
PROCEEDINGS FROM
THE FOURTH SUMMER SOFTWARE

ENGINEERING WORKSHOP
(NASA-TM-847 '04) " P H O C E E D I H G S f B C f l THri F O U R T H N 6 2 - 7 4 1 2 3

S U H M E B S O F T W A R E EJ iGIME-EiLLHG W O B & S H O E (N A S A) T H H U _
269 p S e 2 - 7 « 4 l J 5

Uncias
00/61 09c iJ2

HELD ON

NOVEMBER 19, 1979

AT

GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND

National Aeronautics and
Space Administration

S-PSCCUCcO 8Y

NATIONAL TECHNICAL
INFORMATION SERVICE

Uj. DEPAPIMtfif Of COMMERCE
Si>RI»GflclO. VA. 22161

PROCEEDINGS

OF

FOURTH SUMMER SOFTWARE ENGINEERING WORKSHOP

Organized by:

Software Engineering Laboratory
GSFC

November 19, 1979

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland

FOURTH SOFTWARE ENGINEERING WORKSHOP

November 19, 1979
NASA/GSFC

Building 6, Room S-19

8:20 a.m. Introduction — F. McGarry, Goddard Space Flight Center

8:30 Panel #1 — 'The Software Engineering Laboratory'

Participants: F. McGarry, Goddard Space Flight Center
V. Church, Computer Sciences Corporation
M. Zelkowitz, University of Maryland
V. Basili, University of Maryland

10:00 Coffee Break

10:15 Panel #2 - 'Data Collection'

Chairperson: V. Church, Computer Sciences Corporation

Participants: P. Belford, Computer Sciences Corporation
M. Perie, FAA
L. Duvall, IITRI
P. de Feo, NASA/Ames

11:00 Panel #3 — 'Experiments in Methodology Evaluation'

Chairperson: M. Zelkowitz, University of Maryland

Participants: P. Hsia, University of Alabama
S. Sheppard, General Electric
W. Fujii, DDI

12:30 p.m. Lunch

•1:30 Panel #4 - 'Software Resource Models'

Chairperson: F. McGarry, Goddard Space Flight Center

Participants: B. Cheadle, Martin Marietta Corporation
L. Putnam, Quantitative Software Management
D. Weiss, NRL

3:00 Coffee Break

3:15 Panel #5 — 'Models and Metrics of Software Development'

Chairperson: V. Basili, University of Maryland

Participants: B. Curtis, General Electric
J. Musa, Bell Labs
A. Stone, General Electric

PANEL # I

THE SOFTWARE ENGINEERING LABORATORY

F. McGarry , NASA Coddard Space Flight Center
V. Church, Computer Sciences Corporation
M. Zelkowitz, University of Maryland
V. Basili, University of .Maryland

OVERVIEW OF THE SOFTWARE ENGINEERING LABORATORY

F. McGarry
GSFC

INTRODUCTION

The Software Engineering Laboratory (SEL) is an organization which is 'functioning for the purpose
of studying and evaluating software development techniques in an environment where scientific
application software systems are routinely generated to support efforts at the National Aeronautics
and Space Administration (NASA). This laboratory has been a joint effort between NASA/Goddard
Space Flight Center (GSFC), Computer Sciences Corporation (CSC), Computer Sciences Technicolor
Associates (CSTA), and the University of Maryland.

PURPOSE OF THE SEL

Over the past number of years, software costs seem to have been continually increasing in relation
to the costs of computer hardware. Because of the vast amounts of resources that have been di-
rected toward the software development problem, there has been a just concern over the overall
process of software development.

There certainly are many reasons for the growing concern about the software process. Not only
is a sizable portion of government and corporate budgets spent on it, but systems have been getting
more complex and software has been required to perform tasks previously considered unattainable.
All of this has been due to the rapidly advancing technology in related fields such as computer
hardware.

Therefore, in response to these problems, the science of software engineering evolved as a way of
developing software through a well-defined process. Using this approach, the software process can
be better understood and an attempt can be made to study and improve the product.

Great advances have been made in adding disciplines to this very young science. Over the past 10
years, the advent of disciplined design, development, methodologies, improved management tech-
niques, software metrics and measures, automated development tools, resource estimation models,
and many other approaches that have given birth to the term software engineering.

Although numerous software development methodologies have been developed, each claiming to
be more effective than the other, it has not been clearly understood (at least as applied to the
NASA/GSFC environment) what effects the various methodologies have on various phases of the
software development process. More specifically, it has not been understood whether structured,
programming, automated tools, organizational changes, resource estimation models, or any of the
other technologies would have any effect (either positive or negative) on the software development
process at NASA/GSFC. It has also become very clear that it is not easy to define what is a
"better" software product. For these reasons (and for several others), the Software Engineering
Laboratory (SEL) at GSFC was created.

The SEL set out to accomplish the following two important and valid tasks:

1. To clearly understand the software development process at NASA/GSFC (i.e., how people
are used, how money and time are spent, how other resources such as the computer itself
are used, how well time lines and milestones are estimated, etc.).

F. McGarry
, . GSFC
-> . 1 of 14

2. To measure the effects of various modern programming practices (MPP's) on the NASA/
GSFC software development process.

In order to accomplish these goals, software which was developed for satellite mission support was
studied. The Systems Development Section at NASA/GSFC is responsible for generating all flight
dynamics support software for GSFC-supported missions. This software includes attitude deter-
mination, attitude control, orbit control, and general mission analysis support systems.

The SEL was then used to closely monitor all software developed to support the charter of the
Systems Development Section. This includes software developed both by GSFC employees and
contractor personnel (primarily Computer Sciences Corporation (CSC)). The SEL was created in
the summer of 1976, and it was anticipated that the monitoring process would first of all be done
on tasks using conventional means of software development, with various MPPs applied to similar
tasks in an attempt to measure the effects of these practices.

Needless to say, the efforts required to accomplish the goals were far more monumental than any
member of the SEL ever imagined. Extra efforts were required on nearly every plan of the experi-
ment. Some of the underestimated areas of work include the following:

«

1. Development of clear, understandable data collection forms

2. Organization of the data collection process

3. Design of data storage media for data collected ,

4. Validation of data made available through data collection forms

5. Design of meaningful, feasible reports that could reflect early results of available data

Through all of the problems and discouraging times that the SEL experienced, the real credit for
the success that the lab may have had in the past, and hopefully in the future, must go to the
programmers and managers of the tasks involved in the monitoring process. Initially it was felt
that a major obstacle was going to be the psychological problem of convincing programmers to
accurately provide data on their efforts. However, it was found that not only did quality software
people not resent providing the data but they actually made extra efforts to ensure that the data
were valid and useful.

The data that have been collected by the SEL cover software development projects starting in late
1976 through 1979. It is anticipated that data will continue to be collected and studied in the
future. There have been approximately 25 projects involved, ranging in size from 1500 lines of
source to over 120,000 lines of source. Most of the projects were in the 40,000 to 70,000 lines
of source category. All of the projects studied were development tasks used to support the flight
dynamics area for the Mission Support Computing and Analysis Division (Code 580) at GSFC.
The data made available to study the MPPs were collected from a series of forms which were used
by all projects. In addition, data were collected through interviews, on-line accounting systems,
and by personal inspections of the information by the members of the SEL.

Having investigated projects totaling somewhere around 1 million lines of code, members of the SEL
feel that they have been successful in not only gaining insight into the software development process,
but also in determining the relative effects of various techniques applied to the software projects.

F. McOarry
4 GSFC
H 2 of 14

SOFTWARE ENGINEERING LABORATORY

NASA/
GSFC

UNIV.
OFMD.

F. McGarry
GSFC
3 of 14

F
. M

cG
arry

G
SFC

4 of 14

LUO
)

Q
J

h
-

IJLOOiCO

F
. M

cG
arry

G
S

FC
5 of 14

SOFTWARE ENGINEERING LABORATORY - OBJECTIVES

1. UNDERSTAND

• OUR CURRENT SOFTWARE DEVELOPMENT PROCESS

• STRENGTHS AND WEAKNESSES

• TYPE OF ERRORS

• HOW DO WE SPEND TIME ANL MONEY

2. EVALUATE

• METHODOLOGIES

• TOOLS

• MODELS

"REAL WORLD" ENVIRONMENT

3. PRODUCE MODEL

• FOR SOFTWARE DEVELOPMENT

4. IDENTIFY AND APPLY

• IMPROVED TECHNIQUES

F. McGarry
GSFC

8 6 of 14

SOFTWARE ENGINEERING LABORATORY - THE PROCESS

• EXPERIMENTS

- SCREENING (NO PERTURBATIONS)

- SEMI-CONTROLLED (SPECIFIC METHODOLOGIES APPLIED)

- CONTROLLED* (TASKS DUPLICATED)

• IDENTIFY INFORMATION REQUIRED

- FORMS

- INTERVIEWS

- AUTOMATIC ACCOUNTING

- CODE AUDITORS

- TOOLS (PAN. VALET, . . .)

• ANALYSIS

- PROFILE INFORMATION

- APPLY METRICS-MEASURES

- SOFTWARE MODELING

- TOOL EVALUATION

F. McGarry
GSFC
7 of 14

uiZEU
J

oo:28

u3>tR

LU£ttxU
J

u_0

5

(/)
8

•

II3

I-

</>U
J

U
J

ato(A

1
0

F
. M

cG
arry

G
SFC

8 of 14

11
F

. M
cG

a
rry

G
S

F
C

9 of 14

^
_

o
:

oi—C
yx

oco<c
L
U

C
D

 \—
•Z

. C
J

1—
 ̂

1
 1

 1

L
U

—

 1
L
U

O

z
. 0

C
D

<C

L
U

«
C

Q
L
U

°
£
3t—[~—

 j
O

O

L
U
o

Q
O

O

L
U

O
O

Z
.

z. 5
LU

 H
~~

(_

0
3

L
U

O

iO
u

^C
2; 1—
o

 <
c

0
 Q

QL
U

(—L
U

C

D
—

 J
O

—
 1

—
 1

0
 0

0
 QO

h
- t—

<a; LU
Q

 2
:

2
: L

U

L
U

i—

 t
1

0
0

ooL
U

i—
 i *~-~*
j X

X

-̂

Q
 L

U
L
U

C

J
c£ cr:
L
U

^
3

=
>

O

1—
1

O
O

1
L
U

L
u

Q

0| —oL
U

Oo
;

a
.

*

*

*

*

*

*
*

•
)

<
*

*

*
*

*

-
K

*

*

*
*

#
*

C
O1

^^

0
0

f""^

f 1^
I

I

I
I

V
O

L
O

**&

*^

I
I

I
I

i~
-r«

.v
o

r
^

k
T

)
^

L

O
C

O
L

f
)

i
l

l
i

l
l

i
l

l
i{"s

(̂

^
^

p
o

f̂
^
O

^
J
"

C
O

C

V
J

C

O
 C

O

*S

^
III

II
1

1
1

1
1

1
1

C
O

L
O

C

M

IQ

O

O

C

O

C

M
 L

O

"• C
O

C

M

«
~
-l

*>
&

 V
O

C

M
 C

M
 r-H

^O

«
~
^
 C

O

r
^

-
C

M
C

M
C

M
-
—

 IC
M

C
O

C
O

-
—

 'U
lr

-
t
r
—

 IC
M

^
-
C

M
C

N
J

C
O

C
M

C
O

O
[

j_
^

«
_
_
)

fc

(
^

)
C

O
t^

~
C

M
C

O
C

O
O

C
S

J
'd

"
O

C
O

C
O

'^
3

C
O

>
O

V
O

'd
-r

~
»

C
O

C
M

L
O

C

M
U

3
L

O
r

-
~

.
C

O

t—
 r—

^
^

1—<£.
QQL
U

1—Q
£

1r~
.

XL
U^
H

C_D
o

1
ooom1 —1

,
1

2
:L
U

a
:

<
t

3LJ_
O0
0

L
U

o1—

<C

«
i

«
:

<
Q

Q

O

1
—

 O
0

«
a
: O

CD
 O

 C
D

L
U

Q

>
-

2
: o

 o
:

o
 o

 L
U

*

*

*

*
 -
K

L
U

a
:

~^i—
cc

•=>
1 1

 i
rv

•SL
O

O

.00
•

«
t

1

3
: C

D
o
;

L
U

C

D
 z

o

•—
 o

 o
a; z. o-

oc =a:
0

.3
2

:
3
: L

U
o
 o

\—

 a
:

u_ a

c
j

L
U

1

^

L
U

i—
 i
0
.

L
U

_
J
 _

l
Q

=
 o

 a
: a

 <
a
 o

C
J
 'I —

o

O

_
 3

C

J

•—
 1 C

M

C
O

<

"̂
LO

**O

C
D

_O
O

oo
C

J

L
U

i—

C
J

L
U

U
.

O

S

 O
O

I—
 »

>
-

C
V

1—

 1
C

J
1—

 1—
 0-

H- 1—
1

U
J _l

cC
 _J O

-
i—

 i—
 i 1—

 =£ «C
CJ i—

 «c LU
 o:

oo i3
 Q

 a: C
D

r-H

C

M
 C

O
 <

*
L
O

*~
 ̂

h
^

^
^

L
U

a
!

o—
 1

L
U

L
U

C
Dz
.

t—
 1

ce~
"3
a—

 '
z
.

*
i

^
u

o
.

1—oo
2
: L

U
^C

h~

i—
 i

a
: _

j
cc

 ^C
o
: 2

:
CQ

o;
i—

 i
O

_J U
.

1̂
. C

O

"P
<D <:
C

T
Q

i

3
 o

;
O

lO
c
 u

.
031

l/l

i-
a
i

O
)

-C

J
2

O

O
J

i—
l/l

1 —
to

 <=£

•K

12

F. M
cG

arry
G

SFC
10 of 14

PROFILE DATA

DISTRIBUTION OF EFFORT BY PHASE

OTHER 5.7%

ACCEPTANCE TEST
12%

CODE & UNIT TEST
47.3%

SOURCE: NASA/GSG GSFC (SEL)
AVERAGED 6 PROJECTS (RESOURCE SUMMARY)

PROFILE DATA
EFFORT BY PHASE

(PERCENT)

TRW

CODE 20

DESIGN 40

CHECKED & TEST 40

OTHER

NASA/GSFC
IBM (6 PROJECTS)

30 47

35 20

25 27

10 6

13

NASA/GSFC
1 STUDY TASK
COMPONENT

STATUS

34

32

26

8

NASA/GSFC
1 STUDY TASK

RESOURCE

50

19

19

12

F. McGarry
GSFC
II of 14

CC.
oCC0001

ozCC/ARE ENGINEE

&^
^

LL8C/J

-
•

RESULTS

°2_i ^
§

o
0

j

LU

"•

1-U
J

^a

L
U

a*»
^Ẑ2̂

U
J

C
O

o

m

O

o
o

 Z
°

?

I
j

5
 be

 o
L
U

O
z

*-

s LU a
°p

§
S

 in
 o

LU

f»

O

z
«-

.M
M

.

LU

_

C
O

G

uj LU
O

 ^

Z

u

p

J

|s
|

Q•j 7
*?

S? Z

g

C
M

-
1

U
J

Q

^

O
 t/i

u

u
j 2

U
J

Ij

Z

o £
UJ

m

3
§

ex
Z

0
0

*
*

M
l

^
H

U

J

er
-1

VERY LATE DELIVEI
EXCEEDED BUDGET;
MANY LATE ANOMA

COi39COCMCMO
>

^C
O

soC
OCM

inin-

CO3

LATE DELIVERY;
EXCEEDED BUDGET;
MANY LATE ANOMA

CO3^O^T^

*C
O

O
)

r
"

C
M

C
O

C
M

"

T
—
in005C

M

V
)

LU
.
 ..

i

ON TIME DELIVERY
WITHIN BUDGET;
SOME LATE ANOMAl

r-
0
0
 ̂

 O
>

3?eocoC
M

oin8incS

-

'<£>

inC
O

inCO

ON TIME DELIVERY;
WITHIN BUDGET;
SMOOTH FINISH

co en
C

O

P
*«

 0
0

O

85in^>^CN<d-

C
M

r
-

r
-

^I""'

inC
O

in*

fc
oo

EARLY DELIVERY;
WELL WITHIN BUDGI
NO LATE ANOMALIE

^r m
 co

 w
t-

C
M

 r* oo

39co'
C

M

O
>

co'

C
O

r̂
,

C
M

ininsinin

COU
J

Daz
C

O

I
LU

O

••p

C
O

 î
^
^

*̂

L
U

(^

-^

C
C

.
^
^

O

L
U

-J

J

9

L
U

IS

SM
»

uj
u
j

S
 u

j z

^
2

c
c

2
2

=
 0

.

1

a

S

S
lfc

< 1 8geS
3

H

S
g

-
!
-
!

0

o

„.
 Q

 <
 <

2
S

^
S

tii
H

 Q

I

Z

O

O

00

0
.

U

D

U

. U
.

»-
C

M

co
 «•

in

<o

IALK THROUGH
ODE READING
IBRARIAN
OP DOWN

S
 0

-1

1
-

r*" oo
 o)

o

14
F

. M
cG

arry
G

S
F

C
12 of

14

\
\

C
O

^
L

U
C? O
O

 2

0
 O

.
1

 X
I- LU

LUoc<CO

\\\

\
\
\

uU
J

Occa.OO2

H
V

3
A

N

V
W

 0
1
 O

l
IS

O
O

Q

V
3

H
U

3
A

O

15
F. M

cG
arry

G
SFC

13 of 14

CONCLUSION

• DATA COLLECTION IS IMPORTANT

• UNDERSTAND THE LOCAL ENVIRONMENT

• COST ABSORBED IN BENEFITS

• THERE ARE MODELS THAT DESCRIBE OUR SOFTWARE ENVIRONMENT

• SOFTWARE TOOL AND METHODOLOGIES DO EFFECT THE SOFTWARE
DEVELOPMENT PROCESS

• THE SOFTWARE DEVELOPMENT PROCESS CAN BE IMPROVED

• THERE ARE METRIC THAT DO MEASURE THE "GOODNESS"
OF SOFTWARE

F. McGarry
GSFC

16 . 14 of 14

SOFTWARE ENGINEERING LABORATORY-
THE DATA COLLECTION PROCESS

Victor E. Church
CSC

Investigation into the software development activity involves an elaborate process of data collection,
review, and preparation for analysis. The overall data flow is described briefly, noting the variety
of data sources, the major points of review and data correction, and the macro structure of the re-
sulting data base. Much of the data collection requires the active participation of programmers
and software managers involved in the task* being monitored. Practical considerations of overhead
costs, impact on monitored tasks, and programming team reactions and expectations are discussed.

V. Church

n csc
17 • I o f 7

[RESOURCESK MI,. *•

1 ERRORS
^•"1 — j*

SQOH131AJ 1

...

ZU

Q
 00

goLU

UJ

OuQU
J

(ft

-t-
U

J
.Jil

u
j

D<m

18
V

. C
hurch

C
SC

2 of 7

QU
J

Q
.

Q
.

D

DZU

U
J

t-I

f\
(0U

J
UCCDO(/)U

J
CC

V

RRORS

U
J

'
</)ETHOD!

5•M

1

•
 •
•

19

V
. C

hurch
C

S
C

3 of 7

o

QU
J

COU
J

UIII

00DtoQZ

(AZoUU
J

ccaoU

QU
J

U
J

e
s

_
J
|

(J
U

J
m

l
£

>
•

I
I
I

OO

<Q

ICO

U
J

OCCDO(A

>

3
 C

C
cc

o
uj

<

o

N

G
C

t

\

r
m

f
l
f
l

^
^
f

^
J

_

<
 <

*"

UJ

U
JU

£

K

<

5a
!

-J
^

U
J

£
j <

/>

>

Q

C
C

 ̂
O

C

5 5 g <
£

a
i

8

S
S

E20
V

. C
hurch

C
SC

4 of 7

NCCOU
J

(0

Q
.

o(/>U
J

oU
J

(0CO<<

(/)ooz

—

i

0
)ccocccc111UccDO0
)

U
J

1

CCooU
J

oCQOU
J

<

O

>
CCO

L

>OQOU
J

U
J

OO

2U
J

b
<e

w

H

cc
=- O

C

LL

5

K

d
 u

j
O

g

£

cc
z

z
°- m

 a
CD

>
ui

Z

=

0
)

P

a

3

CC
<

u
j

O

O
C

 -J
Q

.
U

J
C

O
U

J
H

<

Q

M
I <

m

S
 O

H

m

 ^
5

E

 1
O

H

 cc
i-

<
 I-

C*0
I-

£
D

<

o

O

O

u.

I-<o
f

C

M

I-
 H

o
 u

U
J

U
J

->

->
O

 O
DC

CC
Q

.
Q

.

UU
J

+

OCCQ
.21

V
. C

hurch
C

SC
5 of 7

00

"
o

<o S
UJ

H
O

<

O
 C

C
OC

UJ
0
. Q

z <7>
O

2

oO
 <

O<Q
g

Q<U
J

OCU
J

>O£o7CO* CO2

TORED

Z0s0HCO0O

IMPACT

OZ1*

EFFECT'

U
J

ZOC0Xc
j

<Î^

•
 •

COzDCUJOzooCOzô̂
B; REACT!iRAMMER

uOOCQ
.

TO PROGRAMMERS

COD>moccoU
J

_JmCO>OCO<<Q

.IZATION OF

m
+

PD1

EMENT

>OOC0
.

2U
L

-JU
J

COU
J

Q5oo

AVAILABLEFEEDBACK A

OZ1

ED "BUSY WORK"

OCUJQCOzou1QU
j

<OCioU
J

OOz<<ou.OU
J

D.j<1

<XZOQUJ
CO<mCOCOLLECTION

2<Q<1-(0CORESSION EXI

CLS1

i/VANT TO KNOW?"

U
J

soQ<XZXHocU
J

5OC**rv.
U

J
B

fIWEMEASUI

^<U

<<QQU
J

5U
J

OOXiCOU
J

00oocQ
.

SISTENCY OF DATA

O1 1RYING LEVEL, <

<U
J

UQOOCCLCOsIIIERENT PROJI

u.u.5l

I LOW A PRIORITY

uO

LECTION) HAS

OO<

URING DA'PROCESS (D

<3i

R»-Du

OU
J

0Q
.

2

N COULD BE 1LECTIO

_
i

OU<<Q

ELINESS OF 1

P1

22

V
. C

hurch
C

S
C

6 of 7

H
I

IUZ

tI

U
J
U

L
L

»
-S

<

ZU

O

COZoUU
J

U
JC

/)

0
0

BP<
o

Q
Z

<
Q

 Q
 LJU

2
2

0

Q
0
°

£5L
U

<
•«

 p
™

 in

^̂

fe
*«

0
0

>
g

Q

23

V
. C

h
u
rch

C
S

C
7 of 7

SOFTWARE ENGINEERING LABORATORY: DATA VALIDATION

Marvin V. Zelkowitz and Eric Chen
Department of Computer Science

University of Maryland
College Park, Maryland 20742

The need to validate the data being collected by the Software Engineering Laboratory is a primary
prerequisite before analyses can be attempted. In terms of validation, three phases have been
identified: (1) forms validation, (2) project validation, and (3) completeness and consistency
validation.

Forms validation is a process that verifies that the data on the forms that are being collected is
accurately transferred to the computerized data base. It is mostly a clerical process as the forms
are typed into the computer. Minimal checking of data across forms is attempted — all checking
is at the local level. In addition, once a project's forms has been entered, the data is rechecked
against the original forms before being used in analysis.

Project validation tests whether the entire set of forms for a project is consistent. For example,
does the number of hours specified on the resource summary (filled out by the project manager
weekly for all project personnel) agree with the number of hours specified by each programmer
on the component status report (giving the hours spent each week on each component)? What
date is missing (e.g., which reports are not in the data base)? This is a relatively straightforward
check on the total collected data from a project.

The more interesting question is completeness and consistency validation. This attempts to de-
termine if there is any underlying structure or biasing in the ways forms are being filled out.

The initial approach is to use cluster analysis. Each of the forms is represented as a multidimen-
sional "vector of M dimensions. Each vector is projected onto a N-dimensional space using a subset
of the M components as a basis. It is determined which forms cluster near one another in this
N-dimensional space — such forms being considered related according to the basis chosen. Various
regression techniques are being used to see if any of the other (M-N) attributes are predictors of
this clustering.

Some of the issues being initially investigated include: Is the programmer identification a predicto:
of the cluster? (It shouldn't be.) If so, then some of the programmers fill out the forms in cer-
tain characteristic ways which would show a biasing in the collected data. On the projects so far
checked, this does not seem to be the case. Another question: Is the project name a good pre-
dictor when several projects are considered together? If so, then either there is biasing at the
project level, or else different methodologies on different projects lead to different data being
collected. If true, then the reasons will be investigated. A third initial question to be studied is:
Are the clusters indicative of certain characteristic errors? Can clustering be used as an error
classification?

While the work is still very preliminary, the use of such clustering techniques in this environment
seems promising.

M. Zelkowitz
Univ. of Md.
1 of 9

DATA FLOW THROUGH THE SOFTWARE ENGINEERING LABORATORY

FORMS

T
KEYPUNCH

FORMS
VALIDATION

DISK
FILES

MAGNETIC
TAPE

NASA DATABASE
(POP 11)

PROJECT
VALIDATION

J_

U OF MD DATA
BASE (UNIVAC

1100/42)

DATA BASE
ACCESS

ANALYSIS
PROGRAMS

COMPLETENESS
VALIDATION

COLLECTED DATA
CORRECTION DATA

25
M. Zelkowitz
Univ. of Md.
2 of 9

FORMS COLLECTED

Resource Summary (by management)
hours/week/programmer

Component Status Report (by programmers)
hours/week/component/phase

Change Report Form (by programmer)
Each change or error, when found

Computer Run Analysis (by programmer)
Each computer run

General Project Summary (by management)
Each project

Component Summary (by programmers)
Each -piece of system

M. Zelkowitz
Univ. of Md.

26 3 of 9

DATA VALIDATION

1. Forms Validation — Each form is self-consistent, as it is entered into bases.
Checks are both manual and automated.

2. Project Validation — Similar data on different forms for a project is analyzed, for
missing or incomplete data.

3. Consistency Validation — Checks whether there is any systematic biasing of the set
of collected forms between projects.

then —

Either:

(a) Projects are not using same interpretation of instructions when
filling out forms.

or (b) Methodology used leads to characteristic differences in approaches
to forms.

M. Zelkowitz
Univ. of Md.
4 of 9

CONSISTENCY VALIDATION

Basic approach uses cluster analysis.

Each form a multidimensional vector of N dimensions.

Choose M of those components.

Objects near one another are "related" by M chosen elements are
in same cluster.

Question: Is any one of the (N-M) remaining
components a predictor of cluster?

28

M. Zelkowitz
Univ. of Md.
5 of 9

CLUSTERING ALGORITHM

1. Compute similarity between vectors (forms) I and J. Call it Sij. Sij will have a value between
0 and 1.

2. Choose some threshold B between 0 and 1.

3. If Sij > B then I and J are similar, so set Dij = 1. Otherwise set Dij = 0.

4. When viewed as a graph, Dij = 1 represents that node I is connected by an arc to node J.
Compute transitive closure D* = D + D2 + . . . Dn.

5. D*ij = 1 if and only if nodes I and J are in the same connected subgraph. These connected
subgraphs represent similar forms.

RESEARCH IDEAS

1. Vary B and measure effects on cluster sizes. The larger the B, then the fewer the vectors
that will be similar. For the following graphs, B = 0.950.

2. Vary clustering algorithm. Current algorithm computes dot product of unit (normalized)
vectors. Alternative strategy is to compute clusters as those vectors closest to some
centroid instead of simply within the same connected subgraph.

CURRENT ALGORITHM ALTERNATIVE ALGORITHM

o- CLUSTERS

29

M. Zelkowitz
Univ. of Md.
6 of 9

138 - CLUSTER

208 -

12-

5 -
4 _
3 -
2 -
1 -
0

CLUSTER

PROJECT: B
TOTAL #OF FORMS = 288

I
I I I

1 2 3 4 8

CLUSTER SIZE

I I I I I I I T
12 14

11 -

7
6

4
3

1
0

PROJECT: A
TOTAL # OF FORMS = 238

I T
1 2 3 4 5

CLUSTER SIZE

I I I
8 9

I I I
19

#OF
CLUSTER

PROJECT: C
TOTAL # OF FORMS = 38

I I I I I I I I 1 I I
1 2

CLUSTER SIZE

30

M. Zelkowitz
Univ. of Md.
7 of 9

PROJ.. A

PROJ. 1
!= 183

15 -

uu oc
3 O
O"-

oc 2

< o
?£ u.

OC 5?a. - 5 *
X

I
10

I
15

I
20

CLUSTER SIZE (% OF TOTAL FORMS)

20-,

15-

PROJ. 2
1=66 10-

5-

I
5

I
10

I
15

I
20

EACH X REPRESENTS ONE CLUSTER

A GIVEN PROGRAMMER APPEARING IN A GIVEN CLUSTER IS PROPORTIONAL TO CLUSTER
SIZE - SHOWING EVEN QISTRIBUTION OF FORMS IN EACH CLUSTER

31
M. Zelkowitz
Univ. of Md.
8 of 9

PROG. IN SINGLE
CLUSTER GROUPS

50-

40-

30-

20-

10 —

PROJ. B
1=289

50-

40-

30-

20-

10-

I I I I I
10 20 30 40 50
PROG. IN TOTAL POPULATION

/

I
60

PROJ. A
2=238

x/

0

50-1

I
10

I
20

I
30

I
40

1
50

1
60

40-H

30-

20-

10-

PROJ. C
S= 38

0 10 20 30 40 50 60
EACH X REPRESENTS ONE PROGRAMMER

FORMS THAT DO NOT CLUSTER ARE PROPORTIONAL TO NUMBER OF FORMS
BY A GIVEN PROGRAMMER - SHOWING EVEN DISTRIBUTION

32
M. Zelk
Univ. ot
9 of 9

INVESTIGATIONS INTO SOFTWARE DEVELOPMENT IN THE
SOFTWARE ENGINEERING LABORATORY

Victor R. Basil!
Department of Computer Science

University of Maryland

The Software Engineering Laboratory (SEL) has been examining software on several projects with
the goal of understanding the software development process and examining and refining existing
models and metrics within the development environment. Early work has been predominantly in
cost models in which the Putnam model for resource man-loading was examined. There were
mixed results in that the model provided good estimation of development time given the maximum
manning and budget estimates, but the Rayleigh curve did not fit the data well. This was at least
in part due to a large amount of noise in the data. Several other curves, specifically a trapezoid,
a parabola, and a straight line were used to fit the data. The trapezoid and parabola both fit
approximately as well as the Rayleigh curve. Several techniques have been used in an attempt to
smooth the data; the most effective so far uses modules as opposed to lines of code as the in-
dependent variable. Here we use the correlation between modules and lines of source code, and
the invariant relationship discovered for the module handling rate across time to smooth the data.

A second effort has been to duplicate the relationships discovered by Walston/Felix concerning
lines of code, effort in man weeks, staff size, module size, duration, etc. It was discovered that
in the size range of the SEL projects, the relationship between lines of code and effort is almost
linear (more linear than the Walston/Felix IBM data-which deals with a larger range of projects).
The productivity equation for the Walston/Felix data was E = 5.2L-91 while the SEL data equation
is E= 1.35L-94. It is interesting to note, however, that the SEL data in general fits within one
standard error of the IBM data. This result is highly plausible, since the majority of projects at
NASA are of a similar nature-ground support software for satellites.

Current work is continuing in cost models by looking at one-formula paramaterized models, specif-
ically the models of TRW, Doty Associates, and General Research Corporation. In each of these
cases, a set of parameters is used to calculate a single value for resource effort. This effort is then
allocated across- the various phases and aspects of development. The goal is to normalize the
parameters for the SEL environment. Also being examined are the man-loading models of Putnam
and Parr. Parr's model is based on different assumptions than the model of Putnam. The results
of the Parr model and the single-formula parameterized model will be compared to the Putnam
model results.

Work has begun on the studies of effects on methodology and environment on software develop-
ment. In each of the projects, a large list of subjective and objective measures, including the 29
parameters of Walston/Felix. are being estimated for the SEL data. An attempt is being made to
distinguish the projects by these parameters. This will help in examining what effect each of these
factors has on productivity and should provide valuable insight into the parameterization of the
cost models.

The use of metrics, e.g., Halstead, McCabe, etc., and classification schemes for various modules,
e.g., driver, input/output, etc., are being used to classify software and study the relationship be-
tween the metrics and classification schemes. This effort will further provide information for
classifying software and provide insight into the cost models.

V. Basil!
Univ. of Md.

33 i of i

PANEL #2

DATA COLLECTION

P. Belford, Computer Sciences Corp.
M. Perie, FAA
L. Duvall, IITRI
P. de Feo, NASA/Ames

34

CENTRAL FLOW CONTROL SOFTWARE DEVELOPMENT: A CASE STUDY OF THE
EFFECTIVENESS OF SOFTWARE ENGINEERING TECHNIQUES

Peter C. Belford and Richard A. Berg
Computer Sciences Corporation

Silver Spring, Maryland, U.S.A.

Thomas L. Hannan
Federal Aviation Administration

Washington, D.C., U.S.A.

Abstract

The purpose of this paper is to present cost and
error data collected during -.he development cycle of a
large-scale software effort, to analyze this data in com-
parison with other available data from similar projects,
and to evaluate the effectiveness of the techniques utilized
on the project. The project being reported on is Com-
puter Sciences Corporation's development of the Central
Flow-Control Software System for ;he Federal Aviation
Administration's Air Traffic Control System Command
Center. Analysis of the cost data provides insight not
only into the added development costs associated with
severely limiting module sizes, but also into the effec-
tiveness of various cost estimation techniques. The
error data analysis supports the usefulness of the soft-
ware engineering techniques which were used on the
project La conjunction with definitive module-level test
requirements. The paper provides a foundation upon
which to establish the development and,data collection
environment :or future software svstems.

Introduction

Major software development projects employing con-
trolled software engineering techniques occur infre-
quently over the life of an organization, tt is even more
uncommon for these controlled projects to have the man-
agement support required to collect sufficient data to
evaluate the techniques utilized. In order that subsequent
developers may have the opportunity to select affective
software engineering techniques, more project details
need to be collected, evaluated, and the results stored
for their use.

This paper describes a ziaior software development
project, the software engineering practices employed,
the data collection procedures and results obtained, and
conclusions about the effectiveness of the practices as
implemented on the project. The experiences gained
from the project were r.ot of the-controlled, psychomet-
ric variety; :he budget and deadlines were real, and the
various lapses in data and, perhaps, in resolution, re-
flect these i'acts. Taking :his ir.to consideration,- the
following Material is presented, not as conclusive proof

of the efficacy of a particular methodology, but as ex-
periences resulting from a representative large-scale
development project.

Project and Approach

The Federal Aviation Administration (FAA) operates
an Air Traffic Control System Command Center (ATCSCC)
whose function is balancing die flow of air traffic so that
in-flight delays are minimized. The Central Flow Con-
trol (CFC) System provides automation support for this
function. A computer complex in Jacksonville, Florida,
is linked with the major FAA nationwide facilities to pro-
vide up-to-date information about proposed flights and
in-flight movements. This demand information is fed
into a data base along with airport capacity information,
and is subsequently used by ATCSCC personnel in on
on-line query environment. The overall system can be
described as an on-line (inquiry), real-time (flight data),
transaction-oriented (Independent asynchronous activities)
information system.

The project was initiated in late 1975. It was de-
cided to establish a rigid software architectural require-
ment and functional .'stimulus/response) specification to
ensure that the system would be able to evolve along with
the application. Maintainability with an emphasis on
modifiability1 was the prime objective prior to contract
initiation. However, a more recent grouping of these
factors indicates that flexibility tended to become the
primary goal, with maintainability second, and reliabil-
ity a weak third for the initial system.-

Toward this end, the FAA specified the functional
requirements,'' utilizing an existing hardware configura-
tion, and provided a baseline operating system. Com-
puter Sciences Corporation sCSCi was competitively
awarded a contract to modify the operating system,
develop data base management and applications software,
and provide support software for system development,
generation, test, and performance evaluation. The
award was made in April 1977, and the system was de-r
livered in January 1979, six months prior to the opera-
tional readiness date of July 1979.

The selection of a development methodology was
based as much on management criteria as on technical
criteria. It was decided to move stepwise through the

35
P. Belford
CSC
1 of 20

development process, checkpointing each phase by base-
lining the output. With the requirements definition phase
and the functional specification phase completed and
their results baselined, the remaining development effort
was allocated to three major phases: (1) the system de-
sign phase; (21 the unit design, code, and test phase;
and (3) the system test phase. The final two phases were
performed four separate times. Each time a portion of
the software (called a Build) was implemented to demon-
strate a subset of the functional capabilities of the sys-
tem.

Software Engineering Methods

It became clear that successful execution of the'
development phase (within both budget and schedule)
would require careful front-end attention paid to:
(1) product definition, (2) tool utilization, (3) practice
standardization, and (4) organizational structure. An
attempt was made (with varying degrees of success) to
define software and documentation products so that they
would evolve naturally, and so that as much of these
products as possible would be in machine-readable form..
A set of tools and practices were selected to assist in
those areas which had been troublesome in the past, most
notably control and communication. Finally, an organi-
zation was formed based upon a. Work Breakdown Struc-
ture (WBS), which was to serve as an accounting, data
collection, and referencing mechanism as well as a basis
for scheduling.

The system design phase involved the least infusion
of modern practices and yielded the least amount of soft-
ware, engineering data. The products of the phase were
(1) the Program Design Specification (PDS), (2) the Sys-
tem Development Plan, and (3) the System Test Plan.
The PDS was developed using Hierarchy plus Input-
Process-Output (H-Q?O) diagrams. The Hierarchy (H-)
diagrams eventually evolved-into execution diagrams,
which gained reasonable support, but the EPO diagrams,
which met with some initial success, were quickly sup-
planted by Program Design Language (PDL). The ?DL
allowed for six basic structured constructs. Data was
also addressed hierarchically ia the PDS, *"" the
CODASYL Data Description Language was employed."1

This complemented the PDL, and both were updated for
inclusion in the final documentation.

The unit design, code, and test phase was the most
amenable to incorporation of modern practices and was
the source of the most useful data. Additionally, the
organization was adjusted during this phase to provide
both a Quality Control group and an Independent Data
Base Administrator.

Unit design was accomplished using PDL, and the
unit test specification was generated by automated analy-
sis of the PDL. This tool also verified the PDL for
compliance with project quality standards. The cest
specifications were for unit testing based upon the
decision-co-decision fDD) path structure of the design.

The DD paths were determined from the constructs util-
ized in the PDL and were a relationship of the number of
possible branch paths between constructs. The DD paths
eventually demonstrated some highly advantageous prop-
erties (discussed subsequently in the section entitled
"Presentation of Reduced Data"}. C'nits, or modules,
were constrained to single entry, single exit, and single
function. They were documented at this stage by a
machine-readable Prologue, which contained identifica-
tion, operational-characteristic, cross-reference, data-
definition, and processing-logic information.3 Prologues
were also automatically analyzed for completeness.
Modules were subjected to Walkthroughs,6 and the re-
sultant error data, together with weekly resource ex-
penditure sheets, the module PDL, Prologue, and Test
Specifications were incorporated into individual Software
Engineering Notebooks.

Unit coding and testing was based on the design in the
PDL and Test Specifications. Structured code (in
JOVIAL)7 was derived from the PDL, and Test Proce-
dures were developed based upon the Test Specifications;
both of these items were then incorporated into the note-
books. Data interfaces were controlled by use of the
JOVIAL data-description facility, COMPOOL, which was
regulated by the Data Base Administrator. Resource
utilization and error data were collected as they were in
the previous phase; this data is presented and evaluated
later in the paper.

The system test phase was carried out for each build
by an Independent Test Team composed of both developer
and user personnel, system Test Specifications and
Procedures, in contrast to those at the module level,
were for functional testing, and were traceable back to
the requirements definition phase through the functional
specifications. Errors were recorded- on Test Team
Trouble Reports, which were included in Build Test Re-
ports.

Automated documentation tools were employed at
the system level. The JOVIAL Automated Verification
System (JAVS)3 was modified for this project, and was
used to produce program hierarchy 'calling tree), pro-
gram structure (DD paths), and cross-reference infor-
mation, as well as to support the degree of test case
coverage obtained. Intermediate JAVS outputs were
also scanned by a specially developed software tool,
which produced a Data Item Dictionary.

CFC Software Data Collection

Three general categories of data were collected on
the CFC Project: activity data, software module struc-
tural data, and software error data. The activity data
collected was man-hours expended by project personnel
at the software subsystem level. Software module struc-
tural data included counts of the total number of execut-
able source statements plus a count of the number of
DD paths from the design for each module. Software
error data included both walkthrough and execution time

36
P. Belford
CSC
2 of 20

errors. Walkthrough errors were recorded by quality
control at the design walkthrough, and execution errors
were recorded by the responsible programmers or she
Independent Test Team, depending on the level of test-
ing. Error data was collected both at the module (or
unit) level and at the system level.

The procedures for data collection were based on the
types of data and the mechanism used to collect each
type. The data types and the corresponding basic collec-
tion devices were as follows:

«. Activity data

Personnel: time accounting given at the
subsystem level

• Module structural data

Physical structure: module source code

Logical structure: module PDL and test
procedures

• Software error data

- —Module: programmer error log

System: test team trouble reports

Control oi data collection was maintained within the
development departments and monitored by the quality
control staff on a continuing basis. Organization and
delivery of the final data package was performed by the
quality control staff. The following subsections describe
in detail the forms and procedures used to collect and
summarize the three data types.

Activity Data Collection

Time data in man-hours was collected for all per-
sonnel on the project at the functional subsystem level.
This time data was collected by means of a CFC Project
Data Collection Form that was distributed weekly and
filled out along with weekly time cards by each person on
the project. The number of man-hours expended In each
subsystem for design, code, test, library maintenance,
throwaway code development, management, and quality
assurance functions performed within the subsystem was
compiled from this data.

The data was collected for each of the four builds of
the system. Within each build, data was presented for
the Application/Simulation (APS) Subsystem, the Data
Assembler (DA) Subsystem, the Data Base (DB) Subsys-
tem, and the Data Reduction and Analysis (RA) Subsystem.
These subsystems represented the major functions per-
formed by the CFC System that were programmed in
JOVIAL. The time spent in functional design and system
level testing was not included in the build man-hour re-
sults.

Software Structural Data Collection

Two types of software structural data were obtained
from the CFC Development Project. The data was ac-
quired from examination of the module source code and
PDL. The module source code data was an estimate of
the physical size of a module measured by a count of the
total number of executable source statements. The PDL
data defined the logical structure of the design of the mod-
ule, obtained by a count of the total number of DD paths
in the design. Another measure of logical structure
utilized was a count of the number of test cases used to
exercise all the DD paths identified within a module
during the design phase. The test case data was obtained
from the test procedures in the Software Engineering
Notebooks.

Software Error Collection

Software error data on the CFC Project was collected
during the design and testing phases. Errors detected in
the design phase were measured by the total number of
design errors discovered during the design walkthrough
of a given module. These error counts were collected
by the quality control staff during each walkthrough.

Errors encountered during module or unit level test-
ing were collected by the responsible programmer and
summarized for each build. System level errors were
collected by the Independent Test Taam for each unsuc-
cessful run. The failure information was derived from
an analysis of the program output. If a failure was
caused by more than one error, all errors were listed.
Errors were also recorded during system acceptance
testing. While not on a build basis, these errors pro-
vided information about problems encountered during the
integration of the floal system.

Presentation of the Data

This section presents the raw data collected on the
CFC Project. Data is presented in the three categories
described in the preceding section, and is presented for
every build in which it was available.

Activity data is shown in Tables 1 through 4.
Tables 1 through 3 show the man-hours spent per subsys-
tem in the activity categories of detailed design, code,
unit test, library maintenance, throwaway code develop-
ment, and management and technical direction by task
leaders in' the subsystem plus quality control functions
performed by subsystem personnel. Data is presented
for Builds 2, 3, and 4 of the system. Build 1 of the sys-
tem is not presented sine* it occurred at a rime prior Co
the institution of the reportng mechanism. However,
total man-hours statistics are available for Build 1.
Table 4 presents the total man-hours spent per subsystem
for each of the four builds of the system. Tables 5
through 7 show the number of executable lines of code,
the number of DD paths, and the number of test cases,

37'

P. Belford
CSC
3 of 20

TABLE 1. BUILD 2 MAN-HOURS IN REPORTED ACTIVITY CATEGORIES

CAITIOKY
Dt.ljB

:od»

T«t

-iar»ry
.".•int.
Throwway

:a<i«

3t:i«r«

TOTALS

APS
SUBSYSTEM

129:

"31

iir*

us
T!

