOW LEVEL7: NOW

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: This technology has been used
for several years and is fully developed. However, solid state devices are

likely to replace tape units soon.

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A L=5: N/A 5-6: N/A 6-7: N/A

REMARKS AND DATA SOURCES ON COST ESTIMATES: The development costs for this
technology are zero because it is a mature technology. Individual units are
expensive because they are usually custom made for each user.

REMARKS ON SPEC!IAL ASPECTS: None

TECHNOLOGY TREES (PRIOR R&ED OF THESE 1S DESIRABLE.): None

CAPABILITY APPLIES TO (GFE NUMBERS): g218, g2é4
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Random Access Memory
CODE NUMBER: 18.2 DATE: 6/12/82 NAME (S) : Spofford/Jones-Oliveira

DESCRIPTION OF CAPABILITY: Random Access Memory is high-speed semiconductor
memory used as main memory in a computer. This memory retains its contents
only while power is applied to the circuits. Several companies (Bell
Laboratories/Western Electric, IBM, Intel, Texas !Instruments, Mostek, Hitachi,
and Motorola) are developing or about to start production of 256K-bit memory
devices.

WHO IS WORKING ON IT AND WHERE: Integrated circuit manufacturers

TECHNOLOGY LEVELS: LEVEL!l: now LEVEL2: now LEVEL3: now
LEVELL: now LEVELS: now LEVELE6: now LEVEL7: now

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: This reflects current
space-rated random access memory devices. More advanced devices are at a lower
level of development.

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A L-5: N/A 5-6: N/A 6-7: N/A

REMARKS AND DATA SOURCES ON COST ESTIMATES: This refiects current space-rated
random access memory devices. More advanced devices will require space-rating.

REMARKS ON SPECIAL ASPECTS: The state of the art in semiconductor memory
is still improving. These integrated circuits may need to be shielded or
radiation-hardened for use in a space environment. The memory devices
commercially available have significantly more capability than current
space-qualified devices.

TECHNOLOGY TREES (PRIOR R&D OF THESE 1S DESIRABLE.): Computer memory
development; Space-rated integrated circuits.

CAPABILITY APPLIES TO (GFE NUMBERS): g89
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Magnetic Tape
CODE NUMBER: 18.3 ‘DATE: 6/L/82 Thiel/Spofford

DESCRIPTION OF CAPABILITY: This capability is essentially identical to ground
based tape memory units except it is adapted for space use. It is likely that
by the time space computers need tape units for memory the tape units will be
obsolete. :

WHO S WORKING ON IT AND WHERE: For ground use just about every large computer
company produces tape drives. For space use RCA and QOdetics are the leading
manufacturers.

TECHNOLOGY LEVELS: LEVELl: NOW LEVEL2: NOW LEVEL3: NOW
LEVELL: NOW LEVELS: NOW LEVELE: NOW LEVEL7: 1983

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: Since tape units have been used
in space very little modification would be necessary for computer memory use.

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A L4-5: N/A 5-6: N/A 6-7: 1 Million

REMARKS AND DATA SOURCES ON COST ESTIMATES: This includes the space rating of
upgraded motor drives and related equipment for application to computer memory
use. (Study group estimate). '

REMARKS ON SPECIAL ASPECTS: This technology will probably become obsolete .
before it-is ever used because of the increasing capabilities of solid state
memory units.

TECHNOLOGY TREES (PRIOR R&D OF THESE IS DESIRABLE.): None

CAPABILITY APPLIES TO (GFE NUMBERS): g89, g90
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ARAMIS CAPABILITY GENERAL INFORMAT ION FORM
CAPABILITY NAME: Magnetic Bubble Memory
CODE NUMBER: 18.4 DATE: 6/3/82 NAME (S) : Spofford/Kurtzman

DESCRIPTION OF CAPABILITY: & solid-state memory device that stores data bits
as magnetic 'bubbles'" in a thin film of magnetic material. Data is accessed
serially; bits are organized sequentially in many loops. This is a
non-volatile storage medium; memory contents are maintained without power.

WHO IS WORKING ON IT aND WHERE: Bell Laboratories; Inte) Magnetics; Texas
Instruments; and other integrated circuit manufacturers,

TECHNOLOGY LEVELS: LEVEL]: now LEVEL2: now LEVEL3: now
LEVELL: now LEVELS: now LEVELG: now LEVEL7: see below

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: Time required to Space-rate
bubble mmories is estimated at two vears.

RED COST ESTIMATES BETWEEN LEVELS: {-2: N/A 2-3: N/A
3-4: N/A L=5: N/A 5-6: N/ 6-7: N/A

REMARKS AND DATA SOURCES ON COST EST!MATES: None.

REMARKS ON SPECIAL ASPECTS: These ‘ntegrated circuits may have to be shielded
or radiation-hardened for vuse in a space environment. The theoretical storage
density of a bubble memory is greater than js possible with a semiconductor
memory, as the bubbles may be smal!le~ than the transistors used in other
memories. The energy required to move the bubbles is less than that required
to switch a transistor.

TECHNOLOGY TREES (PRIOR RED OF THESE IS DESIRABLE.): Computer memory
development; Space-rated integrated circuijts.

CAPABILITY APPLIES TO (GFE NUMBERS): qgg. 990

| keproduced from
best available copy. 4
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPAB!LITY NAME: Magnetic Disk Memory
CODE NUMBER: 18.5 DATE: 6/4/82 NAME (S) : Spofford/Thiel

DESCRIPTION OF CAPABILITY: Bulk storage device which records data on a
rotating platter coated with a magnetic film. This capability describes a
integral drive/platter unit with an environmentally sealed housing (generally
refered to as a "Winchester' disk).

WHO IS WORKING ON IT AND WHERE: Seagate Technelogy, Shugart Associates, and
others (mini-Winchesters).

TECHNOLOGY LEVELS: LEVEL!: now LEVEL2: now LEVEL3: now
LEVELL: now LEVELS: now LEVEL6: now LEVEL7: see below

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: The effort required to
space-rate a disk memory unit is estimated by the study group to be comparable
to that required for a magnetic tape unit.

R&ED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A 4-5: N/A 5-6: N/A 6-7: see below

REMARKS AND DATA SOURCES ON COST ESTIMATES: This is not known at présent.

REMARKS ON SPECIAL ASPECTS: The state of the art in magnetic disk memory
devices is still improving. These units must be shielded or

radiation-hardened for use in a space environment. Small Winchester drives
have been developed extensively for the personal computer industry. Disk units
capable of storing fifty megabytes in a five-inch package have been developed.

TECHNOLOGY TREES (PRIOR R&D OF THESE IS DESIRABLE.): Computer memory
development.

CAPABILITY APPLIES TO (GFE NUMBERS): g89, g90
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Optical Disc
CODE NUMBER: 18.6 DATE: 7/1/82 NAME (S) : Marra

DESCRIPTION OF CAPABILITY: Analog or digital data is permanently stored on an
optical disk by a laser. The data cannot be updated or erased.

WHO IS WORKING ON IT AND WHERE: RCA Advanced Technology Laboratory, Camden, New
Jersey; Storage Technology. Louisville, Colorado.

TECHNOLOGY LEVELS: LEVEL1: Now LEVEL2: Now LEVEL3: Now
LEVELL: Now LEVELS: Now LEVELG: 1983 LEVEL7: see below

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: The sources on the technology
levels are "Optical Disks Excite !ndustry', Electronics, May 5,198!; Gerald
Claffie, RCA Advanced Technology Lab, Camden, New Jersey. An estimate for when
Optical Disks will reach level 7 is not available,

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A L-5: N/A 5-6: see below 6-7: not available

REMARKS AND DATA SOURCES ON COST ESTIMATES: The cost estimates for reachnng
level 6§ are proprietary due to competitive business reasons.

REMARKS ON SPECIAL ASPELTS: The optical disk mechanism is physically smaller
than a magnetic disk system.

TECHNOLOGY TREES (PRIOR RED OF THESE IS DESIRABLE.): Computer Memory
Development: Laser Technology

CAPABILITY APPLIES TO (GFE NUMBERS): g§0
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ARAMIS CAPABILITY GENERAL INFORMATION FORM

CAPABILITY NAME: Erasable Optical Disc
CODE NUMBER: 18.7 DATE: 7/1/82 NAME (S) : Marra

DESCRIPTION OF CAPABILITY: Data is read and written by a laser onto an optical
disc. The data can be written and overwritten many times. The data is
non-volatile (i.e. no power is necessary to keep the data intact).

WHO IS WORKING ON !T AND WHERE: RCA Advanced Technology Labs, Camden, New
Jersey; Storage Technology, Louisville, Colorado.

TECHNOLOGY LEVELS: LEVEL1: Now LEVEL2: Now LEVEL3: Now
LEVELL: Now LEVELS: 1983 LEVEL6: 1985 LEVEL7: see below

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: The sources on the technology
levels are "Optical Disks Excite I{ndustry", Electronics, May 5,1981; Gerald
Claffie, RCA Advanced Technology Lab, Camden, New Jersey. An estimate for when
Optical Disks will reach level 7 is not available.

RED COST ESTIMATES BETWEEN LEVELS:; 1-2: N/A 2-3: N/A
3-4: N/A L-5: N/A 5-6: see below 6-7: not available

REMARKS AND DATA SOURCES ON COST ESTIMATES: Cost estimates for reaching level
6 are not available due to competitive business reasons.

REMARKS ON SPECIAL ASPECTS: Erasable optical discs should have the same
characteristics as 18.6 Optical Disc except for the .ability to revise data
(Gerald Claffie, RCA).

TECHNOLOGY TREES (PRIOR R&D OF THESE IS DESIRABLE.): 18.6 Optical Disc

CAPABILITY APPLIES TO (GFE NUMBERS): g89, g90
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILI!TY NAME: Holographic Storage
CODE NUMBER: 18.8 DATE: June 1982 NAME (S) : Howard/Jones-0Oliveira

DESCRIPTION OF CAPABILITY: A large capacity (terabit) read-write optical mass
memory, using laser holography for storage and retrieval.

