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Abstract

About half the stars in the sky are binary stars. The
fission theory, proposed by Poincidré in 1885, tries to explain
the occurrence of binary stars by a natural process of evolution
of a single star; in virtue of radiating energy, a rotating,
axisymmetric liguid mass becomes highly flattened, becomes un~-
stahle, and continues its evolution along a series of progres-—
sively more elongated ellipsoids. When these become unstable,
further evolution is supposed to take place along a series of
"pear—-shaped"” figures, having a constriction in the middle.
When this constriction has become deep enough, the figure con-
sis:g effectively of a pair of detached masses orbiting one
ano er.

Part of this picture lay on firm mathematical grounds; the
rest depended on the outcome of a series of mathematical pro~
blems. By the 1920's, these problems had been worked out, their
solutions were adverse to Poincidré's picture, and the fission
theory became dormant. A recent reformulation of the theory, to
bring it more nearly in line with newer astrophysical informa-
tion, promises a different outcome to the analogous series of
mathematical problems, and has awakened the fission theory.

INTRODUCTION

About half the stars in the sky are not individual stars
at all, but binary stars, i.e., pairs of stars in orbit about a
common center of mass. This figure (and the true fraction may
be substantially greater than one-half; cf. [1]) is so large
that it is not possible to regard the binary star as a freak
occurrence without meaning for an understanding of the broad
outlines of cosmogony. An explanation must be sought in the gen-
eral framework of stellar origins and evolution,

Several suggestions as to the origin of binary and multiple
systems have been made. Some of these, particularly those re-
quiring two or more nearby points at which the interstellar
medium begins the process of star formation, present mathematical



and formulational difficulties so great that it has not as yet
proved possible to analyze them even approximately. They must
be regarded as speculative at present. Two others have proved
more or less tractable mathematically:; these are the capture
theory and the fission theory. It is widely agreed (1) that
the capture theory is not capable of producing binary systems
in anything like the large numbers observed.

The subject of this article is the fission theory. Briefly
expressed, this theory provides a mechanism whereby a single,
rotating star evolves into a pair of stars orbiting one another.
The remaining séctions are devoted to describing the mechanism
in detail, explaining some of the criticisms that have been made
against the fission theory during its long history, and how
these criticisms are affected by recent theoretical developments.
The last section is an assessment of the present status of the
fission theory.

ELLIPSOIDAL FLUID MASSES

The model~-context -in which the fission theory is discussed
is that of the Maclaurin spheroids and the Jacobi ellipsoids. We
briefly describe these and certain generalizations of them here,
referring to (2) for a fuller description and derivations.

. An ellipsoidal fluid mass of uniform density o, rotatingf
with a uniform angular velocity §, having semiaxes -
ay 2 a, 2 a3,‘and subjected only to the force of its own gravita-
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Here G is the universal constant of gravitation.



Equation (1) represents a sequence of spheroids, the Maclaurin
spheroids. There is one such equilibrun figure for each wvalue of
a3/a1 between zero and one (or for each wvalue of the eccentricity

e of meridian sections in the same interval). Eguation (2) re~-
presents a sequence of ellipsoids with unequal axes, the so~called
Jacobi ellipsoids. It can be shown that for each value of az/a1

between 0 and 1, there is a unique value of aa/a1 satisfying

the first of equations (2). This gives the curve in the
(azlal)(a3/al)-plane marked A = 0 in Pigure 1.

At the point along the Jacobi sequence where azlal's 1,
aj/a; = 0.5827 (or e = 0.8127)_ and the two series have a member

in common. This is the "poinﬁ of bifurcation" +to which reference
will be made later.

These figures of relative equilibruim were shown by Riemann
(3) to be special solutions of a much more general system of equa-
tions. Riemann considered the problem of finding the most general
motions of a self-gravitating fluid of uniform density compatible
with the assumption that the free surface remains an ellipsoid.
This leads to motions of uniform vorticity relative to the rota-
ting reference frame in which the ellipsoidal surface is at rest.
Moreover, there is no requirement that the figures be in a steady-
State: a system of ordinary differential equations determining
the semiaxes and the parameters of the motion is obtained. These
equations can take the form
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with Kl and K2 constants depending on initial conditions. To
these equations must be adjoined the equation of mass conservation
a;aja,p = constant, and a constitutive equation relating the pres-
sure at center Pe to other variables; if the fluid is incom-

" pressible, this relation is p=constant and can be used to eliminate
the central pressure from equations (3). We observe, however, that
in Riemann's more general formulation, the fluid need not be incom-



pressible, i.e., p may be a function of time.