!«»

-S9»

:A
=U3SYSTT)I

w

-32

ilu

111

;:i
;u6

:r:i

:B
SUBSYSTtS

.«
:s;

•11

122

139

IT!

::3o

>.»
Si.'BSYSTT!'

;
:
: •

: ;

: i
3

TOTALS

:s-o

1!25

::H
:-*a

!3S

595 ,

"" !
TABLE 2. BUILD 3 MAN-HOURS IN REPORTED

ACTIVITY CATEGORIES
TABLE 3. BUILD 4 MAN-HOUHS LN REPORTED

ACTIVITY CATEGORIES

1 CATtMRT

-•sipi

:«i«

T«st

-lirary
-«lnt.
T>.rov«w«y

:o<:>
:tr.ir«

: TTTALS

APS
suisYsm

;337

"IT

:2is

192

;5

313

3A
SL'BSYSTm

•T5

!31

HS

:ia

:u

.61

1527

38
SUBSIST™

378

591

- >

5 =

-:c9

:39i

** ;
3U5SYSTES

;!5T ;

m ;

:138 :

33

•_»s

•i» ;
:973

TOTALS

;:»7

:;03

-080

!1T

-13

1M1

l-iS7

CATtscmr
:..i(n

:*.

T.,t

"«ln-'T

^nr*'
:tn.r-

TOTALS

APS
SUBSYSTOt

-15

ir:

•35

-31

iO

361

:T-S

3* i :B j ?A
suasrsTEH ! suBSYSTrx ! rjasTSTSM

:<<. ; 7.3 .-.a:

136 i -33 :97

iS7 j :oi ;:3

H9 ; 1:3 i.

' ! "

:T: ! !22 :•-?

i!.7 ; ::3o :--

TOTALS

15-.3

llil

.i::

'.-'.

151

IK:

5 3 9 3

TABLE 4. MAN-HOURS EXPENDED BY SUBSYSTEM
FOR EACH BUILD

TABLE 5. EXECUTABLE LINES OF CODE PER
SUBSYSTEM PER BUILD

i i,;;-; ! Hw3SYJTI!! ' SL'BSYSTtS : 3VSSYSTSf. ' S'JSSYSTTJ! ' S'JBTrTAi
; i i t :

i ; i-jo I :3»3 . 338 1 ;

i - ' i

' i

- j

=537 j :Ml

ITT3 13B7 ! 1330

T:TAL . 135;,

T.A^LE

i 3U:L3

! ;

5996 j '399

i 1979

: :637 1

: 5615

!22l

3953

1-567 i

3393

1803U 1

6. DD PATHS PEB SUBSYSTEM PER BUILD

A?S :A

:33

1 ' 1 -
1

i]

1
i
J T7TAL

-3,

-35

= 30

:B

i.;
-03 I :;o

5-i

•-»

1
>i» 1:3J

i

-1C3

123

i::t

?A

3.3

'.•»li

T7TAL

?09

1,,=

:,i>

1:55

SUI'.D j -*PS

-

2

'

'

T3TA1

•50

:-!5

:350

1503

:i82

:A

13S7

15SS

1333

,39

•135

:»

=-:

922

:o6i

?A i| TOTAL

: j

! !

1

11!3 136!. :

-673 -333
i :

!:.7

: J3T

::,,,

-„

::-«

TABLE 7. TEST CASES PER SUBSYSTEM PER BfILD

3UIU

1

'-

3

•

AM

119

]U.

:3,

153

i7-.3 ! TSTAL)15

JA

:T=

- 135

;;7

:t

•6

--:

« T— AL

• i -

11. i :37

:s

»• j .11 •

"

-1

" i -
i35 :r-.:

•Includes management and technical direction by subsystem leader and quality assurance functions performed by sub-
system personnel.

38
P. Belford
CSC
4 of 20

respectively, for each of the four system builds. Table 3
gives the error statistics collected for Builds 2 and 3 of
the system and the total number of software errors de-
:ected during acceptance testing. Build 1 was completed
before error reporting mechanisms were in place, and
Build 4 results were not available.

TABLE 3. ERROR STATISTICS FOR THE CENTRAL
FLOW CONTROL SYSTEM

BUILD

2

3

Acceptance
Testing

DESIGN
WALKTHROUGH

Ut

63

S/A

MODULD'1

. LEVEL
TESTING

290

223

N/A

SYSTEM
LEVEL
TESTING

ia

20

21

"APS and DA Subsystems only.

Presentation of Reduced Data

The purpose of this section is to analyze the data
presented in the preceding section. This analysis at-
tempts :o provide Quantitative evaluation of the effective-
ness of the software engineering techniques utilized on

the CFC Project. Since the project has been completed
and accepted by the FAA, this analysis evaluates the
final results of the project.

The first analysis performed concerned the relation-
ship of the sizes of software entities compared :o 'the
cost of their development. The size of a software entity
was measured in terms of both the number of lines of
executable source code and the number of decision paths
(DD paths) in the design. Cost was always measured in
man-hours expended.

Module Level and Build Level were the two software
entities evaluated. At the module level. Figure 1 pre-
sents a plot of the number of man-hours expended versus
the number of lines of executable code for each of a ran-
domly selected set of 50 modules. Any conclusive trend
is not at all obvious by analysis of the curve. However,
since the true comparison of developmental costs is ia
terms of the number of lines of code produced per man-
hour expended, further evaluation was performed.

The data, therefore, was evaluated in terms of the
number of lines of code developed per man-hour (a
"relative" measure of cost) as a function of the number
of lines of code in the module (Figure 2). If a curve
could be formed from the data, :he optimal module size
would be the highest point on the curve (i. e., the module
size for which the maximum number of lines of code
would be developed in each man-hour expended).

The data presented in Figure i shows that module
sizes of between 0 and 40 lines of executable source code
never (in fact, without exception in this sample) produce
a productivity of more than one line of code produced per
aian-hour expended. However, for modules of greater

FIGURE 1. CORRELATION OF MAN-HOURS TO MODULE SIZES

39
P. Belford
CSC
5 of 20

Z.-3

Lines of
Code ?«r
Man-Hour L.i

ico
Nuaoer 3f lines o: Cede

FIGURE 2. CORRELATION OF LINES OF CODE DEVELOPED PER MAN-HOUR COMPARED TO MODULE SIZE

than 40 lines of executable source code (greater than 100
without exception), the productivity is generally greater
than one line of code produced per man-hour expended.

Although the data presented only reflects develop-
ment costs and not operational and maintenance costs,
the general theory of restricting modules to 50 lines of
executable source code or less does not appear to be cost
effective when considering developmental costs only. If
the "single entry, single exit, single function" rule is
strictly adhered to, the module size should not be utilized
as a standard. In contrast, it appears that modules of
40 lines of code or greater should be encouraged. It is
important to note that the CFC modules, regardless of
size, followed the "single entry, single exit, single func-
tion" concept of module definition.

In order to support these conclusions, a measure of
module complexity, number of DD paths in the design,
was also compared to developmental costs. The same
50 modules were utilized. This time, the relative cost.
in number of DD paths generated per man-hour was
plotted against the complexity in number of DD paths.
Figure 3 shows the results of this analysis. Again, the
more complex ie module, the lower :he relative devel-
opmental costs.

These cost analyses seem to point out that within the
•'single entry, single exit, single function" concept, the
larger the module, the lower the per-unit-of-size devel-
opmental costs.

The results of this analysis seem to indicate that
restrictions limiting module size should not be a driving
factor. Single-function modules of 100 or even 200 lines
of executable source code should be acceptable.

The relative size of a build was also analyzed. Fig-
ure 4 shows the relationship between the size of a build
in number of lines of executable source code per subsys-
tem and the number of man-hours expended against that
subsystem in a build. This plot shows an obvious cor-
relation of size to cost. With the single exception of the
DA Subsystem for Build 3, which was accomplished on
third shift (the implications of which will not be discussed
here), the cost-to-size relationship is linear. Hence,
if the single-function module concept is controlled, the
size of a build appears to have no impact on the relative
cost of producing that build.

Another analysis was performed to evaluate :he re-
lationship between actual development costs and cost esti-
mation techniques. The number of man-hours expended

40
P. Belford
CSC
6 of 20

:tumc*c 3f
?»«» ?«r
Man-Hour

X X X

10 20 30 *Q : 3 50 30 10

FIGURE 3. CORHELATION OF XUMBEB OF DD PATHS PER MAN-HOUR TO MODULE COMPLEXITY

•:u«s«r si li.-.«» :J Isca

FIGURE 4. CORHELATION OF MAN-HOURS TO BUILD SIZE

41

P. Belford
CSC
7 of 20

per line oi executable source code was compared to the
number of man-hours expended per DD path La the de-
sign and to the number of man-hours expended per test
case (see Table 9). This comparison was accomplished
using a coefficient of variation (i. e., the ratio of the
standard deviation to the mean).

TABLE 9. COSTING PARAMETER COMPARISONS

Julia

suiii

3-uJ.d

Suiii

iiiili

iuiia

J-iiia

Juii;

3;ili

toi*

3-iiid

Jui-J

:•.«!

3-411.:

APS

:B

;A

AM

:i
:A

*?s

:»

:A

?jt

*i?S

;s

:A

*A

•IS i .JS

i» i . L S

.-* l.J«

.*« *.:s

.:s J.-.2

.iJ i .Tf

-U i .-T

. --3 ; . ri

.36 ••**

• n •.::

. :i " s.:9

.31 J.-7

.iS 11.21

-»3 *.ti

2.-*

.i.H

o.iJ

I.JO

7.11

o.;i
a.rr

-.»

!.)•

3.»

s.--*

1.J»

:.;i~

9. i*

The statistical correlation was not diverse enough
to support differentiation between DD paths in the design
and lines of code in terms of total cost estimation tech-
niques. Number of man-hours per test case was shown
not to be a viable cost estimation technique due to its
high coefficient of variation (COV). Therefore, a sepa-
rate analysis was performed to determine a better cost-
ing parameter that could be utilized at each of the detail
design, coding, and testing phases of development.
Since the'known quantity at the completion of each phase
is DD paths in the detail design phase, lines of code in
:he coding phase, and test cases in the testing phase,
this information could be utilized to refine original cost
estimates as a project progresses. The data presented
on costing provides enough information to support de-
velopment of initial cost estimation algorithms based on
actual development products (e.j., DD paths, lines of
code, and test cases).

An analysis was performed on these . ist estimations
utilizing the data from the APS Subsystem for all four
builds. Three cost estimation algorithms were developed,
one for each development phase. The basis for these al-
gorithms is the data previously presented in Table 9.
The "Lines of Code" algorithm utilizes 1. 34 times the
number of lines of executable source code to yield the
estimated number of man-hours. The "DD-Path" algo-
rithm utilizes 5. 34-times the number of DD paths in the
design to yield tie estimated number of man-hours. The
"Test Case" algorithm utilizes 14.76 times the number
of test cases to be performed. Ail three algorithms were
then applied to the other subsystems. These results are
presented in Table 10.

The low "average percentage deviation" of the DD-
path algorithm shows that the number of DD paths pro-
vides an accurate prediction of the total man-hours
required. This technique provides the added advantage
of supporting periodic updating of the estimation as the
actual number of DD paths is finalized. !f PDL is used,
this variable is known early (i. e., at the completion of
the design phase).

The effectiveness of the software engineering tech-
niques utilized was also analyzed. The true effectiveness
of the software engineering techniques can best be meas-
ured by the reliability and maintainability of the product.
Although data is not yet available to support definitive
reliability and maintainability measures of the CFC Sys-
tem, error rate data was available within CFC and was
used to estimate the effectiveness of the software engi-
neering techniques employed on the project.

.In order to evaluate the CFC error rate with some
defined industry averages, the Rome Air Development
Center (RADC) Software Reliability Study9 was utilized.
This report presents the error rate of two JOVIAL proj-
ects at system level testing. This error rate worked out
to be about 1 error in every 35 lines of code. The CFC
error rate, calculated from Tables 5 and 3, shows
1 error in every 28 lines of code, detected at the module
level. At the system level testing of CFC, an order of
magnitude fewer number of errors (i.e., 1 error for
every 382 lines of code) than at the module level were
found. During final acceptance level testing, a 3-month
user/customer-conducted testing phase, still fewer
errors were found. In the 23,.742 lines of executable
code discussed in this paper, only 21 software errors
were detected. This is an error rate of 1 error in every
1,131 lines of code.

The error rate implies two conclusions about the
development approach. First, the software engineering
techniques utilized were very effective. The C?C error
detection rate comparable to that reported in the RADC
study was noticed an entire development phase earlier.
More errors were found earlier, presumably leaving
fewer errors in the final system. This should result in
a significant cost savings, since the cost to correct on
error increases the longer it remains in the code. Sec-
ond, the testing approach proved to be quite effective.
The quantification of module level testing requirements,
specifying that all DD paths in the design must be exer-
cised at the module level, provided significant advantages
over the traditional testing approach carried on by the
programmers. This concept proved to exercise 93 per-
cent of all the decision paths in the code. Additionally,
within one subsystem where these unique module level
test specifications were rigidly applied, the acceptance
testing error rate was only 1 error detected in every
I, 371 lines of executable code; whereas within a subsys-
tem where module level test specifications were loosely
applied, the acceptance srror rate vas I arror detected
in every 733 lines of code. This roughly implies an
overall effectiveness increase of over 100 percent

42.

P. Belford
CSC
8 of 20

per line of executable source code was compared to the
number of man-hours expended per DD path in the de-
sign and :o the number of man-hours expended per test
case (see Table 9). This comparison was accomplished
using a coefficient of variation (i.e., the ratio of the
standard deviation to the mean).

TABLE 9. COSTING PAUAMETEB COMPARISONS

4.JS

4. IS

l.M

2.--*

.1.13

3.!)

1.10

•Ml

3.1:

«.i?

The statistical correlation was not diverse enough
to support differentiation between DD paths in the design
and lines of code in terms of total cost estimation tech-
niques. Number of man-hours per test case was shown
not to be a viable cost estimation technique due to its
high coefficient of variation (COV). Therefore, a sepa-
rate analysis was performed to determine a better cost-
ing parameter 'h«* could be utilized at each of the detail
design, coding, and testing phases of development.
Since the known quantity at the completion of each phase
is DD paths in the detail design phase, lines of code in
the coding phase, and test cases in the testing phase,
this information could be utilized to refine original cost
estimates as a project progresses. The data presented
on costing provides enough information to support de-
velopment of initial cost estimation algorithms based on
actual development products (e.g., DD paths, lines of
code, and test cases).

An analysis was performed on these cost estimations
utilizing the data from the APS Subsystem for all four
builds. Three cost estimation algorithms were developed,
one for each development phase. The basis for these al-
gorithms is the data previously presented in Table 9.
The "Lines of Code" algorithm utilizes 1. 34 times the
number of lines of executable source code to yield '.he
estimated number of man-hours. The ''DD-Path" algo-
rithm utilizes 5.34 times :he number of DD paths 12 r-he
design to yield the estimated number of man-hours. The
"Test Cose" algorithm utilizes 14.76 cimes the number
of test cases to be performed. All three algorithms were
then applied to the other subsystems.. These results are
oresented in Table 10.

The low "average percentage deviation" of the DD-
path algorithm shows that the number of DD paths pro-
vides an accurate prediction of the total man-hours
required. This technique provides the added advantage
of supporting periodic updating of the estimation as the
actual number of DD paths is finalized. Lf PDL Is used,
this variable is known early (i.e., at the completion of
the design phase).

The effectiveness of the software engineering tech-
niques utilized was also analyzed. The true effectiveness
of the software engineering techniques can best be meas-
ured by the reliability and maintainability of the product.
Although data is not yet available to support definitive
reliability and.maintainability measures of the CFC Sys-
tem, error rate data was available within CFC and was
used to estimate the effectiveness of the software engi-
neering techniques employed on the project.

In order to evaluate the CFC error rate with some
defined industry averages, the Rome Air Development
Center (RADC) Software Reliability Study9 was utilized.
This report presents the error rate of two JOVIAL proj-
jcts.at system level testing. This error rate worked out
to be about 1 error in every 35 lines of code. The CFC
error rate, calculated from Tables 5 and 3, shows
1 error in every 23 lines of code, detected at the module
level. At the system level testing of CFC, an order of
magnitude fewer number of errors (i.e., 1 error for
every 332 lines of code) than at the module level were
found. During final acceptance level testing, a 3-month
user/customer-conducted testing phase, still fewer
errors were found. In the 23,742 lines of executable
code discussed in this paper, only 21 software errors
were detected. This is an error rate of 1 error in every
1,131 lines of code.

The error rate implies two conclusions about the
development approach. First, the software engineering
techniques utilized were very effective. The CFC error
detection rate comparable to that reported in the RADC
study was noticed an entire development phase earlier.
More errors were found earlier, presumably leaving
fewer errors in the final system. This should result in
a significant cost savings, since the cost :o correct an
error increases :he longer it remains in the code. Sec-
ond, the testing approach proved to be quite effective.
The quantification of module level testing requirements,
specifying that all DD paths in the design must be exer-
cised at the module level, provided significant advantages
over the traditional testing approach carried on by the
programmers. This concept proved to exercise 93 per-
cent of all the decision paths in the code. Additionally,
within one subsystem where these unique module level
test specifications were rigidly applied, the acceptance
testing error rate was only I error detected in every
1,571 lines of executable code; whereas within a subsys-
tem where module level test specifications were loosely
applied, the acceptance error rate was 1 error aatected
in every T33 lines of code. This roughly implies an
'overall effectiveness increase of over 100 percent

43

P. Belford
CSC
9 of 20

TABLE 10. COST ESTIMATION COMPARISONS

"Lines of Cede"
Algorithm

Actual Estimated Deviation
Man-Hours Man-Kours (%)

Build 1 DB 398 99U 1.0.59

Build 1 ;A 29U3 3601 25.56

Build 2 23 2030 1696 16. *S

3uild 2 CA 2729 30U7 11.65

3uild 3 DB 2881 3792 31.52

Build 3 3A 2537 S397 112.73

Build 3 SA 3973 553U UQ.37

2uild - -3 2390 2122 ' l . = 3

Build •*. 3A 1337 1176 37.53

Build - *A 2637 ' 2510 <*.82 •

Average 29. *2
Deviation

attributable to using these module level test specifica- 3.
tions.

Summary
4.

In conclusion, the authors feel that a significant base-
line has been established in the quantification of software
engineering techniques. The success of the CFC project, 5.
together with the supporting data that was collected, pro-
vides a foundation upon which to build successor systems.
The key factors to be considered in setting up -these fu-
ture system programs is to understand the development 5.
environment, to collect data during the development ef-
fort ~o support ihe upgrading of projections, and to sup-
port the periodic evaluation of the data to provide insight
into the product. This should provide sufficient visibil- 7.
ity to keep a project out of trouble, while at the same
time supporting evolution of more effective project plans.

- - - . . . 3. .
References

1. Boehm, B. 'V. , et al. , Characteristics of Software
Quality, TRW Systems Group, TRW-SS-73-09,
December 1973. 9.

2. McCaU, J. A. , et al. , Factors in Software Qualitv,

"3D Path" "Test Case"
Al^orithra .Uiori-:.-.a

isciaated Deviation Jitiaatec ^eviaticc
Man-Hours (%) :'.an-r:cv:rs (^)

353 5.31 1122 ' iu-.s".

, 3095 3.36 3935 a.0.17

1H60 23.08 1077 >*6.35

235H 13.51* 1993 26 .97

2933 1.93 2363 .52 -

3t«3 25. *6 1973 25.03

5237 S6.79 "38U 10.21

1386 3.76 2052 1.32

399 52.36 38" T3.55

2003 2u .au 1299 50.7'J.

22.51 30.32

Central Flow Control Computer Program Specifica-
tions, Final Report (5 vols.), Federal Aviation
Administration, FAA-RD-78-1S7, September 1976.

CODASTL Data Base Task Crouo Reoort, Conference
on Data Systems Languages, April 1971.

Central Flow Control Quality. Assurance Plan, Final
Report, Computer Sciences Corporation. CSC/SD-
78/6060, April 1978.

Fagan, M. E. , ''Design and Code Inspections to
Reduce Errors in Program Development," IBM
Svsteins Journal, Vol. 15, No. 2, 1975.

NAS Operational Supijort Svstern, IBM 9020 JOVIAL
Language Manual, NASP-9238-02, May 1975.

Gannon, C. , et al. , JAVS - -JOVIAL Automated
Verification Svstem, JAVS Technical Report
(3 vols.). General Research Corporation, CR-1-
722/1, June 1978.

Software Reliabilitv Studv, Rome Air Development
Center, RADC-TH-74-2SO, October 1974.

Final Technical P.eport 13 vois.;. Some Air De-
velopment Center, HADC-TR-77-369, N'ovember
1977.

44

p. Bel ford
CSC
10 of 20

zocc
r-

zoccU4QU
J

u.Z

OQ
.

CCOoCOLUOo</)ccU
J

Q
.

oodocU
J

45

P
. B

e
lfo

rd
C

S
C

11 of
2O

O
LLJ

2
0

.
O

ff
O

D<
\
\

H
Z3U

.
O

ZOO5LU

co

<

-
J

2 a
S y
O

EC

K

<

£

5

 §
O

7

7
Z

«
- a

s,
*• o

sr
^

—
 -^

2 h <
6
6

O

tf)

Z

O
 L

U

2

S

L
U

©

®

®

46

P. B
elford

C
SC

12 of 20

U
J

(0o
-J

O
.

O
ff

ffDH
O

.

§§O
S

>
tt

S
iu

O
U

J
-J

Z
S

o
<

z

K
W

H
-tu

25IU<
o

oCO

ooU
J

«
j

Oo

o

U
J

to2U
J
zU

J

2<Ja.
Oo

47
P

.
B

el ford
C

S
C

13 of 20

s

£

w

i§U
J

U
ce

oc

U
l

12

O

eg
9

o

£

§

o
5

I

§

«

5

fc

H
N

<

W

E

55
S

S

1

3 S
 ! I

§5 IB
CD

O

I-

P. B
elford

4
8

C

S
C

48
14

 of 20

oiuOiuOO<<Q
c

s

o

LUZ<zLU5zHZ3OOL
U

u
j

HJ
g

U
I
lM

^B
 •

l&o
>

oog
S

D
Q

.C
0

1

^

RUCTURE DAI

0
)LU_J

35

U
J

§-O
JS

LU

A

o
 =

£
?

3
<

o^f
M

Oft_
U

J
1^

^a0
3

o
o

5
°5

•
 •

 K
B

L STRUCTURE
STRUCTURE:
ATIONS

<
-J

O
a

g
 =

w
s

o
z

o
£

O
..JC

/)

1
I

ERROR DATA

LUoc<?Q^

(/)

iiJLUcecc
O

 L
U

ff D
D

U
3

UJ CC

: PROGRAMMI
TEST TEAM T

2sisO
f j^»
^F9

K
 C

O

1
1

U
J

a

49
P

. B
elford

C
SC

15 of 20

U
l

C
C

Q

U
.

C
o

O

O
g

2 ill
W

Q

2
£

-
^

Z
W

£

*
i-

*
t

0
—

-^

£

o
 ,

H
 ^

o
2

3

H
it

Q
^
d

2

^
H

2
!8

 S
ss I i g

£
|s<

 !i|
5

 S
i

<
III ?

ls
 | s

i
N

-
iu

u
z

Z
«

s
Z

,
D

Q
^w

g
*
M

 R
IM

O

M

-*

v
fi

!••

_
J

•f
k
d

S
o

858j
j' g

o
w

^

H

*

fM

 U
l

^

™
Q

~
>

d

2
»

u
j

<

I

 -C
C

<
(/)U

J

-.
«

£
E

^
.U

J
Q

H
m

o

3
o

£

S

2
Q
g

<
D

O

S
Z

w

>

<
O

c
Q

W
O

«

<
C

C

O

2
U

u
i

P
. B

elford

5
0

C

S
C

16 of 2O

U
J

QO0COU
J

tcU
l

CD

uiN55O5a

U
J

U
i

N
>

35 *-o
O

LU
Z

 u-
== u.
H

U
J

«
ltll

o
o

g

I0cn

I9

U
i

QOO09U
l

eeU
i

CO

atNU
J

51
P

. B
elford

C
SC

17 of 20

i
^

L
U

2
£

i

<
2

g
B

s

*
<

s
LU

5

>
5

=
5

"
U

l
S

«

S

#Jfe
^
"

^
^

w
y

>

o
3

3

O

C

2

o
2

ffl
S

»-

2
H

-
J

H
Z

D

O

S

g

O

H
 <

<

o

" S

a

0

<
^

o

"•
S

^

5
1

Q
§

H

§
2

o
"

5
f
c

o

i
|

5
s

[
f
?

S

Ss
i

|B

°5

*
o

82
^

3
6-2

22

^
p

s|
M

 si
11 i

CO

u
ig

"g

R

2
o

2

S

s
!l

&
 !l

I
•

S
" 1

!^E
<

"-"i
^

<
w

g

o
<

«

£
§

g

z

o
fleS

UJO

.H
>

2
iu

2
w

3
 *

•
*

"
S

r
t
^

^

"
J

n

(
f
l
Z

ST Q

c
/J

=

a
U

J

C
D

 (A

(
/
)
*
•
'

S
i

C
°
U

J

|
-

-
iQ

h
-

3
H

|
-
<

3

<
Z

H

-i
g
j

j
c
e

H
 2

±
<

D

>

»

J
?
3

3

u
i

5

•"
<

3

8

8
8

8

2
2

2

?

O

§

S
 O

fiC

<

ff

flC

O

P
.

B
elford

C
S

C

18 of 20

TESTING METHODOLOGY

• DISCIPLINED APPROACH

• TEST SPECS GENERATED FROM PDL

• TESTS EXERCISE ALL DD PATHS IN DESIGN

• VERIFIED AT DESIGN WALKTHROUGHS

RESULTS

• 1 ERROR PER 28 LINES OF CODE AT MODULE LEVEL

• 1 ERROR 382 LINES OF CODE AT SYSTEM LEVEL

• 1 ERROR PER 1131 LINES OF CODE AT ACCEPTANCE
LEVEL

NOTE: SUBSYSTEM RIGIDLY FOLLOWING PDL/TESTING
STANDARDS
1 ERROR PER 1871 LINES OF CODE DETECTION
AND CORRECTION TIME AVERAGED 8 PERSON
HOURS.

SUBSYSTEM LOOSELY FOLLOWING DL/TESTING
STANDARDS
1 ERROR PER 733 LINES OF CODE DETECTION AND
CORRECTION TIME AVERAGED 40 PERSON
HOURS. UL+,.

P. Belford
CSC
19 of 20

SUMMARY

• BUILD SIZE HAS LITTLE COST IMPACT

« OVER RESTRICTING MODULE SIZE IS
NOT COST EFFECTIVE IN THE INITIAL
DEVELOPMENT

• RIGID ADHERENCE TO THE
METHODOLOGY CAN REDUCE COST

0 THE METHODOLOGY DID NOT
SIGNIFICANTLY REDUCE THE NUMBER
OF ERRORS BUT DID ALLOW EARLY
DETECTION OF MOST ERRORS

• THE NUMBER OF DD PATHS IS DIRECT-
LY RELATED TO LINES OF EXECUTABLE
CODE AND CAN BE USED TO REFINE
COST ESTIMATES AFTER THE DESIGN
STAGE BEL-B-78

P. Belford
CSC

20 of 20

VALIDATION TECHNOLOGY

JOINT NASA/FAA PROGRAM
*

RTOP 512-54-01

M. Perie
FAA

55 I o f l 3

RELIABILITY REQUIREMENTS FOR TYPICAL FLIGHT CONTROL

FUNCTION 'PROBABILITY THAT A EXPOSURE TIME o REQUIRED SYSTEM
FAILURE OF FUNCTION (FRACTION OF
CAUSES CATASTROPHE HOUR)

PROBABILITY OF
FUNCTIONAL
FAILURE PER HOUR

CRUISE AUTOPILOT

10-6
.10

3°

RELAXED STATIC STABILITY (RSS)
COOPER-HARPER RATING 5*
WITHOUT ACTIVE SYSTEM

10'! 10"

10,-2* 10,-2 A 10,-5'

GUST LOAD ALLEVIATION

AUTOLAND

B^^ f̂l̂ ^^^
I

3x10-2* 3x10-2A 10-6°

RELAXED STATIC STABILITY (RSS)
COOPER-HARPER RATING 9"*
WITHOUT ACTIVE SYSTEM

i n10

FLY-3Y-WIRE

1* 1A

10,-7c

10-9°

* PILOT RATING OF UNACCEPTABLE-
MARGINALLY CONTROLLABLE

** PILOT RATING OF MODERATELY
OBJECTIONABLE CONTROLLABILITY

56

M. Perie
FAA
2 of 13

57
M. Perie
FAA
3 of 13

oh-<C
J

00D

1r~U.<CCocc.<1
^̂cjccUJsoozoDLU<ccoQ.ccoozozLUCOLUCC<C
Oou.QXUJ—
1
a.5Oo

UJcjzUJCCa.XUJ0Z<ITERIA

cco0
8
>C
Oou.0u.O*O<_1

^QUANTIFIED

4̂DQ2<LU
I
 '

•̂CQ<LUa.LUCCZDU-f
OCCou.LU1-DCCCD>_1C
O
CoLUCC<C
OQOX1—LUSo3>
'

C
Oa1 1UKat_zLUCOLUCCa.

0LU1-<_l>LU>-_1

LUh-<DaLUQ<ZLULUCO0LU<XC
O
L
U
^̂ _
J

azXoL
Uh—
— i_

>
w

o
3
O

>
 0

C
O

Q

PQ
<

g
o

w
 ̂
z
 z

<
3
C

>
f
 ̂
V
J

III

9
^
<
c

CS

ccoazccDaLUCCoCOCOLUU
J

ccCCou.

C
O
u

<

^
§ =
u z
it

°
t

£
g

<
Q

-i

o

IC
O

ccLUQ<LU

C

2
<

z

CC
X

o

o
CC

LUcc0
0

C
OoC3zo<z

H

C
C

.
cc

o
O

Q

-
a.

a.
'—

r

—

C
O

(N
CO

CO

58
M

. Perie
FA

A
4 of 13

o_
l

ozoU
J

h->>\-

OO_JOOOXI-LU
LUa

LUOC
C

ODCC00

COLUCOCOLUzLU

OzLUCOZOoLLOO<

>ooLUt-<<a
C

O
Oo

O

?
n

<

2
-I

I

L
U

.
C

/3
LU
C

C
CL

LUo

C
OIozLUCCCO

LUCOZLUILUCCQ
.

Oo

XLULUCOzLUHXLU

59
M

. P
erie

F
A

A
5 of

13

TWARE DEVELOPMENT PROCESS

LLOCOUJIHLLOHCC<UJI\-u_CDLU1-<COUJIH

HAVE CONCENTRATED THEIR EFFORTS IN

coLUCOoXXoCC<LUCOLUCC

LUCC<1—LL0COQZ
.

-
-<
COLUJ-

coCCLU5

RIFICATION TECHNIQUES.

LU>QZ<1—ZLUS0.OLU>LUOQ'

LUUING ADVANI

KZLU2LU-JQ.

6h-LUQ<ẐUJLUC
O

UJ<X
-R EFFORTS

OZ5^>
1

-y

C
O
UJC
O
<o_l<0HOCCQ.O
™̂

C
OUJ0ZXULU!-•
DLUOZ<>o<LU
X1->--JnQ.<

) FINANCIAL IMPACT OF THE TECHNIQUES Ol

l_J
z_l<ozXoLUh-L
UX1-f/\

wL
U
C
O
C
OefITATIVELY ;

1-z<Do

OCESS

crQ.zoH<OLLffLLU
J>K—ZUJQ
.
O_l

UJ>LUOLUXH-

LUo<LLCCLU(-ZCCLUCODULJ
x~1-LU
ZLLLUCC

.OGY GAP BETWEEN THE SOFTWARE HOUSES

_iOXoLU1-|_ZLUC
O
LUCCQ.LUXHLLOE CREATION

Xt-.
 .

CO1-

AL LACK OF ENTHUSIASM WHICH AIRFRAME

0\
*

LUIh-QZ<COCCLUCOD_J<K2LUJ-OQ.LUXHOZ<

RDS THE NEW TECHNOLOGY.

<§0<_iQ.COQC
O
L
UZ<Q.sooD AVIONICS

Z<

D
 £

COLUCC

60
M

. P
erie

F
A

A
6 of 13

OBJECTIVES

QUANTITATIVE ASSESSMENT OF THE TECHNICAL CAPABILITIES
OF ADVANCED SOFTWARE VERIFICATION & DEVELOPMENT
TECHNIQUES

QUANTITATIVE ASSESSMENT OF THE COST OF ADVANCED
SOFTWARE VERIFICATION & DEVELOPMENT TECHNIQUES

DEVELOP AN OPTIMUM CONFIGURATION FOR THE DEVELOPMENT
AND VERIFICATION OF CRITICAL DFCS SOFTWARE

M. Perie
FAA
7 of. 13

LU>CCDCOU
J
-I00Occa.U

J
cc

COLUCOCOCOozg>aQoQLUH:E_i>LU>CCCOLUCCoCOHX

COoLLDZH-ZLUCOLUCCLUCOo_JLUIj

COO5B\N ERRORS

LLOOZLUDaUJccULQZLUa.1—LUTI—

UJXLLELULUor0KQzCOQ;occccLULUX'
1-1-zLU5DooQQZ<I—"aLUccccO0-
oLU1-
LUQo£COo s
U
 L
U

LU

CO

I
 >

(-

CO

QLUOO
2̂
cc1-zLUCCLUCOCCoccccLULUXLUWHERMT PROCESS

1 1 1
vu^ Q
_
ŵoLU>LUQLUX̂_LLOLUCOrfXa.LUXH

QUJCCaUJccCOLUOESOURD HUMAN R

•£_

UJ*
ccgQCCX
^

LUCC1-LLOCOLUXr-

zo

FICATI

ccLU>LUa.<oCOUJOH*LUf̂;
_l

COoCOOccccLULUX±—

^
 u

>
O

 co
u
. <

ccLU

O
Q

. K

62
M

. P
erie

FA
A

8 of 13

U
J

X

GO_
l

Oo<occU
J

U
J

ccOCOQLUKOf-D

2LUCO

COooQ"U
J

mCOLU>•oco<ocoCD<U
J
IQLUQLULUCOLUCD§
^

C
O

<

§°oc oc
oc O
UJ

CC

*
£

cc
m

LL
C

C
O

 D
CO

CO

oLUI-U
J

oLUICOCOU
J

COCOo!-U
J

oc<g-u.oCO

oU
l

QLUU
l

COU
l

XoQ

Q

.

Q
.

C
C

U
l

C
C

.
CO

LU

-I X
-I O

ooQ

t

LU

_J

&«-
LU

<

—

?;
LU

<

C
O

C

J

CO^SllCO

E >
o <
C

J
h
-

VABL
QUAN

E
BE

Xo<

2

IiS
d

z
s

g =2
 O

QLUC
J

2<X

OLUK^
j

OO1-

LU

<

C
D

U

J

_
l

L
L
.

-J O
5
 to

ooU
J

X

LU

O
CO

L7

_
l

L
U

I
I

ooXLU
0

<gCKAGE
ON OF

D
N

E
B

nLU

U
.

-
1 O

C
D

W

—

co

Q
.

<C
J

U
l

Q
 D

o
 LU

 a
o

 w
 =

iu
 o

 o
X

cc

 U
J

l-
a
. H

OQOXU
J

C
O

III w

|Scc
uj

Q
-

CC
U

J
Q

.

X
^

i2co cc
cc <
o %
oc S
U

J
O

I- Q
LU

<

S
o

£
go

 -J
LU

LU

C
C

>

^

K

sHs'|
U

J
<

I- D
U

J
QLU

O
 co

H
 L

U
C

O

T

O

^

CJX

=

i- S

63
M

. Perie
FA

A
9 of 13

LU_
J

o>o111Q
.

O_
J

U
J
>LUQLLI
cc£LU±1
-

64
M

. Perie
FA

A
10 of 13

LU_
l

O>OI-2U
J

o.O-jU
J
>U

J
QU

J
X03U

J
03Ia.>_

i
CCU

J

U
J
I

XooOCa.Q
-

_•
<

 2LU
Q

 (-
U

J
C

O
o

 >
z to

liU
J

C
C

±
 C

O
"̂

L
U

a
 a

COCOX
 uj

i en

O
 U

J

C
C

T

-

S
i

U
J

_

IU
J

XCOU
J

COXa.

—

UJLUXaU
J

oQOOCI-U
J

OCC
O

CCoOCCCLULU

oU
J

CCCCouC
O
ooC

O

oLUXuLULUQgaLLLLCOO

oLUOZoLUZ03U
J
I

S
 o

Q
U

J

&<
 U

J

LU

LL.
C

C

U
J

|
g

!T
 co

Z
 co

LU

U
J

iJ
 O

CC
o

LU

nr

<
 L

U

O

^

isC3 UJ

^
u

!
<

 Q

LUXI-LUCCC
O

ocOOCOCLULUCOLUX

65
M

. Perie
FA

A
11 of

13

KEY SOFTWARE DEVELOPMENT ELEMENTS

• FORMAL SPECIFICATIONS AND REQUIREMENTS LANGUAGES

• GRAPHIC TECHNIQUES FOR SYSTEM DESCRIPTIONS

• ADVANCED DEVELOPMENT ENVIRONMENT

M. Perie
66 FAA

12 of 13

U
J

inWeno8OCO8r-OCMO

occ0
.

o00C
)

enO

UJ}-INTEGRA

*
/
h

^

m

4

UJ ̂

CCLU>IjLUD

Zg0̂

W

cfl
O

UJ
CC

>

o.

z(-ccocua.i

Q- QDELIVE!
C.O. A C,

Ho-<D<aT
,
O-J

2LU1-<D_J>UJ*£<O<&UJHLU_Ja.«rÔo
LULU

a.O_jU
J
>U

J
Q

LU_
J

0
3

OCCa.8

QLUO
T

Ou
.

OCC

L
U_lQa.O_
i

LU>LUO

O

67

M
. Perie

FA
A

!3 of 13

DESIGNING A SOFTWARE DATA COMPENDIUM

Jon Martens
L. Duvall

IIT Research Institute
Box 1355, Branch PO

Rome, NY 13440

Many of the engineering disciplines have organized technical data into handbooks or data com-
pendiums. These reference works are used by engineers for a large variety of engineering tasks
throughout an engineered product's entire life cycle. Electronic engineers, for example, are able
to use compendiums of failure data in both the design and maintenance of electronic components,
circuits, and systems. Unfortunately, there is a distinct lack of such engineering aids for use by
members of the software engineering community.

As part of its role as a software engineering information analysis center, the Data and Analysis
Center for Software is currently designing a software engineering data compendium. Hopefully,
this compendium will serve as a start in filling in some of the gaps that exist in software engineer-
ing data.

The paper will highlight some of the more critical areas that are considered during the design of
an engineering reference guide such as a data compendium. These areas include:

• Identifying potential subject areas for the compendium.

• Identifying and evaluating potential data sources.

• Identifying key data elements and determining the-most- effective- methods of-data
organization and presentation for use by software engineers.

• Summarizing the data at a level that minimizes volume while optimizing information
value.

• Using automated tools to effectively and efficiently manage, organize, and report the
data.

L. Duvall
I1TRI
1 of 8

DESIGNING A SOFTWARE DATA COMPENDIUM

FOURTH SOFTWARE ENGINEERING WORKSHOP

NOVEMBER 19, 1979

JON MARTENS

LORRAINE DUVALL

I IT RESEARCH INSTITUTE

L. Duvall
11TR1

2 of 8

DATA & ANALYSIS CENTER FOR SOFTWARE

a.

DATA/DOCUMENTS

• USER COMMUNICATION

UJ
o
o
o:a.

t DETERMINE DATA REQUIREMENTS

f MAINTAIN COMPUTER DATA BASE

f ESTABLISH & MAINTAIN TECH INFO
BASE

f PERFORM ENGINEERING & DATA
ANALYSIS

I
• COMPUTER DATA BASE

• NEWSLETTERS

0 TECHNICAL REPORTS

• CONSULTING SERVICES

• INQUIRY SERVICES

70
L. Duvall
1ITR1
3 of 8

DESIGNING A S/W DATA COMPENDIUM

t ENGINEERING DISCIPLINES USUALLY HAVE HANDBOOKS

• EXAMPLE:

ELECTRONIC ENGINEERS - COMPONENT FAILURE HANDBOOKS

• SOFTWARE ENGINEERS DO NOT HAVE HANDBOOKS OR

DATA COMPENDIUMS

• AS AN IAC, DACS IS DESIGNING A SOFTWARE ENGINEERING

DATA COMPENDIUM

• GOAL:

TO SERVE AS A START FOR A SOFTWARE ENGINEERING

HANDBOOK

L. Duvall
I1TRI
4 of 8

CRITICAL AREAS IN DATA COMPENDIUM DESIGN

• IDENTIFYING SUBJECT AREAS

« IDENTIFYING AND EVALUATING DATA SOURCES

• IDENTIFYING KEY DATA ELEMENTS AND METHODS

OF ORGANIZATION

• SUMMARIZING THE DATA AT AN OPTIMUM LEVEL

• USING AUTOMATED TOOLS

IDENTIFYING POTENTIAL SUBJECT AREAS

• POSSIBLE SUBJECT AREAS

- FAILURE/TEST DATA

- COST/PRODUCTIVITY DATA

- COMPONENT DATA

- PROJECT/MANAGEMENT DATA

L. Duvall
UTRI
5 of 8

IDENTIFYING & EVALUATING POTENTIAL DATA SOURCES

• POTENTIAL SOURCES
- BSDS (6SPR/SMN RELATED DATASETS)
- RADC PRODUCTIVITY DATABASE (PRODUCTIVITY)
- NASA SEL DATABASE (PRODUCTIVITY, COMPONENT DATA,

PROJECT DATA, SPR/SMN, TEST RESULTS)
- FAA/CSC DATABASE (PRODUCTIVITY, SPR/SMN)

• EVALUATION CRITERIA

- AVAILABILITY
- COMPLETENESS
- APPLICABILITY
- CONSISTENCY
- MEDIA (MACHINE READABLE)

L. Duvall
7-> IITR1
'° ' 6 of 8

IDENTIFYING KEY DATA ELEMENTS & METHODS OF ORGANIZATION

• KEY DATA ELEMENTS DERIVED FROM SUBJECT AREAS

SUBJECT AREA

DATA ELEMENTS

• ORGANIZATION DEPENDENT ON SUBJECT & SUMMARIZATION

LEVELS

SUMMARIZING DATA AT OPTIMUM LEVEL
•

• DATABASE "DUMPS" RESULT IN INFORMATION OVERLOAD

• HIGH SUMMARIZATION LEVELS RESULT IN INFORMATION LOSS

• BALANCE BETWEEN INFORMATION OVERLOAD £ LOSS MUST BE BALANCED

USING AUTOMATED TOOLS

• DATABASE MANAGEMENT SYSTEMS - MDQS

• STATISTICAL PACKAGES - SPSS

• TEXT PROCESSING TOOLS - RUNOFF

L. Duvall
IITRI

74 7 of 8

OO

C
O

ce:

0
£

L
U

U
J

C
J3

§C
L
.

o
:

U
J

o

<J3
<
C

cc:

C
O

LUO

a<c

CO

L
U

Q
-

>
-

h
-

1—•z.
L

U•z.
0a.•Si
oo

O
5

C•i—</l
W

>
Ouos_Q
.

a>c•̂i.-u0
0

o^
^
coo

o,-r-
 O

fl
'<

4
.

•t^ ^O
•*J

C

<u
=

••- e
U

0

oo o

ucrt3c^
•r™
L

U

o
Sen0
1

01C•t—to3ca

4->(Oo•r~
f
^a
.o
.

^^(U(T3
JD03O3
O

75

L
. D

uvall
IIT

R
I

8 of 8

SOFTWARE V & V TOOLS - AN ASSESSMENT PROGRAM

Dr. Pio V. de Feo
NASA Ames Research Center

Moffett Field, CA 94035

ABSTRACT

Significant progress has been made in recent years in the area of software verification tools. How-
ever, their utilization in the verification of Digital Avionics Systems has been very limited. The
primary reason for this is the lack of data proving the cost effectiveness of these tools.