WHO IS WORKING ON |IT AND WHERE: Institut fuer Informationsverarbeitung in
Technik und Biologie, Karlsruhe, West Germany; Harris Corporation,
Electro-Optics Department, Melbourne, florida; Grumman Aerospace Corporation,
Research Department, Bethpage, New York

TECHNOLOGY LEVELS: LEVEL1: Now . LEVEL2: Now LEVEL3: Now
LEVELL: Now LEVELS5: Now LEVELG6: Not available LEVEL7: Not
available

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: Efficiency and retliability of
lasers and the recording medium must be improved, and power consumption reduced
to be feasible for space applications. Quantitative estimates are not
available (Source: Linda Ralston at Harris Corp.)

R&D COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A L-5: N/A 5-6: Not available §-7: Not available

REMARKS AND DATA SOURCES ON COST ESTIMATES: Quantitative estimates are not
available.

REMARKS ON SPECIAL ASPECTS: As currently envisioned, this system can be tape-,
block-, or fiche-oriented with a photoplastic material as the storage medium,
with the fiche-oriented type being favored. This requires a few moving parts
to implement, which may limit its reliability and useful life. As in all such
systems with mechanical drives, there is a trade-off between random access time
and power consumption. The attainable values are much better than for

current magnetic tape systems, which are the only memories available today in
large (terabit) capacity. Compared with semiconductor memories, the write-time
and random access time for the holographic system is long. Also, the largest
technological obstacle is the lack of a storage medium which can be reliably
recycled a large number of times. On the other hand, the advantages of this
system are no power consumption when not writing or reading and low
vulnerability to degradation by radiation. This system would be most useful
for long-term storage of large amounts of data, with infrequent rewrites.

TECHNOLOGY TREES (PRIOR R&D OF THESE 1S DESIRABLE.): Computer Memory
Development; Laser Technology

CAPABILITY APPLIES TO (GFE NUMBERS): g89, g90

3C.58



ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Microform on Ground
CODE NUMBER: 18.9 DATE: 6/22/82 NAME (S) : Marra
DESCRIPTION OF CAPABILITY: Data is recorded in reduced form on film. Microform
includes Microfiche, Microfilm, and similar media. The microform is stored on
shelves or in cabinets until needed. An automatic accession system could be
developed.

WHO |S WORKING ON IT AND WHERE: Bell & Howell

TECHNOLOGY LEVELS: LEVEL1: Now LEVEL2: Now LEVEL3: Now
LEVELL: Now LEVELS: Now LEVELG6: Now LEVEL7: Now

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: N/A

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A L-5: N/A 5-6: N/A  6-7: N/A

REMARKS AND DATA SOURCES ON COST ESTIMATES: N/A

REMARKS ON SPECIAL ASPECTS: Microform has a higher storage density than paper.

.One advantage of microform is that it is in a form that is readily readable by

humans, unlike the electronic forms of data storage. However to transmit the
data, the microform itself must be sent, or the data converted to another

medium; electronic memories can be sent over phone wires or such similar
means.

TECHNOLOGY TREES (PRIOR R&D OF THESE 1S DESIRABLE.): None.

CAPABILITY APPLIES TO (GFE NUMBERS): g90



ARAMIS CAPAB!LITY GENERAL INFORMATION FORM
CAPABILITY NAME: Electrically Alterable Read Only Memory
CODE NUMBER: 18.10 DATE: 6/7/82 NAME (S) : Spofford/Thiel

DESCRIPTION OF CAPABILITY: A semiconductof memory which retains data without
power (non-volatile). This device is read like a ordinary read-only-memory,
but may be erased electrically while in-circuit.

WHO 1S WORKING ON IT AND WHERE: Integrated circuit manufacturers

TECHNOLOGY LEVELS: LEVEL1: now LEVEL2: now LEVEL3: now
LEVELL: now LEVELS: now LEVELE: now LEVEL7: see below

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: Estimated time to space-rate
this memory device is two years. ‘

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A L-5: N/A 5-6: N/A 6-7: see below

REMARKS AND DATA SOURCES ON COST ESTIMATES: Comparable to other MOS integrated
circuits.

REMARKS ON SPECIAL ASPECTS: The state of the art in semiconductor memory

is still improving. These integrated circuits may have to be shielded or
radiation-hardened for use in a space environment. These memories are useful
for recording data that changes occasionally.

TECHNOLOGY TREES (PRIOR R&D OF THESE IS DESIRABLE.): Computer memory
development; Space-rated integrated circuits.

CAPABILITY APPLIES TO (GFE NUMBERS): gS0
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Cryoelectronic Memory
CODE NUMBER: 18.11 DATE: 6/21/82 NAME (S) : Kurtzman/Marra

DESCRIPTION OF CAPABILITY: Computer memory which uses superconducting
Josephson junction technology to achive extremely high density storage,
and operating speeds higher than today’s fastest electronic memories.

WHO IS WORKING ON IT AND WHERE: Dennis Herrell, Engineering Manager, Josephson
Computer Technology Program, |IBM Thomas J. Watson Research Center, Yorktown
Heights, New York 10598 (914) 945-1650

TECHNOLOGY LEVELS: LEVEL1: Now LEVEL2: Now LEVEL3: Now
LEVELL: Now LEVELS: Now LEVELG: 1987 LEVEL7: 1992

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: Levels 1-4 Juri Matisoo (IBM);
Level 5 Juri Matisoo (estimate); Levels 6-7 study team estimate

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A L-5: N/A 5-6: see below 6-7: see below

REMARKS AND DATA SOURCES ON COST ESTIMATES: $35,000,000 to level 7 (100,000
per man-year for 10 years with 35 man-years per year) ’

REMARKS ON SPECIAL ASPECTS: Can only operate at cryogenic temperatures (4 deg.
Kelvin). 1IBM is the lead researcher of computer applications of

Josephson technology, and ‘will not disclose future technology level and cost
estimates for competitive reasons.

TECHNOLOGY TREES (PRIOR RED OF THESE IS DESIRABLE.): Cryogenic Cooling

Techniques; Computer Memory Development

CAPABILITY APPLIES TO (GFE NUMBERS): g89
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Electron Beam Memory
CODE NUMBER: 18.12 DATE: 6/15/82 NAME (S): Jones-Dliveira/Spofford

DESCRIPTION OF CAPABILITY: This type of memory uses a scanning electron beam
to retrieve information from silicon storage wafers. Using state-of-the-art
semicohductors and two computers for beam control, the current development
system has 128 megabit memory storage, 16-bit information packets, 30
microsecond access time, L megahertz read/write rate, 95% duty cycle, and
automatic self-diagnosis for fault tolerance. The system is block-oriented in
its software architecture, and the memory is non~volatile.

WHO 1S WORKING ON 'T AND WHERE: Micro-Bit Division of Control Data Corp.,
Lexington, MA.

TECHNOLOGY LEVELS: LEVEL1: now LEVEL2: now LEVEL3: now
LEVELL: now LEVELS5: 1985 LEVEL6: 1990 LEVEL7: 1995

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: Allen Sliski at Micro-Bit

ReD COST ESTIMATES BETWEEN LEVELS; 1-2: N/A

2-3: N/A
3-4L: N/A L-5: See below 5-6: See below 6-7:

See below

REMARKS AND DATA SOURCES ON COST ESTIMATES: Over 500-man yvears of work have
been invested in this research to date by Micro-Bit; however, there remains
anywhere up to 300 man-years of R&D before this capability will be space rated.

REMARKS ON SPECIAL ASPECTS: It is quite possiblerthat this capability may be
made technically obsolete by Magnetic Bubble Memory before it will be space
rated in 1995. The research has been shelved, although paraliel research is
being conduced on an electron beam lithography machine.

TECHNOLOGY TREES (PRIOR R&ED OF THESE 1S DESIRABLE.): 21.2 Operations

Optimization Program; 25.2 Onboard Microprocessor Hierarchy: Computer
Programming Techniques.
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ARAM!S CAPABILITY GENERAL INFORMATION FORM

CAPABILITY NAME: Charge-Coupled Device Memory
CODE NUMBER: 18.13 DATE: 7/9/82 NAME (S} : Kurtzman/Spofford

DESCRIPTION OF CAPABILITY: A semiconductor computer memory technology
employing charge coupled devices (CCDs) which perform sequential (serial)
access where each bit is transfered sequentially as if they were in a closed
pipeline. This is in contrast to Random Access Memory (RAM) where the access .
time is independent of the physical location within the storage array.

WHO IS WORKING ON IT AND WHERE: The Fairchild Camera and Instrument
Corporation.

TECHNOLOGY LEVELS: LEVEL1: Now LEVEL2: Now LEVEL3: Now
LEVELL: Now LEVELS: Now LEVEL6: Now LEVEL7: See below

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: It would take an estimated two
years to space-rate a charge-coupled device memory.

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A

2-3: N/A
3-4: N/A L-5: N/A 5-6: N/A 6-7: S

ee below
REMARKS AND DATA SOURCES ON COST ESTIMATES: Costs to space-rate currently
available technology should be comparable to that for any other semiconductor

R memory device, CCDs have already been used in space as an imaging sensor
component.

REMARKS ON SPECIAL ASPECTS: The sequential access feature (shared by Magnetic
Bubble Memories) provides a reduction in cost per bit at a tradeoff of a
decrease in speed over a Random Access Memory. The CCD’s high performance in
terms of dynamic range and low power, its high packing density and potentially
low cost make it a potentially profitable technology for computer memory

applications, CCDs are also used in imaging sensors, variable delay lines and
filters. '

TECHNOLOGY TREES (PRIOR R&D OF THESE IS DESIRABLE.): Computer Memory
Development; Space-Rated Integrated Circuits.

CAPABILITY APPLIES TO (GFE NUMBERS):  g89.
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"ARAMIS CAPABTLITY GENERAL INFORMATION FORM
CAPABILITY NAME: Analog/Digital Converter
CODE NUMBER: 19.1 DATE: 6/3/82 NAME (S) : Spofford/Thiel
DESCRIPTION OF CAPABILITY: A dedicated hard-wired electronic system for
converting analog voltage levels to digital signals. This device may be
implemented on a single integrated circuit or may require external components.
These devices are specialized to their application and are available in a range-
of resolutions and speeds.

