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THE DYNAMICS OF COLLIDING AND OSCILLATING DROPS*

Carol Travis Alomso
Lawrence Berkeley Laboratory, Berkeley, Califormia

INTRODUCTION

In order to study the oscillations, fusions, and fissions of liquid
drops, we are developing a hydrodynamic computer code which simulates these
processes for viscous, incompressible dropa endowed with a body charge and
surface tension. Although our interest lies in the field of nuclear hydro-
dynamics, the application of this code to classical liquid drops is general.
Our code traces the dynamic evolutiom of an axially symmetric system as a
function of time. It utilizes a free surface that requires no parameter-
ization and its velocity field can be rotatiomal or irrotational as required.
When completed, the present version will yield the following information
about the classical dynamics of liquid drops: (a) free surface shape and
energy, (b) free-flow velocity f£ield, (c) kinetic energy distribution,

(d) Coulomb energy, (e) free-flow moment of inertia, and (£f) free-flow
electric quadrupole moment. These quantities can be gtudied as a function
of viscosity, initial shape, and energy.

We present here some studies of the oscillations of charged and neutral .
drops as a function of initial shape, charge, and viscosity. These studies
are not restricted to small amplitudes. We also present some preliminary
simulations of fissions and fusions of viscous charged drops, with some
comments about the possible role of nuclear viscosity in the creatiom of
"superheavy" elements in heavy ion accelerator reactiouns.

NUCLEAR HYDRODYNAMICS -

The general problem of liquid drop dynamics, important as it is to
many scientific investigations, has never been fully.solved due to the
complexity of the hydrodynamic equations involved. Even the linear problem
of viscous small amplitude oscillations is described by complex Bessel
functions (1). Large amplitude oscillations and distortions, including the
fission and fusion of liquid drops, cannot be described amalytically in
complete detail. .

In the particular field of nuclear hydrodynamics, it has become of
critical importance to be able to follow in some way the dynmamic path of
those large amplitude motions leading to nuclear fusion and £isgion. Some
studies of this problem using parameterized surfaces and irrotational flow
have been carried out by Sierk and Nix (2). Other efforts have concentrated
on solutions of Hamilton's equations using parameterized shapes (3).
Disruptive procegses such as fusion have not been studied dynamically because
they do not lend themselves easily to shape parameterizatiou.

While the atomic nucleus usually displays a quantum mechanical nature,
the nuclei of the heavier elements, which contain hundreds of nucleons,

*Work performed under the auspices of the United States Atomic Energy
Commission.
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begin to show properties that are characteristic of classical fluid flow.
The best example of this is the success of the celebrated liquid drop model
of nuclear fission proposed by Bohr and Wheeler (4). Another example is that
the moment of inertia of rotating nuclei lies somewhere between that of a rigid
body and of a drop with irrotational flow. At low temperatures the nuclear
liquid can become a superfluid and a classical description is probably not meaning—
ful. However most accelerator reactions between nuclei take place at elevated
temperatures where classical behavior, if not well established, becomes a
reasonable assumption, at least for the heavier nuclei. In Figure 1 we have
attempted to show where the physics of heavy nuclei fits in the transition
_ from the classical to the quantum mechanical regimes. The transition point
is taken to be at the temperature where the de Broglie wavelength equals the
inter-nucleon spacing.

In the spirit of this classical assumption we have undertaken to simulate
by computer methods the dynamics of colliding and oscillating viscous liquid
drops in a very general way. The only previous attempt at such simulations
was performed by Hill and Wheeler (5) for inviscid, irrotational fissions at -
a time when computers were not fast enough to handle the general protilem. The
overriding interest today is in the problem of fusing two charged liquid drops
to make a large composite drop. This is the basic way in which the new
transuranic elements are being produced: two nuclei are made to collide in an
accelerator and the fused compound system becomes the new element.