NASA has started a program to fully and quantitatively assess the impact of including advanced
software verification and validation (V & V) tools in the verification of Digital Flight Control
Systems (DFCS) software for commercial applications; the technical capabilities as well as the
financial implications of these tools will be analyzed. An outline of the program and of its pri-
mary motivators is presented.

BACKGROUND

A significant shift from analog to Digital Flight Controls is occurring in recent civil aircraft de-
velopments due to improvements in life cycle cost and the ability to perform complex functions.
These systems have great potential for improving aircraft performance and cost of operation; how-
ever, the reliability requirements can be very high for systems which perform critical functions such
as low visibility landings, and relaxed static stability, etc. The reliability requirements are estab-
lished by the ceritification agencies based upon:

1. The probability that the loss of the system will induce a catastrophe (loss of life);

2. The exposure time of the system.

As an example, the reliability required for critical autoland systems, which have an exposure time
of less than one (1) minute per flight, is significantly less than the reliability requirements for flight
critical systems, like advanced relaxed static stability, which is 10~9 failures/hour. These reliability
requirements are satisfied by configuring the hardware in redundant configurations; however, al-
though not explicitly stated, the software is assumed to be free of errors and is handled as a com-
ponent with a zero failure rate; as a result, the software in most redundant configurations is the
primary source of single point failures. The verification of the software of flight critical DFCS is
therefore an extremely challenging task; the challenges are further increased by the need to keep
the verification cost within reasonable limits.

The present V & V technology for DFCS is primarily based upon extensively exercising the sys-
tems in closed-loop, real-time simulations where the actual operational environment is simulated
to a degree of fidelity which reflects the objectives of the test. The technique is very comprehensive;
in fact, it is capable of detecting any type of errors, from specification errors to coding errors. The
avionics and airframe companies have significant experience in the use of this technique and prac-
tically every digital system which has been flown was verified primarily using this technique; how-
ever, the technique is not perfect and errors which were undetected during the verification were

P. deFeo
NASA/AMES

76 I o f 4

later found during the operation of those systems. The technique cannot guarantee consistent re-
sults; and, actually, the quality of the test is in large part dependent on the intelligence and dedi-
cation of the analysts who performed the tests. The actual test coverage is not quantifiable; and,
in fact, much time can be spent in testing over and over again the same programs, routines, or
logic paths while others have never been executed. Finally, the technique is expensive; sophisticated
iron-bird simulations are costly to develop and operate and their use should be limited to very
specific and well planned test objectives.

PROGRAM OBJECTIVES

In recent years significant progress has been made towards a better understanding of the en-
tire software development process and the challenges involved in each phase of this process.
It is generally agreed that the early phases of the process, the specification, the requirement,
and the design phase have the greatest impact on the quality and the correctness of the final
product. However, the most significant progress has been made in the area of the software
verification tools which can be applied only after code generation; these tools are generally
classified as static tools, which do not require the flight "so ft ware to be executed, and dy-
namic tools which do require it. The theoretical feasibility of many software verification
tools has been demonstrated, several have already been developed, and some have also been
applied to software programs of medium size. In spite of this obvious progress, the air-
frame and avionics companies show very little enthusiasm for the new technology and are re-
luctant to include it in the verification process. The primary reasons for this are: The tools are
poorly understood; very limited quantitative data are presently available relative to their error
detection capabilities and their operating cost; the poor level of development of most tools; the
poorly designed operational environment.

The primary purpose of this program is to perform a quantitative assessment of the operating cost
and of the technical capabilities of these tools within the context of Digital Flight Control
Systems.

THE PROGRAM PLAN

To meet the program objectives, an analysis must be performed to clearly understand the technical
capabilities and limitations and the cost of the present verification technology. The same analysis
must then be performed relative to the advanced software verification tools. At the end, the rela-
tive advantages and disadvantages of each technique will be defined and an integrated methodology,
which includes conventional and advanced techniques, will be proposed.

The program is structured in three phases:

Phase 1: During this phase a quantitative assessment of the present development and verifica-
tion technology of Digital Avionics Systems will be made. Data will be gathered ex-
clusively frofn the analysis of recent development programs of Digital Avionics Sys-
tems. Specifically, the following will be determined:

P. deFeo
77 NASA/AMES
" 2 of 4

(a) The type and frequency of software errors most likely to be present;

(b) The cost to detect, correct, and document these errors and the procedures and
techniques used;

(c) The errors most likely to escape detection.

These data will provide a meaningful benchmark, representative of the present tech-
nology, against which the capabilities and cost effectiveness of the advanced tech-
niques will be rated

Phase 2: During this phase, a quantitative assessment of the error detection capabilities of the
software verification tools will be made. The following is an outline of the activities
required to accomplish this objective:

(a) A Digital Avionics System, representative of the near term technology for critical
commercial applications, has been procured. The system will be used as a test
bed for the software tools.

(b) An initial integrated set of software V & V tools, compatible with the test bed
system, is currently under procurement.

(c) The flight software of the test bed system will be randomly seeded with errors
consistent, in- type and frequency, with the results of the analysis performed during

. Phase 1.

(d) The error detection capabilities of each tool will then be determined by applying
the tools to the seeded software; the percentage of detected errors will be a quan-
titative measure of the test coverage achievable by each tool. Enhancements will
be made, whenever feasible, to increase the original test coverage of each tool.

At the end of this phase, the technical limits and capabilities of the V & V tools will
be quantitatively assessed. A technical recommendation for the inclusion of selected
tools in the verification process of DFCS can also be made based upon:

(1) The types of errors which each tool is capable of detecting and how thor-
oughly and consistently each tool performs.

(2) The level of complementarity of coverage and synergism with the conven-
tional verification techniques.

Phase 3: A quantitative assessment of the error detection capabilities of advanced software
V & V tools will be performed during Phase 2. The technical capabilities must be the
prime consideration for the inclusion of selected tools in the verification process of
critical DFCS. However, the willingness or reluctance of the avionics and airframe
companies to actually include advanced software V & V tools in their verification
programs will be strongly influenced by the economical impact of the tools to the
already high cost of verification. The activities in this Phase of the program will aim
at a quantitative assessment of the economics of operating the tools. Major cost
factors which will be analyzed are: The initial cost of procuring the tools, the cost of
adapting existing tools to new environments, the number of systems over which these
costs can be amortized, the cost of operating the tools, etc.

P. deFeo
NASA/AMES

10 3 of 4

The use of the verification tools will result in software programs which have fewer
errors at the start of the system testing phase. This could appreciably decrease the
efforts needed in the area of closed-loop, iron-bird simulation analysis. These simu-
lations are very expensive to build and even more expensive to run due to the high
personnel support they need. A more efficient use of these facilities could be a major
cost savings factor induced by the utilization of the tools. Additional savings should
be realizable because the tools promote error detection at a very early phase of the
coding process; this minimizes the economical impact of the errors and their docu-
mentation process. If the errors were detected later, the process would be significantly
more expensive because the configuration would be more formally controlled.

All these economic factors will be quantified at the end of this phase.

CONCLUSION

The objective of this program is to fully and quantitatively assess the impact of software V & V
tools to the verification of Digital Flight Control Systems for critical applications. The intrinsic
complementarity of the tools and their synergism with conventional verification techniques should
make feasible and attractive the development of an integrated verification package so that high
quality software can be generated at a reasonable cost. An effort will be made, within the scope
of this program to specify that package.

P. deFeo
__ - NASA/AMES
79 4 of 4

PANEL #3

EXPERIMENTS IN METHODOLOGY EVALUATION

P. Hsia, University of Alabama
S. Sheppard, GE
W. Fujii, DDI

30

P. Hsia
University of Alabama

Experiments in evaluating a step-by-step software development process have been conducted with
University students at the University of Alabama. Results and indicators of these experiments
will be discussed.

P. Hsia
01 Univ. of Ala.
81 . I of 11

STEP PRODUCT

1. Problem Analysis

2. Solution Design

3. Test Planning

4. Peer Review

Input

Output

Relationships

Sample Computation

Flowchart

Data Flow

Test Case Summary

Input

Predicted Output

Sign Off After Approval

6.

7.

Coding

(a) Translate Into Programming
Language

(b) Keypunch/Terminal Entry

(c) Compilation

Testing

Acceptance

• Acceptance Testing

• Notebook Consolidation

Code

Cards/File

Syntax-Error Free Code

Test Cases' Execution Results

Instructor's Test Cases

Merge of All Products

Figure 1. Disciplined Framework

82.
P. Hsia
Univ. of Ala.
2 of 11

1. IF THEN ELSE IF CONDITION

2. DO WHILE DO WHILE
CONDITION

3. REPEAT UNTIL

CONTROL STRUCTURE

REPEAT UNTIL
CONDITION

FLOWCHART SYMBOLISM

Figure 2. HOS Flowchart Symbolism

83
P. Hsia
Univ. of Ala.
3 of 11

(START J

READ PURCHASE

DO WHILE
PURCHASE >0

(STOP J

CHANGE =
100-PURCHASE

PENNIES =
CHANGE

QUARTERS,
NICKLES,
DIMES = 0

DO WHILE ^
CHANGE >25 y

DO WHILE "^
CHANGE >10 /

IF CHANGE "^
>5 /

X

7

OUTPUT QUARTERS,
NICKELS, DIMES, '
PENNIES

READ PURCHASE

CHANGE =
CHANGE - 25

ADD 1 TO QUARTERS

CHANGE =
CHANGE -5

NICKELS = 1

5
CHANGE =
CHANGE - 10

ADD 1 TO DIMES

Figure 3(a). Sample Flowchart

84

P. Hsia
Univ. of Ala.
4 of 11

Test Case

1

2

Input

0

55

92

0

Branch

1

X

X

2

X

3

X

4

X

5

X

6

X

7

X

Output

Q

—

1

0

—

D

—

2

0

—

N

—

0

1

—

P

—

0

3

—

"No Output in Branch 1

Figure 3(b). Test Case Matrix for Labeled Flowchart of Figure 3

85

P. Hsia
Univ. of Ala.
5 of 11

READ (5,-)IPUR

10 CONTINUE
IF(.NOT.(IFUR.CE.O))GO TO 11

1CHNG = 100-IPUK
IQUAR = 0
IDIME = 0
INICK =0

20 IF(.NOT.(ICHNG,GE.25))GO TO 21
ICHNG = ICHNG-25
IQUAR = IQUAR+1

GO TO 20

21 CONTINUE
30 IF(.NOT.(ICHNG.GE.10))GO TO 31

ICHNG = ICHNG-10
IDIME = IDIME+1

GO TO 30

31 CONTINUE
IF(.NOT.(ICHNG.GE.5))GO TO 41

ICHNG = ICHNC-5
INICK = 1

41 CONTINUE
IPEN = ICHNG
WRITE(6,-)IQUAR,IDIME,INICK,IPEN

READ(5,-)PUR

GO T0_10
CONTINUE

Figure 4. Structured FORTRAN Code for Flowchart of Figure 3.

P. Hsia
„.. Univ. of Ala.
50 6 of 11

Run Number
Date
Time
Cost
Purpose

I. Analysis

II. Corrective Actions

III. Lessons Learned

RUNLOG

For Name:

Figure 5(a). Run Log Form

P. Hsia
Univ. of Ala.

87 7 of 11

Project:.

TIME LOG

FOR

Name:.

"""" ^^^ Time
Step ^~~~~^--^_^_^^

Problem Analysis
Analysis

Solution
Design

Test
Planning

Peer
Review

Coding:
• • Translation Into

Programming Language
• Keypunching
• Compilation

Testing

Acceptance:
• Acceptance. Test
• Notebook Consolidation

Actual Effort
(in Man-Hours)

••

Actual Date
of Completion

•

Figure 5(b). Time Log Form

88

P. Hsia
Univ. of Ala.
8 of 11

STEP PRODUCT

1. Flowcharting

2. Coding

(a) Translate Into Programming
Language

(b) Keypunch/Terminal Entry

3. Testing and Debugging

4. Documentation

Flowchart

• Code

• Cards/File

• Complete Program with Test
Cases and Results

• Flowchart

• Complete Programs

• Test Cases and Results

Figure 6. Conventional Programming

89
P. Hsia
Univ. of Ala.
9 of II

Term

1

2

Assignment

1

2 •

3

1

2

3

Average Times in Hours

Disciplined
• Approach

8.9

8.4

23.4

10.3

14.1

23.9

Conventional
Approach

7.6

7.3

20.2

8.1

13.5

20.1

Ratio of Times

1.17

1.15

1.16

1.27

1.05

1.19

Figure 7. Comparison of Times in Two Approaches

90

P. Hsia
Univ. of Ala.
10 of 11

-Cu§ua.a1[a.
'o5•CoreOa.a
"̂"rec,o•pa>>coo

0)
en

"o ̂
 I

*s t
»- -j-
in o.

o

£
<«

°

«

E

a

2

H
e

a
. ̂

o

^

-
 i

re
re

O

C
O

1- o
1

1_
a.

0)
co

•t £
 E
i

>
-

o

g

o

111
O

_

<n
0

£

E

«

2

SS
c

iii
O

) ^J
O

_

Q
>

«£ .ti
o

^> ^E
^^

C
A

_

E

re
re

O

C
O

1-
O

1
wa.

<nEre-
O

)
OEa>

s^CD

^O

N
^O

xP

O

C
3

r-
C

O

o

o

<
•

c
n

0

O

*f
C

O
CM

C

N
J

t-
t-

35

S
?

§?

S
5

00
00

C
O

C

M
'

in
co

co
co^
"

co
^f

e
n

o
CO

CO

CM

t-
C

M

C
O

^

O
)

O
)

O
)

O
)

2
2

2
2

0
.

0
.

0
.

0
.

_E0
)

r-00COo5?COCOCOenen

"re —
<5

S
>

 o
O

 K

en
en

in

f«N

CO

CO

co
en

t-

co
in

co

s?
s?

s§
S

P*-
O

p^
in

r̂

in

co

O

C
M

C

O
CM

C

N

i-

r-
C

N

C
O

CO

O
)

C
D

o

o

o
i

c
t

O
L

CNEQ
J

1-

gCOCM00inT
"

>5inCOoCM00in

"re —
«
 2

>
 o

O
 1-

aiECOoa.

•oaC
O

*

oo'5bo-JocsaoOcoIso

91
P

. H
sia

U
niv. of A

la.
11 of

11

EXPERIMENTAL RESULTS ON SOFTWARE DEBUGGING

Sylvia B. Sheppard
Phil Milliman

Bill Curtis
Software Management Research
Information Systems Programs

General Electric Company
1755 Jefferson Davis Highway

Arlington, VA 22202

INTRODUCTION

Debugging programs is one of the most expensive, time-consuming activities in the development of
a software system. Only a few laboratory experiments have investigated the relative difficulty of
locating different types of bugs or the most effective search strategies. Youngs (1974) found that
experience contributed to differences among types of errors made in a construction experiment.
Wescourt and Hemphill (1978) described a model of the debugging process, but the model was
not entirely supported by the available data. Gould and his associates (Gould and Drongowski,
1974; Gould, 1975) found that the type of bug influenced debugging performance on short pro-
grams. Specifically, assignment bugs were more difficult to locate than array or iteration bugs,
probably because the former required a greater understanding of the algorithm used by the prograr

The difficulty of debugging a program may be associated with coding practices used during its
development. One factor which may influence the ease of finding a bug is the complexity of a
program's control flow. Two previous experiments by the authors investigated the effects of
structured control flow in understanding and modification tasks (Sheppard, Curtis, Borst, Milliman,
and Love, 1979). Programmers performed their tasks more efficiently on code which exhibited a
straightforward, top-down control flow than on an unstructured, convoluted control flow. A rig-
orously structured control flow (Dijkstra, 1972) did not produce significantly better performance
than a naturally structured version which allowed limited unstructured constructs (e.g., exits from
loops). Thus the overall top-down quality of the control flow appears to influence performance,
while minor deviations from the tenets of structured code do not appear to influence performance
significantly. This result may reflect the innate awkwardness of implementing strictly structured
code in standard Fortran.

Factors other than the structuredness of the control flow may influence the complexity of a
computer program and, thus, the difficulty programmers experience in performing their tasks.
Some of these factors have been quantified in the software complexity metrics developed by
Halstead (1977) and McCabe (1976). Halstead's metric purportedly represents the number of
mental discriminations involved in developing a program, while McCabe's metric measures the
number of elementary control path segments comprising a program. In experiments on under-
standing and modification, these software complexity metrics were evaluated for their usefulness
as predictors of programmer performance (Curtis, Sheppard, Milliman, Borst, and Love, 1979).
The results observed in those experiments were modest. The correlations in the raw data were
not large, and the number of lines of code usually predicted programmer performance better than
the Halstead or McCabe metrics.- Several limitations in the experimental procedures employed to
obtain the data may have produced these results. First all of the programs studied were short

S. Sheppard
q- G.E.
y^ 1 of 25

(35-55 lines of code). The limited range of metric values calculated on programs of this length may
not have been sufficient for an adequate test of the predictive worth of the metrics. Second, individual
differences among programmers exerted significant effects on the results obtained. When the data from
the first experiment were transformed in an attempt to control for differences among programs and
programmers, a correlation of-0.73 (p < 0.001) was obtained between the performance criterion and
Halstead's E. However, the issue is not whether theories can be validated with mystical transforma-
tions of data, but whether the results of these heuristic transformations can be replicated in an ex-
periment designed to overcome the limitations of previous research.

The present experiment evaluated the difficulty of locating three types of errors under controlled
programming conditions. In order to compare the effects on performance of different methods
of structuring code, programs in the present experiment were implemented in three types of con-
trol flow, all of which exhibited a generally top-down flow. This experiment also evaluated the
ability of software complexity metrics to predict performance over a wider range of program sizes.
To investigate the effects of length, the three programs in this experiment were subdivided into
functional subroutines so that they could be presented in three different lengths: approximately
50, 125, and 200 lines of code. Finally, the present experiment attempted to relate programming
performance to experiential factors, such as familiarity with other programming languages or rele-
vant programming tools and concepts.

METHOD

Participants

Fifty-four professional programmers at six different locations participated in this experiment.
Thirty were civilian employees, while 24 were employees of the military. The participants averaged
6.6 years of professional experience programming in Fortran, ranging from 1/2 year to 25 years
(SD = 6.1).

Experimental Design

In order to control for individual differences in performance, a within-subjects, 34 factorial design
was employed. Three types of control flow were defined for each of three programs, and each of
these nine versions was presented in three lengths with three different bugs, for a total of 81 dif-
ferent experimental conditions. The first 27 participants each saw three of the programs, exhaust-
ing the 81 conditions (Fig. 1). The second set of 27 participants replicated the conditions exactly
except that the order of presentation of the tasks was different in each case.

Learning effects were expected on the basis of results obtained in previous experiments of this
type (Sheppard, Curtis, Borst, Milliman, and Love, 1979; Sheppard and Love, 1977). Therefore,
the order of presentation of conditions was counterbalanced to assure that each level of each in-
dependent variable appeared as the first, second, or third task an equal number of times.

Procedure

A packet of materials prepared for each participant included: (1) written instructions on the ex-
perimental tasks, (2) a short tutorial of commands used in Fortran 77, (3) a short preliminary task
(Appendix. A), (4) three experimental tasks, and (5) a questionnaire concerning previous experience.

S. Sheppard
G.E.
2 of 25

PROGRAM LENGTH

1
ROOTS

2
ACCT

3
GRADER

SHORT

MEDIUM

LONG

SHORT

MEDIUM

LONG

SHORT

MEDIUM

LONG

NATURALLY
STRUCTURED

1

1

19

10

13

5

22

25

16

9

2

23

11

4

8

26

14

17

3

20

3

12

7

27

21

15

2

6

24

18

GRAPH-
STRUCTURED

1

20

14

6

7

23

17

11

2

26

2

15

9

24

27

18

1

5

21

12

3

3

25

15

16

4

19

22

10

8

FORTRAN 77

1

18

8

21

24

12

3

4

27

15

2

2

22

16

10

6

25

19

13

7

3

26

17

5

9

20

11

14

1

23

_ CONTROL
FLOW

- BUG

EACH CELL REPRESENTS ONE OF THE THREE TASKS GIVEN TO A PARTICIPANT

Figure 1. Assignments of 27 Participants in One Replication
of the Experimental Design

94
S. Sheppard
G.E.
3 of 25

All tasks included input files, a listing of the Fortran program with the embedded bug, a correct
output, and the erroneous output produced by this program. All differences between the correct
and erroneous output were circled on the erroneous output. Also included were explanatory
descriptions of any subroutines or functions not presented in the listing but referenced by the
program.

The 54 participants were divided into two groups of 27, each of which represented a complete
replication of the design. Within a group all participants were given-the same preliminary task.
Group 1 worked with an algorithm to find the greatest common divisor of two numbers and
Group 2 was given a simple sort algorithm. These preliminary tasks were provided to reduce
learning effects on the experimental tasks and to provide a basis for comparing the abilities of the
participants to perform a task of this nature.

Following the initial exercises, participants were presented with three separate programs comprising
their experimental tasks. Participants were allowed to work at their own pace, signalling the ex-
perimenter when they believed they had identified and corrected the bug. The experimenter veri-
fied all .corrections, and in the case of a mistake the participant was instructed to try again until
the task was successfully completed. The maximum time participants were allowed to work on

. a particular program was 45 minutes for the preliminary task and 60 minutes for each experimental
task. Time was measured to the nearest minute.

Independent Variables

Program. Three programs were selected for the generality of their content and their understand-
ability to programmers. The first program sorted and categorized alphabetic response data to a
questionnaire (Veldman, 1967). The second program, an accounting routine, produced income
and balance statements (Nolen, 1971). Program 3 kept track of students' test grades and calculated
their semester averages (Brooks, 1978). All programs were tested prior to the experiment.

Length. The inclusion of additional subroutines made it possible to present each program in three
different lengths. The shorter programs had 25-75 statements, medium programs contained 100-
150 statements, and the longer programs contained approximately 175-225 statements. (One
Fortran 77 version exceeded the 225 line limit by 8 lines because of the number of ELSE and
ENDIF statements required.)

Program listings included a two or three line explanation of any routine or function that was-
called by a program but not presented in,the experimental materials. Participants were told to
assume that missing routines worked correctly. All of the input and output files were presented
regardless of the length of the program. That is, for the shorter version, some of the input was
read in and some of the output was produced by subroutines which were not presented.

Complexity of Control Flow. Three versions of control flow performing identical tasks were
defined for each program. Two types of structures were implemented in Fortran IV, naturally
structured and graph-structured. A third version was written in Fortran 77 (Brainerd. 1978),
which includes the IF-THEN-ELSE, DO-WHILE, and DO-UNTIL constructs.

The Fortran 77 version of each program was implemented in a precisely structured manner. All
flow proceeded from top to bottom, and only three basis control constructs were allowed: the
linear sequence, structured selection, and structured iteration (Fig. 2).

S. Sheppard
G.E.

95 4 of 25

SEQUENCE: Q

SELECTION (IF-THEN-ELSE):

ITERATION (DO WHILE):

(DO UNTIL):

Figure 2. The Basic Structured Constructs

S. Sheppard
G E

5 of 25

The graph-structured version of each program was implemented in Fortran IV from the Fortran 77
version, replacing the special constructs but producing code for which the control flow graphs of
the two versions were identical. All nested relationships could be reduced through structured de-
composition to a linear sequence of unit complexity. A full discussion of reducibility is presented
by McCabe (1976).

Structured constructs are awkward to implement in Fortran IV (Tenny, 1974). In order to test a
more naturally structured flow, limited deviations were allowed in a third version of each pro-
gram. These deviations included such practices as branching into or out of a loop or decision and
multiple returns. Control flow graphs and the code for a section of a routine implemented in all
three versions of control flow are presented in Figures 3 and 4.

Each program was indented following the nesting patterns presented in the code. Thus, all DO
loops and branching instructions were indented. For naturally structured versions, decisions were
made arbitrarily about the importance of various constructions, and indenting was necessarily less
standardized than for the graph-structured and Fortran 77 versions.

Type of Bug. Three types of semantic bugs were chosen from a classification developed by
Hecht, Sturm, and Trattner (1978): computational, logical, and data errors. Bugs in each cate-
gory were defined for each of the three programs in order to maximize the similiarity of bugs
from a single category across programs. Computational bugs involved a sign change in an arith-
metic expression. Logic bugs were implemented by using the wrong logical operator in an IF
condition. Data bugs involved wrong index values for variables.

Each bug in this experiment was purposely designed to affect only a limited area of code. That
is, each calculation containing a bug occurred near the corresponding WRITE and FORMAT state-
ments. In no case did a bug produce errors in routines other than the one in which it was em-
bedded, and each bug appeared in only one line of code.

Individual Differences Measures '

Scores on the preliminary exercise were used as a measure of programming ability related to the
experimental task. Participants were also asked to complete a questionnaire about their pro-
gramming experience. The information required included specific types of experience, number
of years programming professionally in Fortran, number of statements in the longest Fortran and
non-Fortran programs written, the first programming language learned, and number of languages
learned. In addition, various programming concepts that appeared relevant to the experimental
programs were listed, and participants were asked to mark those with which they were familiar.

Complexity Metrics

Halstead's E. Using a program based-on Ottenstein (1976), Halstead's effort metric (E_) was com-
puted from the source code listings of the 27 experimental programs, representing three distinct
programs at three levels of structure and three different lengths. The computational formula was:

7?,N 2 (N 1 + N2)log2 (77t + Tj2)

S. Sheppard
G.E.
6 of 25

NATURALLY STRUCTURED

FORTRAN 77 AND
GRAPH-STRUCTURED

FORTRAN IV

Figure 3. Control Graphs for All Versions of Control Flow

98

S. Sheppard
G.E.
7 of 25

NATURALLY STRUCTURED

IT (AS2TOX .IS. 1 .OX..ASHBX .«?. NASSQf) CO TO 420
00 400 X-l.NSTOC*

IT (C3SZB .rO. ZB(XJ) «3 TO 440
400 ' cssTZsar

razsr 4io.c3aza
4ia roHRAT U30.3cx.' za Hosaea SOT n run visi

ca TO 4so
429 ?arST 4JO, CTSIS.ASNOM
4M rawiAT (iao.jox.-ia -.n.-

S3 TO 430
440
430

GRAPH- STRUCTURED

r-l
zr (xsata .LS. i .cat, ASJRTJ .sr. sxtsssi <a ?o 420

4ao if (catis .ZQ. ia<x: .ox. x .<=r. BSTSCS) ca 79 403

sa to 400
403. Zy (X .tZ. WT3BSJ «O TO 413

PSZ2TT 410.C3HIO
4ift rosHxr aao.jox, * za MCMSES scr rs rtizj *,ta]

ca TO 430
U3 sccar (X , ASTTOMJ -V

S3 TO 420
420 rarer 430, cati
4^0 roraiAT (lao.jox.'u '.za.* zz^rsu *isian»crr *.Z31
430 C3MTZSCOK

FORTRAN 77

t-i
IT .(ASMtni .a. l ,A»O. ASZTO* .ix. jussai) rsza

SO 400 WgXZJ (CEBIO .Jrt. t2(X] .AND. Z .LX. MS7CSI)
400 x-e*i

zj» (X -.cr. ssTnoji} TSSS
ntnrr 4io,caszs

^10 reiwAT (iHo.jox.- 10 .icisss SOT 21
" BUZ - - - - - - - - - - -

SCSX2(X,ASMCM}
CTOZ7

Z1SZ
- PRIST 430, CStl

430 rcJWAT aao.aox,-ra '.ia.«
oretr

4 so c=ar:»os

Figure 4. Examples of the Three Types of Control Flow

S. Sheppard

99 ?0
E

f25

where,

T? j = number of unique operators

T?2 = number of unique operands
Nj = total frequency of operators

N2 = total frequency of operands

McCabe's v(G). McCabe's metric is the classical graph-theory cyclomatic number defined as:

v(G) = # edges - # nodes + 2 (# connected components). McCabe presents two simpler
methods of calculating v(G): the number of predicate nodes plus 1 or the number of
regions computed from a planar graph of the control flow.

Length. The length of the program was the total number of Fortran statements, excluding
comments. The total number of executable statements was found to be highly correlated with
number of statements (r = 0.99, £ < 0.001).

Dependent Variable

The dependent variable was the number of minutes necessary for the participant to locate and
correct the bug.

Analysis

The analysis of data was conducted in two phases. The first phase was an experimental test of
the independent variables, while the second phase evaluated the software complexity metrics. In
the first phase, experimental data were analyzed in a hierarchical regression analysis. In this
analysis, domains of variables were entered sequentially into a multiple regression equation to de-
termine if each successive domain significantly improved the predictive capability of the equation
developed from domains already entered. Thus, the order in which domains were entered into the
analysis was important. Variables representing the different conditions of experimentally manipu-
lated variables were effect-coded (Kerlinger and Pedhazur, 1973),

The second phase of analysis investigated relationships between the time to find the bug and the
metrics, Halstead's JE, McCabe's v(G), and number of statements in the program. All correlations
are Pearson product-moment correlations.

RESULTS

Preliminary Tasks

Group 1 (Participants 1-27) and Group 2 (Participants 28-54) were given different preliminary
tasks. The two algorithms were of varying difficulty, producing significant differences in both
time to completion and percent of completions. Finding the bug in the greatest common divisor
algorithm required an average of 23.8 minutes with 22% failing to find the bug in 45 minutes,
while the sorting algorithm required only 14.6 minutes with only 4% failing to find the bug. How
ever, no significant differences in performance between the two groups occurred on the experi-
mental programs.

S. Sheppard

100 £0
Ef'25

Experimental Manipulations

The average time to locate bugs across all experimental conditions was 20.1 minutes (SD = 16.2).
All but six of the 162 experimental tasks comprising this experiment were completed successfully
during the allotted 60 minutes. These six conditions were not associated with any particular
factor.

Despite the use of a preliminary task to familiarize the participants with the experiment, a sig-
nificant order effect occurred (p < 0.04), indicating that learning took place during the first of
the three experimental tasks (Fig. 5).

Results of a hierarchical regression analysis of the independent variables on the time to find the
bug are presented in Table 1. Differences in solution time for the three programs were significant
(£ < 0.01). Finding the bug in the accounting program required an average of 15.1 minutes, 20.0
minutes in the program that sorted questionnaire data, and 25.0 minutes in the grade-scoring pro-
gram. Increasing the length of the programs had a modest effect (p_< 0.06) on the time to locate
and correct the error. The average time for the short program was 16 minutes, while the medium
and long programs required a mean of 21 and 23 minutes, respectively.

*

Averages for the three error categories were not significantly different from one another. How-
ever, a very large interaction occurred between type of bug and program (Fig. 6). This inter-
action accounted for the largest percent of variance (26%) of any of the experimental relation-
ships studied. No significant differences in performance resulted from the three types of control
flow.

Software Complexity Metrics

Intercorrelations among the three measures of software complexity were computed from the 27
different versions of the programs at both the subroutine and program levels (Table 2). Sub-
stantial intercorrelations were observed among Halstead's E, McCabe's v(G), and length at the
subroutine level. When computed on the total program, the correlation between length and
McCabe's v(G) increased, while the correlations for Halstead's E. with these two measures were
substantially smaller, especially with lines of code.

Correlations between time to find the bug and the complexity metrics were calculated for un-
aggregated data (three experimental tasks for each of the 54 participants, n_= 162) and for data
averaged over the six scores obtained for each program (Table 3). Correlations for the aggregated
data were much higher than those for the unaggregated scores. All three metrics predicted per-
formance equally well at the subroutine level. At the program level, however, E_ was the best
predictor, accounting for more than twice the variance in performance than did the length (56%
versus 27%, respectively). The variance accounted for by v(G) fell between these values (42%).
A stepwise multiple regression analysis indicated that length and v(G) added no increments to
the prediction afforded by E.

The scatterplot of performance with Halstead's E_ presented in Figure 7 suggested the existence of
a curvilinear trend in the data. The significance of this trend was tested using the second degree
polynomial regression approach suggested by both Cohen and Cohen (1975) and Kerlinger and
Pedhazer (1973) for investigating curvilinear relationships. A multiple correlation coefficient of
0.84 indicated that the curvilinear trend accounted for an additional 15% (p < 0.001) of the

S. Sheppard

101 10 of 25

25-1

o
D
CQ

I 20

c/j

15-

I
2

ORDER OF PRESENTATION

1
3

Figure 5. Order Effect on the Three Experimental Tasks

102.
S. Sheppard
G.E.
11 of 25

Table 1

Hierarchical Regression Analysis for Time to Find Bug

Variable

(1) Program

(2) Presentation order

(3) Type of bug

(4) Program X bug interaction

(5) Complexity of control flow

All variables

NOTE: n = 162. R2 column represents

*p < 0.05
*-*p < 0.01

df

2-

2

2

4

2

12

the separate

E2

0.06**

0.04*

0.00

0.26***

0.02

regression for each domain.

AR2

0.06**

0.04*

0.00

0.26***

0.02

0.38***

***p" < 0.001

103
S. Sheppard
G.E.
12 of 25

40-i
PROGRAM 3

30-

cc
O
cc
cc
UJ

Q
z

20-

00
LU
I-

10-

PROGRAM 2
PROGRAM 1

T I
COMPUTATIONAL LOGIC

TYPE OF ERROR

I
DATA

Figure 6. Program by Error Interaction

104
S. Sheppard
G.E.
13 of 25

.Table 2

Intercorrelations Among Complexity Metrics

Metrics

Subroutine:

v(G)

Length

Program:

v(G)

Length

Correlations

E

0.92***

0.89***

0.76***

0.56***

v(G)

0.81***

0.90***

NOTE: n = 27.

***p < 0.001

Table 3

Correlation Between Performance Time
and Complexity Metrics

Metric

Subroutine:

Halstead's E

McCabe's v(G)

Length

Program:

Halstead's E.

McCabe's v(G)

Length

**p < 0.01
***p"< 0.001

Correlations

Unaggregated
(n = 162)

0.25***

0.24***

0.25***

0.28***

0.25***

0.20**

105

Aggregated
(n = 27)

0.66***

0.63***

0.67***

0.75***

0.65***

0.52**

S. Sheppard
G.E.
14 of 25

40—1

30-

O

CD
uj 20 H

CJ
o

LLJ

1 10-1

• • • •
•

50 K
I I

TOOK 150K

HALSTEAD'S E

I
200 K

Figure 7. Scatterplot of Halstead'sJ: and Performance

106
S. Sheppard
G.E.
15 of 25

variance beyond that accounted for by a linear relationship. The prediction equation generated
from these data was:

minutes to find bug = 9.837 + 0.00239JL - 0.00000000079E2

However, with few data points in the right tail of this distribution for Halstead's E_, it is difficult
to extrapolate to the exact shape of the curvilinear trend. No curvilinear trend was detected with
either the lines of code or McCabe's v(G).

Experiential Factors

The re.lationship between complexity metrics and performance was investigated within groups of
programmers differing in years of professional experience programming in Fortran. As .a heuristic,
the participants were divided into two groups of approximately equal numbers: those with three
or fewer years experience and those with more than three years experience. The results presented
in Table 4 indicate that the complexity measures were more predictive of performance for less,
experienced programmers, especially when computed at the subroutine level.

Two measures of experience were also found to be related to the performance of less experienced
programmers (Table 5), but not to the performance of experienced programmers. The first such
measure was the number of programming languages the participant knew. The second metric was
the number of items checked on the experience questionnaire. The moderating effects of pro-
grammer experience may have been the result of greater variability in performance for programmers
with less experience (Fig. 8). This greater variability would increase the ability of correlational
tests to detect significant relationships (Cohen and Cohen, 1975).

DISCUSSION

Four factors were found to influence the speed with which programmers could find a bug in a
computer program. These factors were order of presentation, specific program, a program by
error interaction, and the complexity of the code as measured by software complexity metrics.
Type of bug and type of control flow, however, did not account for a significant proportion of
the variation in performance.

Variance in programmer performance associated with differences among the programs replicated
results from two previous experiments in this series (Sheppard, et al., 1979). However, a much
larger percent of the variance in performance was accounted for by a program by "error inter-
action. It appeared that some quality of the algorithm in which the bug was embedded in-
fluenced a programmer's ability to locate it. The time required to detect similar errors contained
in similar statements depended on the program in which the error was embedded. This result has
implications for the usefulness of various schemes for categorizing software bugs. The implied
value of these taxonomies is to identify properties of bugs which suggest how they are created or
how difficult they are to detect. Simple taxonomies based on syntactic relationships will probably
not prove sufficient for this purpose. The results of this experiment suggest that the detectability
of a bug depends on the context of the algorithm surrounding it. This contextual effect may
determine the optimal search strategy for finding the bug, and it is this search strategy that needs
to be understood if debugging performance is to be improved.

S. Sheppard
107 G.E.

16 of 25

Table 4

Correlations Between Performance and Complexity Metrics
Moderated by Years of Fortran Experience

Metrics

Subroutines:

Halstead's E

McCabe's v(G)

Length

Program:

Halstead's E.

McCabe's v(G)

Length

NOTE: Dividing the data into |

<3 Years
(n = 75)

0.39***

0.37***

0.33***

0.38***

0.29***

0.18

groups of prog

Correlations

>3 Years
(n = 87)

0.11

0.07

0.17

0.20*

0.21*

0.22*

yammers required that
scores be analyzed on individual tasks rather than on tasks
averaged by program. Thus, this analysis was performed on
the 75 experimental tasks performed by the 25 participants
with 3 or fewer years of Fortran experience and the 87 tasks
performed by the 29 participants with more than 3 years
experience.

*£ < 0.05
**p<0.01

***p < 0.001

Table 5

Relationships of Experiential Factors to Performance
for Programmers Differing in Fortran Experience

Relevant Experience

of Programming
Languages

Questionnaire Score

<3 Years
(n = 25)

-0.49**

-0.48**

>3 Years
(IT. = 29)

-0.03

-0.11

Total
(n.= 54)

-0.19

-0.33**

*p < 0.01

S. Sheppard

17 of 25

40-

co
LU

QC
o
IT
CC
LU

30-

20-

o
o_i
o
I-
LU

10-

0

5 10 15 20

FORTRAN EXPERIENCE (YEARS)

Figure 8. Scatterplot of Experience and Performance

I
25

109
S. Sheppard
G.E.
18 of 25

In the last section of the post-session questionnaire, the participants were asked to describe their
searching strategies for locating the bugs. Typically, one of two approaches was described. In
the first strategy the programmer tried to understand the whole program from beginning to end
before searching for the section with the bug. In the second strategy the programmer used approp-
riate clues in the output to go directly to the section containing the bug. The latter appeared to
be a much quicker strategy for debugging, but there were insufficient data for a meaningful statis-
tical analysis. In order to improve the debugging performance of programmers it will be important
not only to identify effective search strategies, but also to identify conditions under which they
will be differentially effective.

No significant differences were evident among the three types of top-down control flow tested
in this experiment. This finding agrees with previous results (Sheppard, et al., 1979) where dif-
ferences were found between top-down and convoluted control flow, but not between types of
top-down control flow. The minor deviations from strictly structured coding allowed in the natur-
ally structured version of this experiment did not adversely affect performance. Summarizing the
combined results of the three experiments, it would appear that the overall top-down quality of
the control flow is important to performance, but careful attention to strict structuring does not
appear to improve programmer performance significantly.

•

Since no difference was found between the graph-structured and Fortran 77 program versions, it
would appear that the newer constructs provide little additional aid in a debugging task beyond that
provided by a top-down flow. Only five of the 54 participants had previously used Fortran 77, so
a lack of familiarity with the new constructs may have prevented them from finding the bug more
quickly in Fortran 77 than in Fortran IV. However, immediately prior to the experiment a short
training session was conducted with each group of participants in which the new Fortran 77 con-
structs were discussed in detail. These constructs were similar to those implemented in Fortran
IV, and the participants' previous lack of familiarity with them was probably not a significant
factor in their performance.

Most laboratory studies exhibit a certain degree of artificiality that is necessary for experimental
control. In this experiment participants were told there was only one bug in a program. While
this situation differs from a normal programming environment, it should not have affected par-
ticipant's ability to perform the tasks. These experimental tasks may have been simpler to perform
than typical debugging problems since there was greater certainty about the bugs. Further, differ-
ences between the correct and erroneous output were clearly marked on the erroneous output, re-
ducing the amount of comparison necessary to discover what problems had occurred.

During a typical debugging problem a programmer could refer to the functional specifications for
a program or to comments included in the code. However, no such aids were made available in
this experiment. The participant's comprehension of the program's function had to be gleaned
from the code or from the input and output listings. The latter were designed to be self-
explanatory, with each section labeled appropriately; e.g., "FINAL COURSE GRADE" or "TRIAL
BALANCE." Although adding some artificiality to the experimental situation, the absence of
documentation was an attempt to equalize the amount of information provided by materials other
than the code.

Software Complexity Metrics

The results of this experiment not only replicated the results obtained in our previous research,
but also demonstrated that more viable results could be obtained when limitations in our earlier

S. Sheppard

no G-E-1JU 19 of 25

experimental procedures were overcome. For instance, our previous research was conducted ex-
clusively on small-sized (35-55 lines of code) programs, which seems to have limited the results
in three ways. First, the range of values on the factors studied in those programs seems to have
been too restricted to detect the size of relationships observed here. Second, the curvilinear re-
lationship observed in this experiment between Halstead's E and performance would not have been
observed if longer programs had not been used in the experimental tasks. Third, the extremely high
intercorrelation between length and Halstead's E. at the subroutine level suggests that both are
measuring program volume. With larger programs the information measured appears to differ; that
is, Halstead's .E.measures something in addition to, but inclusive of, factors measured by length.

Many small-sized programs can be grasped by the typical programmer as a cognitive gestalt. The
psychological complexity of such programs is adequately represented by the volume of the pro-
gram in terms of the number of lines of code. When the code grows beyond a subroutine, its
complexity to the programmer is better assessed by measuring constructs other than the number
of lines of code. This may result partly because programmers cannot grasp the entire program
within their mental spans at a single time. For larger programs the difficulty "programmers ex-
perience is better represented by counts of operators, operands, and control paths. Thus, as the
size of a program increases, Halstead's E_ seems to be a better measure of its psychological
complexity.

One possible explanation for the superior predictive ability of Halstead's E. is that the relationship
between program size and performance is curvilinear, and the algorithmic transformation with the
Halstead measure captures this relationship while lines of code does not. There was no evidence in
these data of a curvilinear relationship between lines of code and performance. On the other
hand, a curvilinear relationship did exist between Halstead's E_ and performance. This trend
suggests that as Halstead's E_ grows larger, a program becomes more psychologically complex, but
the increments in difficulty grow smaller and smaller. In the experimental task used in this de-
bugging experiment, there seemed to be an amount of time that was typically required to locate
a bug within a subroutine once the correct subroutine had been identified (approximately 16
minutes). Added to this baseline rate was the time required to identify the proper subroutine.
The curvilinearity of the relationship between time to find the bug and Halstead's E appeared to
result from the time required to isolate the problem subroutine.

The moderating effects of experiential factors also replicated the results found in the earlier ex-
periments. The metrics again proved to be better predictors of performance for programmers
with three or fewer years experience in Fortran than for those with more than three years ex-
perience. It was also possible to predict the performance of an individual programmer from job
history data. Several important factors seemed to be the number of languages a programmer had
used and familiarity with certain programming concepts. These predictions from job history
were also more valid for programmers who had three or fewer years of experience in Fortran.
Future work is needed to refine the use of experiential questionnaires for use in personnel
functions such as selection, assessment for training needs, and placement.

Code which is more psychologically complex may also be more error-prone and difficult to test.
The results of this experiment provide evidence that the software complexity metrics developed
by Halstead and McCabe are related to the difficulty programmers experience in locating errors
in code. Thus these metrics appear to be capable of satisfying several practical applications. They
can be used in providing feedback both to programmers about the complexity of the code they

S. Sheppard

1 1 1 G-E'11 J 20 of 25

have developed and to managers about the resources that will be necessary to maintain particular
sections of code. Further evaluative research needs to assess the validity of these uses in ongoing
software projects.

ACKNOWLEDGEMENTS

The authors are grateful to Judy McWilliams and Mary Anne Borst who helped with this experiment
and to Beverly Day for manuscript preparation. We are also grateful to Dr. Gerald Hahn for ad-
vice on experimental design, to Drs. Tom Love and Ben Shneiderman for advice on the experi-
mental tasks and procedures, and to Dr. John O'Hare for his careful review of this report. We
are especially appreciative of the efforts of Earl North and Leo Pompliano of General Electric;
Jan Gombert of Applied Urbanetics; Mrs. Joan Shields, Cols. William.Eglington, Earl Goetze and
Richard Blair, and Lt. Col. Pat Harris of the U.S. Air Force; and Capt. Webster and J. Rehbehn
of the U.S. Navy in providing the participants for this research. The support and encouragement
of both Gerald Dwyer and Lou Oliver has been vital to the success of this research.