WHO |S WORKING ON IT AND WHERE: Iintegrated ciréuit mahufacturers

TECHNOLOGY LEVELS: LEVEL1: now LEVEL2: now LEVEL3: now
LEVELL: now LEVELS5now LEVELG: now LEVEL7: now

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: None.

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2=3: N/A
3-4: N/A L=5: N/A 5-6: N/A 6-7: N/A

REMARKS AND DATA SOURCES ON COST ESTIMATES: None.
REMARKS ON SPECIAL ASPECTS: This fs;a commonly used current technology.

TECHNOLOGY TREES (PRIOR R&D OF THESE IS DESIRABLE.): Space-rated integrated
circuits.

CAPABILITY APPLIES TO (GFE NUMBERS): g78
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Onboard Sequencer
CODE NUMBER: 21.1 DATE: 6/9/82 NAME (§) : Thiel/Dalley

DESCRIPTION OF CAPABILITY: A programmable device that sends commands to
spacecraft systems either at preset times or under a limited set of
predetermined conditions. This device is comparable in sophistication to early
programmable calculators, but is not capable of performing calculations. A
good example is the Pioneer Venus Stored Command Processor.

WHO (S WORKING ON IT AND WHERE: Most spacecraft companies have used devices of
this sort. Pioneer Venus (Hughes Aircraft) and other similar spacecraft have
used these devices. Most of today’s communications satellites have similar
devices onboard.

TECHNOLOGY LEVELS: LEVEL1: NOW LEVEL2: NOW LEVEL3: NOW
LEVELL: NOW LEVEL5: NOW LEVEL6: NOW LEVEL7: NOW

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: These devices employ simple
electronics and require no technology development.

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-L: N/A L-5: N/A 5-6: N/A 6-7: N/A

REMARKS AND DATA SOURCES ON COST ESTIMATES: The only cost is the specific
design and procurement cost.

REMARKS ON SPECIAL ASPECTS: These devices are very reliable at what they do,
but their simplicity severely limits their capabilities. Onboard Sequencers
will become obsolete as onboard computers and microprocessors become common on
spacecraft. _

TECHNOLOGY TREES (PRIOR R&D OF THESE 1S DESIRABLE.): None

CAPABILITY APPLIES TO (GFE NUMBERS): g47, 983, g87

3C.65



ARAMIS CAPABIL!TY GENERAL {NFORMATION FORM
CAPABILITY NAME: Operations Optimizatioﬁ Program
CODE NUMBER: 21.2 DATE: 6/20/82 NAME (S) : Thiei/Akin

DESCRIPTION OF CAPABILITY: This is a computer program using a dynamic model of
available resources and mission objectives to determine optimal scheduling anc
optimal resource aliocation. !% then can command resource distribution at Tthe
appropriate times. This program would use iterative mathematica’ technigues
and a binary dec'sion tree to select optimum values for scheduling and resource
allocation based on considerations of cost, time and resource ievels.

WHO IS WORKING ON T AND WHERE: David L. Akin (MiT), Richard Bellman and Stuzr:
Dreyfuss (Rand Corp.), JPL.

TECHNOLOGY LEVELS: LEVEL1L: NOW LEVEL2: NOW LEVELZ: NOW
LEVELL: N/A LEVELS: N/A tEVELG: 1984 LEVEL7: N/A {Ground
based.) :

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: David L. Akin. Assumes thati z

development effort is ctarted soon. Level 7 does not apply because initia!
applications of this program would be in ground based computation.

RE0 COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2~3: N/A
3-4: 5See Below L4,-5: See Below 5-6: See Below 6-7: N/A

REMARKS AND DATA SOURCES ON COST ESTIMATES: $370,000 to proceed from level 3 to
. (This would be the figure necessary to enhance the DALP program written by
ikin , by adding 2000 lines of code at an average cost of $185 per line.)

IZMARKS ON SPECIAL ASPECTS: None

TECHNOLDGY TREES (PRIOR RED OF THESE S DESIRABLE.) : 25.2 Onboarc Determinisiic
Tomputer Program.

CAPABILITY APPLIES TO (GFE NUMBERS): g38. g83. 087, 984, g98.

Reproduced from §$¥é
[ best_available copy. ‘Omy
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ARAMIS CAPABILITY GENERAL INFORMATION FORM .
CAPABILITY NAME: Automatic Programmer And>Prograh Tester
CODE NUMBER: 22.1 DATE: 5/27/82 " NAME(S): Thiel/Glass

DESCRIPTION OF CAPABILITY: This program, given a high level description of a
programming task, creates a computer algorithm to accomplish the task. The
algorithm is written in a prespecified language (e.g. Fortran, Lisp, etc.). -
In the near term, the high level task description is a moderately structured
task oriented language, either from humans or from another program. More -
advanced technology will be able to operate on task descriptions in English.
The program is also capable of reviewing existing software and finding errors
in programming logic and syntax. Eventually these systems should be able to
analyze existing software and verify that it is capable of performing a given
function. This could include checking that a newly created piece of software
is compatible with the existing system (e.g. verifying that a software patch
will not cause trouble in a spacecraft's sof tware system) . :

WHO (S WORKING ON IT AND WHERE: Richard Staliman (MIT Al). Douglas Smith (Naval
Postgraduate School), Richard H. Brown (GTE Labs) .

TECHNOLOGY LEVELS: LEVELI: NOW LEVELZ: NOW - .LEVELB:.NOH
LEVELL: N/A LEVEL5S: N/A . LEVEL6: 1986 LEVEL7: N/A

REHARKS AND DATA SOURCES ON TECHNOLOﬁY LEVELS: 1JCA!I-8]1 Papers. Richard
Stallman (MIT Al Lab). A >

R&D tOST ESTIMATES BETWEEN LEVELS: 41;2: N/A . 2=3: N/A
3-4: See Below . 4=5: See Below . 5-6: See Below - 6=7¢ N/A. .

REMARKS AND DATA SOURCES ON COST ESTIMATES: Due to difficulty of determining
the amount of time and effort necessary to make advances in a new field such as
this, specific cost estimates are not available. [t will probably take several

man-years of effort, plus testing time, to develop thls technology. ‘(Rlchard
'Stallman) : , .

REMARKS ON SPECIAL ASPECTS° This technologY. while not directly appllcable to
most space operations, could play a significant role in the development of any
‘'software system by reducing programming: time and errors, thus reducing costs.
This technology could have a8 dramatic impact on software development operaticns
‘for NASA. the mllltary. and industry. : '

TECHNOLOGY TREES (PRIOR RED OF THESE IS DESIRABLE.): 23.1 Expert 57:teu Hlth
Human Supervision.

CAPABILITY APPLIES TO (GFE NUMBERS): g77

el S
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Expert System with Human Supervision
CODE NUMBER: 23.1 DATE: 5/12/82 NAME (S): Jones-Oliveira/Glass/0liveira

DESCRIPTION OF CAPABILITY: Given an extensive data base consisting of
consistent, logical models ("representations") of information known to be
true, an expert systems employs 'production rules' to determine the viability
of plausible inferences based on a given situation. Ffor example, the system
can receive inputs describing the situation, and use ''common-sense' production
rules to compute the probabilities that certain statements are true or false.
In some cases, the production rules can be explicit and the probabilities may
then be certainties; on the other hand, some situations may only provide
partial or inaccurate data, and the system then evaluates the deficits and
discrepancies in the data as part of the calculation of probabilities. Then
the human supervisor, equipped with the likelihood of various options and
inferences as to possible ramifications, makes a determination and initiates
action.

WHO IS WORKING ON |IT AND WHERE: Randall Davis (MIT Al Lab); Fred Hayes-Roth
and Edward Feigenbaum (Stanford Al and SR!); Oliver G. Selfridge (Bolt, Beranek
& Newman, Cambridge,MA); several groups at Carnegie-Mellon; JPL.

TECHNOLOGY LEVELS: LEVEL1: Now LEVEL2: Now LEVEL3: Now
LEVELY: Now LEVELS: Now LEVELG6: 1985 LEVEL7: N/A (ground based)

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: AAAl Tutorial by Hayes-Roth;
Randall Davis (MIT Al Lab);: Terrence Winograd (Stanford Al Lab); !nternational
Joint Conference on Al (l1JCA1-81) Proceedings.

R&D COST ESTIMATES BETWEEN LEVELS; 1-2: N/A

2-3: N/A
3-4: N/A L-5: N/A 5-6: See below 6-7:

See below

REMARKS AND DATA SOURCES ON COST ESTIMATES: Davis:System RED (from conception)
is asymptotically approaching 5 man-years of effort.

REMARKS ON SPECIAL ASPECTS: Davis and Feigenbaum: otlder systems, e.g., MYCIN,
can be easily adapted for new uses by changing the production rules and data
base. MYCIN is a medical diagnostic system with competence comparable to a
first-year intern. For a good overview of how an Expert System works, the
interested reader may be best directed to the following publications: 1)
Hayes-Roth, A.l1. Tutorial on Expert Systems: '"Putting Knowledge to Work", The
1JCAl - 81 Symposium, 1981. 2) N.J. Nilsson, Principles of A.l., Tioga
Publishing Co., Palo Alto, CA., 1980; 3) W. B. Gevarter, An Overview of Expert
Systems, National Bureau of Standards no. NBSIR 82-2505, May 1982.

