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ABSTRACT

The dynamics of small drops and bubbles are investigated with
regard to the effects of an external electric field and an elec-
trically charged layer situated on their interfaces. Specifically,
stresses engendered due to the convection of surface charge alter
both the motion and shape of single droplets and.the bulk proper-
ties of suspensions.

INTRODUCTION

Motions produced inside and outside a neutrally buoyant drop
immersed in a viscous fluid when an electric field is present are
due to the interaction of induced charge with the field, an inter-
action which produces tangential shear stresses at the interface.
A theory developed by G.I. Taylor(l) describes how the sense of
the motion and the deformation depend on the various parameters
when both fluids are poor conductors. He showed that, to leading
order, the deformation and speed of circulation are proportional to
: aeEozly., Here a denotes the radius, & the dielectric constant of
the outer fluid, E, the field strength and y the interfacial ten-
sion. This dimensionless group is, in essence, a comparision be-
tween the electrical stress tending to deform the drop and the re-
storing force of interfacial tension. Electrical and physical
properties alone determine whether the deformed spheroid is oblate
or prolate.

In Taylor's theory the distribution of induced charge, which
depends on the electrical relaxation times for the two fluids,
plays a central role. The distribution is antisymmetric with re-
spect to the equitorial plane normal to the field. - If the charge
relaxation time, /0, (0 denotes conductivity) of the inner fluid
exceeds that of the outer fluid then flow is from the poles to-
wards the equator. When the ratio of relaxation times is less
than unity the charge distribution and fiow are reversed. That
theory, moreover, is in substantial agreement with experiments by
Allan and Mason 2 and Torza, Cox and Mason, who studied the
deformation and burst of neutrally buoyant drops of various fluids,

Taylor's theory and its extensions to oscillatory electric
fields by Torza, Cox and Mason 3) and Sozu ignore, quite proper-
ly, the charge convection process which takes place at the inter-
face, Bulk free charge is taken to be identically zero and the in-
duced surface charge is convected by a motion which is 0(acEg?/Y).
Thus, the alteration of stress due to convection of charge is
0(acEg?/v)? and therefore small.

L If the drop undergoes translation, however, as is frequently
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the case if the densities are unmatched or the drop carries a
charge, then charge convection induces electrical stresses which
are OCnU/y-aeE /y) These alter the translational speed and the
shape. The purpose of this paper is to describe the influences of
charge convection both because of its intrinsic interest and its
relevance to drop breakup and coalescence.

It is readily seen that the shape alteration will differ from
that found by Taylor since stresses resulting from charge convec-
tion due to streaming will be asymmetric. Thus, instead of a
symmetrical deformation proportional to P2(cos 8) * the deforma-
tion will be represented in terms of Py(cos ©) and P3z(cos 8). Ex-
perimental evidence for this sort of shape arising in the fashion
proposed is sparse since all of the published work relates to
neutrally buoyant drops. However, one prescient sequence of photo-
graphs by Torza, Cox and Mason does show the expected asymmetry
[Figure 10, plate 7 of their paper]. It shows a drop flattened
into an oblate spheroid, as would be expected from Taylor's theory.
Then, perhaps due to the accumulation of charge, it begins to
migrate and loses its symmetrical form. Although the amount of
deformation is greater than that which could be rigorously modelled
by a linearized theory the shape is clearly of the form expected
from the consequences of charge convection.

Asymmetric deformation could also result from movement of the
surface of a charged drop. Such a charge might be in the form of a
monolayer or doublz 1%¥e Extant theories of the motion of drops
with double-layers allow for the convection of charge to some
extent but the deformation is identically zero due to the extremely
simple forms of the velocity and potential when charge relaxation
is rapid. A more comprehensive theory is presented hcre which is
applicable as well to cases where charge relaxation is slow enough
for convection to be important.

The development proceeds along familiar lines with electrical
effects described by the electrohydrodynamic simplifications of
Maxwell's equations and motion inside and outside the globule de-
scribed by solutions of the linearized Navier-Stokes equatioms. A
key feature is the proper accounting for convection of surface
charge. The system under study is depicted. in Figure 1. A fluid
sphere of radius a is immersed in another immiscible fluid. Both
are Newtonian and incompressible with interfacial tension y. Den-
sity and viscosity are denoted by p and v, the shear viscosity by
n. Carets are used to distinguish the variables pertaining to the
globule. Three situations will be discussed:

(a) An uncharged globule in the presence of a uniform electric
field, both fluids being ohmic conductors.

{b) A charged globule in a viscous non-conductor (the mono-
layer problem).