This research was supported by the Office of Naval Research, Engineering Psychology Programs
(Contract #N0014-77-C-0158). The views expressed in this paper, however, are not necessarily
those of the Office of Naval Research or the Department of Defense.

REFERENCES

Brainerd, W., Fortran 77. Communications of the ACM. 1978, 21, 806-820.

Brooks, R. Unpublished algorithm. Irvine, CA: University of California at Irvine, Computer
Science Department, 1978.

Campbell, D. and J. C. Stanely, Experimental and quasi-experimental designs for research.
Chicago: Rand-McNally, 1967.

Carlson, W. E. and B. DeRoze, Defense system software research and development plan. Unpub-
lished manuscript, Arlington, VA: Defnese Advanced Research Projects Agency, September
1977.

Cohen, J. and P. Cohen, Applied multiple regression/correlation analysis for the behavioral,
sciences. New York: Wiley, 1975.

Curtis, B., S. B. Sheppard, P. Milliman, M. A. Borst, and T, Love, Measuring the psychological
complexity of software maintenance tasks with the Halstead and McCabe metrics. IEEE
Transactions on Software Engineering, 1979, 5^ 95-104.

Department of Defense requirements for high order computer programming languages: Revised
"IRONMAN." SIGPLAN Notices. 1977, 12, 39-54.

DeRoze, B., Software research and development technology in the Department of Defense. Paper
presented at the AIIE Conference on Software, Washington, D.C.: December 1977.

S. Sheppard
,]2 G.E.
11Z 21 of 25

Dijkstra, E. W., Notes on structured programming. In Structured programming, O. J. Dahl, E. W.
Dijkstra, and C. A. R. Hoare, (Ed.) New York: Academic, 1972.

Fitzsimmons, A. B. and L. T. Love, A review and evaluation of software science. ACM Computing
Survey, 1978, K), 3-18.

Gordon, R. D., A measure of mental effort related to program clarity. Unpublished doctoral dis-
sertation, Purdue University, 1977.

Gould, J. D., Some psychological evidence on how people debug computer programs. Inter-
national Journal of Man-Machine Studies, 1975,2, 151-182.

Gould, J. D. and P. Drongowski, An exploratory study of computer program debugging. Human
Factors, 1974, 16, 258-277.

Halstead, M. H., Elements of software science. New York: Elseiver North-Holland, 1977.

Hecht, H., W. A. Sturm, and S. Trattner, Reliability measurement during software development.
Redondo Beach, CA: Aerospace Corp., 1978.

Kerlinger, F. N. and E. J. Pedhazur, Multiple regression in behavioral research. New York: Holt,
Rinehart, and Winston, 1973.

McCabe, T. J., A complexity measure. IEEE Transactions on Software Engineering, 1976,_2,
308-320.

Nolen, R. L., Fortran IV computing and applications. Reading, MA: Addison-Wesley, 1971.

Ottenstein, K. J., A program to count operators and operands for ANSI-FORTRAN modules
(Tech. Rep. CSD-TR-196). West Lafayette, IN: Purdue University, Computer Science
Department, 1976.

Sheppard, S. B., B. Curtis, M. A. Borst, P. Milliman, and L. T. Love, First year results from a
research program on human factors in software engineering. In Proceedings of the i979
National Computer Conference, Montvale, NJ: AFIPS, 1979.

Sheppard, S. B. and L. T. Love, A preliminary experiment to test influences on human under-
standing of software. In Proceedings of the 21st Meeting of the Human Factors Society.
Santa Monica, CA: Human Factors Society, 1977.

Tenny, T., Structured programming in FORTRAN. Datamation, 1974, 20, 110-115.

The military software market (Rep. 427). New York: Frost and Sullivan, 1977.

Veldman, D. J., Fortran programming for the behavioral sciences. New York: Holt, Rinehart,
and Winston, 1967.

S. Sheppard
.,, G.E.
11:> 22 of 25

Wescourt, K. T. and L. Hemphill, Representing and teaching knowledge for troubleshooting/
debugging (Tech. Rep. 292). Stanford, CA: Stanford University, Institute for Mathematical
Studies in Social Science, 1978.

Youngs, E. A., Human errors in programming. International Journal of Man-Machine Studies,
1974, .6, 361-376.

S. Sheppard

114 GE
11H 23 of 25

APPENDIX A

PRETEST

S. Sheppard
G.E.

115 24 of 25

Sorting AIgorithir.

INPUT

DATAPRE

25

110

30

31
1

153
193

62
78

16
1

193
62
78

74

168
192
199
999

5
78
79
56

9
57

3

100
110
115
116
120
130
140
160
170
180
190
200
210
220
230
240
250
251
260
261
270
280

5
10

IS

20

100

101
110

IMPLICIT INTEGER (A-Z)
9IMEHSION AI50) ,8(50)
READ(*DATA?RE*,10) N
DO 5 I • 1, N
REACCDATAPRE'.IO) A(I)
FOS-A7II3)
DO 100 3 • 1, H
SMALL - A(l)
•>. « 1
DO 20 K - 2,N
IF(A(K) .LT. SMALL) GO TO 20
SHALL - A(K)
M • X
CONTINUE
3(J) • SMALL
A(MV • 1000
CONTISDE
00 101 I • 1, N
PRINT 110, 8(1)
FOR* AT (2X, 14)
STOP
END

CORRECT
OUTPUT

1
1
3
5
9
16
30
31
56
57
62
62
74
78
78
73
79
110
153
168
IS 2
1»3
193
199
999

INCORRECT
OUTPUT

999
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
luoo
1000
1000
1000
100C
1000
1000
1000
1000
1000
1000
1000
1000

116
S. Sheppard
G.E.
25 of 25

APPENDIX A

PRETEST

INTRODUCTION

DDI is a software development company currently in charge of maintaining the Advanced Orbit
Ephemeris Subsystem (AOES) for the USAF. This presentation will address the various methods
used in maintaining and upgrading the AOES, and to show how these methods reduce the number
of discrepancies in the AOES.

MAINTAINING THE EXISTING SYSTEM

Requirements are generated by the user community to either modify or upgrade the current AOES.
These requirements can modify existing programs or create programs which are then added.to the
AOES. The development of these requirements into software programs are delivered to the Air
Force on a scheduled date and this delivery is called a MODEL. Any discrepancies found in the
current or past models are corrected using machine code. The machine code is later converted to
a HOL (JOVIAL) for incorporation into a future model.

PROBLEMS FACED IN MAINTENANCE

The original programs were all written in a very non-structured manner. The program logic in
most of the original programs are very difficult to follow since more than one programmer was
involved in the original coding and subsequent modifications. The comments are obscure, non-
meaningful or absent in some instances. Furthermore, many discrepancies are corrected without
any thought to future modifications in the area of the fix or to the readability of the correction
(i.e., the correction seems to appear out of place in the area in which it occurs).

It mentioned in the introduction the objective of DDI was to try to alleviate discrepancies against
delivered models. To do this Structured Software Techniques, and the formation of a Quality
Assurance staff was implemented.

This presentation will describe these tools and their effectiveness and their weakness as they have
been observed.

STRUCTURED SOFTWARE TECHNIQUES

• CURRENT METHODS

• Top Down Design

• Software Engineering, group leader and programmer sit down and review the
requirement(s) for a new software program or for modifications to existing
software programs. All major areas of the requirements are identified, and

W. Fujii

11-7 DDI
117 1 of 13

these are further subdivided into lesser tasks. This process is repeated until
each task can be dealt with separately.

• Effectiveness

• Early in the development cycle all major interfaces for the requirements
can be identified.

/

• Any design trade-offs will surface and can be further analyzed.

• Having the programmers involved gives them a better understanding of
the possible problem areas and greater involvement in the final de-
livered product.

STRUCTURED PROGRAMMING TECHNIQUES

• The higher order language that is used by DDI is called JOVIAL. This language is
very readable, flexible and very well suited for structured programming. The only
constructs missing to truly make it an ideal structured langugae are the DO WHILE
and CASE instructions.

• The following guidelines are followed in the modification or development of
software.

• Comments

• Have meaningful comments.

• A comment should appear in at least every 3 or 4 lines of JOVIAL code,
for every conditional statement and block structure.

• Comment all items, arrays and tables,

o All Items, Variables, Arrays and Tables

• Alphabetized within their respective groups.

• Distinct and have meaningful names.

• Start them all in Column 4.

• Overlays and defines are to be at the end of the parameter list.

• Table entries should follow the indentation rules. Also, the presets of
of tables and arrays.

W. Fujii
DD1
2 of 13

JOVIAL Executable Statements

• Start in Column 4.

• Are assigned to one line, and if more than one line is required, indent
the continuation line at least 3 columns.

• GOTO statements should be used with discretion.

Conditional Statements and Block Structures

• Indent statements following conditional statements by a minimum of
3 columns.

• Indent block structure by 3 columns and identify the begin and end of
each block.

PROCS and CLOSES (Internal subroutines)

• Whenever there is a choice use PROCS.

• Start the Statement PROC or CLOSE in Column 1.

• Whenever feasible try to pass single input and single output parameter.

• Do not use the same input and output names in several PROCS.

• Attempt to alphabetize your PROCS at the end of your program.

• JOVIAL code, ITEMS, tables and arrays should start in Column 4.

• For each PROC or CLOSE describe its purpose and all of its input and
output parameters.

Statement Labels

• Start in Column 1.

• Be assigned an individual line.

• Have descriptive names.

e For those in PROCs or CLOSEs the first few characters of the name can
be used within that PROC or CLOSE.

W. Fujii
DDI

j J9 3 of I?

• Effectiveness

• Typographically, the program is more readable.

• Programs are more readily understood.

• Debugging and maintenance is greatly simplified.

• Modifications can be more easily performed.

STRUCTURED WALK-THROUGHS

• After the programmer has coded his program a walk through of the code is per-
formed between the programmer and the respective group leader.

• After the first dean compilation another program walk-through is exercised.

• During the final check-out phase a final walk-through is performed.

• A walk-through of the developmental test deck is also performed to insure that the
programmer test methods do indeed test those requirements and their interfaces of
the program.

• Effectiveness

• To insure that the programmer has coded to meet the requirements.

• Provide a check to determine if structured software guidelines are being
performed.

• Final walk-through is an insurance step to determine if any code change has
affected meeting software requirements.

• Development test deck walk-throughs insure more discrete or better testing
methods by collapsing or expanding certain tests, or by adding new tests.

PROGRAMMER NOTEBOOK

This is a text of information given to. created by or used by the programmer in
developing programs for a development cycle. The contents include:

• Schedules

• Requirements

• Aii design modifications

« Initial data flow

W. Fujii

120 • 4 of 13

• All documentation and their review comments and responses

• Any conversations concerning their program with outside agencies

• Data of program walk-throughs.

• Effectiveness

• The programmer, group leader, software engineer or project director can assess
materials used in the development of each program.

• Historical records provide insight into an individual's thoughts and logic.

• Programmers can refer to the notebook for insight for future modifications to
the same program.

• Especially useful if an individual leaves in the middle of the development and
another individual must finish the development.

TOP DOWN TESTING

• This is the method of testing of all top level program modules before lower level
modules are tested. Top down testing allows the testing of major interfaces first.
Coding for a program need not be complete before top down testing can start,
since stubs can be used.

• Not all testing is done in a top down manner, in particular instances where a lower
module performs some critical processing that is required at the upper levels,
those lower programs are tested first using a driver program. But once those lower
level programs have been tested, top down testing resumes.

• Effectiveness

« Both coding and testing can occur at the same time, and this leads to a better
distribution of testing time.

• Eliminates the need for driver programs to be written in order to check out the
actual program.

METHODS TRIED BUT NON-EFFECTIVE FOR OUR WORK

Pseudo Code or Program Design Language

JOVIAL language can be used as a program design language and many programmers were getting
too detail oriented and not looking at the structure of the program.

W. Fujii
PI DDI
l~ 5 of 13

Flow Charting

Again, flow charting made the programmers detail oriented and not structure oriented. Flow
block diagrams were only major blocks and decisions proved to be much more effective.

SOFTWARE QUALITY ASSURANCE GROUP

A software quality assurance (QA) group was created to formally validate the requirements of a
model. The QA staff is a separate group of individuals whose task is to support the software de-
velopment of the model. This is achieved by having a member of the QA staff sit in when the
top-down design of a program is being done. This will aid the QA member to understand the re-
quirements of the program. This understanding will be used in developing a formal system level
validation test of the requirements. The QA staff will be responsible to execute all of their vali-
dation tests to verify that the user requirements have been satisfied. The QA staff has the responsi-
bility to review all formal documentation produced by the programmers to insure that all require-
ments have been addressed and that the document conforms to the proper format. The QA group
will be the configuration control point for each model.

Effectiveness

• Formal validation of the software requirements are centralized in a single document.

• Independent testing of software programs before a formal release.

• All discrepancies found can be more easily duplicated and solved by the programmers
using a HOL.

• Configuration management control.

SUMMARY

Using certain structured techniques with the added independent testing performed by the QA
staff, DDI has reduced the number of discrepancies in modifying or upgrading our current system.
There is a very definite advantage to applying these techniques to existing systems.

W. Fujii
,„ DDI
122 6 of 13

• MAINTAINING THE EXISTING SYSTEM

• MODIFICATION TO EXISTING SOFTWARE

• DEVELOPMENT OF NEW SOFTWARE TO AUGMENT THE CURRENT
SYSTEM

• CORRECT DESCREPANCIES FOUND IN THE CURRENT SYSTEM

• PROBLEMS FACED IN MAINTENANCE

• ALL ORIGINAL PROGRAMS WRITTEN WITHOUT STRUCTURED
TECHNIQUES

• PROGRAM LOGIC IS DIFFICULT TO FOLLOW

• OBSCURE COMMENTS OR NO COMMENTS

• PATCHED AREAS

• STRUCTURED SOFTWARE TECHNIQUES

• TOP DOWN DESIGN

« MAJOR AREAS ARE IDENTIFIED

• EFFECTIVENESS

•• OVERVIEW OF THE PROGRAM STRUCTURE

• INTERFACES CAN BE IDENTIFIED EARLY

• DESIGN TRADE-OFFS SURFACE

- • EARLY PROGRAMMER INVOLVEMENT

•« DRAWBACK

• TOO MUCH MODULARIZATION

W. Fujii
DDI

123 7 of 13

• STRUCTURED SOFTWARE TECHNIQUES

• STRUCTURED PROGRAMMING TECHNIQUES

•• HOL --JOVIAL

• COMMENTS ARE TO BE MEANINGFUL AND PLENTIFUL

• INDENTATION OF CODE FOR CONDITIONAL STATEMENTS
AND BLOCK STRUCTURES

• MEANINGFUL NAMES FOR STATEMENT LABELS, INTERNAL.
SUBROUTINES, AMD VARIABLES

• EFFECTIVENESS

• READABLE PROGRAMS

• PROGRAM LOGIC MORE READILY UNDERSTOOD

• . DEBUGGING AND MAINTENANCE SIMPLIFIED

• MODIFICATIONS MORE EASILY PERFORMED

• DRAWBACKS

• SYSTEM AND CORE LIMITATION

• TIMING REQUIREMENTS

W. Fujii
,.. DDI
124 8 of 13

STRUCTURED SOFTWARE TECHNIQUES

• STRUCTURED WALK-THROUGHS

• PROGRAM WALK-THROUGHS -

•• ' AT LEAST THREE TIMES

• DEVELOPMENT TEST DECK WALK-THROUGH

• EFFECTIVENESS

• PROGRAMMER HAS CODE TO MEET REQUIREMENTS

•• TESTING OF CODE WHICH SATISFY REQUIREMENTS

• PROGRAMMER NOTEBOOK

• TEXT OF INFORMATION USED TO SATISFY REQUIREMENTS

• EFFECTIVENESS

• HISTORICAL ACCOUNT OF PROGRAM DEVELOPMENT

• USEFUL FOR SUBSEQUENT WORK ON THE SAME PROGRAM

« USEFUL IF PROGRAMMER LEAVES BEFORE COMPLETION

• DRAWBACK

• PROGRAMMERS DO NOT ALWAYS UPDATE

W. Fujii

125 DDI

'•" 9 of 13

STRUCTURED SOFTWARE TECHNIQUES

• TOP DOWN TESTING'

• USE TOP LEVEL MODULES TO TEST LOWER LEVEL MODULES

• EFFECTIVENESS

• MAJOR INTERFACES ARE TESTED FIRST

• CODING DOES NOT HAVE TO BE COMPLETE, USE OF STUBS

•: ELIMINATION OF DRIVER PROGRAMS

•• BETTER DISTRIBUTION OF TESTING TIME

• DRAWBACK

• NOT ALL TESTING CAN BE DONE TOP DOWN

W. Fujii
DDI

126 10 of 13

C/3

ODOOccQ
.

LLJ
CC

—
 in

ooU
J

CO
to

Q
.

U
J

C
C

OC
O

COin«

e/3_iH
I

Q

inqinqin

Iin
ino

in05
inoo

\in
inC

O
inin

Iin
inn

inCM
rin

in

121
W

. Fujii
D

D
I

11 of
13

• SOFTWARE QUALITY ASSURANCE (QA)

• SUPPORT SOFTWARE DEVELOPMENT .

f UNDERSTAND REQUIREMENTS

• FORMAL VALIDATION OF SOFTWARE REQUIREMENTS USING
SYSTEM LEVEL TESTING

•• REVIEW DOCUMENTATION

• CONFIGURATION CONTROL

• EFFECTIVENESS

• FORMAL TESTING IS CENTRALIZED • •

' INDEPENDENT TEST

• MINIMIZE DELIVERY PROBLEMS

W. Fujii

08 DD1
128. 12 of 13

GOUDQOCCa.LUcci

—
 in

ooLUO1LUC
C

OooQ

LO

'IT
)

CO_JLUQ
.

LO

_
 pinpIT

)

Iin
L

O
O

Iin
LOoo

to
to(O

inin
in

inCO
inCM

Iin
in

129
W

. Fujii
D

D
I

13 of
13

PANEL #4

SOFTWARE RESOURCE MODELS

B. Cheadle, Martin Marietta
L. Putnam, Quantitative Software Management
D. Weiss, NRL

130

SOFTWARE RESOURCE MODELS PANEL #4

William G. Cheadle
Martin Marietta Aerospace

P.O. Box 179, S-2530
Denver, Colorado 80201

ABSTRACT

My 10-15 minutes will be spent on discussing the importance of understanding the
Software Development Process and using this knowledge when applying software
estimating models.

• Where does Successful Software Development begin? We will answer
this question.

• What is Successful Software Development? We will provide an answer.

• A good Software Estimate requires that several things be accomplished
during the Planning Phase prior to Contract award; like functional de-
composition, software sizing, identification of programming languages,
and identifying complexities to come up with an estimate of Software
Resource using a software model and data base.

• We will discuss the importance of creating a Software Development
Plan (SDP) during the Planning Phase which identifies the Software
Development Phase, Subphases, Design Reviews, documentation, and
how we plan to test the software.

• Software Development Schedules will be talked about and how to
manload the Software Development effort.

•. Each organization 'that develops software should have the necessary
tools, people, and methodology to allow them to accomplish the
necessary tasks to identify required software resources.

W. Cheadle
131 Martin Marietta Aerospace

1 of 7

SOFTWARE SIZING, ESTIMATING AND SCHEDULING

Where Does Successful Software Development Begin?

• In the planning phase — prior to contract award.

Why?

• To allow the contractor to make an achievable and competitive response to the
customer's S.O.W. In other words to make a good competitive software estimate.

What Is Successful Software Development?

• Satisfying customer needs

• Staying within costs

• Meeting schedules

• Making a profit

A detailed understanding of customer requirements, and the Software Development process along
with a good accurate sizing method is 75% of the estimating task.

To make a good software estimate requires accomplishing several things during the planning phase.

Planning
Phase

Requirements
Phase

Design
. Phase

Code
Phase

Test
Phase

Operational &
Maintenance Phase

Contract Go Ahead

We must understand the problem.

Customer RFP
Customer SOW
Customer needs
How we plan to solve customer problems

" Class of Software

We must understand what products are to be delivered:

Requirements definition is a must.
Customer requirements
Derived requirements
Operational requirement priority list

We must identify how we plan on developing the software by producing a good Soft-
ware Development Plan (SDP). This Software Development Plan describes the Phases,
Subphases, Design Reviews, documentation and how we plan to test the software.

132
W. Cheadle
Martin Marietta Aerospace
2 of 7

PHASE AND" SUB-PHASES OF SOFTWARE DEVELOPMENT

SRR SDR PDR CDR TRR FCA PCA FQR
A A A A A AA A

Requirements

Sys
Reqts

Sys
Alloca-

tion

S/W
Reqts

Design

Prel
Design

Detail
Design

Code Check-
Out

Test

Unit
PQT

Integra-
tion
PQT

System

Operational
and

Maintenance
Phase

SRR Systems Reqts Review
SDR Systems Design Review
PDR Preliminary Design Review
CDR Critical Design Review
TRR Test Readiness Review
FCA Functional Configuration Audit
PCA Physical Configuration Audit
FQR Formal Qualification Review

In the SDP we must:

• Identify required documentation and when it will be produced and reviewed.

• During the Planning Phase we must accomplish some top level functional decomposition
to aid in sizing the software.

FUNCTION A

1 1

SUBFUNCTION SUBFUNCTION

SYSTEM

FUNCTION B

r
SUBFUNCTION

,

1

SUBFUNCTION

FUNCTION C

1 1

SUBFUNCTION SUBFUNCTION

We must size identified functions (modules)

Sizing in source code by type of software

We have to identify the programming language

Type of Software

Systems
Applications
Support

(Machine Language
< Assembly Language
(HOL

During the Planning Phase we must accomplish in a top level manner all the activities through PDR.

133
W. Cheadle
Martin Marietta Aerospace
3 of 7

EXAMPLE OF FUNCTIONAL DECOMPOSITION

100 LOC

HISTORY FILE UPDATE

20 LOC

HANDLE
INITIALIZATION

50 LOC

HANDLE
DELETE

r
DO

DELETE

15 LOC

READ
UPDATE

FILE

I

READ
MASTER

FILE

HANDLE
CREATE

| 15 LOC

DO
CREATE

READ
UPDATE

FILE

15

HANDLE
UPDATED

LOC |

1

DO
UPDATE

HANDLE
TERMINATION

READ
UPDATE

FILE

50 LOC

50 LOC

200 LOC

50 LOC 300 LOC

300 LOC

300 LOC

300 LOC

*Existing Redundant Code

Language FORTRAN HOL

T.ype S/W

System
Application
Support

0
965

0^

965

Rules for Counting Source Code
We count executable delivered
lines including data declarations
but we do not count comments.

Operating System — must be identified

Support Software — must be identified

• Project Complexity must be identified:

• Software mix complexity must be identified:

• We must identify time frame required for
the software development effort

(Compare our Schedule
I with SOW schedule

Once we have completed sizing, and determined complexities we can make estimates:

• Manmonth Estimate for Software Development Phase is made:

• Estimate is made for the operational phase "In Scope" maintenance effort.

• We use our model to determine time frame required for Software Development.

• Software Development Computer Costs are identified in an estimate.

134

W. Cheadle
Martin Marietta Aerospace
4 of 7

Example:

Software Estimate for "History File Update"

Project Complexity Average

Mix Complexity Simple to Average

Source Loc 965 HOL (Fortran)

Complexity and language factors are applied for Applications Software using our software estimat-
ing model to'determine budget required for Software Development.

BUDGET FOR SOFTWARE DEVELOPMENT AFTER APPLYING THE FACTORS IS:

7.8M/M

The Budget is spread across phases and subphases of Software Development:

Requirements

Sys
Reqts

Sys
Allocation

S/W
Reqts

Design

Prel
Design

Detail
Design

Code

Code Check-
Out

Test

Unit Integra-
tion System

Operational
Maintenance

Phase

X
•̂ s

1.8

Software Dev. Phase = 7.8M/M 1296 hrs (1979 Dollars)
1296 hrs (overhead + G&A, Less Profit) =

Maintenance Phase 24 Calendar Months
100 hrs per 10,000 source instructions for 24 months
10 hrs. x 24 months = 1.5M/M =

Software Dev. Computer Costs

Total
7.8M/M

S38,880

S 7,200

S46.080

S/W will be developed on a dedicated Project Computer no additional costs. (Hardware
costs to buy dedicated computer, not part of this estimate.) CPU hrs to be utilized
10 hrs.

No additional Travel Costs for this Software effort.

135

W. Cheadle
Martin Marietta Aerospace
5 of 7

Budget for Software Development Phase Calendar time for
Software Development Phase

Reqts
Design
Code
Test

23
22
19
36

100%

1-8 1 35
1.7). 3 '5

1-5 1 43
2.8 | 4'J

7.8M/M

4.5 Calendar months
Arrived at by using our S/W
scheduling model

HISTORY FILE UPDATE SCHEDULE 4.5 Calendar Months

Man Loading

Sys Reqts

Sys Design

S/W Reqts

Prel Design

Detail Design

Code

Checkout

Unit Test

Integration

System

1 2 3 4 %

Reqts 1.25

0.6

0.4

0.6

1.6

PDR CDR
Mos. Test

Procedures
Design 1.0Mb.

0.1
'

0.1

0.5

1.2

0.1

2.0

Code/Checkout 1.35 mos.

Code 1.0 mo.

Checkout 1.0 mo.

Test 1.8 mos.

Unit 0.8 mos.

Integration 0.8 mos.

0.9

0.4

0.4

0.1

1.8

Sys. 0.8 mos.

0.1

0.2

0.5

0.8

1.6

0.8

0.8

0.7

0.4

0.7

0.5

1.2

1.0.

0.5

0.6

0.6

1.6

7.8M&M

136
W. Cheadle
Martin Marietta Aerospace
6 of 7

EARNED VALUE SYSTEM

Effort Required During First Month

Software Development Plan update
System Concept A Spec
Functional Reqts B spec
Interface control doc
Prel users manual
Sys Reqts review
Sys design review

2nd Month

CPCI Code to spec
Unit dev. folder
CPCI test plan
Reqts Traceability matrix
PDR Support
CDR Support

0.2
0.3
0.7
0.1
0.1
0.1
0.1

1.6

1.0
0.1
0.4
0.1
0.2
0.2

2.0

3rd Month

CPCI Test procedures
Code effort
Checkout
User Manual
Unit Dev. Folders
Partial as built spec
Test readiness review
Run qualification tests

0.2
0.6
0.3
0.1
0.1
0.1
0.1
0.3
1.8

4th Month

Complete as built spec
Version description doc.
Test reports
Qualification Tests
Systems Test

5th Month

Sys test
Test reports

0.1
0.1
0.3
0.5
0.6

1.6

0.5
0.3

0.8

137
W. Cheadle
Martin Marietta Aerospace
7 of 7

L. Putnam
QSM

Advances have been made in the process of modeling the software cost and resource estimation
process. One model that has been developed by QSM provides the user with estimates of software
cost as well as the trade-offs that would be encountered by either shortening or extending the
estimated development time. Pertinent and informative statistics are also provided in this model.

L. Putnam
QSM

138 . l o f 8 4

SOFTWARE COSTING AND LIFE CYCLE CONTROL

® Lawrence H. Putnam
Quantitative Software Management, Inc.

1057 Waverley Way
McLean, VA 22101

It is remarkable'that our $40-50 billion per year computer industry has 1/3 to 1/2 of its effort
(and cost) out of control. I am referring to the software generation part of the industry. For
25 years now 200 to 300% cost overruns and up to 100% time slippages have been common,
frequent—almost universal—as if there were no pattern, no process, no methodology, no character-
istic behavior to the software development process. Indeed, it has become so unfathomable that
responsible managers, controllers and corporate officers have tended to avoid the issue, accept the
inevitability of overrun, and eat the extra cost—rather than find ways to get the problem solved.

If this were a trivial expense then such managerial responses would make sense. But $16-20
billion a year for the nation is non-trivial. Software development activities for major corporations
cost 1-3% of revenues. This is perhaps 10-40% of net profit—thus, an activity worthy of con-
trolling to the same standard as other critical corporate activities.

How can it be? People are aware of these realities. Many seminars, conferences and studies have
been (and are still being) conducted to try to provide answers to the management questions:

Can I do it?
How much will it cost?
How long?
How many people?
What's the manloading?
What's the cash flow?
What's the trade-off?
What are the risks?

My studies of the past five years show very conclusively that there is a fundamental characteristic
behavior to the software development process. The underlying characteristic is the complex human
intercommunication process necessary to permit broad, abstract concepts to be transformed into
a set of absolutely specific instructions the machine can respond to. This human intercommunica-
tion process is characterized by ambiguity and partial understanding. Progress proceeds in "fits
and starts"—"surges"—"two steps forward, one back"-"loop back and start over," etc. These are
all expressions to describe complex feedback paths, driven by random interaction among the hu-
man participants—all of whom must interact in a highly interdependent way.

People trying to plan and manage software attempt to do it deterministically — linear process flow
diagram, decompose hi to a work breakdown structure and Gantt chart, assign tasks and schedule
and then try to execute. Further, in an effort to meet arbitrary schedules, many activities that
have sequential or partially sequential dependencies are attempted in parallel in the mistaken belief
that what sometimes works in independent manufacturing processes will succeed in software. After
25 years of failure it is time to recognize this approach (by itself) will not work with software. We
will have to deal with fundamentals.

L. Putnam

139 <?».*

The characteristic (average) behavior of software development over time is well described by the
Rayleigh equation, a specific form of the Weibull family of reliability functions. The Rayleigh
equation appears frequently in random statistical processes — scattering phenomena, narrow band
Gaussian processes, diffusion and transport phenomena, quantum mechanics — so it is very reason-
able to expect its appearance in software development where we implicitly recognize the unpre-
dictability of the process, yet seem afraid to say it is a statistical process driven by many complex
interactions unknown in advance and therefore random. The Rayleigh equation describes the
average behavior over time of software development because it is a good model of a large number
of Gaussian variables whose phases are random, meaning that many pieces of work will not be
"in phase," hence will not "add" constructively, but may indeed "subtract," requiring feedback,
rework, and so on.

Fortunately, we don't have to model this behavior in detail. The Rayleigh equation represents
the overall time-varying behavior very well. Moreover, the Rayleigh equation parameters yield
the management parameters that directly answer the management questions. The Rayleigh/Norden
overall manpower equation for large systems is

y_ = (K/tJ) . t. exp (-t2/2tJ) people

where

K is the life cycle effort in manyears, or manmonths,
ttf is the development time in years, or months,
t is elapsed time in years, or months, from the beginning of detailed logic design and coding,

and
y_ is manpower in manyears/year, or manmonths/month, or just plain, countable people at

any instant in time.

Multiplying this equation by the labor rate turns it into a cost function. Integrating (adding up
the curve) over time yields cumulative effort and cost any at time - thus, development effort and
cost is an easily extractable subset of the life cycle numbers.

The relationships among the Rayleigh parameters are highly complex. This probably explains why
purely empirical approaches have not yielded satisfactory solutions until now. Recently we have
found good, practical ways to relate the Rayleigh management parameters to valid system char-
acteristics in ways that answer the management questions directly with numbers that are the best
possible answers. These findings are so important they should be commented upon immediately
because the economic implications are absolutely awesome. The main points are these:

• • A good, accurate method to size a system early in functional development has been
developed.

• A software equation relating the system size to the managerial parameters — manmonths
of effort (K), development time (t<j),'and the state of technology being applied to the
development effort — has been developed.

• Empirical verification from hundreds of systems of all types and development environ-
ments that the basic Rayleigh/Norden time varying behavior is phenomenologically
sound.

L. Putnam
QSM

140 3 of 84

• Empirical verification from the 400 odd systems collected by RADC that the parametric
software equation and constraint relations are sound and are sophisticated enough to
cope with the enormous range these parameters exhibit. (This has been the problem
with single and multiple regression approaches — the variance has been enormous - this
has been attributed to "poor data" when in reality, it is much more a function of the
development environment (development computer, tools, and techniques) and system
type (complexity).)

• Two good ways have been found to determine the management parameters from the
system size and a set of system and managerial constraints.

(1) LINEAR PROGRAMMING which produces a pair of constrained optimal solutions
for the managerial parameters. -.

(2) MONTE CARLO SIMULATION which produces a minimum time solution and un-
certainty or risk profiles.

• Better and more straightforward ways to demonstrate the acute time sensitivity of the
software development process.

• A dynamic (time varying) approach to measuring progress (not just resource consumption),
coping with requirements changes when they occur and continually converging toward the
actual system behavior — in effect, a real time process controller.

• The ability to play managerial "what if" games with software development projects
- AT ANY POINT IN THE LIFE CYCLE (from earliest feasibility analysis through

development into the operations and maintenance phase).

I will comment on each of these points.

SIZING

Many software developers will tell you they cannot size a system accurately, that there is too much
inherent uncertainty. This is partly true. They usually cannot size a module emanating from a
functional description very accurately. But they can estimate ranges quite well. This is good
enough because the statistics of aggregation work with us. We use the PERT estimating algorithm
(Beta distribution) and ask our design engineers to estimate the size of each functional module in
this way:

a — smallest number of source statements
m — most likely number of source statements
b — largest number of source statements

The expected number from a specific functional module is

a +" 4m -i- b

L. Putnam
141 QSM
141 4 of 84

and the associated standard deviation is approximately

b - a

When we aggregate all the module estimates into a systems estimate, a remarkable thing happens -
the relative uncertainty of the system size (°TOT/ETOT) is generally much smaller than the un-
certainty Oj/Ej) of any of the modules. This is because of the cancelling effect that will occur in
execution. Some modules will be smaller than planned, others larger; the net effect is a much
smaller aggregate standard deviation than one would intuitively expect. Consider the following set
of data obtained from an experienced team of about 15 system designers about twelve weeks into
the functional design of a contemporary information retrieval system. Here are their estimates.

Maintain
Search
Route
Status
Browse
Print
User Aids
Incoming Messages
System Monitor
System Management
Comm. Proc..

Total

Smallest

8675.
5577.
3160.

850.
1875.
1437.
68T5.
5830.
9375.
6300.
5875.

Most Likely

13375.
8988.
3892.
1425.
4052.
2455.

10625.
8962.

14625.
13700.
8975.

Largest

18625.
13125.
8800.
2925.
8250.
6125.

16250.
17750.
28000.
36250.
14625.

Expected

13467.
9109.
4588.
1579.
4389.
2897.

10938.
9905.

15979.
16225.
9400.

98475.

Std Dev

1658.
1258.
.940.
346.

1063.
781.

1563.
1987.
3104.
4992.
1458.

7081.

Note that the expected number of source statements for the system is just the sum of the expected
number for each functional module. The standard deviation for the system is the square root of
the sum of squares of the module standard deviations. This is what accounts for the cancelling
effect. Note that the ratio <7TOT/£TOT = 7081/98475 is only about 7 percent, yet the coefficient
of variation of one function, SYS MGT, is 4992/16225 - 31 percent, and the absolute magnitude
of the standard deviation for SYS MGT, 4992, is 70 percent the size of the standard deviation for
the entire system. The upshot of this is that we can predict system size to engineering accuracy
even when there is large uncertainty in individual functional modules. This is a proven technique
used in 15 years of experience in PERT charting. Counterintuitive -YES; but it works. Another
point of major importance is that the engineers asked to provide the estimates are comfortable
with the procedure. They are not threatened by range estimates. With this technique they can
always be right, rather than always wrong as with any single number estimate they might provide.
The more uncertain they are the broader the range they estimate. This is intelligent hedging that
is accounted for in a systematic way. The technique has been used five times within GE with ex-
cellent results. Engineers and managers all felt comfortable with the procedure and satisfied with
the results.

The question frequently arises as to why we estimate source statements instead of executable
machine language instructions. The answer is simple and practical. Today, programmers and

142

L. Putnam
QSM

5 of 84

analysts can estimate source statements because this is what comes out of their mind and off the
tip of their pencil. Few people have any intuitive feel for executable machine langugae statements;
the measure does not relate to their thinking or creative process. Both source statements and ex-
ecutable machine language instructions are valid information measures in the Shannon sense - they
are ultimately reduced to bits of information in the machine. It is just that today, with most
people writing in a language several levels above the machine level, source statements are natural;
machine language instructions are not.

THE SOFTWARE EQUATION

The software equation SS = C^K1'3 td'
3 relates the number of source statements (SS) to the mana-

gerial parameters K and td. K is the life cycle size in manyears of" effort; td is the development
time in years. These are the Rayleigh/Norden parameters of the overall manpower equation.

y_= K/tJ . . t .e '* /2td people

Cfc is a technology constant. It measures any throughput constraints that impede the progress of
programmer/analysts — a batch development environment on a production machine (low) versus
on-line, interactive program development on a dedicated test-bed machine (high). C^ is quantized.
We see this in the data repeatedly. C^ varies in a set sequence of allowable values (Fibonacci
sequence). The software equation will not be derived here; an adequate description of that pro-
cess is contained in IEEE Transactions on Software Engineering, Vol. SE-4, No. 4, July 1978.

•

The important point is that the software equation gives us the linkage between system size, tech-
nological tools, effort and schedule. Effort and time are coupled. You cannot change one with-
out changing the other. And the change is dramatic! Rearrange the software equation and you
have the trade-off law:

Dev Effort = 0.4 (— j —

Note that Dev Effort = 0.4K; i.e., the area under the Rayleigh curve to td.

This turns immediately into the software economics law by multiplying by the burdened labor
rate, S/MY.

SS3

Dev Cost = 0.4 (S/MY) . A

All of these parameters can be favorably influenced by management before a project starts. Since
they are all power functions and C^ goes up in quantum jumps by a factor of 1.6, then cost im-
provements by factors of 2 to 1 0 or more are possible with intelligent planning and good invest-
ment sense. The economics of this trade-off law are almost too good to be true. It says take 3
or 4 months longer and cut your cost in half; or better, buy a dedicated test-bed computer, thereby

L. Putnam
.... QSM
143 6 of 84

increasing C^ by 1 .6. When you cube this you have cut your cost by a factor of 4. Eliminate
•10 percent of the system frills and shrink the number of source statements to 0.90SS. This cuts
the cost to 73 percent of the original value. The improvements just cited for a 2-year system
that we stretch out to 2.25 years are:

SS3 / SS3 \
DevCostbefore = 0.4(S/MY) -j-y = 0.0625 J0.4(S/MY) —)

Ck2 \ Ck /

(0 9)3

DevCostafter = 0.4(S/MY) - '• - = 0.00694 (0.4S/MY. .
(1.6)3 C3 (2.25)4 C3 /

The improvement ratio is:

Dev Costafter _ 0.00694 _ 1

Dev Costbefore 0.0625 9

The trade-off law is a consequence of system signal-to-noise ratio and bandwidth limitation: when
development time (B - 1/tj) is shortened, the bandwidth increases and signal-to-noise ratio de-
creases (actually, noise increases in the form of more difficult human intercommuncation). With
the trade-off indicated, small time decreases soon make a system impossible to do — regardless of
how many people or dollars are hurled at it. This is Brooks' Law at play.

We cope with the bandwidth limitation in the form of some empirically observed constraints that
relate to the system difficulty K / t , the initial solpe of our Rayleigh manpower curve. The best
measure seems to be the difficulty gradient | VD^K/t^ . For a certain class of system, (new, stand-
alone, etc.), the magnitude of this gradient stays constant.

When we solve the software equation simultaneously with the gradient constraint, we obtain the
minimum time that a given size system can be built along with its associated life cycle effort,
K(MY); development effort, 0.4K(MY),' and development cost ($), S/MY (0.4K). These are ex-
pected values, of course, because of the inherent noise in the process.

EMPIRICAL SUPPORT

How can we be sure the software equation and gradient relation work across a broad class of sys-
tem types and development environments? Classically, we use a set of data to determine the
functional behavior, formulate a theory to explain the behavior and then verify the postulated
behavior with another independent set of data. .In this case, we found the basic behavior from the
Army Computer Systems Command data, broadened the range of applicability with the Felix-
Walston data (IBM Systems Journal, Vol. 16, No. 1, 1977) and recently have been able to verify
the software equation, and gradient relations against the largest collection of software data yet
collected. This is the software data base collected by Richard Nelson at Rome Air Development
Center. Data for more than 400 systems have been collected and partially analyzed. Of particular
interest are the machine generated plots of development effort, development time and average

L. Putnam
QSM

144 7 of 84

manpower versus system size in delivered source lines of code (SS). The dependent variables are
the management parameters and relate directly to our Rayleigh parameters. Development effort
is 0.4K, development time is tj, and average manpower is [OA(K/t^)]. When one looks at the
Rome data polts (see Figures 1, 2, and 3), one notices the vast range of the independent variable
from a hundred or so lines of code (small program) to systems of several million lines. The range
of the dependent variables is large also. A clear functional behavior with good correlation is evi-
dent, but the value of the functions are severely limited as predictors because of the very large
standard deviations. Some attribute this to "poor data." I submit it is inherent in any non-
homogeneous data collection spanning many years, different languages, different system types,
different design philosophies, etc. The variability combined with the good overall functional char-
acter is just what I have observed elsewhere with an independent data set. What it says to me is,
"Hey, you've got a parametric variation present or an eigenvalue solution here - no single functional
relation can handle it."

When I superimposed the software equation and the gradient constraint relation on the Rome data,
I found a remarkably good fit. The slopes of the effort, manpower and duration curves of the
functions obtained from the software equation were virtually the same as those determined by the
RADC computer. However, no single technology constant (C^) was capable of spanning the entire
Rome data set. Indeed, it took two sequences of six or seven technology constants (ranging from
about 600 to 14,000) to do this. No rational range of manpower for one technology constant can
span the data range. For example, a range of 1 to 1,000 people working on a project will take in
less than 1/2 the data points. The effort data say the same thing. The conclusion is that the real
solution has to be parameterized; or be a discrete set of eigenvalues. The software equation, gradi-
ent and manpower constraints we have arrived at do span this data set, can rationally explain it,
and the functional behavior is virtually the same as the data average; i.e., the Rome data 'proves'
the software equation and constraint relations in all practical engineering respects. See Figures
1-5.

SIMULATION AND LINEAR PROGRAMMING

Management answers for effort, schedule and cost can be obtained using two powerful techniques
that are well established.

Recall that our PERT estimate of source statements had associated with it a standard deviation re-
flecting the uncertainty in this e^rimate (and the nature of the way the programs and modules will
be built; i.e., each program could be written many different ways to accomplish the same thing
functionally; each of these would have a similar but different information content (bit count).
The gradient relations were determined empirically and also had a statistical uncertainty in their
determination. Now, if we let these two parameters vary randomly in a simultaneous solution
that we run several thousand times, we can generate not. only the expected value solutions for K
and t(}j but also estimates of the standard deviations (more correctly, standard errors of the es-
timates). This is extremely valuable, because heretofore we have been totally mired in uncertainty
very precise single-value answers of completely unknown validity. Now, when the track record
has been 200-300 percent overruns in cost and 50-100 percent overruns in schedule, decision
makers do not believe single-value answers. They want to know the risk — the probability profile
they have been stung too often. In an immature discipline like software development (and the
economics of it) managers need the risk information — and are entitled to it.

L. Putnam

i A* ' QSM
145 . 8 of 84

Linear programming lets us introduce the managerial constraints into the problem. Indeed, we
can solve the linear programming problem with only the system size and the managerial constraints
of maximum cost, maximum time, maximum peak manpower and minimum peak manpower, since
these are all functions of our Rayleigh/Norden parameters; however, we also include system con-
straints such as difficulty and the difficulty gradient to prevent managers from attempting the im-
possible. The linear programming solution is possible because we can linearize the relations between
our variables by taking logarithms and can express all the relations in terms of the two Rayleigh
managerial parameters K and t&. A two dimensional linear programming problem can be done
graphically. Since our relations are linear in logarithms, we do it on log paper. The solution is
trivial, but the insight and understanding in being able to visualize the interrelationships is rather
profound. The minimum cost solution is immediately evident, the minimum time solution is
immediately evident — the duals, maximum time and maximum cost, are also present as they must
be in a linear programming solution — and the feasible trade-off range is identified in between the
extrema. In being able to invoke this powerful technique, we produce constrained optimal solutions
the best that can be done within the constraints, and all other feasible choices. A graphical linear
programming solution along with a brief write-up is attached. It works equally as well in the
computerized simplex form. A sample output corresponding to the graphical solution is attached.
Ideally, both these approaches should be combined — then managers can interactively iterate op-
tima] solutions graphically on the CRT - using their constraints - until they have the best size,
time, cost, manpower combination to meet their needs. With the smart graphics terminals available
today, this can be done at negligible cost and time. See Figures 6-8.