TECHNOLOGY TREES (PRIOR R&D OF THESE IS DESIRABLE.): 16.1 Computer Modeling
and Simulation; 21.2 Operations Optimization Program; 24.1 Theorem Proving
Program

CAPABILITY APPLIES TO (GFE NUMBERS): g24, 937, g57, 958, 960, g93, g94, g97,
g105, g107, gi8L, g185, g325
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Learning Expert System with Internal Simulation
CODE NUMBER: 23.2 DATE: 3/17/82 NAME(S): Oliveira/Jones-Oliveira/Dalley

DESCRIPTION OF CAPABILITY: Given an extensive data base consisting of
consistent, logical models ("representations') of information known to be true,
an expert system employs 'production rules'" to determine the viability of
plausible inferences based on a given situation. For example, the system can
receive imputs describing the situation, and use ‘common-sense' production
rules to compute the probabilities that certain statements are true or false.
In some cases, the production rules can be explicit and the probabilities may
then be certainties; on the other hand, some situations may only provide
partial or inaccurate data, and the system then evaluates the deficits and
discrepancies in the data as part of the calculation of probabilities. The
system can then define and initiate actions based on the computer
probabilities. The "learning' aspect adds the ability to evaluate the accuracy
of former predictions, and the ability to modify the data base and the
production rules to improve future predictions so .as to give "better"
directives.

WHO 1S WORKING ON IT AND WHERE: Olivier Selfridge (Bolt, Beranek & Newman):
Marvin Minsky, Randall Davis, and Patrick Winston, (MIT A.l1. Lab); Niis Nilson,
Edward Feigenbaum, Terry Winograd, and Fred Hayes-Roth (Stanford Al & SRi);
John Prager (1BM).

TECHNOLOGY LEVELS: LEVELY: now LEVEL2: now LEVEL3: 1982
LEVELL: N/A LEVELS5: N/A  LEVEL6: 1990 LEVEL7: N/A (ground based)

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: Marvin Minsky (MIT A.l. Lab),
Joseph Dliveira (MIT S.S.L.).

R&ED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: See below 4-5: See below 5-6: See below §6-7: See below

REMARKS AND DATA SOURCES ON COST ESTIMATES: Minsky - R&D costs for learning
software are very difficult to estimate, because they depend strongly on the
unforeseen problems that crop up during the development.

REMARKS ON SPECIAL ASPECTS: Minsky, Selfridge, Oliveira, Winston, Nilson,
Feigenbaum, Woods, Hayes-Roth, Michie. Since the issue of a Learning Expert
System is still in its infancy there are few published sources which directly
address all aspects of such a system and its operations. For reference, the
interested reader may do best to investigate the most current research
Jiterature on Expert Systems and pursue individual discussions with researchers
in Knowledge Engineering. It should be noted that Expert Systems which learn
and in fact adapt themselves to new problem domains need extensive fundamental
research. The reader is initially referred to the following publications: 1)
W.B. Gevarter, "An Overview of Expert Systems," U.S. Department of Commerce
National Bureau of Standards. Report No. NBSIR 82-2505 May 1982, Metrology
Building, Room A127, Washington, DC 20234. 2) Hayes-Roth, ''Tutorial on
Expert Systems: Putting Knowledge to Work,'" International Joint Conference on
A.l., 1981.

3C.69



TECHNOLOGY TREES (PRIOR RED OF THESE IS DESIRABLE.): 23.1 Expert System with

Human Supervision; 25.5 Onboard Adaptive Control System; 26.1 fauit Tolerant
Sof tware.

CAPABILITY APPLIES TO (GFE NUMBERS): g5, g24, g37, g56, g57, ¢58, gb0, gbi,
087, 993, g94, g97, ¢98, 9105, ¢g107, ¢110, gi84, 9185, g18k, 9223, glL4. 3325
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Theorem Proving Program
CODE NUMBER: 24.1 DATE: 6/29/82 NAME (S) : Glass/Kurtzman/0liveira/Smith

DESCRIPTION OF CAPABILITY: A theorem proving program takes an assertion (the
theorem) and verifies that it is true under all possible conditioens. Ffor
example, if the assertion is a mathematical equation including variables, the
program verifies the truth of the equation for all possible values of the
variables.

The assertion is input into the program as a set of specific if-then
statements (this is called "first-order logic"). The program first negates the
assertion, i.e., it considers the opposite of what is to be proved. The intent
is to prove that this opposite leads to internal contradictions in all cases;
then the opposite is false, and therefore the assertion must be true. The
opposite is called the ''"negation of the assertion'. In general, it is easier
to prove that a statement is false than to prove that a statement is true;
therefore the program tries to prove the falsehood of the negation, which in
turn implies the truth of the assertion.

Having formed the negation, the program examines it according to ''rules of
inference', which are logical statements (e.g., if-then and if-and-only-if
statements) which are guaranteed to be true. These rules of inference are used
to break up the negation of the assertion into a series of simpler statements
(called "interpretations"), reducing the negation’s if-then statements into a
collection of ‘'‘and' and "or' statements. These are then systematically checked
by the program, looking for contradictions. |If contradictions occur in all the
cases, using all the rules of inference that the program knows, then it
concludes that the negation of the assertion is false. Therefore the assertion
is true, and the theorem is proved.

As an example, consider the assertion: 2 + 3 = 5, The program first forms
the negation of the assumption: 2 + 3 is not equal to 5. |t then decomposes
this negation by the rules of inference (in this case, the laws of logic which
define "="), The program finds contradictions in all cases, i.e., it cannot
find any logical inference which supports "2 + 3 is not equal to 5'. The
program thus concludes that this negation is false, and therefore the theorem
(2 + 3 =5) is true.

This example is exceedingly simple; theorem proving programs can be
applied to much more complex assertions. |In many cases, however, a complex
assertion may require the checking of an enormous number of logical
interpretations of the assertion, and therefore theorem proving programs are
combinatorially limited. In comparison, expert systems also have the ability
to tackle theorem proving probliems, but they can stop part-way and compute
probabilities based on what they’ve accomplished, rather than having to pursue
the problem all the way to an exact solution.

WHO |IS WORKING ON IT AND WHERE: Ehud Shapiro, Yale; Herbert A. Simon,
Carnegie-Mellon; Robert Veroff, Argonne; W. W. Bledsoe & Gordon S. Novak, U.
Texas (Austin); S. Kalowski, U. Edinburgh; D. Fishmann, Bell Labs; R. Moll, U.
Mass. Computer Science; Minker, U, Maryland; JPL.

TECHNOLOGY LEVELS: LEVEL1: Now - LEVEL2: Now LEVEL3: Now
LEVELL: Now LEVEL5: 1986 LEVEL6: N/A LEVEL7: 1988

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: Study team estimate.

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2~
3-4: N/A 4L-5: see below 5-6: N/A 6-
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REMARKS AND DATA SOURCES ON COST ESTIMATES: Costs to level 5 consist of -
adapting existing systems to a new data base type. Costs to level 7 depend on
rating of needed CPU power available, and input/output methods. :

REMARKS ON SPECIAL ASPECTS: A theorem proving program would probably be one
part of a Learning Expert System with Internal Simulation, if a learning expert
system were developed.

TECHNOLOGY TREES (PRIOR R&D OF THESE IS DESIRABLE.): Computer Programming
Techniques.

CAPABILITY APPLIES TO (GFE NUMBERS): g57, 965, g77, gi94.
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Onboard Dedicated Microprocessor
CODE NUMBER: 25.1 DATE: 5/19/82 NAME (S) : Spofford/Thiel

DESCRIPTION OF CAPABILITY: A digital computer (processing unit, program and
data storage, and input/output interface) implemented in one or more integrated
circuits. This microprocessor is dedicated to performing one task such as '
monitoring a subsystem or controliling an actuator.

WHO 1S WORKING ON IT AND WHERE: Integrated circuit manufacturers

TECHNOLOGY LEVELS: LEVEL]: now LEVEL2: now LEVEL3: now
LEVELL4: now LEVELS: now LEVEL6: now LEVEL7: now

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: Currently, the only space-rated
general-purpose microprocessor is a version of the Intel 8080 chip. This
device has been commercially available since 1975 and is now obsolete.

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A L-5: N/A 5-6: N/A 6-7: N/A

REMARKS AND DATA SOURCES ON COST ESTIMATES: The cost to space-rate a newer,
more powerful, microprocessor is not known.

REMARKS ON SPECIAL ASPECTS: The state of the art in microprocessors

is still improving. Devices under development commercially have the
processing power of an IBM 360 mainframe computer. These integrated circuits
may have to be shielded or radiation-hardened for use in a space environment.
The microprocessors commercially available have significantliy more capability
than current space-qualified devices.

TECHNOLOGY TREES (PRIOR R&D OF THESE IS DESIRABLE.): Computer memory
development; Space-rated integrated circuits; 25.3 Onboard Deterministic
Computer Program.

CAPABILITY APPLIES TO (GFE NUMBERS): g24, g35, gL7, g78., 983, g87, g88, g92,
g93, ¢l103, g150, g218, g221, g224, 9239, g240, g241, 9260, g26L, 9318, g325
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Onboard Microprocessor Hierarchy
CODE NUMBER: 25.2 DATE: 6/28/82 NAME (S) : Kurtzman/Glass

DESCRIPTION OF CAPABILITY: A command and control structure consisting of
multiple microprocessors ("distributed intelligence') in which goals and

tasks are selected at the highest level and are decomposed into sequences of
subtasks which are passed to the next lowest level in the hierarchy. This same
procedure is repeated at each level until, at the bottom of the hierarchy,
there is generated a sequence of primitive tasks which can be executed with
single actions. Sensory feedback enters the hierarchy at many different levels
to alter the task decomposition so as to accomplish the highest level goal in
spite of uncertainties or unexpected conditions in the environment.

WHO 1S WORKING ON IT AND WHERE: James S. Albus, Anthony J. Barbera and Roger N.
Nagel, A123, Metrology Bldg., Programmable Automation, National Bureau of
Standards, Washington, D.C. 20234 (301) 921-Z381; Stephen Kahne, Irving
Lefkowitz, and Charles Rose, Case Institute of Technology of Case Western
Reserve University, Cleveland, Ohio; Ewald Heer, Jet Propulsion Laboratory,
4,800 0ak Grove, Pasadena, California.

TECHNOLOGY LEVELS: LEVEL]: Now LEVEL2: Now ) LEVEL3: Now
LEVELL: Now LEVELS: Now LEVELG6: See below LEVEL7: See below

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: The types of goal-seeking
behavior we might obtain from industrial robots over the next decade or two is
of the same general level of complexity as that of an insect or simple fish.
This is more than adequate to generate extremely complex sensory-interactive
goal-directed behavior in a constrained environment (Theory and Practice of
Hierarchial Control, 1 November 1880, by J. Albus, A, Barbera, R. Nagel).

