(NASA-CR-1648856) PHCCEEDINGS CF THE

H82-715¢0
INTERNATICNAL CCLIOCUIUM CN LCECES AND TH?U ]
BUBBLES: THEIR SCIENCE ANC ITHE SYSTENS THEY N82-713¢%6
MODEL, VCLUME 1 (Jet Eropulsicm Lakb.) 229 p Unclas

00/34 05589
PROCEEDINGS

OF THE
INTERNATIONAL COLLOQUIUM
ON:

.

DROPS AND BUBBLES

-

——
" .-

THEIR SCIENCE AND THE SYSTEMS THEY MODEL

California Institute of Technology
and
Jet Propulsion Laboratory

28-30 August, 1974

Volume |

P e e

REPRODUCED BY -
NATIONAL TECHNICAL
INFORMATION SERVICE

U.S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA. 22161

B



PROCEEDINGS
OF THE
INTERNATIONAL COLLOQUIUM
ON
DROPS AND BUBBLES

THEIR SCIENCE AND THE SYSTEMS THEY MODEL

California Institute of Technology
and
Jet Propulsion Laboratory

28-30 August, 1974

Volume |

Editors

D. J. COLLINS
M. S. PLESSET
M. M. SAFFREN




Io-
CHAIRMAN .

M. S. Plesset  —Calitech

STEERING COMMITTEE

M. M, Saffren .
Chairman —Jet Propulsion Lab.

F_. H. Busse —UCLA

/. R.Carruthers --Bell Laboratories

R. ]. Donnelly —University of Oregon

D. D. Elleman —jet Propulsion Lab.
D.W. Moore —Imperial College-London

M. Neiburger — UCLA

M. S, Plesset —Caltech

L. E. Scriven —~{niversity of Minnesota

EXECUTIVE SECRETARY
D. ]. Collins

M/ 183-601

Jet Propuision Laboratory
4800 Oak Grove Dr.

Pasadena, CA 91103



1.0

PREFACE

These Proceedings have been organized with papers given in the order in
which they were presented-in the Colloquium. Those papers representing
contributions to the evening film sessions have been placed following the
full length papers because of the somewhat different format involved. 1In
several of these shorter papers are to be found some of the most stimulat-
ing presentations of the Colloquium, and the organizers are indeed grateful
that the authors of these f£ilm discussions have been willing to participate

by contributing what have in many cases been examples from unfinished and
ongoing research.

The presentations of the Introductory Session have not been included in
these Proceedings. In this Session, chaired by Dr. R. J. Mackia, Jr.,

Dr. W. H. Pickering greeted the participants, Dr. F. E. Goddard explained
the Research and Advanced Davelopments Program at JPL, and Dr, M. M. Saffren
gave the Introduction to the Colloquium.

The Editors
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INTRODUCTION

Interest in the science of liquid drops and bubbles extends beyond those
who work in fundamental fluid dynamics. Workers in meteorology, chemical
engineering, mechanical engineering, and space processing have an evident
and very practical concern with this sclence. Workers in nuclear physics
and in astrophysics use liquid drops and bubbles as models for phenomena
in atomic nuclei, and in self-gravitating astronomical systems.

This Colloquium provided an opportunity for workers in these various dis-
ciplines to come together, for the first time, to
- assess the present status of the science of liquid drops and
bubbles in liquids
- forecast and help determine the future directions of this
science
- determine the value to this science of forthcoming opportunities
‘ to perform experiments in a weightless environment.
One aim of the Colloquium was to make evident that what might appear at
first sight to be a narrow and proscribed science with its best days behind
it, was none of these things. A reader of these Proceedings can judge for
himself how successfully this aim was met. An excellent technical summary
of the Colloguium is provided by Dr. Scriven's paper on page xii.

A second aim was to help establish the future direction of the science of
drops and bubbles by looking toward the proper balance of future work in
theory, computation, laboratory experiment, and experiments Iin welghtless-
ness. In retrospect this was too ambitious an aim to be met definitively
by a single Colloquium; such a balance will probably emerge only after more
conventions of this Colloquium have taken place.

Even so, the presentations do allow some general conclusions to be drawm.
Almost without exception, theory is treated in linear approximation and .
applies to the equilibrium, or at best stationary state. While computation
does indeed treat the non-linear dynamics of drops and bubbles it does so
only when a high degree of symmetry significantly reduces the computational
complexity. In laboratory experiments the fact that there are usually several
complicated effects that are taking place simultanecusly makes precise analysis
difficult. Experiments in weightlessness are relatively new. However the
several papers presented on the Skylab demonstrations hint at the potential
for remarkable experiments that may allow effects simultaneously present in
earth-based experiments to be disentangled.

Here I must confess to the personal prejudice that as this potential is slowly
realized in the next few years, when what were demonstrations become carefully
controlled experiments, more and more experimenters will be drawn to experi-
ments In weightlessness, and what is learned will greatly stimulate both



theory and computation and even result in new experiments on earth. Pre-
sently, NASA KC 135 aircraft flying along a ballistic trajectory afford up
to 25 seconds of weightlessness. Soon to be flown as part of the NASA Space
Processing Program, sounding rockets will allow experiments times in weight-
lessness up to 10 minutes. Eventually, in 1980, the NASA Space Shuttle will
provide 7 days of weightlessness, and in fact JPL is engaged in a project to
result in an experiment module being made available on the Shuttle for drop
dynamics experiments. It 18 expected that future conventions of this Col-
loquium will be under the auspices of this project which is itself part of
the NASA Physics and Chemistry in Space Experiments Program.

Interdisciplinary meetings such as this one are notoriously high risk events.
When successful, as this Colloquium was, the presentations stimulate special=~
ist and non-specialist alike, provoking exciting discussions at sessions

that spill over ianto corridors, and irrepressibly into the coffee and meal-
time breaks. Hopefully the presentations as recorded in these Proceedings
will be just as exciting to read as they were to hear.

Dr. Melvin M. Saffren
Chairman, Steering Committee
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GOLLOQU] SUMMARY

DROPS AND BUBBLES: THEIR SCIENCE AND THE SYSTEMS THEY MODEL

L. E. Seriven
Department of Chemical Engineering amd Materials Science
University of Minnesota, Minneapolis, Minnesota 55455

A bubble or a drop is a relatively compact blob —= a sphere or its topologi-
c¢al equivalent -~ of one fluid phase surrounded by amother. It is contained
within a fluid interface which usually resembles a closed mathematical surface
and often be!;aves like a permeable, weakly elastic membrane under temsion. By
éxt:enéion the term bubblé or drop is also applied to a fluid blob in partial
contact with a solid, but otherwise surrounded by a second fluid. In thié case
the containing surface consists of two types of interface separated by a narrow
region which resembles a closed mathematical curve, the line of mutual contact
of three phases.

Bubbles and drops of everyday experience are apt subjects of experimental
study and mathematical analysis., Their relatiouship to the sphere, their near
symmetry, invites theoretical simplification., They have always been on the
thoroughfare of physical science, Two monuments are J. A. F. Plateau's 1873

Statique Eggérimentale et Théorigue des Liquides soumis aux seules Forces
Moléculaires and, a lifetime earlier, P. S, Laplace's 1806 Sur 1'Action

_ngi-_l-}:é}}_e_, ~ which appeared as a supplement to Volume 10 of his Mecanique
Céleste., Plateau was a blind genius of an experimentalist. Laplace was a sight-’
ful mathematician and physicist. Their works still repay study and are avail-
‘able in English, Laplace's in Bowditch's heavily annotated 1839 translatiom,

Celestial Mechanics, which was reprinted by Dover Publications, and Plateau's in

the Annual Reports of the Smithsonian Institution for the years 1863-1866,
From the times of Plateau and Laplace everyday bubbles and drops have served

as models for physical systems on other scales, from muclear physics to astro=-

physics. This colloquium links together, in a way that has not been tried before,
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the divergent trails up which science and engineering have carried the study of
bubbles, drops and the forces which mold and move them. Those forces are the
grid on which can be charted the interrelationships among the papers in this
volune.

The science of bubbles and drops can be split into investigations of their
formation or disappearance, by mass transfer processes, and of their behavior
once formed, which is fluid mechanics first of all. For phenomena of all scales
trea;gd ‘i'n this volume, fluid mechanics is indeed the common denominator, although
growth processes are the subject of the papers on atmospheric aerosols and pre-
cipitation. The science can also be cut crosswise into systems of a lone bubble
or drop, two or not many more globules in some manner of interaction with each
other, and swarms of them engaged in collective action as dispersions of one
phase in another. The less populous systems are most often the focus in basic
disciplines, while ‘the dispersions more frequently command the attention of
applied scientists and engineer#, as ig evident in this volume.

Everywhere in the science the coordinate forces are those of surface tensiom,
gravity (sometimes cast as buoyancy), charges, magnets, radiation fields, pres~
sure and viscous action, and accelerations in disguise as centrifugal and other
inertial forces. The following survey of the Colloquium proceedings is }aid out
along intersections of these forces and ought to provide a perspective of the
field of bubbles and drops —— and of some possibilities for experiments in a

weightless environment.



Static configurations

At equilibrium the only stress field in a fluid is hydrostatic pressure,
which is balanced in bulk fluid by volume~distributed force fields and at inter-
faces by the effect of surface tension in a curved surface., If the former are
absent, as in Gibson's free droplets in Skylab, or without effect, as in Plateau's
droplets suspended in liquid of equal density, the only isolated form is the
sphere. When the bubble or drop makes contact with a solid, the shape depends on
the contact line., If that is a circle and around it the contact angle is uniform,
the shape is still a segment of sphere, as in the final state of Pogue's Skylab
water droplet described by Vaughan et al. [617]. If the drop contacts the solid in two
coaxial circles, then the shape may be nodoidal, unduloidal, spherical or cyline
drical -~ Plateau's axisymmetric figures — as in the rest states of the captive
drops in the Skylab floating zone experiments discussed by Carruthers and others,
If drop-solid contact is other than a single circle or two coaxial circles, its
configuration is in general a three-dimensional surface of constant mean curva=
ture, difficult to describe from experiment and non=-trivial to compute from
theory. Examples are a droélet clinging to, yet incompletely wetting, a cylinder,
as in the clamshell forms of dew on a spiderweb, and a drop penetrai:ed off-center
by a thread, as in the Skylab handling procedure (when the drczp's diameter
greatly exceeds the thread's, the departures from sphericity .a.re significant
only near the contact lines, however).

When external gravity joins surface tensiom in the molding of bubbles and
drops, the shapes become more complex. The axisymmetric forms known as pendent
.;.-md gessile drops or bubbles have long been used for measurement of the surface

tension of liquids and the interfacial tensiom between liquids. Because comparison



of experiment with theory depends on tedious numerical integration, only with

the advent of efficiént electronic computation have pendent and sessile drops
become the method of choice for accurate tension determinations, particularly

for values less than 1 dyne/cm. Kovitz's [304]carefu1 photography and computation
of pendent drops are exemplary, and his study of multiple equilibrium shapes and
their stability is representative of recent researches by several groups, includ-
ing Padday's at Kodak, Ltd., and the writer's at Minnesota., Nitsche [American
Mathematical Monthly 81 945-968 (1974)] reviews the many aspects of current
mathematical interest to himself, Concus, Fin and others. Questions of config-
urational stability arise in connection with certain processes of crystal growth
and solidification that Carruthers describes in his paper on spacé processiﬁg ozf
materials [161] .

With rotating bubbles and drops -the interplay of centrifugal force and sur=-
face tension causes more complicated shapes., Spheroidal bubble forms are the
basis of the recently perfected spinning 'drop' method of measuring interfacial
tension. At higher rates of rotation the static configurations lose axia1~sym-
metry; in some cases they take on a dumbbell shape but there are many other forms
and the issues of stability and drop fission or‘iginally tackled by Plateau are
still active research ;reas.

Since Bohr and Wheeler began modeling atomic nuclei as uniformly charged
liquid drops with surface tension, nuclear physics has contributed theoretical
analysis and impetus for experimental study. However, to contrive in the labora~
tory a liquid drop with uniform volume charge is very difficult, as several

Colloquium participants remarked. Perhaps a system can be found with enough charge

well enough bound throughout the interior to permit experimental modeling of nuclei.
Until the challenge is met the only possibility is analysis and calculation of
the sorts presented by Tsang in study of volume-charged drops and charged, con=-
ducting drops (85] s and by Foote [Journal of the Atomos;;heric Sciences 32 390~

402 (1975)] Alonso f139] ‘in their computer



simulations , Unrepresented in the proceedings is the finite-element

method, which offers considerable advantages for computing static meniscus

—configurations—that are ot axisymmetric.

When internal gravity and surface tension dominate a drop there is a
close mathematical analogy with the case of volume charge and surface tension.
The energy of self-gravitation shares the inverse-distance dependence of
electrostatic energy. Self-gravitating blobs have long been models for stars,
and so it is that astrophysics and nuclear physics can be linked through drops.
In astrophysics the angular momentum of’scellar masses is crucial to their
form and stability, as Lebovitz so lucidly brings out { 1 ]. In nuclear physics
the effects of la£ge angular momentum on the stability of nuclei is of high
interest, as Swiatecki indicates [52 ]. The difference is that no analog of )
surface tension is significant in the astrophysical case, whereas the relatiwvely
sharp fall-off in nucleon density which defines larger nuclei is quite
analogous to the cause of surface tension of everyday liquids,

Swiatecki's masterful survey of the equilibrium configurations of rotating,
charged Qf gravitating, liquid masses with or without surface tension is an
odtstanding contribution to the science of bubbles and drops [52 ]. With two
dimensionless coordinates, one measuring the ratio of inverse-distance energy
to surface energy, the other measuring the ratio of rotatiomal to surface
energy, he unifies the gyrbstatic configurations from astrophysics, nuclear
physics, and virtually everything in between (see his Fig., 6). From Swiatecki’s
survey and Lebovitz's summary of the fission theory of binary stars it becomes
clear that the most intemse theoretical studies of drop stability aﬁd breakup
have come at the ends of the range., However, ordinary pendent drops {in a
uniform gravitational field) if they are reflected in their neck planes resemble
the nuclear saddle-point shapes known as Bohr-Wheeler dumbbells and so there

may be useful link-ups with the laboratory mid-range.
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While the quantum underpinnings are suppressed in liquid-drop models of
atomic nuclei, the electron bubble in liquid helium treated by Roberts is
flagrantly quantum mechanical [35 ]. Nevertheless a shell of steép density
variation gives rise to a surface-excess stress analogous to surface tension,
and one has a system that can be partly modeled as a gas bubble. On a larger
scale, blobs of liquid éﬁspensions of interactiné colloidal particles can be
expected to display a weak interfacial tension: yet another sort of system for

modeling by drops..
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Oscillation and circulation

Motion within a drop or around a bubble brings inertial and vwiscous forces
into play, and these by their action on the interface recruit surface tension
as well., Small amplitude oscillations leave the inertial effects nearly linear
and so normal-mode analysis has been standard in theory and experiment., Early
motion of a deformed drop may be virtually irrotational, but viscos;ty generates
vorticity near the interface and diffuses it eventually throughout the drop.
This important transient had escaped analysis before Prosperetti's, which
indicates that evolution toward the well-known asymptotic regime of viscous
damping is not exponential but algebraic with time (357]. Prosperetti's striking
results ilnvite experiments to confirm and extend them, and the Skylab science
demonstrations point to one possibility.

Those .demonstrationa by Gibson, Pogue and Carr include not only free-
floating drops but also oscillating sessile drops whose contact lines on the
supporting solid appear to remain fixed, according to Vaughan et al. [617).

The same is V‘apparently true of the oscillating and ci:rculating captive drops,
or cylindrical floating zones, In these cases experiment leads theoretical
analysis, and in the more common circumstance that the contact line moves
over the solid (often intermittently and irregularly), theory itself is
incomplete because the physics of contact line movement is still unclear,

Observations of bubble oscillatious so viole;at that small 'bubblets' tear
off from the surface or the bubble itself disintegrates, as in Remenyik's high~
speed cinematography [592], are chalienge to analysis. So are the instabilities
and microjet formation in collapse of bubbles as photographed by Lauterborn
and Bolle [322], although Plesset, Chapman and others have made computational
inroads on the phenomena by disregarding local surface tension and viscous

effects as well as vapor and liquid compressibiliries. Vapor film coliapse, or



bubble collapse, and microjet formation are put forward by Kastenberg and
co-workers to account for the spectacular, complex events that follow on
plunging hot liquid into a cooler, more volatile one [606]).

Oscillations of an inviscid liquid drop endowed with surface charge can
be altered by the coulombic forces, as pointed out by Wong and Tang [ 79]. ~
However, the electrical forces are sensitive to charge convection, which in
turn can be strongly affected by the viscous effects that are magnified at a
charged interface, a péinc touched on in closing by Zahn and developed by
Spertell and Saville[lOG]. Zahn himself treats small-amplitude oscillation and
.stability of inviscid, charged drops suspended in a second, charged fluid [122].
He emphasizes the volume=-charged, non~-conducting drop which, as described
above, serves as a model for nuclei and, less accurately, for certain stars.
Now electrohydrodynamics needs laboratory studies of the oscillgtibns and
break-up of charged, viscous drops, as in Saunders' experiments [487].

The problem on the astrophysical scale is whether a self-gravitating,
rotating, non-isothermal, compressible mass can exist in any state of gyro-
static equilibrium. Gough [11 ] remarks that the surface angular velocity of
the sun varies significantly from pole to equator, adduces theoretical grounds
for concluding that meridional currents of internal circulation necessarily
exist, and goes on to argue that there are no stable steady states. The subject
is vast and rapidly recedes from analogies with everyday bubbles and drops.

On the other hand the connections between bubbles and drops and nuclear
dynamics are so tight that classical Newtonian hydrodynamics and Maxwellian
electrostatics are being used in elaborate computer simulations of nuclear
oscillations. A highlight of the Colloquium was Alonso'g lucid presentation
and SQUIéH-generated motion pictures of axisymmetric oscillations and near

break-up = fission «-of viscous drops with surface tension [139]. The program



is based on Harlow and Amsden's finite difference scheme, the Simplified

Marker and Cell Method, and draws on Foote's earlier simulation of droplet
collision and oscillation for meteorclogical application. It may prove useful
for antiseptic experiments with a wide variety of deformed bubbles and drops,

as well as other tramsient, viscous flows with free surfaces, VMarke-r and céli
methods have a reputation for being extremely demanding of computer memory and
time, however., It should be pointed out that experiments with expensive highe«
energy machines to produce superheavy elements are costly too. 8o are laboratory

experiments with the convenience of zero gravity.

Translation and shear

A bubble or drop usually differs in density from its surroundings. If
gravity is present, or any similar force field, the extermal fluid exerts a
net hydrostatic pressure force kmown as buoyancy force which tends to translate the
bubble or drqp. In translation its interface oﬁght to be generated at the
forward stagnation point, expand freely over the leading hemisphere, contract
over the trailing hemisphere, and disappear at the rearward stagnation point.

This expectation is rarely met, for reasons discussed by Harper [300] and
Acrivos [390],

In the first place a fluid interface is generally not '§1ean,' i.e. the
interface is a region of variable composition owing to its thermodynamic
At:raction for many of the contaminants present in trace amounts in bulk.

Though an experienced and painstaking surface chemist may be able to remove
mogt of éhese, water is a notoriously bad actor especially around glass or quartz,
K. C. D. Hickman's researches should be well known. We also have Savic's

observations of contaminant-saturated rearward caps on rising bubbles.



Harper [300] suggests a new hypothesis that all semi-clean water has the same
amount of the same surface-active constituent always in it, and then nominates
bicarbonate ions. The test will require more than ordinary hydrodynamic
experiméntation. ‘

In the second place the translation of a globule excites nonuniform viscous
traction over its surface and causes nonuniform dynamic pressure there as well,
The result is that surface tension can no longer maintain sphericity, and as
out-of~roundness increases the flow field is further altered until steady
translation becomes unstable, the motion becoming helical or zig-zag. Many
features revealed by experiment are still not satisfactorily explained, as
Acrivos [390] and Harper [300] bring out. The subject is one that continues
to attract the attention of fluid.mechanicists and applied mathematicians.

Large drops and bubbles in translation take the form known as the spherical-
cap bubble, which has been investigated extensively by Collins [414] and others.
Interestingly, surface tension force appears to be inconsequential over the
surface of a spherical-cap bubble, except around the circumference, where surface
curvature is high and the ultimate controls of cap diameter and velocity may ‘

" reside, Attention has been riveted on the structure of the cap's wake, visualized
in the cine film shown by Collinms.

Though cap bubbles are important in fluidized beds of catalyst, there is
more concern in technology with bubbles and drops suspended in bulk liquid .
undergoing shearing motion. Acrivos [390] reviews research on the simplest
case: a neutrally buoyant drop in a linear shear field (one of many branches
of our science in which McGill's experimentalist S. G, Mason and his theoretician
co=-workers have been leaders). Of greatest consequence are the deformation and
burst of the drop. Depé.nding on conditions, the drop may becm‘ne a greatly elongat-

ed filament, or it may deform only moderately before bursting, i.e., fissioning
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under the influence of applied surface traction. Acrivos emphasizes the
practical importance of understanding the bursting phenomenon.
Somewhat similarly, a drop suddenly bludgeoned by the passage of a shock

front may be merely set into oscillation (an outcome that might fit an analysis

by Prosperetti or Alomso), or it may be sent into the sequence that leads to 'bag'
breakup, or it may be shattered nearly outright. Photographic details are
given by Reiciman and Temkin [446]. Here too there are ample reasons to try

to understand better the phenomena of breakup and shattering.

Surface tension gradients

A surface tension gradient i{s a shear stress applied by an interface on
the adjoining bulk fluid., Viscosity propagates the effect deeper into the
bulk. This cause of motion in real bubbles and drops is still too little
appreciated, It can also resist movement brought about by other causes.
Everyone working in this field should digest the movie madg by Trefethen and the

Natiomal Committee for Fluid Mechanics Films, Surface Tension in Fluid Mechanics,

now distrifuced by Encyclopedia Britannica Educational Corporation.

Surface tension depends on tem;erature, electrical potential, compositiom.
Thus a gradient of any of these along an interface causes a surface tension
gradient and can thereby drive a flow == the so=called Mnrangoﬁi effect, Moreover,
a gradient perpendicular to the interface can in some circumstances be converted
by 'Marangoni instability' into more or less steady convection. These'are
! thermocapillary,' 'éhermoe}ectric' and 'diffusocapillary' flows. Order of magni-
tude estimates indicate that the thermocapillary effect can produce more
vigorous convection than buoyancy effects do in centimeter-scale systems,

Chang and Wilcox [194] validate these estimates by means of computer solu=

tions of the heat transfer and Navier-Stokes equations for the floating zone
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melt technique described by Carruthers [161]. Insofar as cryst;al growth and
solidification are nonisothermal processes, it appears that absence of convection

_is_an—mgsaiaab%&go&}-forthose techniques prominently mentioned for space
processing of materials. Dragoo's [208] simulations of spherical drops in non-
uniform temperature fields provide additional indications of the importance of
surface«tension~driven flow in low gravity enviromments.

Owing to the ubiquity of surface-active contaminants — whether adventitious
or deliberately added, as were soap and Tang, the General Foods breakfast drink,
for Skylab demonstrations - surface tension gradients caused by composition
variations are the experimentalists' bane. Because fluid motion can cause local
changes in surface area and :ﬁese in turn alter surface composition, the gradient

, (reinforcing the effect of viscosity), .
mechanism can damp motion/., This is often referred to as the Plateau-Marangoni-
Gibbs effect and it can impede translation, dominate oscillation, and modulate
breakup, It is itself reduced by diffusion, the fact behind Harper's suggestion
that someone searching for experiments impossible on earth might consider a
bubble rising with low Péclet number in 'ideal' surfactant solution.

In any event those who actually experiment with bubbles and drops in motion
should be aware of tension gradient effects as described in Da‘;ries and Rideal‘é

Interfacial Phenomena (1971), Levich's Physicochemical Hydrodynamics (revised

edition in preparation), and more recent review articles,

Non~newtonian behavior

The commonest fluids under ordinary conditions display Newtonian viscosity.
That is, stress is linear in strain rate and flow is dissipative, irreversibly
doing away with mechanical energy. Thus bubbles and drops of Newtonian fluids

serve as models for dissipative and radiative stellar and nuclear systems.
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In many technologically important liquids there is microstructure giving
rise to significant effects of shear thimning, extra noxmal stresses, and visco~
elasticity. This is a large and difficult field, from which Zana and Leal [428]
bring to attention some of the bubble and drop phenomena that have been observed.
It is interesting that Alonso desc‘ribes nuclear rheology in terms of the purely

linear Kelvin, Maxwell, and Bingham materials.

Multiple bubbles and drops

Lauterborn and Bolle [322] report on interactions between two or more bubbles
collapsing near ome another., Theirs is a novel technique for producing synchro-’
nized cavitationbubbles by focused laser light. A clever exteasion by means of
holography will enable them to study collapse behavior in arrays of many bubbles.
Otherwise the hydrodynamic interaction of non-colliding glébules is scarcely
represented here, although it is a fairly well developed area, still quite active.

Colliding drops are another matter. Collision and coalescence —- fusion
or capture -« are important processes in clouds and rain, as described by
Neiburger et al. [465] and Saunders [487], and in models of nuclear fusion, as
touched on by Alonso [139]. 1In both cases it is necessary to account forg the
actions of electrical charge, which, Saunders explains, are more varied in the
meteorological setting owing to the presence of external electric field, The
complicated process of coalescence, which requires thinning, nucleation and
rupture of the intervening film of fluid, is vitally important in wany fields
of application ;-:f suspensions of bubbles and drops and so deserves greater
attention than given it here,

While Acrivos, Leal and Saville all refer to problems of generating dis-

persions or of describing their rheology, the lone paper on collective behavior



of a swarm is Wijngaarden's [405] on pr;zssure waves in bubbly liquidé. Its
matchings of experiment with theory, microscopic detail with macroscopic behavior,
and, by means of an analogy, bubbly liquids with reactive gas solutions, make the
paper a f;(.ne representative of its genre.

In cloud physics there are important droplet interactions by mass transfer,
They are indirect, through the prevailing degree of saturation, in the growth
of droplets on condensation nuclei, as discussed by Neiburger et al.[465] and in.
detail by Carstens and Carter [529]. The interactions are more direct in the
growth of ice crystals at the expense of liquid dfoplets, the three-phase process
described by Neiburger et al. Apart from these papers and those on growth in
distributions of aerosol particles, there is little representation here of the
mass cranéfer processes central to bubble and drop behavior in boiling and
condensation. The major exception is Apfel's report on superheat experiments

with acoustically levitated droplets [246].

External radiation pressure

Three of the most intriguing reports in the Colloquium are of techniques
for levitating liquid drops by radiation pressure. Apfel [246] employs an
acoustic standing wave field to suspend a droplet in the middle of host liquid.
Wang et al. [266] apply the same principle to position a droplét in a gas-filled
enclosure. Ashkin and Dziedzic [Applied Physics Letters 24 586-588 (1974),
Science 187 1073-1075 (1975)] make use of the stable trapping of a nonabsorbing
droplet in the high-intensity core of a laser beam; droplets with diameters
in the range 1-40 microns are named. The technique can be used to impel two
droplets together in a collision, or to force them slowly together until they

coalesce,



The radiation intensity required depends on the difference between gravity
and buoyancy forces on the droplet. Both decrease in proportion to the gravie
tational field and so radiation-pressure positioning is very attractive for low~
gravity, c‘b‘nt"ainerless handling of liquids. Wang describes an apparatus under
development for this purpose. The effects 4of even low radiation pressure on

the dynamics of suspended drops remain to be assessed fully.

Possibilities for a weightless environment

In this observer's view the Colloquium pr;'oceeding's reveal few unique opportuni-
ties for taking advantage of a zero-gravity laboratory to get scientific informa-
tion that cannot be derived from experiments or simulations at the earth's surface.

One purpose of eliminating gravity might be to guide and to test theories of
bubble and drop dynamics and other free surface flows. In such theories gravity
can be isolated in a single dimensionless parameter which can equally well be .
made small by controlling other quantities in it, and thus it may be possible to
simulate low‘gravity conditions experimentally, particularly if the total aumber
of significant dimensionless parameters is small enough that all can be scaled
simultaneously. An exception arises when the zero-gravity limit is singular, i.e.
the predicted behavior at the limit is qualitatively di;fferen: from the behavior
as the limit is approached. In any case a weightless enviromment could be a con-
venience in developing and testing a theory.

A second purpose might be to examine the behavior of a laboratory model of
a much larger or much smaller system, when both the prototype and the model are
gso complicated that numerical simulation is prohibitively expensive or even
impossible. When the essence of the prototype’s surroundings is the absence of

a uniform external field like gravity at the earth's surface, a weightless
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environment is certainly desirable. For a model to be successful the equation
systems governing it and the essential features of ghe prototype must be known
and must match, The &:Lfficulty here is likely to be the control of unwanted
side effects in the model system - positioning disturbances and surface-active
contamination of bubbles and drops, for examples. But a zero-gravity laboratory
could be a great convenience for liquidedrop simulations of the dynamics of
nuclear and stellar masses.

A third purpose of eliminating gravity might be to avoid buoyancy forces,
which are the effect of gravity on all but perfectly aligned demsity gradientg
and density discontinuities. The main reason for avoiding buoyancy forces is to
eliminate unwanted buoyancy-driven natural convection in systems with density.
gradients caused by heat or mass transfer, But wherever the gradients responsible
for transfer reach to a fluid interface, surface temsion gradients may drive
equally undesirable natural convection.

A fourth purpose of eliminating gravity is to facilitate isolating a body.
of liquid from solid walls or a host liquid, that is, to make 'containerless
processing’ possible. There is still a problem of positioning and manipulating
the liiquid in the presence of a residual imertial force field, Radiation pres-
sure may be the answer. Perhaps the most worthwhile possibilty that appears here
is Wang's propbsal of a low temperature experiment with a drop of super-fluid
helium II in order to study the formationm of quantized'vorticity in the absence
of any rigid containing wall.

Regardless of the purpose, the potential value of the result has to be
assessed realistically and weighed first against the cost of the experim§nt in

a zeroe-gravity laboratory and then against the cost of getting the same information
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by the most economical means that can be devised — by expert experimental
—.8cientists who have substantial experience in the subject area. . There will be
trade-offs, of course. The choice will be biased if the zero-gravity laboratory
is subsidized owing to extra-scientific factors. Such a laboratory appears to
be a certainty. Thus the immediate challenge to science is to see that truly

worthwhile scientific experiments are performed in the laboratory.

Concluding remark

As a unique opportunity for interdisciplinary exchange in the science of drops
and bubbles the Colloquium has met the expectations of its planners and most
if not all of i{ts participants, For so uncommonly stimulating an experience
all are grateful to the organizers and sponsors at the Jet Propulsion Labora-

tory and California Institute of Technology. Well done!l



THE FISSION THEORY OF BINARY STARS

N. R. lLebovitz

University of Chicago

Abstract

About half the stars in the sky are binary stars. The
fission theory, proposed by Poincidré in 1885, tries to explain
the occurrence of binary stars by a natural process of evolution
of a single star; in virtue of radiating energy, a rotating,
axisymmetric liguid mass becomes highly flattened, becomes un~-
stahle, and continues its evolution along a series of progres-—
sively more elongated ellipsoids. When these become unstable,
further evolution is supposed to take place along a series of
"pear—-shaped"” figures, having a constriction in the middle.
When this constriction has become deep enough, the figure con-
sis:g effectively of a pair of detached masses orbiting one
ano er.

Part of this picture lay on firm mathematical grounds; the
rest depended on the outcome of a series of mathematical pro~
blems. By the 1920's, these problems had been worked out, their
solutions were adverse to Poincidré's picture, and the fission
theory became dormant. A recent reformulation of the theory, to
bring it more nearly in line with newer astrophysical informa-
tion, promises a different outcome to the analogous series of
mathematical problems, and has awakened the fission theory.

INTRODUCTION

About half the stars in the sky are not individual stars
at all, but binary stars, i.e., pairs of stars in orbit about a
common center of mass. This figure (and the true fraction may
be substantially greater than one-half; cf. [1]) is so large
that it is not possible to regard the binary star as a freak
occurrence without meaning for an understanding of the broad
outlines of cosmogony. An explanation must be sought in the gen-
eral framework of stellar origins and evolution,

Several suggestions as to the origin of binary and multiple
systems have been made. Some of these, particularly those re-
quiring two or more nearby points at which the interstellar
medium begins the process of star formation, present mathematical



and formulational difficulties so great that it has not as yet
proved possible to analyze them even approximately. They must
be regarded as speculative at present. Two others have proved
more or less tractable mathematically:; these are the capture
theory and the fission theory. It is widely agreed (1) that
the capture theory is not capable of producing binary systems
in anything like the large numbers observed.

The subject of this article is the fission theory. Briefly
expressed, this theory provides a mechanism whereby a single,
rotating star evolves into a pair of stars orbiting one another.
The remaining séctions are devoted to describing the mechanism
in detail, explaining some of the criticisms that have been made
against the fission theory during its long history, and how
these criticisms are affected by recent theoretical developments.
The last section is an assessment of the present status of the
fission theory.

ELLIPSOIDAL FLUID MASSES

The model~-context -in which the fission theory is discussed
is that of the Maclaurin spheroids and the Jacobi ellipsoids. We
briefly describe these and certain generalizations of them here,
referring to (2) for a fuller description and derivations.

. An ellipsoidal fluid mass of uniform density o, rotatingf
with a uniform angular velocity §, having semiaxes -
ay 2 a, 2 a3,‘and subjected only to the force of its own gravita-

tion, is a figure of relativs equilibrum if
a

2 _ %3
az = al and Q° = Z(Al ;—2A3) (1)
1
or-if - -
2_ 2 _ .2 2
a;“ay"a,, = aja, and Q¢ = 28,5, (2)
where
) du

* E--)
A; = ©Gpa,a,a, f

ey s (i=1,2,3,)
s (a.J._2+u){(a112+1.1)(a22+u)(a32+\:1)}.1’/2
and
e W 2
B2 = T2 7 B2 T AT 2y A
2 1

Here G is the universal constant of gravitation.



Equation (1) represents a sequence of spheroids, the Maclaurin
spheroids. There is one such equilibrun figure for each wvalue of
a3/a1 between zero and one (or for each wvalue of the eccentricity

e of meridian sections in the same interval). Eguation (2) re~-
presents a sequence of ellipsoids with unequal axes, the so~called
Jacobi ellipsoids. It can be shown that for each value of az/a1

between 0 and 1, there is a unique value of aa/a1 satisfying

the first of equations (2). This gives the curve in the
(azlal)(a3/al)-plane marked A = 0 in Pigure 1.

At the point along the Jacobi sequence where azlal's 1,
aj/a; = 0.5827 (or e = 0.8127)_ and the two series have a member

in common. This is the "poinﬁ of bifurcation" +to which reference
will be made later.

These figures of relative equilibruim were shown by Riemann
(3) to be special solutions of a much more general system of equa-
tions. Riemann considered the problem of finding the most general
motions of a self-gravitating fluid of uniform density compatible
with the assumption that the free surface remains an ellipsoid.
This leads to motions of uniform vorticity relative to the rota-
ting reference frame in which the ellipsoidal surface is at rest.
Moreover, there is no requirement that the figures be in a steady-
State: a system of ordinary differential equations determining
the semiaxes and the parameters of the motion is obtained. These
equations can take the form
2 2

2K

+ 2

2p 28, ,
3 37
(al az) (a1+a2)

o - c
al = 2alA1 + pal +

2 2
2p 2K 2K
i, = -2a,a, + pac P 5 + 2 50 (3)
2 (az-al) | (a1+a2)
. 2p, -
33 = 23323 * o7,

with Kl and K2 constants depending on initial conditions. To
these equations must be adjoined the equation of mass conservation
a;aja,p = constant, and a constitutive equation relating the pres-
sure at center Pe to other variables; if the fluid is incom-

" pressible, this relation is p=constant and can be used to eliminate
the central pressure from equations (3). We observe, however, that
in Riemann's more general formulation, the fluid need not be incom-



pressible, i.e., p may be a function of time.

The system (5) allows equilibrium solutions, obtained by
setting the time-derivative terms equal to zero. When mapped out
in Figure 1, this family of equilibrium figures is found to occupy
the horn-shaped region bounded above and below by the curves
marked K, = 0 and Kl = 0, respectively, and on the right by the

segment of the Maclaurin series between e = 0 and e = 0.9529.

RESUME OF THE FISSION THEORY

Although the earliest ideas of the fission hypothesis are
attributable to Lord Kelvin (4) the theory only emerged in a com-
plete form with the appearance of a remarkable memoir by Poincaré
in 1885 (5). One of the outcomes of Poincaré's work was a descrip-~
tion of how a single self-gravitating mass (a star or planet)
might become a double system (a binary star or a planet-sattelite -
system). The mechanism, explained in the model-context of the ’
Maclaurin spheroids and Jacobi ellipsoids, operates as follows.

Imagine a Maclaurin spheroid with an eccentricity e 1less
than 0.8127. Suppose it contracts in virtue of radiating energy
away, but so slowly as not to disburb the relative eguilibrium.

As it contracts, it becomes more flattened in virtue of angular
momentum conservation. "Ultimately it reaches the point of bifur-
cation where e = 0.8127. Beyond this point, the Maclaurin spher-:
oid is known to be "secularly unstable,” i.e., unstable if vis~
“cosity is present. Supposing the latter so, further evolution
cannot proceed along the Maclaurin sequence, but must proceed
along the Jacobi sequence which is known to be secularly stable.
Next a further point of bifurcation, where a new, so-called pear-
shaped series, branches off the Jacobi series, is attained.
Assuming the Jacobi series secularly unstable past the new point
of bifurcation and the pear-shaped series secularly stable, further
evolution must proceed along the latter series.

In Poincaré"s original memoir, a sketch of the pear-shaped
figure was given showing it to have the shape suggested by its
name. The two ends of the figure are rather thicker than the
central portion, which appears constricted. Poincaré suggested
that this constriction narrows as evolution along the pear-shaped
sequence continues. When it has narrowed to the extent that the
figure consists essentially of a pair of detached masses connected
by a narrow neck, the system is a binary system.

This picture that Poincaré painted rested on a basis of solid
mathematical reasoning up to and including the computations imply=-
ing the existence of the pear-shaped sequence that branches off
the Jacobi sequence. Two important elements in his description,
however, were conjectures as to the outcomes of certain compli-
cated problems left open to subsequent research. One of these



conjectures was that the pear-shaped series is secularly stable.
This conjecture was taken up by Darwin (6], Liapounov (7), and
Jeans (8). Although Darwin initially concluded stability, the
others instability, Jeans further detected a minor error in
Darwin's computations which, when corrected, also led to the
conclusion of instability.

The other principal conjecture was that the instability
along the Jacobi sequence was a secular and not a dynamical in-
stability, implying that the ensuing motions take place on the
viscous timescale Tv rather than on the much shorter dynamical

timescale. This requires further explanation.

The instability along the Maclaurin seqguence that sets in at
e = 0.8127 (at the point of bifurcation where the Jacobi segquence
branches off) is a secular instability only; i.e., if viscosity
is absent, the Maclaurin sequence is stable down to e = 0.9529
(where the curve K, = 0 intersects the Maclaurin line
az/a1 = 1; cf. Fig.” 1). If viscosity is present, the Maclaurin

spheroids are unstable for e > 0.8127, and the e~-folding time is
the viscous diffusion time A Poincaré conjectured that the same

situation prevailed along the Jacobi seguence. The reason, or
rather, the hope, behind this conjecture was the conviction that,
if the instability were dynamical, rapid motions, on the dynami-
cal timescale would ensue, and it would not be possible to infer
the subsequent behavior on the basis of equations of equilibrium:
the full, dynamical equations would then have to be used. But
this conjecture that the instability is secular and not dynamic
is also wrong, as Cartan showed in 1924 (9).

CRITICISMS OF THE THEORY

The adverse outcomes to the two problems left open by
Poincaré appeared to destroy the theoretical foundations of the
fission theory, because the fluid mass no longer has any stable
state toward which it can evolve, and its behavior must indeed be
dynamical. While the result of this dynamical behavior may yet
be a binary system ([10}, [11]), the arguments used to infer this
are of a highly speculative character. Moreover, there are fur-—
ther criticisms of the theory. It may be useful to list the prin-
cipal criticisms:

1. The Jacobi sequence is dynamically unstable at the point where
the pear-shaped sequence bifurcates.

2. The pear—-shaped sequence is unstable.

3. The theory refers to incompressible masses, whereas stars
are gaseous.



4. The theory relies on the presence of viscosity, implicitly
assuming that the viscous timescale T_ is short compared to the
contraction timescale Tor whereas the opposite is true (12}.

This list is by no means complete, but is perhaps sufficient
to make one wonder why there remains any interest in the fission
theory. One reason, no doubt, is the vague feeling that the ad-
verse conclusions are in some measure due to the unrealistic
character of the model, and that the qualitative picture may yet
be right. Recent developments support this feeling.

RECENT DEVELOPMENTS

Many of the criticisms of the fission theory can be answered.
In this section we concentrate on the four criticisms listed in
the preceding section (for a fuller discussion, see ref. [13]).

The first criticism in that list is a criticism only because
of the conviction that the occurrence of a dynamical instability
requires solving the full, dynamical eguations to follow up its
conseguences. Now, this need not be the case where two timescales
are involved (13). Recent work on similar, but mathematically
simpler, problems of this kind shows that motion may always take
place on the slow timescale, except for a very short time interval
during which the evolutionary path shifts from one stable branch
of equilibrium solutions to another (14), (15).

Turning to the second criticism in that list, the instability
of the pear-shaped sequence, we observe that the guestion of sta-
bility or instability is very sensitive to the change in energy
on going from the ellipsoidal to the pear-shaped figure. In a
star, an important contribution to the total energy is made by
the internal energy. This contribution is suppressed by the
assumption (criticism 3) of incompressibility. Hence criticisms
2. and 3. may be closely related, and reformulation of the pro-
blem that answers criticism 3. may well yield a conclusion of
stability rather than instability for the pear-shaped sequence.

A form of the theory free of the fourth criticism has re-
cently been given (13), (16). It alsc answers criticism 3. to
the extent of allowing for internal energy, as well as gravita-
tional and kinetic energy. It is formulated in the context of
the Riemann ellipsoids with p a function of time. Instead of
evolving along the Maclaurin-Jacobi sequence as in the classical

theory, the fluid mass evolves along the Maclaurin series to the
- point marked ¢ in Figure 1, and thereafter along the series
marked K, = 0. Instability (analogous to that of Jacobi se-
quence) séts in at the point marked Ly Hence the evolution is

qualitatively similar to that of the classical theory, at least
to the point where the ellipsoidal sequence encounters a point



of bifurcation. The dashed line in Figure 1 represents a sample
trajectory that starts out almost, but not quite, axisymmetric.

PRESENT STATUS

Ingsofar as the four criticisms explicitly dealt with are
concerned, it would appear that none of them need apply in the re-
formulated version of the theory referred to in the preceding
section, although the guestion of the stability of the analogue
of the pear-shaped sequence has yet to be settled.

Other criticisms can be made, and it may not be possible to
answer them all to the critic's satisfaction, so the question
whether the fission theory is or is not a viable explanation for
the occurrence of binary stars may never have a universally
accepted answer. We can, however, say the following: whereas
it appeared some years ago that the fissjion theory may have been
incompatible with the laws of dynamics, this no longer appears to
be the case.

Further research along the lines of working out, and testing
the stability of, the analogue of the pear-shaped sequence should
do much to clarify the situation.
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ROTATING STARS
D.0. Gough

Institute of Astronomy & Department of Applied Mathematics
and Theoretical Physics, University of Cambridge,

& National Center for Atmospheric Research, Boulder, Colorado
ABSTRACT

A normal star is a mass of compressible gas of low Prandtl number,
held together by its own gravitational force. It generates energy
principally in its central regions, either by very slow gravitational
contracticn or, more commonly, by thermonuclear reactions; this energy
is subsequently transported to the surface down a temperature gradient
by radiative diffusion or convection.

If the star has no angular momentum the equations governing its
motion admit spherically symmetric statiomary solutions. But if the
star is rotating it is not possible in general for it to exist in a state
with no motion other tham its rotation; meridional currents are set up
which advect angular momentum through the star, The details of this
process are not well understood. Stability calculations seem to imply
that no stable steady solutions exist.

The distribution of angular momentum in a star depends on a
balance between transport by the large scale meridional motions and by
the Reynolds stresses of turbulence, Neither theory nor observationm-
is yet sufficiently refined to deduce what that distribution is even
in the sun,

INTRODUCTION

The structure and evolution of the majority of stars for most
of their life seem to be well represented by theoretical models that
ignore the fact that they rotate. This is because the ratio of the
centrifugal to gravitational forces, or rotationmal Froude number, is
low, and for many purposes the dynamical effects of rotatiom produce
only a small perturbation from a nonrotating configuration. MNevertheless
rotation presents some very interesting fluid dynamical problems which
are the subject of this review.

The astrophysical consequences of rotation in stars are not
without interest. Rotation affects the spectra of the emitted radiation
from which conditions in stellar atmospheres are deduced, and the possibility
of rotationally induced mixing, which is discussed below, has important
implications concerning the nuclear transmutations that occur in stellar
cores. In addition, there are stars which appear to be rotating so
rapidly that the dynamical effects of the centrifugal force have a
significant influence on their evolution. These matters are not discussed
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here; instead the reader is referred to the reviews by Strittmatter [1]
and Fricke and Kippenham [2], and the IAU colloquium proceedings edited
by Slettebak [3].

Stars condense from the interstellar medium and at some point
attain a state of hydrostatic equilibrium. They are opaque and hot
in the centre, the stored heat maintaining a pressure gradieat which
balances gravity. Their structure is such that the balance

2T+ V =« 0 .1

is satisfied, where V is the gravitational potential energy of the

star and T the total kinetic energy, both macroscopic and microscopic
{4]. This is the virial theorem of Poincaré and Eddington, and assumes
that no body force other than gravity is exerted on the star. Normal
stellar material is gaseous and can be assumed to satisfy the usual
equations of fluid dynamics. The perfect gas law

W e
is approximately satisfied, where p, p and T are pressure, density and
temperature, R is the gas constant and y is the mean molecular weight
of the gas (mean mass per particle measured in units of the hydrogen
atomic mass) which depends upon the chemical composition and the state
of ionization. Radiation pressure is usually comparatively small
and will be ignored in this discussion.

If 41 the kinetic energy of the stellar material is in microscopic
particle motions (so there is no fluid motion) equation (1.1) may be
written

y-DU+V = 0, (1.3)

where U is the total internal energy of the gas and y an appropriate
mean ratio_of principal specific heats. The total energy of the
star is . '

.

E = U+V=~-(3y~-4) U, (1.4)

It can be shown that for the star to be dynamically stable y must

exceed 4/3. Thus as energy is lost by radiation from the stellar
surface, E decreases and U increases. The star contracts slowly,
liberating gravitational energy which is partly radiated away and
partly stored in the compressed heated gas. This process, first
discussed by Kelvin and Helmholtz, is controlled by the rate radiation
can escape by diffusion from the star. It continues until the centre
becomes so hot that nuclear reactions begin to take place. Contraction
halts; ‘the star has reached the main sequence, the total energy output,
or luminosity, at the surface being supplied emtirely by the thermo-
nuclear reactions. Its gross structure now depends primarily on

just its mass. On the main sequence stars convert hydrogen, their
principal constituent, into helium. This is the longest phase of
their evolution, and consequently most of the visible stars in the sky
are main sequence stars.
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Once hydrogen has been exhausted from the reactxng core further
gravitational contraction and addltlonal nuclear reactions take place,
the details dependlng on the star's mass and composition, and eventually
the star contracts into its final state : a cooling white dwarf supported
against gravity by a sea of degenerate electrouns, a neutron star of
degenerate nuclear matter, or perhaps a black hole.

This review does not attempt to discuss the properties of a
star in all stages of its evolution, but concentrates on the main
sequence. Magnetic fields, which are undoubtedly important in some
stars, are hardly considered; it seems prudent to try to understand
first what is probably the simpler dynamics of a nonmagnetic star.
Observational techniques are not discussed at all.

1f one plots the mean surface rotation rates of main sequence
stars as a function of their mass M the most striking feature is an
abrupt rise, in the vicinity of 1} solar masses, from appraxzmately
zero to a value correspouding to a Froude number which is an appreciable
fraction of unity {5]. Observations of the distribution of angular =
velocity across the surface have been made only for the sun, which is
a typical slowly rotating star. The angular velocity Q varies by about

20% from pole to equator, the rotational Froude number RaﬂZIGM.being about

2x 10-5 {61, where M, and R, are the solar mass and radius and G the
gravitational constant. These are the principal main sequence observations

- . *
a theory of stellar rotation must explain.

Aside from the astrophysical and fluid dynamical aspects of the
solar rotation interest has recently been aroused in connection with
gravitation theory. One of the major puzzles of the last century was
the discrepancy between the measured precession of the perihelion of
the orbit of Mercury and the predictions of Newtonian gravitation
theory [7]. One of the proposed explanations was that the sun was
oblate, but the observed oblateness [8,9] turmed out to be too small
to account for the precession [10]. With the advent of General
Relativity, however, it was generally agreed that the problem had
bheen resolved, because Einstein's theory predicted the observed result
[11]. But more recently Dicke [12] and Roxburgh [13] proposed that
the apparent agreement was fortuitous, and that an alternative theory
of gravitation [14] based on the scalar—tensor theory of Jordan [15],
which predicts a lower precession rate, is correct, the residual
precession of Mercury's orbit arising from an assumed oblateness of the
sun's figure. - Subsequently the shape of the sun's image was remeasured
by Dicke and Goldenberg [16, 17]. An oblateness of about the
required value was reported, if it is assumed that the oblateness
of the image implies a similar oblateness in the shape of the gravitational
equipotentials. That this assumption is justified has been argued
by Dicke but has not been generally accepted [17,18]. This important
issue will be discussed in the concluding section of this review.