SCHEDULE SENSITIVITY

Schedule is the most critical problem in software development. Software development acts like a
low pass filter with sharp cut-off characteristics (call it a Rayleigh filter). This means that if the
development time is arbitrarily specified by managerial fiat, then there is a high chance the system
bandwidth will not match the arbitrary time (bandwidth) specified by management. This means
the filter characteristic of the system "will shape the input manpower and work profile to match as
best it can. Attempts to force the system faster just generate power (manpower) losses. This
can all be shown with vector arguments, Fourier analysis, and simulation. All methods give the
same results - software development is very time sensitive — development time specification is
not the prerogative of management - it belongs to the system. Management must iterate con-
straints to get into and stay within the feasible (schedule) region. (Fortunately, the linear pro-
gramming solution bounds this region in time, effort, manpower, and cost.) To get some idea of
development time sensitivity, consider the following table generated by simulation showing time
sensitivity as a system size for a typical government development environment (CK = 5168).

Size
(Source Stmts)

Avg a

15,000 1500
50.000 5000

100,000 10000
250,000 25000
500,000 50000

Dev Time
(Months)

Avg a

12.9 0.6
21.6 1.1
29.1 1.4
43.1 2.1
57.9 2.8

Dev Effort
(MM)

Avg a

34.7 6
376.5 60
992.9 152

3188.2 498
7782.3 1204

Within Normal Range
RADC Data Base?

MM Dur Avgf ProdPeople

Y Y Y Y
Y Y Y Y
Y Y Y Y

N(>) Y N(» N(<)
N(>) Y N(» N(<)

= 5168, VD = 14.7. a D = 2.3

146
L. Putnam
QSM

9 of 84

This table tells us that the time window is very narrow. For example, a 15,000 source statement
system has a standard error of 0.6 month. If management picks the time at one year (very natural
to do) then the probability of successful completion is small. 12.0 - 12.9 = -0.9 month, the no.
std errors = -0.9/0.6 = -1.5, and p{t^ < 12 months} = 7% - certainly not odds for the betting
man. However, a slip of a few weeks is usually forgivable by managers and customers so we hear
little about these cases - nevertheless, the time sensitivity is there, but the absolute magnitude is
below most people's response threshold. At the other extreme, 500,000 source statements, it is
very hard to guess 57.9 months and 7782 manmonths. More managers and decision-makers would
pick 48 months rather than 60 months knowing there is a better chance of getting funding. Yet
48 months is impossible (< \% probability). Furthermore, 3 standard deviations in time (about
8.5 months) is easy to lose on a 5-year project. There are many external factors that can cause
that much delay (late delivery of computer; late start with fixed end date, etc.). The only accept-
able solution to this management dilemma is to get realistic time estimates, and then bias them for
risk. Managers and decision-makers have to give up guessing schedules if they expect to succeed.
The process is too counterintuitive, too time sensitive, making the guessing odds unacceptable.

DYNAMICS AND CONTROL OF THE PROCESS

I have described some good ways to estimate software projects BEFORE THEY START. But
software development is a dynamic process. Requirements change. Functional descriptions change.
Statutes change. All these things impact an ongoing software project. The change process may be
so great that it invalidates a superb earlier estimate of size, cost, and schedule. So regardless of
how good our prior estimate is, we still need to know what it is now, based on currently available
information. We need a real-time process controller. This is nothing strange to us. It has been
done in space operations. For example, we wouldn't think of sending astronauts to the moon if
we couldn't measure where they were, compare it to where they should be and then make course
corrections. The same concept can be applied to software development. We have a time-varying
model that describes the expected manpower trajectory. All we need to do is feed it with the real
data in real time so it can update and converge to the true (or present best estimate of the) tra-
jectory. If we feed it manpower data, then we measure and predict resource consumption; but
more importantly, if we feed it code production rate, we can measure, update, and predict task
accomplishment — rate and % of source code complete. This lets us compare consumption versus
accomplishment to see if the rates and predicted times are in agreement - a very important con-
trol checkpoint heretofor unavailable. This technique lets us control the process based on the
existing system dynamics and make revised estimates of where we are heading.

We can also model the requirements change process in real time just before it takes place. This
means decision-makers can know how much the change will cost over the life cycle, and what its
slippage consequences are. The tecnhique is to use the 2nd order Rayleigh differential equation,
solve it numerically in discrete steps and perturb the driving term by an amount proportional to
the % change in the system (% of modules impacted, say). This linear approximation is representa-
tive and valid for the noise levels we are working within.

We apply the perturbation at the time the change is to occur and then project ahead to study the
new predicted behavior compared to the predicted behavior before the change. Very complex
situations can be modeled in this way with excellent indications of the expected response. The
managerial insight one gains from this procedure is considerable — the "What if" possibilities

L. Putnam
147 QSM

10 of 84

abound - "What if I double my effort for a month?" — "What if I am constrained on computer
time for 2 months?" - "What if 25% of the system is cancelled half-way through development?"
and so on. Graphical presentation of these situations on the CRT lets them be iterated and solved
on-line interactively.

With these specific application techniques applied as described, we have been able to quantitatively
come to grips with and produce reasonable engineering answers to the software cost estimating and
life cycle control problem. We see that it is a more complicated problem than we would like it to
be; yet, when we treat it as the time-varying problem it is, we see the solution is not as difficult
as some that have been solved before in other fields — (indeed, we are able to pick up and use the
best of those solutions in a number of cases) — and the solution can be easily updated wherever
one is in the life cycle. The data requirements are small and occur naturally as a consequence of
other normal reporting and record keeping; accordingly, the cost of driving the estimating and
control system is negligible. The economics of the software development process is startling. The
indications are clear that (apparently innocent) management choices can.be made that affect cost
by multiples of 5 to 10. With that kind of variation on multimillion dollar projects, managers
need to know the choices, sensitivities and influences they can bring to bear — and they need it
in numbers - over the whole life cycle.

The managerial questions — "Can I do it? How much? How long? How many people? What's
the risk? What's the trade-off? - can be answered with numbers.

L. Putnam

148 QSM
148 • 11 of 84

C
J

C
O
aenen

w

—
£o

Z
E

2H
-

crai—e_5U
J.

—3oa.

—

en
U

_

<
£

*-
o
i

U
J

—
ae.

—
>

in
c

e
n
 to

3

t*»
 r>

j
a

^
.

a
v
i

a

a

enC
£

it
H

>•
at.

8

K

c

rl g

SsO
T

uzuooin ~a
,

Q

*
oo

W

C
b

>
 o

OO
r-S

-JtoQ

-
8

149
L

. P
utnam

Q
SM

12 of 84

3

S
H

1N
C

W

N
tJH

1U1Q

I

150
L

. P
utnam

Q
SM

13 of 84

C
J

o_
l

enaenU
J

—
j

Q
_

O
. U

J

U

j^
IN

-
V

L
.

3

O

o
U

J
03U

J
Ocr.
O

i
U

J
>cr

^
 I

In

a
U

J

(2

tu
—

2U
J

S
3

CC
cnaas

it
M

-
a•Jl

enCdO2S§

r-9

-J a c<]
u
 a

as o
M

 C
J

>M

i.

•J O
aQC
J

oena

(W
l/W

W
U

31d03d

-0 ciS

151
L

. P
uinam

Q
SM

14 of 84

•-
ft

U
.

(0

5 i
en

x
U

J
—

oc
—

in

c

<
n

«
o

en

-

enuzuO5
 C

d
O

 Q
O

T
 O

—

B

W
 C

n
B

O

S

O

*"
U>MiOena

—
 8

8(S
H

iN
D

W
)

152
L

. P
utnam

Q
SM

15 of 84

inC
d

-v5o

r-
lwzO01 aQ
a
 o

W

C
J

OSU
 C

b
>

 o

uQo
-a -j

-
3

§
•

CSRLNQWJ

153
L

. P
utnam

Q
SM

16 of 84

FIGURE 6.

Linear 3roQr3ircning Alternative

An alternative mecnod for the Sayle.ign'para-
meter determination is linear orooramming. Since
we are dealing with only txo unknowns, K and t.,

and *iave a number of constraint conditions involving
these sarameters, we can easily turn it into a two
iinensicnal linear programming oroblem whicn can be
solved graohically. The nice feature of this ap-
proach is that a numoer of the constraints can be
exoressed directly in management terms. Design to
cost ana design to contract time is possible within
the constrained ootimization procedure. This pro-
cedure 's outlined below. The following constraint
conditions apply:

These translate into:

CK K
1/3 td

4/3

" ± * 'max

Software equation

Maximum peak manpower

Minimum peak manpower

K/tj; < jon _ ' Maximum difficulty

K/td 1 i70' Maximum difficulty gradient

t, <, contract delivery time

S/MY (.4K) <_ Total budgeted amount for develoo-
ment

"hese constraint conditions can be linear-zed
by taking logarithms and using the simplex method
of solving the linear programming problem. The
simolest objective functions are cost and time. One
general.y wants to minimize one or the other of
these. Typically we do both and then trade-off In
the region in between.

Assume these constraints applied to SAVE:

Numoer of S • 98475

'••aximum development cost ^$2 million

'•'aximum time (contract delivery) <_ 2 years

"aximum manpower available at peak manning
(hiring constraint, say) <. 28 people

Minimum manpower you desire to employ at
peak manning _>_ 15 people

Maximum difficulty gradient < 15

Maximum difficulty < 50

Minimum productivity > 2000 S$/ MY

1/3 log < * 4/3 log td • log 98475 - log 10040

log K log (2 x 105/5

log

log

log

log

log

.< -

K -

1C -

K -

K

log

log

log

3 log

2 log

td'
ed'
td •

<d"

V
•

log

log

log

log

log

log

2

{'e

(*

IS

50

23)

15)

(9847S/ .4(2000))

The intersection of these lines bound the
feasible region. An ootimal solution will be at
some intersection point. Further, because of the
equality constraint it must be along the S « 98475

line. The limiting conditions in this case are: ,
td <_ Is 2 years, maximum peak manoower < 28 people

and S • 98475 source statements. Figure 4 snows
the solution.

Reading off the solutions we see that:

Minimum
Time

Minimum
Cost

<1 K £
(yrs) (M Y) (M Y)

1.83

2.0

84

61

33.5

21. <1
SI. 22M

PR .
(S S /MY)

198475/33.6 •
1

1
190475/24.4 »
i

2931

4036

Trade-off is possible along the S line between
td « 1.83 years. K - 84 MY and td - 2 years.

K • 61 MY without violating constraints.

Here ft Is easy to see the countei intuitive
nature of productivity. Note that productivity In-
creases with development time because the required
effort (E) goes down as time is increased.

One other point is imoortant. If the techno,
logy constant Is smaller, the S5 • 98475 line would

shift parallel to the riant (direction of increas-
ing time). If the constraints remained numerically
the same, the feasible region would change because
of the relocation of the S line. The time con- •
straint could probably not be met and a relaxation
of that constraint would have to be sougnt.

This 1s" a deterministic solution. However, by
extending the idea of simulation, the linear pro-
gramming concept can be embedded within a sinulation
and the uncertain constraints can be allowed to vary
randomly about Weir mean values and the statistical
uncertainty for the minimum time and minimum cost
solutions can be obtained by running the problem a
few thousand times.

154
L. Putnam
QSM
17 of 84

FIGURE 7.

LINEAR PROGRAMMING SOLUTION
FOR SAVE

98475

'"^ ' '" > : 'MINIMUM TIME SOLUTION
IIUUl-LJ I I I I I I H I

CCST = M

if TRADE-OFF REGION

!!iiT*-^| MINIMUM COST SOLUTION
T!T!

1 2 3 ^ 5 5 7
DEVELOPMENT TIME (YEARS)

155
L. Putnam
QSM
18 of 84

LINEAR PROGRAM 20

GATE: 17-J2P.-7 3SAVE

THIS FUNCTION USES THE TECHNIQUE OF LINEAR PROGRAMMING (SIMPLEX ALGORITHM)
TO DETERMINE THE MINIMUM EFFORT (AiJD COST) OR THE MINIMUM TIME IN WHICH
A SYSTEM CAN BE 30ILT. THE RESULTS ARE 3A3ED ON THE ACTUAL MANPOWER, CC5T,
AND SCHEDULE CONSTRAINTS OF THE USER, COMBINED WITH THE SYSTEM CONSTRAINTS
YOU HAVE 'PROVIDED EARLIER TO YIELD A CONSTRAINED OPTIMAL SOLUTION.

ENTER THE MAXIMUM DEVELOPMENT COST> 2300000

ENTER MAXIMUM DEVELOPMENT TIME IN MONTHS> 24

ENTER THE MINIMUM AND MAXIMUM NUMBER OF PEOPLE YOU
CAN HAVE ON 30ARD AT PEAK MANLOADING TIME> 15,23

TIME EFFORT COST (X S1B03)

MINIMUM
COST

MINIMUM
TIME

24.3 MONTHS

21.9 MONTHS

278. MM

399. MM

1159.

1662.

YOUR REALISTIC TRADE-OFF REGION LIES BETWEEN THE LIMITS OF THE TABLE ABOVE.

(INTERPOLATION IN THE TRADE-OFF TA3LE BETWEEN THESE LIMITS WILL PRODUCE ALL
ACCEPTABLE ALTERNATIVES. WOULD YOU LIKE TO SEE A TRADE-OFF ANALYSIS WITHIN
THESE LIMITS (Y OR N) ? Y

TIME

21.93

22.43

22.93

23.43

24.00

MANMONTHS

399.

364.

334.

396.

278.

COST (X S1903)

1662.

15i».

139*.

1276.

1159.

CGUP.E 8.

156
L. Putnam
QSM
26 of 84

VALIDATION OF THE SLIM METHODOLOGY TO ESTIMATING
REAL TIME, COMMAND AND CONTROL APPLICATIONS

DEVELOPMENT PROJECTS

Lawrence H. Putnam
Quantitative Software Management, Inc.

1057 Waverley Way
McLean, Virginia 22101

This set of visuals describes how SLIM (Software Life Cycle Management), an automated software
cost estimating and life cycle planning tool belonging to Quantitative Software Management, Inc.,
was used to "replay" the development history of four real time, command and control system de-
velopment projects done by Sperry Univac for the U.S. Air Force.

The development history (data) are taken from a Rome Air Development Center report and were
incorporated into a thesis done at the Air Force Institute of Technology by a Captain Walker
(AFIT/GCS/EE/78-21), who was working on variants of the Rayleigh/Norden Life Cycle Model
used in SLIM. These data are shown in the next two pages as they appeared in Captain Walker's
thesis. Manpower vs. time histories for 4 projects are given together with the more important
aspects of the project and the development environment. This information is sufficient to cali-
brate SLIM, determine the technology constant representing complexity factors (like real time
code) and environmental influences (tools, language, development discipline (MPP. TDSP, CPT,
etc.)) and development constraints (development machine availability, batch vs on-line develop-
ment, etc.) and then "replay" an ideaiizficu of the development time history as SLIM would
have produced it.

This "replay" serves several useful purposes.

« It shows how easy it is to calibrate to past experience - thus tuning the estimating
system to the skills, tools, and development, customer interface and administrative
environment.

• It validates that the Rayleigh/Norden life cycle model (as implemented in SLIM) is a
, very satisfactory representation of what really happens in effectively managed software

projects.

• It shows the model's adaptability to all size regimes of practical interest in the systems
.context (small — 16,000 HOL equivalent source statements-example presented; medium -
46,000 HOL equivalent source statements example presented; and large — 500,000 HOL
source statement example presented).

• It shows the specific applicability of the model to real time, command and control
applications (Indeed, the model has been found to be applicable to any type of software
system).

• It shows that the mixed language environment can be effectively handled by the SLIM
methodology.

A few assumptions were made by me in fitting the data to the SLIM input file building editor.
For example, the calendar starting dates were assumed since these were not given in the data. A

L. Putnam
QSM

157 ' 27 of 84

burdened labor rate of S50,000 per man year was assumed. An inflation rate of 6.5% was assumed
for this time frame. All other relevant input information could be deduced from the development
history obtained from the thesis. Only minor interpretation of this information was necessary.

Sperry Univac Programs 1 and 3 were done in a mix of languages. Sperry Univac Program 1 was
38% HOL and Sperry Univac Program 3 was 53% HOL. These were handled by converting to
equivalent number of statements in one language or the other with due regard for the uncertainty
in the conversion assumptions. Sperry Univac Program 1 was done both ways; converting every-
thing to equivalent assembly language statements in the first case and converting everything to
equivalent HOL statements in the second case. Very different technology constants were obtained;
yet, because of the relationship exhibited by the software equation, Ss = C^ K1/3 tl/3, nearly the
same time-effort combination was obtained and a very similar time-varying manloading pattern
emerged. In my opinion, the system acted more like an HOL development than an assembly
language development and the fit seems to be slightly better.

The conversion process was handled this way for Sperry Univac Program 1. There were 90,000
DSLOC, 38%of which were HOL.

HOL Conversion

HOL Statements 0.38(90,000) = 34,200. We will assume an uncertainty on this of ±5000 HOL
statements (Std Dev).

Assembly Statements 0.62(90,000) = 55,800. Assume possible conversion ratios from assembly
to HOL:

Equivalent HOL Statements

a (1% Prob.) 1 to 7 _ 7971
m (most likely) 1 to 5 11160
b (99% Prob.) 1 to 3 18600

Using the PERT algorithm (modified)

a m b Expected Std Deviation
34200 5000

7971 11160 18600 11868 2000 (1772 actual)

Expected HOL Equivalent Size 46068
Approx. Standard Deviation on Size 5385 (RMS criterion)

The input to SLIM using the 99% range approach then is:

LOW: 46068 - 3(5385) = 29913 HOL Equivalent Statements
HIGH: 46068 + 3(5385) =-62223 HOL Equivalent Statements

with a normal disrtibution assumed.

The same procedure was used in converting the equivalent assembly language statements. The re-
sult obtained was an expected 226,800 equivalent assembly language instructions with an approxi-
mate standard deviation of 25.385 instructions.

L. Putnam

i« QSM
158 28 of 84 .

Sperry Univac Program 3 was treated as an essentially HOL system (53% of the DSLOC) since a
high percentage of the machine language instructions were HOL generated. This was born out by
the manloading profile obtained from this conversion - characteristic of a small system with peak
manpower obtained well prior to completion of development. An HOL to assembly conversion
would have produced a profile with peak manpower occurring very close to the end of develop-
ment — typical of large system behavior. The actual profile resembled the former rather than the
latter confirming this reasoning.

L. Putnam

159 29 of 84

A Sample Data

The data used in the sample calculations of Chapter IV was provided by Sperry-Univac Defense
Systems in a Rome Air Development Center sponsored technical report (Ref. 23: 1-31). The
data tabulated in Table A-I is the manning data for the four software systems reported in the
report.

Table A-f I

Sperry-Univac Manning Data

Month

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

1

5
5
5
5
5
5
5
5
5
5
5
5
10
10
10
10
15
15
15
15
15
15
15
15
15
16
16
16
16
16

Prog

O
^

10
13
13
15
15
15
25
25
25
34
34
34
40
40
40
45
45
45
49
49
49
52
53

' 53
56
56
56
60
60
60

ram

3

5
8
8
10
12
14
16
19
20
21
22
22
22
23
22

. 22
" 22
19
17
14

. 13
12
11
10
8
7
6
4
4

• 3

5

2
2
3
3
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
1
1
—
—

Month

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 •

I

17
17
17
17
17
17
17
17
17
13
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
7

Prog

2

66
67
67
71
72
72
73
73
73
73
74
74
74
74
74
74
73
73
73
73
73
55
55
55
35
35
35
35
—
—

ram

3

3
3
3
3
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—

4

—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—

Month

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75.
76
77
78
79
80
81

P

1

7
7
7
7
7
7
7
3
3
2
2
3
3
7
7
8
8.
7
7
3
—

rogra

2

—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—

m

3

—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
--
—
—
—

160

L. Putnam
QSM
30 of 84

The units are man-months per month. Table A-II shows the factor data available on the four
systems also found in the technical report.

Table A-II

Sperry-Univac Factor Data

Factor

Size in delivered source

Real-time application

Top-down structured design

Structured coding

Memory constraint

Percent HOL used

Programmer qualification education and training

Developed on target machine

Pages of documentation

Command and control application

Modular design

Program librarian

Structured narrative

Flow Charts

1

90000

1

0

1

0.50

38

39.0

1

8059

1

0

1

1

1

Prog

2

500000

1

0

0

0.50

99

37.1

1

27014

1

0

0

0

1

ram

3

26600

1

1

0

0.52

53.

62.8

0

3507

1

1

1

0

1

4

13150

1

1

1

0.50

100

82.4

0

2259

1

1

1

1

1

161
L. Putnam
QSM
31 of 84

162
L

. P
utnam

Q
SM

32 of 84

163
L

. P
utnam

<jSM
33 of 84

oO
l

o

.

4-

o
-'-t:
V

£

Ci—r
u

U
 O

S
 !-!

—
 (ft

8
—

 (ft
<

r- G
 =

-

0
,

-3
 O

oQ

UN

1
)0

O

•̂
.

o
 o

•z. o

2•H<r-V
I

O
^
 Oi

Z•J

—
f^

a
-

1
"

T
"

i

-IT

1-

•
in

.-
i^

1
I •>

"
1

 *.--••- i
i

-
|
,
,
i
 =

1

2
I

355«T

164
L

. P
utnam

Q
SM

34 of 84

•X•X•X•X•X•X•Xx•ft•X•X•X•X«*.|C•X•X•X•Ic4C•X•X•X•X•X*•X•X**•X•X•X*•K•X•X•X•K•X•X•X«4e.gc•X•X•X*•X•X•X•Xjf-X*•X*•X•X
-

•X-X-X•X•X•X•X*•X•X•X*•X-X•X-X

coKCOEHCOSrfQ
*

*£O
*

HIDa,zMC
n
0^02<

£

Ss£3CO

«•X•X•X***•X****«**•X«•X•X•X*•X•X•X•X•X•X•X•X•X•X•X•X•X•X•X•X•X-K*-X•X•X-X•X•X-X•X•X-X•X•X•X.-X-X-X•X•X-X•X-XX•X•X•X-X•X-1C-X•X•X•XXXX

C
T

\
r-1oz110f—

 1• •
CO£-(

<a^J*

rji
<£>h
H

z^5>
H

QHJ

O
H

C
i3

a
,

r/)• *
s:CO£
H

CO>><n

<s>C
O

COEH<K2Ob
,

2

O
 O

^B
 O

"^

CO

CO
o
 s

•a; M
to EH
3

2
J
 O

O
 n

33 EHUQO02

S
 O

m
 in

CO
2

Q
 O

O
 M

U
 E

H

C
O

N
,S

 M

<COo
i

o
 o

s
 s

s
 s

ra in
m

5T

UUoO
S

0
,

COCO
XS

 Q

CO
 'A

C

O
oo

EHS2

S
O

.
J>O

COt-HPHEH

f}
g
rj (jj

O
U

fj
CO

O

<

t-J t>

2

Z

to

 <
I

O
 Q

 J

o
i

J2o•-aQOC
J

S
U

M

E
H

J

CU CO
CO

S
55

<
M

 C
OEH

Q

«

O
 C

O
U

 S

Z
 <

C
J

K
M

 C
JJ

CO

O
C

O

02
Q

 a,

CO
COuhn m

 m
EHU<

H

a,
04

cj
ex

z
o

o
M

O

J

S

0
2

C

O

<

C
O

02 Q

Q

O
 W

O

0
2
 Z

02 O
 2

U
 Q

Z

O

 I
C

2 02
O

,
CO

H

O

Q

C
O

E

H
O

CO

CO
P

*
Q

2
>H

<

E
H

2Q

C
O

<
EH an
COto

sinac32

r\JItV

sin

CO

CO
C

J i-4

C

3
Z

>

-J
 <

co <
; 3

l-H

«

O

02 C
O

 Z
to >

 <
XCO

O
 0

2
J
 O

O
 E

H
2

 U

COEH

2
co

O
M

 t-3
nCO

•X•X•X•X•K*•X•X•X•X•X•X•X•X*•X•X•X•X•X•X•X•X•X•X•X•X•X•K•X•X«*-X•X•X*•X•K•X**•X•X*•X**•k•X•X•X

165
L

. P
utnam

Q
SM

35 of 84

******* ***** *******!

SIMULATION

TITLE: SPERRY L'NIVAC 4

r**********

DATE: 16-NOV-79

*** SIMULATION RUNNING - PLEASE WAIT ***

SYSTEM SIZE (STMTS)

MINIMUM DEVELOPMENT TIME (MONTHS)

DEVELOPMENT EFFORT (MANMONTHS)

DEVELOPMENT COST (X $1300)
(UNINFLATED DOLLARS)

(INFLATED DOLLARS)

MEAN

13150.

25.0

125.8

525.

569.

STD DEV

1333.

1.2

20.1

98.

107.

SENSITIVITY PROFILE FOR MINIMUM TIME SOLUTION
(EXPECTED VALUES OF TIME, EFFORT, AND COST FOR VARIOUS SYSTEM SIZES)

SOURCE STMTS

(-3 SD)
(-1 SD)

MOST LIKELY
(+1 SD)
(+3 SD)

9150.
11817.
13150.
14483.
17150.

MONTHS

21.4
23.9
25.0
26.1
28.0

MANMONTHS

79.
110.
126.
142.
177.

COST (X $1000)

329.
457.
525.
594.
738.

A CONSISTENCY CHECK WITH DATA FROM OTHER SYSTEMS OF THE SAME SIZE SHOWS:

TOTAL MANMONTHS (126.) WITHIN NORMAL RANGE
PROJECT DURATION (25.0 MONTHS) LONGER THAN NORMAL TIME DURATION
AVG S PEOPLE(5.) WITHIN NORMAL RANGE
PRODUCTIVITY (105. LINES/MM) WITHIN NORMAL RANGE

* * * * • * *» *« * * * * * * * * *« * * * * * * * * * * * * * * * * * ,

166

r*************************************

L. Putnam
QSM
36 of 84

**

MANLOADING

TITLE: SPERRY UNIVAC 4 DATE: 16-Nov-79

THE TABLE BELOW SHOWS THE MEAN PROJECTED EFFORT
•AND ASSOCIATED (+ OR -) STANDARD DEVIATION REQUIRED
FOR DEVELOPMENT. THE INPUT PARAMETERS ARE:

MEAN STD DEV

DEVELOPMENT EFFORT (MM) 125.8 20.1
DEVELOPMENT TIME (MONTHS) 25.0 1.2

SIMULATION RUNNING - PLEASE WAIT

TIME PEOPLE/MONTH STD DEV CUMULATIVE
MANMONTHS

JAN
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
OCT
NOV
DEC
JAN
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
OCT
NOV
DEC
JAN

FEB

77
77
77
77
77
77
77
77
77
77
77
77'
78
78
78
78
78
78
78
78
78
78
78
78
79 '

79

1.
2.
3.
4.
5.
6.
7,
7.
8.
8.
8.
8.
1
I r

1 ,
7.
6.
6.

. 5.
5 .
4.
3.
3.
2.
2.
2.

1.

0.
0.
0.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1. _
1.
1.
1.
1.
1.
0.
0.

0.

1.
3.
6.
10.
15.
21.
28.
35. ..
43.
51.

' 58.
66.
73.
30.
87.
93.
99.
104.
108.
112.
116.
119.
121.
123.
125.

126.

CUM
STD DEV

0.
0.
1.
2,
2.
3.
5 .
6.
7.
8.
9.
11.
12.
13 .
14.
15.
16.

. . .17.
17.
18.
18.
19.
19.
23.
20.

20.

L. Puinam
QSM

167 37 of 84

. cc

_
CO

 C
O

 L
i.

O

C
O
II-cpIT)
CMII•D

inii

168
L

. P
utnam

Q
SM

38 of 84

*«tt**•K•Itjt*******jt4t** 4C**4t•*•*.y-y-
4C•r*H

i

* 41414C41**•H* 41*•#*•H•fc

4C*•kt*•V•ft

****•ft*

*******•V•ft*•#
'

** •fc•ft

*****•1C*̂
t

£
 *

P
i

*

CJ?
*t

0
 *

a
: *

PI
t̂*

OS
*

<
 *

D
J *

z
 *

IH

***** 41* 4
t

*•*****J4r41**4t4r** 4r*****

C
7*
r
-1>Oz1IOr
-
l

• •

EH^Q^O(̂t̂—
 4

z13XCX
aua,CO••tol_

]
EHnH

. —
 ,

£
 '

33EH 33
•H

 U
K
 n

O
 3

3
C

J
3

•J<: zM
Xu
 u

J
 £

04 M
£

 E
H

t-HLO

£
^
-
O£

0
 M

Z
 Z

M
 M

£
 £

isO
 E

H
0a: «
cu o
«

 —
<

 E
H

U
 C

O
z
 o

M
 C

J

Q
a
, z

0
 5

bJ3
 E

H
a

c
e

I-H

O

Z
 C

u
33

C
u

U
 W

UEH

£

U
 £

33
I-H

EH

Zn

CO

£
UC

O

C
U

ft 3
2EH

ZO
 U

M

Z

E-*
n

u
 s

52
O

i
3

 C
O

U
. EH

CO
Q

t—
 |

33
O

EH
 EH

«
EH

CO

CO

H
O

 Z
U

 M

-2
«

 E
H

u
 a

i
•3. z

•
o
 o

 z
PU O

O

Z

M
<

£

 E
H

£

W

 O
H

 J
»J C

O
 O

<

>
H

C

O
3

 C
O

EH

J
U

W

 <
<

3
3

£

EH

M
U

E

H
33

33 C
U

EH

E
H

 O
n

Z

3

 Q
O

U

Q

Z

Q

W
 I-H

W

Z

<

(0

>
-H

K

<

0
3

H

CO

£
 C

O
O

Z

W
O

O
«

U

«
 <

co
u

EH
C

O
 Q

i-J
 O

 fc
J

3

U
CO

W

t-H

W

33
 >H

«
 E

H

U

b
y

E

H
33

0

EH

«
co u
EH

n

•
Z

J

EH

M

0
4

J

<

 <
1-1 a

 u
3

 E
H

CO

C
O

Q

Z
 U

to
 o

 Q
CQ

U

n

Z

W
 O

<

iJ

O
S

U

0
 A

Q
£

W

W

U

3
3

>

H
 U

 <
C

O

C
O

33

»CO
Q

n

Z
 O

<

<

>
H

s>S
I

S
I

S
I

0ini—
 i

AC
O«*
J
j
j

OQZMEHCOOOEHZU£a
,

OuuQ££X£U33HauEHZO
J //11/o

o
"\

\ <
N
 ;

V
_

X
ACO33EHZO£ZMU£E

H
.

EHZU£a,oi_3C
O

£
>

uo££MX£Kb
)

HZ

/I

/

^

^

\

O
>^H

V

it/in
 J

C
ti

ro
OM

A

C
l(

b)
£

C
u

M
O

 E
H

05
C

J
b
J

Z

CQ

M
£

 Q

Z
 O

£

Z

£
 £

MX

7
*
1

5
*€

£
 UCU

aZ
 E

H
'

4
<4?

£
 Q

£
 <

C
M

0

Z
 C

O
H

H

£
 ZO

U33
U

EH
>

K
 3

3
UEH

Z

Z

<

C
J

U

/
/1

S
I

S
I

S
I

1— 1
</>X—

 •

\
«

\
°uEHaobuC

t,
W

\\\^̂
.u£h

-4

EH

•

L
T
>

ro2
:

£

•
(S

i
G

OCO33EHZO£S
)•

C
D

C
MyD
 E

H
£

 C
O

M
 O

Z
 U

M£

^
*

^"—
U

j

Q

^
^
^

^

\
 ̂V

 5
-

\ *
-

•mm£y

•
co00CO33EHZO£r̂•
f^C

N££
 U

n
 3

E
z •-<
M

 E
H

£

^
1

1
-fc

y

•̂
C

t
^
*

*
m

w

l^

O
1̂

C

Q
t/\

*£
^

*
<

w

0

^
1

\
*-CEH33EHC

u
OcoEHM£MC

J
33F
 ,

c*2CL)
CU£5HUCQCOb
]

»— ̂
ijO1-1
Ob
]

OSb
.

b
,

01CtJ
QffKEHUMHCOn^4<
(J

b)KKOO>
H

169
L

. P
utnam

Q
SM

39 oi 84

JI"J
<COuQ0ce0
.

>
j
jI-HJ5toHJPI-HJCUtocu3
3

ZC
U

E
H

C
U

C
Q

C
U
JC

O<E
H

C
u

C
u
01UQoiE

H

C
U

3:£Hzh
H

zoMEH,
J

00
,

oscuHzh
H

• ZM33EH2toncni_3<z<C
u

C
u

^ CUQ<tf
p2EH<C

U
cucoEHUt*iWt
J^oQt T^30

X

to (^
cur>

- —
 '

I-H

Z

H<
 a

Z
 0

acu x
H

 ~

<
 toEH

C
U

M

!

1

J
£

CQ

M
<
 J

a, cu
cu to
u

 c
u

O
 3

3
<

 E
H

*
~
s

S
I

IS
)

IS
)

r—
4

to-

X-*-*

EH(
/
)

0UtoEHZ0z<
£

£CUsI-H

t~*

in

Q

in

e
n

T

T

o

m
vo

vo

m
^

^*
^*

ĵ*
r^

ro

ro

ro

ro

ro

ro

n

'

oo
\o

in

-<

r
m

^

s
i

Q
O

00

O
O

O

O

O
O

C

O

Q
O

T

in

vo

c~

o
o

a
.

s>
•

•
•

•
•

•
•

r^
i —

(^

i —

r^
r^

o
o

<N

<N

(N

(N

C
N

(N

C

M

I11[

.
1

2UZaoEHtoOC
J101Zut-HCOcuQ33HM^CUto^cumzûcuj03<EHCO33EHZMZ033COtoEHt̂oCUCCcu33EH

HZU3OcutozouC
u

OXc
f

3O
i

<[5C
U
2^
4
i
j

C
J

ex;
H

H

zuz•4^

QJ2^Ui_J
1-1
O

u

QCUEHQp
i,

^Z*3i

C
U

EH2cuzcuCJ>

oEHCU3
£

t-H
EH

CU•£.
MEH«CUEH^3C

t4

•z.Ou
^

tnn>
H

J(̂Z(̂(̂/)
t—

f
a:*.
cuuucu[L

I
H

H
i-J<h

30Jr.
t

a:
CO*£U

^

OI-Ha<0z<£ccotoH^~>
tocuC

C

tocuEH<IJ

2
^

I-HEHtoCUazcuE
H
ZoO

S
C

u

QZ<

4c41* 414r•K*4c•KIt*«*•It*t***•K** 41*•K4c•K*****«•0•1C•K41***•K•H41•ft4t********4f**•n•fr•4r•ft****#•It•*t*

1
7
0

L
. P

utnam
.

Q
SM

40 of 84

********* !

NEW SCHEDULE DEFINITION

TITLE: SPERRY CJNIVAC 4

r * * * * * * * * * * * * * * * *

r * * * * * * * *

DATE: 16-NOV-79

SLIM HAS PROVIDED ITS BEST ESTIMATE OF THE MINIMUM TIME AND.CORRESPONDING
EFFORT AND COST TO DEVELOP YOUR SYSTEM. THESE VALUES ARE:

MINIMUM TIME:
EFFORT:
COST (X $1000) :

25.0 MONTHS
126. MANMONTHS
524.

A SHORTER DEVELOPMENT TIME CANNOT BE SPECIFIED ARBITRARILY BY THE USER,
HOWEVER, IF A LONGER TIME (WITHIN REASONABLE' LIMITS) IS SPECIFIED, THE
SYSTEM CAN BE -DEVELOPED FOR CONSIDERABLY LESS EFFORT - AND COST.

ENTER DESIRED DEVELOPMENT TIME IN MONTHS> 27.5

NEW DEVELOPMENT EFFORT (MANMONTHS)
NEW DEVELOPMENT COST (X $1000)

MEAN

86.
360.

STD DEV

14.
57.

YOUR FILE IS UPDATED WITH THESE NEW PARAMETERS. RUN MANLOADING AND CASHFLOW
OR LIFE CYCLE TO SEE HOW THESE SAVINGS CAN BE REALIZED.

A CONSISTENCY CHECK WITH DATA FROM OTHER SYSTEMS OF THE SAME SIZE SHOWS:

TOTAL MANMONTHS (86.)
PROJECT DURATION (27.5 MONTHS)
AVG » PEOPLE(3.)
PRODUCTIVITY (152. LINES/MM)

WITHIN NORMAL RANGE
LONGER- THAN NORMAL TIME DURATION
WITHIN NORMAL RANGE
WITHIN NORMAL RANGE

171
L. Putnam
QSM
41 of 84

* * * * * * * * * * * * * * * * 1

r * **** *

S P E R R Y U N I V A C 4

r********************************.********************

SUMMARY OF INPUT PARAMETERS
r***************************

DATE: 16-NOV-79

THE TABLE BELOW SHOWS THE MEAN PROJECTED EFFORT
AND ASSOCIATED (+ "OR -) STANDARD DEVIATION REQUIRED
FOR DEVELOPMENT. THE INPUT PARAMETERS ARE:

DEVELOPMENT EFFORT (MM)
DEVELOPMENT TIME (MONTHS]

MEAN

86.3
27.5

STD DEV

13.8
1.4

SIMULATION RUNNING - PLEASE WAIT

TIME

JAN
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
OCT
NOV
DEC
JAN
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
OCT
NOV
DEC
JAN
FEB
MAR
APR

PEOPLE/MONTH STD

77
77
77
77
77
77
77
77
77
77
77
77
78
78
78
78
78
78
78
78
78
73
78
78
79
79
79
79

0
1
2
2
3
•4
4
4
5
5
5
5
5
5
5
4
4
4
3
3
3
2
2
2
2
1
1
1

»

•

•

•

*

•

•

•

» f*

' PFRK
9

• I M P
9

»

•

»

»

•

»

•

»

•

»

•

•

•

•

DEV

0.
0.
0.
0.
1.
1.
1.
1.
1.

1.
1.
1.
1.
1.
1.
1.
1.
0.
1.
0.
0.
0.
0.
0.
0.
0.

CUMULATIVE
MANMONTHS

0.
1.
3.
6.
9.
12.
16.
20.
25.

39!
44.

- 49.
53.
58.
62.
65.
69.
72.
75.
77.
79.
81.
83.

. 84.
85.
86.

CUM
STD DEV

0.
0.
1.
1.
1.
2.
3.
3.
4.
5.
6.
6.
7.
8.
9.
9.
13.
10.
11.
11.
12.
12.
13.
13.
13.
13.
14.
14.

MAY 79 0. 0. 87. 14

172

L. Putnam
QSM
42 of 84

cc
£

<
1 O

^

LL. O
;u. O

O

uJ

o

Q
.

co to u. o. i^.;

coItsi

oo

!
I

I
I

173
L

. P
utnam

Q
SM

43 of 84

* *„* *************************** *•* *********1

RISK ANALYSIS
**!

TITLE: SPERRY UNIVAC 4

r***********************

r*********

DATE: 16-Nov-79

THE TABLES BELOW SHOW THE PROBABILITY THAT IT WILL NOT TAKE MORE THAN
THE INDICATED AMOUNT OF TIME, EFFORT, AND DOLLARS TO DEVELOP YOUR
SYSTEM.

PROBABILITY TIME (MONTHS)

1. %
5. %

10. %
20. %
30. %
40. %

*- 50. %
60. %
70. %
80. %
90. %
95. %
99. %

24.3
25.3
25.8
2 6 . 4
26.8
2 7 . 2
27.5
27.8
28 .2
28.6
29.2
29.7
30.7

PROBABILITY PROFILE

PROBABILITY MANMONTHS COST (X $1000) INFLATED COST(X $1000)

1. %
5. %

13. %
20.- %
30. %
40. %

^50. %
60. %
70. %
80. %
90. %
95. %
99. %

54.
64.
69.
75.
79.
83.
86.
90.
94.
98.

104.
109.
118.

226.
265.
286 .
311.
329.
345.
360.
374 .
390.
408.
433.
454.
493.

247.
289.
312.
3 4 0 .
360.
377.
393.
409 .
4 2 6 .
445 .
473.
496.
539.

PROBABILITY PROFILE

174

L. Putnam
QSM
44 of 84

r *******

CALIBRATE

THIS FUNCTION ENABLES THE USER TO MAKE FUTURE ESTIMATES BASED ON HISTORICAL
DATA FROM HIS ORGANIZATION AS WELL AS ON THE TYPE'AND SIZE OF THE SYSTEM. IN
ESSENCE, **CALIBRATE** TAKES TIME AND MANPOWER DATA FROM PAST SOFTWARE
PROJECTS AND COMPUTES A TECHNOLOGY FACTOR FOR THE USER'S ORGANIZATION. THIS
FACTOR IS REALLY AN INDICATION OF THE STATE OF TECHNOLOGY WHICH A PARTICULAR
ORGANIZATION APPLIES TO A SOFTWARE PROJECT.

THE FOLLOWING HISTORICAL DATA IS REQUIRED:
(1) SYSTEM NAME (UP TO 20 CHARACTERS)
(2) TOTAL SYSTEM SIZE IN SOURCE STATEMENTS
(3) NUMBER OF MONTHS TO DEVELOP
(4) NUMBER OF MANMONTHS TO DEVELOP

HISTORICAL DATA WILL BE PROVIDED FOR HOW MANY SYSTEMS? 1

ENTER ALL DATA FOR EACH SYSTEM ON 1 LINE, SEPARATED BY COMMAS.

ENTER SYSTEM NAME, SIZE, MONTHS, AND MANMONTHS FOR SYSTEM 1.
> SPERR1,226800,33,357

SYSTEM NAME SIZE DE-V. TIME DEV. EFFORT LEVEL TECHNOLOGY
(MONTHS) (MANMONTHS) FACTOR

SPERRl/\5Sy. 226800. 33.0 357.0 1 13

-'NEV/'/'INT.
CK - /353O

AVERAGE TECHNOLOGY FACTOR IS 13.

L Putnam
.-,, QSM
1/5 45 of 84

SUMMARY OF INPUT PARAMETERS
t****i

SYSTEM: SPERRY UNIVAC PROG 1 DATE: 14-NOV-79

PROJECT START: 1075

COST ELEMENTS
$/MY 50090.
STD DEV ($/MY) 5000.

ENVIRONMENT
ONLINE DEV 0.40
DEVELOPMENT TIME 1.00
LANGUAGE ASSEMBLER

SYSTEM
TYPE COMMAND
LEVEL

& CONTROLLi f

i NEW W/ TNT.

MODERN PROGRAMMING PRACTICES
STRUCTURED PROG 1
TOP-DOWN DEVELOPMENT 2

INFLATION RATE .065

HOL USAGE 0.38
PRODUCTION TIME 0.00

REAL TIME CODE 0.50
UTILIZATION 0.50

DESIGN/CODE INSP ' 2
CHIEF PROGRAMMER TEAMS 1

EXPERIENCE
OVERALL 2
LANGUAGE 1

TECHNOLOGY FACTOR 13

SYSTEM TYPE 1
HARDWARE 2

* 13530

SIZE.
LOW 150648 HIGH 302952

ASS Y E1QUIV.

176
L. Putnam
QSM
46 of 84

***************: :************«****************!

****»*************:

TITLE: SPERRY UNIVAC PROG 1

SIMULATION
•********•

r****************

I*********

DATE: 14-NOV-79

SIMULATION RUNNING - PLEASE WAIT

SYSTEM SIZE (STMTS)

MINIMUM DEVELOPMENT TIME (MONTHS)

DEVELOPMENT EFFORT (MANMONTHS)

DEVELOPMENT COST (X $1000)
• (UNINFLATED DOLLARS)

(INFLATED DOLLARS)

ASSY.

MEAN

226800.

30.2

544.7

2273.

2461.

STD DEV

25384.

' 1.6

90.4

441.

478.

SENSITIVITY PROFILE FOR MINIMUM TIME SOLUTION
(EXPECTED VALUES OF TIME, EFFORT, AND COST FOR VARIOUS SYSTEM SIZES)

(-3 SD)
(-1 SD)

MOST LIKELY
(+1 SD)
(+3 SD)

SOURCE STMTS

150648.
201416.-
226800.
252184.
302952.

MONTHS

25
28
30
.31
34

.4

.7

.2

.6

.2

MANMONTHS

326.
473.
545.
632.
800.

COST (X 51000)

1358.
1973.
2273.
2634.
3334.