The system (5) allows equilibrium solutions, obtained by
setting the time-derivative terms equal to zero. When mapped out
in Figure 1, this family of equilibrium figures is found to occupy
the horn-shaped region bounded above and below by the curves
marked K, = 0 and Kl = 0, respectively, and on the right by the

segment of the Maclaurin series between e = 0 and e = 0.9529.

RESUME OF THE FISSION THEORY

Although the earliest ideas of the fission hypothesis are
attributable to Lord Kelvin (4) the theory only emerged in a com-
plete form with the appearance of a remarkable memoir by Poincaré
in 1885 (5). One of the outcomes of Poincaré's work was a descrip-~
tion of how a single self-gravitating mass (a star or planet)
might become a double system (a binary star or a planet-sattelite -
system). The mechanism, explained in the model-context of the ’
Maclaurin spheroids and Jacobi ellipsoids, operates as follows.

Imagine a Maclaurin spheroid with an eccentricity e 1less
than 0.8127. Suppose it contracts in virtue of radiating energy
away, but so slowly as not to disburb the relative eguilibrium.

As it contracts, it becomes more flattened in virtue of angular
momentum conservation. "Ultimately it reaches the point of bifur-
cation where e = 0.8127. Beyond this point, the Maclaurin spher-:
oid is known to be "secularly unstable,” i.e., unstable if vis~
“cosity is present. Supposing the latter so, further evolution
cannot proceed along the Maclaurin sequence, but must proceed
along the Jacobi sequence which is known to be secularly stable.
Next a further point of bifurcation, where a new, so-called pear-
shaped series, branches off the Jacobi series, is attained.
Assuming the Jacobi series secularly unstable past the new point
of bifurcation and the pear-shaped series secularly stable, further
evolution must proceed along the latter series.

In Poincaré"s original memoir, a sketch of the pear-shaped
figure was given showing it to have the shape suggested by its
name. The two ends of the figure are rather thicker than the
central portion, which appears constricted. Poincaré suggested
that this constriction narrows as evolution along the pear-shaped
sequence continues. When it has narrowed to the extent that the
figure consists essentially of a pair of detached masses connected
by a narrow neck, the system is a binary system.

This picture that Poincaré painted rested on a basis of solid
mathematical reasoning up to and including the computations imply=-
ing the existence of the pear-shaped sequence that branches off
the Jacobi sequence. Two important elements in his description,
however, were conjectures as to the outcomes of certain compli-
cated problems left open to subsequent research. One of these



conjectures was that the pear-shaped series is secularly stable.
This conjecture was taken up by Darwin (6], Liapounov (7), and
Jeans (8). Although Darwin initially concluded stability, the
others instability, Jeans further detected a minor error in
Darwin's computations which, when corrected, also led to the
conclusion of instability.

The other principal conjecture was that the instability
along the Jacobi sequence was a secular and not a dynamical in-
stability, implying that the ensuing motions take place on the
viscous timescale Tv rather than on the much shorter dynamical

timescale. This requires further explanation.

The instability along the Maclaurin seqguence that sets in at
e = 0.8127 (at the point of bifurcation where the Jacobi segquence
branches off) is a secular instability only; i.e., if viscosity
is absent, the Maclaurin sequence is stable down to e = 0.9529
(where the curve K, = 0 intersects the Maclaurin line
az/a1 = 1; cf. Fig.” 1). If viscosity is present, the Maclaurin

spheroids are unstable for e > 0.8127, and the e~-folding time is
the viscous diffusion time A Poincaré conjectured that the same

situation prevailed along the Jacobi seguence. The reason, or
rather, the hope, behind this conjecture was the conviction that,
if the instability were dynamical, rapid motions, on the dynami-
cal timescale would ensue, and it would not be possible to infer
the subsequent behavior on the basis of equations of equilibrium:
the full, dynamical equations would then have to be used. But
this conjecture that the instability is secular and not dynamic
is also wrong, as Cartan showed in 1924 (9).