*Perhaps the most important question of the subject is why stars exist

at all, for had they condensed conserving angular momentum to their present
size from interstellar material with initial rotation rates typical of

the galactic rotation they would not be gravitationally bound. This

is a problem in star formation.
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in the next section possible steady solutions of the equations
governing rotating stars are discussed. Their stability is considered
in the subsequent section, and the final section is addressed to how
angular momentum is distributed thoughout a star as it evolves. But
before that a few remarks about the magnitudes of quantities pertaining
to stars are perhaps not out of place.

The sun, which may be considered representative, has a mass
M, = 2 x 10°° 10
Ly = 4 % 1033

centre its density is about the same as its mean density which is

g, a radius R = 7 x 107 cm and a luminosity

erg sec™l. At a distance of about 0.5 R, from the

approximately the density of water, and its temperaéure is about

3 x10 OK; the central density and temperature are about 100 g cm-3
and 1.5 x 107 °kK. At the visible surface, or photosphere, its density
and temperature are about 3 x 1()‘“7 g cm-3 and 5800 °K.  The outer

20Z by radius is in a state of turbulent convection and the rest is
generally believed to be convectively stable. Qualitatively this is

a property of all stars at the low mass end of the main sequence

(lower main sequence); the higher mass rapidly rotating stars of the
upper main sequence have only thin weak convective regions near the
surface, and they alsc have convective central cores. :

Energy is transported through the convectively stable regions of
a star principally by radiative diffusion. Except near the surface, the
energy flux F satisfies

F = -XvT, (1.5)

vwhere K = 4acT3/3xp is the radiative conductivity; a is the radiation
constant, x the opacity of the gas and ¢ the velocity of light. At a
15 1 gecl oK-l

median point in the sun its value is about 107 erg cm

The kinematic -shear viscosity arising from photon momentum transport

is v, = 4314/15 xpzc =1 cm2 sec:"1 at a radius r of 0.5 R, and increases
with r nearly everywhere. Viscosity due to microscopic particle ion
motions vy is of order mpi (kT)slzl (e*o 1nA) where A = (mp/p)(kT/ez):",,

mp and e are the proton mass and charge and k is the Boltzmann's constant;

this is about 10 cm? sec-l at r = 0.5 R, and increases slowly with r.

From these values can be calculated a timescale characteristic
of large scale dynamical motions : the time for free fall under gravity
from surface to ceatre. 1In view of the balance (1.1) this is of the
same oFder as the sound travel time t_ and is about 1 hr. The thermal
diffusion time across a distance R,isp equal to the Kelvin-Helmholtz
gravitational contraction time /g 107 yr and is short compared with
the nuclear time Tn '-'-',1010 yr to coavert say 107 of all the hydrogen

to helium at the current luminosity. The age of the sun T, i8 5 x 109 yr.



15

The Reynolds number associated with the smallest velocity that can be

- k3 3 . 2 »
of global significance in this time, R,/t, , is R /(v *+vi)7g= 3000, 1In
other words, the characteristic viscous diffusion time ‘is much larger
than the age of the sun. For flow velocities comparable with the

1

rotation speed (about 2 km sec - at the equator) the Reynolds number

is of order 1.016 throughout most of the star. Under most circumstances,
therefore, viscous forces can be ignored. Only in the extreme ocuter
regions and in boundary layers might this not be so. The Prandtl number
(yr+vi)pcp/K, where Cp is the specific heat at comstaut pressure, is about

10 © at a median point.

STEADY ROTATING CONFIGURATIONS

As with most physical systems it is expedient to seek the steady
configurations first. They are comparatively simple to amalyse and,
if stable, are states towards which one might expect stars to evolve.

In most of the published work steady axisymmetric models are
constructed in which the only motion is a rotation about the z axis.
The momentum equation then reduces B
- Up + V3 + p0°w = 0, (2.1)
where T is the cylindrical radius vector from the z axis, Q is the

angular velacity and § is the gravitational potential which satisfies
2
7§ = -4nGo, (2.2)

In equation (2.1) viscous forces have been ignored and it has been
assumed that no magnetic field is present.

The simplest models to analyse are of white dwarfs. In these
stars the electrons are degenerate and a barytropic equation of state
is a good approximation. Because the fluid is assumed inviscid the
angular velocity distribution is not determined completed by the
equations of motion. However, it follows immediately from equation
(2.1) that the centrifugal force is derivable from a potential V and
that Q varies only with distance @ from the axis of rotation. Accordingly
equation (2.1) reduces to

Vp = oV(3 + V) = pV¥, (2.3)

from which it follows that p and p are constaat on surfaces of V¥ ,

or level surfaces. There remains considerable freedom in the choice

of Q(m). TItcan be set by specifying, for example, the angular momentum
per unit mass h(m), where m is the mass enclosed in a cylinder © = comstant.
Then any choice of h(m) leads to a solution. It was pointed out by
Ostriker and Mark ({19] that Q(=w) cannot be specified arbitrarily.

An important consequence of rotation concerns the possible masses
of white dwarfs. The equation of state of the degenerate white dwarf
material is such that in the special case of no rotation there is a
maximum mass Mc which can be supported against the self gravity of the
star. This was first demonstrated by Chandrasekhar (201 who found
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M, = 1.44 M,, The estimate has been revised with the use of a more

refined equation of.state [e.g. 21], but the principle is unchanged and
for a long time it was commonly believed that M, was an upper limit

to the masses of real white dwarfs. However, it was emphasised by Mestel
1221, for example, that this limit applies only to nonrotating spherically
symmetric configurations, and Ostriker, Bodenheimer and Lynden-Bell (23]
suggested that rotating white dwarfs with masses much greater than Mc

exist. Because gravitational forces scale with their characteristic

length L as I.-2 and centrifugal forces as L‘3 for a star whose mass and
angular momentum are conserved, a rotating star more massive tham Mc

would be prevented from collapsing indefinitely by the centrifugal forces.
Indeed Ostriker et al. pointed out that were it not for the changes in
physics that occur at extremely high densities a strict upper bound to

the possible masses of rotating white dwarfs would be removed entirely,
whatever the angular momentum.

More interesting from a fluid dynamical point of view are the
nondegenerate main sequence stars for which temperature is present in
the equation of state. In these stars energy is transported down the
temperature gradient from centre to surface. Now configurations in
which the only motion is rotation with an associated conservative
. centrifugal force field do not occur, and much of the wisdom gained
from the simple barytropic models is not very useful. In general the
energy transport equation does not permit T to be constant on level
surfaces. Consequently, in view of equation (1.2), p and p cannot both
be constant on level surfaces, which implies that the momentum equation
(2.3) canmnot be accurately satisfied. The unbalanced pressure gradients

drive a circulation y in meridional planes which advects both heat and
angular momentum through the star [24-26].

Except in the surface layers of the star the motions induced
are so slow that inertial forces are negligible compared with the other
temms in the momentum equation so that equation (2.3) is very nearly
satisfied. . For a given rotation field the circulation velocity can
thus be estimated from the energy equation

pcp u.Vr - § uVp = pe - div F (2.4)

sxyply.as that required to transport the requisite amount of heat to
maintain p, p and T (very nearly) constant on level surfaces. In

. dln :
equation (2.4) § -'-(STE%) and ¢ is the thermonuclear energy generation
P

rate per unit mass. Thus equation (2.5) may be rewritten approximately :

pIC
P o 1.
5 w Vad) g.vﬁ = g = E-dzv F, (2.5)
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dIlnT

of 30T . s .
where V = ETEE and Vad (STEE . » the derivative being taken at constant
specific entropy s, and
. ' 2 1d , 2.2 - -
div f = - £ (D[VE|° + £ |2 F@R) = 4nGo, (2.6)

where £(J) = K-g% and a prime denotes differentiation with respect

to the argument. It is immediately clear from (2.5) and (2.6) that
u cannot be zero if Q is constant, for since all the terms in (2.6)
except V) are then constant on level surfaces it would follow that

£'(f) =0 and ¢ = Z(Qzlp ~ 21G)f; in general this cannot be satisfied
because ¢ depends on nuclear physics, and hence on p and T but not
on Q,and in particular is essentially zero im all but a central core
of the star (27]. There is no general proof that u = 0 when Q is

a2 function of W alone, though it has been shown to be the case if

%E% (mzﬁz) =~ 4wGp vanishes in a region in which € = QO [28]. Detailed

calculations of the meridional flow were first performed by Sweet ([29]
who assumed slow uniform rotation.

The magnitude of this meridional Eddington—Sweet circulation
velocity u can be estimated from equations (2.5) and (2.6) to be [30]

=

- ity 2
1o d g G o 2.7

where M, L and 7 are the mass, luminosity gnd mean density of the star,

g is gravitational acceleration and A = B} /g is the Froude number. This
estimate has been confirmed by detailed computations for certain
specified nonuniform rotation laws with A small [31] by expanding in
powers of A about the nonrotating configuration; the case of uniform
rotation is singular but appears to yield similar velocities [29, 32].

So far it has been implicitly assumed that the stellar fluid
is chemically homogeneous. Nuclear transmutations in the cores of
main sequence stars generate gravitationally stable gradients in the
mean molecular weight u. According to Mestel [33] these prevent the
Eddington-Sweet circulation from pemetrating the core by deflecting
them in a thin viscous boundary layer.

It has been of some concern that the Eddington-Sweet circulation
velocity, in the present approximation, diverges at the surface of the
star where the demsity is almost zero. This arises because the heat
capacity of the gas per unit volume is too low to transport at low
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velocities the flux of heat required to satisfy equations (2.5) and (2.6).
Smith {34] pointed out that excessive demands were being made by the
diffusion approximation (1.5) near the stellar surface, where it isn't
valid, and showed that the situation was alleviated somewhat by using

a more careful treatment of radiative tramsfer for the outer layers [see
also ref, 35]. The velocities were still so great near the surface

that the assumptions of the procedure, such as the neglect of the inertia
terms, are hardly plausible, and Smith concluded that in any case the
flow would be liable to shear instabilities.

Smith's amalysis, in common with earlier work, assumed an inexorable
uniform rotation, a weak poloidal magnetic field having been invoked
to preserve it. In the absence of such a field, advection of angular
momentum by meridiomal circulation is inevitable, and a state of nonuniform
rotation would rapidly be set up in the surface layers. Osaki [36]
argued, without proof, that in that event readjustment of the angular
velocity distribution would be such as to reduce the meridional circulation
velocity in the stellar atmosphere to zero.

Another place where the circulation is unable to advect heat
efficiently is at the edge of a convection zone where V .vad’ this time

because the slowly rising or falling fluid, which maintains pressure
balance with its surroundings, cannot modify the temperature difference
between it and its environment. Once again equation (2.5) demands an
infinite velocity unless div F = peg when V = vad’ which is not generally

the case for an arbitrarily specified distribution of angular momentum.
Osaki [37] pointed out once again that this implies that a steady solution
does not exist for the assumed rotation law, and that appropriate
readjustments must take place.

From (2.7) can be estimated the timescale for stellar material
to traverse a distance comparable with the radius R of the star :
1

= 2 . - = 3 MRy,
Tgs " A L 2x 10 (Ma)(R,) by Ty (2.8)

For the sun 1., = 100 Tps if it assumed to rotate with about its surface

ES
angular velocity throughout, which suggests that little advection of
angular momentum by Eddington—Sweet currents is taking place. This
conclusion must be treated with some caution, however, because the
estimate (2.8) is very approximite and there is evidence [38] that it
overestimates the circulation time somewhat. For the rapidly rotating
upper main sequence stars Tgs™ 10-.2 L and considerable readjustment

of the rotation field must have occurred.

The advection of angular momentum by meridional currents has
not been discussed in great detail, though. Sakurai ([38] has conéidered
the early stages of evolution of a simplified solar model from a state
of rigid rotation. A steady state with circulation must have

mza constant on streamlines, which implies that Q is generally greater

near the rotation axis. However, Mestel [30] has suggested that a

star that comserves its angular momentum will redistribute it in such

a way as to choke off completely the meridional flow. Accordingly one
might seek (nonconservative) rotation laws which drive no Eddington—Sweet
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circulation. Schwarzschild {39], Roxburgh [40,41] and Clement [42]
have attempted this, but their models are not entirely consistent.
However even_ if consistent models—are-ebtained; either with or without
eirculation, it is not at all obvious that a star could actually evolve
to such a state. Furthermore, as is discussed in the next sectiom,

it seems likely that all steady solutions are umnstable.

This discussion has concentrated on the rotation of regions that
are stable to convection. In convection zones to00 meridional currents
are likely to arise except for very special distributions of angular
momentum [43], but here the dynamics is complicated by the influence
of the rotation on the convection. It is common practice to assume
the Reynolds stresses act to force rigid rotation [39-42], though other
assumptions have been made when discussing the convective envelope of
the sun [see final section].

There has been no detailed study of nonaxisymmetric configurations
of the type discussed by Lebovitz [44] using an equation of state that
is realistic for stars.

STABILITY

The discussion will be limited to instabilities that arise directly
from the rotation of the star. Dr Lebovitz has already explained what
is known about fission [44] and I shall dwell on it no further. Of
the modes of instability that remain the most widely studied have been
the axisymmetric ones on a length scale small compared with the characteristic
scale of variation of the basic 'equilibrium' state, and which derive
from the Rayleigh imstabilicy.

Rayleigh [45] argued, by analogy with the instability of a
density stratified fluid under gravity and by energy consideratioms,
that a uniform incompressible inviscid fluid, steadily rotating between
two coaxial cylinders, is stable to axisymmetric perturbatioms if

d 2
= @> 0 (3.1)

everywhere in the fluid, and is unstable if (3.1) is violated anywhere.
For an inhomogeneous incompressible fluid the criterion is

= Ga'ed) > o, (3.2)

It is possible to perform a proper perturbation analysis to
establish that criterion (3.2) is both necessary and sufficient for
stability to axisymmetric perturbations [46]. Generalization to the
more complicated flows encountered in stellar models is difficult, however,
and one must resort to other arguments. A powerful method which is
relatively simply to handle is to use the principle of virtual work :
an infinitesimal virtual adiabatic displacement £ of the fluid is
imagined to occur and the energy difference SE ~ between the fimal
and initial states is computed. If 6E » O for all possible £
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there is no energy available in the fluid to drive any disturbance,
and the basic state is stable. On the other hand, if displacements
£ exists for which 8E < O instability cannot be deduced (unless

éE < 0 for.all £) u t~6E 1s negative

for a realizable disturbance which satisfies the equations of motiom.

However, even though instability cannot be strictly proved, in most of the

special cases that have been investigated instability has been found.

The method has been used by Heiland [47] who used d'Alembert's principle

to estimate the frequencies of linearized axisymmetric adiabatic

perturbations of a purely rotating flow. The criterion for the

stability of such a flow is that the quadratic form in £: :

=11 32 dlnql 2 1 ac? 21ng dlng dlng

1-[;%‘*%7&]5 *{;‘ﬂ*%az *e am]ﬁ*sz 5z (O

2

is positive definite everywhere. Here By and g, are the @ and z
components of the apparent gravitational acceleration g'(which includes

the centrifugal acceleration) € is the circulation mzﬂ and q is the
potential density [i.e. the density the £luid would have if broyght

to a standard pressure; thus the difference dq in potential demsity

s . : . ) dln
between two neighbouring points is dp = (3%)3 dp = Ei'(STE%)p ds

if the fluid is chemically homogeneous]. The form I(£)is positive
definite if the conditioms

2
1 3 d1ng
1* 3% &g > ° (3.4)

A

and

hps (Fa~9H),(G'"m > O (3.5)
are simultaneously satisfied. 1In deriving the second condition the
curl of the momentum equation governing the steady state in'the form

2
' - L1 o7
g - Ving & 3z g¢ (3.6)

was used, where g, is a2 unit toroidal vector. These conditions were
obtained earlier from an approximate analysis by Solberg [48] who
considered the motion of a displaced parcel of fluid in pressure
equilibrium with its surroundings.

The analysis of Heiland provides sufficient but not necessary
conditions for stability. A more recent derivation, which amounts almost
to the same thing, is presented by Fricke and Smith [49] using a variational
principle derived by Lynden-Bell and Ostriker [50]. Using the variational
principle is potentially more powerful, for if it can be shown that the
eigenfunctions of the linear stability problem form a complete set it
is a simple matter to show without solving the equations that conditioms
(3.4) and (3.5) are also necessary.
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In certain special cagses conditions (3.4) and (3.5) reduce to
previously known criteria. When Q = O, Az = 0 and equation (3.6)

implies that Vq and g are parallel. Condition (3.4) then reduces to

the well known requirement that for stability the potential density must
decrease upwards; for a compressible atmosphere this is the condition
for convective stability (51, 52]. For rotation independent of 2z

in the absence of gravity, A, is again zero; if the flow is incompressible
q = p and (3.4) is just the“conditionm (3.2).

In the more general baroclinic case A2 is not zero. As pointed
out by Heiland (47], since Vq and g'are not parallel there is a region
of directions for a displacement ¢ within which (£.8")(£.7Q) < 0, so

that such a dlsplacement would 11berace energy via the buoyancy.
Similarly there is a region of directions for £ satisfying (6 60(5 vc ) <0

within which rotational energy could be lzberaced. The lnequalxtles
(3.4) and (3.5) are simply the conditions that these two regions do

not intersect, and that differential rotation and the combined effect of
gravx:y and the centrifugal force on the demsity stratification always act
in opposition. They are satisfied if the circulation increases away from
the rotation axis in surfaces of comstant q [53], or equivalently if q
increases in the direction of apparent gravity in surfaces of constant C.

In the discussion above perturbations 8§ in the gravitational
potential have been ignored. This is a good approximation for disturbances
of short wavelength, but is not necessarily so otherwise. Taking §3
into consideration does not alter the criterion for convective stability
in the absence of rotation because here the neutral modes of the marginal
state generate no density perturbations and so 8§ = O [54,55]. But
in a rotating configuration one would not expect that to be the case
if q is not constant in the equilibrium coanfiguration. TFricke and
Smith [49] have shown that the perturbation 63 is never stabilizing,
so criteria (3.4) and (3.5) are not even sufficient for stability to
large scale axisymmetric disturbances, and Fricke [56] has constructed
a cylindrically symmetric example in which perturbations in gravitational
potential are destabilizing.

Very different stability criteria are obtained when the perturbations
are no longer constrained to be adiabatic. Now thermal diffusion can
weaken the buoyancy forces responsible for stabilizing adiabatic
disturbances, and provided there is some driving force, sufficiently slow
motion caanot be prevented. This was pointed out by Yih [57) who
demonstrated that in the absence of gravity the steady flow of a low
Prandtl number fluid between two rotating coaxial cylinders can be
unstable if the Rayleigh criterion (3.1) is not satisfied, even though
(3.2) is. He showed also that under soms circumstances viscosity can.

destabilize an otherwise stable flow if —— < 0.

A consistent analysis for baroclinic flows has not been
published, though one can guess at the stability criteria. If (3.4)
and (3.5) are not simultaneously satisfied there are directions in
which both buoyancy and rotation tend to drive a displaced fluid element.
Thermal diffusion acts to reduce buoyauncy, but does not change its
sign, so instability is likely to occur. Again, perturbations in the
gravitational potential are being ignored. If (3.4) and (3.5) are
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satisfied, then the criterion for stability can be estimated by setting
the buoyancy terms in (3.3) to zero [ecf 53]: I(E) is then positive
definite if and only if

2
o€ 22
5 2 0 and T 0. (3.7)

These conditions were first obtained by Goldreich and Schubert [58]

and Fricke [56], using a plane wave approximation to the eigenfunctions.
of the lipear stability amalysis. It was suggested that the conditions
were necessary and sufficient for stability. In addition to Rayleigh's
criterion (3.1) it is also required that  be independent of z if the

star is to be stable. This condition is automatically satisfied if

Vq = 0 in the equilibrium configuration, but not otherwise : Vq was

set to zero in (3.3) because it was argued that thermal diffusion destroys
buoyancy in a sufficiently slowly moving flow, even though it is not

zerc in the equilibrium state.

The growth of the -instabilities discussed by Yih, Goldreich and
Schubert, and Fricke is controlled by thermal diffusion, though theé energy
source is the rotation. The dynamics is essentially the same as that
of the Eddington—Sweet circulation. Nevertheless the growth time is
much shorter than the Eddington-Sweet circulation time because these
modes can occur with very short wavelength; the reduction of the growth
rates by buoyancy cannot be eliminated entirely, however, because at
extremely short wavelengths viscous forces come into play. It appears,
therefore, that criteria (3.7) are likely to apply even to steady
* configurations with meridional circulation.

The instability of Goldreich and Schubert amd Fricke which seems

to occur when °%3z#0 has a profound implication concerning rotating stars:
since it appears that there are no steady solutions to the equations
governing the structure of a nondegenerate star for which Q is independent
of z, any steady state that might exist must be unstable. Although

no proof of the instability has yet been found, it seems 11kely that .

the result is correct. The arguments: suppor:xng it predict also the
instability demonstrated by Yih, which is hardly dszerent, and can also
be used to predict similar diffusively controlled instabilities such as salt
fingers [59], whose existence has been well established [60].

The discussion so far has been concerned solely with axisymmetric
instabilities. Less progress has been made with nonaxisymmetric
instabilities because they are more difficult to amalyse. Rayleigh .[61] --
showed that steady shear flow of a homogeneous incompressible inviscid
fluid in which the motion is either rectilinear or pure rotation is stable
to two dimensional infinitesimal perturbations in the plane of the shear
unless the vorticity somewhere has a turning point. Fjgrtoft [62] showed
that this turning point must be a maximum in the magnitude of the vorticity.
General necessary and sufficient conditions have not been obtained [63}
and it appears that each flow must be analysed separately. However,
the results suggest that a concentration of vorticity that isan't bounded
too closely by rigid walls is unstable.

Vertical density stratification can stabilize a horizontal flow
+
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with velocity u(z) where Z is a vertical coordinate, provided there is no
thermal diffusion and the locally defined Richardson number

' »d du2
Ri -—g-&-/ % i (3.8)

is everywhere greater than %-[6&,65]. Thermal diffusion reduces the

influence of a gravitationally stable density distribution, just as in
Yih's problem, and instabilities can develop on a diffusion timescale [66].
Guesses at how these results generalize to more complicated flows must

be made with caution because the dynamics of shear instability is not
thoroughly understood. One is warned, for example, by Huppert's [67]
result that a gravitationally stable demsity gradient can destabilize

an otherwise stable shear.

It is argued by Zahn [68] that shear instabilities provide an
important angular momentum mixing mechanism in rotating stars. Zahn
pointed out that all flows at very high Reynolds number appear to be
unstable, and shear in isentropic surfaces in particular will not be
stabilized by a gravitationally stable density gradient. The important
distinction between flows characterized by a high but finite Reynolds
number and inviscid flows is that the former can generate vorticity
with viscous stresses, though in stars this must occur in thin boundary
layers if a resulting instability is to be gemerated in a time short
enough to be interesting. In terrestrial conditions it is usually
against a rigid wall that vorticity is so created. This cannot be the
case in stars, but internal boundary layers such as those discussed by
Mestel [33] in the vicinity of a near discomtinuity in chemical composition
can arise, and coupling with other motions such as convection may be
important. If shear instabilities do commonly occur, then, as Zahn
stresses, angular momentum transport resulting from them will generally
dominate any transport by the diffusivily controlled instabilities
discussed above.

EVOLUTION OF THE ROTATION OF STARS

Since it appears that no stable steady state of a nondegenerate
star exists, stars must evolve to states of time dependent motion so
long as there is nuclear energy enough to keep them on the main sequence.
The state to which a star evolves finally, however, after all of its
available nuclear fuel has been exhausted must be a state of minimum
energy, which is rigid body rotation. This assumes, of course, that
an equilibrium state is available to it and that it has not collapsed
into a black hole.

The angular momentum distribution in a main sequence star is
therefore determined by the competing transports due to large scale
meridional circulation and the smaller scale probably turbulent motiouns
arising from the rotational instabilities discussed in the previous
section. In addition, angular momentum is transported by convection
and by large scale oscillations, if they are present.

To what distribution of angular momentum does a star evolve ?
The only star for which we have direct evidence is the sun. Observations
. of the surface show that the equator rotates faster than the poles by
about 20Z, the precise amount varying somewhat with time, and that the
rotation of features directly nelated to variations in the magnetic field
is greater than the results from Doppler measurements. Magnetic field
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variations are produced by fluid motions beneath the photosphere, where

the kinetic energy density exceeds the magnetic energy demsity, so the
latter observation suggests that the angular velocity of the sun at least
near the surface increases with depth (though Yoshimura [69] has argued
agajnst this interpretation). This is not inconsistent with Dicke's [12]
conclusion that his measured oblateness of the radiant intensity of the
solar disk results from an oblateness in the gravitational potential

caused by rapid rotation of the interior. The situation has been reviewed
recently by Gilman [70]. .

Little is known about angular momentum transport by motions
resulting from the instabilities to which a star is subject. It is
usually assumed that turbulence in a convection zone, for example, acts
on large scale motion in the manner of molecular viscosity, forcing
the zone towards a state of rigid rotation. Durxney {71,72], Gilman
[73] and Gierasch [74], for example, have studied models of the solar
convection zone in which meridional circulation is acted upon by such
a turbulent viscosity with a view to explaining the observed differential
rotation. The circulation is driven by the horizontal pressure gradients
resulting from rotational distortionm, just as in radiative zomes. ‘In
Durney's models an assumed preferred rotational inhibition of the convective
heat flux in polar regions contributed further to these gradients [ef 75].
The models can produce equatorial acceleration at the surface, though
the dependence of angular velocity on depth is not in all cases that
suggested by the observations, and im all cases but Durney's latest
model the variations in surface energy flux from pole to equator are
too great to be consistent with observation. The models are not consistently
coupled to the radiative interior and, as Gierasch has emphasized, this
may have led to serious errors in the Tesults.

Another possible source of error is the assumption that the
Reynolds stresses act like a scalar viscosity. This could be a reasonable
approximation only if the turbulence were isotropic, but since buoyancy
and rotation both impose preferred directions om the forces driving the
flow, anisotropy in the Reynolds stresses is inevitable. Wasiutyhsgkil76]
and Biermann [77] pointed out that anisotropy arising from buoyancy would
drive nonuniform rotation in stars, and Kippenhahn [78]1, Cocke [79]
and KShler [80] subsequently employed simple anisotropic stress tensors
to compute differentially rotating solar emvelopes. Models with equators
rotating faster than the poles can be comstructed, with an appropriate
choice of turbulent stresses, but in the latest ones [80] the angular
velocity decreases with depth. The anisotropy induced by the rotation
itself has been discussed by Gough and Lynden-Bell [81] who argued that
there is a weak tendency for turbulence to force motion on a larger scale
towards a state of no vorticity. Experiments were performed to support
their arguments, but later Strittmatter, Illingworth and Freeman [82]
showed that they had been misinterpreted; the vorticity expulsion hypothesis
remains unconfirmed. If it is true, however, and if all other transport
mechanisms are ignored, the Reynolds stresses would act to distribute
the angular velocity in the solar convection zone such that it decreases
with latitude and increases with depth. The ideas that led to vorticity

expulsion have not been developed enough for Reynolds stresses to be
calculated.

Busse {83,84] has studied the dynamics of the convection itself
by expanding the solutions of the equations of motion about the marginally
gtable state. The cpnditions are highly idealized and so the results

-,



are not directly applicable to solar convection, though it is hoped

that some aspects of the solar dynamics are revealed.. - In the models,

the motion develops an anisotropy which leads to increasing surface angular
velocity from pole to equator.

A completely consistent picture of the rptation of the solar -
convection zone is not yet at hand, but considerable progress has
clearly been made in the last decade.

In computations of the structure of rotating stars, coanvective
cores are invariably assumed to be constrained by large isotropic
turbulent stresses. Tayler [43] has discussed the effect of the anisotropy
that must be present and concluded that for practical purposes it is
probably not necessary to take into account the anisotropy in energy
flow due to convection, but that one must, of course, worry about the
distribution of angular momentum.

Angular momentum tramsport resulting from the development of
rotationally driven instabilities has been discussed less. Kippenhahn
. [85] pointed out that the transport of angular momentum by the diffusive
- modes discovered by Yih, Goldreich, Schubert and Fricke would lead to
the formation of a shear which would become unstable to nonaxisymmetric
instabilities. He argued that this would limit the development of the
diffusive modes, and by a simple-minded argument estimated the time
scale for gross readjustment of a star's angular momentum to be at
least the thermal diffusion (Kelvin-Helmholtz) time T James and

Kahn {86,87] looked at the development of the instability more carefully

and conicluded that the shear would be concentrated in narrow corridors.

Thus there would be separate regions of diffusively controlled motion

and dynamically unstable shear. This is not dissimilar to the

separate layers of fingers and convection in thermohaline convection
{60,88,89]. James and Kahn estimated that the time for global readjustment
of angular momentum is as great as the Eddington—-Sweet circulation time

Tes* It appears that the timescale obtained was as long as Teg because

the possibility that motion in the diffusive region be on the small
viscously controlled scale realized by salt fingers was overlooked.
If fingering does occur, angular momentum should be transported globally

in a time shorter than Teg and possibly Teg®  Hovever such argument

by analogy may be too naive. The vectorial nature of angular momentum
and the complicated geometry may act such that this comparatively simple
layered structure cannot persist, and the growth time of the large scale
diffusive instabilities, namely Tggr DAY then be the shortest time in

which global angular momentum redistribution can occur.

Throughout this discussion I have had in mind that the angular
momentum of a star is conserved. This is not always so. For example,
Kraft [{5] has shown that the rotation rates of solar-type main sequence
stars decrease with age. This appears to be a result of angular momentum
loss at the surface associated with mass loss in stellar winds [90].
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Stars like the sun have surrounding their photospheres high temperature

coronde which are thought to be maintained by the dissipation of energy

from mechanical waves which originated in their convection zones below.

The coronal pressure is too great merely to hold up the outer atmosphere
hydrostatically [91], and gas streams outwards exerting a torque on the
subphotospheric regions of the star via a magnetic field. This process

has been studied by Ferraro and Bhatia [92], Modisette [93], Weber and

Davis [94] and Mestel [95,96],and for the sun leads to significant deceleration
in a time comparable with its age. The mass lost is a negligible fractiom

of the stellar mass.

The depth of the convection zones of main sequence stellar models
decreases abruptly with mass at about M = 1} M, ; and it has been
suggested [e.g. 90] that only deep convection zones can support strong
coronae and stellar winds. Consequently it is plausible that only stars
at the low mass end of the main sequence have been significantly decelerated
on the main sequence, which would explain at least in part the strange
dependence -of angular velocity on mass mentioned in the introduction.
However Kraft's (5] observations of solar-type stars in the Pleiades
group, which have arrived on the main sequence only receantly, also show
an abrupt change in surface rotation rate. It is possible that this
is a result of very different angular momentum distributions inside upper
and lower main sequence stars. Alternatively it reflects different
total angular momentum, which must either have been present at the time
of formation of the stars or is a product of Kelvin-Helmholtz contraction
to the main sequence. During part of the gravitational collapse phase
all stars have extensive convective envelopes, and many are probably
convective throughout, so conditions seem ripe for something like the
stellar wind deceleration mechanism to operate very efficiently. There
are no reliable estimates of the angular momentum that should be lost
by this mechanism, but since the contraction time decreases with stellar
mass it is plausible that the low mass stars have been slowed down the
most. It is perhaps worth mentioning at this point that vorticity
expulsion in a fully convective star implies angular momentum expulsion
[81], and estimates of the expulsion rate during gravitational contraction
based on analogy with magnetic field expulsion [97] leads to a sharp
break in the main sequence rotation rate at just about the place where
it is observed.

The continual extraction of angular momentum from the sun adds
yet further complexity to the problem of determining its present state
of rotation. The magnetic field in the solar atmosphere is too weak
to be dynamically important much below the photosphere, and so can
transmit a torque only to the outer regions of the sun. Dicke [12]
claimed that therefore only the outer convection zone has been decelerated,
because viscous diffusion would take about 1013 yr to affect the core,

which is much longer than the age of the sun {about 5 x 109'yr). The
argument is invalid, for aside from the existence of the angular momentum
transport processes more efficient than viscosity, discussed above, the
changing centrifugal force field near the surface induces pressure
inbalance which drives currents like the Eddington-Sweet circulatiom,
causing the entire sun to respond faster than it would by viscous diffusion
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alone. This process is called spin-down, and has been reviewed recently
by Benton and Clark [98] 1t occurs in homogeneous incompressible
fluids in rigid containers, angular momentum being exchanged between

£fluid and container in thin viscous boundary layers which were first
discussed by Ekman [99]1; Einstein [100], Prandt (101} aad Bondi and
Lyttleton [102] studied the problem further. - The sun is wot in'a rigid
container, so the details must be somewhat different, but estimates of

the time to.spin down the solar core based on this analysis and postulating
a turbulent Ekman layer at the base of the convection zone [103], or .
on an analysis treating the convection zone as a rigid porous medium
{104), suggest values considerably less than the solar age. However,
aside from the details of the coupling of the convection zone to the
radiative interior, these estimates must be treated cautiously because
they were obtained without taking the stratification of the sun into
account.

For a while there was some dispute over the effect of gravitatiomally
stable thermal stratification [98] but now it appears, as one would
naively expect, that thermal diffusion can in general remove any buoyancy
tending to prevent the spin-down currents. The timescale of the resulting
flow depends on the properties of the fluid, and linearized theory suggests
that it is certainly bounded above by gs {98,105,106]. ~ Analogous results

hold when stratification is by chemical composition ,but in stars the
spin~down timescales are then much greater because partzcle diffusion
acts more slowly than thermal diffusion. - Experiments are in general
agreement with the theoretical findings (107]). Compress1b111ty appears
to make no qualitative difference to the conclusions [108].

. The stability and spin-down arguments all lead one to the conclusion
that global angular momentum readjustments occur in stars in a time
which is at most the Eddington~Sweet time, but is probably much less.

In any case, if the sun arrived on the main sequence rotating ten or
twenty times faster than its surface is now, as Dicke [12,18] believes,
angular momentum will already have been redistributed at least throughout
its chemically homogeneous envelope. Approximate calculations by
Sakurai [38] considering the evolution of the large scale circulation

in an initially uniformly rotating solar model are consistent with this
conclusion. 1If, on the other hand, the entire sun has always rotated
on the main sequence at a rate comparable with its present surface value
the issue is less clear. It can be argued that gravitationally stable
gradients in chemical composition generated im the core by nuclear
reactions might have prevented the core from spinning dovm. This is
possible, though it has been suggested that the core is periodically
mixed {109], which would render this conclusion less likely.

From a fluid dynamical point of view it is therefore quite
uncertain what the angular momentum history of the sun has been, though
in balance the evidence favours that a global readjustment has taken
place on the main sequence. This does not necessarily imply that the
golar core is not in a state of comparatively rapid rotation, however,
for advection of angular momentum by meridional currents generally leads

The problem usually studied is one where the extermal :orque increases
the rotation rate. This is called spin-up.



28

to higher angular velocity near the rotation axis [cf 38)}. This is
opposed by turbulent mixing which may tend to make the angular velocity
more uniform. :

" Observational evidence that may have some bearing on the degree
of mixing that has taken place concerns the abundances of lithium and
beryllium. Beryllium is destroyed by nuclear reactions under conditions
prevailing within the inner 50% by radius of the sun. The agreement
of the solar surface abundance of beryllium with the relative abundance
in the chondritic meteorites [e.g. 110] might lead one to believe that
significant mixing of the sun's surface layers with the interior has
not occurred. On the other hand lithium, which is destroyed inside
a radius of about 0.6 Ry , is almost absent in the surface. By the
same argument it appears that mixing down to this level has occurred,
and since it is below the bottom of the convection zone (which is about
0.8 Ry ) rotationally induced mixing of some kind has presumably taken
place. There is no clear fluid dynamical reason why partial mixing
to this degree should occur. Dicke [111] has concluded that "this
apparent lack of complete mixing implies that the solar core is not coupled
to the surface, and is therefore still rotatiang at its initial rapid
rate. Contrarily, Goldreich and Schubert [58] argued that incomplete

- _mixing is indicative of slow rotation throughout the entire main sequence

history of the sun, and that the core is therefore unlikely to be rotating
rapidly. The problem is unresolved, and is complicated by the possibility
that element separation within the fluid obscures the implications surface
abundance measurements have on the. degree of mixing that has occurred [112}.

Finally, let us return to the solar oblateness measurements.
Dicke and Goldenberg [16,17] have measured the oblateness of only the
radiative intensity distribution in the solar image, and interpreted
this as a direct consequence of a similar oblateness in the gravitatiomal
equipotentials. This interpretation has been questioned {113-116]
and it was suggested in particular that effects of radiative transfer
and intensity inhomogeneities in the diffuse solar atmosphere may have
been responsible for the apparent oblateness. Recently Hill and Stebbins
©-*f117] have measured the shape of the sun, paying careful attention to
surface nonuniformities [118]. They found time varying brightness
fluctuations sufficient to account for Dicke and Goldenberg's
" measurement without recourse to assuming any deviation from the spherical
shape, and during a period when the brightness was nearly uniform they
inferred an oblateness no greater than what one would expect if the sun
were rotating at approximately the surface angular velocity throughout.
_No doubt the controversy is not yet over, but at present it cannot be
said that the sun provides convincing evidence against the theory of
general relativity.
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THE ELECTRON BUBBLE IN LIQUID HELIUM

P. H. Roberts
University of Newcastle upon Tyme,
Newcastle upon Tyne, NE1 7RU, England

ABSTRACT

The base condensate model of helium is used to examine the structure of
the electron bubble in heliuym. The solution obtained makes use of the fact
that the parameter (am/M)1/5 is small and m/M is negligible, where m is the
electron mass, M i3 the boson mass, £ is the electron~boscon scattering length,
and a 1s the healing length. It is shown that, to leading order, the radius
of the bubble is b = (mM2a2/mp,)L/5, when pe 1is the helium density. The
effects of (quantum) surface tension and of polarization are discussed, and
are shown to be small. Consideration is given to the effective mass and radius
of the bubble, and the ellipticity induced in it by slow motion is given. The
normal modes of pulsation of the bubble are found and the mobility of the ion
is computed. The theory is compared with experiment.

1. INTRODUCTION

It has become increasingly apparent over the past decade that the deli-
berately introduced impurity cam be a fruitful experimental probe of the struc-
ture and dynamics of helium II, the superfluid phase of helium. Of particular
interest is the negative fon which consists of an electyon that, through its
zero point motion, cagves out a soft bubble of about 16A in radius in the
surrounding helium (1A = 10~8cm.). The induced hydrodynamic mass of such a
large structure is greatly in excess of its physical mass, and it therefore
responds to applied forces as would a much more massive ion. The experimental
situation has been reviewed by Donnellyl, and more recently by Fetterl,

The negative ion provides an interesting and, as we shall see, a sensitive
testing ground for theories of helium II. We examine in this paper one parti-~
cularly simple model of helium near absolute zero, the bose condensate. The
approach is expounded by, for example, Gross3 and by Fetter and Walecka®. The
theory is so simple to apply that most of the properties.of the electron bubble
can be caleulated in an elementary way. We will present our arguments in a
hydrodynamic framework originally proposed by Madelungs. Since this may be
unfamiliar to the reader, it is developed in 52 for the simple single~particle
Schrddinger equation. It is generalized in §3 to the bose condensate. The two
theories are brought together in 54, where the theory of the electron bubble
is developed. The final section (§5) confronts the theory with experiment.

2. MADELUNG'S TRANSFORMATION
1t appears to hé.ve been Madeluhgs who first realized that Schrédinger's
equation could be cast into a fluid mechanical mold, by expressing the waye-

function, ¥(x,t), in terms of its amplitude, £(¥,t), and phase, ¢ (X, t). Consider
a particle of mass m in a field of fixed potential, w(¥), and therefore obeying

1AM3y/3¢ = -@2/2m) V2 wh. @
By writing ’
Y= £ exp (im$p/), (2)
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where £ and ¢ are real, we can divide (i) into

288+ £92 + 2% V4 = 0, - 3)
3 2, u_# ¥ _
+2 Vé) + o~ I "F 0. %)
When we introduce the (probabilistic) mass density, p, and current ?, by writing
o= mlp[2 = ne?, T= @/20) @V - W) = o¥p, )
and define a velocity, ;x), by their ratio
a=3/0=Ts, (6

we recognize that (3) and (4) are the continuity and momentum equations
governing the potential flow (6):

LaF. @) =0, ™

33+%32+_§+u-o, (8
where '

U= -(‘HZ/Zmz)VZpll 2/91/ 2. 9

There are three main differences from classical potential flow. First,
the total quantity of 'fluid’! is not only conserved by (7): it is fixed by

flvj2dx =1, or  J[pdx = m. (10)

Second, even if through the presence of walls (w=v) or otherwise the fluid
is confined to a certain multiply-connected domain,$&, ¥ must remain single-
. valued. It follows from (2) that, round any contour T in& not reducible to a
point by a continuous deformation, ¢ can change by a multiple of h/m only.
The circulation round I canmot freely take auy value: 1t is quantized by
the Bohr~Sommerfeld condition

gpadx = B, (om0, 21, #2.....). (1)
Third, a completely new term has appeared in the momentum equation (8),
namely up.
The term y is often called 'the quantum pressure'. This is a misnomer

for at least three reasons. First, its dimensionality is incorrect, and it
would be better regarded as a chemical potential per unit mass. Second, since

-1
du/3x, = -p “3g,./2x,, ' 12)
8 1 13

-2 a2 1/2
g w? P g, 40P

where

) (13)

a rival, and properly dimensioned, contender for the title of quantum pressure
exists as part of the unusual and complicated stress temsor (13). Third, the
word 'pressure' suggests a phenomenon that depends only on 'the local thermo-
dynamic state' (here fixed by p), and the presence of derivatives in (9), or
(13), shows that all neighboring points are involved in its definition. Despite
these objections, we follow the common usage.

As may be seen by setting ¥ = 0 in (9), the quantum pressuré is the

essential ingredient that distinguishes our subject from the classical
theory. The fluid dynamicist can gather experience of its effects
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by translating some of the elementary situations of quantum theory into their
corresponding fluid mechanical statements.

"Hydrostatics' arises from the quantum mechanical bound states by writing
¢ = -Et, (14)

where E, the energy of the state, 1s a comstant. By (8) the quantum pressure
balances E-w everywhere. It is best to avoid the usual fluid mechanical prac-
tice of absorbing E into w, since some energy levels may be inaccessible. For
example, when (8) is writtem as

-@/2m) V£ = (E - w@IE, (15)

and it is supposed that w increases indefinitely with distance, r, from some
origin, 0, one family of solutions to (15) is found that increase with

r, 80 that the normalization integrals (10) do not converge. The condition
that only the normalizable solutions of the other family are used transforms
(15) into an eigenvalue problem that confines E to discrete levels. Of course
a continuum of eigenvalues exists when w is bounded above,

A vell-known application of (15), that is particularly relevant to the
bubble, is the potential well for which

wT, in £<b ('Region 1');
WII, in >b ("Region II');

where wy and wy (>w1) are constants. Writing
A2 = (20/4%) (B -wp), Ag?= (uMl)g - D), an

we see that, for wy < E < vy s (15) 1is obeyed by

w= (16)

£ = f1 2 AJp(Arr) Yo(8yX), 1o T 5 b; a8)
f=fy = AT [Ja(rb)/ke(yb)] T4(0,x), fmr2b;  (19)

where Jg(z) 1s the spherical Bessel function of the first kind, k,(z) is

the modified spherical Bessel function of the second kind, and Yp(8,%) is a
surface harmonic of integral degree, 2, in spherical coordinates (r, o, X).
The exclusion of the other spherical Bessel functions ensures that (10) can
be m§t for some choice of the comstant A. Continuity of f has been realized,
and VE is continous provided

Arbdg " (Apb) /35 (Ath) = Agbke Ay b)/kg(Agb)e (20)

This dispersion relationship determines a discrete spectrum of admissible E.
It may be seen that, when &w = wy - wp is large compared with h2/mb2,
eigensolutions exist for which E - wp << wgp -~ E. For these, (19) takea the
approximate form '

fr # A expl=Ag (£ - b)] Y4(9,X), inT 2 b. (21)
The fluid is confined in region II to a boundary layer of thickness 1/Ay, or
ap =4 (mtw) Y2, (22)
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This phenomenon is often called 'healing', the layer itself a 'healing layer’,
and ay the 'healing lemgth'. To the fluid mechanicist, the abrupt increase &w
in w at ¥ = b can only be hydrostatically balanced by an equally abrupt increase
in quantum pressure. It is the nom-local character of quantum pressure that
causes the fluid to pass through the barrier at r = b and, when lower poten-
tials are available externally, permits it to seep out of region I.

In view of later developments, it is worth elaborating the situation
just described. First we allow the well to have any shape, defining n to be
a coordinate that measures distance from the discontinuity normally outwards
from I to II. Second, we allow wy and wir to vary, and suppose that the large
transition from wy up to Wy does not occur abruptly as in (16), but contin~-
uously over some distance, a, comparable with ap. Within this distance, there
is evidently no unique way of defining 'the' surface, S, of the well. We
note, however, that in the case of discontinuous w just considered, g (Arb)
is small, by (20). This suggests we should locate S on the surface of zero f7.

To elucidate the healing layer structure, we introduce a stretched
coordinate, £, and cast (15) into dimensionless form by writing

£ = nfa, £f = ax(%), (23)
q ~ a/ap, v = w1 + g(8)dw, (24)

where we suppose g is exponentially smell at the imner (§ = ~) edge of the
boundary layer, and is unity at the outer (£ = 4®) edge. It should be realized -
that x, wy, Mw and g will generally depend on posgition on S. To the first two
orders, however, this dependence only occurs parametrically in the solution,

and will therefore be suppressed. Writing .

x = x (E) + ax, (§) + ..., (25)
substituting into (15), and equating like powers of a, we obtain

&’ 148 - dg(orx, = o, (26

a%x, 148 - o%g(Orxy = - (0,7t + ¢, Vyax fat, 27

where Cjand C» are the principal radii of curvature of S at the point concerned.
Since fy1 is identically zero, the solutioms to (26) and (27) must obey

x, +0, X, 0, for &>+ (28)
Succesaful matching to the interior solution, f1, requires
x, v Qfy/t)gE, v -3 (G + 6T (E /o) 8, for & -l (29)

Explicit solutions can generally be obtained only by numerical means. They
obey integral conditioms which we will later find useful (54):

L (g_;‘;l) - x4, (30)
-2 4 - P22 x 4 '
2@ ) Gl Lax $ay, (1)

vhere the bar through the integral sign signifies that the convergent part of
the integral is takem. Despite appearances, this integral is negative.
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The integral relationships (30) and (31) may be interpreted in the light
of the Grant tensor (13). The terms on the left give the main parts of the
leap of gy, across the boundary layer; the terms on the right give the
corresponding integrated effects of the external force £2% balancing them.
The dominant term, given on the left of (30), arises from the 'pressure' of
the particle trying to escape the well. The next largest term, shown on the
left of (31), clearly has the form of a quantum surface stress, with

2akw » . dx..2
T, S F e EMTe . (32)
as coefficent of surface tension. It is easy to make an estimate of T . If
we take g to be a unit step function, we find from (26) that n

% - 3 z
'rm #-a Aw (Bf¥/3n)s. (33)

Passing from 'hydrostatics' to 'hydrodynamics' by abandoning (14), we
see from (8) that another type of healing phenonmenon will occur when u is
large. A particularly significant case occurs at a vortex line where, by (11),
u is of order nh/mif, at small distances, 6)', from the vortex axis. It follows
from (8) and (9) that p is of order 422 for § +0. The fact that o is zero on
the axis itself means that a closed vortex ring, or a vortex line terminating
on boundaries (w = =) will transform an otherwise simply-connected container
into a multiply-comnected domain,f%, so justifying a posteriori the application
of (11). Unlike the healing at a wall considered earlier, the depression
of p at the vortex axis occurs over distances comparable with the scale of the
container. The corresponding vortices in the condensate discussed in 53
héve cores confined to much smaller distances from their axes.

Before concluding this section we make one remark, obvious perhaps, but
relevant to 5{0’ When the particle i3 trapped in a potential well with moving
walls [w = w(x,t)], ¢ is necessarily noo~-zero and p is time-dependent. Never-
theless, provided the time-gscales over which w changes are large compared with
the reciprocal of the quantum frequency h/mbz, we can regard the fluid as
being in a quasi-hydrostatic state, ignore the time derivative in (1), and
treat t in w parametrically. In quantum language, the Born-Oppenheimer approx-
imation is said to apply.

3. THE CONDENSATE MODEL

We now consider an assembly of N idemntical particles (bosons) of mass M
in a potential field W(X). If the particles did not interact, the wavefunction
for the system could be written down as a symmetrized product of the N one-
particle wavefunctions, ¥(¥,t), obeying (11) with W and M replacing w and m.