(¢) A charged globule in a viscous conductor with a perfectly
polarized interface (the double layer problem).

* Py (cos 8) is a Legendre polynomial of order n, 8 is measured from
"the rear stagnation point.
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It will be assumed in the formal analysis that electrical
stresses are small compared to interfacial temsion, viz.,
asE°2/7<1.

The remainder of the presentation is divided into sections
dealing with the formal aspects of electric fields, forces and
boundary conditions; fluid motion; then results for the uncharged
drop, or drop with a mono-layer, and a drop with a double-layer.
Before concluding, the effect of charge convection on the electrical
conductivity of a suspension of fluid drops is . discussed briefly,

ELECTRIC FIELDS, FORCES AND BOUNDARY CONDITIONS

Maxwell's equations in the form appropriate to electrohydro-
dynamic phenomena read

UXE = 0, VeD = 4mq, and Srq + Ved = 0. (1)

E, D, q, and J stand for the electric field strength, dielectric
displacement, bulk free charge density, and current, respectively.
The constitutive relations are

D =¢gE, Js=oE+qy. (2)

In the situation under investigation free charge is initially con-
centrated at the interface either as a mono- or a double-layer and
remains there. It follows then that electrical phenomena can be
described by means of potential functions which are

bran = T epr (37
inside and
$Cr,u) = oy0r) - w2 ) + § o r (e () 4)

outside. Here ¢d(r) denotes the double-layer potential in the
absence of convection. Its precise form is unimportant here since
we are dealing with thin layers and all that is required is the
gradient at the interface. ¢4(r) is suppressed in the absence of
a double-layer; when the external field is absent the term —rPl(u)
is omitted.

The physical phenomena are determined by boundary conditions
and they are set forth next.

A. Uncharged globule in the presence of an external field.
Here both fluids are presumed to be ohmic conductors and at the
interface the tangential components of the field are to be contin-
uous, :

E, = E {5}
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The other condition arises from the conservation of induced
charge, Q, at the interface. Q is defined by the jump in €E,, viz.,
<eE,> = Q, where <eE,> stands for €E, - 28E;." Balancing conduction
to and from the interface against convection leads to the expression

<cEn> + Vs-(Q!) = 0 , (6)

Vs' denotes the surface divergence, v the velocity.

B. Charged globule in a viscous non-conductor {(charge mono=-
layer). Here the boundary conditions are the same as before al-
though the absence of conductivity in the outer fluid, which serves
to keep the globule charged, does simplify Equation 6 somewhat.

C. Charged globule in a viscous conductor with the interface
perfectly polarized (charge double-layer). In this situation a
thin double-~layer approximation is employed wherein that part of
the double-layer residing in the outer fluid is collected into a
spherical sheath of charge. Charge is transported to and from this
sheath by conduction and in it by convection; no charge crosses the
interface. The balance expression reads

GE, + V_+(Qy) = 0 (7

Processes which are ignored are tangential currents due to conduc-
tion, which are vanishingly small since the layer is thin, and
radial charge convection, which vanishes since the radial velocity
is zero at the interface. The net charge on the outer sheath ;f
Telated to the gradient of the potential in the usual manner,(
viz.,

IF | ., 0 " EE, (8)

Here and elsewhere the potentials have been made dimensionless with
the scale aE,. The scale for length is a, Q, is the average charge
per unit area, and E, is the (uniform) field strength far from the
drop. Coefficients in Equation 3 are evaluated by requiring the
tangential components of the field to be continuous.

FLUID MOTIONS

Since the fluids being considered are isothermal, incompressible
and Newto?iin and inertial effects neglected the well-known simpli-
fications (8)of the equations of motion can be made. <Solutions to
the linearized equations can then be expressed in terms of stream
functions for the motion inside the drop,
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~ 1 nU r2-r* ~ n+3. % nel
v = 2R ) ¢+ f [A,x""+ B ™" 1, (W), \
and outside,
v = - 3 et B e £ oW & 9)

+ ? [Anr'(“'2)+ Bnr'“]Qn(u) .

These expressions are in dimensionless form with U denoting the
streaming speed far from the object, x = n/n and

H
Q, () = | P (a)da . (10)

-1 e

The set of coefficients denoted as Ap, By, Ap, and By are
evaluated from boundary conditions applied at the interface.
These are: (i) continuity of the various components of velocity
and (ii) continuity of the tangential components of the stress.
The former reveals that

~ ~ . - . >
An = - Bn = An - Bn H n=1. (11)

Continuity of the stress is expressed as

[ L R

3 Y% .10 (&) . .3 Ve 19 n 2 (e)
{z 35r Tt 't 38 vr} *T0 e k{x % r T T 38 vr} * Ty (12)

with the glectrical stresses, TEQ), evaluated from Maxwells stress
tensor,(9

E
te) acE
Tt 7y Exfol__, (13)

_in dimensionless form. The balance of normal stresses fixes the
shape.