A CONSISTENCY CHECK WITH DATA FROM OTHER SYSTEMS OF THE SAME SIZE SHOWS:

TOTAL MANMONTHS (545.) WITHIN NORMAL RANGE
PROJECT DURATION (30.2 MONTHS) WITHIN NORMAL RANGE
AVG ft PEOPLE(18.) WITHIN NORMAL RANGE
PRODUCTIVITY (416. LINES/MM) WITHIN NORMAL RANGE

*************************************** * * ****************!

177

L. Putnam
QSM
47 of 84

**#
-

****#********•**
'

£
 *

«3^
*

05
*

a
 *

o
 «

05
*

CU
 «•ft

O
5

«
l-t,

-ft
CU

 «
z •«
t-H

*

t-J
 +«««**«.41*•ft***•*t-*t***«*-f-K«***41**

*

*

<T»
r-10Zrr^HHQ,—

 (

C
!)
0050
!

U<
]̂

(̂—
 4

2^>
H

0505C
U
ato..C

U
. ~

\

c
-

AR PROGRAMMING (SIMPLEX ALGORITHM)

CUz»—
 (

,_
J

C
L.

OC
U

ôH
-t

Z3
3
oCU£_i

CU3
3

g
H

toC
U

toaz0t-H

E
HUZ£
3

C
L,

toh-4
3
3
H

T) OR THE MINIMUM TIME IN WHICH

to0uQZ•*—
 -

E
H

0
5
0C

L.
U

.
C

U££H
- 1

Zl-t
£U33HC

Uzn£05CUE
H

C
U

Q0H

BASED ON THE ACTUAL MANPOWER, COST,

CU05^to£H,-T£3to05tu33f-4.

HJh
H"̂1

CO

C
U

cozû£U
J

E
H

to>
*

to,c£

MBINED WITH THE SYSTEM CONSTRAINTS

Ou^05C
U

tor~i

CU33E
H

CuOtoEHZl-l
<
£

05HC
OZouCU,
"E

Z
)

0C
U

T
;

UtoQZ,e£

STRAINED OPTIMAL SOLUTION.

zO.u(̂QCUI-H
>
4

OEH05CUhH. •)

05«^
C

UQC
U

QMÔccO
n

U
J

^Î2
3

o

ARS> 2 5 0 0 0 0 0

k
-3

fcj

OQZh
H

HtoOUHZC
U£ex..

O^
}

CU^>C
U
a££
3

£(-H

X<
£yCU33HO
5

CU£
-4

2C
U

/Nto33EHZOzh
H

C
U

£t-H
£
-i

EHZC
iJ
£C

U
oJC

U

^>C
UQ£ŝH
H

X*££05C
U
H'ZCU

00CUa,C
u
o05CUca£Z££̂h
-4

XicJI

£Q2^s:^ĥ
H

zI-H£C
U

3
3

E
H

0
5

C
U
HZCU

ranr-H/\CU£ME
H

OZh
H

QOZ*££*
ĵ

Ûfl,

EH<ca05<
£

0CDZ0C
U

;><^3
3ZÛ

SĤin-X• —

EHto0UEH05OCuCuUCU£MEH

*

^
*

^

*̂
r
H

i-H

•
22£

.
«•
mr̂(Mto33EHZ0ca•
V
O
m

.

.
ooCT*
f
N
C
M££

•
C
N
ininto33EHZ0£f
N•
S
)
ro

>0COuCOEHCUEHCu0toEHHH£i— (
JX
.̂

t
1^

ZCUCU2̂EHCUCQtoCUh
H
j"Z,
0CJCU05CuCL,
O1CUQ2S-t

O

H

£
 to

n
 O

Z
 U

CD£
 U

»H

£

Z

n

l-H
 EH

£

UI—
(

Htot-HJ<D
J

0
5Q
5

r>O

178
L. P

utnam
Q

S
M

48 of 84

(INTERPOLATION IN THE TRADE-OFF TABLE BETWEEN THESE LIMITS WILL PRODUCE ALL
ACCEPTABLE ALTERNATIVES. WOULD YOU LIKE TO SEE A TRADE-OFF ANALYSIS WITHIN
THESE LIMITS (Y OR N) ? Y

riME

10,. 2

31.2

32.2

33.2

34.2

35.2

36.0

MANMONTHS

552.

484.

42.7.

378.

336.

299.

275.

COST (x ?i00e

2298.

2018.

1779.

1574.

1398.

1246.

1144.

THE RESULTS SHOWN IN THIS TABLE CAN BE USED WITH DESIGN-TO-COST" OR NEW
TIME TO GENERATE AN UPDATED FILE AND AN ENTIRELY NEW 'ARRAY OF CONSEQUENT
RESULTS FOR MANLOADING, CASHFLOW., LIFE CYCLE, RISK ANALYSIS, COMPUTER TIME
AND FRONT END ESTIMATES.

r *

179
L. Putnam
QSM
49 of 84

r************************!

FRONT-END ESTIMATES
r******************************l

TITLE: SPERRY UNIVAC PROG 1

m** ******

DATE: 14~-Nov-79

FEASIBILITY
STUDY

FUNCTIONAL
DESIGN

(LOW)

6.3

(8.4J

TIME (MONTHS)
(EXPECTED)

7.5

10.1

(HIGH)

8.8

11.7

(LOW)

8.

(54v

EFFORT (MM) .
(EXPECTED)

30.

107.

(HIGH)

53.

161.

* * * * * * * * * * * * * * * ! : *

180
L. Putnam
QSM
50 of 84

**

DESIGN TO COST
**

TITLE: SPERRY UNIVAC PROG 1 ' DATE: 14-Nov-79

SLIM HAS PROVIDED ITS BEST ESTIMATE OF THE MINIMUM TIME AND CORRESPONDING
MAXIMUM EFFORT (AND COST) TO DEVELOP YOUR SYSTEM. THESE VALUES ARE:

MINIMUM TIME: 30.2 MONTHS
EFFORT: 545. MANMONTHS
COST (X $1000) : $ 2270. "

A GREATER EFFORT (OR COST) WOULD RESULT IN A VERY RISKY TIME SCHEDULE.
HOWEVER, IF A LOWER EFFORT IS SPECIFIED (WITHIN REASONABLE LIMITS),
DEVELOPMENT IS STILL FEASIBLE AS LONG AS YOU CAN TAKE MORE TIME.

ENTER DESIRED EFFORT IN MANMONTHS> 457

MEAN STD DEV

NEW DEVELOPMENT TIME (MONTHS) 31.7 1.7

NEW DEVELOPMENT COST (x'$1000) $ 1904. 316.

YOUR FILE IS UPDATED WITH THESE NEW PARAMETERS. RUN MANLOADING AND CASHFLOW
OR LIFE CYCLE TO SEE HOW THESE SAVINGS CAN BE REALISED.

A CONSISTENCY CHECK>WITH DATA FROM OTHER SYSTEMS OF THE SAME SIZE SHOWS:

TOTAL MANMONTHS (457.) WITHIN NORMAL RANGE
PROJECT DURATION { 31.7 MONTHS) WITHIN NORMAL RANGE
AVG I PEOPLE (14.) WITHIN NORMAL RANGE
PRODUCTIVITY (496. LINES/MM) WITHIN NORMAL RANGE

* *

L. Putnam

181 QSM

lol 5! of 84

***.

SYSTEM:

r * * * * * * * * * i r * * * * * * * * * * i
LIFE CYCLE

r * ***i

SPERRY UNIVAC PROG 1 DATE: 14-NOV-79

EQUIV.

THE TABLE BELOW SHOWS THE MEAN PROJECTED EFFORT
AND CASHFLOW (AND ASSOCIATED STANDARD DEVIATIONS)
OVER THE LIFE CYCLE OF THE SYSTEM. ALL
PROJECTIONS ARE BASED ON AN OPTIMAL APPLICATION OF
RESOURCES OVER TIME. THE INPUT PARAMETERS ARE:

MEAN STD DEV

DEVELOPMENT TIME (MONTHS) 31.7
LIFE CYCLE EFFORT(MM) 1161.5
AVG COST/MY (X $1000) . 50.
INFLATION RATE

QTR

DEC
MAR
JUN
SEP
DEC
MAR
JUN
SEP
DEC
MAR
JUN
SEP
DEC
MAR
JUN
SEP
DEC
MAR
JUN
SEP
DEC
MAR
JUN
SEP
DEC
MAR
JUN
SEP
DEC
MAR
JUN
SEP

ENDING

75
76
76
76
76
77
77
77
77
78
78
78
78
79
79
79
79
80
80
80
80
81
81
81
81
82
82
82
82
83
82
82

PEOPLE
MEAN STD

2.
5.
8.
11.
14.
17.
19.
21.
21.
23.
22.
22.
22.
21.
20.
18.
17.
15.
14.
12.'
11.
9.
8.
7.
6.
5.
4.
3.
.3.
2.
2.
1.

DEV

0.
1.
1.
2.
3.
3.
4.
4.
4.
4.
4.
3.
4.
4..
3.
3.
3.
2.
3.
2.
2.
2.
2.
2.
2.
1.
1.
1.
1.
1.
1.
0.

LIFE

0.065

COST/QTR
MEAN

22.
67.
108.
152.
189.
226.
260.
291.
303.
331.
322.
333.
330.
321.
310.
282.
273.
256.
234.
210.
188.
162.
142.
127.
112.
93.
77.
63.
50.
45.
34.
27.

1.7
192.7

5.
0

(X $1000)
STD DEV

5
17
21
36
46
47
62
62
64
65
65
57
62
70
63
5.4
55
52
53
43
43
36
37
32
32
26
23
19
18
16
14
11

•

•

•

•

•

•

•

•

•

•

»

•

•

•

•

•

•

•

»

•

•

•

•

»

•

•

•

•

•

•

• •

•

.010

CUM COST
MEAN

22.
89.

197.
347.
537.
761.
1019.
1307.
1614.
1937.
2267.
2595.
2924.
32-45.
3554.
3841.
4110.
4364.
4598.
4808.
4996.
5161.
5303.
5428.
5539.
5633.
5710.
5774.

• 5825.
5868.
5903.
5930.

(X $1000)
STD DEV

4.
17.
38.
68.

104.
148.
198.
254.
314.
376.
441.
504.
568.
631.
691.
747.
799.
848.
894.
935.
971.

1003.
1031.
1055.
1076.
1095.
1110.
1122.
1132.
1140.
1147.
1153.

CYCLE PROJECTIONS

182
L. Putnam
QSM
52 of 84

oO
*o

~> u: o
2

 p-3
C

>-• W

O

E
~ Q

E

-J

 O
<

 O
O

U

) O

E
-

2

W
o

-

M

<
4!

<

hi
<

2Z

 -
O

 -Z
o

2
 J

•=> E-
•-

en
z

uo
C

J J

<

O

C

o

a
. a

ru(ficr

w

Q
 -s?

m
•a. s: do

o

CO

C
J <*1

0°

0_K

tT-U
UI

__4,._

0CM

-^''3
-

'-0

183
L

. P
utnam

Q
SM

53 of 84

r******+***:

RISK ANALYSIS

I*************************

r ** * * *i

TITLE: SPERRY UNIVAC PROG 1

:*********: r************

DATE: 14-Nov-79

THE TABLES BELOW SHOW THE PROBABILITY THAT IT WILL NOT TAKE MORE THAN
THE INDICATED AMOUNT OF TIME, EFFORT, AND DOLLARS TO DEVELOP YOUR
SYSTEM.

PROBABILITY TIME (MONTHS)

EXPECTED

1. %
5. %

10. %
20. %
30. %
40. %

^- 50. %
60. %
70. %
80. %
90. %
95. %
99. %

27.8
• 28.9

29.6
30.3
30.8
31.3
31.7
32.1
32.6
33.1
33.8
34.4

' 35.6

PROBABILITY PROFILE

PROBABILITY MANMONTHS COST (X $1000) INFLATED COST(X $1000)

1. %
5. %

10. %
20. %
30. %
40. %

— 50. %
60. %
70. %
80. %
90. %
95. %
99. %

281.
332.
360.
393.
417.
438.
457.
476.
497.
521.
554.
582.
633.

1169.
1384.
1499..
1638.
1739.
1824.
1904.
1984.
2070.
2170.
2309.
2424.
2639.

1271.
1505.
1629.
1780.
1889.
1982.
2069.
2156.
2249.
2358.
2509.
2634.
2868.

PROBABILITY PROFILE

184
L. Putnam
QSM
54 of 84

**

DOCUMENTATION

TITLE: SPERRY UNIVAC PROG 1 DATE: 14-Nov-79'

IT 15 POSSIBLE TO ESTIMATE THE NUMBER OF PAGES OF DOCUMENTATION, BASED
ON DATA COLLECTED FROM SEVERAL HUNDRED SYSTEMS.

THE EXPECTED NUMBER FOR YOUR SYSTEM IS 15876 PAGES.

THE 90% RANGE IS FROM 4536 TO 38556 PAGES.

ACTUAL-. BOST

L. Putnam

18< QSM
Io5 . 55 of 84

ENTER SYSTEM NAME, SIZE, MONTHS, AND MANMONTHS FOR SYSTEM 1.
> SPERR1 HOL,46068,33,457

SYSTEM NAME .SIZE DEV. TIME DEV. EFFORT LEVEL TECHNOLOGY
(MONTHS) {MANMONTHS} FACTOR

SPERR1 HOL 46068.. 33.0 457.0

AVERAGE TECHNOLOGY FACTOR IS 6.

NEW Wl INT.

C^ - 2S&4-

* *

L. Putnam

SUMMARY OF INPUT PARAMETERS
m ** *i

SYSTEM: SPERRY UNIVAC PROG 1 DATE: 16-Nov-79

PROJECT START: 1075

COST ELEMENTS
S/MY
STD DEV ($/MY)-

50000,
5000,

ENVIRONMENT
ONLINE DEV 0.40
DEVELOPMENT TIME 1.00
LANGUAGE JOVIAL

SYSTEM
TYPE COMMAND & CONTROL
LEVEL 1

MODERN PROGRAMMING PRACTICES
STRUCTURED PROG 1
TOP-DOWN DEVELOPMENT 2

INFLATION RATE .065

HOL USAGE 0.38
PRODUCTION TIME 0.00

REAL TIME CODE 0.50
UTILIZATION 0.50

DESIGN/CODE INSP 2
CHIEF PROGRAMMER TEAMS 1

EXPERIENCE
OVERALL
LANGUAGE

TECHNOLOGY FACTOR

2
1

SYSTEM TYPE 1
HARDWARE 2

SIZE
LOW 29913,

t * * * * * * * * * * * * * * i

HOL EQUIV.
HIGH

r * * * * * * * i

6 2 2 2 3 ,

187
L. Putnam
QSM
57 of 84

• •••••I**-*

**********!

TITLE: SPERRY UNIVAC PROG 1 DATE: 14-NOV-79

HOL EQLJ/V.
SIMULATION RUNNING - PLEASE WAIT

MEAN STD DEV

SYSTEM SIZE (STMTS) 46068. 5385.

MINIMUM DEVELOPMENT TIME (MONTHS) 31.0 1.7

DEVELOPMENT EFFORT (MANMONTHS) . 536.7 92.8

DEVELOPMENT COST (X $1000)
(UNINFLATED DOLLARS) 2234. 437.

(INFLATED DOLLARS) 2423. 474.

SENSITIVITY PROFILE FOR MINIMUM TIME SOLUTION
(EXPECTED VALUES OF TIME, EFFORT, AND COS'T FOR VARIOUS SYSTEM SIZES)

c

(-3 SD)
(-1 SD)

MOST LIKELY
(+1 SD)
{+3 SD)

SOURCE STMTS

29913.
40683.
46068.
51453.
62223.

MONTHS

25.8
29.4
31.0
32.6
35.3

MANMONTHS

246. •
439.
537.
643.
853.-

COST (X 51000)

1025.
1829.
2234.
2680.
3553.

A CONSISTENCY CHECK WITH DATA FROM OTHER SYSTEMS OF THE SAME SIZE SHOWS:

TOTAL MANMONTHS (537.) WITHIN NORMAL RANGE
PROJECT DURATION (31.0 MONTHS) WITHIN NORMAL RANGE
AVG f PEOPLE(17.) WITHIN NORMAL RANGE
PRODUCTIVITY (86. LINES/MM) WITHIN NORMAL RANGE

L. Putnam
188 . ' QSM

58 of 84

•*******»•

LINEAR PROGRAM
***!

TITLE: SPERRY UNIVAC PROG 1

r ******

DATE: 14-NOV-79

THIS FUNCTION USES THE TECHNIQUE OF LINEAR PROGRAMMING (SIMPLEX ALGORITHM)
TO DETERMINE THE MINIMUM EFFORT (AND COST) OR THE MINIMUM TIME IN WHICH
A SYSTEM CAN BE BUILT. THE RESULTS- ARE BASED ON THE ACTUAL MANPOWER, COST,
AND SCHEDULE CONSTRAINTS OF THE USER, COMBINED WITH THE SYSTEM CONSTRAINTS
YOU HAVE PROVIDED EARLIER TO YIELD A CONSTRAINED OPTIMAL SOLUTION.

ENTER THE MAXIMUM DEVELOPMENT COST IN DOLLARS> 2250000

ENTER MAXIMUM DEVELOPMENT TIME IN MONTHS> 36

ENTER THE MINIMUM AND MAXIMUM NUMBER OF PEOPLE YOU
CAN HAVE ON BOARD AT PEAK MANLOADING TIM^> 10,30

TIME EFFORT COST (X $1000)

MINIMUM
COST

MINIMUM
TIME

36.0 MONTHS

31.1 MONTHS

299. MM

540. MM

1246.

2250.

YOUR REALISTIC TRADE-OFF REGION LIES BETWEEN THE LIMITS OF THE TABLE ABOVE.

189'
L. Putnam
QSM
59 of 84

(INTERPOLATION IN THE TRADE-OFF TABLE BETWEEN THESE LIMITS WILL .PRODUCE ALL
ACCEPTABLE ALTERNATIVES. WOULD YOU LIKE TO SEE A TRADE-OFF ANALYSIS WITHIN
THESE LIMITS (Y OR N) ? Y

riME

31.1

32.1

33.1

34.1

35.1

36.0

MANMONTHS

540.

476.

421..

373.

233.

299.

COST (X $1000

2250.

1982.

1753.

1556.

1386.

1246.

THE RESULTS SHOWN IN THIS TABLE CAN BE USED WITH DESIGN-TO-COST OR NEW
TIME TO GENERATE AN UPDATED FILE AND AN ENTIRELY NEW ARRAY OF CONSEQUENT
RESULTS FOR MANLOADING, CASHFLOW, LIFE CYCLE, RISK ANALYSIS, COMPUTER TIME
AND FRONT END ESTIMATES.

L. Putnam

190 QSM
1W 60 of 84

**

DESIGN TO COST

TITLE: SPERRY UNIVAC PROG 1 DATE: 14-Nov-79

SLIM HAS PROVIDED ITS BEST ESTIMATE OF THE MINIMUM TIME AND CORRESPONDING
MAXIMUM EFFORT (AND COST) TO DEVELOP YOUR SYSTEM. THESE VALUES ARE:

MINIMUM TIME: 31.0 MONTHS
EFFORT: " 537. MANMONTHS
COST (X $1000): $ 2236.

A GREATER EFFORT (OR COST) WOULD RESULT IN A VERY RISKY TIME SCHEDULE.
HOWEVER, IF A LOWER EFFORT IS SPECIFIED (WITHIN REASONABLE LIMITS),
DEVELOPMENT IS STILL FEASIBLE AS LONG AS YOU CAN TAKE MORE TIME.

ENTER DESIRED EFFORT IN MANMONTHS> 457 ^m /\ „ _
A C TUA L

MEAN STD DEV

NEW DEVELOPMENT TIME (MONTHS) 32.4 1.8

NEW DEVELOPMENT COST (X $1000) $ 1904. 329.

YOUR FILE IS UPDATED WITH THESE NEW PARAMETERS. RUN MANLOADING AND CASHFLOW
OR LIFE CYCLE TO SEE HOW THESE SAVINGS CAN BE REALIZED.

A CONSISTENCY CHECK WITH DATA FROM OTHER SYSTEMS OF THE SAME SIZE SHOWS:

TOTAL MANMONTHS (457.) WITHIN NORMAL RANGE
PROJECT DURATION (32.4 MONTHS) LONGER THAN NORMAL TIME DURATION
AVG I PEOPLE(14.) WITHIN NORMAL RANGE
PRODUCTIVITY (101. LINES/MM) WITHIN NORMAL RANGE

t**

L. Pumam
QSM
61 of 84

***************:

SYSTEM: SPERRY UNIVAC PROG 1

r * * * * * * * i

LIFE CYCLE
r *

DATE: 14-Nov-79

HOL EQLJIV.

THE TABLE BELOW SHOWS THE MEAN PROJECTED EFFORT
AND CASHFLOW (AND ASSOCIATED STANDARD DEVIATIONS)
OVER THE LIFE CYCLE OF THE SYSTEM. ALL
PROJECTIONS ARE BASED ON AN OPTIMAL APPLICATION OF
RESOURCES OVER TIME. THE INPUT PARAMETERS ARE:

MEAN STD DEV

DEVELOPMENT TIME (MONTHS)
LIFE CYCLE EFFORT (MM)
AVG COST/MY '(X $1000)
INFLATION RATE

32.4
888.6
50.

0.065

1.8
153.7

5.
0.010

QTR ENDING PEOPLE
MEAN STD DEV

COST/QTR (X $1000)
MEAN STD DEV

CUM COST (X $1000)
MEAN STD DEV

DEC 75
MAR 76
JUN 76
SEP 76
DEC 76
MAR 77
JUN 77
SEP 77
DEC 77
MAR 78
JUN 78
SEP 78
DEC 78
MAR 79
JUN 79
SEP 79
DEC 79
MAR 80
JUN 80
SEP 80
DEC 80
MAR 81
JUN 81
SEP 81
DEC 81
MAR 82
JUN 82
SEP 82
DEC 82
MAR 83

2.
6.
9.
11.
15.
17.
18.
20.
20.
20.
20.
19.
17.
16.
15.
13.
11.
9.
8.
7.
5.
5.
4.
3.
2.
2.
1.
1.
1.
1.

0.
1.
2.
2.
3.
3.
3.
3.
4.
4.
3.
3.
3.
3.
3.
3.
2.
2.
2.
2.
1.
1.
1.
1.
1.
1.
1.
0.
0.
0.

23.
71.
117.
153.
196.
231.
248.
271.
281.
286.
290.
284.
265.
244.
233.
204.
183.
158.
134.
113.
95.
82.
64.
51.
39.
32.
26.
19.
15. •
10.

6.
16.
26.
36.
47.
52.
55.
51.
58.
59.
57.
54.
55.
56.

' 50.
45.
36.
31.

. 32.
31.
25.
25.
20.
17.
15.
12.
11.
10.
7.
5.

23.
94.
211.
366.
559.
787.
1039.
1307.
1588.
1873.
2159.
2441.
2708.
2953.
3181.
3388.
3569.
3728.
3863.
3977.
4072.
4152.
4218.
4269.
4309.
4340.
4366.
4386.
4401.
4411.

LIFE CYCLE PROJECTIONS

192

5.
18.
41.
72.

109.
154.
203.
256.
311.
366.
422.
477.
530.
578.
622.
663.
698.
729.
756.
778.
796.
812.
825.
835.
843.
849.
854.
858.
861.
863.

L. Putnam
QSM
62 of 84

3
o

;!|1IIIp]|

o

o

o

o

o

o
CO

r^
vo

in

^

f^

ii]i|iI!!I!i1,

j
.

ii

.

1

——

•̂

t.«

O

c

aCu
-t

u
 t.

z -

>,o:cruC
L

_
l

CMU 6, U1L-I KE.J\l-> 1AI-IE.

38% IIOL; 90,000 DSLOC
8057 PACES OF

DOCUMENTATION

IIOL EQUIVALENT

'

1
(3

"<

3
L

'~
,

0

0

1
--

i!Ii1i;

-
1i

—
 j —

 |
' d

 j
^
i

!Ii'i1ji
• •

i;i

'•
i. \i

_
T

-f^
 <-

.

• 1
•

•
i N«

-̂p^
^
=
W

^

r _
.

1
 "^

•«c.0

iI1k

: . . ;

^«'•tJ5-
c^C,N

' 1

ÎKh| ,

Ii

y
rf

&
 *

;
.
 |

: i
•

!ii•

!i•

,

'

|

,

'

;

*/

8
•

• iiI
. , :

. :
<

•
:

:
•

'.

'
'

(

. •
|

\—

.1i; i —

1

: i : . •
•i

i

i .
•

ij
^-

•
^

i £; ^

—
 b

5!
i

O

O

O

O

O

O
GO

r**
vo

tf>
^

<n

193

o

.
»

Ii
*

ji*

:
»• ' • _ .

. ; I
'

'
t'

. :

-,'•>
..

•
i

^—
 *

i

—-n t—

—
 *•

V—

_

O

J

1

:
i •i

•

«
i

i••4
 !

- —
 1

14

^̂o

OC
M

-
,
 :

*»••

^
i

IŜI
'

^ XT

4

,

<
H

;

H
H

.

^*^*^

^
P^

0

"JC

iunr

J
O

,

•u«r

•150

-S
n,

»unr

jew

•uer

•1X3

S
n,

A
tnr

JO
,

uer

\O
N

J
O

,

•-•er

' a*SJO
,

uer

2

£?£

a

L. P
uinam

Q
S

M
63 of 84

**

RISK ANALYSIS
I**
TITLE: SPERRY UNIVAC PROG 1 DATE: 14-Nov-79

THE-TABLES BELOW SHOW THE PROBABILITY THAT IT WILL NOT TAKE MORE THAN
THE INDICATED AMOUNT OF TIME, EFFORT, AND DOLLARS TO DEVELOP YOUR
SYSTEM.

PROBABILITY TIME CuONTHS)

EXPECTED

1. %
5. %

10. %
20. %
30. %
40. %

•^- 50. %
60. %
70. %
80. %
90. %
95. %
99. %

2 8 . 2
2 9 . 4
30.1
30.8
31.4
31.9
3 2 . 4
32.8
33.3
33.9
3 4 . 7
35.4
36.6

PROBABILITY PROFILE

PROBABILITY MANMONTHS COST (X S1000) INFLATED COSTfX $1000)

1. %
5 . %

10. %
20. %
30. %
40. %

-50. %
60. %
70. %
80. %
90. *
95. %
99 . t

273.
327. -
356.
390.
416.
437.
457.-
477.
498.
524.
558.
587.
641.

1138.
1362.
1482.
1627.
1732.
1821.
1904.
1987.
2077.
2181.
2326.
2446.
2671.

1239.
1483.
1613.
1771.
1885.
1982.
2073.
2164.
2261.
2375.
2533.
2663.
2937.

PROBABILITY PROFILE

194
L. Puinam
QSM
64 of 84

**

DOCUMENTATION

TITLE: SPERRY UNIVAC PROG 1 DATE: 14-NOV-79

IT IS POSSIBLE TO ESTIMATE THE NUMBER OF PAGES OF DOCUMENTATION, BASED
ON DATA COLLECTED FROM SEVERAL HUNDRED SYSTEMS.

THE EXPECTED NUMBER FOR YOUR SYSTEM IS 3224 PAGES.

THE 90% RANGE IS FROM. 921 TO 7831 PAGES.

* *

A C T U A L ; 3O57

L. Putnam
QSM

195 5 5 o f S 4

W * * * * * « * * » * » * * * * * * * * * * * * » * * * « * * * * * * * » * * * » * * * * * * * * » * * * « * * * * * * * « * X * * * * * * * * * * * * * *

CALIBRATE
* » * * * * * * * * » * » * * * * * * * * * * * * * * * * « * * * * * * * * * * « * x * * * * * * «

-HIS FUNCTION ENABLES THE USER TO MAKE FUTURE ESTIMATES 3ASED ON HISTORICAL
DATA FROM HIS ORGANIZATION A5 WELL AS G!N THE TYPE AND SIZE OF THE SYSTEM. IN
ESSENCE, **CALI3RATE*-* TAKES TIME AND MANPOWER D.ATA FROM PAST SOFTWARE
PROJECTS AND COMPUTES A TECHNOLOGY FACTOR FOR THE USER1 "0...
1

ENTER ALL DATA FOR EACH SYSTEM ON 1 LINE, SEPARATED BY COMMAS.

ENTER SYSTEM NAME, SIZE, MONTHS, AND MANMONTH3 FOR SYSTEM 1.
> SPERRY UK I VAC 2,500000,51,2632

SYSTEM NAME"' S I Z E D E V . T I M E
(- M O N T H S)

DEV . E F F O R T
(M A N M G N T H 5)

L E V E L TECHNOLOGY
FACTOR

SPERRY U N I V A C 2 5 6 0 0 0 0 . 51.0 2 6 5 2 . i) 11

NEW IA// INT.

AVERAGE TECHNOLOGY FACTOR. IS 11.

196lyv

L. Putnam
QSM
66 of 84

x**x*****«**»*****i rx*»**«********«x»*«***x«*«***************x**

SUMMARY OF INPUT PARAMETERS
•it***********************:

SYSTEM: SPERRY UNIVAC PRCGV 2

tx»*x****«*****»****x**«x*»*»*****»******jc*«**

DATE: 13-Aug-79

PROJECT START: 175

COST ELEMENTS

5TD DEV (5/MY)

ENVIRONMENT
ONLINE DEV
DEVELOPMENT TIME
LANGUAGE

50000.
5000.

3.90
1.00

JOVIAL

SYSTEM
TYPE COMMAND & CONTROL
LEVEL 1

MODERN PROGRAMMING PRACTICES
STRUCTURED PROG 1
TOP-DOW DEVELOPMENT 1

EXPERIENCE
OVERALL , 2
LANGUAGE 2

TECHNOLOGY
FACTOR

SIZE
LOW

11

453000.

INFLATION RATE .065

HOL USAGE 2.99
PRODUCTION TIME 3.10

REAL TIME CODE 3.05
UTILIZATION a.53

DESIGN/CODE INSP 1
CHIEF PROGRAMMER TEAMS 1

SYSTEM TYPE 2
HARDWARE 2

HIGH 553300.

**********************K**x*x***XX**************>r*ir***ir***************ir********

197
L. Putnam
QSM
67 of 84

* *

*********************************!

T I T L E : S P E R R Y UN 17AC PROG 2

* *

: * * ******

DATE: 13-Aug-79

*** S I M U L A T I O N R U N N I N G - PLEASE WAIT ***

SYSTEM SIZE (STMTS)

MINIMUM DEVELOPMENT TIME (MONTHS)

DEVELOPMENT EFFORT (MANMONTHS)

DEVELOPMENT COST (X $130&)
(UNINFLATED DOLLARS)

(INFLATED DOLLARS)

MEAN

500000.

52.3

2811.1

11638..

13436.

STC DEV

16667.

1.4

274.9

1654.

1314.

SENSITIVITY PROFILE FOR MINIMUM TIME SOLUTION
(EXPECTED VALUES OF TIME, EFFORT, AND COST FOR VARIOUS SYSTEM SIZES)

SOURCE STMTS MONTHS MANMONTHS COST (X

,-3 3D! 45E000. 49.9 2471. • 10295.
(-1 3D) 433333. 51.4 2739. 11236.

:3T LIKELY 523'43G. 52.3 ' 2311. . 11633.
(+1 3D) 516657. 52.9 2951. 12296.
(+3 3D) 552236. 54.3 . 3198. 13325.

CONSISTENCY CHECK WITH DATA FROM OTHER SYSTEMS CF THE SAME SIZE SHOWS

TOTAL MANMON'THS (2.311.) WITHIN NORMAL RANGE
PROJECT DURATION (52.3 MONTHS) WITHIN NORMAL RANGE
AVG S PEOPLE(54.) WITHIN NORMAL RANGE
PRODUCTIVITY (176. LINES/MM) WITHIN NORMAL RANGE

198
L. Putnam
QSM
68 of 84

****«•***»«***********»***!

TITLE: SPERRY UNIVAC PROG 2

RISK ANALYSIS
rx*xx***x*************it*xjr]r*ir»*******ir****r****

DATE: 13-Aug-79

THE TABLES BELOW SHOW THE PROBABILITY THAT IT WILL NOT TAKE MORE THAN
THE INDICATED AMOUNT OF TIME, EFFORT, AND DOLLARS TO DEVELOP YOUR
SYSTEM.

PROBABILITY T I M E (M O N T H S)

EXPECTED

1.- %
5. %

10. %
20. %
33. %
40. *

•*• sa. •%
63. %
73. %
80. %
93. %
95. %
99. %

49. a
53 . 6
5 a . 5
51.1
51.5
51.9
52.3
5 2 . 6
53 . ki'
53.5
54.1
5 4 . 6
55.5

PROBABILITY PROFILE

PROBABILITY MANMONTHS COST (X §1300; INFLATED COSKX

1. %
5. %

13 . %
20. %
33. %
43. %

— 53. %
60. %
70. %
80. %
90. %
95.. %
99. %

2171.
2359.
2459.
2533.
-2667.
2742.
2811.
2831.
2955.
3k)42..
3163.
3263.
3451.

9347.
9328.

16245.
13749.
11113.
11423.
11713.
12303.
12313.
12677.
13131.
13597.
14378.

13378.
11273.
11751.
12329. -
12746.
13133.
13435.
13767.
14123.
14541.
15119.
15597.
16492.

PROBABILITY PROFILE

199
L. Putnam
QSM
69 of 84

200

L
. P

utnam
Q

SM
70 of 84

AVAILABLE FUNCTIONS ARE:
CALIBRATE
EDITOR
ESTIMATE
BYE .

FUNCTION? EST

INPUT FILENAME? SPERR3

INPUT DATA CHECK - OK

L. Putnam

201 QSM
ZU1 71 of 84

CALIBRATE

THIS FUNCTION ENABLES THE USER TO MAKE FUTURE ESTIMATES BASED ON HISTORICAL
DATA FROM HIS ORGANIZATION AS WELL AS ON THE TYPE AND SIZE OF THE SYSTEM. IN
ESSENCE, '"CALIBRATE** TAKES TIME AND MANPOWER DATA FROM PAST SOFTWARE
PROJECTS AND COMPUTES A TECHNOLOGY FACTOR FOR THE USER'S ORGANIZATION. THIS
FACTOR IS REALLY AN INDICATION OF THE STATE OF TECHNOLOGY WHICH A PARTICULAR
ORGANIZATION APPLIES TO A SOFTWARE PROJECT.

THE FOLLOWING HISTORICAL DATA IS REQUIRED:
(1) SYSTEM NAME (UP TO 20 CHARACTERS)
(2) TOTAL SYSTEM SIZE IN SOURCE STATEMENTS
(3) NUMBER OF MONTHS TO DEVELOP
(4) NUMBER OF MANMONTHS TO DEVELOP

HISTORICAL DATA WILL BE PROVIDED FOR HOW MANY SYSTEMS? 1

ENTER ALL DATA FOR EACH SYSTEM ON 1 LINE, SEPARATED BY COMMAS.

ENTER SYSTEM NAME, SIZE, MONTHS, AND MANMONTHS FOR SYSTEM 1..
> SPERR3,1-6724,26,399

SYSTEM NAME SIZE DEV. TIME DEV. EFFORT LEVEL TECHNOLOGY
(MONTHS) {MANMONTHS) FACTOR

SPERR3 16724. 26.0 399.0 3 2

AVERAGE TECHNOLOGY FACTOR IS

L. Putnam
QSM
72 of 84

SUMMARY OF INPUT DATA PRINTED (Y OR N)? Y

SUMMARY OF INPUT PARAMETERS
* * * •
SYSTEM: SPERRY UNIVAC 3

:***+***********

r ******

DATE: lS-Nov-79

PROJECT START: 175

COST ELEMENTS
$/MY
STD DEV (S/MY)

50000,
5000,

ENVIRONMENT
ONLINE DEV 0.25
DEVELOPMENT TIME 0.20
LANGUAGE JOVIAL

INFLATION RATE .070

HOL USAGE 0.53
PRODUCTION TIME 0.80

SYSTEM
TYPE COMMAND
LEVEL

& CONTROL
2

REAL TIME CODE 0.20
UTILIZATION 0.52

MODERN PROGRAMMING PRACTICES
STRUCTURED PROG 2
TOP-DOWN DEVELOPMENT 3

DESIGN/CODE INSP 2
CHIEF PROGRAMMER TEAMS 2

EXPERIENCE
OVERALL
LANGUAGE

SYSTEM TYPE - 2
HARDWARE 3

TECHNOLOGY
FACTOR

SIZE
LOW 20600, HIGH 32600.

203

L. Putnam
QSM
73 of 84

TITLE: SPERRY UNIVAC 3

SIMULATION
r* i r***************

DATE: 16-NOV-79

SIMULATION RUNNING - PLEASE WAIT

SYSTEM SIZE (STMTS)

MINIMUM DEVELOPMENT TIME (MONTHS)

DEVELOPMENT EFFORT (MANMONTHS)

DEVELOPMENT COST (X $1000)
(UNINFLATED DOLLARS)

(INFLATED DOLLARS)

MEAN

16724.

25.3

471.6

1961.

2106.

STD DEV

776.

0.8

51.7

290.

312.

SENSITIVITY PROFILE FOR MINIMUM TIME SOLUTION
(EXPECTED VALUES OF TIME, EFFORT, AND COST FOR VARIOUS SYSTEM SIZES)

(

(-3 SD)
(-1 SD)

MOST LIKELY
(+1 SD)
(+3 SD)

SOURCE STMTS

14396.
15948.
16724.
17500.
19052.

MONTHS

23.6
24.7
25.3
25.7
26.7

MANMONTHS

391.
446.
472.
503.
605.

COST (X $1000)

1630.
1859.
1961.
2095.
2520.

A CONSISTENCY CHECK WITH DATA FROM OTHER SYSTEMS OF THE SAME SIZE SHOWS:

TOTAL MANMONTHS (472.)
PROJECT DURATION (25.3 MONTHS)
AVG I PEOPLE (19.)
PRODUCTIVITY (35. LINES/MM)

GREATER THAN NORMAL EFFORT
LONGER THAN NORMAL TIME DURATION
GREATER THAN NORMAL I OF PEOPLE
LESS THAN NORMAL PRODUCTIVITY

204
L. Putnam
QSM
74 of 84

AVAILABLE OPTIONS ARE:

NEW TIME
DESIGN-TO-COST
PERT SIZING
DESIGN-TO-RISK(DTR)
FRONT-END ESTIMATES

OPTION? LIN

LINEAR PROGRAM
MANLOADING
CASHFLOW
LIFE CYCLE

RISK ANALYSIS
BENEFIT ANALYSIS
MILESTONES
CPU USAGE

DOCUMENTATION
ALL ANALYSES
HELP
END

LINEAR PROGRAM

TITLE: SPERRY UNIVAC 3 DATE: 16-NOV-79

THIS FUNCTION USES THE TECHNIQUE OF LINEAR PROGRAMMING (SIMPLEX ALGORITHM)
TO DETERMINE THE MINIMUM EFFORT (AND COST) OR THE MINIMUM TIME IN WHICH
A SYSTEM CAN BE BUILT. THE RESULTS ARE BASED ON THE ACTUAL MANPOWER, COST,
AND SCHEDULE CONSTRAINTS OF THE USER, COMBINED WITH THE SYSTEM CONSTRAINTS
YOU HAVE PROVIDED EARLIER TO YIELD A CONSTRAINED OPTIMAL SOLUTION.

ENTER THE MAXIMUM DEVELOPMENT COST IN DOLLARS> 2000000

ENTER MAXIMUM DEVELOPMENT TIME IN MONTHS> 30

ENTER THE MINIMUM AND MAXIMUM NUMBER OF PEOPLE YOU
CAN HAVE ON BOARD AT PEAK MANLOADING TIME> 15,30

TIME EFFORT COST .(X $1000)

MINIMUM
COST

MINIMUM
TIME

28.8 MONTHS

25.3 MONTHS

277. MM

471. MM

1153.

1962.

YOUR REALISTIC TRADE-OFF REGION LIES BETWEEN THE LIMITS OF THE TABLE ABOVE.

205
L. Putnam
QSM
75 of 84

(INTERPOLATION IN THE TRADE-OFF TABLE BETWEEN THESE LIMITS WILL PRODUCE ALL
ACCEPTABLE ALTERNATIVES. WOULD YOU LIKE TO SEE A TRADE-OFF ANALYSIS WITHIN
THESE LIMITS (Y OR N) ? Y.

TIME MANMONTHS COST (X $1000)

25.3

26.3

27.3

28.3

28.8

471.

403.

347.

301.

277.

1962.

1680.

1447.

1253.

1153.

THE RESULTS SHOWN IN THIS TABLE CAN BE USED WITH DESTGN-TO-COST OR NEW
TIME TO GENERATE AN UPDATED FILE AND AN ENTIRELY NEW ARRAY OF CONSEQUENT
RESULTS FOR MANLOADING, CASHFLOW, LIFE CYCLE, RISK ANALYSIS, COMPUTER TIME
AND FRONT END ESTIMATES.

206
L. Putnam
QSM
76 of 84

[it*****************************

DESIGN TO COST

TITLE: SPERRY UNIVAC 3 DATE: 16-Nov-7S

SLIM HAS PROVIDED ITS BEST ESTIMATE OF THE MINIMUM TIME AND CORRESPONDING
MAXIMUM EFFORT (AND COST) TO DEVELOP YOUR SYSTEM. THESE VALUES ARE:

MINIMUM TIME: 25.3 MONTHS
EFFORT: 472. MANMONTHS
COST (X $1000): $ 1965.

A GREATER EFFORT (OR COST) WOULD RESULT IN A VERY RISKY TIME SCHEDULE.
HOWEVER, IF A LOWER EFFORT IS SPECIFIED (WITHIN REASONABLE LIMITS),
DEVELOPMENT IS STILL FEASIBLE AS LONG AS YOU CAN TAKE'MORE TIME.

i

ENTER DESIRED EFFORT IN MANMONTHS> 399

MEAN STD DEV

NEW DEVELOPMENT TIME (MONTHS) 26.3 0.8

NEW DEVELOPMENT COST (X $1000) $ 1663. 182.

YOUR- FILE IS UPDATED WITH THESE NEW PARAMETERS. RUN MANLOADING AND CASHFLOW
OR LIFE CYCLE TO SEE HOW THESE SAVINGS CAN BE REALIZED.

A -CONSISTENCY CHECK WITH DATA FROM OTHER' SYSTEMS OF THE SAME SIZE SHOWS:

TOTAL MANMONTHS (399.) GREATER THAN NORMAL EFFORT
PROJECT DURATION { 26.3 MONTHS) LONGER THAN NORMAL TIME DURATION
AVG # PEOPLE (15.) GREATER THAN NORMAL f OF PEOPLE
PRODUCTIVITY (42. LINES/MM) LESS THAN NORMAL PRODUCTIVITY

«*»* * *»«*»»*»* * * * * * * * *«* * *»* * * * * * * * *»* * * *«* *«* * * * * * * *«* * * * * * * i

L. Putnam

207 QSM
M' 77 of 84

r*********i r ***** *i r *******

RISK ANALYSIS
r************i

TITLE: SPERRY UNIVAC 3

r*******************

DATE: 16-NOV-79

THE TABLES BELOW SHOW THE PROBABILITY THAT IT WILL NOT TAKE MORE THAN
THE INDICATED AMOUNT OF TIME, EFFORT, AND DOLLARS TO DEVELOP YOUR
SYSTEM.

PROBABILITY TIME (MONTHS)

1. %•
5. % .

10. %
20. %
30. %
40. %
50. % '
60. %
70. %
80. %
90. %

. 95. %
99. %

24 .5
25.0
25.3
25.7
25.9
26.1
26.3
26 .5
26 .7
27.0
27 .3
27 .6
28.2

PROBABILITY PROFILE

PROBABILITY MANMONTHS COST (X $1000) INFLATED COST(X $1000)

1. %
5. %

10. %
20. %
30. %
40. %
50. %
60. %
70. %
80.. %
90. %
95. %
99. %

297.
327.
343.
362.
376.
388.
399.
410.
422.
436.
455.
471.
501.

1239.
1363.
1429.
1509.
1567.
1616.
1663.
1709.
1758.
1816.
1896.
1962.
2086.

1334.
1468.
1539.
1625.
1688.
1741.
1791.
1840.
1893.
1956.
2042.
2113.
2247.

PROBABILITY PROFILE

208
L. Putnam
QSM
78 of 84

***********!

*********************:

TITLE: SPERRY UNIVAC 3

r*********i •**********»«*«*«»!