It would be probably more convenient, however, to replace the normalization
condition (10) by

fl¥|%dE = N, or [pdX = puv, (34)

where v is the volume of the syatem and p. = MN/v. The resulting theory is
well-understood, and containg features that fruitfully represent helium near
absolute zero8. It may be seen from (18), however, that the ground state for,
say, the potential well (16) would be one in which all the particles would

be at the origin, with high probability. To eliminate this unphysical behavior,
the imperfect bose condemsate has been devised. A short-range repulsive
potential V(¥ ~ #¥°) is introduced in an ad hoc way, and to W the potential

NE - )| vE@) | 2a (35)
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is added which increases as the density of nearby bosons increases. The
simplest case arises when V is taken to be

V@E - X =V, §&x - 3. (36)
—Equation (1) is then replaced by
Mmav/se = -(m2/20)v2% + (v, |¥|ZHDy. an

A fuller and more satisfactory derivation of (37) may be found elsewhere3 4,
It is of some interest that non-linear Schrodinger equations of the form (37)
have been the subject of close scrutiny in recent years in non-quantal
contexts, particularly in theories of weak non-linear waves and stability9
The Madelung transformation

¥ = Fexp (iMO/h), (38)

follows the course of §2 with minor changes. Most signi‘ficant: is the
addition of a 'gas pressure',

P = (Vo/242)p2, 39)

which (multiplied by §14) should be included in the stress tensor (13).
Thus (8) is replaced by

kL3 v} W 2p -
at+2“ +M+p+” 0. (40)

The presence of the repulsion, V,, and its associated gas pressure
restores a number of physical effects absent in §2. The tendency towards
condensation is eliminated for all sufficiently large systems. To see
this, return to the hydrostatic theory of §2 and the potential well (16).
The spherically symmetric (2=0) ground state now obeys

2
&5+ 2L - Bewr-Zie P (41)

If NV, and AW are both large compared with h2/Mb2, (41) gives everywhere
except near the surface, S, of the well

P = Do = MFp2 = MN/v, (42)
the corresponding one-particle energy being given by
E-W = pVo/M, (43)

The fluid is spread out uniformly in the well.

Near S the derivatives of F become large, and the constant solution
(42) breaks down. We may follow the argument of §2. Introducing a new
healing length

a = #(20,7,)" 12, (44)
writing

£ =n/a, F=3X(5), W= W+ (puVo/M)G(E), (435)
where G({) is exponentially small for £+ ~ =, expanding X as

X&) = X,(8) + aX3(8) + ... , (46)

substituting into (15), and equating like powers of a, we cbtain
a2y /82 -~ [6(E) - 1 + (Ro/F1)2] X, = 0, 47
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a2%1/dg? - [G(E) - 1+ 3(X/PD?] &y = - (") + ¢, "hyax fag. (48)
Matching at the edges of the boundary layer requires
X* 0, X >0, >4 (49)

X>Fp, 5 >0, E>= e (50)

Again, explicit solutions generally require numerical integrations, though
ugeful integral relations may be established, for instance

1p2 . ®z2d6G;

2% lax e, (s1)
2k L1y 1® (d%0y2 - 1”2 x 48 ‘
z(cl + cz) ” (Zs—) dg oxlda de. (52)

Once more, the dominant contribution to the leap in stress across the healing
layer arises from the interior solution, although now it is the gas pressure
and not the quantum pressure that is mainly responsible. Again, the next
largest term can be interpreted as a quantum surface tension, with positive
coefficient

- ___9.°V r"’é_{e . 5
n o~ nlEe e (53)

As before, Ty may be estimated3 from a simple model of X . If we suppose
that C is a step function of infinite height (AW = 0), (26) may be solved
as X = Fp tanh (~£/72), and (53) gives

T, # 72 1% /3%, (54)

Pagsing again from 'hydrostatics' to 'hydrodynamics', we note that
" the gas pressure can supply the restoring force necessary for compressional
waves. Perturbing about the static solution (41), we readily fiad that
long wave+length sound propagates at the veldcity

c = /(dp/dp) = V(2p/p) = #t/Mav2. : (55)

At wavelengths of order a and smaller, the quantum pressure increases the
phase speed, decreases the group velocity, and introduces weak dispersionm.

Vortex lines may be studied as in §2. Unlike their classical counter-
parts, the cores of these vortices do not have sharply defined surfaces
separating regions of zero and non-zero vorticity. All the vorticity
they contain is concentrated as S-functions om their axes. Such a vortex,
if classical, would have infinite self-emergy. Here, however, the density
decreases over the characteristic distance a as the axis is appreached,
so ensuring a finite tension. The depletion of fluld in the core makes the
vortex resemble the classical hollow core model. The permanence of vortex
rings implied by the Kelvin-Helmholtz theorem makes them excellent candidates
for quasi-particle models, so reviving in a novel context the ideas under-
lying the vortex atoms proposed by Kelvin in the nineteenth century.

4. STRUCTURE OF THE NEGATIVE ION

It is poasible3’1°'12 to account with relative ease for many features
of the negative ion by combining the methods of §§2 and 3 above. We use
the theory of §1 to represent the electron, regarding w as the potential
created by the surrounding condensate; we apply the formalism of §2 to the
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exterior of the bubble, taking for W the potential of the electron. More
explicitly, we introduce the emergy,

IuE - ) lv@® [2]e@) | 2akaRe, (56)

representing the repulsion of an electrom at ¥ and a boson at ¥”. Taking
agdin the simplest case of a §~function interaction

UG - %) = U 8@ - X, (57
we then have - -

w@ = UG - 3 |v@E) |2k = U lv@ |3, (58)

WE) = JUE - )@ |2 = U [vE |2, (59)

By (10) and (58), Aw = Uopw/M 80 that by (22), (23) and (44), q2 = mUy/MV,.
Equations (1) and (37) become coupled:

1199/ 0t = -2/ 2m) V29 + U, |¥|2y, (60)
MY/ 3 = -A2/2072Y + (v, |¥]2 + v, |0]2)Y. (61)
As in 52, we define the electromic surface, S, of the bubble by the zero of V.
The key to a simple 'h&drostacic' solution of (60) ‘and (61) lies in the
fact, which we can verify a posteriori, that the radius, b, of the bubble
is large compared with a and ay,, so that the boundary layer methods of §§2
and 3 can be used with minor emendations. We must not forget however that,
since the roles of interior and exterior of the bubble have been exchanged

for the condensate, the sign of & in §3 must be reversed. The mainstream
value of F, denoted in §3 by F; is now written Fg.

To leading order, we set g(f) = XOZIFS and G(E) - (aZU /17'52‘7‘,)::02 in
(26) and (47), as (58) and (59) require. The integral relations (30) and
(51) may then be combined to give
2 o, 2_V,
L - - -—-n [%07%,217,, (62)
where we have appealed to (28) and (50). ’.l'o the next order, the forms of
g and G require :ecnnsiderationlz. In place of (27) and (48) we have
d2x1/dE2 - (q/F5)%(Xp2xy + 2xo%oX1) = ~(C ") + Cyl)axg/dE,  (63)
d42X;/4E2 - (3Xy2/Fg? = L)Xy ~ (a2Uo/Fg2Vo) (xo2K] + 2XoXo%;) =
= -(c1~1 + cy-1)dx,/de. (64)

The integral consequences (31) and (52) are modified accordingly, and the
result (62) is altered to

a 3£ 2 _ Yo o2,.,d .1, 2 + Io (Ty?
TG " - 28G +g) t—z +3 @, 6

which now includes the effects of interfacial tension.

The jump conditions (62) or (65) across the boundary layer suffice to
match the maingtream electron solution to the mainstream condensate solution.
Applied to the electron bubble, we have by (18)

f = A(sin Ayx)/Mr, (66)
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qhowinizthat_ Atb = w, By (10) the solution is normalized to the first two
ordersi? in a/b, 1f A2 = n/2b3. By (10) and (11) we obtain

2
nfa 1/5_8M2a » 1 2,1 2
b= ) So f.[m(a%-’éﬁ) + M(%) 1 d&. (67
It is not at once clear whether b will be decreased by the positive surface
tension (53) of the condensate or increased by the negative surface tension
f32) of the electron. _If we use estimates (33) and (54) however, we see that
TmllTu is of order q"l and, since experiments indicate (§5) that g <1, it
appears that the bubble radius should be larger than (™2a2/mpe)l/5.

Direct numerical integrationalz of xy and X;, and evaluation of the integral
seen in (67), suggest that the difference is of the order of a.

The effects of polarization induced by the electron in the surrounding
helium can be included by addingl? to (56) the term
~(@e2/8m Ay 12 e@) |2 [F - 2| ket (68)

where G is the polarizability of the helium and e is the electronmic charge.
This has the effgct of contracting the bubble by order dMe2al/4nfiZb3. A
. detailed theoryl? shows that the reduction is of order a/3 in the practically

. interesting cases.

Further complications arise when the dynamics of the bubble are considered,
although the time-scales of interest are usually large enough compared with
the electronic frequencies to justify the neglect of 3¢/3t in (60); see §2.
To evaluate the effective hydrodynamic mass, we consider the bubble in steady
motion U, at small Mach numbers !=0/c. The electronic radius, b, of the
bubble is increased by about 5M2% because of the pressure forces associated
with the flow of condensate over its surface. It is also made slightly oblate,
with an ellipticity close to J"Lz/ 2. 1Ignoring this effect, it is found that the
dipolar back-flow created by the ion coincides with that of a hard sphere
whose radius, be, is less than the electronic radius, b, by one to two
healing lengths:

be = b - (aM/pa)En X 2 (B)4E. (69)
It is this radius, rather than b, that determines the induced mass of the ion.

Further details of the calculations gutlined above may be found in the
paper by Roberts and Grant already cited!?, We conclude this section by
breaking new ground. We consider the ogcillations of the bubble, their impli-
_ cations for phonon-ion collisions, and the mobility of negative ions at low
temperatures., We again adopt the boundary layer methods deecribed above but,
of course, retain the term 3¥/3t in (6l), so introducing a velocity potential,
¢, in the condensate. We retain only the dominant part of the boundary layer
structure, excluding both surface tension and polarization effects. We write,

f-f°+aaf‘, Fsro-i-aa?‘, % » ad”, (70)
where the suffix o stands for the steady solution obtained earlier, and the
terms in a represent time-dependent perturbations.,where 0 < a << 1.

It is readily seen -from (7) and (40) that 9° and F~ both obey the acoustic
wave equation

320°/3t2 = c2v20°, (1)
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We could, by following Celli, Cohen and Zuckermanls, examine solutions in the
form of outgoing waves. The eigenfrequencies would be complex, because of
the reduction in oscillation amplitude at a point fixed in space as the
energy of surface motion is radiated to infinity. The corresponding eigen-
function must tend to infinity with r since, the more distant a wave is,

the earlier it must have left the surface, and the greater the amplitude

of surface oscillation must then have been. We will not consider solutions
of this type below. We will confine our attention to the scattering problem
in which an incoming plane wave travelling in the z-direction

Sfyc = emliCz=we)], B (72)

where k and w = ck are real, is scattered by the bubble into a set of outgoing
waves, We first ﬁim to calculate the scattering amplitude, hy(k), of the
Lth partial wave .

1 _ kbyg(kb) + Roy,°(kb)
Be *TH1qy @ = bf, (kb) + Ked g~ (Rb)° (73
where y;(z) is the spherical Bessel function of the second kind and Ky is

the spring constant of the bubble for this mode. We then use by to compute
the differential cross-section'® of the bubble

ok, = k2| £ (28 + by R, (cose) |2, (74)
and hence the momentum~transfer cross-sectionl?

Op(k) = f/0(k,0) (1 ~ cosO)sinodedy. (75)
From this we finally evaluate the mobility, u,, of the iom fromu

e 2z L0000 BB, 76)
wheze

n(k) = [exp@ck/KT) - 1 173, N

is the density of phonons (in ﬁ—space) at: temperature T. Here K is
Boltzmann's constant.

To determine the spring constants, K;, we have to match solutions of
(71) across the boundary layer on S°, the deformed electronic surface, to
the quasi~-static solutions (18) of the electron mainstream. We first consider
the case 2 2 1. The fact that

b= Agd (Arr) + cad”3p(Agr) Ye(0,%), (78)
implies that S° has the equation

r = b(0,%,t) = bo + aab”(t)¥y(0,%), (79)
where (using Agb, = )

b*/bo = 3g(m) A”/A,. (80)

We will continue to refer the boundary layer structure to the unperturbed
position, S,, of the electronic surface, and not to 5°. We introduce x*, X~*
and n“*, the boundary layer forms of £, F” and ¢”, and expand these in
ascending powers-of a .
x= a'lxs +x3°+ ..., X' = a'lxo‘ +X37 4+ cey nTE anl‘ +oeey

(81)
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where the coefficients shown depend on t and § = (r =~ by)/a and parametrically
on © and X. We substitute these into the boundary layer forms of (60) and (61)
which, in the Madelung framework, give to the first two orders

%2/ 362 - (qfFg)2(Xg2x” + 2xy%oX") = -(2a/b) %"/ 3E, (82)

a%7/28% - (3%,/FG? - 1)X” - (a2Up/Fs2V,) (%2K” + grox”) =
= =(2a/b) 3"/ 3§ + (M/Fg2V5)Xo0n"/3t, (83)

X,92n°/362 + 2(dX,/dE)3n"/3E = =(2a/b)X,9n"/3E - 2a23X"/3t.  (84)

It seems clear from (84) that xozano‘/ 3¢ 1s independent of § and, since
there is no net condensate flow through the boundary layer at any point, that
constant must be zero. Thus ng takes throughout the boundary layer the main-
stream value °S of 9, evaluated on S.. The right~hand side of (83) does not
contribute to leading order in a, an3 (82) and (83) may be solved to give

% = CxldE,  Ko” = TdKo/dE, (85)

where i i3 independent of §. These forms represent a net displacement of the
equilibrium boundary layer from S, to S°, without change of form; we conclude
that ¢ = -b"Y,,

In proceeding to the next order we note that, since the velocity of
sound (55) is of order 1/a, the time derivatives in (83) and (84) now
contribute. In fact, excluding again a net flux of condansate through the
boundary layer, (84) shows that 3ny~°/93Z takes the value ~a 23z/at throughout,
and in particular on the outer edge (£ = =) of the boundary layer. It
follows that

adb/dt = (39°/9r)g, (86)

an, equation with an obvious interpretation. The equations (82) and (83)
again admit an integral, namely

\ 2 ang” , a2 dxq 9x1” -4 %
2U,Fg ‘—8'%_ = '52 [’dE —515— ™ a_g.’z‘n.]
87)

On taking the limit & - +», and using (18) to evaluate the con:ributions from
the lower limits, we find

39g°/3t = cZReab”/bg, (88)
where

{ 5/2, if =0
Ke '{ (89)

-2 + “jz.l(")/jg("). if L 21,

The numerical values of Ky for the first 20 values of 2 are given in table I. That
of K, was obtained from an analysis too similar in spirit to the one just
described to be repeated here. It may be noted that Kj is zero, representing

the fact that the bubble is neutrally stable to a uniform displacement.

Equations (86) and (88) are applied on S,, and provide the boundary conditions

to which solutions of (71) must be subjected.

We developed a program for an Hewlett-Packard 9820 A desk computer to
evaluate Op(k) and Me from an arbitrary set of the spring constants. The
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results were tested with the values (K, = 0.234z ;3 K1 = 05 Ko = 0.45045;

Ky = 0, n>2) used by Baym, Barrera and Pethick™", and good agreement was

obtained. The programme was then used to generate the results showm in

Figures 1 and 2. The effect of truncating serfes(74) at £ = 2 and ¢ =19 .
are shown in both cases. The prominent peak in op(k) seen in Figure 1 is

due to a d~wave resonance (2 * 2), A new minor peak is added every time g

is incremented by 1. The curve appears to approach its geometrical valuelS

(oq/4mb o2 + 1/2) with an oscillation of amplitude (kby)~2/3 and period 2-1/3,

In Figure 2, we see ueT3 plotted in units of Ly, a8 a function of T measured in

units of T, where

To = fic/boK, Lo = 3weiZc3/2b K. (50)
TABLE 1
Spring Constants
Y 2.500000000 10 11.56327795
1 0.000000000 11 12.59928101
2 2,289868134 12 13.62973970
3 3.771253431 13 14.65585350
4 5.032253885 14 15.67849696
5 6.198547165 15 16.69832328
6 7.314641577 16 17.71583055
7 8.400646541 17 18.73140537
8 9.467085072 18 19.74535255
9 10.520037400 19 - 20.75791573

5. EXPERIMENTAL COMPARISONS

The condensate model of helium II is essentially a theory having only one
disposable parameter, namely the pseudo-potential, V , or equivalently the -
healing length, a. It is natural to seek to choose ®his so that theory and
observation are in optimum accord. Clearly a choice of a made to fit one
physical phemomenon well is likely to conflict with others, and an overall
consistency with the experimental facts is not to be anticipated. One notes
particularly that, since the condensate is a gas obeying the equation of state
(39), we should not expect the theory to perform well at the vapor pressure.

One can obtain an estimate of V_ = 4wdﬂzln from measurements of the atomic
diameter, d, by a-particle scatter experiments. Values of d of about 257
have been found. If p_ is 0.145 g/cm3, the healing length would be 0.82 A,
leading to too small a velocity of sound. One popular procedure has been to
extract a from accurate experimental determinations of the relation between the
velocity and energy of circular vortex rings. This had led to estimates of
a % 1.28 X, giving much too small a value of c. The reliability of the approach
can, however, be questioned. One would have expected a to decrease with
increasing pressure, but the reverse seems to be truelf, It is now believedl?
that the core of a superfluid vortex is the seat of excitations (normal fluid),
and that the surface of a vortex core marks the distance from the axis at which
the Landau critical veloeity is reached, rather than a quantum healing distance;
such a belief is consistent with the increase of a with pe.
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Perhaps the most satisfactory way of estimating a is through the velocity
of sound (55). To give an example, if we take c = 238 m/s, we obtain a & 0.47 &
and £or pe * 0.145 g/em® we find that Vo # 1.7 10~37 g cmi/s2, a value
admittedly three times larger than the scattering experiments suggest, and -
moreover one which will alter as ¢ and p, change through applied pressure.
Nevertheless, by using ¢ to determine a, we cbtain a coefficlent of surface
tension, Ty, from estimate (54) of 0.37 g/82, which 1s in good agreement with
the experimental value of 0.34 g/s? at low temperatures.

Turning to the bubble, we see that, in the first approximation, the theory
does not require a kanowledge of the pseudo-potential, U,, either for its equi-
librium structure or for its oscillation spectrum. The radius, (1M2a2/mp.)1/5,
predicted by the first approximation is somewhat small, 11.8 1 using the values
quoted above. Since ¢ and pe increase with increasing pressure, p, this radius
decreases with increasing pressure, although somewhat more slowly than experi-
ments indicate. The bubble radius 1s increased when the effects of surface
tension are added. Unfortumately, Grant and Robertsl2 did not examine values
of a as small as 0.47 X, so that the value of the integral appearing in (67)
is not knowm. Using our earlier estimates, however, it appears that b will be
increased to about 13.3 A by surface tension effects. Table 2 gives u,T° for
a few values of T for both the 2 = 2 and the £ = 19 truncations, and for values
of b of 11.8 &, 13.3 £ and 16.0 3. At the £ = 2 level of truncatiom, there is
a clear temdency for ueT3d to approach a limiting value, of about 36 cn?k3Vs in
the case of the 16 4 bubble, as T increases. The explanation of this behavior
was provided by Baym, Barrera and Pethickl® in terms of the shape of the d-wave
resonance of Fig. 1. Not surprisingly in view of the very different form of
oy obtained at 2 = 19 truncation, the constancy of ueT3 is not as marked at
this level. Navertheless, the values shown for £ = 19 in Table 1 are not ridi-
culously far from the experimental valuel® of about 32.5 cm?K3Vs in the range
of T in which Baym, Barrera and Pethick measured the success of the work.

When we take the theory of the bubble to the second approximation, a new
disposable parameter enters, namely the psuedo-potential, Uy, or equivalently
q = a/ay, a relation we can also write as q2 = mUp/MV,. Roughly speaking q,
as the ratio of the two healing lengths, measures the relative penetration of
the condensate wavefunction into tha cavity to the penetration of the electrom
wavefunction into the condensate. If q wera zero, it would be legitimate to
treat the condensate as an abrupt edge and only congider the electronic boundary
layer of §2. At first sight it might appear that, since qz is proportional to
n/M % 1,37 1074 it would be admissible to follow Celli, Cohen and Zuckermanl3
in taking this view. The indications are, however, that U,/V, is large.
Scattering experiments give an electron~helium scattering length, A, of about
0.60 4, implying that U, = 2rMf¢/m is about 4.6 10~35 g cm?/s2. Taken with
the experimental value of 5.7 10~38 g em5/a2 for V,, we obtain Uy/V, * 810
and q ®* 0.33. It would be interesting to see whether the effect of restoring.
q to the Celli-Cohen~Zuckerman theory would have serious repercussions. The
indications are that it would not.

The neglect of q in the condensate theory described here would eliminate
the condensate surface tension, Ty, and transform the interfacial boundary
layer into the structure considered in §2. The associated negative surface
tension; I, would tend to expand the bubble, an effect confirmed by the cal-
culations of Grant and Robertsl2. All influences of interfacial temsion are,
however, of second order in the condensate theory. In the approach of Celli,
Cohen and Zuckeman13, the interfacial temnsiom, o, i3 a first order effect.
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These authors regarded ¢ as a disposable parameter that could be legitimately
chosen to fit the observed bubble radius at the applied pressure of interest.
It is easy to verify that the interfacial tension they require is positive
and, particularly at higher pressures, several times larger than the conden-
gate surface tension, &I, considered earlier. It may be wondered why, with
this sign difference, the bubble radii they obtain are, being in perfect
agreement with experiment, larger than those obtained from the condensate.
The answer is to be found in (39). The condensate is a gas and, to obtain
agreement with the observed helium demsities, it is necessary to choose a
large V,, leading to pressures (39) of the order of 40 atmospheres. In com-
trast, the Celli, Cohen and Zuckerman theory treats the heliim as a classical
compressible fluid, not containing the pressure (39), and to avoid large
bubble radii at the vapor pressure, a positive interfacial tension is needed.
As we have stated above, we regard (39) as an artificial construct of the
theory, not to be identified with the applied pressure, and base our comparison
with experiment on density and velocity of sound data.

As Schwarzl3 observes, if the spring constants were regarded as disposable
parameters, there would be no difficulty in reproducing any ion mobility data
precisely. It appears that even the added flexibility given to the theory by
the ad hoc interfacial tension, ¢, already permits an excellent account of the
mobilities. Schwarzl3 has shown that, for their spring constants, the constancy
of ueT3 in the range of T of interest is not lost when the truncation level is
increased as it is in ours. In comparing our theory with theirs, one must be
perplexed by the substantial difference in the spring constants and in the shape
of the mobility curve (labelled '% = 19' in Fig. 2). He must wonder if, in the
disappointing form of that curve on the present theory, and in the sensitivity

" of the mobility itself to the healing length [as evinced by the c-dependence
of (90)], the condensate theory has not met its most severe test to date. He
may also speculate on the physical basis of the ad hoc interfacial temsion re~
quired by the other approach to survive its trial by experiment, and also
whether the effects of roton-ion collisions at the higher temperatures have
been underestimated.

TABLE 2
Ion Mobilities, ue
. ('1‘ in degrees K, T3 in units of ¢n?R3Vs)
2 = 2 Truncation o % = 19 Truncation
bo=11.8 i bo=13.3 A be=16.0 A be=11.8 A bo=13.3 i bo=16.0 1
T 1ueT3 T eI T  uel? T 4T3 T I3 T uel3
0.34 229, '0.37 117. 0.31 97.0 . 0.32 265. 0.33 158. 0.35 70.5
0.41 131. 0.45 77.2 0.43 51.8° 0.37 178. 0.42 84.9 0.39 59.0
0.51 86.7 0.52 62.3 0.53 41.7 0.48 95.3 0.46 71.0 0.43 49.0
0.58 70.0 0.56 56.9 0.58 39.5 0.52 79.7 0.52 59.0 0.50 40.0
0.63 63.9 0.64 50.2 - 0.65 37.6— 0.58 66.2 0,57 51i.1 0.59 33.1
0.72 56.3 0.70 47.5 0.73 36.6 0.64 57.3 0.71 39.8 0.70 28.1
Q.78 53.4 0.78 45.2 0.78 36.5 0.80 44.7 0.85 33.8 0.83 24.6
0.98 459.5 0.94 43.9 0.95 37.4 1.010 36.0 1.01 29.6 1.02 21.0
1.18 49.7 1.15 45.0 1.16 39.9 1.13 30.1 1.13 26.8 1.14 19.4
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Fig. 1. The momentum-transfer cross~-
section, o.,, as a function of wavenumber, k.
The effects of truncating (74) at £ = 2 and
2 = 19 are shown.
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Fig. 2, The mobility, u,, as a function of
temperature, T. The function ueI3 1s shown
in units of L, as a function of T in units
of Ty, where Lg and T, are defined by (90).
The effects of truncating (74) at £ = 2 and
% = 19 are shown.
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THE ROTATING, CHARGED OR GRAVITATING LIQUID DROP,
AND PROBLEMS IN NUCLEAR PHYSICS AND ASTRONOMY

W. J. Swiatecki
Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720

ABSTRACT

A survey is presented of the equilibrium configurations of a rotating
charged or gravitating liquid mass in a way that unifies the treatment of
idealized rotating heavenly bodies, rotating drops in a weightless environ-
ment, and ideallized rotating nueclei. A number of applications, especially
to nuclear physics, is deseribed.

I. INTRODUCTION

Figure 1 is a photograph of the planet Jupiier. The slightly flat-
tened appearance is caused by rotation.

Figure 2 is a glass droplet from the lunar s0il returned by the
Apollo 11 mission (length about 1 mm). Presumably it was ejected from a
meteorite impact on the moon as 2 molten, rotating blob, which solidified
in flight. ‘

Figure 3 is a picture of a series of sketches made by Niels Bohr on
November 7, 1950 (his 65th birthday), during a conversation on the liquid
drop theory of nuclesr fissiog. On the right is a sequence of shapes of
a fissioning nuecleus of Np23 s calculated in 1968 by J. R. Nix using that
theory. (Ref. 1)

These figures illustrate three fields in which the theory of rotating,
charged or gravitating masses has found an application: astronomy, hydro-
dynamics in a weightless environment and nuclear physics.

Historically the theory of rotating homogenecus masses as idealized
representations of planets, stars and nebulae goes back to Newton's
investigations on the figure of the earth. In the past two and a half
centuries the theory has been developed by many illustrious mathematicians,
among them Maclaurin, Jacobi, Riemann, Poincaré, Liapunov, Jeans, Darwin,
Cartan, Appell, and Lyttelton. In the last decade the subject was taken
up anew by S. Chandrasekhar and N. Lebovitz and brought to a rare degree
of perfection in Chandrasekhar's monumental work on "Ellipsoidal Figures
of Equilibrium." (Ref. 2)

The theory of a rotating liquid mass endowed with a surface tension
but no gravitational forces was stimulated by Plateau's experiments 100
years ago with globes of oil suspended in a liquid of the same density.
The experiments were discussed in connection with Laplace's nebular hypo-
thesis of the origin of the solar system. An account of the earlier
investigations is given in Appell's "Mécanique Rationnelie®. (Ref. 3,
Vol. 4, Ch, IX)

The theory of rotating liquid masses with a surface tension and a

-upiferm electric charge arose in nuclear physics in connection with the
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study of nuclei endowed with large angular momenta., The major part of the
binding energy of a nucleus is well represented by the model of a uniformly
charged liquid drop with a surface tension, and the addition of a rotational
energy to the conventicnal volume, surface, and electrostatic energies of

the liquid drop model constitutes an interesting generalization. ~A-number— ——
of authors, among them Pik-Pichak, Beringer and Knox, Hickes, Sperber,

Carlson and Pau Lu, Cohen, Plasil and Swiatecki, Chandrasekhar, Rosenkilde,
Mollenauer and Wheeler have addressed themselves to this problem in the

past 15 years. (See list of references in Ref. 4.)

It was soon reallized that the astronomical problem, Plateau'’s problem
and the nuclear prcblem are formally special cases of a single mathematical
structure. They can in fact be discussed in a unified way by varying
continuously a single parameter in the equations, the parameter being the
relative intensity of the inverse~-distance {gravitational or electrostatic)
energy. In this way a problem or irresistible scope presents itself: to
discuss in a unified manmer the equilibrium shapes of rotating masses repre-
senting at one extreme idealized atomic nuclei, at the other idealized
heavenly bodies, and covering in between engineering applications in weight-
less space laboratories. In this talk I would like to give you a survey of
the problem from this unified point of view,

2. STATEMENT OF THE PROBLEM .

et me first state the idealized mathematical problem precisely. We
consider a given volume of an incompressible fluid with a sharp boundary
{which may or mey not be simply commected--it may be in two or more pieces).
The fluid may be gravitating and/or uniformly charged, it is endowed with a
surface tension, and is rotating with a given angular momentum about its
center of mass. The question is: what are the shapes of gyrostatic equilib-
rium of the fluid, i.e., shapes in which the only motion of all fluid ele-
ments is a uniform rotation with a common angular veloecity?

The way one answers such a problem in gyrostatics is by writing down
an effective potential energy and making it stationary with respect to all
infinitesimal variations of the fluid boundary. This effective potential
energy E 1s the ordinary potential energy augmented by a rotational energy.
Thus in our case

' E = Eq+E +E . _ (1)
Here Es is the surface energy, equal to the surface area of the configura-
tion in“question times the surface energy coefficient vy:

ES = yédo‘ .

The quantity E. is the inverse-distance energy, the sum of inter-
actions between pairs of volume eiements d‘rl and d'rz interacting accord-
ing to an inverse-distance potential:
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dr, dt
. 2 2, 1 172
s - wt-endffff

Here Pe is the uniform density of electric charge, p 1s the mass
density and § is the constant of grayitation. (In most cases of practical
interest one of the two quantities Dez, Gp? is negligible compared to the
other.)

The rotational energy is the square of the angular momentum L divided
by twice the moment of inertia of the configuration in question:

B, Lz/prjfr_det. (12)

Here r, 1s the perpendicular distance of the volume element dr from the
axis of" rotation (passing through the center of mass of the whole _system). -

For a spherical configuration with radius R these energies reduce to
20 - 4nR? y

(0) . 3 /(R 1
EI ‘?(Q‘GMz)ﬁt

(0) _ 1 I
E = 3
R 5

%mz

where Q is the total charge and M the total mass of the system. The
above energies provide convenient units in which to express the three
quantities Eg, Ep, Ep, and we may .then rewrite the effective potential
energy in a dfmensionfess way that is eipecially suited for a unified
discussion of the problem. Picking Ego as the unit for the effective
potential energy we mey write

£0) KO :
€ = e = 0+ % ¢>+ER ® (2)
"%UT s Egﬂ'l Egﬁ"," R

Here &4, a function of the shape of the configuration in question, is
the surface e:&rgy in units of the surface energy of the spherical shape.
{ Thus QS( sphere) = 1,) Similarly ¢. is the inverse-distance energy in
units of its value for the sphere, ané ¢, 1is the rotaticnal energy, given
by Eq. (12), in units of what it would be for a sphere.
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This way of writing the energy brings out the faet that since there
are three energies in the problem (surface, inverse distance, rotational)
there are two dimensionless ratios, which may be taken as the parameters of
the unified theory, 1Ihese ratios are often denoted by x and ¥, and defined
as follows:

x = (Charée) ~ G(Mass) (3a)
Qlume uriace irension Loe
) 2
y = R - 2 ( ar Momentum)
v "(TT)'E 13 (Volume Ss dius ){Surface Tension Coeff.) °
S \

(3)

The parameter y is a measure of the square of the angular momentum,
and thus of the size of the disruptive centrifugal forces compared to the
cohesive surface tension forces. When GM2 1is negligible the parameter x
reduces to the conventional -'flssility parameter' of nuclear physies, a
measure of the disruptive electrostatic forces compared to the surface
tension forces.

The dimensionless effective potential energy now reads

e = ¢S(Shape) + + 2% ¢I(Shape) *+ ¥ o, (Shape) . (4)

The ¢'s are dimensionless functions of the shape only, For example,
for spheroidal shapes specified by semi-axes a,c (where ¢ 1 along the
axis of symmetry) one find ollowing formulae in terms of the eccen~
tricity e (equal to 1 - ac/e<):

- -1

¥ = %‘G’ez)lm 1+—Sin_e " (5a)
e(l - ez)

op = %(1-3)1/3%1:1%—-}-;- (5b)

o = %-(1 ~e2) 23 (5. e2) (5¢)

For configurations specified by several shape parameters the ¢&'s are func-
tions of several variables. In any case the important thing is that the
d's can be calculated and tabulated once and for all, independently of the
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particular physical system that is being investigated. Imagine that such a
tabulation of the ¢'s has been carried out. Then to find the configura-
tions of gyrostatic equilibrium for a given system we first caleulate the
values of x and y that specify that system (using Egs. 3a, 3b), insert
these in Eq. (4), and vary the shape until € 1s stationary, For a different
system we will have another pair of x,y values. To cover all possible
systems we would vary both x and ¥y in the full range from == to +=

-and file dway the results in a two-parameter {iling cabinet illustrated in
Fig. 4. This figure brings cut the relations to one another of various physi-
cal systems. To orlent ourselves: ¥y = 0 means no rotation, so along the
positive x-axis we have the domain of nonrotating idealized nuclei, from
light to heavy with inecreasing x. For negative x we have gravitating
globes. The classic case of astronomical masses for which surface tension

is negligible corresponds to X + —w, indicated on the left. Plateaus
rotating globes, with no charge and negligible gravitation, correspond to

the positive y-axis. Rotating nuelei and rotating gravitating masses with
surface tension fill the upper half-plane.

What about negative values of y? At first this sounds silly (a
negative centrifugal force--an imaginary angular momentum?). In fact, how-
ever, systems with negative y-values are quite possible. Thus the negative
y-axis corresponds to @ bubble in a rotating container filled with a llquid.
The bubble is an object With negative intertial mass relative to the surround-
ing liquid, and experiences a negative centrifugal force which, instead of
flattening the bubble tends to elongate it along the axis of rotation.
(Similarly a bubble in a container %:z.= lled with gravitating matter belongs in
the lower right-hand quadrant and a bubble in rotating, uniformly charged
nuclear matter belongs in the lower left-hand quadrant.)

So now we have a filing system in which results on idealized stars
and planets, weightless globes, idealized nuclei and bubbles may be dis-
played in a unified way. Let us remind ourselves what it is that we will be
displaying in the filing cabinet. Take a rotating system with a given
value of X,y. You might think at first that there will be just one entry,
the equilibrium shape of that system. In fact there will be several entries
because a given system with a given angular momentum has, in general, many
configurations of equilibrium. Thus the effective potential energy for a
given system, plotted as a function of, say, two shape degrees of freedom,
might look something like Fig. 5. This shows a metastable minimum A, as
well as an absolute minimum C, separated by a saddle-point B. Off to the
side there is a mountain top D. All such points A, B, ¢, D are equilibrium
shapes, although only some are stable whilst others are unstable, with
different degrees of instability. Some of the unstable shapes are .of great
interest--for example a saddle-point shape of the type B 1is of crucial
importance in the theory of nuclear fission and must be calculated in order
to estimate fission barrier heights and sponteneous fission lifetimes of
nuclei in situations of practical relevance.

Here let me make an important qualification of the words stable and
unstable. In Fig. 5 one would be tempted to call A .and B stable and
C and D unstable configurations of equilibrium. For truly static, non-
rotating systems (y = 0) that is indeed the case and that's all there is to
it. But for gyrostatic systems it i1s not sc, and it is possible-~sometimes—-
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to have a system oscillating around a mountain top with bounded oscillations--
rather than sliding down. This is an effect of coriolis _! gyroscopie) forees,
which are not contained in the effective potential energy E: the effective
potential energy does not have in it the information about the full dynamical
problem. This makes it obviously extremely dangerous to jump to conclusions
about the stability or instability of the dynamlcal motion on the basis of
the appearance of the effective potential energy landscape. There is,
however, a mitigating circumstance which partly restores to the effective
potential energy its role as a guide to the stability or instability of
equilibrium points. Thus if there are dissipative effects present in the
system (friction, viscosity), then, if one waiis lo% eno% so that these
-effects can assert themselves, saddles moun opS W , after all,
behave in an unstable way, as one would have expected to begin with. This

- kind of instability, which requires that you wait long enough for dissipation
to assert itself, is called secular instability.

In what follows when I say 'unstable' I shall always mean 'secularly
unstable’.

. Coming back to our x-y f£iling cabinet we see that the full problem
_of discussing the shapes of gyrostatic equilibrium of rotating masses consists
of calculating all the important shapes, stable and unstable, for a given pair
of x,y values, and then tracing out the behavior of these shapes as funce

tions of x and y in the full x-y plane.

How much of this complete picture is known today? I will try to give
you an impression of that in my talk, but let me say at once that the problem
has been only partly explored, and there remains a beautiful project for
mathematicians, physicists and astronomers to work on.

Let me first give you a bare-bones summary of what happens in wvarious
regions of the x-y plane, and then let me {ill in some of the details.

3. SUMMARY OF STABILITY REGIONS

By plecing together old results in the three familisr regions in the
x+<y plane (astronomical masses, Plateau globes, nonrotating nuclei) and
adding calculations and estimates in the other portions, one arrives at the
following picture, summarized in Fig. 6. .

For small amounts of rotation the originelly spherical drop is flattened
by .the centrifugal force into an oblate spheroid, independently of the value
of x, i.e., independently of whether we discuss a gravitating liquid mass
with or without surface tension, or a charged nuclear droplet. For finite
values of y the equilibrium configurations are no longer exact spherolds
and we shall refer to these shapes as pseudospheroids or Hiskes shapes. In
the astronomical limit of zero surface tension the oblate shapes of equilib-
rium do happen to be exact spheroids: +they are the Maclawrin spheroids. The
spheroids or pseudosphercids continue to flatten with increasing rotation and
they remain stable until a certain critical value of y, denoted by ¥y, which
is a function of x. (Fig. 6) At this point the pseudospheroids become
secularly unstable and a qualitative change takes place. The nature of the

change depends on whether x is below or above a certain critical value X,
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which is today not yet determined exactly, but appears ‘to be in the neighbor-
hood of x, = 0,81, This corresponds to heavy nuclel towards the end of the
periodic table,

I x> X, the flat pseudospheroids become secularly unstable towards
disintegration, by way of a triaxial deformation.

If x < x,, and this includes the rest of the pericdic table as well as
uncharged droplets, molten asterolds and astronomical gravitating masses, the -
flat pseudospheroid becomes secularly unstable towards conversion into a
nonaxially symmetric configuration of equilibrium, which branches off the
pseudospheroids at the eritical value y;. This new configuration has the
symmetry of an ellipsoid with three unequal axes and rotates about its
shortest axis. The other two axes are at first almost equal (when ¥y
exceeds the critical value by an infinitesimal amount and the equilibrium
eonfiguration is almost axially symmetric). Later these two axes become
rapidly unequal, one of them becoming longer and longer as y increases,
and the other tending to approximate equality with the shortest axis about
which the rotation is taking place. The general appearance of these con-
figurations is that of flattened cylinders with rounded ends and a scmewhat
elliptic cross section. In the astronomical limit of large negative x
these configurations are exect ellipsoids (the Jacobi ellipsoids): otherwise
the +tips of the figure are more rounded. For certain values of x (in the
neighborhood of 0) there is even a suggestion of a dumb-bell or hourglass
shape. We shall refer to these configurations as pseudo-ellipsoids, or as
Beringer-Knox sheapes.

As the angular momentum is inereased beyond the first critical value
¥y the pseudo-ellipsoids which exist for x < x, become more and more
elongated under the influence of the centrifugal force until a second eriti-
cal value of y is reached, denoted by Yyr1- At this value of y the family
of triaxial pseudo-ellipsoids comes to an end by way of loss of equilibrium -
towards a reflection symmetric disintegration mode. If x 1is greater than
a second critical value of x, denoted by xg,0 (and equal to about -0.4),
the pseudo-ellipsoids are stable shapes up to the critical value yri, when
they cease to exist. If, however, X < Xea, the pseudo-ellipsoids lose
stability ageinst a reflection asymmetric disintegration mode along the:
critical curve denoted by yryrr in Fig. 6. This occurs before the dis-
appearance of the pseudo-ellipsoids at yyr, S0 that in the case of x < x o
the pseudo-~ellipsoids exist but are unstable against asymmetry in the regign
between yrpr and JyiI.

We may summarize the situation as follows: A sufficient amount of
rotation will always disintegrate a fluid mess, be it gravitating or charged.
The ¢ritical amount of rotation is, naturally, a decreasing function of x,
being given by the curve yy(x) for 0.8l $x <1, by yrr(x) for
-0.4 ¢ x £ 0.81 and by yrn(x) fop -m <x < 0.4,

The disintegration occurs by way of a logs of stability against a
triaxial mode in the first case, by way of a loss of equilibrium against a
and Dy T 1o

reflection symmetric mode in the second case, way o 85 of stabilit
against a reflection asymmetric mode in the third case. Note the ai tinction
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between loss of gtabllity and loss of equilibrium, Loas of stablility in a
family of equilibrium shapes means that for a parameter (e.g., ¥) in
excesg of a critical value an equilibrium shepe exists but has changed from
——gtable—tounstable,17e., the second derivative of the energy has changed
sign. Loss of equilibrium means that the family of equilibrium shapes has
ceased to exist: with the parameter in excess of the eritical value the
condition for equilibrium, &E = 0, cannot be satisfled, i.e,, the condition
of the vanishing of the first derivative of the energy has no (real) solu-
tions. As noted before, when we say "unstable™ we mean "secularly unstable®.

Finally a note about the astronomlical limit x = -m, or L =0, The
situation is similar to the case of -» < x< x,, in that lncressing
angular momentum leads to a loss of stability against a reflection asymmetric
mode. Nevertheless the case of zero surface tension (x~1 = 0) 1s a speecial
cagse, different from the case of a finite surface tension, however small,
in that for x~1 = 0 the Jacobi ellipsoids are shapes of equilibrium for
any value of y, even exceeding yyr. In this (astronomical) case yry does
not mark the end of the ellipsoids {a loss of equilibrium) but merely a
loss of stability against a reflection symmetric disintegration mode. More
about this later.

Now let me amplify this summary by discussing more fully various
regions in the x-y diagram.

4. NONROTATING NUCIEI, y =0, x>0

Let me start with the simplest example, the case of a nonrotating
idealized nueleus. If one is asked what are the configurations of equilib-
rium of a nonrotating, uniformly charged drop, the obvious answer is: a
sphere. A sphere is a shape of equilibrium for any amount of charge on the
drop, i.e., forany value of x. This isn't the complete answer, however,
since n equal spherical fragments dispersed to infinity are also equilib-
rium configurations. It follows that in the many-dimensional configuration
space of the gystem there will be many potential energy hollows, one for
each n. (You may verify trivially from the definitions of &g and o
that for n equal fragments at infinity ¢g = nl/3, o1 = n-2§3 so ’che
energy of the nth potential energy hollow is given by

e = 2/3e22n?3

This simple equation tells interesting things about the relative
depths of the hollows. For example one learns the important fact that the
sbsolute minimum (the lowest hollow) for any given x 1is the one corres-
ponding to approximstely n = 4x.

The realization that the potential-energy landscape has many hollows
leads to an important discovery. Thus it is a simple topoclogical require-
ment that if you have several hollows in a landscape then there must be
saddle-point passes between them. The simplest case is a one-dimensional
landsecape: if a continuous curve has two minima there must be a maximume-a
barrier--between them. (Essentially Rolle's theorem.) For example let us
focus attention on a sequence of deformations leading from a single charged
spherical drop to two equal fragments at infininte separation. Figure 7
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indicates how the two minima must be separated by a maximum, corresponding
to the so-called Bohr-Wheeler saddle-point shape for nuclear fissiocn. To
be specific, -the configuration of a lead nucleus at the Bohr-Wheeler saddle
point is a somewhai necked-in cylinder with rounded ends--a little 1like an
hour-glass figure with two equal bulbs, The energy of this shape is a mexi-
mum with respect to the division coordinate, but a minimum with respect to
other shape coordinates (e.g., an asymmetry coordinate, which changes the
relative sizes of the two bulbs of the hour-glass figure),. Figure 7 illus=-
trates further that even though the saddle shape is stable with respect to
small changes in the relative sizes of the bulbs, a sufficlently large
asymmetry makes the energy decrease again, after passage over & mountain
top. The mountain-top configurstion of a nucleus-wan asymmetric hour-glass
figure with unequal bulbs-~is called the Businaro-Gallone shape and is of
importance for the question of "fission asymmetry"--i.e., whether an ideal-
ized nucleus would divide into equal or unequal pieces. Thus a central
problem in the early years of the theory of nuclear fission was, first, the
tracing out of the Bohr-Wheeler saddle-point shape (and the associated
barrier height) as a function of the fissility parameter x and, second,
the tracing out of the Businaro~Gallone mountain tops. Many authors have
contributed to the solution of this problem. Figure 8 shows some calcula-
tions of saddle-point shapes from Ref. 5. The .shapes range from tangent
spheres for x = 0, through hour-glass figures, to spheroids and finally a
sphere at x = 1. As x tends to 1 and the saddle shape approaches the
sphere the height of the potential energy barrier against fission decreases
and finelly vanishes at x = 1. This is illustrated in Fig, 9, taken from
Ref. 1. You may veryify by using Eags. (5a) and (5b), expanded to the
leading power of the eccentricity, that the loss of stability of a charged
gphere does indeed oceur at x = 1. With a 1little more trouble, by expanding
to the next power in e , you may also calculagg )from these expressions that

the barrier height for fission, in units of Ex“/, is given by
Barrier 98 ( 3
= 1 - x)° + higher powers of (1 - x) . (6)
g0 1

When 1 .- x is not small this formula is not applicable and numerical
methods have to be resorted to in order to calculate the barrier heights in
their dependence on x. Numerical methods, using digital computers, were
also necesgsary to trace out the behavior of the Businaro-Gallcone mountain
tops, and to establish the important result that they exist only if =x is
greater than 0.396. (A consequence of this is that the Bohr-Wheeler
saddle shapes are stable against reflection asymmetric deformations for
x > 0.396 and unstable for x < 0.396.)

It would be too cumbersome for me to display all these symmeiric and
asymretric shapes in detail, so let me show you & condensed summary of the
behavior of the Bohr-Wheeler and Businaro-Gallone equilibrium shapes as
functions of x.

Figure 10 shows just the major and minor semi-axes, essentially the
tip-to-center-of-mass distance and the neck radius of these elongated

figures. In the upper part of the figure you see the major semlaxis
of the Bohr-Wheeler shape as it increases at first with increasing x and

then, rather suddenly, begins to decrease around x = 2/3, finally tending
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to 1 {(the sphere) at x = 1, The Businavo-Gallone shapes, being reflec-
tion asymmetric, have two unequal tip distances, indicated by the dashed:
eurve which branches off (bifurcates from) the solid curve at x = 0,396,
The lower part of the figure shows the behavior of the neck radius,

Through such numerical studies the properties of the Bohr-Wheeler
shapes are now known adequately., But the story of the Businaro-Gallone dumb-
bells is not completely cleared up even today, It is only relatively
recently that one realized that they probably disappear again for x
greater than about 0.8, so we have the peculiar result that a charged drop
possesses a Businaro-Callone asymmetric shape of {unstable) equilibrium only
if its fissility parameter is between sbout 0.4 and 0.8 (in round numbers).

Let me now glve you a few examples of the relevance of this theory of
the equilibrium shapes of an idealized charged liquid drop to nuclear
physies. To begin with, Fig. 11 illustrates how the sum of a volume energy,
a surface energy and an electrostatic energy of the stable spherical equilib-
rium configuration of an idealized liquid drop reproduces the prineipal
features of the nuclear binding energies. (The quantity plotted in Fig. 11
is the "mass decrement”, closely related to the nuclear binding energy.) The
curve is a liquid drop model fit to the experimental data. The deviations,
up to ~ 12 MeV, are caused by nuclear "shell effects", which set a limit to
the applicability of the liquid drop model. The total binding energy of a
heavy nucleus is almost 2000 MeV, so on a gross scale the fit is satisfactory.
On a finer scale one has to worry about the shell-effect deviations. This
is illustrated in the lower part of Fig. 12, where the deviations from the
liquid-drop model fit to nuclear masses are shown for some heavy nuclei.

The largest deviation is at the "doubly megie" nucleus P'bzos, where the
shells at N =126 end Z = 82 give an additional binding of some 12 MeV.

The upper part of Fig., 12 compares the experimental and calculated
masses for the same set of nuclei, but when their shapes are the deformed
Bohr-Wheeler configurations instead of the near-spherical ground states.

As expected (from the theory of shell effects) the deformation seems to have
destroyed the extra shell-effect binding, and the liquid drop theory now
reproduces the masses to within a couple of MeV. The increase of the
saddle-point masses with decreasing x 1s essentially that predicted by the
barrier formula, Eq. (6).

It is from such fits to nuclear ground state and saddle-point masses
that one estimates that the surface energy coefficient of nuclei is about
1 MeV/fm? or, equivalently, that the surface energy of a nucleus with mass
mmber A is about (18 MeV)A2/3. Knowing this fact we may calculate the
fissility parameter of a nucleus with mass number A and charge Ze as
follows:

(Ze )2 (the electrostatic energy of a uniformly chaz;ged
R sphere- of radius R)

(0)

Ego) = 18 223 wev.
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Remembering that R = 1,2 A% fm and 2 = 1.44 MeV fm (1 fm = 10722 cm)
we £ind )
X = _E_Im ™ %--Z;- in round numbers,
Zg

As we saw, the barrier against nuclear fissiog vanishes at x = 1,.which we
can now translate into the statement that (2</A) € 50 for stability )
against fission. This is a most fundamental prediction of the liquid drop
theory of nuelei, for it provides an interpretation of the termination of

the periocdic system of chemical elements somewhere in the vicinity of atomic
number 100. The basic reason why there are only some 100 elements found

in nature is that (even after stabllity against alpha and beta decay has been
assured) the intensity of electrification for heavier nuclei begins to
violate the liquid drop stability ecriterion x < 1.