BEHAVIOR OF AN UNCHARGED GLOBULE

Explicit analytical solutions are obtained from simultaneous
solution of the equations resulting from enforcing the boundary
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conditions. The calculations are straightforward and so tedious
details are omitted. Complete expressions can be derived fronm
those given in Reference 10,

Continuity of electrical stress and velocity enable one to re-
duce the problem to the evaluation of two sets of cogfficients, By
and C,, say. Then an expansion scheme with aeEoz/Y = § treated as
a small parameter is employed. From expressions of the form

Bn = Bn(o)+ Bn(l) * e n=1, 2, ...

4)
c_ = cn(°)+ cncl) # . mml, 2, ...

we find

(0) (0) (0) (0) (0) ’
R A Te P P (15)

The orders of the coefficients that survive are:
(0), . (1), . (0) (1) (2) (1), .
C1 :0(1); C2 :0(nU/Yy); Bz ,Cl ,C2 ,C3 :0(8); and

31(1),33(1):0(6n0/7). The other coefficients are of an even

smaller order and therefore neglected. Thé formulas for C 2 and
B2(0) correspond to those given by Taylor.(1) c1 (1), c2(2) and ~——-o
'C3(1) are associated with convection of induced charge by the
electrically induced field and C2(l) from the streaming. The

velocity field consists of terms representing flow due to uni-

forming streaming and electrical stress arising from the induced
charged whose distribution is altered, in turn, by the streaming.

For the settling velocity we find

U 3 :
= (16)
Ust 2+3K (eE )* .

Q
m—'i' £(R,S,Kk) "o

when the direction of the uniform electric field is opposite to
the gravitational field. Here U_ = 2ag(1-8/p)/9v  and

' 2 -1 T ;
£(R,5,k) = g—z-l'h—ép-mﬁmv [3(1+r" ) - T—:—]{l - :Fi-] .

.R stands for g/¢ and T, for the ratio of an electrical relaxation
time, /g, to the time scale for fluid motion, an/y, based on the
outer fluid. Note that fr/Tr = 1/RS.

It is easy to show that the electric field can either increase
or decrease the rate of translation of the globule, depending upon
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the electrical properties of the fluids under discussion. The
particular condition under which the speed will increase is

1 < 7p/1p < 3(1+R ). If this restriction is not met the motion
of the droplet will be retarded. Figure 2 illustrates the magni-
tude of the effect for typical values of the parameters.:

For an explanation of these results we examined the manner
in which the streaming motion alters the induced charge and the
tangential stresses (see Figure 3), 1In the case of a neutrally
buoyant drop both the polarization and direction of fluid circu-
lation are determined by the ratio of electrical relaxation
times in the droplet and medium in the manner depicted. When the
ratio of electrical relaxation times is unity the drop remains
unpolarized and the electrical shearing stresses vanish.

When the electrical relaxation time of the droplet exceeds
that of the surrounding fluid, the streaming motion alters the
distribution as shown in Figure 3. In a manner analogous to
that for the neutrally buoyant case, interaction of the altered
charge distribution with the tangential component of the electric
field results in the shear stress distribution indicated. These
shearing stresses induce motions which enhance the streaming
motion of the droplet. Compression of the negative charge toward
the rear of the droplet results in electrical shearing stresses
which retard motion. The settling speed of the droplet will be
altered, then, depending upon the relative magnitudes of these
two opposing phenomena.

A similar analysis for case (b) shows that the interaction
of the altered charge distribution with the tangential component
of the electric field always tends to retard the motion of the
- droplet when Ty/Ty < 1. Motion is further retarded due to com-
pression of positive charge toward the rear of the globule.

Deformation of the globule is due to electrical effects
since uniform streamin er se causes no deformation if inertial
effects are absent, (11 he deformation from the spherical form
i. represented as

T(w) = g B, P, (W) (17)

so that the center of mass is fixed and the globule is incom-
pressible. The surviving coefficients, to 0(8), are B, and Bz.
Normal stresses which give rise to B, are due to electrical
phenomena present in the absence of streaming as found by Taylor
while deformation due to charge convection is described by BS'

Figure 4 depicts the manner in which a falling fluid sphere
deforms when subject to a uniform electric field. The lack of
fore to aft symmetry of the droplet can be understood in terms of
the normal stresses engendered by the lack of symmetry of the
charge distribution with respect to the equitorial plane of the
droplet. This may be contrasted with the oblate spheroid which
develops when charge convection is not taken into account (Figure
5).
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The shape shown in Figure 4 is quite similar to the form de-
picted by Torza, Cox and Mason to which earlier reference was made.
Calculations made using the parameters given in their paper are
qualitatively the same although a direct comparison is not possible

due to the lack of information on the rate of translation.

