
SOFTWARE COSTING AND LIFE CYCLE CONTROL

® Lawrence H. Putnam
Quantitative Software Management, Inc.

1057 Waverley Way
McLean, VA 22101

It is remarkable'that our $40-50 billion per year computer industry has 1/3 to 1/2 of its effort
(and cost) out of control. I am referring to the software generation part of the industry. For
25 years now 200 to 300% cost overruns and up to 100% time slippages have been common,
frequent—almost universal—as if there were no pattern, no process, no methodology, no character-
istic behavior to the software development process. Indeed, it has become so unfathomable that
responsible managers, controllers and corporate officers have tended to avoid the issue, accept the
inevitability of overrun, and eat the extra cost—rather than find ways to get the problem solved.

If this were a trivial expense then such managerial responses would make sense. But $16-20
billion a year for the nation is non-trivial. Software development activities for major corporations
cost 1-3% of revenues. This is perhaps 10-40% of net profit—thus, an activity worthy of con-
trolling to the same standard as other critical corporate activities.

How can it be? People are aware of these realities. Many seminars, conferences and studies have
been (and are still being) conducted to try to provide answers to the management questions:

Can I do it?
How much will it cost?
How long?
How many people?
What's the manloading?
What's the cash flow?
What's the trade-off?
What are the risks?

My studies of the past five years show very conclusively that there is a fundamental characteristic
behavior to the software development process. The underlying characteristic is the complex human
intercommunication process necessary to permit broad, abstract concepts to be transformed into
a set of absolutely specific instructions the machine can respond to. This human intercommunica-
tion process is characterized by ambiguity and partial understanding. Progress proceeds in "fits
and starts"—"surges"—"two steps forward, one back"-"loop back and start over," etc. These are
all expressions to describe complex feedback paths, driven by random interaction among the hu-
man participants—all of whom must interact in a highly interdependent way.

People trying to plan and manage software attempt to do it deterministically — linear process flow
diagram, decompose hi to a work breakdown structure and Gantt chart, assign tasks and schedule
and then try to execute. Further, in an effort to meet arbitrary schedules, many activities that
have sequential or partially sequential dependencies are attempted in parallel in the mistaken belief
that what sometimes works in independent manufacturing processes will succeed in software. After
25 years of failure it is time to recognize this approach (by itself) will not work with software. We
will have to deal with fundamentals.

L. Putnam

139 <?».*



The characteristic (average) behavior of software development over time is well described by the
Rayleigh equation, a specific form of the Weibull family of reliability functions. The Rayleigh
equation appears frequently in random statistical processes — scattering phenomena, narrow band
Gaussian processes, diffusion and transport phenomena, quantum mechanics — so it is very reason-
able to expect its appearance in software development where we implicitly recognize the unpre-
dictability of the process, yet seem afraid to say it is a statistical process driven by many complex
interactions unknown in advance and therefore random. The Rayleigh equation describes the
average behavior over time of software development because it is a good model of a large number
of Gaussian variables whose phases are random, meaning that many pieces of work will not be
"in phase," hence will not "add" constructively, but may indeed "subtract," requiring feedback,
rework, and so on.

Fortunately, we don't have to model this behavior in detail. The Rayleigh equation represents
the overall time-varying behavior very well. Moreover, the Rayleigh equation parameters yield
the management parameters that directly answer the management questions. The Rayleigh/Norden
overall manpower equation for large systems is

y_ = (K/tJ) . t. exp (-t2/2tJ) people

where

K is the life cycle effort in manyears, or manmonths,
ttf is the development time in years, or months,
t is elapsed time in years, or months, from the beginning of detailed logic design and coding,

and
y_ is manpower in manyears/year, or manmonths/month, or just plain, countable people at

any instant in time.

Multiplying this equation by the labor rate turns it into a cost function. Integrating (adding up
the curve) over time yields cumulative effort and cost any at time - thus, development effort and
cost is an easily extractable subset of the life cycle numbers.

The relationships among the Rayleigh parameters are highly complex. This probably explains why
purely empirical approaches have not yielded satisfactory solutions until now. Recently we have
found good, practical ways to relate the Rayleigh management parameters to valid system char-
acteristics in ways that answer the management questions directly with numbers that are the best
possible answers. These findings are so important they should be commented upon immediately
because the economic implications are absolutely awesome. The main points are these:

• • A good, accurate method to size a system early in functional development has been
developed.

• A software equation relating the system size to the managerial parameters — manmonths
of effort (K), development time (t<j),'and the state of technology being applied to the
development effort — has been developed.

• Empirical verification from hundreds of systems of all types and development environ-
ments that the basic Rayleigh/Norden time varying behavior is phenomenologically
sound.