I have given you only a few specific examples of the application of
.the liquid drop theory to.nuclei. To get a broader perspective let me say
that in the last 10 years we have learned how to calculate the potential
energies of nuclei, in their dependence on N, Z and the nuclear shape, with
an accuracy of sbout 1 in 1000. This has been possible in virtue of a two-
part approach, where shell corrections of about 10 MeV are added to a smooth
background of hundreds of MeV. This smooth background, an indispensable
part of the nuclear energy, is provided by the model of a charged liquid
drop. .

5. ROTATING NUCLEI AND THE PLATEAU CASE, x> 0, y>0Q

If an uncharged globe with surface tension is rotated;-it flattems
at first into an oblate pseudospheroid which, with increasing angular momen-
tum (inecreasing y), eventually goes over into a torus. (See Fig. 13.)
Well before this happens, at the critical value y; equal to 0.2829, the
cblate shape becomes secularly unstable towards conversion into a triaxial
pseudo-ellipsoid rotating about its shortest axis, amalogous to the Jacobl
ellipscid. In contrast to the Jacobi ellipsoids, the family of pseudo-
ellipsoids comes to an end at the critical value ¥y, equal approximately
to 0.785 for x = 0. (See Fig. 6.) For uniformly charged (nuclear) drops
the critical values y7 and yyp decrease with x. Figure 14 gives some
details of the case x = 0.3, cofresponding to nuclei in the general
vicinity of atomic numbers Z = 35. The major semiaxis Rmu/R for the
pseudo-spheroidal (Hiskes) shapes increases gradually with y. At y = 0.18
the pseudo-ellipsoidal (Beringer-Knox) shapes bifurcate. The curve for the
semimajor axis of this family continues to increase with y up to the
eriticel turning point yry, where it goes arcund a bend. Afier the bend
the curve describes the semimajor axis of the triaxial saddle-point shape
(the Pik~Pichak saddle) for fission. This shape is the generalization to -
the case with angular momentum of the hour-glass Bohr<Wheeler saddle, The

= 0 member of this family of Pik-Pichak saddles is in fact & Rohr-Wheeler
shape.

Figure 15 gives an indication of the actual appearance of these shapes
For example, in the upper right-~hand part the sphere labeled H (for Hiskes)
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i3 the equilibrium shape and the hour-glass figure PP (for Pik-Pichak) is
the saddle-point shape for y = 0. At y = 0.16 +the Hiskes shape hag flat-
tened intc a pseudo-spheroid and the neck of the Pik-Pichak shape has thick-
ened. At y 0,24 the stable ground state i1s now a Beringer-Knox psuedo-
ellipsoid. For ¥y = 0,4 the Beringer-Knox shape shows gome necking and is
about to coalesce with the Pik-Plchak saddle shape. All the Beringer-Knox
shapes and all the Pik-Pichak shapes (except the cnme for y = 0) are slightly
gidimal& In the figure only tne mean section of these triaxial shapes is
ndicated.

A practical application of these calculaticns i1z the prediction of
the existence of "super~deformed" nuclei, elongated into cylinder-like
shapes with a ratioc of axes of about 2:1 by the centrifugal forces arising
from the collision of two nueclei. As an example the bombardment of a Si
target with Ar ions of about 170 MeV energy might lead in a fraetion of
the collisions to super-deformed compound nuclei.

The discovery of such nuclei, stretched out by the centrifugal force
into triaxlal shapes, so closely analogous to the classic Jacobi ellipsoids,
would be an exciting event. So far insufficient effort has been devoted
to the identification of such nuclei and they have not been seen experi-

mentally.

6. ASTRONOMICAL LIMIT x + -», y >0

Let me now review the left-hand edge of our filing cabinet: the
clagsic problem of a rotating gravitating mass (without surface tension).

First a small change in notation.- Since there is now no surface
energy the ratic of E to the gravitational energy of a sphere is a
natural parameter. Thus we introduce

) EéO) E1(=.O) (0) 1y
‘TGT 'm—m 73

This parameter is a measure of the disruptive centrifugal force
compared to the gravitational cohesion. (It is half the tangent of the
angle to a point x,y in the x - y plane, messured clockw'ise from the
negative x-axis.)

As you know a gravitating mess with small angular momentum (small %)
assumes the shape of an oblate spheroid {the Maclaurin spheroid). Such
a spheroid remains a shape of equilibrium for all values of t, flattening
more and more towards a thin disec as t tends to infinity. In 1834 Jacobi
made the startling discovery that if the angular momentum exceeds a certain
eritical value (t > 0.192) a triaxial ellipsoid is also a configuration
of equilibrium, and in fact secular stability passes from the Maclaurin
to the Jacobi shapes. . Towards the end of the last century Poincaré showed
that as one moves along the Jacobl sequence of ellipscids, other distinect
families of equilibrium shapes bifurcate at definite values of the angular
momentum., The first such crossing occurs at ¢ = 0.316. For wvalues of +
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less than 0,316 there exist, in addition to the Maclaurin and Jacobl
ellipsoide, also reflection-asymmetric ("pear-shaped") figures of equilibrium,
At % = 0,486 another crossing occurs, this time by a reflection symmetric
family. For + » 0,486 +these shapes have the appearance of a Jacobl
ellipsoid modified by a necking or waist in the middle, and for +t < 0.486
they look like a Jacobi ellipsoid with a bulge in the middle and two neckings
on either side. (One might give Paul Appell's name to this family.)

Further such crossings at t = 0.903, 1.161, etc. correspond to higher
ellipscidal harmonic ripples on the basic Jacobl figure. (I have called
them Humbert and Orlov families, respectively, after two mathematicians who
contributed to locating their bifurcation points).

Figure 16 summarizes ihe behavior of these families in the usual way
by plotting the semi-major axis as a funetion of t. Also shown in Flg. 16
is a further family of equlilibrium shapes, the system of two equal fragments
rotating about their common center of mass (Darwin's binary "star” system).
In this configuration of equilibrium each half has to a good approximation
the shape of a triaxial ellipscid. The length of the whole figure goes to
infinity with incressing angular momentum. With decressing angular momentum
the two "stars" aspproach each other and, finally, as the centrifugal force
becomes tod weak to support the increasing gravitational atiraction, the
family of Darwin's binaries comes to an end around t = 0.484. Combining
some of Jeans' early speculations with our own more recent studies, I have
sketched in (as a dashed curve) the probable fate of this family. After
bending out at t = 0.484 it probably bends back again at t = 0.65
(this value is not known accurately), to join the dumb-bell-like Appell
family of shapes! We anticipete a similar connection between the Orlov
family and a three-star family (a system of three colinear fragments with
reflection symmetiry roteting about the common center of mass ).

The most important feature of Fig. 16 is the eritieal value t = 0.316,
where the Poincaré pears bifurcate. Its physical significance is that :
beyond this value the Jacobi ellipsoids are unstable and any additional
angular momentum would make them disintegrate. A lot has been written in the
past 100 years about the question what a Jacobi shape would disintegrate
into, and the question remains unanswered. There are two aspects of the
problem that have not been stressed, as far as I know, but which seem -
obvious when you exploit the snalogy of this problem to the phenomenon of
nuclear fission. The first is that the Poincaré pears are saddle-point
shapes in the same sense that the Bohr-Wheeler dumb-bells are sEﬂEEe—point
shapes, i.e., they both determine the barrier inst disintegration for a
system that has not yet reached the 1imit of sta%:.' Tity (which l%ﬁt is given
by x =1 in the nuclear case and t = 0.316 in the gravitating case).
From this point of view it is strange that the Poincaré pears have received

‘8o little attention once it was found they were unstable. In the nuclear
case, you will remember, the tracing out of the unstable Bohr-Wheeler
saddles was the outstanding problem of fission theory. By contrast, in the
gravitational case, we still don't kmow what happens to the Poincaré pears
as t 1s decreased below 0.316! This is a fascinating riddle. It seems
rather certain that for t = 0 +the Poincaré peers no longer exist, so
where and how did they disappear? ’
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The second neglected aapeet of the question how the Jacobl ellipsoids
might disintegrate is what lles beyond the Polncaré saddle-point pass?  In
particular, what is the absolute minimum in the effective potential energy

towards which the disintegrating Jacobi~ellipscid~—Is presumably drawn after
overcoming the saddle pass in the barrier against disintegration? In the
nuclear case the absoclute minimum in the energy is n equal fragments at
infinity, the optimum value of n depending on the value of x (approxi-
mately nogt = 4x). In the gravitational case it does not seem ever to have
been stated clearly what the absolute minimum in the effective potential
corresponds to. The answer is pathological but instructive. Thus in order
to reduce E in Eq., (1) to itz lowest possible value (in the case of
negative x) one should divide the total mass into one large spherical part
and one very small part (a "satellite"), and place the small part so far
away that, despite 1ts smallness, the moment of inertia of the whole figure
is very large. By making the size of the satellite tend to zero but its
distance tend to infinity sufficiently rapidly one can make the moment of
inertia tend to infinity, and thus make the rotational energy vanish. One
thus arrives at a configuration whose gravitational and surface energies
are no greater than those of a single sphere, but whose rotational energy
has been reduced to zero by the artifice of making the satellite carry all
the angular momentum at a vanishingly small rate of rotation.

This simple cbservation, that the absolute minimum in the effective
potential corresponds to a very asymmetric configuration of a small satellite
at infinity, may be the basic reason why the Jacobi ellipsoid becomes
unstable with respect to an asymmetric (pear-shaped) deformation. This
asymmetry, which makes one tIp of the ellipsoid more pointed (and the other
less) may be an expression of the underlying urge of the rotating figure to
emit a small satellite and send it off to infinity. This speculation also
suggests a solution to the riddle of what happens to the Poincaré pear as
+ i3 decreased below 0.316. My guess is that as the tip of the Pear
becomes more elongated with decreasing t it eventually reaches out to the
"neutral point" in the potential isurrounding the pear (the neutral point in
the sum of the gravitational and centrifugal potentials). Such neutral
points are always outside the surface of a Maclaurin or Jacobi ellipsoid,
but for the Pear there is no reason why the elongating tip should not touch
the neutral point. Physically this means that at the tip the centrifugal
force has overcome the gravitational attraoction and matter begins to stream
out from it. (4n analogous sireaming occurs when a dielectric drop is put
between the plates of a condenser, and the electric field increased. The
drop stretches at first into an elongated pseudospheroid, but at a ¢ritical
field the tips sharpen up and begin to emit a stream of droplets. See
also Ref. 6.)

A further thought which is suggested by these considerations is that,
in general, the configurstion of an infinitesimal satellite placed at the
neutral point (or the lowest neutral point, if there are several) i.e., a
gatellite in synchronous orbit around the central body, is a configuration of
equilibrium whose formal significance is that of a saddle-point pass that
must be overcome when converting a given rotating configuration of equilib-
rium into the absolute minimum configuration of a sphere and a satellite at
infinity. Thus, in addition to all the families of equilibrium mentioned
so far, there is a matching set of "Ghost Families"”, identical %o the
basic set but with an infinitesimal satellite (or satellites) in a synchro-
nous orbit. ‘
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Figure 17 is an att to summarize these speculetions, The maximum
radius vector (tip-distance) of the Ghost Families is the radius of the
synchronous orbit and thus the Meclaurin and Jacobli CGhosts are shewn as

-~ ——daghed-curves-sbove the conventional famillies, In the case of the Poincaré
pear the elongating tip meets its Ghost in a typlcal limiting point (when
the tip touches the synchronous satellite), with the result that no Poincaré
pears exist below some critical value of %, yet to be determined. Similar
turning points probably mark the limits, on the left, of the Appell,

Humbert and Orlov families as their tips touch the relevani neutral points,

7. THE LIMIT x* + 0. THE BROKEN SYMMETRY HYPOTHESIS

A puzzle arose in tyying to fit together the case of large negative x
and the astronomical case of x™1 = 0. Thus for large but finite negative
x values our calculations indicated that the rotating triaxial Berimger-
Knox pseudo-ellipsoids come to an end at a finite value of the angular
momentum, given by I110 which corresponds to a limiting t of about
0.6-0.7. But in the @stronomical case the Jacocbl ellipsoids are known to
continue on to_infinite values of +. What then happens between 1
small, and x~1 gero s, 1.e., what is the difference between the case of a
finite surface energy, however small, and no surface energy? I think the
answer is as sketched in Fig. 18. In the case of no surface energy the
Jacobi and Appell families cross (at t = 0.486), as discussed in Sec. 5.
When the surface energy is switched on the crossing is, I believe, broken,
and the Jacobi-like shapes continue on to become the Appell symmetric dumb-
bells, whereas the double-waisted Appell figures merge into what used to be
the Jacobl shapes beyond the crossing. Formally such a breaking of the
crossing between families of solutions is well-known, for example in atomic
or nuclear.spectroscopy. Crossings (of eigenvalues) are in fact the excep-.
tion rather than the rule and are only possible if special symmetries are
satisfied. I believe the analogy carries through to the present situation.
(In both cases the formal problem is the diagonalization of a secular
determinant.) It is only because of the special symmetry (in = generalied
sense) of the pure inverse-distence problem (whieh also results in pure
ellipsoids being exact solutions) that a crossing between two families like
the Appell and Jacobl shapes is possible. The addition of the slightest
amount of surface energy breaks this symmetry end the families no longer
cross. From this point of view the astronomical case, which had been
studied for centuries, is an atypical situation, and a study of the case
with surface tension is important, among other things, in restoring the
proper perspective on the general problem.

With the above hypothesis it is possible to conmnect the case with
surface tension with the astronomical case in a way indicated in Fig. 19.
The continuation to minus infinity of the eritical curve ¥ I(x) in Fig. 6,
where the Beringer-Knox shapes bend back into the Pik-Pi shapes (see
Fig. 14) corresponds to the critical value +t = 0.65, where the Appell shapes
bend down to become the Darwin-Jeans shapes. (Fig. 16) The second bend
in Fig. 16 at 1 = 0.484, where the Darwin-Jeans shapes become the Darwin
bineries, may be traced to finite values of x and is indicated as the
eritical curve v in Fig. 6.
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The continuation to minus infinity of the dashed part of the curve
yrrr{x) in Fig, 6, where the Beringer-Knex shapes lose stahility against
asymmetry, correspands to the critical value + = Q,316, where the Jacobl -
shapes loge stability against a pear-shaped deformation, According to our
broken symmetry hypothesis there ig no eritical curve for finite values of
x corresponding to the crossing at + = 0,486 of the Jacobl and Appell
familles., On the other hand, one ia led to the prediction (quite umexpected
unleas cne is aware of the astronomical limit) that in the case of finite
(negative) x there must exist further families of equilibrium shapes
beyond the limlting angular momentum Yrr. These families would correspond
to the astronomical Jacobi family and 133 bifurcations, but with the cross=-
ings at even harmonic bifurcations (Appell, Orlov ete,) broken according to
the scheme of Fig. 18. The fate of these families as the surface tension
increases is completely unknown.

8. LOOSE ENDS

I have already mentioned several questions and puzzles that have not
been answered satisfactorily. I should also say that many of the results
I quoted are only approximate and in some cases quite uncertain. In addi-
tion there is a whole list of familles of equilibrium shapes that I have
not even mentioned, some of which have been studled to a limited extent.
Lot me make a partial list:

1. Equilibrium shapes for y < O.

2. Equilibrium shapes in the form of spherical harmonic distoritions
of a sphere, which cross the spherical family as x 4increased beyond 1.
(These crossingsare like the infinitely meny Poincarg crossings of the Jacobi
ellipsoids. )

3. Families of multiply-necked cylinders which for y =0, x+0
tend to strings of equal spheres in contact. Branchings from these families
that occur as x increases.

4e Families which for y =0, x+ 0 +tend to other arrangements of
equal spheres (triangular, tetrahedral, ete.).

5. Thick-walled spherical shells {nuclear bubbles); a pair of such
configurations appears when x exceeds 2.0216.

6. Unequal spherical fragments at infinity.

The list could be extended indefinitely.

CONCLUSICN

I hope that I have succeeded in giving you an impression of the rich~
ness of the problem defined so innocently as the search for equilibrium
shapes of a rotating mass. Even in the nuclear case with no rotation one is
drawn by stages from thinking of a single sphere as the solution, to the
inclusion of many equal fragments at infinity as formal solutions, and then
through topological arguments to the realization that there must also be
dumb-bells with equal or unequal bulbs and many other families as well.

With rotation included the mathematical structure acquires baroque ramifica-

tiona. One of the Joys of disentangling this structure has been the unifica-
tion of the astronomical, hydrostatic and nuclear problems, and the insights

gained by confronting the different fields.
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let me end hy stressing that the problem of the equilibrium configura-
tions of a rotating drop or bubble with Inverse-distance interactlons
defines a besutiful mathematical structure which has been only partially
explored, Even gross quelitative questions remain unsanswered, and there is
a serious lack of quantitative results,
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Pigiire 2. A solidified glass droplet, about 1 mm in length, from the lunar soil.
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Figure 8. Nuclear saddle-point shapes in their dependence on th‘ fissilicy
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Figure 9. The deformation energy of three heavy nuclei with fissility parameters,
0.6, 0.8, and 1.0. At x = 1.0 the fission barrier vanishes.
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Fig. 12. The lower part
shows the deviations of
the ground state masses
of heavy nuclei from a
liquid drop model fit.
The upper part compares
the experimental and
calculated masses for
the same nuclei deformed
iato their saddle-point

Ground ~state masees

configurations.
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Fig. 13. Axially sym-
metric equilibrium shapes
for uncharged (Plateau)
globes as function of

the rotational parameter
y. (The axis of sym-
metry is vertical.)
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Fig. 14, Major semi-axis for Hiskes oblate shapes, Beringer-Knox triaxial
shapes, and Pik-Pichak saddles as functions of y, for x = 0.3.
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Fig. 15. Ground states (heavier lines) and saddle shapes (lighter lines) for x = 0
and x = 0.3 and various values of y. 1In all figures H refers to "Hiskes", Bk to
“"Beringer-Knox" and PP to "Pik-Pichak". Hiskes shapes have axial symmetry about the
axis of rotation (vertical axis). The Beringer-Knox and Pik-Pichak shapes shown have
approximate symmetry about the horizontal axis and only a mean transverse section is

displayed for these shapes. (For x = 0, y = 0 the saddle shape is two spheres in
contact.) :
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VIBRATIONAL FREQUENCY OF A NON-CONDUCTING
CHARGED LIQUID DROP

C. Y. VWong
Oak Ridge Natiomal Laboratory
Oak Ridge, Tennessee 37830

and

H. H. K. Tang'
Kalamazoo College
Kalamazoo, Michigan 49001

ABSTRACT

We consider the vibration of a non-conducting liquid drop endowed with a
surface charge, in supplement to the well-known case of a conducting liquid
drop studied by Lord Rayleigh in the last century. It is assumed that there
is no charge conduction except by hydrodynamical transport due to the flow
motion. It is found that the surfaca flow is of such a form that the charge
again maintains an electrostatic equipotential at the surface of the drop at
all instants of the vibrational motion, and the same Rayleigh result is ob-
tained. Thus, the Rayleigh result {s applicable to more general classes of
liquid drops, irrespective of the conductivity of the liquid in these two
limitsa.

INTRODUCTION

) The vibrational frequency of a charged liquid drop under the restoring
force of its own surface temsion was first derived by Lord Rayleigh (1) about
a hundred years ago. The case considered was, in Lord Rayleigh's own words,
for "liquid conducting masses charged with electricity". Implicit in the as~
sumption of a conducting mass was that the dielectric relaxation time was much
shorter than the mechanical vibrational period so that the charge could always
redistribute itself to maintain an equipotential surface at the surface of the
drop (see, for example, the re-derivation of Lord Rayleigh's result by
Hendricks and Schneider (2)). Recent tests of Rayleigh's relation for a
charged water drop indicated good agreement with experimental measure-

ments (3,4).

It 18 of interest to study the influence of the conductivity of the
liquid on the wibrational frequency. In the case of water, conductivity in-
creages with the degree of salinity; one wishes to know whether the
vibrational frequency may depend on the degree of purity of water under con-
sideration. As

% .
Research .sponsored by the U. S. Atomic Energy Commission under contract
with Union Carbide Corporation.

+Present address: Yale University, New Haven, Connecticut.
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the vibrational frequencies have been used to estimate the drop size and de-
gree of electrification of water drops in the atmosphere by means of the back~
scattering effect on radar (5), such a question is of practical interest. On
the other hand, there are also insulating liquids which can be readily
charged (6). For these liquids, the dielectric relaxation time can be large
compared to the mechanical vibrational period. One would be interested to see
if the Rayleigh relation needs modification which may have some bearing on the
electrohydrodynamical spraying process studied by many authors (6,7,8).

We consider a non~viscous liquid drop endowed with a surface charge. The
charge is assumed to be uniformly distributed when the drop assumes its equi-
1ibrium spherical shape. We study the case in which the charge element is not
free to move except to follow the motion of the surface element in which it
resides. We shall see that this motion of the charge in the liquid drop re-
sults again in an equipotential surface at the surface of the drop at any in-
stant of the vibrational motion, even though the charge is not free and moves
by hydrodynamical transport only. Thus, surprisingly enough, the vibrational
frequency of a charged liquid drop turns out to be independent of the con-
ductivity of the liquid in these two limits!

HYDRODYNAMICAL FLOW AND VIBRATIONAL FREQUENCY

The starting point of the present discussion is the Euler equation for a
fluid element in the interior

du &
ag-wkﬂ W

where u is the velocity characterizing the motion of the fluid element, oy the
mass density, Sp the deviation of pressure from the equilibrium value. We
linearize the Euler equation by assuming the amplitude €, to be small, A
normal mode is specified by describing the sharp surface as

{wt
r=R +ece Ym(e,w (2)

where R, is the radius of the liquid drop in equilibrium and Y, (9,4) is a

spherical harmonic and w gives the frequency of the vibrational motion. We
further assume that the mass is incompressible and the density is uniform.

Thus, from the equation of continuity, we have

Veu = 0. )

This condition, together with the solenoidal nature of the restoring force
vector leads to the important implication that § is purely poloidal
(Chandrasekhar (9)) (which means that U can be written in the form

T = Vx[V x (a/r)], where ¢ is a scalar function). From this, the mathe-
matical analysis can be considerably simplified. In spherical coordinates,
the various components of o (for the poloidal solution) are:
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- oot 2(2+1) ‘
u =e : U(r) Yzm(a,ﬂ (4a)
r
(34 (9.¢)
o odut L duge) Soamr 2P
g = e r dr ae T (4b)
)4
o odut 1 du(r) *im
Yy =@ Tsine dr 3¢ (4e)

where U(r) is some function to be determined by the boundary conditions.

Taking the divergence of Eq. (1), we have, from Eq. (3),

72 [82] . o, (5)
%t

A golution to this Laplace equation satisfying the boundary condition at the
origin is

iwt

sp/oy = (#41) Tr'T, (8,4) (6

where Il is a conatant to be determined.

Replacing each side of Eq. (1) by its defining function as in Egs. (4)
and (6), we have

2+1
iw U(r) €, IIO r . N

Thus, the radial'componenc of the velocity is
c eimt:

w == I 2(a+) " Y NCHON ®

There are two boundary conditions to be satisfied, First, from the re-
quirement of consistency between the radial component of the velocity (Eq. (8))
and the form of the boundary (Eq. (2)), we have

2 El

w = R(241) 1 R 9

The second boundary condition requires the balance of pressure at the
boundary as arising from surface tension and the electrostatic stress. For the
latter quantity, it is necessary to know how the charge redistributes itself.
In a conducting liquid, the charge is free to move to maintain an equipotential
at the surface of the drop. This was the case considered by Lord Rayleigh. On
the opposite extreme, suppose the conductivity of the liquid is such that the
charge cannot move freely, them, a surface charge element must follow the
motion of the surface element in which it resides. What will be the instan-
taneous charge distribution?
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It is easy to follow the hydrodynamics of any fluid element. From Eqs.
(4), (7) and (9), we know that a fluid element at (r 8 ,4) ) is mapped into
(r,6,4) by

=1
it r
(T =T, tee Rz_l Yzm(""” (10a)
' [}
R T w7 R=2 3Y. (8,9)
fwt m*?
4 8= 0, tee 1 a0 (10b)
o
-2 3Y, (8,4)
- jot ¢ 2m*?
om0yt e L simsg ' (10c)

o

A surface element at point (R 6 ,¢ ) goes into another surface element at
point (R,0,¢) as follaws

int
R=B +ce' v, (0,6) (11a)
iwt
0= 90 + Eoe (aYzm/ae)/mo (11b)
bmo +e eimt(aYlm/3¢)/szsine. (11c)

On assumption of no conduction except by mechanical transport via the hydro-
dynamical flow, the surface charge density p. is related to the uniform equi-

librium density pé") by Q

© & 2 sin0_ D9, )

Pq = Pq 2 TR T ¢+ Q2

where D(9,,6,)/D(8,¢) is the Jacobian of the transformation. From Eqs. (lla),
(11b) and (lic), we obtain the surface charge distribution at any instant of
the vibrational motion

(o)

iwt
pQ pQ [1+e°e

(2=1)Y,_ (8,6)/R 1. a3

This charge distribution is exactly the same if the liquid is a conducting
"1iquid (see Hendricks, et al. (2)). One therefore obtains the important result
that whether the 1iquid is ce conducting or not, the hydrodynamical transport
carries the charge so that the surface of the liquid drop is also a surface of
electrostatic equipotential as a result of the tramsport. In fact, a surface
charge in the form of Eq. (13) gives rise to a potential :

- X0 1w
Vc(r) R forr < R +ee Yy

im a4
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=1
R

iwt
and V (x) = _9..,,, kQ € X z-l-l Yz for r > R + soeim‘ Yo 15

where k is the Coulomh coupling constant (it equals (lm'e ) in the usual con-
vention) and Q is the total charge. The electric field a8 approached from the
outside 1is

e iut
el R e e v M (16)
o

The increment in pressure at the surface due to electrostatic interaction is

2 2
1 kQ kQ iwt
=p . B - — = (2~1) € e X, . an
2'Q'r 8 wR: lmRS o fm

Combining the contribution from electrostatic interaction and surface
tension (10), we have

= | (2-1) (242) —-- - (2-1) ——9—- c e th (18)
P lmpuk

From Eqs. (18), (5) and (9), we get the vibrational frequency

P.
M 1w
R te e ty -

2 )

2 _ (k1) (42T {1 - kO (19) -

3 (942)4nTR)

o
which is just the Rayleigh result.
DISCUSSIONS

We have shown that in the vibration of a charged non-viscous liquid drop,
the hydrodynamical transport of the surface charge results again in an
aquipotential surface at the surface of the drop at any instant. Thus, if the
liquid is non-conducting in the sense of having a large dielectric relaxation
time, the behavior of the surface charge is the same as in a conducting liquid.
One concludes that Rayleigh's result is more general than it was formulated.

Our discussion hag been limited to the inviscid case for which a potential
flow i3 possible. The fact that an electrostatic potential is again maintained
is probably intimately related to the potential flow of the fluid. Some dif-
ferences in the vibrational behavior due to differences in conductivity may be
expected in the vibration of a viscous charged liquid drop for which the flow
becomes rotational and the vorticities reside mostly at the surface. In a
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conducting liquid, a charge element is free to move to the surface even though
the surface fluid element may flow inside the surface. For a non-conducting
liquid, the motion of the charge toward the surface may not be fast enough,
and the electrostatic stress is modified as a consequence. As a viscous con-
ducting charged liquid drop follows the Chandrasekhar equation (9,11) based on
an instantaneous surface charge redistribution, the behavior of a viscous non-
conducting charged liquid drop will deviate from the Chandrasekhar equation.
This may be checked experimentally.
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SIMILARITIES AND DIFFERENCES BETWEEN VOLUME~-CHARGED (NUCLEAR) DROPS
:
AND CHARGED CONDUCTING (RAIN) DROPS
¢. F, Tsang

Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

August 1974

INTRODUCTION

The liguid drop model of nuclear fission was suggested (1) thirty five
years ago. The model has been very useful for the understanding of nuclear
fission data and has recently been found to be an important element in what
has come to ke known in nuclear physics as the Strutinsky method by which the
predictions on the masses and stability of the yet-undiscovered superheavy
nuclei are made (2).

There are two aspects of the model. The more difficult and less certain
ig the dynamical study of the liquid drop model. This involves assumptions
regarding the fluid flow patterns, the viscosity and other properties to be
assumed for the nucleus. Furthermore, the ligquid drop may undertake a great
variety of shapes, making the calculation very involved. In the last ten
yvears, various attempts (3) have been made to tackle this problem and I
believe .that these have only been partially successful and there is still the
basic question whether a nucleus is (dynamically) like a liquid drop at all.
on the othexr hand, the other aspect of the model, the statics, has been fairly
well established (4) and has demonstrated its value in nuclear fission in
many wdys. One studies basically the balancing of two forces present in the
deformable liquid drop, the Coulomb and surface tension forces. Some
works (5) include also the centrifugal "“force." No other properties of the
liquid drop such as short range correlations and flow patterns need to be
assumed in such a study. Indeed, it can be demonstrated (6) that the theory
represents a more general system in which a liguid drop is a special example.
This is what we call the leptodermous system, that is, a system with a thin
surface region and a volume region of uniform density. In all these studies,
the objective is to find the shapes of equilibrium of the system and their
energies. These can be either a stable equilibrium point (a minimim) or an
unstable equilibrium point (a saddle or a mountain top) in a multi-dimensional
space with co-ordinates representing various deformation parameters. By lcok-
ing at these equilibrium points a lot can be said about the system: whether
the system tends to remain a sphere or undergo fission, whether the system

o )

~.

~—
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Work performed under the auspices of the U. S. Atcmic Energy Commission.



86

prefers to divide into two, three, or four droplets, and, with some
generalization of the model, whether two droplets can coalesce into one.

With all that has been developed in the nuclear fission problem, it
would be interesting to apply it to actual macroscopic rain drops which are
electrically conducting and consider their shapes of equilibrium. This has
the great advantage over the nuclear case that direct measurements in
the laboratory on a drop can be made. Besides studying the rain drops on
its own merit, a parallel theoretical and experimental study of the conducting
drop may also throw light on the nuclear drop. Of course properties of the
charged conducting drop is not a new area of study. 1In 1882, Lord Rayleigh (7)
published a paper on the stability of a charged conducting drop under small
oscillations. Other studies are made more recently (8). However, in the
present workT we shall make a close comparative study of the nuclear drop and
the rain drop using methods developed in the liquid drop theory of nuclear
figsion.

In the next section, some basic concepts of nuclear fission theory (9)
will be described, before discussing, in the following section, simple
similarities and differences between volume-charged and charged conducting
drops. After that a method will be described to calculate the symmetric
equilibrium shapes of the conducting drop and the results will be compared
to those of a volume charged drop.

SOME BASIC CONCEPTS IN FISSION THEORY

Por an incompressible volume charged drop, two forces are acting: a
Coulomb force which tends to break up the drop and a surface tension which
tends to keep it together. A quantity of importance is then the ratio of the
Coulomb energy and the surface energy. One may define what is called the
fissility parameter, X, as

(o)

B 2 2
x = L= « £ (R « £ ’
233(0) Rz v

where Ec(o) and Eg () are Coulomb and surface energies of a sphere with charge

Q, radius R, and volume V. For x < 1, the spherical drop is stable with
respect to deformations and for x > 1, it‘ turns out that the forces are such
that the drop is in unstable equilibrium. The energy excess of a deformed
drop over the original spherical drop may be written as

?'rhi:_s work was done in collaboration with W. J. Swiatecki.
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o)
= s (-] < s (Bc -

(o)
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where Egq and Bo are the surface and Coulomb energies of the drop and the supex-
script (o) implies that ghe quantity is evaluated for a sphere; also Bg=
Es/Bg(") and Be = Ee/Ec(®). 'If £ is the energy excess in units of Es(‘”, then

6838-1+2x(3c-l). 1

In Fig. 1, we sketch the behavior of £ as a function of deformation
for a particular value of x < 1. The configuration at zero deformation, i.e.,
a sphere, is a potential energy minimum. The energy is increased as one
deforms the drop until a point is reached where the disruptive Coulomb force
is just balanced by the stabilizing surface tension. This point is called a
saddle point. It is unstable with respect to the deformation leading tq
fission (but is stable with respect to other deformations). Obviously the
curve will be different for different values of charge on the drop, i.e.,
different values of x (see Fig. 2). Thus for x > 1, the sphere is at a
potential maximum. '

Let &_ denote the difference in energy between the initial sphere and
the final fradgments at infinity in units of E (0}, For division into two
equal spheres which is illustrated in Figure 3, Er = 0 at x = 0.351. For
x > 0.351, g < 0, and for x < 0.351, &g > 0. 1In the general case of division
into n equal spheres, a general formula (4) may be written for £i. The charge
on each sphere is Q/n and its radius is (R3/n) 1/3 = g n'l/ 3. so that the
Coulomb energy of the n spheres is n multiplied by the Coulomb enexgy of each sphere:
3 (9[:1)2
E = n =

c 5 Rn~l/3

2
398 -2/3
® sr®

B =n2/3
c
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Total surface energy of the n sphere is

E_ = Yn. 4T(R /32, amr?ynt/3

thus
B_ = nl/ 3 .
s
Hence the energy excess over the sphere in units of Es (e) is
e N T YA (2)

Por each value of n, this equation gives a straight line relation between

and x. By studying the system of straight lines for various values of n,

the following can be deduced. For x < 0.35, the sphere has the lowest energy.
Por 0.35 < x < 0.61, the division into two spheres gives the lowest energy. For
0.61 < x < 0.87, the division into three equal spheres gives the lowest energy.
Finally; for 0.87 < x < 1.12, the division into four equal spheres gives the
lowest energy.

- In Fig. 3, we present the shapes of eguilibrium of a volume charged
drop as a function of the x values (10), so that we can compare them with the
results we are going to obtain for a surface charged drop. The abscissa gives
the fissility parameter x from O to 1. The orxdinate gives Ryry/R and Ruax/R as
a measure of the shape, where for an asymmetric shape radius Rypy is the
minimum radius of the neck of the drop and the two maximum radii Ryay are the
distances from the center of the neck (at its minimum radius) to the two

ends of the drop. For a symmetric shape the two maxium radii are equal.

. Along Rm/R = 1 is the sphere which is at a potential energy minimum
for all x < 1. The rest of the curves represent a family of reflection
symmetric equilibrium shapes and a family of reflection asymmetric equili-~
brium shapes. The two families cross each other at x = 0 396. Their shapes
are schematically indicated in the figure. A point to notice is that along
the symmetric family there is a fairly rapid change in the trend of Ryax/Ro
at x values around 0.7. It is found below that for a conducting drop a
similar change occurs at a larger value of x. The notation (1) and (2) in
the figure indicates whether the equilibrium shape is at (respectively) a
saddle (unstable in only one direction) or a mountain top (unstable in two
different directions).

COMPARISON OF A VOLUME CHARGED DROP AND A CHARGED CONDUCTING DROP

It is straightforward to apply the methods described in the last section
to a charged conducting drop. Thus the fissility parameter x can be defined
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similarly as the ratio of the Coulomb energy to twice the surface energy

The equation (1) for the energy excess § over a spherical drop

will be the same as for the volume charged drop case. Of course, the Coulomb
energies will now be evaluated on the assumption that the drop is conducting.

Three simple similarities may be pointed out.

(a) Por x = 0, there is no -charge on the drop so that the equilibrium
shapes are the same whether the drop is conducting or not., Aalso, it
turns out nontrivially that as in the case of a volume charged drop (1l), x =1
represents the transition point where the spherical drop is stable for x < 1
and is unstable for x > 1.

(b) A second similarity is apparent if we look at the enexrgy difference
Ekhfrom the initial to the final state when the drop is divided into equal
spheres. We have described this in-detail for a volume charged drop in
reference to Eqg. (2). When we make a similar study for a conducting drop, we
get a completely identical equation and the corresponding discussions are
applicable. The reason is that only spherical shapes are involved in both the.
initial and final states, and the Coulomb enerxgy of a volumelcharged sphere
. {(which is %Q /R) and that of a conducting sphere (which is ¥ Q /R) differ by
only a numerical factor, 6/5, that is the same for both states. Hence By and
By are the same for both cases and the same energy Eq. (2) holds good.

(c) It also turns out that the Coulomb energy of a wvolume charged

eliipsoid and that of a conducting ellipsoid differ also by the same
numerical factor. Thus, the Coulomb energy of a conducting ellipsoid is

given by (12
PR
1 .2
Ec’ZQ f [(a + A) (b + A) (e +A)] dai
[s]

N'H

so that
® 2
2

a-in[ [(a2+x) ®% + N (c2+A)] a
[+ 2 o .

where a, b, and ¢ are the lengths of the axes of an ellipsoid. This integral
may be carried out anmalytically in the case of a spheriod where two of the
axes are equal. Bc for a volume charged case is given (13) by exactly the
same formula. HencCe, if we make the drop to take on only ellipsoidal shapes,
then any conclusions about the statics of the volume charged drop will be
true for the conducting drop.
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The first difference between the volume charged drop and a conducting
drop can be found if we consider the division of the drop into two unequal
spheres at an infinite distance apart, one with volume BV and the other with
volume (1 - §)V. In Fig. 4 is plotted the energy change {p between the initial
and final states (14) as a function of B for various values of the fissility
parameter x. For B = 0 and 8 = 1 we get a sphere with volume V which is just
the initial state. For B = 0.5, we get two equal spheres. The energy change
is zero at x = 0.35 for B = 0.5, as was pointed out above in connection with
Fig. 2. Por a conducting drop Fig. 5 is found (14). .We note that here again
the energy is zero at x = 0.35 for B = 0.5. However, except for the points
at 8 = 0, 0.5, and 1.0 the curves in the two figures are very different. A
potential minimum for a volume charged drop occurs at 8 = 0.5 for x > 0.2,
but ‘a potential maximum for a conducting drop occurs at B = 0.5 for all x
values less than one. In the latter case minima occur at points where the
fragments are unequal. -

The major reason for the above differences is that the charge to mass
ratio for a volume charged drop is a constant, but for a conducting drop it
is not required to be a constant. This is also the underlying cause for the
second difference that appears when we try to find the configuration with the
absolute lowest energy for a drop with a given f£issility parameter x. For a volume
charged—drop;this configuration is n equal droplets at infinity (4) and the
number n depends on the x values of the drop-[Eq. (2)]. One would at first
expect that the same conclusion might hold for a conducting drop. But, as

"we shall show, for a conducting drop, the configuration at the lowest energy
is one with all the charges Q on the drop taken off and distributed among
many infinitesimal droplets at infinity. The total energy of the droplets
may be made to vanish and only the surface energy of the original drop is
left. The possibility of such a configuration is shown as follows. lLet %
of the original drop of radius R be taken off carrying all the charge Q.
This is then divided into m equal spheres, each with a charge Q/m. Thus for
each sphere the sum of the Coulomb and surface energy is

e 2/3 2 2
ity ()7 12w (3

Hence the total energy of the small spheres is m times this quantity:
2 -2/3 _19% , 173 -2
41R"Y m(nm) +33 (rm) m . m

2
- 477327 m]./3 n—2/3 - %%n1/3 m-2/3
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Now let us choose m « n®. The energy of the droplets is now equal to

2

1l .2s
411’3.2’{11 3

+ 2 2s
Q 3 3
Rn

wjn

1
*3

which is zero when n goes to infinity provided

1
+3 > > -
2 s +2

.

and the proposed configuration is obtained. In other words, we have made
the Coulomb energy of the given drop zero by dispersing the charge onto an
infinite number of infinitesimal droplets without increasing the surface
energy by a finite amount.

" PARAMETERIZATION OF A CHARGED CONDUCTING DROP

In this part of the work we shall try to determine the equilibrium
shapes of a charged conducting drop to be compared with those for a volume-
charged drop (Fig. 3).

. The calculation of the Coulomb energy of a conducting drop with an
. arbitrary shape is in general a difficult problem. However, it can be side-
stepped by requiring the-drop-to-assume a prescribed family of shapes,ﬁ'
" in fact, making the calculation of its Coulomb energy is a trivial matter. It
is well-known from the theory of electrostatics that the electric potential
due to a system of charges (total charge Q) at any point outside a given
equipotential, is the same as that due to a charged conductor with the
shape of this equipotential having a charge Q. Hence, if we require the
drop to assume the shape of an equipotential of potential a, its Coulomb
energy is just % aQ. If R is the radius of a sphere that has the same
volume as the drop and possesses the same amount of charge, its Coulomb
energy is 1 Q2/R. Hence we get )

2

B, = GR/Q .

The surface energy relative to that of the sphere, Bg, can simply be found
by calculating its area numerically. Hence for a given fissility x the -

H'This is a common practiced procedure in the liquid drop model of fission.

The true equilibrium points can be determined by looking at the convergence as
one enlarges the family of shapes. An independent condition on equilibrium
may also be used as illustrated below.
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energy of the drop is calculated [Eq. 1], and equilibrium shapes, whose
energies are stationary, are then determined.

For illustratiom, the shapes of equipotentials that enclose two
equal points charges are shown in Fig. 6, where the volumes of the shapes
have been normalized to the same value. We shall refer to these shapes as
the symmetric N = 2 family, since they are generated with two point charges
and are reflection symmetric. This figure displays a very restricted series
of shapes. However, it is easy to increase the possible shapes by generating
equipotentials of a larger number of point charges, which may be placed on
a straight line so that the sliapes are axially symmetric. The reflection
symmetric N = 3 family is generated with two equal charges situated at equal
distances on opposite sides of a third point charge. The shapes are shown
in Fig. 7. They include the symmetric N = 2 family. Similarily, we can go
on to N =4, 5, ... family of shapes.

In general, the N-family of axially symmetric shapes may be.specified
by giving the magnitudes of the N point charges and their positions as well
as the value of the potential on the equipotential we are looking at. These
are 2N + 1 numbers. However, not all these numbers are required to specify a
shape. Three numbers may be arbitrary: (1) The center of mass of all the
point charges may be at any point in space; (2) The total charge may be fixed
beforehand; (3) We can also present a scale by which the distances between
the point charges are measured. Thus, we are left with 2N ~ 2 parameters.
(For reflection symmetric shapes, the distribution of point charges and their
magnitudes are reflection symmetric with respect to the origin and we have
only N - 1 parameters).

However, the shapes generated even by a large number of point charges
are not general enough to represent an arbitrary shape. Thus, an oblate
shape cannot ‘be found in cur scheme. This raises the question whether the
equilibrium shapes we have determined are indeed true equilibrium configura-
tions when the drop is free to take on any arbritrary shape. To answer this
dquestion a criterion can be developed to test a given shape for equilirbium.
(A similar criterion exists for a volume charged drop (11).)

If the surface element dS is displaced normally by a small smount, dn,
without affecting its local charge, O, the Coulomb energy change is (12)

1
GEC=-/ E-O.Eﬁnds .

where & is the electric field at dS. The change in surface energy is

Gssayftcands



93

where Yy is the surface tension coefficient, and x is the curvature at ds.
The total energy change is

6E = 8E_ + 8B .
[-] s
Subtracting éndS times a Lagrange multiplier k to ensure conservation of

volume and equating the integrand to zero (for equilibrium shapes SE = 0
for any 6n) gives

»

1
k=yYyk-308

By Gauss' Theorenm,

s - 2 £)
[-] Ko emo Eoz

where K_is the curvature on a sphere with the same volume as the drop and
é’o is Phe electric field on the sphere.

Since
() 2
* EC - 1 eo
2E (o) . <, 811:
3
Thus
62
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Thus for an equilibrium shape, any point on its surface should satisfy
A = 0, where A is given by

As a measure of the deviation from equilibrium we can define a root-mean=-
square value of A over the surface of the drop:

1
ms=[m|zasz .

If RMS << 1, the drop is close to equilibrium. If RMS > 1, the shape is
far from equilibrium. This quantity can be used as a measure of how close .
the shapes we obtain are to the true egquilibrium.

SYMMETRIC EQUILIBRIUM.SHAPES OF A CHARGED CONDUCTING DROP

Instead of going into mathematical details (6) we shall present
here the results based on a family of shapes generated by two, three up
to six point charges shown in Fig. 8. The fiqure should be compared to
Fig. 3 for a volume charged drop. The series of curves with different N
values are just successive orders of approximation of true equilibrium
shapes. One hopes that for a high enough order of approximation, the results
would be very close to the true ones, so that an even higher order will change
the results very little. Typically, for successive orders the RMS values
improve by a factor of two. For N = 6 parameterization, RMS v 0.0l for x
close to 1 and x < 0.8, but RMS Vv 0.1 for x v 0.9. This 'indicates that for
x < 0.8 and x v 1.0, the shapes we cobtain are close to true equilibrium
shapes, but for x v 0.9, there are more uncertainties. By studying the
change of RMS values at x ™~ 0.9 for successive approximations, the RMS
values are found to decrease very slowly, much less than factors of two. This
indicates that our model of a conducting drop using the equipotential sur-
faces of point charges is probably not good enough in this region. A more
general or more appropriate family of shapes appears to be in demand here.
Hence, one should regard the calculated results in this region with great
reservations.

Let us take the N = 6 curve at its face value and examine its main
features. As the value of x goes _from.l toward-smaii—x-values; the"
equilibrium shape elongates from a sphere, i.e., RMAX/R increases with
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decreasing x in the region near x = 1. This is in constrast to cases of
small x values (x §, 0.7) where RMAx/R is slowly decreasing with decreasing
values of x. The shapes in the latter case are long and look like a dumb-
bell. Similar to the volume charged drop case there exists a region where
there is a rapid change of shape, but it occurs at x ¥ 0.9 in the present
case. Actually the curve for R even turns back at s = 0.887 and again
at x = 0.906. However, it is in exactly this region that our results become
unreliable and the double turn might be spurious (see Refs. 15 and 4 for a
similar uncertainty which once existed in the volume charged case).

The nature of these equilibrium shapes may be found by locking at
the signs of the second derivatives of their energy with respect to all the
parameters. The following results are found when the shapes are restricted
to only the degrees of freedom that allow reflection symmetric shapes. For -
1> x> 0.887 the energy of the drop is a maximum in one degree of freedom,
but a minimum in the other symmetric degrees of freedom. Between the bends,
for 0.887 < x <€ 0.906, the energy is a minimum. For values of x smaller
than 0.906, it is again a maximum in one degree of freedom. With respect
to the degrees of freedom that describe reflection asymmetric deformation, the
energy of the drop is a minimum from x = 1 to x = 0.892. From x = 0.892 to
%"= 0.68, it is a maximum in one degree of freedom. Below x = 0.68 it appears
to be a maximum in two degrees of freedom. Hence, the equilibrium point is
a saddle from x = 1 to x = 0.892. From x = 0.892 to x = 0.887 it is a
mountain top (unstable in more than one direction). Between the bends at
x = 0,887 and x = 0.906 it is again a saddle. For x smaller than 0.906, it
turns out to be a mountain top also. As discussed before the shapes
close to x = 1 is fairly well determined, but at the bends the results are
not reliable.

SUMMARY AND CONCLUSIONS

The static properties of a charged conducting drop are compared
with those of a volume charged drop. Similarities as well as some of the
differences are discussed. The symmetric equilibrium shapes of a conducting
drop are determined with reasonable confidence for values of the fisgility
parameter x not in the neighborhood of 0.9. For x close to 0.9 a more
general or more appropriate shape parameterisation than employed in this
work has to be found so that equilibrium shapes at these values of x can be
determined with greater reliability. This is important because it is in this
region that we find possibilities of interesting stability features, such as
the occurrence of a bend in the family of equilibrium shapes and of points at
which there is a change in the number of degrees of freedom with respect to
which the shape has a maximum energy.

It is interesting to note that even some ninety years after Loxd
Rayleigh's study of a charged conducting drop, the whole problem is still a
very open subject. The present calculations have been able to determine the
saddle points of a charged conducting drop for values of x from 0.892 to 1
where they are reflection symmetric. But for the region up to 0.892, one is
still very ignorant of the saddle point shapes and energies of a charged
conducting drop.
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Fig. 1. Energy excess of a volume-charged liquid drop as a function of deformation.
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Fig. 2. Energy excess of a volume-charged liquid drop deformation for different
values of the flssility parameter x.
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Fig. 3. The maximum and mindmum radii of saddle point shapes of a volume~
charged drop as a function of the fissility parameter x. The results
for the symmetrical saddle point shapes are given by the solid curves,

and the results for the asymmetric saddle point shapes by the dashed
curves, (Data taken from Ref. 10).
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Fig. 4. The energy change in the division of a volume-charged drop into two
spheres for various values of x. '
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Fig. 5. Same as Fig. 4 for the case of a charged conducting droep.
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THE ROLES OF ELECTROHYDRODYNAMIC PHENOMENA
IN THE MOTION OF DROPS AND BUBBLES

R.B. Spertell and D.A. Saville
Princeton University, Princeton, New Jersey 08540

ABSTRACT

The dynamics of small drops and bubbles are investigated with
regard to the effects of an external electric field and an elec-
trically charged layer situated on their interfaces. Specifically,
stresses engendered due to the convection of surface charge alter
both the motion and shape of single droplets and.the bulk proper-
ties of suspensions.