R&D COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-L: N/A 4-5: N/A 5-6: See below 6-7: See below

REMARKS AND DATA SOURCES ON COST ESTIMATES: The R&D costs to develop an
Onboard Microprocessor Hierarchy are highly dependent on several factors. |If
the hierarchy is to perform only one task, such as GFE 240, Maintain Safe
Battery Charge Levels, and the task does not require any ''smart" software, then
the hierarchy could probably be implemented cheaply {on the order of $2-i
million) on currently existing space-rated microprocessors and with already
developed control theory. It is much more likely, however, that spacecraft
designers will desire a single hierarchy to perform many of the tasks to which
it can be applied, thus necessitating the development of more sophisticated
control algorithms than are currently available, along with the space-rating of
significantly more powerful microprocessors. |n this case, costs could
conceivably be an order of magnitude larger ($20-40 million), although it must
be emphasized that this large investment will be distributed among the many
uses of the hierarchy as well as future spacecraft designs. More powerful
space-rated microprocessors will be beneficial to a variety of other
applications.

REMARKS ON SPECIAL ASPECTS: The state of the art in microprocessors continues
to improve rapidly. Comercially available devices have the processing power of
an IBM 360 mainframe computer. These integrated circuits may need to be
shielded or radiation-hardened for use in a space environment. The
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microprocessors commercially available have significantly more capability than
‘current space-qualified devices.

TECHNOLOGY TREES (PRIOR R&D OF THESE IS DESIRABLE.): 25.1 Onboard Dedicated
Ry Microprocessor.

CAPABILITY APPLIES TO (GFE NUMBERS): g24, gu47, g83, 987, g88, g92, g93, g9k,
gl03, g218, g¢224, g240, g241, g260, g318, g325.
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ARAMIS CAPABILITY GENERAL |NFQRMATION FORM

CAPABILlTY NAﬂE: Onboard Deterministic Computer Program

'CODE NUMBER: 25.3 DATE: 7/6/82 NAME (S): Oliveira/Glass/Smith

DESCRIPTION OF CAPABILITY: An onboard deterministic computer program is a
sof tware package which uses an algorithmic language {(e. g. FORTRAN),
implemented on a spacecraft computer or microprocessor. Its functions might
include scheduling, monitoring data from components, numerical computation,
control of subsystems, and simple evaluations of performance. This is an
onboard equivalent to 25.4 Deterministic Computer Program on Ground.

WHO 1S WORKING ON IT AND WHERE: Intermetrics, Rockwell, Martin Marietta, TRW,
Honeywell, and other spacecraft software contractors.

TECHNOLOGY LEVELS: LEVEL1: now LEVEL2: now LEVEL3: now

" LEVELL: now LEVELS: now LEVEL6: now LEVEL7: now

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: Although each new program must
be developed, the methods to do so have been used before, and are well
established. ‘

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A  2-3: N/A
2-3: N/A 4-5: N/A  5-6: N/A  6-7: N/A

REMARKS AND DATA SOURCES ON COST ESTIMATES: The costs of individual programs
depend on complexity and safety requirements.

REMARKS ON SPECIAL ASPECTS: None.

TECHNOLOGY TREES (PRIOR RED OF THESE IS DESIRABLE.): 25.4 Deterministic
Computer Program on Ground

CAPABILITY APPLIES TO (GFE NUMBERS): g24, g35, g37, g38, g47, g78, g83, g87,

g88, ¢92, g93, g9, g397, g103, gi10, g218, g220, g221, g223, g224, 9239, g240,
g241, g244, g318, 9325
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Deterministic Computer Program on Ground
CODE NUMBER: .25.4 DATE: 7/8/82 NAME(S): Oliveira/Smith

DESCRIPTION OF CAPABILITY: This capability is defined as a software package
which uses an algorithmic language (e.g. FORTRAN), impiemented on a mainframe
computer or microprocessor, on the ground. Computer programs of this: type
perform a broad spectrum of computational and organizational tasks, (e.g.
scheduling, monitoring telemetry from spacecraft, numerical computation,
control of subsystems (via telemetry), and simple evaluations of system
performance) . Such programs are defined and optimized for their functions, and -
therefore dedicated to their tasks. "

WHO IS WORKING ON IT AND WHERE: Intermetrics, Martin Marietta, TRW, Rockwell,
Draper Labs, and many other ground support software contractors.

TECHNOLOGY LEVELS: LEVEL!: now LEVEL2: now LEVEL3: now
LEVELYL4: now LEVELS: now LEVEL6: now LEVEL7: now

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: Although each new program must
be developed, the methods to do so have been used before, and are well
established. :

R&D COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-k4: N/A L=5: N/A 5-6: N/A 6-7: N/A

REMARKS AND DATA SOURCES ON COST ESTIMATES: Quality software may take anywhere
from 2-5 man years from the conceptual state to the actual debugged fully o
operational package. The costs of individual programs depend on complexity and
safety requirements.

REMARKS ON SPECIAL ASPECTS: None.

TECHNOLOGY TREES (PRIOR R8D OF THESE IS DESIRABLE.): Computer Programming
Techniques.

CAPABILITY APPLIES TO (GFE NUMBERS): glo; g2k, g35, 937, 938, g7, g56, 960,

978o'983- 9870 988- g92, g93, @94, 9970 giio, 9184, ¢l194, 9220, g221, g223,
9224, @239, g240, g2Lk, 9318, g235 ‘
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ARAHIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Onboard Adaptuve Controi System
CODE NUMBER: 25.5 DATE: ‘June 1982 NAME(S)° Howard/Glass/Kurtzman/Smuth

DESCRIPTION OF CAPABILITY: A control system which monitors its surroundings as

‘weil as its:own performance, to adjust its control strategy to compensate for

changes in its working env1ronment The system'deveiops a dynamic, variable
model to predict trends, and can thérefore anticipate problems and optimize
responses.' By monitoring its own performance, the system is able to deduce
sensor or actuator malfunctlons. and adjust control algorithms accordingly.

~ Although certaln parameters are allowed to vary, and the mode! can be updated

by the system to some extent, an adaptive control system is less sophisticated
than a true learning expert system. :

WHO 1S WORKING ON IT AND WHERE: 0. Selfridge, BBEN; D. Michie, University of
I1linois, Champaign-Urbana; B. Govin and B. "Claudinon, ‘Matra Espace, France;
W. Vander Velde and C. Carignan, MIT §pace Systems Lab.

TECHNOLOGY LEVELS: LEVEL1: Now LEVEL2: ‘Now LEVEL3: Now

LEVELL: Now LEVELS' 198h LEVEL6' 1985 LEVEL7 1987

REMARKS 'AND DATA SOURCES ON-TECHNOLOGY LEVELS' 4Source; Joseph Oliveira,
MIT-SSL.

RED COST ESTIMATES BETWEEN LEVELS; - 1-2: - N/A- 2-3: N/A
3-4: N/A  L4=5: Sl million 5-6: Sl million 6-7: "$.5 million

' REMARKS AND "DATA SOURCES ON COST ESTIMATES: - The cost and time estimates refer

to the task ‘of deveioping tHns ‘technology Yor: a‘particuiar application. The
basic theoretical work has been done.

REMARKS ON SPECIAL ASPECTS: An Onboard Adaptive Control System is often best
implemented on a hierarchy of microprocessors (distributed intelligence). This
allows the complexity of individual subsystems to be kept within tolerable
l'imits regardless of the compiexnty of the overall system. Also, the
functional structure of an adaptive system is hierarchical in nature, which

makes it weil suited for this type of implementation.

’TECHNOLOGY TREES (PRIOR RED  OF THESE IS DESIRABLE ): 25.2 Onboard

Microprocessor Hierarchy

CAPABILITY APPLIES TO (GFE NUMBERS): g83, g87, 988, gl103, g240, g318
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Fault Tolerant Software
CODE NUMBER: 26.1 DATE: 5/10/82 NAME (S) : Thiel/Dalley

DESCRIPTION OF CAPABILITY: The term Fault Tolerant Software has two meanings.
The definition most commonly used is a software package which is capable of
responding to hardware faults and errors. This technology is actively being
researched for the military by various industrial and research laboratories.
Aircraft computers now use some fault tolerant software. The second definition
is much less common because this particular technology is in its infancy. This
more advanced technology concerns software that is tolerant of software errors
and design faults. The software continuously monitors itself and its
operations to insure that it is performing correctly. 1t is also capable of
correcting these errors and continuing with its normal operations.

WHO 1S WORKING ON IT AND WHERE: Some theoretical work has been done at the MIT
Artificial Intelligence Laboratory, but in general this technology has had
little work done on it. Sussman (MIT Al) wrote a program called Hacker which
generates software and then verifies that the software is correct. This proves
the concept of self-checking software, but Hacker is more of an Automatic
Programmer than a fault tolerant software package. (See 22.1 Automatic
Programmer and Program Tester).

TECHNOLOGY LEVELS: LEVEL1: NOW LEVEL2: NOW LEVEL3: N/A
LEVELL: N/A LEVELS: N/A LEVELG6: N/A LEVEL7: N/A

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: So little development has been
done in this area that it is impossible to say when this technology will be
available. Also, many software technologies will benefit from fault tolerant
software, but these same technologies (such as expert systems) may contribute
to the development of fault tolerant software as well, thus complicating the
problem of predicting when this technology will be developed. Finally, fault
tolerant software requires some fundamental developments in the Al field which
are not possible to predict in advance. (D. Hillis, MIT Al).

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A . 2=3: N/A
3-4: N/A L-5: N/A 5-6: N/A 6-7: N/A

REMARKS AND DATA SOURCES ON COST ESTIMATES: The same reasons that prevent a
reasonable extimate of development schedule prevent cost estimates as well,

REMARKS ON SPECIAL ASPECTS: The fundamental developments in the field of
artificial intelligence which enhance other advanced software technologies,
such as learning expert systems and automatic programmers, enhance fault
tolerant software as well.