BEHAVIOR OF A CHARGED GLOBULE IN A VISCOUS NON-CONDUCTOR

Results for this situation, obtained in a fashion similar to
that employed earlier, show that deformation tends to be prolate
since the conductivity ratio is effectively infinite. Charge con-
vection alters the symmetry, however, The translational velocity
is altered by convection of both the induced charge and the net
surface charge, viz.,

ZaQOEo
U= - i (18)
2+3K 9 (E‘F‘o)2 2 1 4"Q02
+ = + = e
l+k S (1+K)24ﬂ ne 3 (1+x)2 na

for a charged, neutrally buoyant drop in a viscous dielectric. It
is worth noting here that convection of charge always produces
shearing stresses which retard motion.  This is consistent with the
behavior identified with the uncharged globule where it was shown
that if the ratio of electrical relaxation times is less than unity
then motion is impeded.

BEHAVIOR OF A CHARGED GLOBULE WITH A PERFECTLY POLARIZED INTERFACE

A typical shape is hown as Figure 6. The asymmetry due to
charge convection is evident and, in contrast to the situation
shown in Figure 4, the front part of the drop is elongated due to
the choice of physical propertles, Nevertheless it should be
noted that the deformation is 0(1 )} and when the relaxation is
rapid as it would be with, say, a mercury drop in an ionic solu-
tion, the deformation w111 be quite small.

The translational velocity is

aQ E /n
U= 2+3K+g (19).
where . '
aeE
3 1
g = T, 4“7 {(EEQO PYIRRYT [F(8+10x) - ——(7+8K)]} .

This shows, again, how charge convection impedes the rate of
translation. If internal electric stresses are ignored by taking
€=0 (S = @) then Equation (19) reduces the classical result due
to Levich.(556)
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CHARGE CONVECTION AND THE CONDUCTIVITY OF SUSPENSIONS’

Processes of the sort just studied in connection with the
behavior of single drops ought to manifest themselves in their
effects on the properties of suspensions and drops. Two of the
more obvious properties are electrical conductivity and viscosity.
Indeed, just as it is possible to alter the properties of sus¥en-
sions of solid, orientatible particles using external fields, 12)
it will likewise be possible to alter matters in suspensions of
fluid particles by, for example, controlling charge convection.
Here we focus attention on the electrical conductivity of an
otherwise motionless suspension of fluid particles.

The potentials inside and outside a single drop exposed to a
uniform field are

d(rw) = - gap rp )+ ¢ Mrr )+ cgWMrtein \
and
oCrw) + [ -7+ grp el o+ ¢ WMrme ) (20)
* cs(l)r'“p3(u) .
Here ~ . /
c. (1) _ 54 1 _ R? 1 - :qu fff&l_
1 5 1+x i2+R§‘ Tr 4mno
and ~ 2
c (1) _ 216 1 R2 n - =% (eE,)
3 25 1+x (4+3R) (2+R) Tr 41nC *

From Equation 20 we find that charge convection always acts so as
to decrease the potential drop across a single particle, leading

us to expect that the effective conductivity of a dilute suspension
will be below that given in Maxwell's theory (see Reference 12).
This turn? gyt to be the case and, using an adaption of Batcheloxr's
formalism(14)so as to account for charge convection, the effective
electrical conductivity o* is found to be

~

-1
R+2

A U & - zrenyc, My . (21)

Here ¢ denotes the volume fraction of fluid particles, Since C (1),
which is always positive, depends on the field strength the
conductivity is f%f%? dependent. Several other situations have
been investigated and results will be reported shortly.



CONCLUDING REMARKS

Attention was focused on two of the ways whereby the electro-
hydrodynamic effects of charge convection alter the behavior of
single fluid drops, specifically their shape and rate of transla-
tion., In addition it was shown how the bulk conductivity of a
suspension of drops can be altered by the same process. The
principal limitations on the results arise from the restriction
to small deformations, on the one hand, and the simplified models
of interfacial behavior on the other.
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&

NEUTRALLY BUOYANT CASE
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DROPLET SETTLING DUE TO GRAVITY
FIG3

Qualitative Picture of Effect of External
Electric Field on Settling Velocity -
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