L. Putnam
QSM

140 3 of 84



• Empirical verification from the 400 odd systems collected by RADC that the parametric
software equation and constraint relations are sound and are sophisticated enough to
cope with the enormous range these parameters exhibit. (This has been the problem
with single and multiple regression approaches — the variance has been enormous - this
has been attributed to "poor data" when in reality, it is much more a function of the
development environment (development computer, tools, and techniques) and system
type (complexity).)

• Two good ways have been found to determine the management parameters from the
system size and a set of system and managerial constraints.

(1) LINEAR PROGRAMMING which produces a pair of constrained optimal solutions
for the managerial parameters. -.

(2) MONTE CARLO SIMULATION which produces a minimum time solution and un-
certainty or risk profiles.

• Better and more straightforward ways to demonstrate the acute time sensitivity of the
software development process.

• A dynamic (time varying) approach to measuring progress (not just resource consumption),
coping with requirements changes when they occur and continually converging toward the
actual system behavior — in effect, a real time process controller.

• The ability to play managerial "what if" games with software development projects
- AT ANY POINT IN THE LIFE CYCLE (from earliest feasibility analysis through

development into the operations and maintenance phase).

I will comment on each of these points.

SIZING

Many software developers will tell you they cannot size a system accurately, that there is too much
inherent uncertainty. This is partly true. They usually cannot size a module emanating from a
functional description very accurately. But they can estimate ranges quite well. This is good
enough because the statistics of aggregation work with us. We use the PERT estimating algorithm
(Beta distribution) and ask our design engineers to estimate the size of each functional module in
this way:

a — smallest number of source statements
m — most likely number of source statements
b — largest number of source statements

The expected number from a specific functional module is

a +" 4m -i- b

L. Putnam
141 QSM
141 4 of 84



and the associated standard deviation is approximately

b - a

When we aggregate all the module estimates into a systems estimate, a remarkable thing happens -
the relative uncertainty of the system size (°TOT/ETOT) is generally much smaller than the un-
certainty Oj/Ej) of any of the modules. This is because of the cancelling effect that will occur in
execution. Some modules will be smaller than planned, others larger; the net effect is a much
smaller aggregate standard deviation than one would intuitively expect. Consider the following set
of data obtained from an experienced team of about 15 system designers about twelve weeks into
the functional design of a contemporary information retrieval system. Here are their estimates.

Maintain
Search
Route
Status
Browse
Print
User Aids
Incoming Messages
System Monitor
System Management
Comm. Proc..

Total

Smallest

8675.
5577.
3160.

850.
1875.
1437.
68T5.
5830.
9375.
6300.
5875.

Most Likely

13375.
8988.
3892.
1425.
4052.
2455.

10625.
8962.

14625.
13700.
8975.

Largest

18625.
13125.
8800.
2925.
8250.
6125.

16250.
17750.
28000.
36250.
14625.

Expected

13467.
9109.
4588.
1579.
4389.
2897.

10938.
9905.

15979.
16225.
9400.

98475.

Std Dev

1658.
1258.
.940.
346.

1063.
781.

1563.
1987.
3104.
4992.
1458.

7081.

Note that the expected number of source statements for the system is just the sum of the expected
number for each functional module. The standard deviation for the system is the square root of
the sum of squares of the module standard deviations. This is what accounts for the cancelling
effect. Note that the ratio <7TOT/£TOT = 7081/98475 is only about 7 percent, yet the coefficient
of variation of one function, SYS MGT, is 4992/16225 - 31 percent, and the absolute magnitude
of the standard deviation for SYS MGT, 4992, is 70 percent the size of the standard deviation for
the entire system. The upshot of this is that we can predict system size to engineering accuracy
even when there is large uncertainty in individual functional modules. This is a proven technique
used in 15 years of experience in PERT charting. Counterintuitive -YES; but it works. Another
point of major importance is that the engineers asked to provide the estimates are comfortable
with the procedure. They are not threatened by range estimates. With this technique they can
always be right, rather than always wrong as with any single number estimate they might provide.
The more uncertain they are the broader the range they estimate. This is intelligent hedging that
is accounted for in a systematic way. The technique has been used five times within GE with ex-
cellent results. Engineers and managers all felt comfortable with the procedure and satisfied with
the results.

The question frequently arises as to why we estimate source statements instead of executable
machine language instructions. The answer is simple and practical. Today, programmers and

142

L. Putnam
QSM

5 of 84



analysts can estimate source statements because this is what comes out of their mind and off the
tip of their pencil. Few people have any intuitive feel for executable machine langugae statements;
the measure does not relate to their thinking or creative process. Both source statements and ex-
ecutable machine language instructions are valid information measures in the Shannon sense - they
are ultimately reduced to bits of information in the machine. It is just that today, with most
people writing in a language several levels above the machine level, source statements are natural;
machine language instructions are not.