TECHNOLOGY TREES (éRIOR RED OF THESE IS DESIRABLE.): 27.1 Equipment Function
Test by Onboard Computer; (See remarks above).

CAPABILITY APPLIES TO (GFE NUMBERS): gb6, 977, g194, g24l
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ARAMIS CAPABILITY GENERAL INFORMATION FORM

CAPABILITY NAME: Equipment Function Test by Onboard Computer
CODE NUMBER: 27.1 DATE: 6/26/82 NAME (S) : Marra/Dalley/Smith

DESCRIPTION OF CAPABILITY: Spacecraft equipment is activated and performance
is monitored and compared to expected levels, by an onboard computer. This is
done entirely by the computer and there is no-active human component. A
"function test'" is an intrusive procedure, i-.e. commands are sent by the
computer to spacecraft components, requesting specific actions used in status
monitoring of fault diagnosis. This differs from ""data checks" (i.e.
capabilities 27.4, 27.5, 27.6) which only operate on normally available data.

WHO 15 WORKING ON IT AND WHERE: IBM; NASA GSFC; Jet Propulsion Laboratory,
California Institue of Technology; NASA Ames (JPL and Ames specialize in
planetary probes); Draper Laboratories.

TECHNOLOGY LEVELS: LEVEL1: Now LEVEL2: Now LEVEL3: Now
LEVELL: Now LEVELS: Now LEVELG: 1983 LEVEL7: 1983

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: Adequate spacecraft computers
are available today. What needs to be developed is the software for each
application.

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-L: N/A L=5: N/A 5-6: see below 6-7: see below

REMARKS AND DATA SOURCES ON COST ESTIMATES: Assuming that the necessary
computers are already available, about it will take about $300,000 to bring an
onboard function test online (study team estimate) .

REMARKS ON SPECIAL ASPECTS: This is an accurate method for evaluating status
and diagnosing failures, since it uses checking routines on spacecraft
components. However, a function test applied to a defective subsystem can make
the problem worse.

TECHNOLOGY TREES (PRIOR R&ED OF THESE IS DESIRABLE.): 27.2 Equipment Function
Test by Onsite Human; 25.2 Onboard Microprocessor Hierarchy

CAPARILITY APPLIES TO (GFE NUMBERS): gl, g10, g23, g33, giB, g43, g50, g51,
g52, g60, g1%4, 9260
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ARAMIS CAPABILITY GENERAL INFORMATION FORM

CAPABILITY NAME: Equipment Function Test by Onsite Human
CODE NUMBER: 27.2 DATE: 6/25/82 NAME (S) : Marra/Glass/Smith

DESCRIPTION OF CAPABILITY: Equipment is activated and the performance

is measured and compared to expected levels by an onsite human. The

human will have the equipment necessary to perform the tests, including a
dedicated microcomputer. A "function test" is an intrusive procedure, i.e,
commands are sent by the computer to spacecraft components, requesting
specific actions used in status monitoring of fault diagnosis. This differs
from "data checks" (i.e. capabilities 27.4, 27.5, 27.6) which only operate on
normally available data. :

WHO 1S WORKING ON IT AND WHERE: NASA Centers (JSC, MSFC)

TECHNOLOGY LEVELS: LEVEL1: Now LEVEL2: Now LEVEL3: Now
LEVELL: Now LEVELS: Now - LEVEL6: Now LEVEL7: Now

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: The specific function test,
including necessary hardware, must be developed in each case, but such
techniques are currently in use,

ReED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A L-5: N/A 5-6: N/A 6-7: N/A

REMARKS AND DATA SOURCES ON COST ESTIMATES N/A

REMARKS 0N SPECIAL ASPECTS: This is an accurate method for evaluating status
and diagnosing failures, since it uses checking routines on spacecraft
components. However, a function test applied to a defective subsystem can make
the problem worse. This capability should not be confused with Onsite Human
with Computer Assistance, which is an astronaut in the Shuttle, using the
orbiter computers. The Equipment Function Test uses a dedicated

microprocessor (if needed) to support the onsite human.

TECHNOLOGY TREES (PRIOR R&D OF THESE IS DESIRABLE ): 27.5 Equipment Data
Checks by Onsite Human

CAPABILITY APPLIES TO (GFE NUMBERS): g1, g¢10, 923, g2k, g33, gu8, gk9, g50,
g51, g52, g60, gio9L, 9260
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Equipment Function Test via Telemetry
CODE NUMBER: 27.3 DATE: 7/1/82 NAHE(S)Q Marra/Jones-0Oliveira/Smith

DESCRIPTION OF CAPABILITY: Equipment is activated commands from the ground.
The performance of the equipment is then measured and compared to expected
levels. Al)l of the testing is carried out through a telemetry link. A
“"function test" is an intrusive procedure, i.e. commands are sent by the
computer to spacecraft components, requesting specific actions used in status
monitoring of fault diagnosis. This differs from ''data checks'" (i.e. ,
capabilities 27.4, 27.5, 27.6) which only operate on normally available data.

WHO 1S WORKING ON IT AND WHERE: NASA GFSC; NASA JSC; NASA Ames Research Center;
JPL; also the operators of weather, resource monitoring, communications,
surveillance, and scientific satellites.

TECHNOLOGY LEVELS: LEVEL1: Now  LEVEL2: Now LEVEL3: Now
LEVELL: Now LEVELS: Now LEVELG: Now . LEVEL7: Now

REMARKS AND;DATA SOURCES ON TECHNOLOGY LEVELS: This is a commonly used current
technology.

RED COST ESTlﬁATES BETWEEN LEVELS; 1-2: N/A ' 2-3: N/A
3-4: N/A L=5: N/A 5-6: N/A 6-7: N/A

REMARKS AND DATA SOURCES ON COST ESTIMATES: None.

REMARKS ON SPECIAL ASPECTS: One advantage of this concept is that the same
ground equipment can be used for more than one spacecraft; this helps reduce
costs. This is an accurate method for evaluating status and diagnosing
failures, since it uses checking routines on spacecraft components. However,
a function test applied to a defective subsystem can make the problem worse.

TECHNOLOGY TREES (PRIOR R&D OF THESE IS DESIRABLE.): 27.6 Equiﬁment Data
Checks via Telemetry; 25.4 Deterministic Computer Program on Ground

CAPABILITY APPLIES TO (GFE NUMBERS): g23, §33. gk8, 949, g50, g51, g52, g&0,
g194, g260-
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Equipment Data Checks By Onboard Computer
CODE NUMBER: 27.4 DATE: 6/22/82 NAME (S) : Thiel/Dalley

DESCRIPTION OF CAPABILITY: This is a nonintrusive method of verifying the
correct operation of space systems and components. An onboard computer samples
the inputs and/or outputs of a component or system and compares them to
expected values. Therefore this method can only apply to equipment which
processes data or generates some kind of telemetry. Also, the computer does
not command the equipment it is testing; it only monitors the data generated by
the equipment’s operation.

WHO S WORKING ON IT AND WHERE: This is not a specific area of technology that
is being developed on its own. It is a byproduct of present testing techniques
performed by ground controliers and of the advancing level of computer
technology. The Voyager spacecraft performed some equipment checkout by
onboard computer.

TECHNOLOGY LEVELS: LEVEL1: NOW LEVEL2: NOW LEVEL3: NOW
LEVELL: NOW LEVELS: NOW LEVEL6: NOW LEVEL7: NOW

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: The techniques for performing
this kind of operation are present technology and have had limited
demonstration in space (Voyager). The use of Equipment Data Checks by Onboard

Computer will become very common as spacecraft computers become more common.
RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A L-5: N/A 5-6: N/A 6-7: N/A

REMARKS AND DATA SOURCES ON COST ESTIMATES: This capability has been
demonstrated in space and therefore may be considered a current technology.
Further work will involve the writing of algorithms for spacecraft computers to
perform the equipment data checks. The costs of these algorithms depend on
their individual complexity.

REMARKS ON SPECIAL ASPECTS: This test does not disturb the normal operation of
the equipment being tested; therefore it is not capable of testing a quiescent
piece of equipment or commanding it to change operating modes.

TECHNOLOGY TREES (PRIOR RED OF THESE IS DESIRABLE.): 25.2 Onboard
Microprocessor Heirarchy; 27.5 Equipment Data Checks by Onsite Human.

CAPABILITY APPLIES TO (GFE NUMBERS): g10, g23, ¢33, gu48, g9, g54, g56, ¢g150,
926k
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ARAMIS CAPABILITY GENERAL INFORMAT:ON F0RH

CAPABILITY NAME: Equipment Data Checks By Onsite Human
CODE NUMBER: 27.5 DATE: Junme 1982 NAME (S) : Howard/@?aﬁsxﬁﬂ”i*

DESCRIPTION OFf CAPABILITY: Sample data is read and cempared to 2 syRTen -
by an onsite human, with assistance of 2 dedicated micraproceszar. T
coes not have to be in EVA; more likely, the operator will be in «ha Qawa-. o=
in a station. Such "data checks" are a nonintrusive procedure. N ’
©P2r3ie on normally available data. Thijs differs fronm "function tasns
capedilities 27.1, 27.2, 27.3) whitch apply test commands 0 the Spromn:
subsystems,

WHO IS WORKING ON IT AND WHERE: Various NASA Centers (e.g. JsC, FSFCY .

TECHMOLOGY LEVELS: LEVELI: Now LEVEL2: Now LEVEL3: Now
LEVELY: Now LEVELS: Now LEVELG: Now LEVEL7: Now

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: The specific da<n cthecks,
inc)uding necessary test hardware, must be deveioped in each case, bus
tachnigues are currently in use.

F&3 COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3:  N/A
3=k: N/A L=5: N/A 5-6: N/A 6-7: N/A

e REMARKS AND DATA SOURCES ON cOST ESTIMATES: N/a

REMARKS ON SPECIAL ASPECTS: Data checks are similar to monitoring telemetry;
no commands or test input are transmitted to the unit under test, This
capability should not be confused with Onsite Human with Computer Assistance,
which is an astronaut in the Shuttlie, using the orbijter computers. The
Equipment Data Checks use a dedicated microprocessor (if needed) to support
the onsite human.