CRITICISMS OF THE THEORY

The adverse outcomes to the two problems left open by
Poincaré appeared to destroy the theoretical foundations of the
fission theory, because the fluid mass no longer has any stable
state toward which it can evolve, and its behavior must indeed be
dynamical. While the result of this dynamical behavior may yet
be a binary system ([10}, [11]), the arguments used to infer this
are of a highly speculative character. Moreover, there are fur-—
ther criticisms of the theory. It may be useful to list the prin-
cipal criticisms:

1. The Jacobi sequence is dynamically unstable at the point where
the pear-shaped sequence bifurcates.

2. The pear—-shaped sequence is unstable.

3. The theory refers to incompressible masses, whereas stars
are gaseous.



4. The theory relies on the presence of viscosity, implicitly
assuming that the viscous timescale T_ is short compared to the
contraction timescale Tor whereas the opposite is true (12}.

This list is by no means complete, but is perhaps sufficient
to make one wonder why there remains any interest in the fission
theory. One reason, no doubt, is the vague feeling that the ad-
verse conclusions are in some measure due to the unrealistic
character of the model, and that the qualitative picture may yet
be right. Recent developments support this feeling.

RECENT DEVELOPMENTS

Many of the criticisms of the fission theory can be answered.
In this section we concentrate on the four criticisms listed in
the preceding section (for a fuller discussion, see ref. [13]).

The first criticism in that list is a criticism only because
of the conviction that the occurrence of a dynamical instability
requires solving the full, dynamical eguations to follow up its
conseguences. Now, this need not be the case where two timescales
are involved (13). Recent work on similar, but mathematically
simpler, problems of this kind shows that motion may always take
place on the slow timescale, except for a very short time interval
during which the evolutionary path shifts from one stable branch
of equilibrium solutions to another (14), (15).

Turning to the second criticism in that list, the instability
of the pear-shaped sequence, we observe that the guestion of sta-
bility or instability is very sensitive to the change in energy
on going from the ellipsoidal to the pear-shaped figure. In a
star, an important contribution to the total energy is made by
the internal energy. This contribution is suppressed by the
assumption (criticism 3) of incompressibility. Hence criticisms
2. and 3. may be closely related, and reformulation of the pro-
blem that answers criticism 3. may well yield a conclusion of
stability rather than instability for the pear-shaped sequence.

A form of the theory free of the fourth criticism has re-
cently been given (13), (16). It alsc answers criticism 3. to
the extent of allowing for internal energy, as well as gravita-
tional and kinetic energy. It is formulated in the context of
the Riemann ellipsoids with p a function of time. Instead of
evolving along the Maclaurin-Jacobi sequence as in the classical

theory, the fluid mass evolves along the Maclaurin series to the
- point marked ¢ in Figure 1, and thereafter along the series
marked K, = 0. Instability (analogous to that of Jacobi se-
quence) séts in at the point marked Ly Hence the evolution is

qualitatively similar to that of the classical theory, at least
to the point where the ellipsoidal sequence encounters a point



of bifurcation. The dashed line in Figure 1 represents a sample
trajectory that starts out almost, but not quite, axisymmetric.

PRESENT STATUS

Ingsofar as the four criticisms explicitly dealt with are
concerned, it would appear that none of them need apply in the re-
formulated version of the theory referred to in the preceding
section, although the guestion of the stability of the analogue
of the pear-shaped sequence has yet to be settled.

Other criticisms can be made, and it may not be possible to
answer them all to the critic's satisfaction, so the question
whether the fission theory is or is not a viable explanation for
the occurrence of binary stars may never have a universally
accepted answer. We can, however, say the following: whereas
it appeared some years ago that the fissjion theory may have been
incompatible with the laws of dynamics, this no longer appears to
be the case.

Further research along the lines of working out, and testing
the stability of, the analogue of the pear-shaped sequence should
do much to clarify the situation.
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