Recent theoretical predictions by Nilsson and others (6) of the possibility
of using fusion reactions such as this to produce the so-called "superheavy"
elements with atomic number around 114 have not been substantiated by
experiments (7). We now suspect that this disparity may be due to a finite
nuclear viscosity at elevated temperatures. The effect of this viscosity
would be to convert the energy of the forward motion of the fusion process
into frictional heating, making fusionm impossible due to the repulsive Coulomb
forces that are always ready to pull distorted shapes apart.

Therefore we are developing a computer code, called SQUISH, that we hope
will have sufficient accuracy to predict the correct bulk motion of charged
viscous liquid drops with axial symmetry. This program is quite general. It
can be used for any liquid drops, nuclear or otherwise, that are subject to a
calculable external force. The code is still in development and although we
are presently studying fusions the results are still preliminary, so we present
in this paper mostly some simulations of the dynamics of large~amplitude motions
of single drops.

THE COMPUTER CODE

Without going into details, we describe in Figure 2 how the code works.
SQUISH is an example of the two-~dimensional hydrodynamic finite-difference

codes that are becoming very popular because of the increased capability of
modern computers to handle them. SQUISH uses a basic hydrodynamic technique
developed at Los Alamos by Harlow and Amsden (8) for low Reynolds number flow,
the SMAC or Simplified Marker And Cell method. In this scheme, the drop is
contained in a fixed Eulerian mesh and movable Lagrangian particles are injected
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into the cells of the mesh. A special set of surface markers keeps track of-
the free surface. Typical full and surface cells are shown in the insets.

The forces and pressures are calculated at the centers of the cells, and
velocities are deposited on the cell boundaries. The computer is then
instructed to move the particles according to Newton's laws, which in this
case become the Navier-Stokes equation for a viscous and incompressible

- £luid. In our case the forces include surface tension and Coulomb forces.
The method of Foote (9) has been used for the application of surface tensgion.
The particles are moved by applying these equations in finite-difference form,
and the whole system iz adjusted to conserve volume according to vV ° U = 0,
The program, after moving the particles, increments the time, recalculates the
new forces and pressures, and proceeds in this cyclical manner to follow the
dynamical paths of all the particles that make up the drop.

- The advantages of this method are that it contains (a) a free surface
that requires no parameterization, (b) a free-flow velocity calculation that
can be rotational or irrotational, and (c¢) provisions for including any
calculable external force, or any bulk property such as viscosity or elast-
icity. The limitations are that (a) the code must be axially symmetric if it
, is not to become extremely costly to run, (b) some accuracy must be surrend-
ered by the choice of a reasonably large mesh size, and (c) the physics is
purely classical, although it may be possible to simulate some quantum mech-
anical behavior in a pseudo-classical manner.

At present SQUISH is capable of calculating at any time step the follow=
ing properties of a system of viscous charged liquid drops: (a) free surface
shape and energy, (b) free-flow velocity field (rotatiomal or irrotational),
{c) kinetic energy distributiom, (d) center of mass kinetic energy, positionm,
and moments, (e) Coulomb energy, (f) free-flow moment of inertia, and (g) free—
flow electric quadrupole moment. These quantities can be studied as a function
of viscosity, initial shape, and initial energy. It should be pointed out
that not all of these quantities will have analytical accuracy. The size of
finite difference mesh employed sets a limit on the accuracy of the free
surface shape, upon which most of these quantities depend. Computer simul-
ations of this sort should be regarded as quasi-analytical experiments with
definite errors associated with the variables. However the bulk motion
should be correct, and the accuracy can be made as good as necessary, should
the need merit the expense.