TECHNOLOGY TREES (PRIDR R&D OF THESE 1§ DESIRABLE.) : 1.3 Human (n EVA With
Tools; 25.1 Onboard Dedicated Microprocessor

CAPABILITY APPLIES TO (GFE NUMBERS) : 923, g33, g48, g43, g54, g56, gl50

|y 1 = \\\"/ ‘
Reproduced from 'f}"}%
best available copy. &mS
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Equipment Data Checks via Telemetry
CODE NUMBER: 27.6 DATE: 5/12/82 NAME (S): Jones-0Oliveira/Smith

DESCRIPTION OF CAPABILITY: Sampled spacecraft data is sent down to ground
stations via telemetry. This data is then compared to a system model, to
evaluate spacecraft status and to diagnose failures. Such ''data checks" are a
nonintrusive procedure, i.e. they only operate on normally available data.
This differs from "function tests'" (i.e. capabilities 27.1, 27.2, 27.3) which
apply test commands to the spacecraft subsytems.

WHO IS WORKING ON IT AND WHERE: = Various NASA Centers, including Ames, Goddard,
and JSC; JPL; General Electric in Philadelphia, PA; TRW in Redondo Beach, CA;
also the operators of weather, resource monitoring, communications,
surveillance, and scientific satellites.

TECHNOLOGY LEVELS: LEVEL1: now LEVEL2: now LEVEL3: now
LEVELL: now LEVELS: now  LEVEL6: now  LEVEL7: now

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: This is a commonly used current
technology. ‘

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2-3: N/A
3-4: N/A L-5: N/A 5-6: N/A 6-7: N/A

REMARKS AND DATA SOURCES ON COST ESTIMATES: None.
REMARKS ON SPECIAL ASPECTS: This capability can be written into software as a
routine subsystem checkout. One advantage of this concept is that the same

ground equipment can be used for more than one spacecraft; this helps reduce
costs.

TECHNOLOGY TREES (PRIOR ReD OF THESE 1S DESIRABLE.): 13.2 Human Eyesight via
Graphic Display; 13.4 Computer Printout; Communications Techniques.

CAPABILITY APPLIES TO (GFE NUMBERS): g23, g33, gi8, gu9, g54, 956, g150, g264
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ARAMIS CAPABILITY GENERAL INFORMATION FORM
CAPABILITY NAME: Internal Acoustic Scanning
CODE NUMBER: 27.7 DATE: 7/2/82 NAME (S) : Marra/Jones-0liveira

DESCRIPTION OF CAPABILITY: This is a non-destructive method of determining the
status of a given structural system. Acoustic signals are sent through the
structure. The acoustic signature is recorded and compared by a computer to a
library of signatures of the structure in various states. The status of the
structure is determined by this comparison.

WHO 1S WORKING ON IT AND WHERE: General Electric Co., Space Div., Daytona
Beach, fla.

TECHNOLOGY LEVELS: LEVEL1: Now LEVEL2: Now LEVEL3: see below .
LEVELY: see below LEVELS: see below LEVELG: see below LEVEL7: see below

REMARKS AND DATA SOURCES ON TECHNOLOGY LEVELS: General Electric has done a
study on this system. However, only the abstract was available to the study
group and no one who was related to the project could be contacted. The name
of the study is:

Mechanical Systems Readiness Assessment and Performace Monitoring Study:
Final Report. Contract No. NAS10-7788. General Electric Co. Space
Div., Daytona Beach, florida, May, 1972.

RED COST ESTIMATES BETWEEN LEVELS; 1-2: N/A 2=3: N/A
3-4: N/A L-5: N/A 5-6: N/A 6-7: N/A

REMARKS AND DATA SOURCES ON COST ESTIMATES: The cost estimates were not
available to the study group.

REMARKS ON SPECIAL ASPECTS: This system is dedicated specifically to
the structure subsystem checkout.

TECHNOLOGY TREES (PRIOR RE&D OF THESE IS DESIRABLE.): 19.1 A/D Converter;
25.1 Onboard Dedicated Microprocessor

CAPABILITY APPLIES TO (GFE NUMBERS): gL9
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APPENDIX 3.D:
TECHNOLOGY TREES

3.D.1 Notes on this Appendix

Technology Trees are representations of favorable sequences
of deVelopment of ARAMIS capabilities. In other words, they
identify those capabilities and technologies whose development
benefits the later R&D of other capabilities. Technology Trees
therefore map out evolutionary paths of ARAMIS development.

As it turns out, the R&D of almost all of this study's 78
capabilities is interrelated, and these capabilities also benefit
from 12 fundamental technologies (although some of these tech-
nologies only enhance one or two capabiiities). These funda-
mental.technologies are listed in Table 3.D.1.

TABLE 3.D.l: FUNDAMENTAL TECHNOLOGIES,
WHICH ENHANCE R&D OF ARAMIS CAPABILITIES

Computer Programming Techniques
Computer Memory Development
Space-Rated Integrated Circuits
EVA Tools

Laser Technology

Cryogenic Cooling Techniques
Communications Technigques
Global Positioning System
Supervisory Control
Space-Rated.Polymers
Manipulator End-Effectors
Micro-Actuators
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The study group therefore separated the overall tree into 8
more specific Technology Trees, with interconnectioné between the
trees. Section 3.4.3 presented an example to illustrate the rules
devised to set up these trees. For convenience, this section
repeats the example (as Figure 3.D.1l) and the rules used in the
display of the Technology Trees:

l) The Trees are presented as flowcharts, to be read from
top to bottom (i.e. the development of the capabilities and
technologies at the top of the figure enhances the R&D of the
capabilities lower down).

2) Each capability is displayed in a single box, and appears

only once in all the Trees. The fundamental technologies,

however, are displayed in double boxes, and can appear in several
Trees; for example, Computer Programming Technigues appears in
several other Trees, besides the one in the example,

3) A direct enhancement of a capability's R&D by the prior
development of a capability or technology is indicated by a
solid arrow between them. However, capabilities are also con-
sidered to benefit from items further up the trees. For example,
14.2 Human on Ground with Computer Assistance benefits directly
from earlier R&D of 13.4 Computer Printout and of 13.2 Human
Eyesight via Graphic Display. However the Human on Ground with
Computer Assistance, through 13.2, also benefits from development
of 13.1 Human Eyesight via Video and 25.1 Onboard Dedicated Micro-
processor (from another Tree), and so on up the Trees. The
capabilities or technologies up those trees are said to be

"available" to 14.2 Human on Ground with Computer Assistance.
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4} Although a'oapebility may heve.several strihgs of capa~-
bilities and techhologies "availabie" to it in the Trees, not
all of these are necessarily useful to the capability's R&D in
a particular application. For example, some applications of
Human on Grouhd with-Computer Assistance would not benefit from
earlier R&D of 13.2 Human Eyesight via Graphic Display, but
might benefit from Human Eyesight via Video, available through
13.2. Therefore some engineering judgment is needed in evaluating
the actual contributions of otheér capabilities or technologies.
As another example, Human on Ground with Computer Assistance
- benefits from the software development behind 25.1 Onboard
Dedlcated Mlcroprocessor, not from the development of the space--.
rated mlcroprocessor itself.

5) In those cases where one of'the "available" capabilities
several leVels up the Tree-iS‘partiouierly-relevant, this is
lndlcated by a dashed arrow.” ' In the example, 14.7 Onsite Human
w1th Computer Assxstance benefits from 13.1 Human Eyesight via
video, through 14.2 and 13.2. However, l3.l is considered to
contribute significantly to the R&D of 14.7, and therefore a
dashed arrow emphasizes the connection.

. The study group found that the cleerest separation of the 8
Technology Trees came from clostering ARAMIS-topics into indi-
vidual trees. In the example, topice 13 (Human-Machine Interfaces)
and 14 (Human Augmentation and Tools) are closely interrelated,
and are therefore displayed together in one Tree. In general,
clusterlng by toplcs mlnlmlzes the ‘numbers of interconnections

between the Trees, Smellfylng the overall presentation. For
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the convenience of the reader, the ARAMIS toéics are listed in
Table 3.D.2.

The eight Technology Trees follow. The topics presented in
each tree are identified above the flowchart. Most of the inter-
connections between the eight trees extend from the 5 capabilitiés
associated with topic 25 (Computer Architecture): these enhance
24 capabilities in other trees. Therefore these 24 capabilities
are listed out by name in Technology Tree no. 1, to emphasize
the potential effect of development of the computer architecture

capabilities.