MANLOADING
t* ** »* »i

DATE: 16-Nov-79

THE TABLE BELOW SHOWS THE MEAN PROJECTED EFFORT
AND ASSOCIATED (+ OR -) STANDARD DEVIATION REQUIRED
FOR DEVELOPMENT. THE INPUT PARAMETERS ARE:

DEVELOPMENT EFFORT (MM)
DEVELOPMENT TIME (MONTHS)

MEAN

399.0
26.3

STD DEV

41.4
0.8

*** SIMULATION RUNNING - PLEASE WAIT

TIME

JAN
FEB
MAR
APR
MAY
JUN.
JUL
AUG
SEP
OCT
NOV
DEC
JAN
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
OCT
NOV
DEC
JAN
FEB

MAR

75
75
75
75
75
75
75
75
75
75
75
75
76
76
76
76
76
76
76
76
76
76
76
76
77
77

77

PEOPLE/MONTH

1,
5,
8,

12,
14.
17.
19,
21,
22,
23,
23,
23,
23,
22,
21.
19.
18.
16.
15.
13.
11.
10.
9.
7.
6.
5,

2.

.83

.38

.88

.17

.99

.61
,71
.53
.63
.35
,54
.61
.05
.24
.15
.93
,43
.89
.18
.66
,94
.44
,12
,78
,63
.56

.30

STD DEV

0,
0.,
1,
1,
1,
2,
2,
2,
2,
2,
2,
2,
2,
2,

' 2,
2,
1,
1,
1,
1,
1,
1,
1,
1,
0,
0,

0,

.22

.63

.06

.44

.78

.07

.17

.50

.52

.55

.60

.55

.48

.40

.12

.07

.99

.76
,71
.50
.38
.22
.13
.02
.95
.86

.37

CUMULATIVE
MANMONTHS

2.
7.
16.
28.
43.
61.
80.

102.
124.
148.
171.
195.
218.
240.
261.
281.
299.
316.
331.
345.
357.
368.
377.
384.
391.
397.

399.

CUM
STD DEV

0.
1.
2.
3.
4.
6.
8.
11.
13.
15.
18.
20.
23.
25.
27.
29.
31.
33.
34.
36.
37.
38.
39.
40.
41.
41.

42.

******************* ; r* *******

209
L. Putnam
QSM
79 of S4

*********«*****»*****•««»»******»

************]

TITLE: SPERRY UNIVAC 3

********•»**!

SIMULATION
:*************•********* + + *+***•>

t*************-.

DATE: 16-Nov-7?

SIMULATION RUNNING - PLEASE WAIT

HOL. EQU1V.

SYSTEM SIZE (S T M T S) -

MINIMUM DEVELOPMENT TIME (MONTHS)

DEVELOPMENT EFFORT (MANMONTHS)

DEVELOPMENT COST (X $1000} '
(UNINFLATED DOLLARS)

(INFLATED DOLLARS)

MEAN

16724.

25.3

472.1

1969.

2114.

STD DEV

776.

0.8

49.0

288.

310.

SENSITIVITY PROFILE FOR MINIMUM TIME SOLUTION
(EXPECTED VALUES OF TIME, EFFORT, AND COST FOR VARIOUS SYSTEM SIZES]

<

(-3 SD)
(-1 SD)

MOST LIKELY
<+i SD)
(+3 SD)

SOURCE STMTS

14396.
15948.
16724.
17500.
19052.

MONTHS

23.6
24.7
25.3
25.7
26.7

MANMONTHS

391.
446.
472.
503.
605.

COST (X 31000}

1630.
• • 1859.

1969.
2095.
2520.

A CONSISTENCY CHECK WITH DATA FROM OTHER SYSTEMS OF THE SAME SIZE SHOWS:

TOTAL MANMONTHS (472.) GREATER THAN NORMAL EFFORT
PROJECT DURATION (25.3 MONTHS) LONGER THAN NORMAL TIME DURATION
AVG |-PEOPLE (19.) GREATER THAN NORMAL f OF PEOPLE
PRODUCTIVITY (35. LINES/MM) LESS THAN NORMAL PRODUCTIVITY

»*•*•****•»****«**•******* ******: r ***** *•* * * *•* ********************************

210
L. Putnam
QSM
80 of 84

»«•*****'

DESIGN TO COST

T'lTLE: SPERRY UNIVAC 3 DATE: 16-Nov-7?

SLIM HAS PROVIDED ITS BEST ESTIMATE OF THE MINIMUM TIME AND CORRESPONDING
MAXIMUM EFFORT (AND COST) TO DEVELOP YOUR SYSTEM. THESE VALUES ARE:

MINIMUM TIME: 25.3 MONTHS
EFFORT: 472. MANMONTHS
COST (X $1000): $ 1967.

A GREATER EFFORT (OR COST) WOULD RESULT IN A VERY RISKY TIME SCHEDULE.
HOWEVER, IF A LOWER EFFORT IS SPECIFIED (WITHIN REASONABLE LIMITS),
DEVELOPMENT IS STILL-FEASIBLE AS LONG AS YOU CAN TAKE MORE TIME.

ENTER DESIRED EFFORT IN MANMONTHS> 399

MEAN STD DEV

NEW DEVELOPMENT TIME (MONTHS) 26.3 0.8

NEW DEVELOPMENT COST (X $1000) $ 1663. 173.

YOUR FILE IS UPDATED WITH THESE NEW PARAMETERS. RUN MANLOADING AND CASHFLOW
OR LIFE CYCLE TO SEE HOW THESE SAVINGS CAN BE REALIZED.

A CONSISTENCY CHECK WITH DATA FROM OTHER SYSTEMS OF THE SAME SIZE SHOWS:

TOTAL MANMONTHS (399.) GREATER THAN NORMAL EFFORT
PROJECT DURATION (26.3 MONTHS) LONGER THAN NORMAL TIME DURATION
AVG # PEOPLE (15.) GREATER THAN NORMAL t OF PEOPLE
PRODUCTIVITY (42. LINES/MM) LESS THAN NORMAL PRODUCTIVITY

r * *'* !

L Putnam
QSM
31 of 34

SYSTEM: SPERRY UNIVAC '3

r** it ***********

DATE: 16-NOV-7

THE TABLE BELOW SHOWS THE MEAN PROJECTED EFFORT
AND CASHFLOW (AND ASSOCIATED STANDARD DEVIATIONS)
OVER THE LIFE CYCLE OF THE SYSTEM. ALL
PROJECTIONS ARE BASED ON AN OPTIMAL APPLICATION OF
RESOURCES OVER TIME. THE INPUT PARAMETERS ARE:

MEAN STD DEV

DEVELOPMENT TIME (MONTHS) 26.
LIFE
AVG

CYCLE EFFORT (MM)
COST/MY (X $1000)

INFLATION RATE

MONTH

JAN 75
FEB 75
MAR 75
APR 75
MAY 75
JUN 75
JUL 75
AUG 75
SEP 75
OCT 75
NOV 75
DEC 75
JAN 76
FEB 76
MAR 76
APR 76
MAY 76
JUN 76
JUL 76
AUG 76
SEP 76
OCT 76
NOV 76
DEC 76
JAN 77
FEB 77
MAR 77
APR 77
MAY 77
JUN 77
JUL 77
AUG 77
SEP 77
OCT 77
NOV 77
DEC 77
JAN 78

MEAN

2.
5.
9.
12.
15.
18.
20.
21.
23.
23.
24.
24.
23.
22.
21.
20.
19.
17.
15.
14.
12.
11.
9.
8.
7.
6.
5.
4.
3.
3.
2.
2.
1.
1.
1.
1.
a.

PEOPLE
STD DEV

0.
1.
1.
1.
2.
2.
2.
2.
3.
3.
3.
3.
2.
2.
2.
2.
2.
'2.
2.
2.
1.
.1.
1 .
1.
1.
1.
1.
i
* •

1.
0.
0.
0.
0.
0.
0.
0.
3.

419.
50

3
9
•

0.070

COST/MTH (X
MEAN

8.
23.
38.
51.
65.
76.
85.
93.
99.
103.
104.
106.
103.
100.
95.
91.
85.
77.
71.
63.
56.
50.
44.
37.
32.
27.
23.
18.
15.
12.
10.
8.
6.
5.
4.
3.
2.

212

51-000)
STD DEV

1.
4.
6.
8.
11.
12.
14.
14.
15.
16.
16.
15.
15.
15.
14.
13.
12.
11.
10.
9.
9.
8.
7.
6.
5.
5.
4.
4.
3.
3.
2.
2.
2.

. 1.
1.
1.
1.

0.8
43.6
5.

0.011

CUM COST
MEAN

8.
30.
68.

119.
183.
259.
344.
437.
536.
638.
742.
847.
951.

1051.
1146.
1236.
1321.
1399.
1469.
1532.
1589.
1639.
1682.
1720.
1752.
1778.
1801.
1320.
1835.
1847.
1857.
1865.
1871.
1876.
1880.
1883.
1385.

.

(X $1000)
STD DEV

1.
4.
10.
17.
27.

' 38.
50.
6-4.
79.
94.
109.
124.
140.
154.
168.
181.
194.
205.
216.
225.
233.
240.
247.
252.
257.
261.
264.
267.
269.
271.
272.

. 274.
275.
275.
276.
276.
277.

L. Putnam
QSM
82 of 84

t1!ji;i1

1

:i'ji1i.!1

t

|!j!

L.

m
 w2

 J

e- ac
o£Cu -3

>J

<
 *-i

O
 b£ in

<
 a

>M

-
Z

Z

-5

 O
^

8
" t—

 '
a
 v

j
><

w
a

^a Q
o
:U

Q
 1

0
a

 2
: a

C/)
CJ

e~

i1

'. 'i111jijjii;;ji

ni
r-o

w
*;£ ri
£

fa
i

O
»

f
V

J

O
 O

n

J

Q

O

3u,
S

= ° 2
^

o
n

o

£

W

iJ

•
 O

Z

n
 <

<

!!

j]j
.

1Iiiii

•
!

.1

;

'. -

ji*

,
•C
i'l

d
U

i
H

iM
.

U
d
A

:

.. : .•

• • •

| • ;

^| 5-^5f\

JJI

ij1I11'i1i1j',•
,

;
|

i
11iii!

^_
^L_

,!i••\| '
i .i•\1,i• i

11<
N

fs
.

r^j

nN
-<.^i!11•!t

-»c
•.ON

•ao

•w
»s

8"v

<inr

a
u
n
f

<«W

•M
»

'•W•U
i

air

•»o
A

O
N

: :3°
«
»
5

!n
¥

*IT

*u
n
r

Xew

w
v

iew

3»J

•uer

•»c
A

O
N

-1=0

10JS

3n»

<,nr

iu
n
r

<«K

-«
,

JB
W

0
>

j

je
r

•»o
AO

N

-.30

ra»S

S
n»

X
m

r

iu
n
f

<»n

,0
,

-«vs

»J•-"•

—--

213

L
. P

utnam
Q

SM
83 of 84

L
U

L
L

J
>

ooc
id|L

U
LU>

,

O

U
- C

M
 L

U

-
j
p

^
l
-

^
t

O
}

I

'
I
 I

I

*S%
2

- 2
5L

L
O

LU
 C

O

C
O
I

214

L
. P

utnam
Q

SM
84 of 84

Page intentionally left blank

Page intentionally left blank

PANEL #5

MODELS AND METRICS OF SOFTWARE DEVELOPMENT

B. Curtis, General Electric
J. Musa, Bell Labs
A. Stone, General Electric

216

PROGRAM COMPLEXITY AND SOFTWARE ERRORS:
A FRONT END FOR RELIABILITY

Dr. Bill Curtis
Software Management Research

., ,\ - Information Systems Programs
'•- v General Electric Company

Arlington, Virginia

Error analysis and software complexity have received increased attention in software engineering
research over the past several years. The study of software errors has been necessitated by the
emphasis on software reliability. Models such as the one presented by John Musa in this volume
statistically model such phenomena as the mean-time-between-failures or the probability of a
failure within a given unit of time. As John indicates, one of the parameters required as input to
this model is the" number of errors existing in the software.

There are several ways to estimate the number of errors in a piece of software. One is the actuarial
approach which assumes there are so many errors in a given number of lines of code. A number
frequently passed about is one error per one hundred lines. This approach assumes that all soft-
ware is created' equal and ignores the advances that have been made during recent years in analyzing
software characteristics. An alternative approach recognizes these gains in relating software char-
acteristics to such factors as the error-proneness of a section of code or the difficulty which will
be-experienced in maintaining the code. The purpose of this paper is to review recent research on
software complexity metrics to determine whether knowing something about software character-
istics improves .our ability to predict the number of errors it contains or the amount of effort re-
quired to maintain it.

If we can validate the use of software metrics for predicting the number of errors in software and
the difficulty experienced in correcting them, then such metrics will prove a valuable addition to
both quality assurance and management information systems. During the design phase, metric
values can be estimated from relevant design information to predict problems which will be ex-
perienced during coding. Values computed on the actual code can be used in predicting testing
results, number of delivered bugs, and ease of maintenance. Although a large number of metrics
have been presented in the literature, two seem to have received the most attention in empirical
research. I will focus on these two metrics in the remainder of this paper.

Thomas McCabe (1976) developed a complexity measure based on the cyclomatic number from
graph theory. McCabe counts the number of regions in a graph of the control flow of a computer
program. His metric represents the number of basic control path segments which when combined
will generate every possible path through the program. Thus, McCabe has measured the complexity
of the control structure. Schneidewind and Hoffmann (1979) demonstrated that the cyclomatic
number and the reachability measure which can be computed from it were superior to the number
or" source siatements in predicting the number of errors in a section of code and the time required
to find and fix them. Feuer and Fowlkes (1979) also demonstrated that the node count was re-
lated to the time to repair errors. However, their data indicated that different prediction equations
should be used with different types of errors. Separate prediction equations might be possible
when we have (1) developed more robust error classification schemes, and (2) progressed past
predicting gross errors to predicting types of errors.

B. Curtis

217 I of 22

Another approach to software complexity was presented by Maurice Halstead (1977) in his theory
of Software Science. Halstead maintained that the amount of effort required to generate a pro-
gram can be derived from simple counts of distinct operators and operands and the total fre-
quencies of operators and operands. These quantities can be used to calculate the number of
mental comparisons required to generate a program. Halstead's effort metric, E, expresses the
complexity of computer software in psychological terms. Halstead also developed a metric to
estimate the number of delivered errors in a system. This metric is based on the notion that
there is a limited amount of code that a programmer can mentally grasp at a single time. When
a section of code exceeds this value it is likely that the programmer made at least one mistake in
producing it. Halstead predicts the number of errors by dividing the total volume of code by this
critical level for error-prone code.

Bell and Sullivan (1974) presented a scatterplot which suggested that there was some validity to
Halstead's notion of a critical value for error-free code. In their data no program with a Halstead
volume above 260 was error-free, while only one program below this level had an error. Sub-
sequently, both Cornell and Halstead (1976) and Fitzsimmons and Love (1978) found correlations
of 0.75 and above between Halstead's metrics and the number of errors found in various software
products. In a debugging study we recently completed at G.E. (Curtis, Milliman, and Sheppard,
1979) the Halstead and McCabe metrics were better predictors of the time required to find a bug
than was lines of code.

In studying some error data provided us by Rome Air Development Center, Phil Milliman and I
(1979) found Halstead's metric a remarkably accurate predictor of delivered bugs in a system
developed with modern programming practices and tools. However, the prediction was poor in a
system developed with conventional techniques. The types of errors experienced in the former
system were typical when compared to the types of errors reported in other systems (in particular
to several reported by TRW). Phil and I also observed that the error ratio reported during the
final months of development was an excellent predictor of post-development test errors. The
error ratio represents the number of failed runs divided by the total number of runs. We observed
a linearly decreasing trend in the error ratio during the final 9 months of development. When we
extrapolated this trend into post-development testing, we observed a good prediction of the num-
ber of errors detected.

We suspect from the data we have observed that the prediction of errors and maintenance re-
sources will be more accurate oh projects guided by modern programming practices. We believe
that such practices will reduce the amount of variation in performance and quality resulting from
such sources as individual differences among programmers, the programming environment, etc.. .
That is. a structured discipline constrains the amount of variation in the way software is developed.
Since this variation is a source of error in predictions, the ability to predict various software-
related criteria (such as number of errors) should improve.

Based on the brief review of empirical research presented here, I propose the following conclusions,
but agree that much more data is needed to substantiate them.

• Measures of software characteristics can be used to predict the number of errors in a
portion of code~and the effort required to find and correct them. Such measures
will be more valuable than an actuarial approach based on lines of code.

• Different predictive plots may be observed for different classes of errors (computational,
logic, interface, etc.)

B. Curtis
G.E.

218 2 of 22

• Metrics should be calculated at the appropriate level (subroutine, module, etc.) for
explaining the results.

• The prediction of software reliability and of maintenance requirements can begin early
in the software development cycle, and improvements can be made and monitored if
feedback is provided for improving software quality.

ACKNOWLEDGEMENTS

I would like to thank Sylvia Sheppard and Elizabeth Kruesi for their comments, Beverly, Day for
manuscript preparation, and Lou Oliver for his support and encouragement. Work resulting in
this paper was supported by the Office of Naval Research, Engineering Psychology Programs
(Contract #N000014-79-C-0595) and the General Electric Company (IR&D Project 79D6A02).
However, the opinions expressed in this paper are not necessarily those of the Department of the
Navy or the General Electric Company.

REFERENCES

Bell, D. E. and J. E. Sullivan, Further investigations into the complexity of software (Tech. Rep.
MTR-2874). Bedford, MA: MITRE, 1974.

Cornell, L. M. and M. H. Halstead, Predicting the number of bugs expected in a program module
(Tech. Rep. CSD-TR-205). West Lafayette, IN: Purdue University, Computer Science
Department, 1976.

Curtis, B. and P. Milliman, A matched project evaluation of modern programming practices (RADC-
TR-79, 2 vols.). Griffiss AFB, NY: Rome Air Development Center, 1979.

Curtis, B., S. B. Sheppard, and P. Milliman, Third time charm: Stronger prediction of programmer
performance by software complexity metrics. In Proceedings of the Fourth International
Conference on Software Engineering. New York: IEEE, 1979.

Feuer, A. R. and E. B. Fowlkes, Some results from an empirical study of computer software. In
Proceedings of the Fourth International Conference on Software Engineering, New York:
IEEE, 1979.

Fitzsimmons, A. B. and L. T. Love, A review and evaluation of software science. ACM Comput-
ing Surveys, 1978, 10, 3-18.

Halstead, M. H., Elements of Software Science. New York: Elsevier North-Holland, 1977.

McCabe, T. J., A complexity measure. IEEE Transactions on Software Engineering, 1976, 2,
308-320. '

Schneidewind, N. F. and H. M. Hoffmann, An experiment in software error data collection and
analysis. IEEE Transactions on Software Engineering, 1979, 5, 276-286.

B. Curtis
G.E.

219 3 of 22

en
>-

Z

Z
LU

LU

en
LU

^

^
p
^

(j

Z

^

<
 a

2
g

«

 T
B

?

=

<
>— o

X
I

ut<n
Z

a
f

^

<
i
r

er
2

o
t—

LU

LU
Z

O

-.
e
n

coC
O

_J<cC
O

C
£

L
U

oH~2
T•̂̂

L
_

I

L
U

C
£

C
/O

C
3

L
U

U5

o
t-

—
IU

Z

j^
fc

s

—

lucv
^
^
^

—
. ?

^
^
r^

^
<

U

U

J
<r

u
•

L
U

<

z

o
-

LU
cn

(9

en

C
O

U
J

^oosU
J
z

LUUcr
L
U

Z

O

<

C
O

H

-
L
U

2
-1

co

 cr
t—

LLJ

LU
LU

Q

K

L
U

O

O

U
/*

*

^
^

1
 1

"
^
^

v
3

^
.̂

U
.

2

•
0

<

0

>
•

Z
H

-
H

-
Z

L
U

Z

—

O
- J

-

""
—

P

—

K

<

Z

Z

CL
!j

P
a

Z

L
U

C

O

Z

—

cr
LU

<

LU0

0
0

»
-

en
u
.

a

c
r

O

L
U

O

cr
cr

z
—

 cr
LU

O

3

L
U

0

—

0
H

-
LU

LU

cr
cr

cr
cr

L
U

O

<
as

a.
LU

2

Z

S
 . H

Z

H
O

z

e
n

U
J

—
 ~

LU
X

X

I
-

1
-

h
-

»
-

U
Z

L
U

U
.

LU

LU

C
T

o

a

o
 c

r
—

o

en
cn

«n

o

cr
LU

cr
o

c
r

o

o
H

-
1
-

Z
o

e
n

u

<

a

o

a

a

.
uj

cr
LU

 z
cr

cr
cr

—
a.

LU

a.
u.

B
. C

urtis

220
4 of 22

C
O

IQ
_

U
J

Sca
•—

C

i

Oc/o 0
0

c_>
<r

—

U
J

U
J

I—

ca
o

O
O

S

Z
•—

i
3

U
J

C
d

Z

—
U

J

O

I—

U
J

z

<
3

?
u

u
.

>

o
U

C

O

u.o
Q

£
CO

U

J
U

0
3

C
O

Z

<r
uj

U
J

Z
H-

i-
o<

H

Q
£

U

Z

Q
u

u

j<E
U

J
O

.

I-

O

O

H
-

0
3

—

O

0
3

2Z

î
^
^
*

—

C
O

z

o
: z

I—

=
3

—

U
J

O

<
s

t-
O

U

J
Z

CO

>

O
o

o

0£
O

O

. I—

"X
.

C
O

o

u
j a:

z

a

o

ac
o

ce

O

Q
£

CO

U
J

U
J

U
J

O

Z

U
.

a

»
- o

221
3. C

urtis
G

.E
.

5 of 22

L
U

LU°
 —

Z
 U

<
cr

LU
 C

O
£

S
L

U

•oC
O

<C

=
5

5
C

O

G
O

—

C

O

U
J

o
 —

coU
J

L
U

C
O

C

J3

uu

<
U

C
£

LUL
UU

oC
O

>U
J
u<a.C

O

L
U

<c
QU

J
cr

co
U

J
O

uLUO

cat

C
O

L
U

coC
OU
J

<r

uc

C
S

t

o(̂

U
J

>
-

z
 cr

o

u
.

o u_
u

u
j

L
U

O
f

oLU
to

—

U
J

a

<

o

>

C
O

U
J

u

<

<

>

aU
J

C
O

U
J

1
-

<

C
O

>
U

J

222
B

. C
urtis

G
.E

.
6 of 22

C
O

h
-

Z

Z
LU

LU

h
-

S
C

O

LU

C
O

C
O

/g
\

<
X

o
e
s

ÎP

1
1

""
<
S

^M

U

J
t-

Q

M

L
U

tO

£
fiu

^

<
is

cs
Z

0

£
LU

LU

Z

0
—

C

O

X
""v

C
O

C
D

i—
 1

^**
LUca

LU
<

 c
z
.

o

0
*5

=
 L

U

-3

^

C
/>

H

-
^
P

M

M
*

S

X

C
D

LU

*"~
9=oC—
 '

"*•

a
H

M
E
M

M
C

B
S
B
î
n
a
M

Î
B
H

M
Ĥ

B
i

Oa

o
h—

••

O
 ̂

C

O
L
U
 Z

ty

 —

«

M
I f»_

™
S

2̂**
*~

z

w
»
S

s^
 —

^
f

^
J

^
^

U
J

<
Z

0
.

LU

C
O

O

•
 •

^
^
0H
~

Q
_

••M

UL
U"

O•«
•

h—<OL
U

LUC
3

ZU
J

^
^

(O>
•

^
c

U
J

C
O

U
J

Q
J

a
.

LUtr.ucrh
-

LU
£CO
«LUC

O
<(-3UaLUH
-

OLUO{_
)

*C
^J

+CO
LUao2^iCOLU0OLU

^
fe11

x—
 *

C
D

^
^>

C
O

Q
_

_
j

Ocrp
M

Ouh
-

^^LUazLUa.LU
o••^
B

-
J

cr<LUZ••
JLUOC
O5ELU

Oa.ou

LUH
-^

C
O

H
-

X^
•̂
»•

£craocra.
^
g

(92••CO
•
•

crC
L

^ôucro•

C
O

1—zLUOU
J

CO

S
i

h—O
L

-JOcrẑou(JCOt̂oLUOjrLU
S

3
£z,

LU<crLU
^CLU0_
J

UyOLU•MCO

ouzLU
X

-
xuM

M

5^•4-

C
O

U
J

aozU
J

<u0LUcra
.

^
*II^>L
~

l

*
*
^
>

£croocrLU£Xo3OcrH
-

^̂<a.LU
_
l

C
D

-

COCOoa
.

>•crLU>

LUOLU
cr3C

O

LU5»<C
O

H
-

L
U

C
O

LU
cra.LUcc•̂̂

C
D

^>C
O

«LUCO
<C
_
)

ucro

•^M̂_^^XLUa.Q•
*

-
J

^
g

2
»
o^_Ĥ

-

Q
.

£OU

L
U

X

î

i

LU
LU

x

c
r

a
., t-

<

z

cr
o

o

u

crzja
..

^^C
O
z00LUcr

^fcII^^cs.
^^>

223
B

. C
u

rtis
G

.E
.

7 of 22

c/o
^U

J
caooQ

_

O

224

B
. C

urtis
G

.E
.

8 of 22

C
O

t—

s

z
LU

U

J
f

S
CO

UJ

CO C
O

^^^

<
Z

Z
<

&

<

C
T

•M
 ^9

^1

^J

H
- O

J
J

U

1C
O

Z
 oZ

^

<
.c

O

?

z

c
—

C

O

0
0

•»^
^

^
^

<c3
T

*

L
U

f
*
^

^
^

3C

cn^
^
^

ca cn
-̂
g

N

_
^

S
 J

^
r̂

 <
c

U
J

f*~i
1 1 1
LJ-J

^
^

C
_
J

oo

^B
B

E
B

9̂̂
E

S
i£B

B
î
^̂

B
B

Î̂
^̂

S
B

9̂
H

I

ocr
o

U
 >

C

O

L
L
l

ft

ife
^
o
S

Q
ft

^
y

liR
^̂

S
l

j*
^

_
 J
Q

^
^
^
^

«
t

(J

U
J

cr
u

i
 il

^
^

U
J

^
^

z

o
.

LU

C
O

O

|

•

U
J

x
s

U
. H

-

zO

Q
 U

J
—

z
s

<

u
-»

-
LUcrcroU

C

O
u. cr
o
 ocr

t̂ c
rU
J

U
. C

O
O

 U
J

cr =3
U

J
Q

03 U
J

=
 0

z
 c

ra
.

crOwaU
J

crC
L

C
SI

IT)
«—

 <
t̂

U

3

L
H

p*^
co

cn
U3

cn
LO

co
r***

cn
^
^

^
x

L
T

\
•

•

•

i—
 1

G

O
fO

O

J

C
V

I

-

cr
co

M
l-

^
^

U
J

^
^

0
3

Z
^
^

jj^
l

Z

>

U
J

o

—

<
P

—

C

O
<

0
3

Z

<

U
J

O

X

U
_
i

o

c
r

0

<

0
>

U

J

O
o

a:

co

B
. C

urtis
G

.E
.

225
9 of 22

en0
1

•—
I

V—
'

<c<cC
O

oLL.

L
U

=
3

L
U

II\

StoCVJ

(SN9U
)

aU
Ja9

805SIO

0
1

09
0S

9
*

8C01

01
0

0
1

-

226
B

. C
urtis

G
.E

.
10 of 22

CO

.
H

-

U
.

U
J

i"

Z
to

LU
io

to

f*
\

<
 —

z

^

z
u

z
o
.

^

«
s

0

*
U

.
U

L
z

•
o

—

C
O

^
^
^

p
^

l«̂§L
U

<

z
:

L
U

L
U

C
O

<
-J

—
 J

oo
S

=

L
U

oc
3
Z

2t—

<_>

r-^
•—

0
0

•=
3

L
U

^

O

"*~

0
0

h—L
U

&
.

L
U

L
U

-
Ucs

O
^

«
••

U

>
•

C
O

uj2
^
w

-

^
L
*

V
^
^
^
^
X

'
*
^

^
tf

^
1

^
^

2
a

^
^

LU

<
Z

0
.

LU

C
O

0

C
O

C

O
i—

LU

a

L
U

Z
Z

Z
U

J
O

t
-

t—
3

H
- <

>-
LU

 o:
co

<

o

c
s
 <

a
: o

S

Q
:

U
Q

U
J

_
J

—

u
-u

-c
e

U
J

Z
Q

.
3

3
U

.
O

L
U

Z
L

U
<

O
U

O
L

U

h
-

L
U

-J

-J

L
U

>

O

—

Z

<

C

O
*

Q
X

O
^
-

C
O

<

O

Z

<

L
U

—

or
co

H
-

o
LU

 —
 J

o
Q

Z

L

U
 (T

C

O
H

-
Q

.
O

L
U

O
Q

.
O

Q

—

C
O

Z
—

 1
Q

»
O

S

^3

I*"*
 ^J

O
n

«J
^D

^D

—

U
.

<

C
O

.
<

<

U

Z

3

a

a
: 3

a
. =

u

o

Q

z

L
U

z

L
U

>
•

LU
L
U

 <

a
.

u
j

o

zco
c

e
>

O

e
a

u

-
t- a

.
—

c
o

z
J

X
L

U
O

O
<

<
Q

:
L

U

—
o

a

H

-
u

H

>
 o

 co
U

.
<

C

O

Z

O

C
O

L
U

L
L

L
U

Q
C

L
U

C
O

U
J

f
l

S
U

J
Q

:
L

u
o

ju
j

—
 L

u
z

a
.
a

:
<

a. a

—

a
.

z
U

-
Z

O
Z

H
-

U
.

<
X

t
—

O

<

L
U

—

O

L
U

 U
.

U

H
-

3

H
-

L
U

O

Z
Z

Z
L

U
<

L
U

<
L

U
2
=

3

<

«
-

o
r

3

ca
 cc

a
s

O

o
a

.
^

u
.

o
z

u
j
^

L
U

—

Z
C

9
C

O

3
Z

U
H

>
H

-
<

O
—

-

J
L

U
Z

L
U

—

3

c
_

e
e

o
<

c
o

o
o

c
a

.
—

L
U

O

.
H

-
L
U

U

J

K
Z

cc
z

u
. o

=

—

 o

L
U

o

0
0

L
U

'""?•*•̂H

C
O

C

G
C

C

O
N

^
o

a

p
g

<

<
a

a
:

a
:

O

L
U

L
U

•J

c.
C

L

co
«»

O

o

cr
co

x-»

c

O

Q
<•<»

C
N

T

LU

LU

H
-

Z
Z

^

3

3

<

<
a

o

o
:

a
:

^

—

—

U
J

L
U

Z

Z

0
.

0
.

-
<

3
3

0
0

>
-̂

L
U

U

.
U

.
U

.
0

O

O

O

c""
-N

n
n

ii
n

s:
LU

O

O
S

^

C
4

-
H

«
M

—

n
LU

c-

c-
2:

a-
^
^

1

^
?

^
^

«
J
J

^
b

oU
J

^
^
-j

B
. C

u
rtis

*—
'

•
G

.E
.

1 1 of
22

CO

LUCO>
•

^
^

°
^

^
O

C

S
 •«

 "5
E

•
M

(
J

f

f
1

^
M

î

_
l 1

<
 c

r
T

O
S

o
.

^
oLUZ*«u

.
C

O

L
U

O
n

X
3

C
O

C
O

C

ZJ

LU

C

Q
^* '

<=>
C

O

LU
^

Q
i

ca LU
^c ^>
U

LJ
>—

 ̂
1 —

—

 1
C

O

L
U

—
 >

ca
^^3
H

,

Ucro
 ̂

L
U
 Z

ĵ

S
^

LU
 Q

.
l̂

ĵ
z

^
Q

ft;
<
 u

crLU
ZLUO

f
-

LULUa __
z
 u

z
 <LU

LU
 C

O
cr LU

H
-

u
.

oto

•

otoM
M

^
>

/
^LU0^Ĉ

L
CO

*too1iicr0C
O

••*a>-<h
-

zLULU
^
 J

LU

LU
OcrLU0
3
y=
)

Z<
LU

LU

y

y

=
t-

_
J

L
U

—

J
T

O

X
o:

C
M

>

v-

L
U

^

•
»

^
||

||

>

i—
 t

L
U

>

>
-

cr
—

II
II

LU

cr
X

0
C

Q

3E

LU

228

0^ y<cr0ocra
.

zC
O

croQ
J

crLU

-i<cW
R

«

H
-

ZLU1
-

Oa
.

zLULUĤ
-

LUCQ

LU19<
£
3az^
^

*

zoH
-

H
-

ZLU

LU
_
J

a
.

ZLUXh
-

o_JLU^
^

U
J

_JII<<

B
. C

urtis
G

.E
.

12 of 22

U
J

caC
O

3
 o

i
e/3

^

C
Q

U
J

a
<o

£J
—

O

inosIT)
moinin

CMU
"

rjino

229
B

. C
urtis

G
.E

.
13 of 22

S
o
.

ou_

ZU
J

U
J

z
u

U
JO

)

u
.OV
)

caC
O

§£
0
3

<
C

_
l

U
J

C
O

ceoO
S

ccLU

u.oU
J

05

0U
J

aU
J

cra.

z
o

U
J
 —

U
LZ

o
 —

C
O

—

z
e

e
o

u
•—

C
O

_i —
-1

0

L
O

O
O

C
O

tn

L
O

O
O

L
O

t
n

r
o

3
0

B
. C

urtis
G

.E
.

14 of 22

CO

H
-

.
Z

Z

U
J

U
J

CO

U
J

^

.^
^

to

CO C
O

rX

^

<
=
,

S
t»»*l

-
. . .

z
<

W

<

c
r

o
 c

r •* ̂
B

*
s
<

—
 to

in

u
j

h
-

O

X
I

U
l C

O
<

 cr
\2

)
cr u

j
S

 0
.

^

<
flS

c=
z

O

H
-

u.
u.

z

o
—

C

O

<C<CcaC
O

^U
J

^0̂—
I

^
*
^

ca
oo

^
^

fx
^

<c
en

C
O

'̂

!g^~^-^
C

O
P^J

u
.

ucr
o

0

>
•

C
O

^»
| ̂

S
JrA

O
B

n

^
^

y

te

S
S

jd

Q

I

Q

t̂
<
*
>
j/

<

U

U

J
cr

u
U

l
<

^
p

^
L

U
J

C
O

0

•

u_O
 C

Ocr
z
o

o
c
r

—
 cr

t—
 U

J

î ̂
*

U
JH

-

cr ^
OU

 U
J

-Jco
H

-S
O

H
-

J
-C

O

C
O

^
^

r™H
--1

C
O

3a

U
.O

O
S

uj cr
to "'
z
 a

.
cru.O

 C
OU
J

cr —
 i

U
J =3

ca a
a

sU
J
i-coC

O
ca3C

O

I-H

LH

un
r̂

^
oo

r̂
«

f*
.̂

^»

o

o

o

c
o

O
J

i—
 1

LO

O
O

o"&
C

T^
cr

cvj
^

^
^

•«
t**\

cr
^»

to

tn

to

c
r

to

C
D

C

D

C
D

O

C
D

LO

C

D

C
D

rH

C
D

r">«

«™
H

r>».
to

r>o

r̂

»
i

t
i

i
O

C

D

C
D

C

D
r>

.
i—

 i
L
O

•—

 i,

r«^
osi

r—
 i

C
D

cr
cr

L
O

cr
^
^
4

^
^
^

U
J

>

cr
cr

—

u
j

o
t-

t3

H
-

o

z

c
r

U
J

<

U
J

X

Z

Z
U

J
U

J

a

lo

°

_
i

z

<

H
-

<
<

C

Q

cr
j-

S

<

0

O
S

r-

0
.

1
-

O

<

U
J

o

o

c
r

-.... .
'

8
. C

urtis
2

3
1

c.E
.

15 of 22

C
O

cr

0
_

L
iJ

c/3

co

o(AU
J

oG
O

C
O

fS

*

*
*

*
*

*
CM

r-x

in

c
o

***en

•

•
•

*
•
 ,

•
C

O

C
O

r>.
LH

*LOC
O

«**

L
H

C

O
r-..

co

CO
&C

O

oU
J

—
»

C
O

O
S

O

Z
O

S

»-*

U
J

U
J

>

-J

C
O

Z

09

O
S

a

§
U

J

as
—

u.oH
-

U
J

<o

oO
S

§(O

C
M

•

D

V
|

z

a
.

*
•• *

2
3
2

B
. C

urtis
G

.E
.

16 of 22

LUU
J

Ouj en

U
.

oCO

U
J

C
O

tDC
D

U
_

=
2

O
 C

OU
J

t—

O
O

p.

0
.
 ̂

U
J

3

C
O

uU
J:

< <
eU

J

U
J

O

oC
O

U
J

e.C
O

un Ln
P*«.

C
O

II
II

(£.
x
-

^o

O0esj

oinoo

U
J

V
)

U
J

H
-

</)

Ocvi

(S3inNiw).9na
01

233
B

. C
u

rtis
G.E.
17 of 22

u
.

O

enî
.

eneaC
/3

>
-

og

-
 U

JC
L

o
S

-
 mU

J
«

OO09ZHO

osiva

234
B

. C
urtis

G
.E

.
18 of 22

U
J

U
J

ui tn
o: u

i
«
=

u
.

oC
O

O
u

OcaI
coC

£
O

C
O

OO
.

U
J

OOcea
.

aU
J

3U
ZO

dO

235
B

. C
urtis

C
.E

.
19 of 22

Oe/J

O
S

.
O

0
0

o

z: C
Q

O

«

O
O

0
£

•—
.

H
-

O
£

O

O

3
5

5
?

3

*

B
E

O

B

0
<

3
D

U
9

„
«Q

i
i

i
r^

s
i

l
l

SU
O

U
M

3 1V
J.O

J. dO
 1

N
3
3
U

M

CBOX

i-=
a

u.ow

I

236
B

. C
urtis

G
.E

.
20 of 22'

COU
J

t-to>•
CO

O
K

—
 a

>
-o

<
Q

£
S

O
.

zU
J

U
J

°
 —

z
u

«
xU

J
U

J
 tO

3:o
.

S
 c

a
<_)

U
J

11 i
Q

-

a
 u

. u
j

a: 01—

coU
J

ozU
J

<rU
J

<Q>O

C
O

C
O

oI—o<u.<I-U
J

£O(X>zU
J

CO

0
3

u.ou<

C
O

U
J
u<Q

C
O

.

COaa:
aC

O

toazuU
J

C
O

z<

o<
K

»
-

C
O

a
 u

. LU
tr o

 i—
a
 o

: s
z
 o

 —
<

c
c
>

-
i—

 a: co
CO

 LJ
LU

B
. C

unis
G

.E
.

21 of 22

COU
J

C
OC
O

 C
O

/x

£

K
z
<

^

o
 c

r •«
•

—
 0

/

£
g

i

£C
L

-
1*

ou
.

zM
lG

O
2
=

OG
O

=
3

_
J

C
M

^

^ÔC
_J

,

ucx(̂o
 >

•
U

J
 Z

s
*

-l<

/«
i

U
JO

.
1
5
^

s:
?5S

-J
O

^
<

 u
CSU

J

U
J

ID

U
J

U
J

xV

<
X

3

z
u

y

<
 cx

f
t

Z
S

I

U
J

 C
O

1

C
X

U
J

<
tx

t_u
.

o

o*
*

CO

C
Jfcv

>
C

qC
l

""U
J

C
J

Q̂
.

C
O

U
J

Xh
-

^
~UV
^

aU
J

C
X

a
.

0}
•

oU
J

C
O

x*U
J

COẑ
(
uC

O
uM

*

t—C
O

H
M

cxU
J

H
-

o0̂
2

<
£

XuU
J

cx^2Ĥ
-

u.ou
.

oC
O

U
J

cxC
O

^
£

U
J

£^
_
^

oU
J

£
X

•M^
3
oU

J
(Xcxou.u.U

J

U
J

Xh
-

Q5S^U
J

0ouu.o2
1
oH

-
Q

J

0a.

32
»
*

CO(Xocx(XU
J

u
.

ocrU
J

C
Q
£z

£U
J

X^
^

r~ûU
J

cx(Xoo2^azu_o

COU
J

CO
CO1̂
uH

-

LUcxU
J

U
*

u.*
*
0r
f
ou.
aU

J
>cxU

J
C

O00oU
J

CO

_
J

^
 J

M
M

•gC
O

>
-ô
J

a.
U

J

»̂
M

«

h-u"-U
J

cxa
..̂

zU
J

cxU
J

u
.

u
.

Q^
A

v>

C
O

cx0cxcxU
J

u
.

o238

C
OuM
>

cx1—U
J

£zM
«

l__̂
J
30
i

ûcxou.U
J

aouU
J

Xj
j

v
^

C
O

^
J

U
J

U
J

^
 J

_J£̂pa.oU
J

cx^U
J

cxU
J

XJ
^

*

C
O

H
-

zU
J

yU
J

cx3
.

oU
J

cxU
J
u<zU

J

ẑ»«•
<
t

£az^>
.

H
-

v
^

_J^
^

g
o

^C)
M

M

.JU
J

cxU
J

cx3:1
 1

u»oC
O

u
.

ozo^
*

H
-

uQU
J

cxa
.

U
J

X

,̂

*
*

C
O

h-U
l

£U
J

ôcxa.
22•
M

OZ

*\
U

J
^
J
oôH

-
ZU

J
ya
.

ô
j

U
J

>U
J

aU
J

cx^
£
2u
.

OC
O

U
J

•̂
»

^
^

1—zM
«

>
•
Jcx^
^

U
J

zC
D

U
J
«Zu

*

%

aU
J

ce.
o^
B

>
_
•

ZoU
J

CQ2
j

Û

B
. C

u
n
is

G
.E

.
22 of 22

SOFTWARE RELIABILITY MODELING -
WHERE ARE WE AND WHERE SHOULD WE BE GOING?

THE NEED FOR SOFTWARE RELIABILITY MODELING

It may be argued that software reliability metrics are needed, most importantly, because no field
can really mature until it can be described in a quantitative fashion. However, there are also some
very specific reasons for a quantitative approach to software reliability. One needs software
liability figures in order to do a good job of system engineering: to examine the trade offs between
reliability and cost and reliability and schedules, to determine what reliability figure optimizes
overall life cycle costs, to plan allocation of resources, and to specify reliability to a contractor who
is developing software for you. Another large area of application is project management, where
software reliability measures are needed for progress monitoring, scheduling and investigation of
managerial alternatives. The length of a test period and hence the overall length of a project is
highly correlated with the reliability requirements for the project. Therefore, reliabilities are in-
timately tied up with schedules. Changes in resources available to the project affect both reliability
and schedules and one can be exchanged for the other. Reliability metrics offer an excellent means
of evaluating the performance of operational software and controlling changes to it. Since change
usually involves a degradation of reliability, one may use reliability performance objectives as a
means for determining when software changes can be allowed and perhaps even how large they
can be. Finally, reliability is one of the important parameters that should be used in investigating
the benefits (or lack of benefits) of proposed new software engineering technology.

SOFTWARE RELIABILITY FUNCTIONS

Hecht [1] has categorized software reliability functions into measurement, estimation and pre-
diction. This classification is used in this paper with some modification and extension. Software
reliability is defined as the probability that a program will execute without failure caused by
software for a specified time in a specified environment. The term "failure" refers to an un-
acceptable~departure from-proper operation. -The term "unacceptable" must be defined by the
customer. The "measurement" of software reliability is based on failure interval data obtained by
running the program in its actual operating environment. Software reliability "estimation" refers
to the process of determining software reliability metrics based on operation in a test environment.
It should .be noted that estimation can be performed with respect to present or future reliability
quantities. The term software reliability "prediction" refers to the process of computing software
reliability quantities from program data which does not include failure intervals. Typically, soft-
ware reliability prediction takes into account factors such as size and complexity of the program,
and is normally performed during a program phase prior to test. Note that future estimation
might be thought of by some as prediction; we are deliberately making a careful distinction in
terminology.

The various applications of software reliability metrics are closely tied to the three functions that
have just been defined. System engineering primarily relies upon prediction; project management,
upon estimation; and operational software management and evaluation of software engineering
technology, upon measurement.