SIMULATIONS OF DROP DYNAMICS

Ag an illustration of the versatility of such a code, let us examine
the motion of a particular drop as we change its size, viscosity, and charge.
In the following figures the units are scaled to nuclear dimensions, but the
dynamic evolution shown applies to any classical viscous drop by virtue of
‘dynamic similarity. 1In Table 1 we present a unit conversion table for the -
benefit of non-nuclear scientists. The figures in this paper represent smoothed
compogites of motion picture sequences generated by the computer.
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We begin with a study of the uncharged drop. Wong and Tang (1) have
discussed the analytical solutions to small-amplitude oscillations of such
drops. We shall now study large-amplitude oscillations, for vhich there is
no analytical theory. The sequence shown in Figure 3 simulates the oscilla-
tions of a drop with an initial shape given by the second-order Legendre
polynomial, with the coefficient ap = 0.4. The viscosity is of a medium
value that results in a damped oscillatory motion. The drop is started at
rest; the initial excess surface energy is then exchanged for kinetic energy
as the drop oscillates from a prolate spherodd to a sphere (with minimum
surface energy and maximum kinetic energy) and then back to an oblate spheroid .
(with minimum kinetic energy and maximum surface energy). The drop simula-
tions at the top are from the film strip; the large dots are the surface
markers and the small interior dots are the cell particles. There are about
a thousand particles in this drop. The total energy is seen to decrease
exponentially as the damping proceeds. The period of oscillationm,

15.35 x 10-22 seconds, is slightly longer than the theoretical period for
small-amplitude oscillations, which is 13.38 x 10~22 geconds. However the
general motion exhibits the behavior described by Lord Rayleigh (10) for
linear oscillations many years ago, even though the ratio of amplitude to
drop radius is not very small. This result has been observed experimentally
many times. '

The simulation in Figure 4 shows this same drop except that the viscosity
has been increased by a factor of ten. Now the motion is overdamped and the
drop slowly damps out to a sphere without any oscillatory motion.

In Figure 5 the size of the drop is changed so that it now has an initial
Legendre coefficient given by a, = 1.0. This is a very large-amplitude motion
which no longer preserves the P, shape. In the least square fit of the free
surface shown on the left, a sugstantial a, component is seen to grow with the
motion, and this is also very evident in the simulated drop sequences at the
top of the figure. The energy changes are shown on the right; at the end of
this simulation we have been left with a sphere with a great deal of kinetic
energy which will probably proceed into some complex oblate spheroidal type
of shape, still following the general Rayleigh behavior. The extrapolated
period for this oscillation is about twice the corresponding Rayleigh period.
The Weber number for this simulation, defined by We = odu?/y = 12 Eyy./Egyur
(where o is the density, d the drop diameter, u an average velocity, and
¥ the surface tension coefficient), is We = 1.37, and there is no sign of
extreme disruption in the simulation.

The addition of a full body charge to the drop involves a substantial
increase in computer running time, and this tends to result in a loss of
accuracy due to the necessity of using a larger mesh size. In Figure 6 we
show the smoothed energy curves for the same drop that we discussed in
Figure 3 except that now it has a body charge of 62 proton charges. The"
charge density, like the mass density, is assumed to be constant throughout
the drop. This particular charge represents a 152Sm nucleus, which is known
to be stable against fission even for fairly large distortions. In this sim-
ulation the surface forces still predominate the motion, but now the surface
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energy is exchanged for Coulomb energy as well as kinetic energy, resulting in
a longer period for the oscillation. The Coulomb energy and kinetic energy
are at a maximm for the spherical shape, while the surface energy is at a
minimum. Toward the end of the simulation the motion has damped out to small
amplitude oscillations about a sphere. The accuracy of these calculations )
is about one percent.

The motion of this same drop was studied as more charge was added to

the drop. In Figure 7 we plot the kinetic energy of the drop after a fixed
time interval as a function of the atomic charge Z of the drop. For small
charges the motion is oscillatory. As the charge is increased, the Coulomb
forces oppose the surface tension more and more, slowing down the motion
until the two forces just balance at the minimum in the curve. This minimum
represents a saddle point between oscillation and fission; for charge
- densities beyond this point the Coulomb forces predominate and the drop
begins to fission with no oscillatory behavior. The saddle point charge
predicted by SQUISH is in agreement with the theoretical saddle point charge
of 76 predicted for this shape by Cohen and Swiatecki (11). In Figure 8 is
shown the same drop of Figure 7 with charge Z = 110. Here the Coulomb energy
plunges down as the fission proceeds, and the surface energy and kinetic emergy
move up almost equally in the initial stages of the motion.