3D.5



Azozooog qneg » uotjeanbrjuoosy -8z
sTsoubet1q aanyied % BUTIOITUON sSn3e3lS */.7
gouRABTOL 3ITned 8 AJTTTETISY 92

ONITANVH 3 NOILDILIA LINYd

2IN7093TYDAY xa3ndwos *gz

(butaoxg waxooyr) ssnbTuyoal 8ATIONPAQ *HT
swalsAs HburiTnsuo) aedxy €7

butuwexboxg orzewozny °zg

butuuerd 3 HurTnpayss " Tg

JONIDITTIALNI ¥Y3LNAWOO

uotjeIndiuep eled ‘(0T

butpo) puewwo) 3 ejeq ‘6T
TeasTa3sy pue abexols ezeqg g1
Aboranyoa], uoTssTwsuexy] eieq °L

ONITANVH VIvd

ubtsag paprTv-Iajzndwo)
sanbruyosal uorjzeaxadoarsy
STooJL, 3 uoTjikjuawbny urunyg
S20eJId3Ul QUTIYORR-uewny

'9T
‘ST
A
€T

ANTHOVYW-NVWNOH

(*032 ‘uoTrjerpey

‘TedTwayd ’‘TRWIDYL) SIAOSUDS AdYJIO ‘2T
sanbtuysay UOTISTA SUTYOCW °TT
sIxosuas burbewy QT

siosuas anbxol ® 20103 ‘¢

SIOSuU3S IBITIOR] °§

SIOosudS buTtjurod 3 TRUOTIOBIIQ L
SIOSU3S UOTIION SATIERTaY 3 2buey °9g
SYOSNIS

uotjedTTday-3I9s °g

sxojerndruey °y

sauTyoew juabryrojur °¢

sauTyoew arqeuwexboxd °g

SaUTYDBRW OTjewo3jny °I

AYINIHOVW

3D.6

(sotdol, gz ‘sesay 9)

SOIdOL, ANY SYMIY, SIWNVIV J0 ISIT :z-d € 31avl



ARAMIS TECHNOLOGY TREE (NO, 1 oF 8)

COMPUTER PROGRAMMING (TOPIC 2%
TECHNIQUES

25.4 DETERMINISTIC COMPUTER
PROGRAM ON GROUND

@ to 14.2 Human on Ground with Computer Assistance
(B) to 16.1 Computer Modeling and Simulation
© to 27.3 Equipment Function Test via Telemetry

25.3 ONBOARD DETERMINISTIC
COMPUTER PROGRAM

(D to 3.1 Automated Docking Mechanism
(E) to 7.1 Dead -Reckoning From Stored Model
® to 21.2 Operations Optimization Program

COMPUTER MEMORY SPACE-RATED INTEGRATED
DEVELOPMENT CIRCUITS
1
; 4
25.1 ONBOARD DEDICATED
MICROPROCESSOR |
to 2.2 Dedicated Manipulator underxr Computer Control
to 6.1 Optical Scanner (Passiye.Cooperative Target)
to 6.2 Proximity Sensors
to 6.4 Radar (Active Target)
to 6.5 Onboard Navigation and Telemetry
to 8.1 Tactile Sensors
to 13.2 Human Eyesight via Graphic Display

to 13.7 3-D Display

~0) to 27.5 Equipment Data Checks by Onsite Human
‘ P)to 27.7 Internal Acoustic Scanning

25.2 ONBOARD MICROPROCESSOR
HIERARCHY

4 1 Computer-Controlled Specialized Compliant Manlpulatoz
11.2 Imaging (Nonstereo) with Machine Procéssing

15.3 Teleoperator Maneuvering System with Manipulator Klt
18.12 Electron Beam Memory-

27.1 Equipment Function Test by Onboard Computer

27.4 Equipment Data Checks by Onboard Computer

4

25.5 ONBOARD ADAPTIVE
CONTROL SYSTEM

to 15.2 Dextrous Manipulator under Human Control
to 23.2 Learnlng Expert System with Internal Simulation

'3D.7



ARAMIS TECHNOLOGY TREE (NO. 2 or 8)

(TOPIC 18, EXCEPT CAPABILITY 18,12)

LASER COMPUTER MEMORY SPACE-RATED
TECHNOLOGY DEVELOPMENT INTEGRATED
- CIRCUITS

4

| STORAGE

18.8 HOLOGRAPHIC

: ¢

18.6 OPTICAL DISK

18.7 ERASABLE
OPTICAL DISK

A Y

18.2 RANDOM
ACCESS MEMORY

3 —

18.4 MAGNETIC
BUBBLE MEMORY

— ,

18.10 ELECTRICALLY
ALTERABLE READ
ONLY MEMORY

- 3 S T

18.13 CHARGE-COUPLED
DEVICE MEMORY

CRYOGENIC
COOLING
TECHNIQUES

4

9

18.5 MAGNETIC
DISK MEMORY

o

MEMORY

18.11 CRYOELECTRONIC
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ARAMIS TECHNOLOGY TREE (NO, 4 of 8)
(TOPICS 10, 11, 17, AND 19)

COMMUNICATIONS
TECHNIQUES
17.1 TRACKING AND
DATA RELAY
I Reanl
SATELLITE SYSTEM = oACE_RATED
INTEGRATED
CIRCUITS
17.2 DIRECT TRANSMISSION
TO/FROM GROUND
\ 4
19.1 A/D
] CONVERTER
17.3 DIRECT TRANSMISSION s
TO/FPOM ORBITER o L
> to 27.7
4 > 0 4.2
17.4 DIRECT COMMUNICATION
TO/FROM ORBITER VIA CABLE
r—from 13.2
R COMPUTER
10.1 THERMAL MEMORY
IMAGING SENSOR DEVELOPMENT
WITH HUMAN T
PROCESSING !
- !
!
; from 25.2

11.2 IMAGING
(NONSTEREO)

S e - WITH MACHINE
Reproduced from

best available copy% PROCESSING
| | L'—" to 4.3

4 A

11.3 THERMAL 11.1 IMAGING
IMAGING SENSOR (STEREO)
WITH MACHINE WITH MACHINE
PROCESSING PROCESSING
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ARAMIS TECHNOLOGY TREES (N0, S or 8)
(TOPICS 2, 4, AND 8; ALSO CAPABILITIES 1,6,

ORIGINAL PAGE 1S 6.2, 15.1, 15.2)
OF POOR QUALITY ’ ’ —@® from 25.1
MANIPULATOR 6.2 PROXIMITY
END-EFFECTORS ||- SENSORS
_ L to 13.3
1.6 AUTOMATIC ' SUPERVISORY |
SWITCHING SYSTEMS | | conTroL,
2.1 ONBOARD DEPLOYMENT/ .
RETRACTION ACTUATOR r from 13.1
| ———————~ from 13.2
—Q© 25.
! from 1 : from 13.5
2.2 DEDICATED MANIPULATOR || | —— from 13.6
UNDER COMPUTER CONTROL
. ] from 13.7
| from 14.8
]
b Pl b v ¢
15.1 SPECIALIZED MANIPULATOR
UNDER HUMAN CONTROL
| ——@® from 25.1
"~ {{MICRO- , S
—© from 25.2  ACTUATORS - 8.1 TACTILE
_ U2 SENSORS
‘r——from 7.1
4.1 COMPUTER-CONTROLLED |
SPECIALIZED COMPLIANT | | il ® from 25.5
MANIPULATOR - [15.2 DEXTROUS MANIPULATOR
UNDER HUMAN CONTROL '
_ I—-from 19.1 b—s»to 15.3

4.2 COMPUTER-CONTROLLED
DEXTROUS MANIPULATOR
WITH FORCE FEEDBACK

from 11.2
+ I :

4.3 COMPUTER-CONTROLLED
| DEXTROUS MANIPULATOR WITH
VISION AND FORCE FEEDBACK
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~

- ARAMIS TECHNOLOGY TREE (NO. 6 oF 8)

(TOPICS 3 AND 6, EXCEPT CAPABILITY
6.2; ALSO CAPABILITIES 15,3, 15.4)

LASER
TECHNOLOGY

l—from 16.1 l—® from 25.1

6.1 OPTICAL
SCANNER (PASSIVE
COOPERATIVE TARGET)

—Q from 25.1
y

6.4 RADAR
(ACTIVE TARGET)

T6.3 rabar
(PASSIVE TARGET)

=== = GLOBAL
COMMUNICATIONS POSITIONING
TECHNIQUES

SYSTEM

y

6.5 ONBOARD NAVIGATION
AND TELEMETRY

_h ]

SUPERVISORY
CONTROL _

4

15.4 TELEOPERATED
DOCKING MECHANISM

from 13.3
{_

—— from 14.3

| £ 25.3
[~ EFom 15-2 —® from 25.2 |} , @ fxom

v a y 3.1 AUTOMATED

e — e e e e e ]

15.3 TELEOREBA®®R MANEUVERING o DOCKING MECHANISM
SYSTEM WITH. MANIPULATOR KIT o
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ARAMIS TECHNOLbGY TREE (NO, 7 oF 8)
e (TOPICS 1 AND 27)

-y
g

from 14.3 0) from 25.1
[— COMMUNICATIONS
TECHNIQUES

27.5 EQUIPMENT
DATA CHECKS BY
ONSITE HUMAN

——from 13.2
. J ;—from 13.4
} r@ from 25.2 27.6 EQUIPMENT

27.4 EQUIPMENT DATA CHECKS VIA

DATA CHECKS BY TELEMETRY
ONBOARD COMPUTER

l—© from 25.4
1

27.2 EQUIPMENT 27.3 EQUIPMENT

FUNCTION TEST BY
ONSITE HUMAN FUNCTION TEST VIA

TELEMETRY
{—C>from 25.2

27.1 EQUIPMENT from 19.1 from 25.1

FUNCTION TEST BY [—

ONBOARD COMPUTER
27 .7 INTERNAL
ACOUSTIC SCANNING

to. 26.1

SPACE~RATED
POLYMERS

\
1.3 INFLATABLE
STRUCTURE

3D.13



NOTLV'INNTS TVNIALNT

ﬁlzzwtyzg

| LYIdXE ONINUVAT €°€2C

HLIM WELSAS

'St woag @L

LNTIHATOL L1

JIYMLIOS
nvd T1°9¢

B T°LZ wWOaJY

T'p 03

_J

TAAOW AMIOLS WOdd
ONINOMOFY avad 'L

€°GZ woxyg mvn%

YALSAL WRID0dd
ANV JTWWVYO0Ud
| d1IVWOLAV T°2T

AIOWIW WYdd.

NOISIAYIANS NOYIOTTA 2T °8T

NVWAH HLIM.

H.w_SJ

NO

ILVTIAWIS

| anv oNITIAoW
dEINAWOD T°9T

v'sz woay @

LNIWdOTIHATA
AdOWIW ¥ILNAWOO

(CT'8T ALITIAYdYD 0STY 79z anv *
(8 40 8 "ON) UL AQ0TONHIAL STWwHY

he

WALSAS IMIAXT T'E2 It t
Z'6z woxy
W90 d
NOIIVZIWILAO

SNOILWYAdO T 1¢

£°G¢ woxy @..*

- WID0dd DNIAOYd
WIJOIHL T ¥¢

=

SANDINHIAL
ONIWWVYO0dd YALNAWOD

‘6T “TT "TZ ‘91 ‘£ SIH1dOL)

3D.14