INTRODUCTION

Motions produced inside and outside a neutrally buoyant drop
immersed in a viscous fluid when an electric field is present are
due to the interaction of induced charge with the field, an inter-
action which produces tangential shear stresses at the interface.
A theory developed by G.I. Taylor(l) describes how the sense of
the motion and the deformation depend on the various parameters
when both fluids are poor conductors. He showed that, to leading
order, the deformation and speed of circulation are proportional to
: aeEozly., Here a denotes the radius, & the dielectric constant of
the outer fluid, E, the field strength and y the interfacial ten-
sion. This dimensionless group is, in essence, a comparision be-
tween the electrical stress tending to deform the drop and the re-
storing force of interfacial tension. Electrical and physical
properties alone determine whether the deformed spheroid is oblate
or prolate.

In Taylor's theory the distribution of induced charge, which
depends on the electrical relaxation times for the two fluids,
plays a central role. The distribution is antisymmetric with re-
spect to the equitorial plane normal to the field. - If the charge
relaxation time, /0, (0 denotes conductivity) of the inner fluid
exceeds that of the outer fluid then flow is from the poles to-
wards the equator. When the ratio of relaxation times is less
than unity the charge distribution and fiow are reversed. That
theory, moreover, is in substantial agreement with experiments by
Allan and Mason 2 and Torza, Cox and Mason, who studied the
deformation and burst of neutrally buoyant drops of various fluids,

Taylor's theory and its extensions to oscillatory electric
fields by Torza, Cox and Mason 3) and Sozu ignore, quite proper-
ly, the charge convection process which takes place at the inter-
face, Bulk free charge is taken to be identically zero and the in-
duced surface charge is convected by a motion which is 0(acEg?/Y).
Thus, the alteration of stress due to convection of charge is
0(acEg?/v)? and therefore small.

L If the drop undergoes translation, however, as is frequently
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the case if the densities are unmatched or the drop carries a
charge, then charge convection induces electrical stresses which
are OCnU/y-aeE /y) These alter the translational speed and the
shape. The purpose of this paper is to describe the influences of
charge convection both because of its intrinsic interest and its
relevance to drop breakup and coalescence.

It is readily seen that the shape alteration will differ from
that found by Taylor since stresses resulting from charge convec-
tion due to streaming will be asymmetric. Thus, instead of a
symmetrical deformation proportional to P2(cos 8) * the deforma-
tion will be represented in terms of Py(cos ©) and P3z(cos 8). Ex-
perimental evidence for this sort of shape arising in the fashion
proposed is sparse since all of the published work relates to
neutrally buoyant drops. However, one prescient sequence of photo-
graphs by Torza, Cox and Mason does show the expected asymmetry
[Figure 10, plate 7 of their paper]. It shows a drop flattened
into an oblate spheroid, as would be expected from Taylor's theory.
Then, perhaps due to the accumulation of charge, it begins to
migrate and loses its symmetrical form. Although the amount of
deformation is greater than that which could be rigorously modelled
by a linearized theory the shape is clearly of the form expected
from the consequences of charge convection.

Asymmetric deformation could also result from movement of the
surface of a charged drop. Such a charge might be in the form of a
monolayer or doublz 1%¥e Extant theories of the motion of drops
with double-layers allow for the convection of charge to some
extent but the deformation is identically zero due to the extremely
simple forms of the velocity and potential when charge relaxation
is rapid. A more comprehensive theory is presented hcre which is
applicable as well to cases where charge relaxation is slow enough
for convection to be important.

The development proceeds along familiar lines with electrical
effects described by the electrohydrodynamic simplifications of
Maxwell's equations and motion inside and outside the globule de-
scribed by solutions of the linearized Navier-Stokes equatioms. A
key feature is the proper accounting for convection of surface
charge. The system under study is depicted. in Figure 1. A fluid
sphere of radius a is immersed in another immiscible fluid. Both
are Newtonian and incompressible with interfacial tension y. Den-
sity and viscosity are denoted by p and v, the shear viscosity by
n. Carets are used to distinguish the variables pertaining to the
globule. Three situations will be discussed:

(a) An uncharged globule in the presence of a uniform electric
field, both fluids being ohmic conductors.

{b) A charged globule in a viscous non-conductor (the mono-
layer problem).

(¢) A charged globule in a viscous conductor with a perfectly
polarized interface (the double layer problem).

* Py (cos 8) is a Legendre polynomial of order n, 8 is measured from
"the rear stagnation point.
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It will be assumed in the formal analysis that electrical
stresses are small compared to interfacial temsion, viz.,
asE°2/7<1.

The remainder of the presentation is divided into sections
dealing with the formal aspects of electric fields, forces and
boundary conditions; fluid motion; then results for the uncharged
drop, or drop with a mono-layer, and a drop with a double-layer.
Before concluding, the effect of charge convection on the electrical
conductivity of a suspension of fluid drops is . discussed briefly,

ELECTRIC FIELDS, FORCES AND BOUNDARY CONDITIONS

Maxwell's equations in the form appropriate to electrohydro-
dynamic phenomena read

UXE = 0, VeD = 4mq, and Srq + Ved = 0. (1)

E, D, q, and J stand for the electric field strength, dielectric
displacement, bulk free charge density, and current, respectively.
The constitutive relations are

D =¢gE, Js=oE+qy. (2)

In the situation under investigation free charge is initially con-
centrated at the interface either as a mono- or a double-layer and
remains there. It follows then that electrical phenomena can be
described by means of potential functions which are

bran = T epr (37
inside and
$Cr,u) = oy0r) - w2 ) + § o r (e () 4)

outside. Here ¢d(r) denotes the double-layer potential in the
absence of convection. Its precise form is unimportant here since
we are dealing with thin layers and all that is required is the
gradient at the interface. ¢4(r) is suppressed in the absence of
a double-layer; when the external field is absent the term —rPl(u)
is omitted.

The physical phenomena are determined by boundary conditions
and they are set forth next.

A. Uncharged globule in the presence of an external field.
Here both fluids are presumed to be ohmic conductors and at the
interface the tangential components of the field are to be contin-
uous, .

E, = E {5}
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The other condition arises from the conservation of induced
charge, Q, at the interface. Q is defined by the jump in €E,, viz.,
<eE,> = Q, where <eE,> stands for €E, - 28E;." Balancing conduction
to and from the interface against convection leads to the expression

<cEn> + Vs-(Q!) = 0 , (6)

Vs' denotes the surface divergence, v the velocity.

B. Charged globule in a viscous non-conductor {(charge mono=-
layer). Here the boundary conditions are the same as before al-
though the absence of conductivity in the outer fluid, which serves
to keep the globule charged, does simplify Equation 6 somewhat.

C. Charged globule in a viscous conductor with the interface
perfectly polarized (charge double-layer). In this situation a
thin double-~layer approximation is employed wherein that part of
the double-layer residing in the outer fluid is collected into a
spherical sheath of charge. Charge is transported to and from this
sheath by conduction and in it by convection; no charge crosses the
interface. The balance expression reads

GE, + V_+(Qy) = 0 (7

Processes which are ignored are tangential currents due to conduc-
tion, which are vanishingly small since the layer is thin, and
radial charge convection, which vanishes since the radial velocity
is zero at the interface. The net charge on the outer sheath ;f
Telated to the gradient of the potential in the usual manner,(
viz.,

IF | ., 0 " EE, (8)

Here and elsewhere the potentials have been made dimensionless with
the scale aE,. The scale for length is a, Q, is the average charge
per unit area, and E, is the (uniform) field strength far from the
drop. Coefficients in Equation 3 are evaluated by requiring the
tangential components of the field to be continuous.

FLUID MOTIONS

Since the fluids being considered are isothermal, incompressible
and Newto?iin and inertial effects neglected the well-known simpli-
fications (8)of the equations of motion can be made. <Solutions to
the linearized equations can then be expressed in terms of stream
functions for the motion inside the drop,
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~ 1 nU r2-r* ~ n+3. % nel
v = 2R ) ¢+ f [A,x""+ B ™" 1, (W), \
and outside,
v = - 3 et B e £ oW & 9)

+ ? [Anr'(“'2)+ Bnr'“]Qn(u) .

These expressions are in dimensionless form with U denoting the
streaming speed far from the object, x = n/n and

H
Q, () = | P (a)da . (10)

-1 e

The set of coefficients denoted as Ap, By, Ap, and By are
evaluated from boundary conditions applied at the interface.
These are: (i) continuity of the various components of velocity
and (ii) continuity of the tangential components of the stress.
The former reveals that

~ ~ . - . >
An = - Bn = An - Bn H n=1. (11)

Continuity of the stress is expressed as

[ L R

3 Y% .10 (&) . .3 Ve 19 n 2 (e)
{z 35r Tt 't 38 vr} *T0 e k{x % r T T 38 vr} * Ty (12)

with the glectrical stresses, TEQ), evaluated from Maxwells stress
tensor,(9

E
te) acE
Tt 7y Exfol__, (13)

_in dimensionless form. The balance of normal stresses fixes the
shape.

BEHAVIOR OF AN UNCHARGED GLOBULE

Explicit analytical solutions are obtained from simultaneous
solution of the equations resulting from enforcing the boundary
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conditions. The calculations are straightforward and so tedious
details are omitted. Complete expressions can be derived fronm
those given in Reference 10,

Continuity of electrical stress and velocity enable one to re-
duce the problem to the evaluation of two sets of cogfficients, By
and C,, say. Then an expansion scheme with aeEoz/Y = § treated as
a small parameter is employed. From expressions of the form

Bn = Bn(o)+ Bn(l) * e n=1, 2, ...

4)
c_ = cn(°)+ cncl) # . mml, 2, ...

we find

(0) (0) (0) (0) (0) ’
R A Te P P (15)

The orders of the coefficients that survive are:
(0), . (1), . (0) (1) (2) (1), .
C1 :0(1); C2 :0(nU/Yy); Bz ,Cl ,C2 ,C3 :0(8); and

31(1),33(1):0(6n0/7). The other coefficients are of an even

smaller order and therefore neglected. Thé formulas for C 2 and
B2(0) correspond to those given by Taylor.(1) c1 (1), c2(2) and ~——-o
'C3(1) are associated with convection of induced charge by the
electrically induced field and C2(l) from the streaming. The

velocity field consists of terms representing flow due to uni-

forming streaming and electrical stress arising from the induced
charged whose distribution is altered, in turn, by the streaming.

For the settling velocity we find

U 3 :
= (16)
Ust 2+3K (eE )* .

Q
m—'i' £(R,S,Kk) "o

when the direction of the uniform electric field is opposite to
the gravitational field. Here U_ = 2ag(1-8/p)/9v  and

' 2 -1 T ;
£(R,5,k) = g—z-l'h—ép-mﬁmv [3(1+r" ) - T—:—]{l - :Fi-] .

.R stands for g/¢ and T, for the ratio of an electrical relaxation
time, /g, to the time scale for fluid motion, an/y, based on the
outer fluid. Note that fr/Tr = 1/RS.

It is easy to show that the electric field can either increase
or decrease the rate of translation of the globule, depending upon
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the electrical properties of the fluids under discussion. The
particular condition under which the speed will increase is

1 < 7p/1p < 3(1+R ). If this restriction is not met the motion
of the droplet will be retarded. Figure 2 illustrates the magni-
tude of the effect for typical values of the parameters.:

For an explanation of these results we examined the manner
in which the streaming motion alters the induced charge and the
tangential stresses (see Figure 3), 1In the case of a neutrally
buoyant drop both the polarization and direction of fluid circu-
lation are determined by the ratio of electrical relaxation
times in the droplet and medium in the manner depicted. When the
ratio of electrical relaxation times is unity the drop remains
unpolarized and the electrical shearing stresses vanish.

When the electrical relaxation time of the droplet exceeds
that of the surrounding fluid, the streaming motion alters the
distribution as shown in Figure 3. In a manner analogous to
that for the neutrally buoyant case, interaction of the altered
charge distribution with the tangential component of the electric
field results in the shear stress distribution indicated. These
shearing stresses induce motions which enhance the streaming
motion of the droplet. Compression of the negative charge toward
the rear of the droplet results in electrical shearing stresses
which retard motion. The settling speed of the droplet will be
altered, then, depending upon the relative magnitudes of these
two opposing phenomena.

A similar analysis for case (b) shows that the interaction
of the altered charge distribution with the tangential component
of the electric field always tends to retard the motion of the
- droplet when Ty/Ty < 1. Motion is further retarded due to com-
pression of positive charge toward the rear of the globule.

Deformation of the globule is due to electrical effects
since uniform streamin er se causes no deformation if inertial
effects are absent, (11 he deformation from the spherical form
i. represented as

T(w) = g B, P, (W) (17)

so that the center of mass is fixed and the globule is incom-
pressible. The surviving coefficients, to 0(8), are B, and Bz.
Normal stresses which give rise to B, are due to electrical
phenomena present in the absence of streaming as found by Taylor
while deformation due to charge convection is described by BS'

Figure 4 depicts the manner in which a falling fluid sphere
deforms when subject to a uniform electric field. The lack of
fore to aft symmetry of the droplet can be understood in terms of
the normal stresses engendered by the lack of symmetry of the
charge distribution with respect to the equitorial plane of the
droplet. This may be contrasted with the oblate spheroid which
develops when charge convection is not taken into account (Figure
5).
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The shape shown in Figure 4 is quite similar to the form de-
picted by Torza, Cox and Mason to which earlier reference was made.
Calculations made using the parameters given in their paper are
qualitatively the same although a direct comparison is not possible

due to the lack of information on the rate of translation.

BEHAVIOR OF A CHARGED GLOBULE IN A VISCOUS NON-CONDUCTOR

Results for this situation, obtained in a fashion similar to
that employed earlier, show that deformation tends to be prolate
since the conductivity ratio is effectively infinite. Charge con-
vection alters the symmetry, however, The translational velocity
is altered by convection of both the induced charge and the net
surface charge, viz.,

ZaQOEo
U= - i (18)
2+3K 9 (E‘F‘o)2 2 1 4"Q02
+ = + = e
l+k S (1+K)24ﬂ ne 3 (1+x)2 na

for a charged, neutrally buoyant drop in a viscous dielectric. It
is worth noting here that convection of charge always produces
shearing stresses which retard motion.  This is consistent with the
behavior identified with the uncharged globule where it was shown
that if the ratio of electrical relaxation times is less than unity
then motion is impeded.

BEHAVIOR OF A CHARGED GLOBULE WITH A PERFECTLY POLARIZED INTERFACE

A typical shape is hown as Figure 6. The asymmetry due to
charge convection is evident and, in contrast to the situation
shown in Figure 4, the front part of the drop is elongated due to
the choice of physical propertles, Nevertheless it should be
noted that the deformation is 0(1 )} and when the relaxation is
rapid as it would be with, say, a mercury drop in an ionic solu-
tion, the deformation w111 be quite small.

The translational velocity is

aQ E /n
U= 2+3K+g (19).
where . '
aeE
3 1
g = T, 4“7 {(EEQO PYIRRYT [F(8+10x) - ——(7+8K)]} .

This shows, again, how charge convection impedes the rate of
translation. If internal electric stresses are ignored by taking
€=0 (S = @) then Equation (19) reduces the classical result due
to Levich.(556)
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CHARGE CONVECTION AND THE CONDUCTIVITY OF SUSPENSIONS’

Processes of the sort just studied in connection with the
behavior of single drops ought to manifest themselves in their
effects on the properties of suspensions and drops. Two of the
more obvious properties are electrical conductivity and viscosity.
Indeed, just as it is possible to alter the properties of sus¥en-
sions of solid, orientatible particles using external fields, 12)
it will likewise be possible to alter matters in suspensions of
fluid particles by, for example, controlling charge convection.
Here we focus attention on the electrical conductivity of an
otherwise motionless suspension of fluid particles.

The potentials inside and outside a single drop exposed to a
uniform field are

d(rw) = - gap rp )+ ¢ Mrr )+ cgWMrtein \
and
oCrw) + [ -7+ grp el o+ ¢ WMrme ) (20)
* cs(l)r'“p3(u) .
Here ~ . /
c. (1) _ 54 1 _ R? 1 - :qu fff&l_
1 5 1+x i2+R§‘ Tr 4mno
and ~ 2
c (1) _ 216 1 R2 n - =% (eE,)
3 25 1+x (4+3R) (2+R) Tr 41nC *

From Equation 20 we find that charge convection always acts so as
to decrease the potential drop across a single particle, leading

us to expect that the effective conductivity of a dilute suspension
will be below that given in Maxwell's theory (see Reference 12).
This turn? gyt to be the case and, using an adaption of Batcheloxr's
formalism(14)so as to account for charge convection, the effective
electrical conductivity o* is found to be

~

-1
R+2

A U & - zrenyc, My . (21)

Here ¢ denotes the volume fraction of fluid particles, Since C (1),
which is always positive, depends on the field strength the
conductivity is f%f%? dependent. Several other situations have
been investigated and results will be reported shortly.



CONCLUDING REMARKS

Attention was focused on two of the ways whereby the electro-
hydrodynamic effects of charge convection alter the behavior of
single fluid drops, specifically their shape and rate of transla-
tion., In addition it was shown how the bulk conductivity of a
suspension of drops can be altered by the same process. The
principal limitations on the results arise from the restriction
to small deformations, on the one hand, and the simplified models
of interfacial behavior on the other.
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DUALITY BETWEEN SURFACE COUPLED INTERFACIAL WAVES FOR
ELECTRICALLY CHARGED AND SELF-GRAVITATING DROPS
Markus Zahn
Department of Electrical Engineering
University of Florida
Gainesville, Florida 32611

I. Introduction

Many investigations of electro-fluid mechanical interactions consider only
surface electrical forces, such as is the case of an interface supporting a
surface charge distribution or of an interface between different dielectrics
[1], [2]. Por these cases, complications resulting from nonuniform equilibrium
electric field intensities and interfacial curvature occur only for non-planar
systems. In contrast, recent work has investigated electrohydrodynamic coupling
of perfectly insulating fluids supporting volume space charge distributions
[3], [4]. Such analysis is appropriate if the fluid is highly insulating and
the dynamics of interest occur over time scales which are short compared with
those required for initially injected charges to accumulate appreciably at a
fluid surface. For this case, the volume space charge imposes a nonuniform
electric field distribution even in planar geometry, which must be taken into
account when the interfaces move as the interfacial equilibrium electric fields
which act on the interfaces also change.

This work examined the propagation and instability characteristics of

- small signal electro-fluid mechanical space charge and polarization waves

for electrohydrodynamic configurations similar to those of the classic fluid

* problems of the Rayleigh~Taylor instability for superposed charged planar

layers, and of interfacial capillary oscillations of charged liquid cylinders
(or jets) and charged spherical drops [5]. A systematic approach was developed.
to handle multi-interfacial systems of incompressible, inviscid, and perfectly
insulating fluids in planar, cylindrical, and spherical geometry through the
use of a general set of relations for perturbation field and flow variables

on the perturbed surfaces of fluid layers having constant properties [3].
Although the methods developed are valid for any geometry, we limit ourselves
here to systems initially in spherical equilibrium.

The analysis showed that the electi'ohydrodynamic coupling for uniformly
charged layers could be represented as a purely surface coupled interactiom,
even though volume Coulomb forces are present. The pertinent electrical
equation necessary in this development is Poisson's equation relating the
electrical potential ¢ to the charge density q and permittivity € (assumed
constant)

V2¢ = :% €3]

The electrohydrodynamic coupling occurs through the Coulomb force density
T = —qV0 (2)
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The methodical approach developed can be used for any system whose force density
is curl free within a homogenecus layer (q = constant) with the resulting
coupling occurring through the interfaces as the force density can then be
lumped with the hydrodynamic pressure.

This work will also use this duality with the directly analogous equations
to (1) and (2) for self-gravitating systems

T = -pWV 03]

where V is the gravitational potential, p is the mass densi!:y and G is the
universal gravitational constant (G = 6.67 x 10-11 nr-m2/kg2), to deduce the
dynamics and instability characteristics of spherical self~gravitating
geometries [6]. It is a simple matter to obtain results for self-gravitating

systems for those electrohydrodynamic problems already solved by waking the
simple substitutions

¢+ q*o.e*-ﬁ-&- (5

However, an important distinction batween self-gravitating and electrohydro=
dynamic systems remains. Whereas the charge density cam be either positive or
negative, the mass density is always positive. Thus there is always a force of
attraction between masses, while because of the minus sign difference in
Eqs. (1) and (3), like charges repel and opposite charges attract. Because of
the absence of "negative mass" there are no gravitational analogs to polarization
effects due to differences in permittivity or electrical shielding due to the
presence of electrical conductors. The gravitational constant G is independent
of material properties. Thus with the differences between electrical and
gravitational systems in mind, we can immediately write down the solutions to
those gravitational problems analogous to already solved electrohydrodynamic
problems using the conversions of Eq. (5).

In this work, we will derive the general electrohydrodynamic "prototype"
relations for a spherical shell and then derive and contrast the dispersion
characteariastics of perfectly conducting and pexfectly insulating charged drops.
Using duality we will then immediately write down the analogous solutions for
self-gravitating drops.
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IX. Equations of Motion

1. General Development

No matter the geometry, the general equations of motion for an incompressible,
inviscid, -and perfectly insulating charged fluid with mass density p, velocity
¥, pressure p, charge density q, permittivity €, and electric field E are

Conservation of momentum -
.4 sgE-LF -
Pt =aE-5E - BV (6)
Conservation of mass =

%-o;v.v-o %)

Maxwell's equations =

VxE=0 ;= -V A8)
. Gauss's Law: Y+ (cE) = q ; %EE- 0 9)
Conservation. of Charge: %;_: =0 (10)

In the prototype layer, examples of which are shown in Fig. (1), the liquid
is homogeneous such that the equilibrium properties of mass density p,, charge
density qp, and dielectric constant £€), are constant. Then all quantities are
assumed to have small perturbations from the equilibrium. Subject to the
constraint of a homogeneous medium the equilibrium variables must obey the
time independent form of (6)-(10) and must satisfy the boundary conditions
between regions.

Because the fluid layer is homogeneous the charge density, mass density,
and permittivity remain constant in spite of the fluid motion. This is to be
expected, because any transport of material into a given region leads to a
transport of material which has the sawe properties as that previously occupying
the given region. This statement only applies to those portions of the fluid
not swept out by interfacial motions. If a point of interest is adjacent to
an interface, an excursion of the interface could result in an abrupt change of
properties. However, if surface deflections are considered at a given instant,
all properties everywhere between interfaces are uniform.

Denoting perturbation variables with primes, we take the divergence
of the linearized form of (6), to yield the set of perturbation equations

Vo' =0

Vz'u”-o;‘n"-p'-l-qu)'

(1)

Thus regardless of the geometry, the problem reduces to solutions of
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Laplace's equation, both for the perturbation potential and for the modified
pressure ',

2. Generalized Relations For a Spherical Prototype Layer

We consider the lower prototype layer shown in Fig. (1) with the under-
standing that the picture is a cross section of a spherical shell. In
equilibrium the uniformly charged fluid extends over the range B < r £ a.

We denote all variables at the immer interface with a superscript B and all

variables at the outer interface with a superscript a. The radial perturbation
displacement's are £B and £%, When these displacements are zero the equilibrium
distributions are i

P, +q AQO = constant

-q r2 ' constant constant (12)
6. = A 4 1, 2
0 GeA r
- q,r constant
E = [—3£— 5 _T..].z]'fr
=TA T

All perturbation variables are assumed of the form
= Raﬂ(r)P:(cos Pexpjlut ~m8] 5 m>0, >0, m<a (13)

where Pﬁ(cns ) are lLegendre functions depending on the azimuthal angle .
Substituting into Eq, (11) yields

R(r) = A.r” + A Fat+D (14)

1 2

where Al and Az are conatants to be determined from the boundary conditions

28
9.(8) = uf

(15)
Gr(a.) - jw?
From Eq. (6) we know, that the perturbation velocity is relating to #(r) as
Qr(r) -~ 1 4% (16)
jue, dr

. 8o that the interfacial displacements are related to the parameters A, and A,
as
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~(n + 2)

-{n + Da Al
- __Lz. an
ppw - - )
Bl 0 ettt c@eng @t RL
For the purposes of our analysis, inverse relations are needed. Once Al

and are determined in terms of

and &P, substitution into Eq. (14)

yields the relationship between the interfacial modified pressures and the

interfacial displacements as

6(x,8)] [E*

f(a) F(a,B)
- (18)
2(8) G(B,a) PGB, | £
where
& R A
F(z,y) = F—2—2 221 (2,
[ "]
. 19
2 .
G(x,y) = =Ly Wl
" a(n+ 1) [(';') X - (ﬁ) Y]

Note that the analysis implicitly assumes the interfacial displacements
to be small as Eqs. (15) and (16) were evaluated at the equilibrium positions-
(@, 8) rather than at the interfaces themselves (a + £%, 8 + 53) . Fortunately,
because the velocity itself is a perturbation, the difference between evaluating
it at the interface or at the equilibrium position is second order in the
perturbation amplitudes. This illustrates the general approach used in linearized
surface deformation problems. The boundary condition at the moving interface
is replaced by ome at the equilibrium position of the boundary, thus greatly
simplifying the analysis.

The analysis is still not complete for as the interfaces deform, in addition
to perturbing all variables, the equilibrium quantities acting on the interfaces
also change. Thus to compute the total first order change in all variables
evaluated at the interface, linear changes of equilibrium quantities must be
included. For example, the total linear changes in the pressures are:

dp £
A0 0
P = o) +— =
(20)

dp &
88«58 + 2 B .
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Similarly for the potentials .

& & - $(w - 2%
~Q " 0
¢ = d(x) +t5

(r=a)

. " (21)
N b & = 3(p) - 28
# -3+ 2

(r =8
Using these definitions we have

8% =R - g8 +£%,E"

(22)
8% = 2(B) - 4,88 + 2%, E°

£,8% = ¢ é‘(a)+eiz2 e
Ar Ar A dr

23

+8
dE 13
B ac 2 =2
€ e, SA er(B) + EA =

A
r=8

Then using Eqs. (20) - (22) we obtain the generalized mechanical relations
evaluated at the interfaces

8% [F(e.® e(a, | [E* 8
- -q, (26)
2l et rg)| |28 #1

where F and G are given in Eq. (19)

. Similar operations are performed in the solutions of Laplace's equation
for the perturbation potential $(r) to yield the electrical relations at the
interfaces .

e 80 B(0,8) Cla,B) | |$* + 2%
=% 8.8
e esw  mew| [+
_ (25)
dE
-9
dr
+ £ r =0
A .
dE, g8
dr
r=f
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The general relations of (24) and (25) greatly simplify in various limits.
As the inner radius goes to zero (B + 0), so that the shell becomes a drop,
the terminal relations reduce to '

where

(26)

C(x,y) = -

2 o) a
AaapraE -QA$

lim n 27
B0 o 0L s 20 )
ey = —spn @ +Eg°‘)+aAd_EQ g

[+3 dr
r=0

As the outer radius becomes very large, (0 + ), the terminal relatioms
become

8-t B -q
(n + 1
lim ’ (28)
er® 8 8 . BB 28
eAer-eA(n+1) (o +EE)+€AE?Q g
B dr
r=f

Equations (24) and (25) are useful because they relate the interfacial
variables of pressure, displacement, electrical potential and electrical
displacement, which appear in interfacial boundary conditions. The boundary
conditions for all cases include mass and electric potential continuity, the
second condition being equivalent to the continuity of the tangential component
of electric field, as well as an interfacial force balance. For perfectly
conducting interfaces, the perturbation potential must be zero but the surface
charge imposes a surface force density. Because there are no electric flelds
inside the perfectly conducting fluids, there are no polarization effects.

In contrast, perfectly insulating fluids with volume charge have nonzero
interfacial potential and although free charge can make no contribution to an
interfacial surface force demsity, there is a surface polarization force if
the permittivity of the fluid and its surroundings differ. For non-perfect
conductors (including perfect insulators) no surface charge can be allowed on
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any interface for an inviscid analysis to be meaningful, as electrical shear
stresses would accompany such a surface charge density, and our model would

then necessarily have to include viscosity (or some other mechanism) to balance
this shear stress [7], [8]. This requires the normal component of electric
displacement to be continuous across an interface for non-perfect conductors.

An inviscid formulation is allowed only if the interface has no surface charge
or if the interface is perfectly conducting, as then the electric field terminates
perpendicular to the interface, resulting in no electrical shear force. However,
the same systematic techniques have been applied to a viscous prototype layer

in planar geometry so that these limitations may be removed [9]. In general,
congidering viscous fluids greatly increases the mathematical complexity

of the analysis but yet has no effect on the conditions for instability [10].
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III. Stability and Dynamics of Charged Spherical Drops

The modes of oscillation and instability of charged, initially spherical
drops are obtained for small perturbations by using the generalized relatioms
of (24) and (25). Rayleigh's limit determines the maximum amount of charge
distributed around the surface of an igsolated perfectly conducting drop for
it to be stable [11]. The isolated uniformly charged, perfectly insulating
drop has historical significance through the liquid drop model for fissiom
of the nucleus proposed by Bohr and Wheeler [12]. In this section we wish
to generalize both these classic problems by immersing. the charged spherical
drops within a uniformly charged region. Figure 2 describes the geometry with
the understanding that the picture is the cross section of a spherical system.

In spherical geometry, all perturbations due to small signai interfacial
motions are assumed of the form

£ =Re gexp[j(mt—me)]P:(cos YY) s m>0,n>0, m<n (29

For spherical' drops we only need to know these relations im the two limits
where the ioner radius tends to zero, B -+ 0, and when the outer radius gets
very large, a + «, which are described by Egs. (27) and {(28).

1. Perfectly Conducting Drop With Surface Charge Within a Uniformly
Charged Region

We first comsider a configuration similar to that in Fig. (2) with a
perfectly conducting spherical drop of radius R, mass density p, and surface
tension ¥ with uniformly distributed surface charge density 0. Immersed within
a perfectly insulating charged fluid of infinite extent with charge density
a4, and mass density Pye The equilibrium electric field distribution is

o & qy(r - B/ >R (30)
E = 5 + .
T
ezr 382
so that
E. =0, E .S_ ___dEZ--.Zf_f.q-q_z 2D
1 * 2 T, ' dr E.R
2 2 2
r=R

Because the drop is perfectly conducting there are no electric fields inside
(El = 0). The perturbation interfacial boundary conditions are

61-2255,%-4_,250 2

B, - f, +€2E2er2 -fy \(n - 1)(n+2)E=0
R2
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From Eqs. (27) and (28) we obtain

~ 2 =
Py =P RE/n

f5= ~p21321!§7rn‘+‘IT - (33)

€48 , = €8, (n + DE/R + ¢, ﬂ g
dr
r=R

gubatitution of Eq. (33) into Eq. (32) yields the dispersion equation as

w2R3 Py Py =(a-1){n+2) - UJZER - 1+q,R (34)
PONNNENNG, S S — =
Y (n + 1) €5 O

We see that the self-field term proportional to U% due to the interaction
of the surface charge with its own field is always destabilizing, while the
impoged field term proportional to q,Js¢ due to the interaction of the space
charge 1 with the field due to Og c@n be stabilizing if q, and o are of
.opposite”sign. If Gf = O, there is no electromechanical coupling.

We examine (34) in Rayleigh's limit where there is no space charge in the
outer region (qz = 0), so that Eq. (34) can be written as

w2R P1 Py =(n-1fa+2- a%R (35)
< N TEFD 7

We see that the n = 0 mode is not allowed if pj # O due to the incompressibility
of the drop, and that the n = 1 mode is neutrally stable. As o. is increased, 2
the first mode to become unstable is n = 2 with critical total charge QT(QT = 47R o'f)

1/2
Q, = 8mR(e,YR) (36)

However if the drop has negligible density so that p, = 0, which is the
cagse of a bubble within an infinite fluid with surface chdarge on the bubble
fluid interface then the n = o solution is allowed. In the absence of electrical
forces, surface tension makes this case unstable by acting to collapse the
bubble. However, with surface charge present, Coulombic repulsion could stabilize
the gystem if

2
afklezv >2 (3D

For finite 995 the n = 1 mode will be stable only if 9,0, < 0.
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2. Perfectly Insulating Drop with Volume Charge Within a Uniformly
Charged Region

We now consider a perfectly insulating spherical drop supporting a constant
volume charge distribution within a uniformly charged regiom, as in Fig. (2).
We include the possibility of having a point charge of value Q at r = o, and
give the drop a dielectric constant different. from the surrounding region to
include polarization forces.

The equilibrium electric field distribution is -

Q uT
2+-—-—— r <R
4me, r 3e
E = 1 1
r 3 (38)
Q (q; = 9)R™ q,r
2+ 3 ¥ e r> R
énezr 3szr 322

which yields for the interfacial fields and field gradients

Q q,R dE -Q q
B e g+t ; 2L . . i
4weln 381 dr Zﬂela 381
r=R
(39)
Q q,R dE -Q 2q, 4q ‘
EZ-. 2+—]-'—-;—2- - 3+-—l+_—2. P
fwszk 322 dr Znsza 322 €y
r=R
The interfacial boundary conditions result in the relations
E]--EZEE’¢1-¢ZE¢
€181 = 88, (40
ﬁl’ﬁz*szﬁzerz‘elﬁlen‘('j_ (m=-D@+2DE=0
R2
From the general relations of Eqs. (27) and (28) we obtain
g, =0 szgln -4q.%
1 1 1
(41

ﬁz - ‘Dzwzﬁg/(n + l) - q2$
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€8, = ~(en/R@ +EE) +¢; &y g
dr
' r=R
(42)

ezerz = sz(n +1) (¢ + EZE) + €y dEz 3
R dr
r=R

Substitution of Eqs. (41) and (42) into Eq. (40) yields the formidable
dispersion relation

(mznj(pl L py ) =@-1+2

\VY/e (@+1

e @ - R [a - qy - (2ar DEE/R] (4D
vie, + (g4 + €]

* (g, - el)RZ E, )€, (@ + 1) + q,n - ﬁ[Z[ez + (¢, + €n] +n(a + (e, - eliﬂ
7[&2 + (el + az)n] €, R

In. Eq. (43), the last term on the right represents the polarization surface
force due to the diffarence in permittivities and the fields from the space
and point charges. The other electric term represents Coulomb forces acting
even in the absence of a polarization. For simplicity, we examine Eq. (43) in
various limits.

BOHR LIMIT (sl =€, zeg, q, = 0, Q =0).

In the liquid drop model of fission of the nucleus, Bohr and Wheeler
congidered an isolated uniformly charged spherical drop under surface tension
f12]. Sufficient charging of the drop results in instability, which in the
context of the nucleus amounts to anuclear fission. Under these conditions
Eq. (43) can be reduced to

wzk’)(pl ’ Py \ = (n - 1) [(2n + L@ +2) - 2q§k3] (44)
Y& TeFy @mED e
The n = o mode is not allowed for finite py due to the drop incompressibility.

The n = 1 mode is neutrally stable, while the first mode to become unstable as
ql is increased occurs for n = 2 with total charge QT(QT = lm'R3q1/ 3)

qp = 8mr(seyr/6) /2 (45)
We see from Eq. (45) compared to Eq. (36) that a perfectly conducting drop
could support slightly more total charge before becoming unstable than the



perfectly insulating drop.
NO POLARIZATION EFFECIS (€, -'ez g¢€)
There are no polarization forces if the dielectric constants of the two

regions are the same. Generalizing the Bohr limit by allowing finite 9, and
Q simplifies Eq. (43) to

2
m-p—l-+ Py ‘_Y__(n—l)(n+2)+(ql-q2)
n (n+ 1) 3 : €(2n + 1)

R
(46)
) )(ql Q)
-(q - a5 +—3
17 2\3 T3
——— .

The second term on the right of Eq. (46) is a self-field term and is
always stabilizing while the last term is an imposed field term and can be
either stabilizing or destabilizing depending on the relative charge polarities.
A sufficient condition for stability is f.or the last term in (46) to be negative.

NEUTRAL DROP (q14m3/3 +Q =0)

* 1f the total charge within the spherical drop is zero, the equilibrium
interfacial electric field is also zero. Under this condition even if the
permittivities of the two regions are different, there would be no polarization
effects as the interfacial electric field is zero. However, due to the electric
field gradient, there is still an electromechanical coupling so that Eq. (46)
is still appropriate with the last term being zero. This system is stabilized
by the space charge. In fact, for the case of a bubble where 01 =-0 the
destabilizing nature of surface tension for the n = o mode can be opposed so
that the system becomes stable if the difference of charge densities are of
sufficient magnitude such that

(q; - ap? 2 2ev/8° )
UNIFORM SPACE CHARGE DENSITY THROUGHOUT (ql = qz)
The interplay of the polarizability and the space charge is demonstrated
by considering a case in which the respective space charges are equal (q_l = qz).

Then the second term on the right of Eq. (43) drope out. If the relative
permittivities were also equal, there would be no electromechanical effect.
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IV. Gravitational Stability of Spherical Drops

For the space charge analysis, the mass density only comtributed through
inertial terms. For the self-gravitating counterpart, the mass density will
also contribute via the force law of Eq. (4). We now consider the gravitational
analog to Fig. 2 where a fluid sphere with mass density t.'::L is immersed within
an infinite medium of mass density p;. A point mass M is"at the origin r = 0.
The equilibrium gravitational field in the negative radial direction at the
interface 1is .

M5 4G R (48)

g +
R2 3

We can use the results obtained for a perfectly insulating drop with
volume charge within a uniformly charged reglon by using the dual relations
of Eq. (5), substituted into Eq. (43) with el =€, to obtain the self-gravitating
dispersion relation : s ’

2
_‘3_1_ . P, . 3'_ (n =1 +2) --'mccpl - pz)
“Ya " @+ D 2 “(2n + 1)

(49)

- Py M
+ 41G(p; - PN 3" +E§

KELVIN'S MODES

Relvin first considered this problem in the limit, M= 0, o, = 0, and
, Y =0 [13]. Then Eq. (49) describes the oscillation frequencies” of an inviscid
liquid globe under its own gravitational field.

w? - §nGo,n(a = 1) (50)
(2o + 1)

HOLLOW DROP

In the other extreme, a spherical void (M =0, P} = 0) within a large
medium is always unstable for n = 0 and n = 1 as the right hand side of Eq. (49)
is always negative and thus unstable. Unlike the space charge dual, self-
gravitating forces can never stabilize a spherical bubble.
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V. Concluding Remarks

Because the perturbation electrical and gravitational force was curl free
within a homogeneous layer, the broad class of interactions involving liquids
with discrete stratifications in mass density, charge density, and permittivity
are representable as surface coupled interactions. The transfer relations derived
are useful since they relate interfacial variables that appear in the boundary
conditions. The techniques developed here may also be used for other perturbation
volume forces which are curl free within a homogeneous layer, or for surface
forces which only act at an interface. Any system which is described by Poisson's
equation and a Coulomb force law can be immediately solved using similar dual
relations as in Eq. (5).

Since the fluids are modeled as inviscid, force equilibrium at the
interface required only a normal stress balance. No eleectrical shear stresses
are allowed because of the absence of viscous shear forces to oppose the
electrical forces. A more general analysis which would allow electrical shear
forces must include viscosity. Then the mechanical terminal relations must
include relations between the shear and normal forces and the shear and normal
interfacial displacements. Force equilibrium at the interface requires both a
normal and shear stress balance. This results in the mechanical transfer
relations becoming 4 x 4 matrices, rather than the simpler 2 x 2 matrices
considered here, greatly increasing the algebraic complexity.
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Fig., 1 Prototype layers of incompressible, inviscid, perfectly
insulating fluids, supporting uniformly distributed charge
densities, (a) planar geometry, (b) cylindrical or spherical

geometry.

Surface Tension y

Fig. 2. Cross section of an initially spherical drop of radius R
with charge density q;» mass density p, and permittivity o
placed within an infinite medium with E:'harge density q,,
mass density p, and permittivity e,. A point charge (6 =3)
isat r = Q.
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THE DYNAMICS OF COLLIDING AND OSCILLATING DROPS*

Carol Travis Alomso
Lawrence Berkeley Laboratory, Berkeley, Califormia

INTRODUCTION

In order to study the oscillations, fusions, and fissions of liquid
drops, we are developing a hydrodynamic computer code which simulates these
processes for viscous, incompressible dropa endowed with a body charge and
surface tension. Although our interest lies in the field of nuclear hydro-
dynamics, the application of this code to classical liquid drops is general.
Our code traces the dynamic evolutiom of an axially symmetric system as a
function of time. It utilizes a free surface that requires no parameter-
ization and its velocity field can be rotatiomal or irrotational as required.
When completed, the present version will yield the following information
about the classical dynamics of liquid drops: (a) free surface shape and
energy, (b) free-flow velocity f£ield, (c) kinetic energy distribution,

(d) Coulomb energy, (e) free-flow moment of inertia, and (£f) free-flow
electric quadrupole moment. These quantities can be gtudied as a function
of viscosity, initial shape, and energy.

We present here some studies of the oscillations of charged and neutral .
drops as a function of initial shape, charge, and viscosity. These studies
are not restricted to small amplitudes. We also present some preliminary
simulations of fissions and fusions of viscous charged drops, with some
comments about the possible role of nuclear viscosity in the creatiom of
"superheavy" elements in heavy ion accelerator reactiouns.

NUCLEAR HYDRODYNAMICS -

The general problem of liquid drop dynamics, important as it is to
many scientific investigations, has never been fully.solved due to the
complexity of the hydrodynamic equations involved. Even the linear problem
of viscous small amplitude oscillations is described by complex Bessel
functions (1). Large amplitude oscillations and distortions, including the
fission and fusion of liquid drops, cannot be described amalytically in
complete detail. .

In the particular field of nuclear hydrodynamics, it has become of
critical importance to be able to follow in some way the dynmamic path of
those large amplitude motions leading to nuclear fusion and £isgion. Some
studies of this problem using parameterized surfaces and irrotational flow
have been carried out by Sierk and Nix (2). Other efforts have concentrated
on solutions of Hamilton's equations using parameterized shapes (3).
Disruptive procegses such as fusion have not been studied dynamically because
they do not lend themselves easily to shape parameterizatiou.

While the atomic nucleus usually displays a quantum mechanical nature,
the nuclei of the heavier elements, which contain hundreds of nucleons,

*Work performed under the auspices of the United States Atomic Energy
Commission.
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begin to show properties that are characteristic of classical fluid flow.
The best example of this is the success of the celebrated liquid drop model
of nuclear fission proposed by Bohr and Wheeler (4). Another example is that
the moment of inertia of rotating nuclei lies somewhere between that of a rigid
body and of a drop with irrotational flow. At low temperatures the nuclear
liquid can become a superfluid and a classical description is probably not meaning—
ful. However most accelerator reactions between nuclei take place at elevated
temperatures where classical behavior, if not well established, becomes a
reasonable assumption, at least for the heavier nuclei. In Figure 1 we have
attempted to show where the physics of heavy nuclei fits in the transition
_ from the classical to the quantum mechanical regimes. The transition point
is taken to be at the temperature where the de Broglie wavelength equals the
inter-nucleon spacing.

In the spirit of this classical assumption we have undertaken to simulate
by computer methods the dynamics of colliding and oscillating viscous liquid
drops in a very general way. The only previous attempt at such simulations
was performed by Hill and Wheeler (5) for inviscid, irrotational fissions at -
a time when computers were not fast enough to handle the general protilem. The
overriding interest today is in the problem of fusing two charged liquid drops
to make a large composite drop. This is the basic way in which the new
transuranic elements are being produced: two nuclei are made to collide in an
accelerator and the fused compound system becomes the new element.

Recent theoretical predictions by Nilsson and others (6) of the possibility
of using fusion reactions such as this to produce the so-called "superheavy"
elements with atomic number around 114 have not been substantiated by
experiments (7). We now suspect that this disparity may be due to a finite
nuclear viscosity at elevated temperatures. The effect of this viscosity
would be to convert the energy of the forward motion of the fusion process
into frictional heating, making fusionm impossible due to the repulsive Coulomb
forces that are always ready to pull distorted shapes apart.

Therefore we are developing a computer code, called SQUISH, that we hope
will have sufficient accuracy to predict the correct bulk motion of charged
viscous liquid drops with axial symmetry. This program is quite general. It
can be used for any liquid drops, nuclear or otherwise, that are subject to a
calculable external force. The code is still in development and although we
are presently studying fusions the results are still preliminary, so we present
in this paper mostly some simulations of the dynamics of large~amplitude motions
of single drops.

THE COMPUTER CODE

Without going into details, we describe in Figure 2 how the code works.
SQUISH is an example of the two-~dimensional hydrodynamic finite-difference

codes that are becoming very popular because of the increased capability of
modern computers to handle them. SQUISH uses a basic hydrodynamic technique
developed at Los Alamos by Harlow and Amsden (8) for low Reynolds number flow,
the SMAC or Simplified Marker And Cell method. In this scheme, the drop is
contained in a fixed Eulerian mesh and movable Lagrangian particles are injected
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into the cells of the mesh. A special set of surface markers keeps track of-
the free surface. Typical full and surface cells are shown in the insets.

The forces and pressures are calculated at the centers of the cells, and
velocities are deposited on the cell boundaries. The computer is then
instructed to move the particles according to Newton's laws, which in this
case become the Navier-Stokes equation for a viscous and incompressible

- £luid. In our case the forces include surface tension and Coulomb forces.
The method of Foote (9) has been used for the application of surface tensgion.
The particles are moved by applying these equations in finite-difference form,
and the whole system iz adjusted to conserve volume according to vV ° U = 0,
The program, after moving the particles, increments the time, recalculates the
new forces and pressures, and proceeds in this cyclical manner to follow the
dynamical paths of all the particles that make up the drop.

- The advantages of this method are that it contains (a) a free surface
that requires no parameterization, (b) a free-flow velocity calculation that
can be rotational or irrotational, and (c¢) provisions for including any
calculable external force, or any bulk property such as viscosity or elast-
icity. The limitations are that (a) the code must be axially symmetric if it
, is not to become extremely costly to run, (b) some accuracy must be surrend-
ered by the choice of a reasonably large mesh size, and (c) the physics is
purely classical, although it may be possible to simulate some quantum mech-
anical behavior in a pseudo-classical manner.

At present SQUISH is capable of calculating at any time step the follow=
ing properties of a system of viscous charged liquid drops: (a) free surface
shape and energy, (b) free-flow velocity field (rotatiomal or irrotational),
{c) kinetic energy distributiom, (d) center of mass kinetic energy, positionm,
and moments, (e) Coulomb energy, (f) free-flow moment of inertia, and (g) free—
flow electric quadrupole moment. These quantities can be studied as a function
of viscosity, initial shape, and initial energy. It should be pointed out
that not all of these quantities will have analytical accuracy. The size of
finite difference mesh employed sets a limit on the accuracy of the free
surface shape, upon which most of these quantities depend. Computer simul-
ations of this sort should be regarded as quasi-analytical experiments with
definite errors associated with the variables. However the bulk motion
should be correct, and the accuracy can be made as good as necessary, should
the need merit the expense.

SIMULATIONS OF DROP DYNAMICS

Ag an illustration of the versatility of such a code, let us examine
the motion of a particular drop as we change its size, viscosity, and charge.
In the following figures the units are scaled to nuclear dimensions, but the
dynamic evolution shown applies to any classical viscous drop by virtue of
‘dynamic similarity. 1In Table 1 we present a unit conversion table for the -
benefit of non-nuclear scientists. The figures in this paper represent smoothed
compogites of motion picture sequences generated by the computer.
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We begin with a study of the uncharged drop. Wong and Tang (1) have
discussed the analytical solutions to small-amplitude oscillations of such
drops. We shall now study large-amplitude oscillations, for vhich there is
no analytical theory. The sequence shown in Figure 3 simulates the oscilla-
tions of a drop with an initial shape given by the second-order Legendre
polynomial, with the coefficient ap = 0.4. The viscosity is of a medium
value that results in a damped oscillatory motion. The drop is started at
rest; the initial excess surface energy is then exchanged for kinetic energy
as the drop oscillates from a prolate spherodd to a sphere (with minimum
surface energy and maximum kinetic energy) and then back to an oblate spheroid .
(with minimum kinetic energy and maximum surface energy). The drop simula-
tions at the top are from the film strip; the large dots are the surface
markers and the small interior dots are the cell particles. There are about
a thousand particles in this drop. The total energy is seen to decrease
exponentially as the damping proceeds. The period of oscillationm,

15.35 x 10-22 seconds, is slightly longer than the theoretical period for
small-amplitude oscillations, which is 13.38 x 10~22 geconds. However the
general motion exhibits the behavior described by Lord Rayleigh (10) for
linear oscillations many years ago, even though the ratio of amplitude to
drop radius is not very small. This result has been observed experimentally
many times. '

The simulation in Figure 4 shows this same drop except that the viscosity
has been increased by a factor of ten. Now the motion is overdamped and the
drop slowly damps out to a sphere without any oscillatory motion.

In Figure 5 the size of the drop is changed so that it now has an initial
Legendre coefficient given by a, = 1.0. This is a very large-amplitude motion
which no longer preserves the P, shape. In the least square fit of the free
surface shown on the left, a sugstantial a, component is seen to grow with the
motion, and this is also very evident in the simulated drop sequences at the
top of the figure. The energy changes are shown on the right; at the end of
this simulation we have been left with a sphere with a great deal of kinetic
energy which will probably proceed into some complex oblate spheroidal type
of shape, still following the general Rayleigh behavior. The extrapolated
period for this oscillation is about twice the corresponding Rayleigh period.
The Weber number for this simulation, defined by We = odu?/y = 12 Eyy./Egyur
(where o is the density, d the drop diameter, u an average velocity, and
¥ the surface tension coefficient), is We = 1.37, and there is no sign of
extreme disruption in the simulation.