The dimensionless parameter that is used to represent the relative
strengths of the Coulomb force and the surface tension is the fissility,
defined by x = Ecoul/(Z-Esurf) . In Figure 9 is shown a comparison of two
simulations of a drop that was initialized with a shape corresponding to an
x = 0.9 saddle shape, but with enough charge to make x = 1.56. This highly
charged drop was then expected to fission very rapidly. The drop at the
right was given a high viscosity that overdamps oscillations at lower figs~
ilities, and the drop at the left was given a lower wiscosity that would lead
to damped oscillations at lower fissilities. Instead of rapidly breaking apart
into two drops, we find that the highly charged drop becomes very elongated and
eventually develops a long, thin neck that will not pinch off until the neck
has extended to virtually no width. This is an unsettling result, especially
for nuclear physics, for such a thin neck would contain less than one nucleon
and we could not expect to apply a classical treatment under such conditions.
-This is not entirely surprising because nuclear fission i3 usually a low-
temperature phenomenon, unlike accelerator-induced fusion. However it means
that classical treatments of the fission dynamics, and possibly the statics,
may be misleading. One might hypothesize that in real charged drops, whether
clagsical or quantum mechanical, the pinch-off is actually initiated by a
surface fluctuation in the thin neck. This is substantiated to some degree by
our knowledge that nuclear fission 1s not necessarily symmetric; one fission
fragment often is larger than the other, which would be possible if the long
neck predicted by SQUISH were to be broken off at a random place along its
length at some time by a random surface fluctuation.

Experimental studies of charged drops would be very helpful in this respect,
but it would be extremely difficult to charge them sufficiently to represent
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nuclear liquid drops, which are held together by the strong nuclear forces
despite their high charge density. 1In Figure 10, nonetheless, we show an
approximation to a real charged drop, These profiles are from a film made
by two nuclear physicists at LBL. They suspended a drop of water containing —
trichlorethylene in a bath of transformer oil of about the same density as
the drop. Then they placed the drop between two capacitor plates and filmed
its subsequent motion as a function of the applied voltage. The sequence
shown here was at ome of their higher voltages. These drops, of course, are
not body-charged like a nucleus, but rather polarized. However we see in
their development a pronounced elongation followed by asymmetric fissiom,
which lends some credemnce to the computer simulations that we have presented.
Further support is found in the experimental films of pendant drops presented
at this conference by A. A. Kovitz.

Besides these simulations of the fission process, which require further
study, we are examining the problem of fusion. This has required special
programming to handle the cusp-like neck at the initial stages of the fusion.
Our fusion results are still preliminary and will not be presented in detail
at this time. In Figure 11 is shown, by way of example, a simulation of the
fusion of two liquid &pheres. The Weber number for this simulation was
around 5.5, so surface tension effects are negligible compared to inertial
effects, and large distortions are expected. The general features of this
viscous fusion are that the necking process involves a large amount of viscous
friction which hinders the formation of the neck and hence the fusion. The
implication of this for the fusion of heavy nuclei is quite serious, if
nuclear viscosity does indeed exist (and we do not yet know that it does), for
it implies that at high accelerator velocities the viscosity may hinder the
formation of compound nuclei, while at low velocities the Coulomb repulsion
also hinders the fusion. Therefore there may be only a narrow range of energ-
ies for which fusion experiments can be performed in the heavy nuclei. We
plan to explore many of these speculations in the near future.
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Table I - Unit Conversion Table

Quantity Nuclear Unit ‘ST Unit

Time ‘1 dsec - 10722 gec

Length 1 fm - 10715

Energy 1 Mev - 1.602 x 20723 4

Velocity 1 fm/dsec = 107 m/sec

Kinematic 2 -8 2
viscosity* 1 fn"/dsec = 10 © m“/sec

Surface temsion 1 Mev/ f.m2 = 1.602 x 1017 at/m

3

* The nuclear density is 0.13 amu/fm” = 1.66 x 1018'Kg/m3. Thus

a nuclear kinematic viscosity of 1 fmzldsec means a viscosity

of 1.66 x 108 poise.

** The nuclear surface tension is approximately 1 Mev/fmz.
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