J. Musa
Bell Lab.

239 I o i l !

SOFTWARE RELIABILITY MODELS

Most of the work that has been done in the field of software reliability falls in one of six cate-
gories: calendar time models, the execution time model, Bayesian models, semi-Markov models,
deterministic models and input space approaches. The initial approach to software reliability was
through calendar time models; that is, attempts were made to look of reliability phenomena such
as failures, reliability, mean-time-to-failure (MTTF), etc. as functions of calendar time. These
early models focused attention on the problem of software reliability and contributed many valu-
able concepts toward the further development of the theory. [2-5]

However, the failure-inducing stress placed on software is related closely to execution time (CPU
time) and not calendar time. The execution time model [6-11] recognizes this fact. It has been
extensively tested on more than 20 software systems and the validity of the assumptions made in
deriving the model has been carefully examined. [12]

Littlewood and Verrall [13] have proposed a Bayesian model that is perhaps the most mathe-
matically elegant of the software reliability models, but it is, unfortunately, difficult to understand,
and computations based on it are lengthy and costly. A model that focuses specifically on the
problem of imperfect fault correction has been developed by Goel and Okumoto [14]; it is based
on a view of fault correction as a semi-Markov process. The concept of imperfect fault correction
is incorporated in the execution time model in a simpler fashion. Deterministic models have been
proposed [15, 16] but they have not been validated.

It would appear that deterministic models oversimplify the failure detection and correction process
and are not efficient in using the information available to them. Bayesian models perhaps represent
the other extreme, in that both failure intervals and failure process parameters are viewed as being
random. The execution time model takes the intermediate approach of considering failure inter-
vals random but failure process parameters as varying with execution time in a deterministic
fashion.

A final viewpoint, the input space approach, is based on enumerating all the possible sets of input
or environmental conditions for a program and determining the proportion of these that result in
successful operation. Although this approach is theoretically appealing, the large number of pos-
sible input sets for any useful program makes it impractical. The counts would have to be weighed
by run times and frequencies of operation for the various input sets, in order to provide results
that would be compatible with hardware reliability theory.

EXECUTION TIME MODEL

The execution time model permits the development of relationships that indicate number of fail-
ures experienced and present MTFF as functions of execution time (see Figures 1 and 2). It re-
lates total failures and initial MTFF to the number of faults in the system. An initial estimate of
the number of faults, prior to testing, can be determined from the size (and perhaps complexity)
of the program. A debugging process model is provided which relates execution time and calendar
time and thus allows execution time quantities to be converted into dates. The model can be
used to make predictions of the remaining number of failures to be experienced, the execution
time and the calendar time required to reach a MTTF objective. If this objective is set as the

J. Musa
Bell Lab.

240 2 of 11

criterion for terminating the project, completion dates can be predicted. As testing proceeds, two
of the key parameters of the model can be statistically reestimated from failure intervals experienced.
This permits the estimation of a number of derived quantities such as present MTTF and estimated
completion date. The estimates made are maximum likelihood estimates; confidence intervals are
also calculated.

Most of the assumptions that were made in deriving the execution time model have been validated
[12] and experience has been gained with the model on a wide variety of software systems (more
than 20 as of this date). A program is available [17, 18] to handle the statistical calculations.
Sample output from the program is shown in Figure 3.

User comments indicate that the execution time model provides a good conceptual framework for
viewing the software failure process. It is simple, its parameters are closely related to the physical
world and it is compatible with hardware reliability theory. Most users feel that the benefits
currently exceed the costs, which are basically data collection and computation. There have been
two interesting side benefits. The process of defining just what constitutes a failure and the
process of setting a MTTF objective have both been salutary in opening up communication be-
tween customer and developer.

STATE OF THE ART AND RESEARCH NEEDS

Software measurement can presently be achieved with excellent accuracy. Figure 4 illustrates a
software system in the operational state. The maximum likelihood estimate and 75% confidence
bounds are indicated for present MTTF. Variations in MTTF and the size of the confidence inter-
val are generally highly correlated with periods of fault correction or the addition of new
capabilities.

The quality of software reliability estimation is dependent upon the representativeness of testing;
hence good test planning is esesntial. If one desires to know the absolute value of the MTTF.
knowledge of the test compression factor is necessary. The test compression factor relates the
amount of time spent in test with the equivalent amountx>f operating time represented. It is
known theoretically how to compute this number but the only practical approach at present is to
estimate it from a similar porject in a similar test environment. Research activity in this area
would definitely be beneficial. One might characterize the present quality of software reliability
estimation as good for present estimation and fair for future estimation. Future estimation also
requires, in addition to the factors previously listed, a number of resource parameters. Data col-
lection to determine the values of these parameters and the extent to which they vary between
different projects or different classes of projects is urgently needed. Figure 5 illustrates the
variation in present MTTF as the system test phase of a project proceeded (maximum likelihood
estimate and 75% confidence bounds are indicated). Although the accuracy of the absolute es-
timates is dependent on the test compression factor, the relative values (i.e.. denoting progress)
are highly accurate.

The function of software reliability prediction needs the most work. However, it also offers great
promise in terms of ultimate potential benefits [9]. All of the input quantities required for soft-
ware estimation are needed for this function as well. In addition, one requires the number of
faults inherent in the software, the fault exposure ratio, the fault reduction factor and the linear
execution frequency. Figure 6 indicates the quantities and relationships involved in software

J. Musa
Bel! Lab.

241 3 of 11

reliability perdiction. The number of faults inherent in the software N0 must be determined from
estimates of program size and data on fault densities. Data on fault densities is just beginning to
accumulate but much more is needed, along with information on the variation of the fault density
with program complexity and other factors. The fault reduction factor B indicates the ratio of net
faults repaired to failures detected. It is a function of the test or operational environment and
appears to be constant across similar environments. The initial MTTF, T0, must be predicted from
total failures M0, from the linear execution frequency of the program f (throughput divided by
object program size) and the fault exposure ratio K. The fault exposure ratio is expected to be
dependent on the dynamic structure of the program and the degree to which faults are data de-
pendent. Further investigation of the properties of this ratio and the factors upon which they de-
pend is very important if we are to obtain good absolute software reliability predictions. Relative
predictions can be made without this knowledge in many cases and they may be useful for many
system engineering studies.

CONCLUSIONS

Software reliability has come a long way since its early beginnings in 1972. Many of the early
problems have been solved and a reasonable amount of actual failure data has been collected. It
may be seen from this paper that a number of problems remain to be solved and that new prob-
lems will probably suggest themselves as the field progresses. It is important, however, that we
build upon the results that have already been achieved so as to maximize the efficiency of our
efforts.

REFERENCES

1. H. Hecht, "Measurement, estimation, and prediction of software reliability," In Software
Engineering Technology — Volume 2, Infotech International, Maidenhead, Berkshire, England,
1977, pp. 209-224; also in NASA Report CR145135, 1977 Jan.

2. Z. Jelinski and P. B. Moranda, "Software reliability research," in Statistical Computer Per-
formance Evaluation, W. Freiberger, Ed. New York: Academic, 1972, pp. 465-484.

3. M. Shooman, "Probabilistic models for software reliability prediction," in Statistical Computer
Performance Evaluation, see [2] , pp. 485-502; also in 1972 Int: Symp. Fault-Tolerant
Computing, Newton, Mass., 1972, June 21, pp. 211-215.

4. N. F. Schneidewind, "An approach to software reliability prediction and quality control,"
in 1972 Fall Joint Comput. Conf.. AFIPS Conf. Proc.. Vol. 41, Montvale, NJ: AFIPS
Press, pp. 837-847.

5. G. J. Schick and R. W. Wolverton, "Assessment of software reliability," presented at l l t h
Annual Meeting of German Operations Research Society, Hamburg, Germany, 1972 Sep 6-8.

6. J. D. Musa, "A software reliability model," presented at NASA Software Engineering Work-
shop, Goddard Space Flight Center, Greenbelt, Maryland, 1977 Sep. 19.

J. Musa
Bell Lab.

242 4 of 11

7. J. D. Musa, "A theory of software reliability and its application," IEEE Trans. Software
Engineering. Vol. SE-1, 1975 Sep., pp. 312-327.

8. J. D. Musa, "Software reliability measurement," in Software Phenomenology: Working Papers
of the Software Life Cycle Management Workshop, Airlie, Va., 1977, Aug. 21-23, pp. 427-
451. Also to be published in Journal of Systems and Software.

9. J. D. Musa, "Software reliability measures applied to system engineering," in 1979 NCC
Proceedings, New York, N.Y., 1979 June 4-7, pp. 941-946.

10. J. D. Musa, "The use of software reliability measures in project management," in Proc.
COMPSAC 78, Chicago, 111., 1978 Nov. 14-16, pp. 493-498.

11. Patricia A. Hamilton and John D. Musa, "Measuring reliability of computation center soft-
ware," in Proc. 3rd. Int. Conf. Soft. Eng., Atlanta, Ga., 1978 May 10-12, pp. 29-36.

12. J. D. Musa, "Validity of the execution time theory of software reliability," in IEEE Trans-
actions on Reliability, Vol. R-28, No. 3, 1979 Aug., pp. 181-191.

13. B. Littlewood and J. L. Verrall, "A Bayesian reliability growth model for computer software,"
in 1973 IEEE Sy.mp. Computer Software Reliability, New York, NY, 1973, Apr. 30-May 2,
pp. 70-77.

14. A. L. Goel and K. Okumoto, Bayesian Software Prediction Models — An Imperfect Debugging
. Model for Reliability and Other Quantitative Measures of Software Systems, Rome Air De-

velopment Center Report RADC-TR-78-155, Vol. I.

15. H. Remus and S. Zilles, "Prediction and management of program quality," in Proc. 4th Int.
Conf. on Software Engineering. Munich, Germany, 1979 Sep. 17-19, pp. 341-350.

16. I. Nathan, "A deterministic model to predict 'error free' status of complex software in
development," in Proc. Workshop on Quantitative Software Models, Kiamesha Lake, N.Y.,
1979 Oct. 9-11, to be published.

17. J. D. Musa, Program for software reliability and system test schedule estimation - user's
guide, IEEE Computer Society Repository, Ref. No. R77-244.

18. J. D. Musa and P. A. Hamilton, Program for software reliability and system test schedule
estimation - program documentation, IEEE Computer Society Repository, Ref. No. R277-
243.

J. Musa
T-, Bell Lab.243 5 o f l l

Xu
j

ooX

CMMKin2ODJOSJwQOsCdE"

2OuuXC
Jao;

244
J. M

usa
B

ell L
ab.

6 of 11

XL
U

0
0

enz;OC
J

cncuQOt:Oh-i
6-*
IDC

J
C

J
XfN

I

C
J

crDC

245
j. M

usa
B

ell L
ab.

7 of 11

SOFTWARE RELIABILITY PREDICTION
PROJECT 1

BASED ON SAMPLE OF 136 TEST FAILURES
EXECUTION TIME IS 25. 'jl HRS
MTTF OBJECTIVE IS 27.80 HOURS
CALENDAR TIME TO DATE IS 96 DAYS
PRESENT DATE.-11/ 9/7 j

TOTAL FAILURES

INITIAL MTTF(HR)

PRESENT MTTF(HR)

PERCENT OF OBJ

95*

136

0.522

999999

100.0

CONF.
90?

1

0.6

36

17

999999

100 .0

LIMITS
75* 50*

136 138

0.70J

999999

100.0

0.741

30

100

.9

.0

MOST
LIKELY

112

0.8U7

20.4

73.4

CONF. LIMITS
50% 755 90* P5*

1<48 152

0 .91*9 0 .P92

1«.5 12.5

52.0 45.1

163

1.

9.

34

08

53

.3

182

1.

7.

25

17

05

.H

FAILURES

EXEC. TIME(HR)

CAL. TIME(DAYS)

••» ADDITIONAL REQUIREMENTS TO MEET MTTF OBJECTIVE •*•

0 . 0 £ 0 £ 5 7 1 2 2 3

0 0 - 0 0 2 .U6 6.09 7 - Q ^ 12.U 19.1

0 0 0 0 0.958 2.85 I.Oj 7 .39 13.8

COMPLETION D A T E
R E A D Y

110973 110973 110973 110973 111273 111473 11167J 112173 112973

Figure 3. Sample O u t p u t from Software R e l i a b i l i t y Measurement /
Es t ima t ion Program for E x e c u t i o n Time Mode!

246
J. Musa
Bell Lab.
8 of 11

SOFTWARE SYSTEM 4

1000 r

1
3/76 6/76 9/76 12/76 3/77 6/77

CURRENT DATE

Fi»urc 4. Software R o l i a b i l i t v Measurement

247

J. Musa
Bell Lab.
9 of II

PROJECT 1

100

^ 10

UJ
to
UJ
cc
Q.

CO
UJ 0.1

0.01
7/73 8/73 9/73 10/73

CURRENT DATE
11/73

Fiaure 5. Software R e l i a b i l i t v Est imat ion

248

J. Musa
Bell Lab.
10 of 11

O0LJJ
CCQ

.

CQLUCCLUDC

COOZ

^

jI-o
Z

O

15=

O

M

1-io>

. L
L

1
-

I-

Z
^

—

2
IIL
-°•

C
/3

O
 L

L
I

z
*

u
_i

o
<

5
 u

.

COLUCODZOuQLUCCQ
.

>
•

H_
l

m<_
!

LUCC

COccLU1-LU2CC<Q
.SOURCE

LUCCFACTOR &

OCOCOLUCCQ
.

5oo(_COIII
U

J

1-

: ACTOR

u
_

•?_REDUCTIOI

r—_
l

D<L
LIIca

5̂<CCrnX^OCCo.LL

OdLUC
C

L
L

dLUXLUCC<̂
<

LUZ_lII«^>

O<CCr EXPOSURE1 —_JD<L
LII

^

CC< "~L
LIQLUCC>ccooLLCOL
_

r^<C
OLULUC
C

C
3

Q
"

OooÎo<_100CO)—DQ
.

zL
L

O>H_
)

<DO

1

249

i. M
usa

Bell Lab.
11 of 11

G E N E R A L ® E L E C T R I C

General Electric Company
Command and Information Systems

450 Persian Drive
Sunnyvale, California

(408) 734-3571

A SIMULATION MODELING APPROACH TO

UNDERSTANDING THE SOFTWARE DEVELOPMENT PROCESS

by

A. H. Stone
G. Y. Wong
J. A. McCall

Presented at the
Fourth Annual Software Engineering Workshop

November 19, 1979
Goddard Space Flight Center

Greenbelt, Maryland

A. Stone

250 f0
Er'24

A SIMULATION MODELING APPROACH TO UNDERSTANDING
THE SOFTWARE DEVELOPMENT PROCESS

A. H. Stone
G. Y. Wong
J. A. McCall

Command and Information Systems
General Electric Company"

Sunnyvale, California

ABSTRACT

This paper, resulting from research doen for the Air Force Office of Scientific Research (AFOSR),
describes an assessment of the feasibility of utilizing simulation techniques to aid in the manage-
ment of large-scale software developments. A model of the software development process was
constructed, state-of-the-art prototype simulation tools used, and an experiment conducted to
demonstrate the feasibility. A result of this effort is the concept of a Software Development
Process Simulator which could be utilized to assist in project planning (cost estimation) and
project control (progress status assessment).

INTRODUCTION

Significant progress has been made during the last few years in identifying the problems and com-
plexities involved with the development of software systems and providing techniques to overcome
these obstacles. - What has evolved is a more disciplined environment for the production of soft-
ware. Formal specification, design, and implementation methodologies are being developed. More
milestones and visable software products during the development phases have been identified.
Software support tools have become more sophisticated in providing assistance in the design and
development of software. Considerable error and cost data have been collected and a better under-
standing of the software development environment is evolving. Cost, productivity, and reliability
studies add to this understanding and provide data for prediction and estimation. The factors in
software quality and associated metrics are being studied to obtain more quantitative measurements
of the quality of a software product. Demonstration projects are being undertaken to prove the
effectiveness of new techniques.

All of these R&D efforts contribute to a more disciplined and structured development process.
This discipline and structure lends itself to more effecitve management. Most of the tools and
techniques that have resulted from these R&D efforts support micro-level activities within the
software development process. Few assist in the management of the entire process.

A potential management tool, made possible by the more disciplined approaches taken to software
development, is a simulation model of the development process. Simulation models traditionally
have been used by management for analyses such as system design studies, trade-off analyses,
performance assessments, and impact analyses. A model of the software development process
would facilitate these same types of analyses of the development effort itself. The analyses
supported by such a tool would span both management planning (cost estimation) and control
(progress and impact assessment).

A. Stone
G.E.

251 2 of 24

The initial step toward developing a simulation tool to aid in the management of a software de-
velopment involves developing the concept of such a tool and assessing the feasibility of using
simulation techniques to construct a model of the software development process. This paper
describes the results of this initial step. Specifically, under a contract sponsored by the Air Force
Office of Scientific Research, the objectives were to:

• Determine the feasibility of applying simulation techniques to modeling the software
development process.

• Describe the software development process in a manner conducive to developing a sim-
ulation model.

• Provide insights into modeling specific aspects of the software development process.

• Discuss the potential benefits and use of such a model. -

MODELING APPROACH

A model is a representation of a system which gathers together in one place our understanding of '
the behavior of that system. The purpose of developing a model of a system is to have a vehicle
for predicting the behavior of the system under various conditions. The adequacy of the model is
normally determined by five criteria: (1) applicability — does the model answer the questions
that we want to ask?; (2) confidence - is the model sufficiently accurate for our purposes?; (3)
completeness — is the model broad enough to encompass all phenomena of interest?; (4) •
minimality — have system states that are unnecessarily discriminated been combined?; and, (5)
independence — have system states that involve interacting factors been decomposed into multiple
states?

The software development process has been modeled by researchers in software engineering pri-
marily for the purpose of predicting the life cycle costs associated with developing computer
software. The models that have been developed are macroscopic models which use analytic tech-
niques to represent the behavior of a software development. However, where the analytic model- .
ing approach treats the software development process as a "black box" process, the simulation
modeling approach attempts to decompose the process and understand its internal behavior. With
the simulation modeling approach, we view a software development organization as a collection of
interdependent elements which act together in a collective effort to achieve the goal of implement-
ing computer software. These elements are primarily personnel resources, such as programmers
and analysts, and computer resources, such as terminals, computers and software tools.

Simulation modeling is the process of developing an internal representation and a set of trans-
formation rules which can be used to predict the behavior of, and relationships between, the set
of elements composing the system under study. The internal representation of a software develop-
ment system is described by system state variables, such as software size and complexity, personnel
productivity, and project status and progress. The transformation rules, describe the interdependence
between these system state variables. These transformation rules may be analytic - expressed in
the form of functional relationships, or they may be representational — expressed in the form of
an algorithm. Thus, the simulation approach provides for a microscopic view of the software
development process.

A. Stone
G.E.

252 3 of 24

The adequacy of the simulation approach of modeling the software development process is summar-
ized in the following table.

Criteria

applicability
confidence

completeness
minimality

independence

Evaluation

excellent
promising
excellent
excellent
excellent

Applicability is excellent becuase a simulation modd can be oriented toward studying any aspect
of the software development process. Confidence is promising because if the accuracy of part of
the model is not sufficient, then that part of the model can be expanded to a greater level of
detail. Completeness is excellent because of the microscopic view that is taken with the simulation
approach. Minimality and independence are both excellent because the feasibility inherent in the
simulation approach allows system states to be combined or decomposed at the discretion of the
modeler.

SOFTWARE DEVELOPMENT PROCESS MODEL

The challenges of managing a software development are immense because it is a multi-element
process which is highly coupled and highly complex, and there are wide variations in controllable
and uncontrollable variables between projects. In the past, the technique used by managers has
been to decompose the software development process into "independent" subprocesses and manage
those separately. This technique, generally following the Wolverton description [WOLV 74] , does
not usually reflect a very accurate model of the way software is currently being developed or is
not in enough detail to analyze the causes of poor performance [TURN 76]. There has been
recognition in recent years that interaction occurs, and that a continuous configuration manage-
ment effort is required to keep the product of each phase up to date and consistent. Thus the
traditional widely used "model" of the software development process is outmoded, no longer
representing a true picture of how software is developed.

An accurate model of the software development process must account for several things. First,
the idea that redesign, revisions to requirements, and changes to the source code take place con-
stantly during the process, as the knowledge of the system evolves, must be acknowledged.
Secondly, these revisions and corrections take place as a function of the activities the develop-
ment'personnel perform, not as a complete recycle of a phase; as evolution not revolution. Figure
1 is a representation of this evolution of knowledge on a timeline.

DECOMPOSITION OF THE SOFTWARE DEVELOPMENT PROCESS

Conceptually, the software development process is a process which is driven by a concept of, or
requirement for, a target system and utilizes the resources of a software production factory to
produce an operational system. The target system is a software system which has certain desired

253
A. Stone
G.E.
4 of 24

REQ
ANALYSIS

PRELIMINARY
DESIGN

SYSTEM
REQUIREMENTS

REVIEW

DETAILED
DESIGN

PRELIMINARY
DESIGN
REVIEW

CODING
AND
CHECKOUT

TEST
AND
INTEGRATION

CRITICAL
DESIGN
REVIEW

OPERATIONS
AND
MAINTENANCE

ACCEPTANCE
TEST

Figure 1. Timeline Representation of the Software Development Process

characteristics. These characteristics have an impact on the amount of resources which are con-
sumed or utilized in the process of producing the operational system. The software production
factory is the organizational, staffing, and development strategies superimposed on the resources
of a project group (consisting of personnel and development tools), which provide the production
capability and environment for accomplishing the system development. The operational system,
the output of the process, is represented by the documents, data, and code produced as a result
of the software development.

Imposed on this development process are a series of milestones which represent intermediate
formal reviews of the progress towards the operational system. Further, there are documentation
requirements which define what products are to be delivered. Almost all software developments
have these milestone and documentation requirements. Perhaps the most rigorous set of require-
ments are.those imposed by military standards.

Our approach to modelling the software development process was to decompose each of the phases
in the high-level model described in the previous section into greater detail. The methodology
used to accomplish this used military standards as a perspective and involved a three-dimensional
view:

(1) Identification of the products of the software development process;

(2) Identification of the activities that comprise the process;

(3) Identification of the factors and resources that represent the target system and the soft-
ware production factory.

Thus, we arrived at the model shown in Figure 2.

MODEL UTILITY

The conceptualization and decomposition of the software development process as a sequence of
activities, as shown in Figure 2, provides a model which can be used at several levels. At one

254
A. Stone
G.E.
5 of 24

ll i\ H
 ! ii

IHi ii II1 Hi

255
A

. Stone
G

.E
.

6 of 24

level, the model can be used as a checklist for planning and progress status. The list of activities
typically performed during a software development, and the interaction can be used to plan the
activities to be performed in a future development. Once this plan is established, completion of
these activities can be used as a status measurement more accurate than the normally imposed
milestones.

At the next level, the model can be used as a PERT-COST tool. The current prototype tool
that has been developed has the capability with which activity delay times could be modelled as
distributions representing worst case, most likely, and best case estimates of the schedules for
those activites. The simulation would then result in the calculation of the expected time in which
the network of activities would be completed. An enhancement to the PERT-COST approach
available with our simulation approach is modelling resource usage as a function of time also.

A third level, that at which the prototype simulator was developed, is a high level process model.
At this level, the activities are modelled at a relatively high level. Sensitivities in the development
plan and in the assumptions made in the model development could be analyzed. At a high level,
impacts of using different techniques and tools could also be analyzed.

The last and most detailed level, is a detailed process model. At this level all of the concepts intro-
duced in prior sections would be utilized to model the activities. The analysis capabilities possible
in the process model mentioned above would be of greater fidelity due to the finer detail of the
activity models. At this level of capability, the full complement of support to the management
planning and control of a software development project would be provided.

EXPERIMENTING WITH THE MODEL

To further evaluate the feasibility of simulating the software development process, a prototype
simulator was constructed and demonstrated by modeling a past software development. This
prototype was developed with the idea in mind that it could eventually be extended to provide a
full software development process simulation capability. In essence, this prototype enabled us to
experiment with the basic concepts of the software development process model and provided some
experience during which lessons could be learned and refinements in our approaches could be
accomplished.

DESCRIPTION OF THE EXPERIMENT

The experiment was oriented toward modeling a past large-scale software system development.
The simulated results were then compared with the historical data that was maintained about the
development effort. This approach to an experiment is more modest than a full validation of the
simulation model in which the simulated results would be used to predict the actual results, and
a comparison of predicted versus actual would provide a validation criterion. Our experiment was
more a calibration of the model to assess if, in fact, a development effort could be modelled to
some degree of accuracy. Calibration is utilized by analytic techniques also (RCA PRICE-S and
Putnam's SLIM) to tune the analytic model to the development organization. We envision this
practice also pertaining to the Software Development Process Simulator, where various parameters
or internal tables within the simulator could be tuned to a particular development organization by
modeling past developments.

A. Stone
-,«-, G.E.
250 7 Of 24

The software system development that was modelled consisted of three major subsystems (or
CPCIs). The system was a command and control ground system developed under contract for the
Air Force. The three subsystems ranged from 75,000 to 150,000 lines of JOVIAL source code
each (including comments). Complete statistics on the development activity were maintained, in-
cluding the number of design problem reports, software problem reports, and source code sta-
tistical profiles, as well as manpower expenditures.

RESULTS OF THE EXPERIMENT

Again, we were trying to calibrate our model and therefore were interested in achieving the highest
possible agreement with the recorded development data. For this experiment, we examined actual
manpower data from the simulation. The line labelled "ACTUAL" in Figure 3 is the graph of the
data from the Air Force project superimposed on the graphs of the simulation results. Table 1 is
a legend to be used with Figure 3. Cursory examination of the data in Figure 3 shows a clear
correspondence between observed and experimental values.

Comparison of the graphs in Figure 3 shows that there is a 4.98% error between the areas, under-
neath the observed and experimental data curves. These results are considered quite acceptable.
Some of the peaks of spikes seen in the actual data can be attributed to five-week fiscal months,
which plotted at a granularity of one month causes higher manpower expenditures to be
illustrated.

Resource Title

SYSE

ANLT

PROG

QA

System Engineer

Analyst

Programmer

Quality Assurance Personnel

257
A. Stone
G.£.
3 of 24

PERSONS

V////A

ANLTESSI QA V////A

ACTUAL

AREAS:

ACTUAL: 417.425
SIMULATION: 396.625

4.98% ERROR

1 2 . 3 4 5 7 8 9

MONTHS

10 T! 12 13 14 15 16 17 18

Figure 3 Experiment Results

258
A. Stone
G.E.
9 of 24

CONCLUSIONS

Our research has covered the spectrum from concept formation to analysis to experimentation.
First, we addressed the problem of how to apply simulation techniques to study the software de-
velopment process. Then, we investigated what the characteristics of software developments are,
based on the "world-view" established by our simulation approach. Finally, we studied when our
modelling methodology is valid by learning how to design simulation experiments based on .our
modelling approach. Table 2 summarizes our major accomplishments, and indicates where we go
from here.

Table 2

Conclusions Matrix

Accomplished Future

(1) Simulation Approach

Combined activity-product
model forms conceptual
basis.

(2) Process Decomposition

Activity-product network
demonstrates practical
application

(3^ Simulator Development
Simulator prototype
•demonstrates experimental
feasibility.

Identification of simulation
variables, model rules, model
inputs and outputs.

Detailed specification of
activities, products, factors,
and resources.

Data collection to support
full experiment.

REFERENCES

MCCA 79 McCall, J. A., et al., "A Simulation Modeling Approach to Understanding the Software
Development Process," GE TIS 79CIS009, June 1979.

TURN 76 Tum, R., M. Davis, and R. Reinstedt.. "A Management Approach to the Development
of Computer-Based Systems," International Conference on Software Engineering,
October 1976.

WOLV 74 Wolverton, Ray W., "The Cost of Developing Large-Scale Software," IEEE Transaction
on Computers, Vol. 23, No. 6, 1974.

MAILING ADDRESS

Albert H. Stone
General Electric Company
Command and Information Systems
450 Persian Drive
Sunnyvale, California 94086
(408) 734-3571, x44

259

A. Stone
G.E.
10 of 24

3exa.a.«cC
3

(/I
coUJO

U
J

a.OU
J
as?

S

2

C
L

<
"

O

§CO

2

=

o
o

•
-
 $

t—
a
:

S

co
H
-

S

<->

0£O

«

«

o
-:

C
O«
C

oC
O

<:>•zZDco

O
O
ae:

260
A. Stone
G.E.
11 of 24

coC
O
oo3oo

ocoLUraor
oo

s:
co

•->
co

C
O

L
U
o

1
 §

i—i
a.

U
J

in
LU

O

C
D

O

O
C
.

I
O

O

L
U

I
tO

C
O
f.I

_)
o

o

vo

Of
o

cocoLU<_>
OacQ-Q-
OL
U

Z

>

o

OCO

oC
O

L
U
C
LCO

L
U
O
.
C
O

C
J

L
U
O

£

S

C
O

Q
£

i-i
<t

C
O

3

<

I
—

L
U

L
u

L
U

OCO

I—
a

L
U

OooO
S
Oco

C
O

C
3

0
.
o

C
O

H
-

o

z

u-
o

<c
o

coC
O
o

z
 c
o

1—I
COLU

CO

<->
»—

o
n:

a:
C9

Ck.

»—i
C
O

t
—

L
U

Q
.

a

o

occ

aocou.OL
U
C
OcocoOo.coco

261

A. Stone
G.E.
12 oi 24

o<:

coLUU
Joc.<.Q_s

_a3<u.u.c2OL
U

H
-

O»
-4

t^
^

•
3C
Ot_tr̂^>
-

5«aQ
C

LUt—Q
£

(_
)

1

t—

C
3

H

-
H

-
h-

z

2
:

z

a
s

z
LU

•—

 •
LU

LU

LU

_
i

c
o

_
i

_
J

—

 i
_l

1-1
—

I
_J

_ J
L
U

3
E

L
U

L
U

L
U

O

O

O

O

U
X

O

C

X

X

X
LU

C

L.
LU

LU

LU

Q

rf
Q

i_

Q

LU

f̂c
LU

£9

LU

•~

S

*—

L
u

^~
2

c
o

S

-J

S

^
3

fV

^
^

,^
J

^
—

*•;
<

ĵ

L
U

|~

j
-J

a
g

—
 '

x

—
 '

U
J

(—

0
0

L
U

»
-•

L
U

tO

>
-

C
J

_
J

«
_
>

L
U

V

-
Z

•—
 i '

Z

"
 'Z

•—

 '
U

J
C

O

L
U

L
U

—

1

Q

5
0

1
-

<

Z
I—

 I
L
U

Z

L
U

i—
 i

U
-

_
l

i—
 i

O
.

_
J

Z

0
.

Z

L
U

Q
.

O

X

•—
 •

C
3

Q
.

C
J

O

X

Z
<

£
(

_
>

•
-

•

1

U
JcocoUJcjOex<xU
J _lQ
-
oL
U
a.C
D

ao

coUJUO

L
U
oo

L
Up 5
<:

3
=>

s

L
U

a:

z

o
 >
-
i

U
J
—j

«*
i—i

a

uj
<:

L
U

z

C
O
i—

a:o
L
U
a

t
oLU

L
U

toQO

>
•

L
U_J

l_5

LU

CO

•—•
-
J

<
E

Z

CO

CO

UJ

L
UC
O

coLU
t/V
L
U

0
0

O

O

C
C

Q
C

a.

o.

262

A. Stone
G.E.
13 of 24

CS|
M
|

OcoQicr:
Oi

oZ

«_5
00

e
S

L
U

Q
.

l
—
i

^
 5
5

•-•
o

U
_

O

C
O

O

Z

L
U

O
O
00LU
O
O

»
—

C
J

C
3

0
0

Z

L
U
 O

at
o

0
0

•
 O

co
o
o

o

LU
_j

re
oo

o

>
-

O _Jo

csZ

C
O

<
C

L
U

_
l

C
O

O
.

C
O

L
U

<
CD

CX.

C
O

O

L
U

coC
O

C
O

co
Z
 C
O

oo
•—i

oo
co

oo00
—I

O

Z
.
 H
-
l

^̂

ĝ
<:Q
.

t—
ctou.0LUOLULUscL
U

OC.

0
0

•̂Oo

<_>
L
UT>
0Q
.

1
—

L
U

t
f

C
C

T̂

Ĥ

H
H

^

»—

C
r

0
0

L
U

LU
cr:

h—

L
U

0
0

Z

O
 •
-
>

o

»
—

|

|

8cr:L
U

<_>
O
C

~~i
0C
O
L
U
cei

_iocr:h-s:0»—0LU*-̂OQ
.•

<
C

LU^^

t
 i

t
f

L
U

j
£

^̂

a:

LU

O

_
J

U-

>—
o:

h-
L
U

O

Q
.

O
Q

1
1

2>
—
L
Ucr:
^̂0C
O
L
U
(X1

263

A
.
 Stone

G.E.
!4
 of

 24

toooaa.LU

iLU

o0
0

toos

w
^

I L
U

§H
-

O
C

 LU
—

 <: oc

oae

§

|
—

1<

.•—
•

LU
'C

O

!£
'

«Cvc
L
U
 3

I

oc
o-:

264
A

. S
tone

G
.E

.
15 of 24

inoo§o.Q
.
OCX•Ioto

t— oo
Q
.
 U
J
l

U
J
 I
—
*

tozo<co;UJ

£

Q

8

-

U
J

O
o

ts>

I—

0
0

z
 >
-

C
r
-
J

UJ

eC

13O

C
O
>•00

265

A. Stone
G.E.
16 of 24

a
.

U
J

C
J

oU
O

I/O
U

J
oOa:a
.a
.

OU
J

oU
J

a:oI/O

a.K—
 •

O

U
J

IXo
-

U
J

ocoooujtoQ

0
0

h—o

a
; a

.
«C

 O

.
O

 L
U

•
1

<

Oo_

O
C

<c

U
J

oc.

OCL
O

<
£.

C
O

266

A
. S

tone
G

.E
.

17 of
24

G
O

G
O

L
U

OocrC
L.

a
.

oOG
O

OG
O

Oo_oo

a.i—o

G
O

I—Ooo
U

J

ZO«to

s

a
:

t—
CXL _J

Z
3

>
-i

LU
 <

C

O

_
I

(—
 Z

G

O

<
C

1-1 IT
oc

C7
i

i
i

o
.I

oceQ
.

L
U

O

L
U

L
UG
O

OO
.

L
U

Z
 G

O
Q

-
L
U

 L
U

Z

•—

Q
 >

-i
O

^

Z
 (—

>—
i

G
O

LU

 •—
«

L
U

 t—

Z

G
O

O

-
>

O

«
t

O

I—

L
U

«
—

i
Q

£ rxl
i—

t_>
01—

Z
3
 —

i
I—

 =
5

Q

:
O

O

—
I

<
C

 Q

L
U

 c
£

G
O

>
—

•
_
l

O

t—
LU i—

LU

 a:
z

u.
oc =

>

a: o_
•—

i o
i

i
i

GO
 GO

a:
 LU
0
 0

t—
 C£.

<
t

0

U-
 GO
LU

>- o;
u_M

Q

h
-

Z

2E
 cC

O1— 1

G
O
LU
C.B
f
™
 •

^̂t—"*z0I—«cQ.M1

CJD
OOOOG

O
OCL.

C
J

L
U

O

G
O

f-a
.

G
O

OoQ
i

C
L.

s: •—
• a: <c

t—
 oo

L
U

O

O

—

I
L
U

I—
 O

G

O
 _j

<t
a.

Z

Z

L
U

_
J

=
3

>
-

I

I

I
I

267

A
. S

tone
G

.E
.

18 of 24

oo0_oooONCEPTS OF

(J>
O^̂oo—
 •*
§U
J

H
-

_iLU0iI
I
I

U
L
J

ex=3^̂ v_3
__j

o:i—ooz30O^̂ f^̂UJa:tvt5̂IX«̂k
ia:o>-»—M>4
>
•

^̂̂
~
<
J

<̂O
O
L
U

•

•

>
-
C
Q

aL
U
f—L
U
0
0
L
U
C
X
a.LUo:oo»-HO
O
0
0
L
U
C
X

8exa.»—zLUD
.
O _
J

L
U
>
•
L
U
a

•
5UJ00>-oo

I-H

1
—

»-*
>O<ct—L
U

0
.
0_
J

L
U
>LUO

ooC
3

0u_0X£LUZ^•

aJ
i
^

(n̂
f̂fi

_
l

L
U
OizoooooLU(XC3OCXa.H-O•̂OoŷCL.*xs

ĤO0oC
£
Q
-
U
_

OC
C
OL
u

L
U

h
-

t-*

L
U

gLU1

Oŝ:LUf
e
>
•
O
O

L
u
OOi-̂H-=>_J§^̂LUL
U
3;i—•

,

• •
>-CQ0
0

ooooooLU(XcsgQ-z(_)3o=c

>•1—>o«to<:LUce.oLuz
Ooo(XLUa_u_OL
U
Q
-
>
-
h
-

>
-
O
Q

ooex=>r̂*

o" ooC£.LU0.•

0
0

oQ0(XQL.
(
X
OLu1 i 1

oo(_)C
X
ozo^̂f—iLU(_3

8LuO0
0
L
U

1
—
4

_
J•

1
—

(
_
>

Z
D
O

>
-

0

»—
a:

•-H
QL.

•->
3:

t—
t i

>̂C
Q

aL
U
u
-
OLU_j

L
u
L
U
C
X

oo»-*
u
.
C
X
OL
u
L
u
L
U

L
U
1C1—L
U
O>
-

1—_l

«
I

o-

0

«
C

«
C

L
U

z
 c
e
.

•f.

OLU

zi— i
OO
L
U

LU

~̂
U

_
J

Z

«
C

L
U

>
t»-i
cx

oo
LU

(J>
a.

i— i
X

C
X

LU

I—LU
_l

JE
L
U
Z

>
-

2
:

h
-

O

•
-
•

OO
1

ex
«t

LU
r>

Q-
Cr

•

•

268

A
. Stone

G
.E

.
19 of 24

0
0

l/l

oo

o<_>IO
L

U
J

Q
.

oo0
0

ccQ
.

Oa
:

a
.

oU
J
o

269

A
. Stone

G
.E

.
20 of 24

O
.

C
C

coLLJ
OU

J
z:O

-
X

QZLU
OL
U
_
J

O)_4
toLU0^̂S8ccCL.aLU_l^̂«
t

ta._0a.o

C3=JCOLUO

0ŷ*

«̂CD-̂*
OO<_>

^CDOU

1-toLU1—x:LUto>-OOCO=>to„_Kto1—

U
Ju5EĴL
U
1-z1-̂<:z•oĝC
3

»—i

»
—
<
»
-

c2a:
ts o
L
U
 Q
-

.•— °-
t— i

OO

_̂0»»l

^̂o1—4M̂f̂?̂

a.UJa:r̂jg*^̂O
L

1—ooLU»—a.1—U1(—

i —L
U

JJ£
O_lLU»̂
L
U
OU
Jct:
ZDCD
L
U

f

^

^̂ccQ.1—toLUh-OQ
£
a.H-

Op!^̂ ccL
U-̂ 3Z

.

1
—
4

•B>—00LU
>
-L
U

t—to>-to

L
^

L
_

»̂

^̂

to
oo

oo
oo

3ELU1
—
 4

>̂
L
U
a:z1—4
toLUa_iS•— 1
»-«-̂cc0aeo

i
.
 J

U
J

O<cH-a.LU<_>
o«t•ezoi— *
«to•-H_J«t>cc001—<>

L
U>
L
U
CC

'2T
OH-*

<c_>»— •
U.»-̂OLU0.OO1—COLUt—

O
O

C
O

=
>

O
O

C
M

C
O

O
O

C
O

C
O

tosto
O

O
 •—

 i

C
O

voiJT

JTf—C
V

J

0
0

LO^
~

coC
V

J

U
J

to

C
D
o0

CVJ

to

C
sJ

C
D

B0

C
O

iC
O

to

C
O

go

s1%270

C
vJ

ooootooo

to
L
U

O

J
-

<
|S

^
^

V
I <_>

A
. S

to
n

e
G

.E
.

21 o
f

2
4

0I—
 1

Q
.

5<
->

U
J

OH
-

L
U

t_
^

ccU
J

a
.

XU
J

^
^
^
^
>

a./m
£

-"%

U
I

oa.
hico

U
ltt.

W
ill C

O
CO C

O
 <

Z

f
<
 I

 O
I

 «
.-

0
.

t-
n

o

<
z

o
 z

e
-

e
z
 -
o

z
«

o
 W

H
-

o

u
o

u
z

-
0

0
1
 —

coK
"*»

*&

 •&

•»

*
*

*
*

•
*

•
•

U
I

ft O
 O

 O
Q

 (D
 K

 Q

f
e
S

?
-

.
 .

«

*•
*•

*•
••

^^
 ^3

• C

4
<

a:
Q

IN
M

N

i- a: —
 t-

U
I

Q
 0

1
 »

- O

C
O

B
.H

>
O

M

-i
to

w

 i:
»

- H
 >

<
o

O
ff

-IU

O
 O

 K
 —

Z

•• •• O

T
 W

Ok
<

<

 Z

.
.
.
.
.
.
.
.

O

Z
 O

 C
O
 ••

•

J
O

^
*

O
f
l
^

O

^
*

•
*

M
*
^
U

I

O

O

B

a

z

u

c
e

o

to
«

o
£

<

«
O

«
K

u

 o
—

O

O

0

)
O

O
I-

—

J

U
D

U
IZ

(O

K
—

O

.
-

h
.

«
- —

 »
*—

2

O

O
K

—

C
01E

C
O

S
r

<
z

e
»

r
>
-

u
i k

i o
:

•
.

^

U
I 1

 •
• •

—

O
D

ui
u
i

->
<

_
i

«
o

•

D
 J a

:
e

_
J

-
l

e
z

o
D

t: <

 o
:

0
.

0
.

—

<
e

z

O
K

b

j
u

i
u

*.t-u
i

x

u

z

c

»
- —

 —
 H

U
IO

x

t-
_
i

<
U

I
_
l

<

V

(L

IV
>

O
C

O
I-<

t-

<

ft.
«

 U
. _

l
a.

v
>

 A

<

p
u

o
u

iz
r

J

c

u
i i <

z

r
J

E
5

o
i-

-
i

z

s

<
 z

z
»

-
K

<
m

o

o
—

c

«
o

—
 o

<
<

»

o
.

<

z
e

—

-iz
u
.

a.
5

r

w

u
i e

o
z

co

a

n
 o

 o
-

w
o>

o
o

N

U
I

Z

2

«

*

"
0

C
M

U
_

I)O

L
U
00o
:

Q
.

5
\̂

P

oU
I

U
I

111rIQ0iCOcoU
I

oKiII

271
A

. Stone
G

.E
.

22 01 24•

U
J
a:L
U
z:O
£

ce2oc

in in
at

C
M
 C
M

.

-«*• <n

VO

^

C
M
 O

0
0

n

r
o
 n

n
 C
M

voCM
C
M

C
M

O

272
A. Stone
G.E.
23 of 24

COoC
O

L
UQ
C

L
UoI-H

C
O

=>_JoZo

O
 Q

1
-1

 O

=
5
 C

O
z: LU
—

 _
i

to

C
O

O
£

O

U
.

O

o: co

,L
U

D

-
O

 I—
O

3

I
S

O

,
*
°

|co
z«t

CQ
co

<
: i—

C
d

Q

.
<
f.

Z

co

IQ
. coU

J

co o;

Q
C
oo
.

o
.

=>C
O

OO

Q

i—

i
O

LU
 >—

 co
_
J

I—

 i L
U

•—
 i :>

 o
f.

LU
 C

_>
Q

 <
t

O
 L

u

O
 _

J
o

<
ex: 2
o. t—
I

Q
-

2
C

>
-

L
U

<_)
I—

 C
_>

x
:

ccicoO»
-̂co

C
O

_
J

D
-

O

Q
.

O
.

C
3

C
O

(_>
 C

O

o
 o

«— • _i
co

C
Q

 L
U

 >—
 i

Z

Q

C

O
O

 Q
 <

t
<_J 3E

C

O

C
O

Oa.ZooL
U

cocoOo
:

o
.

L
U

o
 a

:
1
3
 Q

.
Do

c
o

•

a
: L

U
 z

a
. t—

 o
i

<
c
 i—

>
-

C
£

 •—
 •

H
- t—

 <:
•—

 '
C

O

C

_
>

c_> LU
 a.

«
t o

 <
:

a. cz\
>
- I

i—
 Q.

Q
-

O
X

O

I—
 I

—
1

O
LU

ex: co

•
>

a. LU

 >-

o
:

oC
O

o
:

O
C

O
 C

O
Z

 •—
O

 C
O

•—
 t

LU

LU
C

O

O

U

.

273

A
. S

tone
G

.E
.

24 of 24