The addition of a full body charge to the drop involves a substantial
increase in computer running time, and this tends to result in a loss of
accuracy due to the necessity of using a larger mesh size. In Figure 6 we
show the smoothed energy curves for the same drop that we discussed in
Figure 3 except that now it has a body charge of 62 proton charges. The"
charge density, like the mass density, is assumed to be constant throughout
the drop. This particular charge represents a 152Sm nucleus, which is known
to be stable against fission even for fairly large distortions. In this sim-
ulation the surface forces still predominate the motion, but now the surface
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energy is exchanged for Coulomb energy as well as kinetic energy, resulting in
a longer period for the oscillation. The Coulomb energy and kinetic energy
are at a maximm for the spherical shape, while the surface energy is at a
minimum. Toward the end of the simulation the motion has damped out to small
amplitude oscillations about a sphere. The accuracy of these calculations )
is about one percent.

The motion of this same drop was studied as more charge was added to

the drop. In Figure 7 we plot the kinetic energy of the drop after a fixed
time interval as a function of the atomic charge Z of the drop. For small
charges the motion is oscillatory. As the charge is increased, the Coulomb
forces oppose the surface tension more and more, slowing down the motion
until the two forces just balance at the minimum in the curve. This minimum
represents a saddle point between oscillation and fission; for charge
- densities beyond this point the Coulomb forces predominate and the drop
begins to fission with no oscillatory behavior. The saddle point charge
predicted by SQUISH is in agreement with the theoretical saddle point charge
of 76 predicted for this shape by Cohen and Swiatecki (11). In Figure 8 is
shown the same drop of Figure 7 with charge Z = 110. Here the Coulomb energy
plunges down as the fission proceeds, and the surface energy and kinetic emergy
move up almost equally in the initial stages of the motion.

The dimensionless parameter that is used to represent the relative
strengths of the Coulomb force and the surface tension is the fissility,
defined by x = Ecoul/(Z-Esurf) . In Figure 9 is shown a comparison of two
simulations of a drop that was initialized with a shape corresponding to an
x = 0.9 saddle shape, but with enough charge to make x = 1.56. This highly
charged drop was then expected to fission very rapidly. The drop at the
right was given a high viscosity that overdamps oscillations at lower figs~
ilities, and the drop at the left was given a lower wiscosity that would lead
to damped oscillations at lower fissilities. Instead of rapidly breaking apart
into two drops, we find that the highly charged drop becomes very elongated and
eventually develops a long, thin neck that will not pinch off until the neck
has extended to virtually no width. This is an unsettling result, especially
for nuclear physics, for such a thin neck would contain less than one nucleon
and we could not expect to apply a classical treatment under such conditions.
-This is not entirely surprising because nuclear fission i3 usually a low-
temperature phenomenon, unlike accelerator-induced fusion. However it means
that classical treatments of the fission dynamics, and possibly the statics,
may be misleading. One might hypothesize that in real charged drops, whether
clagsical or quantum mechanical, the pinch-off is actually initiated by a
surface fluctuation in the thin neck. This is substantiated to some degree by
our knowledge that nuclear fission 1s not necessarily symmetric; one fission
fragment often is larger than the other, which would be possible if the long
neck predicted by SQUISH were to be broken off at a random place along its
length at some time by a random surface fluctuation.

Experimental studies of charged drops would be very helpful in this respect,
but it would be extremely difficult to charge them sufficiently to represent
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nuclear liquid drops, which are held together by the strong nuclear forces
despite their high charge density. 1In Figure 10, nonetheless, we show an
approximation to a real charged drop, These profiles are from a film made
by two nuclear physicists at LBL. They suspended a drop of water containing —
trichlorethylene in a bath of transformer oil of about the same density as
the drop. Then they placed the drop between two capacitor plates and filmed
its subsequent motion as a function of the applied voltage. The sequence
shown here was at ome of their higher voltages. These drops, of course, are
not body-charged like a nucleus, but rather polarized. However we see in
their development a pronounced elongation followed by asymmetric fissiom,
which lends some credemnce to the computer simulations that we have presented.
Further support is found in the experimental films of pendant drops presented
at this conference by A. A. Kovitz.

Besides these simulations of the fission process, which require further
study, we are examining the problem of fusion. This has required special
programming to handle the cusp-like neck at the initial stages of the fusion.
Our fusion results are still preliminary and will not be presented in detail
at this time. In Figure 11 is shown, by way of example, a simulation of the
fusion of two liquid &pheres. The Weber number for this simulation was
around 5.5, so surface tension effects are negligible compared to inertial
effects, and large distortions are expected. The general features of this
viscous fusion are that the necking process involves a large amount of viscous
friction which hinders the formation of the neck and hence the fusion. The
implication of this for the fusion of heavy nuclei is quite serious, if
nuclear viscosity does indeed exist (and we do not yet know that it does), for
it implies that at high accelerator velocities the viscosity may hinder the
formation of compound nuclei, while at low velocities the Coulomb repulsion
also hinders the fusion. Therefore there may be only a narrow range of energ-
ies for which fusion experiments can be performed in the heavy nuclei. We
plan to explore many of these speculations in the near future.
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Table I - Unit Conversion Table

Quantity Nuclear Unit ‘ST Unit

Time ‘1 dsec - 10722 gec

Length 1 fm - 10715

Energy 1 Mev - 1.602 x 20723 4

Velocity 1 fm/dsec = 107 m/sec

Kinematic 2 -8 2
viscosity* 1 fn"/dsec = 10 © m“/sec

Surface temsion 1 Mev/ f.m2 = 1.602 x 1017 at/m

3

* The nuclear density is 0.13 amu/fm” = 1.66 x 1018'Kg/m3. Thus

a nuclear kinematic viscosity of 1 fmzldsec means a viscosity

of 1.66 x 108 poise.

** The nuclear surface tension is approximately 1 Mev/fmz.
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SKYLAB FLUID MECHANICS DEMONSTRATIONS

-
by

Edward G. Gibson
Science Pilot, Skylab III

The substance of this presentation is a motion picture £ilm which
i1llustrates some of the fluid mechanics demonstrations accomplished on
the Skylab missions. It is representative of the many hours of data
taken in flight, most of which is from the third and last manned mission.
These demonstrations were conducted on an unscheduled basis whenever a
member of the crew, usually the science pilot,.could make some time
avaﬂabie. Because these demonstrations were not proposed and approved
for flight untll very late relative to the other Skylab experiments, the
amount of crew familiarization and training, additional hardware and
inflight time which could be made available were minimal.

The improvement in the techniques of handling fluids in zero
gravity during the course of the three missions is first shown. A very
light thread was sometimes used to stabilize fluid drops. Syringes
with large openings were found to be useful for dispemsing the fluids.
Ink or small amounts of drink juices were often added to water to
provide better visualization. Most of the data was taken with the
onboard television system. On the last flight the use of a close-up
lens provided excellent viewing of the investigations. The list of
phenomena to be explored also increased significantly with each mission.

The modes of oacillation of a fluid droplet on a flat plate were

then presented. The drop was perturbed by either oscillation of the
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plate or by impingement of a jet of air from above the drop and directed
perpendicular to the plate. The motions of the drop were followed through
many cycles to permit study of the damping and development of modes of
oscillation different than the one excited.

A large portion of the f£ilm 1llustrates the characteristics of fluid
spheras in zero gravity. Sphere sizes approximately 5 to 20 cc were used.
Each sphere was perturbed symmetrically about a plane through the center
of the sphere and the modes of oscillation and damping were followed.
Spheres of a water~soap mixture or of a low density socap froth were
observed to demonstrate the effects of changes in demsity, viscoaity and
surface tension on the modes of oscillation and damping. Water spheres
were rotated and fission of the sphere was obam&d. With rotation of a
sphere, a "dog boune" geometry developed before fission. A toroidial form
was never observed. Collisions between water drops were aléo studied.
Different relative drop sizes, velocities and impact parameters were used.
Lastly, air was injected into water spheres so that a "sphere within a
sphera” was observed. Bubble collapse and the very pronounced increase
in damping of sphere oscillations was observed.

The largest fraction of effort was directed at the study of liquid
floating zomes, a demonstration suggested and developed by Dr. J. R.
Carruthers of Bell Laboratories. Cylinders of 6, 14, and 20 cc of fluid
were stabilized between two circular plates of 7/8 inch diameter. The
fluid was allowed to wet the flat surface of each plate but was prevented

from wetting the edges by use of Krytox lubricant. The plates were then
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rotated at various speeds in either the same direction or opposite
directions and the resultant fluid motions observed. The most commonly
observed instability was a bowing of the cylinder or "C shaped"
in‘stability. Mixtures of soap and water and a soap froth were again
used in addition to colored water. Bubbles were also inject:ed into the
cylindrical water colummn. The coalescence of the bubbles, their movement
to the center of the axis of rotation and their effect of increasing the
damping of the column were observed. Longitudinal vibration, that is,
vibration of the end platesi aiong the axis of the column, was studigd with
each colum'befnre rotation. When the vibration was of the correct fre-
quency, ﬁstanding waves were observed. An increase in the frequency pro-
duced an increase in the number of modes observed. In order to aid in flow
visualization, soap fragments were added to clear water columns in several
runs. Lastly, the maximum theoretical stable column lenéth of 7 times the
diameter (2.75 inches) was observed to be slightly exceeded (2.90 inches)
but the shape was that of an unduloid which slightly increased the stability
and made it possible.

The fluid mechanics danonstra;:ions conducted on Skylab only scratched
the surface of the useful fluid mechanics experiments that can and should

be done on future shuttle missions in the 1980's.
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THE APPLICATION OF DROPS AND BUBBLES TO THE
SCIENCE OF SPACE PROCESSING OF MATERIALS

by
J. R. Carruthers

Bell Laboratories
Murray Hill, New Jersey 07974

I. INTRODUCTION

One of the primary tasks of materials scientists
is the preparation of solids with controlled shapes,
compositions and étruqtu;es. These characteristics in
turn determine the properties of the solid material. The
degree of our ability to exercise control over them
ultimately limits the performance of the material for
its intended application, whether it be structural, electronic,
magnetic, optical, chemical or biological. Consequently
studies of materials processing are highly important areas
of research which involve interdisciplinary combinations
of such diverse fields as solid state physics, surface
physics and chemistry, £luid dynamiés, heat and mass transfer,
and high temperature thermodynamics and physical chemistry.
Although there are many important processes such as metals
casting and annealing, ceramic sintering, glass melting
and homogenization, chemical vapor deposition, crystal
growth, oxidation, and diffusion, this paper will consider
only crystal growth from melts and solidification processes
since these are uniquely affected by a reduced gravitf. The

- basic configurations and problems associated with crystal
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growth from melts will be outlined on earth as well as
in space. The role of free liquid surfaces in crystal
growth processes will be discussed for various liquid
shapes and the relevance of the current state of the
science of liquid drops and bubbles in liquids to these
processes will be demonstrated. .

II. CRYSTAL GROWTH AND SOLIDIFICATION PROCESSES ON EARTH

Melt crystal growth techniques can be classified
in terms of the degree of confinement of the liquid by
an external container as shown in Fig. 1. In the full

confinement methods, the growth interface contacts the

“container over some region as shown for the horizontal

and vertical Bridgman techniques.(l)

The main problems
associated with this contact.are direct container contamina-
tion of the melt close to the interface itself and the

thermal stresses occurring between the container and the

grown crystal. In the partial confinement methods, the
growth interface does not touch the melt container as shown
for the Czochralski,flux and hydrothermal growth techniques.(l)
Although contamination from the container does fregquently occur
in these methods, it can often be reduced through the use

of special liners inside the structural support of a rigid
container. The Czochralski technique is the most widely

used method for growth of congruently melting materials

by direct solidification. The growth interface is constrained -

by appropriate temperature gradients and the meniscus of the
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free melt surface. Included here are the shape defining
techniques such as the Stepanov method and edge-defined,
film-fed method, both of which will be described later.
The various flux techniques are basically isothermal and
are used for materials that are incongruently ﬁéiﬁing or
decompose at higher temperatures. The interface position
and growth rate are constrained by the compositional
gradients in the melt and the degree of supersaturaticon of
the melt respectively. For some fluxes, the free surface
results in undesirable vaporization of some constituents.
Hydrothermal growth produces crystals from a supersaturated
fluid near or above its critical temperature. The growth
rate is controlled by a concentration gradient induced by
a temperature difference between the nutrient and growth

regions.

Crystal grdwth methods from unconfined or container- _
less melts involve both drops and zones as shown in Fig. 1.
Constant volume sessile drops which are fed externally
with "raw material"” are used for both flux growth by the
vapor-liquid-solid (VLS) technique and cohgruent solidifica~
tion by the Verneuil technique. Similarly, liquid zones,
where the melt surface is cansérained by surface tension
assisted in some cases by electromagnetic levitation, have
been used for both congruent melting (floating zone, silver
boat methods) and fluxed melt systems (temperature gradient

zone melting or travelling solvent methods). None of these
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technigques has been widely used on earth because they are
complicated to control and because they require rather

high temperature gradients—due—to—the Timits imposed on

the liquid volume size by hydrostatic pressure considera-
tions. The high temperature gradients cause extenéive
dislocation generation in the grown drystals and also give
rise to highly nonuniform and unstable thermal convection
‘in the melt which in turn leads to undesirable compositional
variations in the crystal through its influence on mass
transport at the growth interface. The removal of gravita-
tional constraints however leads us to reconsider the.
detailed behavior of unconfined liquids and the influence
of this behavior on crystal growth processes in a later

" section.

The use of bubbles in materials processing on
earth has been mainly as a means of providing large surface
areas for g;s-liquid reactions in extractive metallurgical
processes and for stirring purposes in glassmaking. In
reduced gravity environments these technigques cannot be
used because it would be difficult to remove the bubbles.
On the other hand several novel uses of bubbles in materials
processing are possible in reduced gravity which will be
discussed in the next section.

III. CRYSTAL GROWTH AND SOLIDIFICATION PROCESSES IN SPACE

Some possible configurations for containerless

crystal growth in space are shown in Fig. 2. A division
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can be made into single, double and multiple solid access
into the liquid drop.

In the single access techniques, the drop is
solidified onto a crystal seed so that as the seed is
withdrawn, the drop position must be maintained. There
are two main techniques for holding the drop position; by

(2)

external fields such as electromagnetic and stationary

acoustic(3’4) fields, and by the use of dies such as used

(5 and edge-defined, film—fed(6’7) techniques.

in the Stepanov
The latter techniques may be used to grow noncircular
cross-sectional shapes but reintroduce contamination
problems. The use of external positioning fields possesses
several complications of which the most important are
uncontrolled convection, drop oscillations and what heating
method is to be used. In the case of acoustic field
positioning, drop oscillations {(and associated fluid £flow)
may be present, optical image heating methods must be used

to avoid distortion of the sound fields and the energy
impedance mismatch which gives rise to the ‘positioning force
becomes weaker in high temperature gases. In the case of
electromagnetic field positioniné, only liquids with a
reasonable electrical conductivity (to 1 mho cm ') may be
used and uncontrolled electromagnetic stirring may be present
at higher power levels if the field is used to simultaneously
heat as well as position the drop. Both positioning field
arrangements will soon be tested in the space environment

achievable in sounding rockets.(a)
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_ In all single access drop techniques, control
of the meniscus shape at the freezing growth interface
will be required for ease of growth-rate and crystal shape
control. The role of the meniscus shape will be discussed
in the next section but it is desirable that the liguid
and solid surfaces meet at an angle of 180°.

The need for ﬁésitioning fields may be eliminated

by the use of double access ligquid drop techniques where
a melting rod of the same material as the solidifying
crystal is introduced into the drop. The simplest concept

(9-11) where éhe

is the cylindrical floating zone technique
end rods are of equal diameter. In this case, the maximum
stable liguid zone length is equal to the circumference

regardless of the surface tension.(lz)

Although this zone
length is longer than that possible in earth gravity, a
proﬁlem arises because the temperature distribution in the
absence of thermai convection is not favorable. As shown
in Fig. 3(b), the interface shapes will not be perpendicular
to the crystal axis as shown in Fig. 2 but will rather
follow the freezing point isotherm resulting from thermal
conduction. The simplest remedy to this problem will be to
use unequal and diameters as typified by the pedestal

technique in Fig. 2. This geometry will allow heaters

to be used which possess axial as well as radial temperature

gradients. If zone lengths longer than the crystal circum-

ference are desired, then floating drop shapes may be used
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as shown in Fig. 2. However independent meniscus shape
control is not possible for such drop shapes.

Multiple solid access in the liquid drop
allows for compositional control of the molten zone
during growth. In such a system, complex solid-solution
systems could be grown at éonstant solid composition
by continuously changing the liguid composition. However
such a technique represents a degree of difficulty not
presently attempted on earth with the exception of the
feed-in, pull-out and floating crucible techniques.(l)

The role of bubbles in liquid drops has been
shown in recent Skylab experiments(IB) to effectively
*stiffen” the outer liquid surface sé that wvibrational
oscillation amplitudes are considerably diminished.
Consequently any of the techniques shown in Fig. 2 may
benefit by using liquid shells instead of liquid drops
if drop oscillations are a problem.

Another area where bubbles may serve a useful
function is in the production of foam solids - a new class
of materials with potentially useful strength to weight ratios.
IV. LIQUID DROP STATICS AND DYNAMICS

In this section, we consider four major phenomena
relevant to the space processing of molten materials; the
degree to which a coﬁtained liquid adopts its equilibrium
shape in zero gravity, the stable shapes of axisymmetric

menisci at crystal-melt boundaries, the rotational stability
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of liquid drop and zone surfaces, and the vibration-
oscillation characteristics of ligquid drops and zones.
These phenomena are all basic to our understanding of
containerless handling of melts for crystal growth purposes.

(a) Behavior of Confined Ligquids at Zero Gravity

There are two important factors which determiﬁe
the equilibrium shape of a liquid in a container under
weightless conditions; the filling‘factor and the liquid-
container contact angle. This problem has been solved
analytically for a spherical container by Zenkevich(l4)
and his results are shown in Fig. 4. The transitions io
the various morphological forms are given by the two
curves A and B which denote the contact angle, €, at which
the liquid transforms from its earthbound position at
an initial héight, h, in a container of radius R. Below
curve A, the liquid uniformly wets the container while
above curve B, the ligquid drop does not contact the container
at all. A similar set of conditions applies to liquids
contained in cylindrical tubes although no analytical
solutions are available as yet. These results show that
completely confined ligquids may adopt a variety of shapes
which may not be desirable from the standpoint of crystal
growth and solidification, particularly in the vicinity
of the transition points of Fig. 4.

(b) Static Meniscus Behavior at Zexo Gravity

The behavior of the meniscus shape during

Czochralski growth on earth has been discussed thoroughly
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(15)

by Geist and Grosse. The stabilities of such menisci

have been dealt with by Huh and Scriven(ls) as well as

Padday and Pitts.(l7)

Basically the situation in
Czochralski growth is shown in Fig. 5 where a solid
cylinder is immersed in the free liquid~surface at a
contact angle of zero. The preferred meniscus height,
hz, is shown in Fig. 5(b) since the freezing interface
will tend to remain at constant diameter for small non-
uniform displacements of the crystal pulling rate, Vo'
or freezing point isotherm. The stabilities of menisci at
zero gravity for the free surface, single access drop
methods of Fig. 2 have not been investigated as yet but

' are going to depend quite sensitively on the confiéurations
of the force fields used to constrain the liquid drop
position. Some anticipated meniscus shapes at zero gravity
are shown in Fig. 6. The maximum height, h, of the crystal
interface above the original drop surface is determined
primarily by the radial departure, R, allowed at the bottom
of the meniscus. If R is constrained to be close to the

crystal radius, R then the height h cannot exceed 2 7R

cl
without the meniscus becoming unstable. Otherwise longer
liquid meniscus columns are allowed according to the

approximate relation:

. ¥ 2 TIR%- (R-R) 2112 @
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These considerations apply only if the liquid column
base radius, R, is substantially smaller than the liquid
drop radius. Otherwise the constant volume condition of
the drop or zone will enter into the stability picture
as pressure changes in addition to those caused by the
liquid surface curvature. A treatment of the mathematical
stability of liquid surfaces of revolution under such
conditions has been given by Gillette and'Dyson(la) for
equal end radii. A summary of their calculated stability
limits is shown in Fig. 7 for liguid zones of wvolume V,
length L, radius R and diameter D. The limits for unequal
end diameters and differential volumes have not been
calculated or observed as yet.

{c) Dynamic Behavior of Liquid Surfaces at Zero Gravity

The behavior of free liquid surfaces under

rotational and vibrational conditions is now examined.

(i} Rotational Stability

In crystal growth and solidification processes,
rotation is usually required in order to provide radially
symmetrical temperature distributions since such symmetry
may not be present in the heating source and perfect alignment
of the crystal axis with the thermal center of symmetry is
difficult to achieve. For purposes of compositional
homogeneity however, no convection is desired in the melt.
Consequently only uniform "solid~body" rotation of the liquid

(equal isorotation in the case of double access drop growth
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techniques) may be considered and the absolute rotation velocity,
w, must be small enough so that the centrifugal acceleration, &Zr.
does not cause density gradient driven flows (rotation
of a 10 cm radius drop at 5 rpm results in centrifugal
accelerations of 2.5 x l()"'3 g). Nevertheless such rotations
will influence the surface stability criteria discussed
in the previous section.

The rotational stability criteria for liquid
spheres was first considered by Rayleigh(lg) and more

completely by Chandrasekhar,czo)

The deformed shape

_ considered was that of depression at the poles and expansion
at the equator as shown in Fig. 8 for various values of the
dimensionless rotation rate, pQZRS/c {where p is the density
and ¢ the surface tension of the liquid drop of initial
radius, R, being rotated at Q rad/sec). A water drop of
radius .10 cm would become toroidal at a rotation rate of

12 rpm:' However recent crude experiments performed on
Skylab with rotating liquid drops indicated that rather

than the expected toroidal deformation shown in Fig. 9(a),

a2 dumb-bell deformation (Fig. 9(b)] was produced when even
small nonaxial perturbations are introduced into the rotating
drop. The growth rate of such nonaxial perturbations is
considerably reduced as the viscosity of the liquid drop
increases. Such instabilities have not yet been analyzed

theoretically.
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The rotational stability criteria for cylindrical
liquid columns has been analyzed theoretically by Hocking

and Michael(211, Hockin.g(zzl (23) (24)

» Gillis » and Ross
For axisymmetric disturbances, the maximum zone length is

reduced below that for a static zone:

L = 2 TR (2)

3
[14+288

This criterion has been tested experimentally in a Plateau

(12)

simulation system by Carruthers and Grasso and in real

b.(25) These data are summarized in

zero gravity on Skyla
Fig. 10 for equal isorotations and compared to Eg. (2).
Discrepancies in the Plateau results occur because the

actual zone rotation velocity is somewhat smaller than the
end-member rotation velocity because of the viscous drug
effects exerted by the viscous outer fluid containing the
zone.(z) The Skylab data also shows a deviation from the
theoretical curve - becoming unstable at lower rotation rates
than expected. The reason for this behavior is that the
failure mode in the Skylab experiments was nonaxisymmetric

as shown in Fig. 1l(b). It'was possible to obtain axisymmetric
failure modes of the type shown in Fig. 1l(a) by replacing

the water zone in the Skylab experiments with a scap solution/
air foam which greatly increased the effective viscosity.

The nonaxisymmetric failures clearly arise from disturbances

created by misalignment of the rotation axes and nonparallelism

of the discs at the ends of the zone. However viscosity
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plays a very important and unsuspected role in determining
which types of disturbances are amplified. A great deal
of theoretical work is required here to analyze the
nonaxisymmetric failure modes for both rotating liquid
spheres and cylinder.
(ii) Vvibrational Behavior of Free Liquid Surfaces
In crystal growth processes, the time dependent

deformation of free liquid surfaces is undesirable because
the meniscus shape at the freezing interface will change so
as to cause crystal diameter perturbations and also because
internal f£fluid flows will develop which influence the growth
segregation behavior. There are two separate liguid sﬂapes
which can be considered here as was done for rotational
behavior; spherical drops and cylindrical zones. We are
interested in the natural resonant oscillation frequencies,
which depend primarily on surface tension, and the decay
rates, which depend mostly on viscosity. Xnowledge of
this behavior will permit apparatus designers to avoid
vibrations which cause resonant, large amplitude oscillations
in the liquid volumes used in space processing.

‘ Lamb first calculated the oscillation frequencies
of spherical liquid drops by assuming the viscosity was

Zero as: (26)

g% = [cz (+1) (a-1) (242)] /2 (3,
R (p_+py (441))
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where % is an integer greater than unity and o and p;
are the densities of the fluids outside and inside the
drop respectively. The role of viscosity was determined

(27)

analytically by Miller and Scriven who found that the

time dependent frequency, 8, varied according to:

B =8g+i8; 4)
where BI is the oscillation frequency and BR the decay
rate and both are viscosity dependent:

2 1/2
(2 241) (B*uipopipo)

8
X 2/ZRTLugpy) Y M tugp )4

(2 2+l)[2(12—l)ui2pi+2 2(2+2)
3 173
2R ri(uipi)

Ozp°+uoui(pi(2+2)~p°(£—l))]

+ (5)
po)l/zl2

+ (uO

8, = ov - (2 2+1) 2 (B*uguop;00) /2

(6)
2/7 RTL(u;p) " 24 tugp ) /2
Here uy and u, are the dynamic viscosities of the inner and
outer fluids respectively and
T = Pt + pi€2+1) (7)

Experimental verification of these relationships
can be found in the Plateau simulation work of Valentine

et. al.(za) where drops of a carbon tetrachloride and benzene

3

solution with a density of 1 gnm cm ° were suspended in water
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and oscillated by coalescense with small cyclohexanol

drops. More recent experiments(zg)

using sessile drops

of the same organic solution suspended in water are shown
in Fig. 12. The drops were deployed by simply £illing

a glass laboratory funnel so as to obtain the desired

size (Fig. 12(a) and (c)) and then mechanically vibrated
(Fig. 12(b)} and (d)). The data are plotted in Fig. 13
and show that although the decay rates agree well with

Eq. (5), the oscillation frequencies appear to lie between
B8* and BI' The contact of the carbon tetrachloride/benzene
drop to the glass tube may be responsible for this
discrepancy although the contact angle is 130° so that

the drop does not wet tube itself.

More recent experimental data has been obtained
wiﬁh liquid drop experiments performed for the author on
Skylab misgion IV by scientist-astronaut E. Gibson. In
these experiments sessile water drops were deployed on a
cireular disc which was then oscillated along an axis
perpendicular to its face. The data are shown on Fig. 14
together with the theoretical predicfions of Egs. (3) and
(5). One free drop experiment performed by astronaﬁt
W. Pogue on the same mission is included for comparison.
In all cases, agreement with theory is excellent for both
free and sessile drops.

The yibration behavior of cylindrical ligquid zones
was also studied extensively on Skylab IV. Preliminary

data for the oscillation frequency of longitudinal modes



176

(vibration along the zone axis) are shown in Fig. 15
together with the theoretical prediction (solid curves)

by Lamb‘?®) for an inviscid fluid:
1/2

3
2 170
8, = ——3———] (8)
% [ L™p

where L is the zone length. The frequéncy increase at
longer zone lengths is not presently understood but may
be a result of the viscous flow effects in the zone. The
theoretical vibration analysis for zones should be redone
including these effects as was done for spherical liquid
drops (Figs. 13 and 14).
V. SUMMARY

The unique environment of space allows the
containerless handling of melts to be used for controlled
crystal growth and solidification processes. Some of the
technigues currently used on earth together with their
problems have been reviewed. Possible configurations
for containerless methods in a space environment have been
discussed. Such techniques require a detailed understanding
of the behavior of free liquid surfaces under both static and
dynamic conditions. The current state of knowledge in the
science of liquid drops and bubbles relevant to containerless
processing has been discussed together with the results of
recent Plateau simulation and Skylab experiments. Many areas
which require further theoretical and experimental work have

been identified as a result of this preliminary work.
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(b)

Fig. 3. Crystal-melt interface profiles in zomes for (a) earth gravity
with thermal convection in the melt and (b) zero gravity with
only thermal conduction occurring in the melt.
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-axis is the z-axis and r is the equatorial radius - from Chandrasekhat:(



187

*gjusmpiadxe qeldis Ul PIAIeEqo AIF[IqEISU
T 119q-qunp (q) ‘g 3
3o AI11IqEasur feproxol (e) :doxp pynbyi Burielox e jo nummhuvmamauwwm ‘6 ‘814

(q) (D)

_ SN
SR

'\!\\\‘




188

7 1 UL LARE! 1 LA B | 1 | LR

+ PLATEAU SIMULATION DATA
o SKYLAB DATA (EQUAL TISOROTATION)

L/R

0 1 Lt ] Lot ] L1 it1

0.1 1 10 102
‘QZ R3
P~

Fig. 10. Comparison of the rotational stability of eylindrical liquid zones in

Pl:teau simulation and Skylab experiments with theory for axisymmetric
nodces.
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(a) (b

Fig. 11. Forms of rotating liquid zone surfaces: (a) axisymmetric mode observed
in presence of highly viscous liquids, (b) nonaxisymmetric C-modes
observed for water zones on Skylab.
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Fig. 12. Plateau simulation experiments using neutrally buoyant carbon tetrachloride
plus benzene solution drops in water. (a) and (c) are static sessile

drops, (b) and (d) are drops (a) and (c) respectively under wvibrational
conditions. ‘
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THERMOCAPILLARY FLOW IN A CYLINDRICAL
*
LIQUID DROP AT ZERO GRAVITY

Chong E. Chang and William R. Wilcox
Chemical Engineering and Materials Science Departments
University of Southexn California, Los Angeles, California 90007

ABSTRACT

Surface tension driven flow in the floating zone melting gecmetry was
studied by means of computer solution of the differential equations for heat and
momentum transfer. At small temperature differences one cell is formed in the
top of the zone, and its mirror image in the bottom of the zone. They appear
scmewhat like vortex rings (smoke rings). As the temperature differences in=-
crease, secondary cells form and the flow probably becomes oscillatory. High
differences produce turbulence. For silicon, effective heat shields are re-
quired to avoid turbulence, and the flow is not appreciably influenced by zone
motion or by earth's gravity. The laminar cells do not have a strong influence
on the heat transfer with good thermal conductors. Radiant heating of poor
thermal conductors may result in oscillatory flow even with small driving
forces.

INTRODUCTION

Floating zone melting is used commercially and in research for crystal
growth and for purification of high melting materials. The melt does not
contact a crucible, as shown schematically in Fig. 1. Heating may be by radia-
tion, by an electron beam, or by induction from a surrounding high frequency
coil. The zone is moved through the solid either by moving the heater or by
moving the solid rods bordering the zone. There are five sources of convection
in a floating zone:

1) When the zone is taken as stationary, there is a flow through the
zone generated by melting at one solid-liquid interface and freezing at the othex,
due to movement of the zone through the solid.

2) Convection due to rotation of the two solid rods. (Slow rotation is
sometimes used to maintain a cylindrical zone and growing rod.)

3) With induction heating one obtains electromagnetic stirring, which is
difficult to calculate.

4) Buoyancy-driven natural convection due to interaction of a gravita-
tional or accelerational field with density variations in the melt.

5) Surface-tension driven flow due to variations in surface tension
along the melt surface.

»*
Supported by NASA under contract NASS8-29847
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The purpose of the calculations described here was to estimate the magnitude
of the surface-driven (Marangoni) flow and its influence on heat and mass
transfer. Mass transfer influences the degree of purification and the homo-
geneity of single crystals. Heat transfer influences the perfection of the
crystals, the stability of the zone, and scmetimes influences the homogeneity
as well, through its effect on the freezing interface shape. In oxder to
determine the influence of surface driven flow on zone melting, the partial
differential eguations for momentum and heat transfer were considered. The
momentum equations were expressed in finite difference dylindrical stream-
function form, and solved by the Gauss-Seidel iteration method (1). The Newtone
Raphson method was used to solve the heat transfer equations, with an over=-
relaxation parameter of 1.9 for low Prandtl numbers and an underrelaxation for
high Prandtl numbers. Solutions were cbtained for two situations--a parabolic
temperature profile along the melt-vapor surface and for a ring heat source at
the center of the zone. The parabolic profile corresponds approximately to
radiant heating, and the ring source corresponds to electron beam heating. The
mass transfer equation coupled with the computed flow fields were employed to
£ind the impurity concentration fields in the melt at steady state.

The results of the calculations are expressed in dimensionless form and
for the physical properties of silicon with a 1 am x locm Zone, as a concrete
example. For molten silicon the melting point is 1410 C, the Prandtl number is
0.023, the Schmidt number is about 5, pf(ay/a'r)/uz is 14,000, and the emmissivity
is assumed to be 0.3 for both the melt and the solid. Earth's gravitational
field and ordinary zone travel rates were found to have negligible influence on
the convection for silicon.

RESULTS

Dimensional analysis of the momentum equations produced a parameter char-
actering. the driving force for surface driven flow, M = a(To-Tny)Ps(3Y/3T) /u2,
where a is the radius of the zone, T, is the temperature of the surface of the
melt at the center of the zone, Tp is the interface temperature, pf is the density
of the melt, v is the surface energy or surface temperature, and U is the
viscosity.

Streamlines for a Parabolic Temperature Profile
at the Free Melt Surface (Radiation Heating)

For simplicity, a parabolic temperature profile along the melt surface was
assumed for our initial calculations. This enabled us to solve the momentum
equations without simultaneously solving the heat transfer equations. A para=-
bolic profile, with a maximum at the center, seems reasonable for radiant heat-
ing. The dimensionless surface tension parameter M increases as the radius of
the zone a and the temperature variation along the melt surface increases. In
Figures 2 through 4, the streamlines for parabolic temperature profiles are
shown to illustrate the effect of increased values of M (350, 3500 and 7000).
Donut-shaped vortex cells were formed. With M = 35 and 350 only two cells are
generated, and the centers of the vortices move closer toward the liquid/solid
interfaces as M increases. With M = 3500, however, which corresponds to a
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condition of a = 0.5 cm and (T ~Ty,) = 0.5°C for silicon,” secondary vortex cells
were induced behind the primary vortex, as shown in Figure 3. As the value of
M was further increased up to 7000, third and fourth vortices were produced, as
shown in Figure 4. These multiple vortices are probably indicative of oscil~-
lations and incipient turbulence, which cannot be calculated in a steady state
analysis (oscillations are frequently found with free convection in enclosed
cavities between laminar and fully turbulent flow). The maximum velocity of
the melt for 1 cm diameter silicon with (Ty-Tp) = 1.09C is calculated to be 2
cm/sec. ;

Fluid Flow Coupled with Heat Transfer
(Electron Beam Heating)

Electron beam heating is commonly used in floating zone melting and was con=~
sidered as another heating mode. A xing heat source at the center of the zone was
assumed. Rather than specify the power input, the circumferential temperature T,
at the center of the zone was specified for convenience in analysis. The pro-
cedure used to solve the coupled heat-momentum transport problem was as follows:

! 1)- The temperature field for conduction was computed by neglecting convec-
tive heat transfer.

2) The surface ;cémperature profile from 1) was utilized to calculate the
first approximate solution of fluid flow.

3) The temperature field was recalculated using the flow fields from 2).

4) Steps 2) and 3) were repeated until the temperature and the fluid flow
fields no longer changed appreciably.

The resulting streamlines with M = 350** are drawn in Figure 5 in which we
took values for silicon with the surroundings at the melting point, i.e., the
heat shielding about the zone is extremely effective. While this does not cor-
respond exactly with reality, it does show the correct features. Comparing with
Figure 2, we see that the vortex centers are shifted nearer to the heat source
from the liquid/solid interfaces. This is because the steepest temperature
gradient is at the center of the zone. The maximum velocity for silicon was 0.55
cm/sec. Comparing the temperature fields with surface tension driven flow for
M = 350 with those for pure conduction, there was no significant change except for
a slight one near .the center of the zone. This indicates that conduction is much
greatexr than convective heat transfer as would be expected for the small Prandtl
number for silicon. The vorticity fields for M = 350 are shown in Figure 6. The
maximum vorticity and its location for various conditions are alsc summarized in
Table I. . o :

Influence of Gravity on Flow

In a vertical silicon melt with M = 350 at earth's gravity the flow and

*
Without heat shielding, we estimate the temperature difference (To=Ty) would be
on the order of 10 to 20°C, and the flow would be turbulent.

* )
For electron beam heating of 1 cm diameter silicon, the Marangoni number Ma is
about 1/50 of the value of M. Without heat shielding Ma is estimated to be
about 60,000.
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temperature fields in tle floating Zone do not change appreciably from those at.
zero g.* When the acceleration is increased to ten times the earth's gravity,
the lower vortex contracts while the upper one is expanded, particularly at the
center of the zone where the flow field is relatively weak. This is shown in
Figure 7 and may be compared with Figure 5 at zero g. This means that surface
driven flow predominates even on earth for many materials for radiant and
electron beam heating. It may even be important when induction heating is em—
ployed and may account for some of the compositional inhomogeneities observed.

Influence of Prandtl Numbex

The Prandtl number was increased from 0.023 to 0.3 and 2.0 by increasing
the specific heat, and keeping the viscosity and the thermal conductivity of the
melt constant. As the Prandtl number increases, the temperature gradients along
the free liquid surface (for fixed To~Ty) increase near the heat souxce and also
near the liguid/solid interfaces, but decrease significantly in between. Since
the convective heat transfer becomes more significant as a result of increasing
the Prandtl number, the isotherms are increasingly distorted from those of pure
conduction. This, in turn, causes changes in the flow field. For example, the
center of the vortex cell near the liquid/solid interface shifts closer to the
interface as the Prandtl number increases, as shown in Figure 8.

Influence of Zone Travel on Hydrodynamics

The effect of zone motion on the flow field was found to be negligible in
all of our calculated streamlines for zone travel rates of up to S5 cm/hour in
silicon.”® However, the effect becomes significant when the zone travel rate
becomes comparable with the velocity of surface-driven flow.

The flow field for electron beam heating with M = 35 is taken as a model
case in order to show the influence of zone travel on hydrodynamics in the
floating zone. The maximum velocity of the melt for M = 35 is 0.07 am/sec (or
250 em/hour), and the average velocity is about 70 cm/hour. In Figure 9, the
streamlines in floating zone melting of silicon at zero g are shown for a
freezing rate of 30 cm/hour. The lower vortex cell floats away from the bottom
interface and its size is reduced as the zone travel rate increases.

CONCLUSION

For silicon we have seen that thermocapillary flow is very vigorous, and
is turbulent when heat shields are not employed. The buoyancy flow is negligible
in comparison. With moderate heat shielding, oscillatory convection is likely,
but was not studied here. Zone motion does not have an appreciable effect on the
convection unless the temperature gradients along the melt surface are made very
small by effective heat shielding. With laminar flow, the convection has only a
small influence on heat transfer at small Prandtl number (Pr << 1), but a large
influence for Pr > 1.

.

*
Only temperature variations were considered.

xn
A zone travel rate of 5 cm/hour is typical for growth of single crystals, while
faster rates are employed for vacuum outgassing and lower rates for zone refining.
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Fig. 3. Computed dimensionless streamlines ¥ for surface drivem flow in a

floating zone at zero gravity with a parabolic temperature profile
on the free liquid surface with M = 3500 and v, = 0. Silicon with
(Tg-Tp) = 0.5°C and a = 0.5 em.
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Fig. 4. Computed dimensionless streamlines { for surface tension flow in a
floating zone at zero gravity with a parabolie temperature profile
on the free liquid surface with M = 7000 and Vo = 0. Silicon with
(T,~Tp) = 1.0°C and a = 0.5 cm.



203

P T

Fig. 5 1Isotherms § and streamlines y at zero gravity for electron beam heating
of silicon with (T,-Ty,) = 0.059C, T, = Ty, €g = 0.3, a = 0.5 cm, M = 350,
Pr = 0.023, vo = Q. ’
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VACUUM

Fig. 7. Streamlines and isotherms for combined surface~driven and buoyancy-

driven flow with Grp = 77S.

Other conditions are the same as Figure 4.
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Fig. 8. Isotherms @ and streamlines y for the same conditions as in Figure 4,
except Pr = 2,
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STEADY THERMOCAPILLARY CONVECTION CELLS IN LIQUID DROPS

: Alan L. Dragoo*
Institute for Materials Research, National Bureau of Standards
Washington, D. C. 20234

ABSTRACT

A nominally spherical drop is used as a model for a theoretical analysis

of thermocapillary convection and for estimates of convective flow rates in

"levitated" melts at zero-g. Since in practice temperature fields and the
resulting convective flow can be more complicated than the simple vertical
temperature gradient and the single vortex ring, respectively, the convective
flow arising from a general steady-~state temperature field is analyzed. . Ex-
pressions for the components of a steady velocity field are obtained by
adapting the analytical method of Miller and Scriven. The vortex rings are
illustrated by means of typical streamlines for the simpler, more symmetric,
temperature fields. "The circulation time is introduced as a measure of the
rate of circulation in a convection cell and typical values are given for
several materials.

INTRODUCTION

When buoyant forces are negligible, such as in a space laboratory,
convective flows may still occur in a liquid as the result of gradients
in the surface--or interfacial tension. These convective flows are commonly
called the Marangoni effect although the Marangoni effect includes both this
phenomenon of convection and the phenomenon of the deformation of a free
liquid surface (Ref. 1). Among the causes of gradients in the surface tension
are gradients in the concentration and in the temperature along the surface
of a liguid.

Concentration and temperature gradients may not be completely eliminated
in many processes, and in some instances, their presence may be necessary to
produce_the convection which is desired. The growth of crystals from a melt
is a process in which the elimination of convection in the melt is desireable
because convection produces non-uniform growth conditions, and, thereby, an
increase in the number of dislocations in the crystal. The evaporative purifi-
cation of a levitated melt is a process in which the opposite result is
desired: rapid convection is important here because it increases the rate of
purification by replenishing the impurity concentration at the surface and
because it tends to maintain an uniform composition throughout the melt.

*Financial support was provided by NASA under contract W-13,475 #l.
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The question of how much surface tension driven flows might enhance the
rate of purification of a levitated melt at zero-g is the motivation for the
work reported here. As a model which will begin to supply part of the answer
to this question, we will consider thermocapillary convection-~that is,
convection resulting from a temperature gradient along the surface (Ref. 2)--in
nearly spherical drops. The temperature field at the surface of the drop
will be treated in a general way by writing it as an expansion in spherical
harmoni¢s. The model will examine one of the convective modes corresponding
to one of the terms in the expansion of the surface temperature field. The
equations of motion-~the Mavier-Stokes equations~-will be solved within the
assumptions of a steady-state and of creeping flow--terms which are nonlinear
in the velocity will be ignored. The mathematical analysis will proceed along .
the lines of the method which Miller and Scriven (3) applied to the oscillations
of a fluid droplet although here we will not retain the time~dependence of
their problem. The physical boundary conditions will account for both the
convective flow and for the deformation of the surface so that both aspects
of the Marangoni effect will appear in the problem. The velocity field
components which are obtained from the Miller-Scriven analysis will be used
to derive the circulation time T whose inverse characterizes the rate of
circulation within a convection cell. An expression for T will be worked
out in detail for convection cells having axial symmetry. Estimates of T will
be given for a variety of materials when the convection pattern is a single,
axially symmetric vortex ring. Also, relative circulation times will be
calculated for several higher order, axially symmetric convective modes.
Illustrations of these convective modes will be given.

THE TEMPERATURE FIELD

The temperature field responsible for the convection is considered to be
a general, non-uniform, but steady, field which can be written as:

n

g no ’
T(x,8,¢) = To + ng'-l mgo ZaTm r Ym(e:‘“ (o=e,0), (1)
where, e m
an = Pﬁ {cos8) cos m ¢ (2a}
Ymn = Pn (cosf) gin m ¢ (2b)

are spherical harmonics as defined by Morse and Feshbach (4). The function

Pg (cosf) is an associated Legendre polynominal. The simple case of a constant
vertical temperature gradient through the drop--Yg, = P; (cosé) = cos 8-- is.

a special case of the solution of Young, Goldstein and Block (5) who derived
the velocity field in a bubble rising in a vertical temperature gradient.
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SOLUTION OF THE NAVIER-STOKES EQUATIONS

To obtain the velocity field u(r,9,¢) and the hydrodynamic pressure field
pi{r,0,¢) within a drop of radius R, we solve the linearized Navier-Stokes
equations 2
uwWa = Vp (3a)

ved = 0, (3b)

where u is the coefficient of viscosity. We impose the requirements
1) of a finite solution at r = 0;

2) of the kinematic condition u_(R) = 0, where u, is the radial
component of the velocity; d

3) of the physical bcundary conditions which will be examined in
the next section. :

Since Eqns. (3a,b) are linear, a general solution can be written as a
superposition of all the modes. Thus, it is sufficient to find a solution
for one of the modes (n,m,0).

Egqns. (3a,b) can be integrated according to the method of Miller and
Scriven. This method integrates (3a,b) in terms of u. and the radial component
of the vorticity, where the vorticity is defined by

Z7=2vx u. (4)

The results of the Miller-Scriven method which satisfy requirements "1" and

"2“ are
u_(r,8,4) =a2 2" (®%-r*)¥’ (8,0) (5a)
g n=-10
T (r,0,0) = B0 2" NYC (6,0). (Sb)

The remaining integration constants A;n and B;n will be obtained from the
physical boundary conditions in the next section.

The velocity components-ue and u

-=-can be obtained from ur and cr by
a relation due to Sani (6);

$

> 2 : _a
u=2&u, + [r"/n(n+l)] [VIIRur eerII;r], (6)

where ér is the radial unit vector,

L)
v = - A —
II v °r or 7
is the surface gradient operator and R is the operator

R
%_.2 = 2. (8)
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Eqn. (4) and the results for u s Yge u¢ can be used to derived ;e and ;q,.

The hydrodynamic part p(r,8,$) of the pressure can be found by taking
the divergence of (3a) which yields V2p = 0.

o}
Thus, p(z.8,0) = 20 2 (8,0). )
The coefficient P:n can also be obtained fxom (3a) by
o v = vP(ru) = (z/w) (3p/9m), (10)
from which it can be shown that
d g
E‘m = 2(2n+3)uAmn/n. (11)

PHYSICAL BOUNDARY CONDITIONS

The balance of stresses at the surface requires:

1) that the normal stress Vo;x the surface due to the hydrostatic pressure
and to the motion of the fluid is balanced by the surface tension; and

2) that the shear stresses due to the variation of the surface tension
are balanced by the fluid motion.

The deformation of the surface must be included in these conditions. The
deformation is assumed to be small, so that

R+ AR =R [1 + £(68,0)], (12)
where AR is the displacement of the surface and
g
£(8,0) = E] v° (8,4) (13)

is a radial strain. The coefficient B:n also must be obtained from the
boundary conditions.

The normal stress due to the fluid

o e )
e, =P, * Pma‘*zm - 2u(du /35 / v (14)

is balanced by the surface tension produced stress
Y& +3), as)

R B

*A simplification of the surface conditions is introduced at this point by
neglecting the interfacial dilational elasticity and the interfacial shear

elasticity which contribute an interfacial viscosity term to the normal stress
equations--see Scriven (7) and Miller and Scriven (5) for discussions of these
properties.
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where y is the local value of the surface tension and R; and R, are the
principal radii of curvature. For small deformations of the siurface of
a spherical drop, Lamb (8) has shown that

1 1 .1 g o
= + =3 [2 + (n=1}) (n+2) EmYm]- (16)'

R

KR R

The surface tersion coefficient is expanded in. terms of the mean value Yo
and the temperature coefficient YT as

g .0 n o
Y = Yo + YT{Tm + Lm’::m]R Ymn' (17)

where r’ is the coefficient obtained in the expansion of T(R+AR) of the
dgfome&nsurface about the temperature T(R) of the undeformed surface and
TmnR Ymn is the (n,m,0)~term in the expansion of the surface temperature field.

Setting the hydrostatic pressure B, = 2y /R, and considering terms to
first order in Y  in the normal stress condigion, we obtain the first

ry a M
equation for Amn and Emn'

n+l o o _n, 0 Jg .n
6UR Am/n = [Yo(n-l) {n+2} + ZYTLmnR ]Emn ZYTTmR . (18)

Instead of solving the shear stress conditions directly, it is more
convenient to take the surface divergence and the surface curl of the force
on an element of surface. The surface divergence equation is

2u
II
Egn. (19) can be simplified since V

2 ?
VP Y = ulpm Ru) - Vo fu) (19)

r=R.

=
II u:: r=R

then, yields a second equation for A:m and E:m'

0. The divergence condition,

n+l o o .noC g .n
2(2n+1) R Am/n - (n+l) YTLmR Emn = (n+1)YTTmR . (20)

The radial part of the surface curl equation yields the result that B:m = 0,
or L_ = 0.
r

Eqns. (18) and (20) can be solved simultaneously for A::n and E:n'

g ) o o

Am = n({n+l) (n+2)Y°YTTm/2uR D an (21)
(- 2 g _n, o

Em = YTTMR /Dmn' (22)

o g .n
where IJnm = (2n+1) (n+2)y° H'ernR . (23)
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THE VELOCITY FIELD AND THE VORTICITY FIELD

Defining a characteristic rate of flaow

o4 g n 4
o Umn = -n({n+l) (n+2)Y°YTTmR /2qu, {24)
the components of the velocity 3 can be written as
U _n-1 22,7
ut(r'e'¢) = umnr (1~E )Ym(el¢) (25a) B
g ,.n=l +3, .2 a
ue(r,ﬂ,qi) = um(i' /n) [1- +1)r )| (aym/aa) (25b)
o ,.n=1 n+3, .2 . o
u¢(r,e.4>) = Umn(r /n) [l-(m_l)r 1 (l/smﬂ)-(an/BB), (25¢)

» wheie £ = r/R.

Although l;r = 0 within the drop, Z, and % ° generally do not vanish. Using-
the definition 5S¢ the vorticity, Eqn. (1), and’Eqns. (25a,b,c),

g n . o
i;e = Zmnr (1/s5in®) (3Ymn/3¢) {26a)
g n,..0J
C¢ = -Zmr (3Ym/39). (26b)
where g g
zmn - Z(Um/R) (2n+3) /n(n+3). (27)

The rate of flow, or speed, is

SRR e (28)
where in general,
u, = % mgo Zu. (n.m,0) (29a)
n
uy = n51 méo gue (n,m,q) (29b)
n
u, = nél mazno guds (n,m,0). (29¢c)

Thus, the general expression for v can be very complicated. Only expressions
for the pure modes will be investigated here.

For the special case of the lowest order mode {(n,m,0) = (1,0,2) and where
Lol = O, we obtain equations for a levitated drop in a constant vertical
temperature gradient. In this case, the temperature in the drop is

T=T +T Rfcosh, (30)
o 1
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which results in the velocity components

u, ==y T, R/3u) (1-2%) cos (31a)
u, = (YTTlR/3u)(1—2f2)sine (31b)
u¢ = 0.

These results can be obtained from the solutions of Young, et. al (5), as
mentioned in the Introduction. In addition, we £ind that

e
Bn ™ TTTIR/9Y o’ (32)

so that the drop is spherical in the limit Yr/Yo -+ 0.

SOME CHARACTERISTICS OF AXIALLY SYMMETRIC MODES

For an axially symmetric mode (n,0,e), the expression for the rate of
flow, Eqgn. (28), is :

- .n=1 2. .22, .2 n+3 .2.2, 1,.2.1/2
v = (£ “/n)[n"(1-£") (Pn) +(1-—--n+l %) (Pn) ]

(33)
where ¥ = v/Ue ’ Pn is the nth order lLegendre polynomial and Pl is the
associated Leggndre polynomial of first degree. Eqn. (33) can"be used to
identify the stagnation points since ¥ = 0 at these points.

Within the drop, n rings of stagnation points about the axis of the drop
can be readily identified: take £2 = (n+l/(n+3) and P, = 0; since P_ has n
nodes and 0 £ ¢ < 27, n rings have been identified. On the surface"of the
drop (£ = 1), the rate of flow ¥ = 0 if Pl = 0. The associated Legendre
polynomial Pl has (n+l) nodes, including 8ne at each pole. These two
stagnation points at the poles and the (n-l) stagnation rings on the surface
coincide with the hot and cold spots of the temperature field and define
the: boundaries of the convection cells in the drop. Ifn > 1, v=0
when ¢ = 0. That is, flow does not occur through the center of the drop
when n > 1. Finally, we must consider the possibility of other intermal
stagnation points. That is, are there other points such that

n+3
n+l

2 ,.1.2

2,, =22 2 =2
am(A-ET) (Pn) + (1= r7) (Pn) =072

The answer is no. Since each term is either positive or zero, and since
neither (1-#2) and (1-(n+3/n+1)#2) nor Pp and P} vanish at identical values
of ¥ and cos 6, respectively, there are no other internal stagnation points.

For an axially symmetric problem, a streamfunction ¥ (%#,8) can be obtained

from
- 3 .
R (342)
r sin
i, = 1 2 (34b)

(-] ¥ sin 8 or
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where &a = ua/U:n (a = r,8). For the (n,0,e)-mode, the streamfunction—is——

v = ™ @er?) sinorl i/nimen), (35)
vwhere x = cosé. For the mode (1,0,e), the streamfunction is that for Hill's
spherical vortex (9). Stagnation points, indicated by "N", and typical
streamlines for Hill's spherical vortex are illustrated in Fig. 1 and for
the modes n = 2,3,4,5 in Figs. 2-5, respectively. The drops are seen in
vertical cross-sections. The model rings lie in planes perpendicular to

the axis in each illustration. The straight lines within the circles
represent the boundaries of the convection cells, and here ¢ = 0. The
positions of the stagnation points are listed in Table 1 for these five
modes.

Table 1. Stagnation "Points" for Axially Symmetric Convection Cells in
Nominally Spherical Drops

Mode n £ Interior Type Surface (f = 1)
8 8 Type
1 1//2 ring 0° point
180° point
2 o . point Q° point
v3/5 54° 44° 8" ring a0° ring
125° 15' 52* ring 180° point
3 "0 - point Qe point
_/2/3 39° 13' 54" ring 63° 26°' 6" ring
" 90° ring 116° 33° 54" ring
" 140° 46°' 6" ring 180° point
4 0 - point 0° point
/5/7 30° 33' 20" ring 49° &' 24" ring
» 70¢ 7 28" ring 90° ring
" 109° 52¢ 32" ring 130° 53* 36" ring
" 149° 26' 40" ring 180° . point
5 0 -— point 0° point
1/2/3 259 1* 2" ring 40° 5' 17" ring
" 570 25' 14" ring 73° 25°' 38" ring
" 90° ring 106° 34° 22" ring
" 122° 34' 46" ring 139° 54' 43" ring

" 154° 58' 58" ring 180° point
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Figure 1. Streamlines and Stagnation Points ("N") for the (1,0,e)-Mode:
Hills' Spherical Vortex.
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AXIS

Figure 2. Streamlines and Stagnation Points for the (2,0,e)-Mode
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Figure 3. Streamlines and Stagnation Points for the (3,0,e)-Mode
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AXIS

Z

Figure 4. Streamlines and Stagnation Points for the (4, 0, e)-Mcde
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Figure 5. Streamlines and Stagnation Points For the (5,0,e)-Mode
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o THE CIRCULATION TTME ——

The circulation time T will be introduced in this section as a means of
characterizing the rate of convective mass transfer from the interior of the
convection cell to the vicinity of the surface of the drop. The reciprocal
circulation time t~! is defined by

) a § Falyroas
= § Z-nds/ as, (36)

where the circulation integral
> =
$ u-az

is taken around the boundary of the cell formed by the intersection of the
cell with a vertical plane containing the axis of the drop, such as any of
the cell boundaries shown in Figures 1=-5. The second equality follows
from Stokes's theorem, where the surface integrals

/Z-74s and [ ds

are taken over the region bounded by the circuit of the line integral; ; is
the unit normal vector to the surface and here is equal to é . According
to Eqn. (36), the reciprocal circulation time is the averaqe¢vorticity

of the cell. The circulation time resembles the period of rotation of a
rigid body. Indeed, if the fluid circulated about' the vortical centexr

as a rigid body, Eqn. (36) would yield 47 times the frequency of rotation
and T would be the period of the rotation reduced by 4w. Unfortunately,
such a simple interpretation of thermocapillary convection cells is not
possible, but T can still be used to characterize the rate of circulation
within the cell.

For the axially symmetric mode (n,0,e), the integrals in Eqn. (36)
can be performed yielding

Tns = (n+2) [Pn (x;) ‘Pn (x;*'l) ! /zzgn (9;+1-9 ;) (37

for the circulation time for the s-cell, where 1 € s ¢ n+l, and x; and x;

are roots of +1

1
Pn (x) = 0. (38)

Cell-s has its vortical center at the stagnation point whose angular
position es is given by the root x, of

Pn(x) = 0; (39)
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6_ lies within the range whose lower bound is 9; and whose upper bound is 9; 1
circulation time may be either positive or fiegative, the sign depending

upon the direction of circulation in the cell. Using Egns. {1), (24) and (27),

we can show that, apart from the geometric factor, the circulation time t depends

only on the material parameters u and Yo and on the temperature gradient

at the surface.
The circulation times for the mode n = 1 are given in Tables 2-5 for a

variety of liquids. Here, we assume "unit conditions®: 1-31 = 0, and a

unit temperature gradient, '1‘8 = -1°/cm. The assumption of unit conditions

is indicated for the circulatlon time by 1°, where the superscript "o"

designates unit conditions. Table 2 lists circulation times for some liguids

at room temperature; Table 3, for five liquid metals; Table 4, for four

molten oxides; and Table S5 for three molten sodium halide salts.

Table 2. Circulation Times* for Some Liguids at Room Temperature (298.15 X)
Y .

Material il 1;1‘ ik ! Viscosity l<]. ls :
3 mPa.g**
Acetone -0.112 (11) 0.316 (10) 0.0323
DC 200, 20 cst -0.062 (5) 19 (5) 3.5
200 cs  =0.065 (5) 193 (5) 34
1000 cs  -0.061 (5) 793 (5) 180
Ethanol -0.9832 (11) 1.092 (10) 0.150
n-Hexadecane -0.106 (5) 3.086 (12) 0.334°
. .Krytox 143 az¥* -0.1 (13) 32.4 (13) 4
Water ~0.1477 {11) 0.8904 (13) 0.06908

*temperature gradient at the poles has a magnitude of 1°/cm.
#*1 mN/m = 1 dyn/cm; 1 mPa.s = 1 ep = 10~2 dyn.s/em2,

*+Dow Corning silicone oils of the DC 200 series.

++a perfluoroalkylpolyether.
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Table 3. Circulation Times*-~Metals

Materials Yp Temp. To : Viscosity l’fl s
uN/K*'m K mPa.s e
Aluminum ~0.356 (10) 930 4.5 (15) 0.14
1070 2.5 6.08
Copper -0.06 (10) 1370 4.5 (15) 0.9
1470 3.9 0.7
Mercury -0.2049 (11) 290 1.554 (15) 0.0869
470 1.052 0.0588
Sodium -0.09833 (14) 470 0.450 (15) 0.00524
670 0.284 0.00331
Tin -0.0706 (13) 500 1.97 (13) 0.320
870 1.05 (13) 0.170
*The temperature gradient at the poles has a magnitude of 1°/cm.
Table 4. Circulation Times*--Oxides
Material Yo Temp. T Viscosity ]
uN/Kem x © Pa.s el
Al,0, (o.nt* 2400 0.11 (18) 13
. 2600 0.062 7
8,0, ) 0.0354 (18) 1410 5.02 (17) 1620
at 720 K 1670 2.01 651
GeO, 0.056 1750 12.2 (17 2500
' at 1390 X 1930 0.787 160
Sio2 0.031 2280 7 a7 8 x 105
at 2000 K 2680 102 1x 102
2820 46.4 s x 10

*Temperature gradient at the poles has a magnitude of 1°/cm.
+*Egtimated.
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Table 5. Circulation Timeg*--Sodium Halides

Material - 'T (18) Temp. T Viscosity (17) It],s
nN/K-n xk ° mPa.s ’
Nacl ~0.0719 1090 ' 1.38 0.220
1150 1.08 0.172
NaBr -0.0809 1060 1.28 0.181
1170 1.00, 0.142
NaI -0.129 1030 1.15 0.102
1100 0.96 0.085

*Temperature gradient at the poles has a magnitude of 1°/cm. :

The steady-state temperature gradient is obtained by balancing the
conductivie heat flux through the drop against the radiant heat flux away
from the drop in the cooler hemisphere. sSufficient heat is applied to the
hotter hemisphere to maintain the steady-state gradient. Since the radiant
heat flux =14, liquids such as molten metals which have high thermal conduc-
tivities will only have steep steady-state gradients at high temperatures.
Although copper has the highest thermal conductivity of the liquid metals
considered in Table 3, it is the only one of the five metals which is
considered at temperatures high enough for a rate of radiant heat loss to
be attained which could produce a steady-state gradient of 1°/cm. Thus,
the circulation times given for copper in the table are the only ones
which are physically attainable under steady-state conditions. For the
other metals, the physcially attainable value of T. will be longer than
T9: the attainable steady convective rates will be less than the rates
produced by a gradient of 1°/cm.

The long circulation times estimated for the oxides, B,O., GeO. and
$SiO_ show the importance of the viscosity in determining whethér thermScapillary
can%ection can oceur in the liquid. For these three oxides, thermocapillary
convection is expected to be negligible. However, A1203 has a lower viscosity
than these other three oxides and, thus, a shorter cifclilation time. Since
temperature gradients much larger than 1°/cm can be attained in molten oxides,

significant thermocapillary convection might be observed in molten alumina.

The n = 1 mode has been demonstrated on earth by the work of Young,
Goldstein and Block (5) who observed the balancing of the thermocapillary and
buoyancy forces on small bubbles in a vertical temperature gradient. The low-g
of a space laboratory in addition to facilating the levitation of a drop would
allow the observation of the higher convective modes, in particular, the n = 2
mode. The circulation could be observed by the movement of a dye or of a
radiotracer.
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Relative circulation times for the axially symmetric modes n=2,3,4,5 are
given in Table 6. These times are calculated relative to the single vortex
{n = 1) time t%. The sign of the circulation time for a particular cell indicates
the direction of circulation with respect to that inthe single vortex drop.
Since the convective rate decreases as n increases, the higher modes appear
to be less desirable than the n = 1l mode for obtaining rapid purification.
However, the convective rates for some of these higher modes still can be
large enough for the convective pattern to be studied and for these modes
to have some utility for the purification of levitated melts in space.

SUMMARY

Equations describing the convective flow velocities in thermocapillary
convection cells in drops have been derived. When the thermal conditions
approximate a pure, symmetric mode~~that is, when the temperaturxe field can
be described by a single Legendre polynomial, the streamlines of the vortex
and the positions of the stagnation points in each cell gan be calculated.
The circulation time, which is the reciprocal of the average vorticity of
the cell and which characterizes the rate of circulation, also can be
calculated for thegse high symmetry cells. An estimate of the circulation
time for a liguid drop is an indicator of the probable significance of
thermocapillary convection in the drop when a temperature gradient is imposed
across it. .

Table 6. Relative Circulation Times, T;s/‘l‘i, for Axially Symmetric Modes
withn> 1

[ - O
Modeln Cells s T ns/‘ll

2 3.968
~-3.968

9.981
=7.365
9.981

19.994
-13.505
13.505
~-19.994

34.960
-22.691
20.647
-22.691
34.960

*'r;s is thecirailation time for the s~cell of the nth mode,

1:;_ is the circulation time for mode n = 1; a temperature gradient with a
magnitude of 1°/cm is assumed at the poles. The gign indicates the

direction of circulation with respect to the n = 1 mode.
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ANALYSIS OF LIQUID DYNAMICS FOR M551 AND M553
SKYLAB SPACE PROCESSING EXPERIMENTS

M.R. Brashears, S,V. Bourgeois, C, Fan
Lockheed Missiles & Space Company, Inc., Huntsville, Ala. 35807

ABSTRACT

Fluid mechanic analyses were performed for the M551 and M553 materi-
ala processing experiments developed by NASA-Marshall Space Flight Center
and conducted in the M512 facility aboard the Skylab laboratory by Astronaut
Charles Conrad. The M551 Metals Melting experiment consisted of three sample
disks with varying thicknesses. An electron beam gun was used to produce a
weld seam as well as a molten pool in each specimen which was made to rotate
at a controlled speed. The M553 Sphere Forming experiment consisted of 28
nickel specimens of 6.35 mm diameter being cast by utilizing an electron beam
as the heat source, After melting, the molten spheres were designed to sepa-
rate and solidify under a free-float condition in the vacuum chamber.

The beading and spiking phenomena in the M551 experiment are discussed.
An analyszs of the beading phenomena based on the Kdrmain vortex shedding
theory is presented. A dynamic model of cavity oscillation is discussed to ex-
plain the spiking phenornena which were observed in the stainless steel and tan-.
talum samples. The intensity of spiking depends primarily on the vapor pressure
and surface tension properties of the material. Spiking may also be aifected by the
level of gravitational acceleration, however, at low degrees of melt superheat.

Both order-of-magnitude dimensional analysis and thermoconvective in-
stability (perturbation) analysis are applied to the molten metal droplets of the
M553 experiment. The controiling physical forces and magnitude of fluid flow
are predicted and compared to results exhibited on high-speed photography.
Convection thereby ascertained is utilized to a.nalyze expected low-g effects on
the attendant solidification processes.

For both experiments, particular emphasis is placed on clarifying the
effects of reduced gravity on molten metal flow and solidification.

INTRODUCTION

The M512 facility was flown aboard the Skylab Laboratory to provide the
working chamber for numerous scientific experiments including several space
processing experiments. The facility inciuded an electron beam heat socurce
operated from 50 to 80 mA at 20 kV aligned in a 40 cm diameter chamber vented
directly to outer space. The M55]1 metals melting and the M553 sphere forming
experiments were performed during the June 1973 mission by Astronaut Charles
Conrad. .

The M551 experiment consisted of three sample disks, each containing
three metal specimens of varying thicknesses. These disks were rotated
automatically at a controlled speed of 2.5 rpm under an electron beam
gun with the gun targeted to produce an electron beam weld seam in
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each specimen at a radius of 6 em. Disk materials included 2219 aluminum,
321 stainless steel and tantalum. During the continuous weld portion of each
disk both full and partial penetration of the disk was achieved by having a con-
stant power input with a varying disk thickness. For each disk, the continu-
ous weld was followed by a dwell portion. In the dwell portion of the weld, the
disk was stationary, allowing the electron beam to impinge on a thick segment
of the disk, thus creating a large molten pool. The electron beam was then

cut off to allow the pool to solidify.

The M553 experiment consisted of twenty-eight 6.35 mm diameter spher-
ical specimens cast by utilizing the electron beam heat source. Initially, cy-
lindrical specimens were supported on two wheels (14 specimens on each) by
a sting. During melting, spherical drops were formed and subsequently de-
signed to be released from their stings and allowed to solidify while free float-
ing in the vacuum chamber. Specimens consisted of pure nickel, Ni-1% Ag,
Ni-30% Cu and Ni-12% Sn.

During the course of the investigation all process phenomena were con-
sidered with particular emphasis on the melting and solidification of metals
- in reduced gravity. Included in these analyses were detailed studies on the
fluid dynamics of the molten metal. .

For these particular Skylab experiments, the only significant difference
between space and earth processing was the lack of gravity. The maximum
gravity level experienced during operation of the M551 and M553 experiments
aboard Skylab Il was 7 x 10-4 gr (gg = 9.8 m/sec2). Other environmental
factors which may also differ from earth processing are the vacuum, radiation,
electromagnetic and thermal conditions.

Gravity has no direct effect on grain structure or other properties of
solidified material. These properties are determined by the crystallization
kinetics which are controlled by short-range intermolecular forces; i.e., the
temperature and concentration at the fluid-solid interface. Gravity has not
been shown to have any significant direct effect on these forces, but can affect
solidification indirectly through its direct effect on fluid motion. The three
major indirect effects of gravity on solidification are:

® Sedimentation
e Buoyancy-Induced Convection, and
o Hydrostatic Pressure. C
These mechanisms are all hydrodynamical in nature. Detailed discussions
of the objectives of the study, as well as the results, are available in Refs. 1
through 3.
M551 METALS MELTING EXPERIMENT
e Convection Effects on Solidification

Cross-sectional micrographs of the M551 aluminum disks (Fig. 1) indicate
that grain size and orientation differed appreciably between the ground and Sky-
lab samples. Similar trends were exhibited by the stainless steel and tantalum
specimens. The ground-based sample consists of large, columnar grains grow-
ing normal to the unmelted solid with slight evidence of banding. The Skylab
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sample, however, is fine grained and equiaxed. One other significant differ-
ence is the negligible width of the chill zone (ultra-fine grained, eqma.xed region.
adjacent to the parent metal) in the ground sample.

Some investigators have attributed these differences to reduced convec-
tion during Skylab processing. The accepted principles of crystal growth (Ref.4)
however, lead to the opposite conclusion. Many experiments have now shown
the strong effect of convection on grain size in cast metals. When this convec-
tion is reduced, grain size is larger and columnar structures are much more
readily obtained. Convection also appears to play a dominant role in formation
of the chill zone as well as in the columnar-equiaxed transition. When convec-
tion is absent, no outer chill zone is observed.

One other possibility for the results shown in Fig. 1, besides differences
in convection,would be the degree of superheat supplied to the ground and Skylab
samples. Superheating results in coarser structures (Ref. 5, p. 6). Thus, the
fine grained Skylab structure would indicate less superheat, but its melt zone
was 18% greater than the ground sample which indicates higher superheat on
Skylab or greater convection on Skylab.

Thus, increased convection during Skylab processing (rather than reduced -
flow) explains the different microstructures observed in the micrographs, Fig. 1,
of the M551 aluminam disk. Preflight analysis predicted an equivalent magni-
tude of convection between terrestrial and Skylab processing (Refs. 2 and 3).
Increased convection aboard Skylab can be explained if the gravity driven and
Marangoni convective flow patterns tended to oppose each other on earth. This
would leave the unopposed Marangoni convection aboard Skylab to be moare vig-
orous throughout the melt zone. Furthermore, the spiking mechanism is ex«
pected to give rise to increased stirring aboard Skylab.

¢ Beading Phenomenon

During the M551 experiment, motion pictures were taken for each of the
three metal disks. The motion pictures taken along with the experiment speci-
mens were then brought back to earth for analysis. Shown in Fig. 2 are photo-
graphs taken of the 321 stainless steel after being subjected to electron beam
impingement in the flight and ground experiments. For comparison purposes,
ground-based tests were also made of the same specimens under similar operating
conditions. The photographs taken for the three M551 materials dunng ground
tests are shown in Ref. 6. The most striking phenomenon appearing in these
photographs is the ''beading'' effect which occurs simuitaneously with total eb
penetration in the stainless steel and tantalum specimens. No beading is ex-~
hibited in the aluminum sample, however.

It was hypothesized (Refs. 1 and 3) that the forming of beads after the
passage of an electron beam was related to the vortex shedding phenomenon.
When a cylinder moves through a fluid above a certain speed, the cylinder sheds
behind its wake a periodic pattern of vortices which move alternatively clock-
wise and counterclockwise. This vortex formation is known as Karman vortex
street. A sketch showing the streamlines of a Kdrman vortex street is given in
Fig. 3. In this sketch, A is the wave length or vortex spacing and h is the sepa-
ration distance between the two rows of vortices.
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The shedding frequency, f, i.e., the number of vortices shed per unit
time, is dependent upon the density, p, and viscosity, u, of the fluid, the
diameter of the cylinder, D, and the velocity, V, with which the cylinder moves
relative to the fluid. The interrelationship between these quantities can be
correlated in terms of two dimensionless parameters known as Strouhal num-
ber, S, and Reynolds number, R, which are defined as

. fxD
5= v
7

The relationship between S and R was obtained experimentally (Ref.6) for
a fluid in large extent.

The wawve length of the vortices, A, is given by

. V-V
R (1)

where v is the velocity of the vortex which decreases with the distance from the
cylinder. The magnitude of v is only of the order of 4 to 5% of V at a distance of
10 to 20 diameters downstream of the cylinder. The value of v is even smaller
when the flow is confined by side walls. For all practical purposes v can be
neglected in Eq. (1).

With the above basic background information, one can compile a list of
data regarding the M551 space flight and ground-based experiments in view of
the vortex shedding hypothesis. The compiled data are tabulated in Table 1.
The manner in which these data are obtained is described as follows.

The two temperatures selected for calculation for each of the three M551
specimens correspond. to the melting temperature and predicted maximum
temperature (Ref. 1). The Reynolds number was calculated based on the velo-
city of the electron beam relative to the disk, the focusing diameter of the elec~
tron beam, and the density and viscosity of the molten metal. The viscosity of
liquid metals depends strongly on temperature. The following equation was
used in computing the viscosity of the molten metals

u=ugeB/ T @)

where p_is a reference viscosity, E is the activation energy, R is the universal
gas constant, and T is the absolute temperature. The values of uo and E are
different for different materials. For example, for the stainless steel specimen,
B and Eo are estimated to be (Ref. 7) i

K
E

0.37 Centipoise
9.9 Kcal/gm-mole -°x

o

After the Reynolds number was calculated, the Strouhal number was de-
rived from Ref, 6, The shedding frequency can then be computed from the defi-
nition of the Strouhal number. The theoretical bead spacing (i.e., wave length)
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is calculated from Egq. (1) by neglecting‘ v. The data listed in the last two
columns of Table 1 are the average bead spacings obtained by direct measure-
ments from photographs. .

It is seen in Table 1 that except for the aluminum specimen for which
no beads were observed, the predicted bead spacing based on the vortex
shedding theory and the experimentally measured average bead spacing are
in good qualitative agreement. Quantitative agreement was not expected since

... the geometry and boundary conditions of the M551 Metals Melting experiment

were not quite the same as those for a long solid cylinder moving in a fluid
of largd extent.

The theoretically predicted shedding frequency for each of the three
specimens is also compared in Table 2 with corresponding experimental
results for both space flight and ground-based tests. Again, good qualitative
agreement among the data is obtained, except for the aluminum specimen.

It is theorized that surface tension must play an important role in the
formation of beads from the vortices of the ligquid metal during cooling and
solidification. The larger the surface tension, the more easily the beads can
be formed. The magnitude of surface tension (0) for the three M551 materials
at their respective melting temperatures are: (1) 321 stainless steel, o =
1750 dyne/cm; (2) 2219 aluminum, ¢ = 737 dyne/cm; and (3) tantalum, ¢ =
2150 dyne/cm.

It is noted that the surface tension of 2219 aluminum is only 30 to 40%
of that of the other two materials. Thus, it is quite possible that during the
flight and ground tests with the 2219 aluminum specimen, vortices were pre-
sent but no heads were formed due to insufficient surface tension force.

The above analysis is, of course, qualitative. The motion of the molten
metal in the wake of an electron beam is influenced by many factors. In addi-
tion to the parameters involved in the definitions of Strouhal and Reynolds num-
bers, the state of the fluid motion is influenced by the thickness of the disk,
confining side walls (between molten and solid metals), free surface and surface
tension effects, as well as nonuniform temperature distributions.

In general, the effect of confining side walls is to increase the critical
Reynolds number for the onset of vortex shedding. According to Taneda (Ref.8)
when the ratio of the diameter of the cylinder to the distance between the walls
is increased from 0 to 0.5, the critical Reynolds number is increased from
45 to about 80. Shair et al. (Ref. 9) have also conducted experiments showing
the effect of confining walls on the stability of the wake behind a circular cylin-
der. Their results indicated a more pronounced effect than that reported by
Taneda. This may also explain the absence of beading in the aluminum specimen,
gince the calculated minimum Reynolds number for this case is only about 50.

It appears, however, that confining wall effects alone do not explain the quanti-
tative differences between the predicted and measured values of A and f as
tabulated in Tables 1 and 2.

= .
The ratio of the diameter of the electron beam to the width of the welding
in the M551 experiments is approximately 0.5.
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A recent literature search on the subject of vortex shedding revealed
little information regarding the effects of the finite length of the cylinder in
the low Reynolds number flow region. At high Reynolds numbers (R >1000),
a shorter cylinder results in larger vortex spacing (Ref. 10). No information
is found at all regarding nonuniform temperature and heat transfer effects on
vortex shedding. A detailed analysis of these problems would certainly be
very interesting.

o Spiking Phenomenon

A detrimental aspect sometimes inherent in electron beam welding is
the phenomenon known as spiking which results in surface ripples and banding
in the weld seam microstructure. Many examples of this effect have been docu-
mented, especially for partial penetration welds in stainless steel (Ref. 11).
This phenomenon is caused by oscillation of the melt.

Several possible evidences of its occurrence during the M551 experi-
ment have appeared in both the aluminum and stainless steel samples. De-
tailed descriptions of the causes and effects of spiking are given in Refs. 2
and 12.

2

The spiking frequency can be approximated by (Ref. 12).

]
rrml

w = ; (3)
J’ﬁv - 2g/a JPV - 20/a - pgh
S pgh
where
®w = spiking frequency
h = maximum depth of penetration
2a = weld width
g = gravity level
Pv = vapor pressure of molten metal
¢ = surface tension of molten metal

While the preceding equation should not be expected to generate exact,
rigorous results to match actual M551 experimental data, it can be utilized to
predict a low gravity variation in the spiking behavior of M551 materials. It
can also be utilized to assess the effects on spiking of the degree of superheat.
Increasing superheat lessens surface tension and density while increasing
vapor pressure. Overall, increasing melt temperature through superheating
should increase the spiking frequency. This is illustrated by examining Eq.

— {1y in the limit as gew, 0

PV-Zaa

® = gf e 4)
4ph {

which means that spiking cannot occur below 2027°C for stainless steel. The
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surface tension force overcomes any jetting due to vaporization at lower surface
temperatures. This is indicated by imaginary numbers in Eq. (4).

The effect of superheat and gravity on spiking frequency for all three M551
materials is shown in Figs. 4, 5 and 6. Physical property data were obtained
primarily from Refs, 13, 14 and 15. These results indicate that: (1) spiking
frequency varies inversely with gravity, but only above 10-2 g; (2) at large su-
perheating, spiking becomes insensitive to microgravity-terrestrial gravity
variations; (3) spiking occurs in the stainless steel melt zbove 600°C superheat
(melt temperature, T = 1427°9C); (4) spiking occurs in aluminum above 1000°C
superheat (T)\f =6439C); (5) spiking occurs in the tantalum meit above 1300°C super-
heat (T = 3000°C); (6) Skylab stainless steel samples are most prone to spiking.
At minimum degrees of superheating, spiking frequency may be increased by 50%
when g-levels of 10-4 are attained. This translates to a spike separation dis-
tance of 1.1 mm on ground tests versus 0.7 mm on Skylab.

Previous thermal calculations indicate that 600°C of superheat at the melt
surface are easily attainable (Ref. 1, p.26) in the stainless steel specimens, while
a superheat of 1000°C for aluminum is also feasible {Ref.1, p.B-4). It is doubt-
ful that spiking temperatures were achieved in the tantalum specimens (Ref. 1,

p. B-14). Thus the ripples on the aluminum and the ripples in the stainless steel
microstructure may be caused by spiking.

One additional qualitative assessment can be made for the M551 aluminum
specimens, i.e., the apparent disappearance of ripples in the weld region be-
hind the molybdenum film. The molybdenum film has a dimension of 0.5 x 0.5 x
0.0005 inch and was placed on each of the M551 samples in the weld path at a
location of 240 degrees. The purpose of placing a molybdenum film on each sam-
ple was to analyze fluid motion during melting by micro-sectioning of the weld.

The molybdenum has a Iower total vapor pressure and increased surface
tension forces (Refs. 14 and 16), thereby decreasing the tendency toward spiking.

e Conclusions .

Analyses of both the space flight and ground-based tests of the M551 Metals
Melting experiments indicate that:

o Good qualitative agreement was obtained between the measured
results of beading frequency and spacing and the predicted
values based on the Kdrman vortex theory. This tends to sup-
port the hypothesis as advanced in Ref. 1 that the beading phe-
nomenon which occurred in the stainless steel and tantalum
samples was a Kirman vortex street formation.

e Surface tension and sidewall effects appear to be responsible
for the absence of beadings in the 2219 aluminum sample after
electron beam impingement.

¢ Reduced convection in space is definitely not the cause of
altered microstructures found in Skylab 2219 aluminum.

e Altered or increased convection can explain the different
microstructures exhibited by the Skylab 2219 aluminum
specimen; i. e., Skylab convection dominated by surface
tension forces whereas ground-based convection controlled
by a combination of surface tension and gravity forces.
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e Spiking frequency varies inversely with gravity, but only
above 10-2g.

e At large superheating, spiking frequency is independent of
gravity.

e Stainless steel is the M55]1 material most prone to spiking,
and its spiking frequency may be increased by 50% when g-
levels of 10~4 are attained.

e Disappearance of surface ripples beyond the molybdenum
patch on the ground aluminum samples can be attributed
to molybdenum's inherent physical properties which tend
to reduce or eliminate spiking.

M553 SPHERE FORMING EXPERIMENT

The fluid dynamics of the M553 experiment is an important factor in
determining the quality of the final product. Flow patterns in the molten ma-
terials are important because all of the sample materials have low entropies
of fusion (Ref. 17). Thus, their solidification (microstructure) is controlled
by the rate of heat transfer removal (Ref. 18), which changes with the fluid
flow (Refs. 19 and 20). The degree of flow will also determine the amount of
mixing attained. Fluid flow can also affect the shape and release of the speci-
men while it is retained on the ceramic holder.

Application of dimensional analysis {Refs. 21 and 22} to the governing
equations for eb melting, coupled with ground-based experiments, enabled
prediction of the extent of reduction or increase of motion in the molten metal
and/or the change in flow pattern in electron beam melting in space. Possible
physical forces which could induce fluid flow in the M553 experiment and their
causes include:

o Effective Gravity Force: Resultant force on weld specimen due
to earth's gravity and centrifugal and coriolis forces of orbiting
spacecraft.

e Lorentz Force: Electromagnetic forces induced by passage of
the electron beam current through the specimen.

e Electrostriction: Stresses induced when electrical permittivity
changes with density.

e Magnetostriction: Stresses induced when permeability changes
with density. .

e Electrostatic Force: Caused by presence of excess electrical
charge.

e Surface Tension: Tangential stresses at vapor-liquid inter-
faces can be induced by nonuniform heating or impurities be-
cause surface tension depends on temperature and concentration.

e Shrinkage Force: Density differences accompanying phase
changes usually cause flow inward to a growing solidification
interface.

e Beam Force: Impinging electrons giving up their momentum.
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® Thermal Expansion: Dilation and compression of fluids whose
density changes appreciably with temperature can induce fluid
flow.

e Vibration: Uncontrolled movement due to engine operation,
astronaut motion, particle impacts, etc.

e Centrifugal and Coriolis: Generated by disk rotation.

e Vapor Pressure: Evaporating molecules impart momentum
which leads to normal stresses at vapor-liquid interface.

e Inertia Forces: Tend to sustain existing motions and resist
changes in flow.

o Viscous Forces: Tend to resist driving forces.

The preceding forces, which could influence fluid flow and solidification,
appear explicitly in the conservation equations (Ref. 3) which apply to formation
of a molten pool by electron beam heating., The controlling forces were pre~
viously determined via nondimensional and order-of-magnitude analyses (Ref.2).
The most significant results found are summarized below:

e Vigorous convective stirring occurs in the molten metal for each
of the M553 sample materials., This fluid motion was exhibited
on high speed motion picture film taken for ground tests and low
gravity KC-135 aircraft tests.

o Both gravity and surface tension forces control molten metal
flow during M553 ground tests. These natural convection driv-
ing forces arise because of severe nonisothermality during
heating.

e Surface tension driven convection occurred in Skylab electron
beam melting. In the near absence of gravity, the surface ten-
sion forces provided an equivalent amount of convection
aboard Skylab, but the flow pattern might have been different
from those of operations on earth.

e Velocities of 20 cm/sec magnitude were attained 0.1 sec after
melting began in the M553 nickel specimen (both for Skylab and
ground tests). Fluid flow decayed 60 seconds after melting
began. This means that some degree of flow existed upon
freezing even for the free-floating M553 spheres.

The effects on fluid motion of surface free charges (excess electrastatic
charge) and related electric and magnetic forces at the drop surfaces were also
examined, These surface charges are negligible driving forces for fluid motion
(Refs. 23 through 25). Furthermore, from the manner in which patches of sur-
face contaminants moved about in the ground films, it is apparent that surface
tension driven flows due to concentration gradients may also have been impor-
tant in this experiment. No reliable data exist, however, on what these impurities
are, nor what the value of surface tension gradient with composition is. Thus,
the Marangoni effects were limited to thermal differences only in this study.

Application of an earlier analysis of Marangoni thermoconvective stability
in drops by Bupara (Ref.26) yields the same conclusion as to convection in zero
gravity. Bupara's study consisted of a steady-state perturbation analysis on
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internally heated drops. Thus, his results do not rigorously apply to the rapid
heating of the M553 experiment, but allow for an interesting comparison with
dimensional analysis. His stability curve (see Fig. B5.1, Ref.26) indicated a
eritical Marangoni,—Ma,, of{-150-—Uponreleasec {rom the ceramic pedestal, the
molten nickel spheres will possess the followmg properties: R =0.3175 cm,
dg/dT = 0.4 dyne/cm-°C, p = 7.77 g 2 = 0.05 g/cm-sec, k =.0.15 cal/cm-
sec-°C,Cp = 0.157 ca.l/g—°C, B =10~ /°C and dT/dr = 4450°C/cm (assuming
no convection, Ref. 1). Defining Marangoni number as

do dT .2
-PCpgT gr R

Ma. = uk

one obtains Ma/ Ma.=29100/150 =200, which indicates vigorous convective
stirring. Several seconds after release the temperature gradient reverses

and becomes -3.4°C/cm after rapid equilibration (assuming no convection).
This gives Ma = -71.

e Conclusions

The primary conclusion of the preceding discussions is that significant
flow and stirring in the molten spheres (during and after eb melting) occurred
in both terrestrial and space processing as predicted. The magnitude of this
convective fluid motion was the same in both environments.

Thus no major differences in microstructure can be expected between
terrestrial and Skylab processed M553 spheres due to convection. This con-
clusion was affirmed by detailed microstructural analyses (Ref. 27).
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Table 1 - Comparison of Theoretical and
Experimental Bead Spacing

M551 | Temp. | Reynolds |Strouhal | Shedding | Theor. | Flight Ground
Mtls. Number { Number| Fregq. Bead Bead Bead
Spacing {Spacing | Spacing
T R s f A A A
(°K) (Hz) {cm) {cm) {cm)
3zt 1700 35 - - - 0.356 | 0.418
2253 72.5 0:15 1.61 ° 1.0
2219 916 50 - - - _ _
Al 2113 | 171 0.185 | 1.98 0.81
Ta 3270 ) 121’ 0.175 1.88 0.86 1.57 0.94
3833 181 0.188 2.02 0.80
Table 2 - Comparison of Theoretical and . Experimental
Shedding Frequency
M551 Theoretical Flight Ground
Material Shedding Shedding Shedding
Frequency Frequency Frequency
(Hz) (Hz) (Hz)
321
Stainless 1.61 4.52 3.85
Steel
2219
Aluminum 1.98 - -
Tantalum 2.02 1.03 .71
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Fig. 2b - Stainless Steel Disk After M551 Ground Tests
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EXPERIMENTS WITH ACOUSTICALLY LEVITATED DROPLETS*
Robert E. Apfel

Department of Engineering and applied Science
Yale University, New Haven, Connecticut

Abstract -

The levitation by acoustic means of a droplet of one liguid
in an immiscible host liguid provides a means by which a variety
of droplet and bubble phenomena can be probed. With the appara-
tus described below the force due to the buoyancy of the droplet

--is balanced by a force due to the radiation pressure exerted on

the droplet in an acoustic standing wave field established in a
cylindrical column of the surrounding liquid. (The acoustic fre-
quency is about 50 kHz.) By proper design the equilibrium of the
droplet is stable to any perturbation in the position of the drop-
let; furthermore, the position in the standing wave field at which
the droplet is trapped is independent of the droplet radius, but
depends on the density and sound speed of both liquids as well as
the acoustic pressure and pressure gradient.

The apparatus consists of a cylindrical glass column contain-
ing one liquid which is excited into acoustic resonance by a cy-
lindrical piezoelectric transducer. A heating coil around the
column provides the temperature field. A droplet of the sample
liquid rising in the host liquid is trapped by acoustical means in
a region of uniform temperature. Thus far this technique has been
employed in a number of investigations: 1) the theory for droplet
motion and droplet levitation in a sound field has been tested and
has been found to provide very good predictions for experimental
work, 2) the tensile strength (or acoustic cavitation threshold)
of greatly superheated droplets of three liquids has been measured
as a function of temperature and has been found to be in good
agreement with predictions of classical homogeneous nucleation
theory, and 3) levitated, superheated droplets have been exploded
by a sudden increase in acoustic intensity. Moderately high speed
films (about 4000 frames per second) have been taken of the result-
ing vapor bubble and show some interesting features associated
with vapor bubble dynamics.

Experiments planned for the future include 1) radiation-in=
duced cavitation of levitated, superheated droplets, 2) measure-
ments of properties such as density, sound speed, and index of
refraction of metastable liquids, 3) observations of the solidifi-

* Work supported i; part by the U.S. Office of Naval Research.
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cation of supercooled, levitated droplets, and 4) possible investi-
gations of metastability of binary liquid mixtures.

INTRODUCTION

There are many instances in which it is desirable to isolate
a sample from a solid container surface. PFor example, one much
discussed application is the levitation of the nuclear fuel for a
fusion reactor in order to allow the fuel to be heated to extreme~
ly high temperature. Another example is the space processing of
materials. Sometimes levitation of the sample in a near vacuum
is desirable whereas in other applications a fluid host medium,
either gas or ligquid, may be necessary. Levitation can be
achieved in a number of ways. 2Zero gravity is the most obvious;
for metallic samples magnetic levitation may be used; and fiuid
flow techniques (e.g. air turbine) or acoustic means have been
used for a variety of materials. 1In this paper we shall confine
ourselves to the levitation by acoustic means of droplets of one
liquid in an immiscible host liquid.

It has been known for guite sometime that a progressive
acoustic wave in a ligquid can produce a force due to radiation
pressure on an object in the liquid. But it has only been a short
time since this fact has been used to practical advantage by many
investigators. For instance, the recent use of ultrasonic equip-
ment for diagnosis and therapy in medicine has lead to the need
for knowledge of the safe levels of ultrasonic irradiation, and
this requires adequate calibration procedures which often involve
a measure of the force due to the acoustic radiation pressure on
a body.

The anhalysis of radiation pressure for progressive acoustic
waves can be generalized to standing acoustic waves, as will be
outlined below. The result of the analysis can be applied to the
case of the force on compressible fluid spheres.

If in an experimental situation this force is adjusted to
equal the force due to buoyancy,the fluid sphere can be levitated.

Whereas gaseous bubbles are relatively easy to levitate,!
the situation for liquid droplets is more complex.2’?® First of
all, the sample droplet material must be reasonably immiscible in
the surrounding host liquid; second, it will be shown that the
droplet material must be more compressible than the host liquid
for stable levitation in a real situation: and third, relatively
high acoustic pressure amplitudes (ranging from 1 to 15 atmos-
pheres) may be required in order to balance the buoyancy force,
implying that techniques for avoiding acoustic cavitation in the
sample and host materials must be employed.
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If these conditions are met, however, a number of interest-
ing experiments can be performed. These experiments differ from
zero gravity experiments in that the position of the levitated
droplet is a stable equilibrium point rather than a point of neu-
tral equilibrium. This difference can be an advantage in some
situations.

In this paper we shall first review the basic considerations
involved in levitating liquid droplets by acoustic means. We
shall then discuss 1) experimental apparatus for levitating drop-
lets, 2) some interesting and convenient features of droplet trap~-
ping, 3) the use of acoustic levitation in measurements of the
tensile strength of liguids,?’* 4) the use of acoustic levitation
in observing bubble dynamics associated with the explosive vapor-
ization of a superheated droplet, and 5) some proposed experi-
ments involving droplet levitation.

DROPLET LEVITATION

Lord Rayleigh first discussed the force on an object due to
an acoustlc wave, which he called acoustic radiation pressure, in
1902. 5 Since then much has been written on the subject, some of it
conflicting. A lucid discussion of the basic effect can be found
in an article entitled "Acoustic¢ Radiation Pressure in a Traveling
Plane Wave" by Rooney and Nyborg.® An excellant analysis of "The
Acoustic Radiation Pressure on a_Compressible Sphere” has heen
written by Yosioka and Kawasima.’ Below, this analysis will be
greatly abbreviated by considering the special case of the acous-
tic radiation force on a fluid sphere (bubble or drop) that is far
more compressible than the host liquid.

Consider a compressible sphere of instantaneous volume V({(t).
If the acoustic pressure field is -described by P. (r t), then the
spatial gradient at the position of the sphere is VP(r,t)
acoustic force, E,son the sphere for our special case is~T

By = - (V(t)VP (x,t) > . (1)
t {(time average)

If changes in the volume occur more rapidly than heat exchange can
take place, then conditions tend toward adiabatic and small
changes from the nominal volume of the droplet, V_, are related to
pressure changes by the adiabatic compressibility of the liquid:

k, = =~ -—J.; .A_Y—- = :]-' V(t)-vo (2)
A v, & TV \REe ) -

o)
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But, if the liquid is not dispersive in the frequency range of
interest, then the adiabatic compressibility is related to the
density, p*, and the speed-of-sound, c*, of the sample liquid by
the following relation:

ky = i
A p* c* *

We have, therefore,

V(t) -V, = <R, (£, )V K, = =B, (£, £)V_/p*cH?

or

2

V(t) = V I1 = Py (x,t)/o*c*”]

If the time-variation of the pressure field is sinusoidal, we
can write

Py (z,t) = P, (r)sinut; VP, (z,t) = VP, (x). sinwt .

Therefore,
Ip
-1 S i P, (r)sinut
Ep = —<V(£)VP, (z,t)>= f;‘ A (l- ~eon? )VPA(E)Slnwt at -
0

Here, TP is the acoustic period (=27/w). The straxghtforward
inte- Yration yields
2
= . L Xt .
Fy = + VP, (X)- VP, (r)/20%c

The droplet is also subﬁected to a buoyancy force:

Fp = V, (e=0*) gz .

where o is the dengity of the host liquid, g is the gravitational
acceleration, and %2 is the unit vector in the positive axial (z)
direction.
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In order to levitate a droplet, the z-component of the average
acoustic force must be equal in magnitude and directed opposite
to the gravitational force; therefore,

-

(F, + Fp) = 0. (3)
=2 8 z component
That is:
dPA(z)
VP(z)-E-——-
oA ) 2 +V,lp - p*) g=0
2p*c*
or

ar. (z)

-p, (2) zPm = 20%c*?(p = 0%) g = K . (4)

This result is valid if the fluid sphere is far more compres=~
siblethan its host. More generally, it can be deduced from Ref-
erence 7 that for p and ¢ equal to the density and sound speed of
the host liguid, respectively, and for A = p*/p and § = c*/c, then

dap, (z)
A 2.2 1 5A=2
"PA(Z) dz = 2(1")\)99 c ' [_.2-)\6 - (m) ]

For the liquid combinations used in the experiments described be-
low, Eg. 4 has been adequate. It should also be pointed out that
in the experimental realization for droplet levitation described
in the next section .,there is, in addition to an axial pressure
variation, a radial pressure distribution which serves to keep
the droplet on axis.

APPARATUS FOR DROPLET LEVITATION

The essence of the apparatus used for droplet levitation is
shown schematically in Fig. 1. The system is shown with the
thermal control (heating wire and thermocouple), but evacuation
and filtering apparatus as well as manipulating devices for the
probes are deleted in order to leave the diagram uncluttered.

A pyrex glass vessel of the shape shown (30mm o.d. and 9mm
o.d. tubes) holds the host liguid. The acoustic driving unit
shown is a cylindrical P2ZT-4 lead zirconate transducer (l.5-in.
o.d., 1.25-in. i.d., 1.5~in. length). The composite system, made
up of this unit epoxied to the liquid-filled glass tube, resonates
in the 50-60 kHz frequency range, corresponding to the (1,0,n)
mode of the system, where 1 refers to the first radial mode, 0
refers to axial symmetry, and n is 2, 3, 4, and 5, corresponding
to a spatial pressure distribution along the axis that can be
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characterized by a wavelength of 2-10 cm. (The axial pressure
distribution is not simply sinusoidal because of the irregular- -
ities in the shape of the cylinder.) The particular resonance
frequency chosen is that for which the acoustic pressure ampli-
tude along the axis of the liquid-filled tube has a maximum in
the test region just below the transducer.

The magnitude of the acoustic field can. be increased so as
to produce a net acoustic force on the test droplet that is equal
in magnitude and opposite in direction to the buoyancy force. In
other words, the test droplet can be held motionless in the host
liquid. By trapping the droplet at a given position, the experi-
menter can observe its size and canassure that the droplet has
time to achieve thermal equilibrium with the immediate surround<
ings. The thermocouple used in this experiment consists of a
ribbon junction which is designed to minimize thermal conduction
errors. The acoustic monitoring system is far more complex than
the thermocouple. The complexity arises from the difficulty in
constructing an acoustic transducing device that has the follow-
ing properties:

(a) a sufficiently small size in order that it not disturb or
detune the acoustic field and so that it has a fairly flat fre-
quency response in the frequency range of interest;

(b) a construction that can withstand temperatures as high as
200C continually, acoustic pressure amplitudes of several bars,
and rough treatment; and

{(c) a sensitivity that is not affected markedly by small changes
. in temperature.

Such a probe has been constructed. The essential element is a
cylindrical PZ7-5 lead zirconate cylinder (nominal dimensions:
1" o.d., 0.0425" i.d.,I%“ length). A coaxial cable of 0.040"

o.d. makes electrical connection with the sensing device in the
following way: The inner wire of the coax is looped so that the
sensing element can be forced on the loop. A spring-type action
keeps the loop in contact with the inner electrode. Some high
temperature epoxy can be added to help keep the loop in place.
This epoxy also makes a mechanical junction between the coaxial
wire and the P2T~-5 cylinder. Electrical contact between outer
conductors (of coax and sensor) is made with conductive paint.

A thin TFE coating protects the probe from the liguid.

SOME INTERESTING AND CONVENIENT FEATURES OF DROPLET LEVITATION

There are some interesting features of droplet levitation
that are predicted by Eq. 4 and that have been confirmed using
the apparatus described above: (1) Equation 4 is independent of
the radius of the droplet. The experimental results complement
the results of Crum in confirming this prediction.?® (2) Equation
4 is also independent of the acoustic frequency. (The above
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derivation assumes that percentage changes in the acoustic pres-

sure amplitude are small over distances comparable to the droplet
radius.)

These features make calibration of the acoustic probe possi-
ble by observing the conditions for droplet levitation. We first
assume linearity in two respects: (1) The voltage output of the
probe amplifier v_ is proportional to. the pressure at the probe
position in the liguid. (2) The pressure in the liquid in-
creases linearly with the input voltage to the driving transducer.
(This can be assured so long as the electric input impedance to
the driver is constant as the voltage is increased. The waveform
can also be observed for distortion.)

The first condition can be written
P(z) = av_(z), dp/dz = aav“;)az,
o = Proportionality Const. (5)

If the probe amplifier output Vg is B8 times the actual probe out-
put vp, then the acoustic probe~ sensitivity is

Vp/P = v /8P = 1/Ba. (6)

In logarithmic form, the sensitivity S is just

S = 201og10(vp/P) = -ZOlogloaB. (7

The experimental procedure for probe calibration is as follows:
with the driver input at v,, the acoustic field is probed along
the axis; the output, as a function of z, is designated vo(z).
The probe is then removed from the liguid.

A droplet of thesampleligquid is introduced into the column
of the host liquid. When it reaches the test region, the driver
input voltage is increased until the droplet is trapped. The in-
put voltage with the droplet trapped at the position z is desig~
nated (v.,)_. Assuming linearity, this would correspond to a
trappinglpfessure ’

(vi)z
P(z) = o

vo(z) . (8)

V.
1

[The bracketed—term iz JUst what the probe output voltage would
be if the probe were at z with the driver voltage, (vi)z.]

Substituting Eq. 8 (and the derivative of it) into Eq. 4
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yields
2.
az I(vi)z/vi ] vo(z). [-dva(z)/dz] = K (9)

or
1/2

v, R
a = L.{ } . (10)
vy), v (2) [-dvo(z)/dz]

We have included the minus sign with dvo/dz because this term
must be negative if a droplet is to be trapped. Since a, Vs
and K are constant, this relation implies

2
(vi)z vo(z)dvo(z)/dz = Const, (11)
where z equals trapping position, (v.)z is input voltage when
droplet is trapped at z, and vo(z) is probe output voltage
at z when driver input voltage~ is v.. As the input voltage is
increased, the droplet's position * will change and Eg. 11,
which is one test of the theory, can be checked. Crum has indir-
ectly confirmed that this prediction is consistent with experi-
ment.? Problems of adequate resolution, however, occur in re-
gions in which the pressure gradient is so small that errors in
the measurement of dv_(z)/dz can be large. For practical pur-
poses, therefore, Eq. 11 should be most accurate in regions of
maximum pressure gradient. Once a in Eg. 10 is known, the sen-
sitivity of the probe can be calculated using Eg. 7, and Eg. 8
can be used to give the trapping pressure.

We point out, also, that the probe calibration can be cir-
cumvented in determining the acoustic pressure at any point on
the axis. This is often desirable because the calculation of o
agsumes- that the acoustic field has been probed precisely where
the droplet is trapped. Slight probe misalignment would lead to
errors in the probe calibration. The following expression for
the trapping pressure does not require this precise alignment.
Using Eq. 5, we can rewrite Eg. 4 as follows:

{v,) dvb(z)

dp i‘z
-P az = Pg Vi . adz =K,

or

P(z) = E Vi — 1 .
o Zvifz avozzwaz
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With Eg. 10 for ¢, we have

dvo(z) 1/2
P(z) = KVO(Z) - (12)

Once again, the equation is most accurate at trapping positions
for which dv_{(z)/dz is not difficult to measure accurately. In
order to find the trapping pressure at a position z' where ’
dv (z)/d2z is small, we just use the known trapping pressure at 2z

© and Eg. 8 to eliminate the proportionality constant, and we
solve for P(z'):

v(z)(v)

P(z') = P(2) ;—TETT;—T———- (13)

We can summarize the above as follows:

(1) Equations 12 and 13, the formulas for converting voltage
measurements to pressure measurements, are based on the assump--
tion that Eq. 4 fcr the trapping pressures is accurate. The re-
cent work of Crum® suggests that results within 10% of the theory
are to be expected. The fact that the theory predicts (and ex~
periment confirms) that the trapping pressure is independent of
droplet radius, provided that the radius is small compared to an
acoustic wavelength, is rather comforting.

(2) Since P(z) in Eg. 12 depends on the ratio [v_(z)/(dv_/dz)},
the actual magnitude of the probe ocutput does not Oenter into
the prediction of the trapping pressure. (For instance, if the
probe is slightly off axis, this ratio will have the same value
as that along the axis. The probe must, of course, move verti-
cally.)} For probe calibration, however, the actual magnitude of
vo(z) is, of course, important.

Example

The procedure for measuring the conditions that cause drop—-
let levitation is illustrated by the following example. In Fig.
2, two curves are plotted. The upper ordinate scale is the output
of the acoustic probe amplifier at a given probe position in the
sound field when a constant rms voltage is maintained across the
acoustic driving unit. For this particular experiment, the acous-
tic system resonates in the (1,0,3) mode corresponding to a fre-
quency of about 50 kHz.

Having probed the acoustic and thermal flelds, we remove both
probes from the liguid. A droplet of sample is introduced into
the column of liquid and rises into the test region where it is
trapped in the host liquid by appropriately adjusting the input
voltage to the acoustic driving unit. The position of the trap-
ped droplet above the pressure maximum and the rms voltage to the
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driving unit is then changed, causing the droplet to move to a
new equilibrium posgition closer to the pressure maximum. Input
voltage and position are again recorded. This procedure is re-
. peated.

The bottom ordinate in Fig.2 indicates the trapping input
voltage versus position for four ether droplets. The host liquid
in this case is glycerin- .

Observations

One interesting feature of the results is that the data for
droplets of different size (ranging from about 0.2-to 2.0-mm diam.)
appear to lie on the same curve. This is consistent with the
"trapping theory," which predicts the independence of trapping
pressure on droplet size, provided that the droplet is small com-
pared to the acoustic wavelength.

According to Eg. 11, the product of (v,)_°, Vo (z), and dv_/dz
should be a constant if the theory for dropie% trapping
is to be trusted. For the region 2=4.4-5.0, in which most of the
droplet trapping measurements are made, this product varies by
less- than 10%. The calculated product shows even less variation
if the point at z=4.4, where the slope of vy (z) is more difficult
to measure, is not considered.

MEASURING THE TENSILE STRENGTH OF LIQUIDS

Under certain conditions a liquid can sustain large tensile
stresses or degrees of superheat without vaporizing. This depar—
ture from the vaporization conditions described by the relation
between vapor pressure and temperature for a given liquid is a
result of the absence of a flat liquid-gas interface in the sys-
tem under test; that is, vaporization occurs when a wvapor cavity
forms in the liquid.

This cavity formation, or "cavitation”, usually occurs not
because of spontanecus breaking apart of neighboring liquid mole-
cules due to fluctuations in the density at the molecular level
(homogeneous nucleation) but hecause of the presence of something
foreign to the liquid (heterogeneous nucleation). In the latter of
these cases cavitation may occur at a liguid-solid boundary, at a
liguid=-liquid boundary, at a liquid=-solid-gas interface (such as
a crevice in an imperfectly wetted container surface or solid im=-
purity suspended in the liguid), or ewven at a site in the liquid
established by impinging radiation (as in bubble chambers).

There were, until recently, no reported measurements of the
tensile strength of liquids that cameclose to the theoretical
predictions for the ultimate strength of a liquid as described by
homogeneous nucleation theory. The droplet levitation technique,
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however, appears to be well suited for such measurements. In an
attempt to minimize the chances of heterogeneous nucleation, small,
filtered droplets of the sample liquid are immobilized acousti-

cally in an inert host liquid.

The experimental procedure is outlined with the assistance
of Pig. 1. An injected droplet of the sample rises in a cylindri-
cal glass column containing the inert host liquid. 2 heating coil
wrapped around the column establishes a positive and stable tem~
perature gradient in the host ("up" positive). The droplet is
superheated as it rises and when it reaches the test region it is
levitated as described earlier. If the acoustic pressure ampli-
tude is further increased, the droplet will move to a new eguili-
brium position closer to the acoustic pressure maximum in the
standing wave field. This procedure of increasing the acoustic
pressure can be continued until at some combination of superheat
and acoustic stress, the droplet bursts into its vapor. This can
be repeated for different test-region temperatures, thereby allow-
ing the measurement of the trade-off between acoustic stress and
superheat as causes of droplet vaporization.

The peak tensile stress experienced by the droplet imme-
diately before vaporization (that is, the peak acoustic pressure
amplitude minus the hydrostatic pressure) is plotted against tem-
perature in Fig. 3 for two different liquids: diethyl ether and
n-hexane. In both cases the host liquid was glycerin. Also
plotted are the results of others who measured the limit of super-
heat of these liguids under positive pressure using a variety of
experimental technigues. The solid lines are the predictions of
classical homogeneous nucleation theory.

The experimental results complement eac% other despite the
fact that, for n-hexane, Skripov and Ermakov used a different host
liquid than in the present measurements, and the fact that Wismer®
held his ether samples with capillary tubes rather than in another
ligquid. These observations strongly suggest that for the liquids
tested, nucleation has occurred within the sample and not at the
liquid-liquid or ligquid-solid interface. The results are also in
good agreement with classical homogeneous nucleation theory. Thus,
it appears that the droplet levitation scheme has provided a means
by which the tensile strength of some liguids may be measured.

VAPOR BUBBLE DYNAMICS ASSOCIATED WITH THE VAPORIZATION OF A
SUPERHEATED DROPLET'°

The dynamics of physical explosions in liguids commands in-
terest in a wide variety of disciplines: Examples of such pheno-
mena are underwater explosions, explosions due to sudden contact
of hot or cold liquids (such as Liquid-Natural Gas contacting
water, water contacting smelt, and molten metals contacting other
liquids), and cavitation explosions (and implosions).
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These explosions have been observed directly and also in
model systems. ' In the model systems bubbles have been generated
employing methods such as spark-gap. discharge’land. focussed '
lasers!? Here we describe our first attempts at observing photo-
graphically the explosion of small superheated droplets of one
liquid suspended in an inert host ligquid. The size of the drop-
let and the degree of superheat give us a handle as to the ener~
gy associated with the explosion.

Above, we have described a technigue for measuring the ten-
sile strength of superheated liguids. When the ligquid reaches
this ultimate limit, it vaporizes explosively. We have filmed
the dynamics of this explosion at moderately high speeds (about
?000 frames per second, fps) with both diffuse and shadow light~
ing.

The filming has been made relatively easy, because we have
taken advantage of droplet levitation and positioned the camera
where the droplet will be levitated and explcded. We can, there-
fore, adjust things so that the vapor bubble resulting from the
explosion nearly f£ills the entire frame.

The explosion is initiated by suddenly increasing the acous-
tic stress on the levitated droplet. The acoustic stress serves
one other useful purpose:

In the absence of the acoustic field the explosive growth of
the vapor bubble produced from the initial explosion is followed
by the vapor bubble collapse. This collapse process is unstable,’
with the single vapor bubble shattering into a multitude of
smaller bubbles which are propelled, upcn rebound, intoc the host
liguid.  In the presence of the acoustic f£ield, however, the
collapsing bubble is held together by the acoustic field. The
tendency of small bubbles to coalesce in an acoustic field is
attributed to "Bjerknes" forces. Thus a single vapor bubble re-
sults from the explosion. The acoustic field has a frequency
about 50-~100 times greater than the natural resonance frequency
of the resulting vapor bubble and represents, we believe, only a
small perturbation, other than its coalescence role, to the dy-
namics of the initial explosion process.

The Particulars for These Experiments

Ether was the droplet material and glycerin was the host
ligquid for these 8bservations. The droplets were superheated to
approximately 105°C above ether's normal boiling point, or to
about 140-141C. At this temperature an acoustic stress of approx-
imately eight bars is reguired to nucleate the explosion.

The apparatus sketched in Figure 1 was supplemented by a



258

Fastex 16mm WF3 Camera with a 2 inch lens extension tube. The
end of the extension tube was within three inches of the droplet.
In this configuration a one millimeter diameter droplet appears
on the 16mm film as an image with an approximate dimension (vert-
ical diameter) of lmm. Because of the cylindrical column, hori-
zontal dimensions are magnified by about 1.6. -

When the camera motor is switched on, the film accelerates
to 5000 frames per second in less than a second. The film runs
for little more than a second. For monitoring the frame rate an
oscillator set at 1000 Hz drives a neon bubble in the camera
which puts light marks on the film (2000/s, because the neon bulb
flashes for positive and negative excursions in voltage). In the
sequences shown in Figs. 4 and 5, the time per frame ranged from
0.24 to 0.3 ms (or approximately 3300 to 4000 fps).

Two different lighting schemes were used:

Diffuse Lighting: For the photographs in Fig.4, three
500 watt bulbs in parabolic reflectors
surrounded the test region.

Shadow Lighting: For the photographs in Fig. 5, a
collimated mercury arc beam was
directed through the test region
into the lens.

Results ,

An initial film sequence and radius vs. time graph of a
droplet explosion is shown in Fig.4. The explosion process can
be summarized as follows: The vapor bubble grows rapidly as a
result of the pressure produced inside the cavity during the
vaporization of the droplet. It grows past the size at which the
pressure inside and outside the cavity are the same, because of
the momentum imparted to the host liguid. It then collapses and
rebounds several times before the energy associated with the
oscillation is completely dissipated. The droplet then moves
radially from the center of the tube due to acoustic forces on
it.

As the photographs indicate, some of the energy associated
with the growing droplet is lost during the collapse as surface
instabilities grow.

In Figure 5 using shadow lighting an instability initiated
during the collapse of a vapor bubble takes the form of a jet~
like protrusion growing rapidly from the main bubble as it re=~
bounds {(only part of the main bubble is shown). The approximate
velocity of this protrusion is 2m/s. This instability may be
analogous to the jets that occur during the violent collapse of a
cavitation void in a liguid far below its boiling point. 1In our
case the instability is less violent because of the cushioning
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and damping effects of the superheated vapor in the bubble.

The techniques for producing and observing droplet explosions
described here may be adaptable to the study of the initial
stages of physical explosions in model systems. For a given
modeling application, the appropriate choice of test and host
liquids is required. (Freon 114 in a host of water is being con-
sidered in modeling underwater explosions.)

This scheme should also be easily adaptable to higher speed
photography. This would allow us to focus in on the region
where the first vapor cavity is nucleated and would give us de-
tailed information about the very important initial stages of
growth.

PROPOSED EXPERIMENTS INVDLVING DROPLET TRAPPING

A l. Radlatlon-Induced Cavitation

A superheated droplet that is levitated in a sound field at
acoustic pressures insufficient to cause homogeneous nucle-~
ation may explode due to some foreign matter touching the
sample or some radiation incident on the sample. By using
known radiakion sources one should be able to study the
temperature and pressure dependence of the threshold of
radiation-induced cavitation. Such a study may have impli-
cations in the design of a neutron energy spectrometer.

2. The Solidification of Supercooled Droplets

Using a photographic scheme similar to that described for
" okgerving the explosion of superheat droplets, we should be
able to observe the solidification of an acoustically levi-
tated supercooled droplet. The information obtained from
these films can be compared with the results of the analysis
of the retrieved solid pellets in order to shed light on the
mechanisms of the nucleation and growth processes involved
in solidification.

3. Properties of Metastable Ligquids

Very few properties of metastable liquids have been measured.
(e.g. sound speed, index of refraction, deasity, compress-
ibility, et al.). By probing at and observing the motion of
these droplets in a known sound field we should be able to
determine the temperature dependence of some of these pro-
perties. We, therefore, have the opportunity to increase
substantially our knowledge and hopefully our understanding
of the liquid state.
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region is suggestive of acoustic pressure distribution,
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DROP DYNAMICS IN SPACE

T. G. Wang, M. M. Saffren, D. D. Elleman

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

The Jet Propulsion Laboratory (JPL) is planning experiments to be
performed in weightlessness to study the dynamics of liquid drops. "!'."he
liquids will range from superfluid helium through ordinary liquids to molten
metals and glasses. These experiments will be carried out in a chamber now
being developed at JPL that utilizes the forces and torques produced by acoustic

waves excited within the chamber.

Preliminary experiments of short duration (5-20 seconds) are being
carried out in the weightless eﬁvironments provided by NASA drop towers and
NASA KC-135 aircraft flown along ballistic trajectories. Experiments are
planned which will utilize sounding rockets to provide up to 5 minutes of weight-
less environment; however, these experiments will eventually require weight-
lessness of more than 5 minutes duration. None of the current facilities —
sounding rockets, drop towers, or KC-135 aircraft — can provide 2 sustained
weightless environment. Ultimately the experiments will be conducted in
Spacelab — a manned orbiting laboratory to bg flown on the Space Shuttle
commencing in 1980. Spaceflight will provide weightlessness over a period of
a week or more, allowing truly laboratory-like experiments to be conducted on
free liquid drops {and bubbles).

In this paper we first discuss the drop dynamics experiments proposed for
Spacelab, and then discuss the acoustic chamber — its operation, and how it is

being tested for these and other experiments.
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SECTION 1

THE DROP ROTATION AND OSCILLATION PHENOMENA
{(DROPTEXPERIMENT

A. INTRODUCTION

The theory of the dynamics of a free drop has been well studied in the
approximation that dynamic quantities deviate linearly from a resting drop.
With special exceptions to be discussed below, there is no non-linear theory
of the dynamics of a fluid drop. Not only are definitive experiments for the
large amplitude behavior of fluid drops lacking but there are few definitive exper-
iments even for linear behavior. This is a consequence of the limitations
involved in conducting experiments in an earth laboratory. Among these limita-
tions are insufficient droplet sizes for accurate observation, limited available
time for experiments, and perturbing effects due to the method of suspending the
droplets.

The proposed drop dynamics experiment will utilize the unique zero-g
environment provided by the orbiting space shuttle to investigate the dynamics
of a free drop. The results of ‘the proposed experiment will be used to verify
existing theory, and to provide the necessary insight for further theoretical
development of this subject. The deficiencies of the existing theory, which
disregards viscosity, internal flows, virtual mass, and other parameters, are

(1)

exemplified by the different results of Plateau's system of two imrniscible fluids

@)

and the Skylab science demonstrations A more detailed description of these

two experiments is given is Section II.

Aside from fundamental interest, a better physical understanding of the
behavior of the dynamics of free liquid spheroids is required in many areas of
science and technology, as demonstrated by the scope of the program presented
at this Colloquium.

B. SCIENTIFIC OBJECTIVES

1. Egquilibrium Figures of a Rotating Drop

A rotating fluid in its equilibrium state can sustain no internal flow and

so rotates as a rigid body. When subject to gravity and contained in a vessel,
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at any angular velocity, the free liquid interface {meniscus) assumes a
parabolic shape. When the fluid mass is free, however, the dependence of its

shape on angular velocity is far less trivial. .

In the proposed Drop Dynamics Module experiments to be performed on
the Spacelab mission, the stable equilibrium shape of a rotating drop of fluid
will be determined as a function of its angular velocity. Also, the angular
velocities at which there is a qualitative change of drop shape (bifurcation points)
and the critical angular velocity at which the rotating drop fissions will be deter.

mined. A more detailed listing of experiment objectives is given below.

The theory of the equilibrium shapes of rotating fluids began with inves-
tigations by Newton(3) on the shape of the rotating earth, and the extensive
theory that ensued was that of a free fluid held together by self-gravitation. In
a crude attempt to verify this theory, Plateau carried out experiments in 1843
on ordinary rotating fluid drcA)‘;s' ; ;:utral buoyancy tank, although such drops
are held together by their surface tension, not by gravitation. His experiments
were in rough qualitative agreement with the theory of that time, except for one
remarkable difference: one of the stable configurations for a rotating drop
was toroidal, not generally thought to be an equilibrium shape for a self-
gravitating drop. That it is in fact an equilibrium figure for rotating liquid
drops held together by surface tension was not demonstrated until the theory
of ordinary rotating liquid drops evolved more than seventy years later when
Rayleigh(4).investigated droplets symmetric about the rotation axis (see also
Appell{®)), The stél;ility; of the simple axisymmetric shapes awaited study by
Chandrasekhar(®) and even today the stability of the toroidal and nonaxisym-
metric shapes remains virtually unexplored both theoretically and
experimentally. '

Experimental observation of the behavior of a rotating drop held together
by surface tenéi;n goes beyond simply testing the existing theory. This theory
has in fact been embedded“) in a grander theory which at one extreme
embraces fluid masses held together by their gravity, modelling the stars, and

at the other extreme embraces uniformly electrically-charged fluid masses,
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modelling atomic nuclei. Consequently, any deviation in the observed behavior

of ordinary liquid drops from their predicted behavior would call into question

the more all-embracing theory of equilibrium figures of fluid masses. Con-
versely, if experiments on the equilibrium figures of ordinary drops are in
agreement with predictions of theory, this would strongly suggest a unified
theory of the dynamics of fluid masses. The observed behavior of ordinary
liquid drops would then help to frame the theory of their dynamics and this
theory in turn could be extended into the astronomical and nuclear reaims.
This is one of the ultimate aims of the two proposed sets of experiments. The
experiments on rotation and oscillation are precursors to future experiments
in which the oscillation of rotating drops will be studied. [Perhaps it is worth
interjecting that the experiments are also precursors to ones in which the drops
are electrically charged, electrically conducting, dielectric, non-Newtonian,
or superfluid; and where external fields are applied (electric, magnetic, elec-
tromagnetic, acoustic, or thermal). In addition it is envisaged that multiple
drop experiments will be performed in which the interactions of free drops can
be observed and these experiments will be based, of course, on what has been

previously learned about single drop behavior in externally controlled fields ]

The following discussion presents the current theory of the equilibrium
shapes of a rotating fluid drop held together by its surface tension. Ra.yleigh(4)
was the first to calculate the axially symmetric equilibrium shapes. These
calculations were extended by Appell(s) who gave a more detailed and elegant
description opening the discussion of the dynamics of the change of shape and
the stability of these shapes. Chandrasekhar(®) made a definitive study of the
stability of the simply connected axisymmetric shapes, and in addition obtained
the frequencies of their small amplitude oscillations. Ross(8 9) reviewed and
extended some of the previous work on drops to ''bubbles' - fluid drops less
dense than the surrounding medium. Gans{10) has examined the small ampli-
tude oscillations about equilibrium shapes of compressible fluids. The equi-
librium shape of a drop containing a bubble was discussed by Bauer and
Siekmann(u), while Bohme, Johann, and Siekman studied the shape of a rotat-
ing dielectric drop in an electric field!?). Finally, Swiateckil’* !%), by insert-
ing the theory of the equilibrium shapes of '"surface-tension drops'' into the more
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general theory, was able to give a fairly complete semiquantitative deseription
of the stability of shapes for such drops as a function of their angular momentum,
including a discussion of metastable shapes he calls '"saddle~point' shapes.

The axisymmetric equilibrium shapes (see Figs. 1 and 2) are conveniently
described as a function of the dimensionless angular velocity,  , which is the
angular velocity measured in units of the fundamental oscillation frequency of
the resting drop. [Q=w / (80'/pa.3)ll Z where w is the rotational angular velocity,
o is the surface tension, a is the equatorial radius, and p is the density]. When
0<0.7071, there are always two equilibrium ~shapes; the one of lower energy is
simply connected, while the other is torus-like. For Q= 0.7070 there appears
an additional 'collapsed' shape in which zero thickness at the center yields a
"figure-eight'’ cross section. For 0.7071<82<0, 73 there are two torus-like
shapes but still two simply-connected shapes. When = 0. 73 there is only one
torus-like shape? but still two simply-connected shapes. The torus-like shapes
are lost ance >0.073 and when @ = 0. 7540 there remains only one simply con~
nected shape; this is the greatest angular velocity that an axisymmetric equi-
librium shape can have. ‘

The only detailed study of the stability of the equilibrium figures was
-made by Chandrasekhar() but only for the simply connected shapes. He showed
that for = 0, 584 the drop can deform, without changing its energy, to another
shape not having rigid body rotation; thus the original shape is unstable. He
presumes that the stable equilibrium shapes become nonaxisymmetric for
Q= 0.584. This presumnption is based on an analogy with what is known to occur
for a_ liquid mass held together by self-gravitation. There the stable equilibrium
figures are true ellipsoids below a critical angular velocity and triaxial ellipsoids
above.

As shown in Fig, 3, at @ = 0. 584 ( the bifurcation point), the secular
stability passed from the sequence of axisymmetrical shapes to triaxial shapes,
Berringer and Knox(14) have calculated that for the '"'surface-tension'' drops the

aAppell(s) and Ross(s) disagree on the number of toroidal shapes for
2<0.7071. .
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Fig. 3. Illustration of Bifurcation Points

triaxial shapes are not ellipsoids, but the stability of the toroidal shapes has
received no definitive treatment. However, the results of Wong on the
toroidal shapes of charged liquid drops suggests that these equilibrium shapes
may be ""saddle-shapes' — shapes stable against deformations that preserve the
axial symmetry but unstable against others such as varicose deformation against
which fluid jets are unstable (the Rayleigh iastability)., The triaxial equilibrium
saddle-shapes were calculated by Pik-Pichak(lé) . :

The neutral buoyancy experiments of Plateaull) on the shapes of rotating
liquid drops are in qualitative accord with the transition from axisymmetric to
triaxial shape as theoretically described by Chandrasekhar(®), However,

Plateau showed that at high angular velocity the drop first rotates nonrigidly and a
toroidal shape is then obtained which becomes a rigidly rotating figure, indi-
cating that the toroidal shape is indeed stable. However, this conclusion was

called into question by very recent experiments by the authors at JPL which
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showed that if the drop is of the less viscous fluid rather than the more viscous
as it was in Plateau's original experiment, the toroidal shape is not stable,
pinching off as does a liquid jet.

)

The Skylab experiments on rotating drops' ' yielded the ''pinched" triaxial
shapes resembling '"dog-bones.' In one experiment a dog~bone shape fissioned;
the reason for this was not clear. The particular dog-bone may actually have
been a "saddle-point' shape, or an internal flow or slight oscillation within a
stable shape close to the lirnit of stability may have converted it to a ''saddle-

shape' when the extra energy was added to the rigid body's fluid motion.

It is very important to note that the Plateau and Skylab experiments
vielded different shapes for sufficiently large angular velocity — there was no |
dog-bone shape demonstrated in the Plateau experiments, nor was there a
toroidal shape demonstrated in the Skylab experiments. Similar discrepancies
were noted in experiments on cylindrical liquid columns rotating about their
amn

showed the
instability of such columns always to be axisymmetric, while the Skylab experi-

axes. Neutral buoyancy experiments carried out by Carruthers

ment on rotating liquid columns showed the instabilities to be nonaxisymmet-
ric(l7), However, the axisymmetric instabilities were recovered on Skylab

once the fluid was made sufficiently viscous.

Plateau's failure to observe the dog-bone may have been due to the effect
of "added mass"P, i.e., in the Plateau experiment a triaxial drop nonaxisym-
metric about the rotation axis will entrain adjacent portions of the surrounding
liquid (Fig. 4). The consequence of this added mass is to severely modify the
pressure drop across the droplet interface. In the limit that the adjacent fluid
moves rigidly with the droplet, the pressure drop vanishes. In this extreme,
the protions of the droplet that extend into the added fluid will tend to assume a
spherical shape to minimize the surface energy. In fact, examination of the
shapes obtained by Plateau for rapid rotation do indeed show such '""spherical
caps' (see Fig. 4).

bAlso know as virtual mass or hydrodynamic mass.
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Fig. 4. The solid lines indicate the shape abtained by
Plateau, The dotted lines suggest the ""boundaries"
of the added host liquid

In weightlessness the added mass effect becomes negligible because
the ratio of the density of two fluids can be chosen to be three orders of magni-
tude less than unity.

Thus it appears that viscosity and virtual (added) mass effects strongly
limit the validity of neutral buoyancy experiments. In fact, their effects on the
flows in rotating fluids may make otherwise stable shapes unstable and vice versa
(the "spin-up' effect associated with Ekman boundary layers)(le). These prob-
lems can be studied experimentally only in the true weightlessness afforded by
space flight where the viscosity and the density differences of the two liquids
can be freely chosen.

2. Large Amplitude Oscillation of a Liquid Drop

In contrast to the problem of a rotating drop, a reasonably complete theo-
retical formulation of small amplitude dynamics of freely-suspended liquid drops
under the influence of surface tension forces has been well developed(19'24).

A rather extensive review of the theoretical work has been given by Chandrasekhar
and a large variety of experimental tests have heen conducted to verify and sup-
port this theoretical work. The experimental procedures fall into three general

categories: the liquid drop is suspended in a neutral buoyant media, the drop
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is supported by a vertical gas flow, or the drop falls through a gas or vacuum.
All of these methods suffer various limitations which have made a detailed
quantitative comparison of theory and experiment limited in scope.

At the present time there is no adequate theory for large amplitude
oscillations of liquid drops, nor have the criteria for rupture or coalescence
of liquid masses and the transition region between the high viscosity and low .
(25) and Alsonso(z‘b) have
simulated with computer calculation the motion of a drop undergoing large

viscosity regions been developed. However, Foote

amplitude oscillation.

In 1879 Lord Rayleigh conducted one of the first investigations on the
behavior of an oscillating liquid drop about its spherical equilibrium shape. He
limited his study to the case where the oscillations were axisymmetric and
assumed that the internal motions were described by a potential flow field.

He did not include viscous effects. The results of Rayleigh's investigations
can be expressed by a series of expansion of Legendre polynominals:

r=a + 2 anPn (cos @) (1)

o
where r is the radial coordinate, p is the polar angle measured from the pole
of the drop and the coefficients a, are functions of time.

In solving for the an's that appear in Equation (1), it is necessary to
limit the oscillations to small amplitudes, a <<ag. It can be shown that if

a. = cos ( tthen
n n

a

w: = n(ne1)(n+2) 3 . (2)

pa

where o is the surface tension, p is the density of the liquid, and a is the equi-
librium spherical radius. It should be noted thatn = 0 andn = 1 correspond
to rigid body motions. The fundamental mode of oscillation is given by n = 2,
The period for the fundamental mode is given by

T, =TT -L—a (3)
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For a 2. 5-cm diameter water drop where p = 1 grn/cm3 and ¢ = 75 dyn/cm,
the period would be T, = 0.36 sec for the fundamental mode, T3 = 0.19 for
n=3and 1ty = 0.12 forn = 4,

Foote(zs) has carried out rather extensive computer calculations of
Rayleigh's equation and has dropped the restriction of the calculations to small
amplitudes. The results of Foote's calculations are shown in Fig. 5, for the
cases ofn = 2, 3 and 4, In all cases the drop is started in motion at time
T = 0 in the deformed shape with the internal flows at zero. The time is
measured in units of v radians so at T = 1 the drop has gone through one-half
of a cycle. Even at large amplitudes the calculated shape of the drop appears
to have the approximate shape observed in experiments (25). A detailed com-
parison with experimental da.ta(zs) is not possible because the quality of the
data is limited by the experimental techniques that are now available. It should
also be pointed out that the Rayleigh solutions are probably only true for ampli-
tudes corresponding to T from 0.375 to 0. 625(25).

In the analysis that has been discussed so far, viscous effects have not
been included. Lamb(zo) has shown that for small viscosity the only effect on
the oscillating spherical drop is the gradual damping of the amplitude of the
oscillation. —The normal mode frequency is not affected by the viscosity. The
decay of the amplitude A can be shown to be given by

‘ﬁt

A= Age n 4

where AO is the initial amplitude of the oscillation of the drop and ﬁn is given
by ’ '

_ (n=1)2a+l)v
ﬂn = -(——-)-‘z——l- (5)

a

where v is the kinematic viscosity of the liquid and a is the radius of the drop.
For a drop of water 2.5 c¢cm in diameter with v = 0,014 cm?/sec oscillating in
fundamental maode n = 2 then 8 =:0.045. Thus a free oscillating drop would
decay to 1%of its initial amplitude in 102 sec.
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T =0.000 T = 0,500 T = 1.000
o O O

T = 0,000 T = 0.500 T = 1.000
o O Q

T = 0,000 T = 0.500 =1.000

Fig. 5. Fundamental Modes of Oscillation
. (The axial ratio is 1. 7 at the maximum
distortion and the axis of symmetry is vertical)
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Chandrasekhar(24) has shown that aperiodically damped motion of the
drop is possible for the fundamental mode if w a2 /v is less than 3. 69 cm?/sec.
Therefore a drop 0. 023 cm in radius or smaller would experience aperiodic
motion. Prosperetti(27) has found that a drop that is initially critically damped
should have an aperiodic decay for a short time and a damped oscillation motion
at a later time. He implies that the effective damping factor first increases
and then decreases with time. These predictions have yet to be verified by
experiment,

In contrast to the case of small viscosity where w is independent of

(23)

trolled by gravitational forces asv-emthe normal mode oscillation can be

24
viscosity, Happel and Chandra.sekhar( ) have shown that for a -system con-

given by

2
u=uz Zntl A (6}

B 2(ne1)(2nl+4n+3)

where a is the radius of the sphere and v is the kinematic viscosity.

Foote has noted from his comput‘er calculations that the drop spends more
time in the prolate configuration than in the oblate (57% vs 43%). Montgomery( 28)
has made vertical wind tunnel measurements on drops and has ohserved a simi-
lar behavior. However, it is not clear how much effect the air streaming around
the drop has on this unequal distribution of time in the prolate and oblate shapes.
At small amplitudes the calculations show that the drop spends an equal amount
of time in the two configurations,

Another feature of the computer calculation is thai: the period of oscilla-
tion is not constant with large amplitude oacillations but shows an increase in
the period as the amplitude is increased. For a large oscillation in which the
axial ratio, ¥, and the ratio of major to minor axis is 1.7, the fundamental freq-
uency increases approximately 9% for an ellipsoidal drop. If the calculation is
done for a Rayleigh-shaped drop, the predicted increase is about 5%.

(28)

with these computer calculations. The computations show a rather smooth

Montgomery's experimental work on small drops agrees qualitatively

change in the increase of the period with increasing amplitude of the oscillation.
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The calculations do not take into account any turbulent flow within the drop
which one might expect to find at large amplitude oscillations. This turbulent
flow might very well manifest itself as a break in the curve of period vs
amplitude as one enters the turbulent flow region.

As the drop oscillations grow to larger amplitudes a point is reached
when fission of the drop is possible. A considerable amount of theoretical work
on charged drops has been stimulated by nuclear physicists' attempts to model
ﬁuqlear fission with the behavior of a charged drop; Diehl(zg) has calculated
the ternary fission for the liquid drop model and has shown that there are two
modes of fission, the prolate mode that has axial symmetry and the oblate
mode. Alonso(26) has calculated the binary fission case and finds that the neck
connecting the two sections becomes very elongated and eventually develops a
long thin neck that will not pinch off until it has extended to virtually no width.
It has been hypothesized that the pinch~off is actually initiated by a surface
fluctuation in the neck. Thompson and Swiatecki conducted a neutral buoyant
experiment on polarized drops and observed thethin-necking, In addition,
from their data it appeared the drop was attempting fissionin the prolate
ternary mode.

The liquid drop can undergo another type of oscillation that has received
little attention to date. That is the so-called running wave, which for the
fundamental frequency is the superposition of fundamental oscillations along the
x and y axes 7/2 out of phase with one another. A careful investigation of film
taken by the astronauts on Skylab of oscillating drops seems to indicate that this
type of oscillation was indeed stimulated. A more detailed investigation of
this type of behavior is needed, particularly in the large amplitude regions.

One could then determine whether the running wave is still a superimposition
of the fundamental modes.

As one can see there has been rather extensive theoretical work carried
out on small amplitude oscillation and a considerable number of computer cal-
culations on large amplitude oscillations and fission processes. Unfortunately,
the experimental work needed to back up these calculations, even though exten-
sive, has been limited by various experimental constraints.
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The experimental techniques used to date fall into four general categories.
The first technique is the suspension of a liquid drop in a viscous neutral buoyant

um(30‘34)

medi . However, the energy dissipation mechanism for a droplet

oscillating within another fluid of appreciable density has been shown by Miller

and ScrivenBO) to be significantly different from the case in which the second

fluid has negligible density. Also, it was pointed out by Park and Crosby(?’s)
that the interfacial tension is modified by the presence of the second medium. _
The second technique is the suspension of a liquid droplet in gas currents
or electrical ﬁelds(zs). Unfortunately, experiments with droplets in air or
electrical fields have generally been limited to drop sizes in the millimeter
diameter range where it has been difficult to obtain accurate quantitative infor-
mation for comparison with hydrodynamic theory(35). In addition, the oscilla-
tions in a column of gas supporting the drop may create forced vibrations in

the drop(33).

The third technique involves the drops free-falling through a gas or vac-
uum such as the experiments carried out in the NASA MSFC 400-foot droﬁ)
tower. These experiments have shown that it is possible to obtain accurate
data on shape oscillations of liquid masses deployed in sizes in the centimeter
to several centimeter diameter range when the liquids are deployed under
carefully controlled conditions with relatively low internal vorticities. Unfor-
tunately, good quantitative resolution in terms of fundamental modes have not
been obtained due to the very short (3 secomd) experiment times available.

Recently, Skylab astronauts have demonstrated the capability of perform-
ing drop dynamics experiments in space. Although those experiments were
carried out in uncontrolled and unrestrained conditions, the results have
already stimulated a great deal of interest both in the scientific community and
in the public(z).

This discussion emphasizes the need for a quantitative experiment on
oscillation of drops that is free from all the defects mentioned above.
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SECTION 1I
APPARATUS

The photograph in Fig. 6 shows one of the laboratory prototypes of the
triaxial acoustical levitation resonance chamber(36) that will be used to posi-
tion and control large liquid drops in zero-g environments. The chamber
itself is nearly cubical with inside dimensions of 11,43 x 11,43 x 12,70 cm,
which are the %, y and z faces, respectively. Three acoustic drivers are
rigidly fixed to the center of three mutually perpendicular faces of the chamber.
During operation of the chamber, each driver excites the lowest-order standing
wave along the direction the driver faces.

In a resonant mode, the ambient pressure is maximum at the nodes of the
velocity wave and minimum at the antinodes. Consequently there is a tendencyi_f' "
for introduced liquids and particles to be driven toward the antinodes where théy-:
collect and remain until excitation ceases. c

Calculation of the acoustic pressure on the drop is simplified by the fact
that the characteristic impedance of the liquid Sy is very much greater than
that of the gas, pc,

5
Py Sy {(~10" cgs) 3
«x107, (7) =
pc {~40 cgs) =

where Py and p are the density of liquid and gas, respectively, and ¢y and c are
the sound velocity of liquid and gas, respectively. Because of this impedence
mismatch, the acoustic power in the drop is three orders of magnitude smaller
than in the gas and is negligible. This simplifies the expression for the radia-
tion pressure <A P> which is time independent and is given at the boundary by

<ap>= £ . 1, T2 (8)

where P is the excess acoustic pressure, T is the gas particle velocity, and
the bar over a quantity denotes the time average of the quantity, Equation (8)
is the "Bernoulli equation"(36'38) which gives the acoustical perturbation on

the ambient pressure from its quiescent value.
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The pressure profile in our system can be derived as follows.

The velocity potential ¢ of the wave in the chamber can be expressed as

ith A imyt
$= ¢, cos(kx x)e *+ o, cos(k.y y)e (9

iw t
+ 9, c“(kz z)e 2

are the complex velocity potential amplitudes of standing

»

where ¢x. _

waves of frequency w and wave number kx, v,z

X, V2
The particle velocity U by definition is

T=ve (10)

The pressure is given by

P=-p¢

Fig. 7 shows the resulting expression (Equation 8) for the radiation pres-
sure with only one of the three drivers on (¢, = Py = 0), The node is a plane
(z = £/2), becoming a point when all three are turned on. The profile of Fig. 7
has been verified experimentally.

Because this is a three-dimensional system with independent control on
each dimension, it has a great deal of versatility. It can acoustically position
a drop, and manipulate a drop once it is positioned; for example, it can induce

drop oscillation and/or rotation.
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SECTION LI
OPERATION OF THE CHAMBER

A. ROTATION AND OSCILLATION EXPERIMENTS

In the following discussion, we discuss the operating characteristics of

the acoustic chamber necessary to perform rotation and oscillation experiments.

Assume that the sample to be studied is a 1,25 cm radius (a) water droplet, the

residual acceleration is 10"1 cem/ secz (1 0'4 g), and the quality factor (Q)
{defined as w/2Aw) of the acoustic chamber is ~ 25,

a)

Newton's equation for the motion of a water drop in an acoustic

pressure field is

. 4 3
f<AP>£di = p,* 10 g Fma (11)

In the limit of ka << 1, this has been calculated by L. V. King(.”)

to be

2
E > sin 2 kx ¢ Z'H'a.s- ke (z'
2pc

= p,c 3T - 107 g (12)

For a sphere of 2. 5-cm diameter, density of 1 gm/ cm?>, the
corresponding minimum acoustic pressure required to position
the drop is

P~ 103 d}me/cm.2 ~ 134 db (13)

where the decibels (db) are measured against the reference
effective pressure (2 x 10-4 dyne/cmz). For a 50 percent

' efficient compression driver, less than 0.2 watt of electrical

power is needed to provide the required acoustic pressure.

It is worth pointing out that at this acoustic pressure level, the
surface tension force (Fg) which acts on the water drop is two

orders of magnitude larger than the acoustic force (Fp)z
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F .
Bl 7 2mr ~100 (14)

A [<AP> . Qx- dA

If the amplitude of the above 134 db acoustic wave is modulated at
a given frequency @ the drop experiences a modulated force

F, = [<AP> a_ dA = (~1 dyne) (15)

When w o, matches the normal oscillation modes of the drop given
by w j = n (n-1)(n+2)(e/ pa.3) the amplitude A of the oscillation,
assuming potential flow ingide the drop, can be as large as

F
IAl =1-TMZ-‘—B~ z (~1 ecm) (16)
o n

where g, is the damping constant of the nth mode of the drop and
M2 is the mass of the drop. Since the drop radius itself is 1.25 cm,

this modulation force is sufficient to drive the drop into large

' amplitude oscillation at least at the fundamental frequency.

However, a higher power modulation is required for higher modes
due to the increase in damping., That there is in fact sufficient
power to do this has been demonstrated in KC-135 flights where
the prototype was able to shatter a water drop of 1. 25-cm radius
in less than one second operating at the fundamental frequency.

If the phase between the two orthogonal 134 db waves on the x and

y axes is locked with 90° phase shift, this will produce 2 torque

that spins the drop. In the asymptotic limit, the drop will achieve

a rotational velocity of 23 rad/sec, exceeding the maximum rota-
tional velocity (10. 1 rad/sec) required for this experiment.
However, in order to spin up the drop at a constant acceleration, the
acoustic power must ramp up as the square root of the rate. The
power setting and the rate of increase will have to be determined
after the liquid has been selected.
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We have demonstrated the rotation capability in our laboratory with

a 1.25-cm radius styrofoam ball levitated in a 155 db sound field

as presented in Fig. 8. Spinning up of a l-cm diameter water-droplet——
has also been shown in KC-135 flights.

B. OPERATION OF THE CHAMBER AT EXTREME TEMPERATURES

In future space flights, experiments to be carried out will be extended
beyond those on room temperature droplets. These future experiments will
require the manipulation and control of liquid helium droplets and of molten
metal droplets and glass. In this section we describe laboratory tests of the

chamber that demonstrate the feasibility of operation at such temperatures.

a) For the acoustic chamber to operate and function properly between
these extreme temperature limits, it must be able to maintain
resonance at all times. In fact, the resonant frequencies, fy, of
the chamber are T

nCo T
=2 \/ 703 an

2400 T T T T T T T T
1.25-cm RADIUS
. STRYOFOAM BALL
20001 P=155db o
S. 1600}~ =
w
<
L 3
z 120 -
Q
=
> A
800+~ -
400 P~ -
0 1 ] Il L 1 1 i 1
[ 20° 40° 60* 8o* 100° 120° 140° 160° 180
PHASE DIFFERENCE

Fig. 8. Rotational Rate as a Function of Phase Difference
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where Co is the velocity of sound at 0°C, { is the physical dimension
of the chamber, n is an integer and T is the ambient temperature of
the chamber in degrees Kelvin,

An automatic frequency control to maintain resonance despite
temperature excursions within the chamber has been developed.
The heart of this control is a phase locking loop. The complex
displacement X for a system undergoing forced oscillation is
X = =] ]:"e‘j wt
wR +j(um- s/w)]
m

(18)

where F is the driving force, R is the resistance, m is the mass,
and s is the "gpring'' constant. Without solving the real part of this
equation, one can easily see that a resonance occurs where

wm = s/w; the complex displacement X lags the driving force by 90°,
This is a well known property of acoustical aystems. The principle
of phase locking is to monitor the driving frequency so that the input
signal has 90° phase lead with respect to the acoustical signal inside
the chamber at all times.

At the present time we do not have at our disposal acoustical drives
that will operate at the high temperatures at which we wish to test
the automatic frequency controller. Consequently the variation of
high temperatures within the chamber was simulated by mixing
helium gas with air to vary in time the resonant frequency in the
chamber. The resonant frequencies, fn’ of the chamber are

nCo
=3/ Pl (19)
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where Co is the velocity of sound in air, £ is the physical dimension
of the chamber, n is an integer, p, is density of air, and p is the

'density of the air and helium mixture. One can easily see from

Equations (17) and (19) that 2 decrease in the density of the mixture
will sirnulate an increase in the temperature of the chamber. In
the test, helium gas was bled into the chamber while a styrofoam
ball was being levitated. The purpose of the test is to see how

fast the servo loop can track the change in resonant frequency as
the "temperature'' is varied.

The test was conducted by changing the gas in the chamber from
100% air through intermediate mixtures to a 100% helium compo-
sition. This variation in gas density and the resulting change of
velocity of sound simulated a change of temperature from 25°C to
approximately 2000°C. The fundamental resonance frequency of
the chamber thus varied from 1.5 to 4. 2 kHz during the simulated
temperature rise. The automatic controller was able to vary the
driver frequency to match the change in the chamber!s resonance
frequency, and measurements of the pressure profile in the chamber
indicated that the profile maintained its original pattern throughout
the test. The most significant portion of the test was the demon-
stration that the levitated sphere located at the center of the
chamber remained at this position throughout the test with no
measured motion or oscillation. This indicated that no unwanted
oscillation was occurring in the servo system.

Another test is the operation of the chamber when the temperature
within is highly nonuniform. In a zero-g environment, gravitation-
induced convection is absent, leading to inefficient heat transfer
from a molten drop positioned in the chamber to the wall. Con-
sequently, the temperature around the droplet can be much higher
than at the wall. The questions that we must answer are: (1) Will
this extreme temperature gradient affect the sound intensity profile?
{2) What will the acoustic wave do to the temperature gradient?
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The test apparatus was a glass cylinder 60,76 cm long and 15.78 em
inner diameter. At its upper end a disc heater plate of the same
diameter was fitted into the cover. A speaker was mounted in the
lower opening., The temperature and sound intensity profile were
determined first independently and then simultaneously. The
results are shown in Figs. 9 and 10.

Fig. 9, plots the measured acoustic pressure as a function of
distance with and without the heater on. It shows that resonance
was not perturbed by the temperature gradient. Fig. 10 compares
the temperature profiles with and without the speaker on. It

shows that the acoustic field slightly improved the heat conductivity
of gas without much alteration of the shape of the profile. We
conclude from these tests that temperature gradients resulting
from molten material being positioned will not affect the positioning
capability of the chamber nor will the acoustic field significantly
modify temperature gradients which would affect the melting and
solidification of the material being positioned.

A very convenient method of testing the purity of ultra-pure metals
is to measure the resistivity of the metal at low temperatures. The
resistivity measurements could be made by using eddy current
induction techniques on a levitated sample that would obviate the
necessity of placing electrical leads on the sample. Measurements
of this type are often conducted at temperatures below 2. 0°K.

At the other end of the temperature scale, the determination of

the purity of ultra-pure metals 'requires that the chamber per-
form at a temperature below 2°K. One of the anticipated uses of
the acoustic levitation furnace is the growth of ultra-pure single
crystals with a minimum number of crystal defects. It would be
convenient to be able to grow the crystal and then make subsequent
tests on the crystal in the same chamber. It is felt that this type
of handling of the material would greatly reduce inadvertent con-
tamination of the sample and eliminate the possibility of producing
defects in the crystal through additional handling when transferring

from the furnace to another separate test chamber. The combined
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furnace test chamber has the added advantage in that it could reduce
the time needed in conducting the purity tests on the samples.

It was therefore decided to conduct exploratory tests on the acoustic
levitation chamber at these low temperatures to ascertain any
difficulties in operation of the chamber at these reduced tempera-
tures. Preliminary tests were carried out at 1. 8°K and the results
indicated that the acoustic pattern did not show any significant devi-
ations from room temperature operation.

To provide an understanding and engineering design of the flight
experiments, it is desirable to study the melting and solidification
process under the influence of acoustic fields in an earth labora-
tory. A high power acoustic chamber that is capable of levitating
liquid droplets, glass beads and metal plates in our laboratory has
been developed as shown in Figs. 11 and 12.

The capability of the new chamber will be used to make feasibility
studies of containerless materials processing in the laboratory,
to be carried out with university and industry scientists. Initial
tests will be conducted with low-melting organic materials which
have the advantages of low density and ease of handling, If thege
experiments are successful, later tests may be conducted on low-
melting metals. '
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(2) {b)

Fig. 12. Acoustically Leviﬁted Solids: (a) Glass Sphere, (b) Metal Plate
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