THE SOFTWARE EQUATION

The software equation SS = C^K1'3 td'
3 relates the number of source statements (SS) to the mana-

gerial parameters K and td. K is the life cycle size in manyears of" effort; td is the development
time in years. These are the Rayleigh/Norden parameters of the overall manpower equation.

y_= K/tJ . . t .e '* /2td people

Cfc is a technology constant. It measures any throughput constraints that impede the progress of
programmer/analysts — a batch development environment on a production machine (low) versus
on-line, interactive program development on a dedicated test-bed machine (high). C^ is quantized.
We see this in the data repeatedly. C^ varies in a set sequence of allowable values (Fibonacci
sequence). The software equation will not be derived here; an adequate description of that pro-
cess is contained in IEEE Transactions on Software Engineering, Vol. SE-4, No. 4, July 1978.

•

The important point is that the software equation gives us the linkage between system size, tech-
nological tools, effort and schedule. Effort and time are coupled. You cannot change one with-
out changing the other. And the change is dramatic! Rearrange the software equation and you
have the trade-off law:

Dev Effort = 0.4 (— j —

Note that Dev Effort = 0.4K; i.e., the area under the Rayleigh curve to td.

This turns immediately into the software economics law by multiplying by the burdened labor
rate, S/MY.

SS3

Dev Cost = 0.4 (S/MY) . A

All of these parameters can be favorably influenced by management before a project starts. Since
they are all power functions and C^ goes up in quantum jumps by a factor of 1.6, then cost im-
provements by factors of 2 to 1 0 or more are possible with intelligent planning and good invest-
ment sense. The economics of this trade-off law are almost too good to be true. It says take 3
or 4 months longer and cut your cost in half; or better, buy a dedicated test-bed computer, thereby

L. Putnam
.... QSM
143 6 of 84



increasing C^ by 1 .6. When you cube this you have cut your cost by a factor of 4. Eliminate
•10 percent of the system frills and shrink the number of source statements to 0.90SS. This cuts
the cost to 73 percent of the original value. The improvements just cited for a 2-year system
that we stretch out to 2.25 years are:

SS3 / SS3 \
DevCostbefore = 0.4(S/MY) -j-y = 0.0625 J0.4(S/MY) — )

Ck2 \ Ck /

(0 9)3

DevCostafter = 0.4(S/MY) - '• - = 0.00694 (0.4S/MY. .
(1.6)3 C3 (2.25)4 C3 /

The improvement ratio is:

Dev Costafter _ 0.00694 _ 1

Dev Costbefore 0.0625 9

The trade-off law is a consequence of system signal-to-noise ratio and bandwidth limitation: when
development time (B - 1/tj) is shortened, the bandwidth increases and signal-to-noise ratio de-
creases (actually, noise increases in the form of more difficult human intercommuncation). With
the trade-off indicated, small time decreases soon make a system impossible to do — regardless of
how many people or dollars are hurled at it. This is Brooks' Law at play.

We cope with the bandwidth limitation in the form of some empirically observed constraints that
relate to the system difficulty K / t , the initial solpe of our Rayleigh manpower curve. The best
measure seems to be the difficulty gradient | VD^K/t^ . For a certain class of system, (new, stand-
alone, etc.), the magnitude of this gradient stays constant.

When we solve the software equation simultaneously with the gradient constraint, we obtain the
minimum time that a given size system can be built along with its associated life cycle effort,
K(MY); development effort, 0.4K(MY),' and development cost ($), S/MY (0.4K). These are ex-
pected values, of course, because of the inherent noise in the process.

EMPIRICAL SUPPORT

How can we be sure the software equation and gradient relation work across a broad class of sys-
tem types and development environments? Classically, we use a set of data to determine the
functional behavior, formulate a theory to explain the behavior and then verify the postulated
behavior with another independent set of data. .In this case, we found the basic behavior from the
Army Computer Systems Command data, broadened the range of applicability with the Felix-
Walston data (IBM Systems Journal, Vol. 16, No. 1, 1977) and recently have been able to verify
the software equation, and gradient relations against the largest collection of software data yet
collected. This is the software data base collected by Richard Nelson at Rome Air Development
Center. Data for more than 400 systems have been collected and partially analyzed. Of particular
interest are the machine generated plots of development effort, development time and average

L. Putnam
QSM

144 7 of 84



manpower versus system size in delivered source lines of code (SS). The dependent variables are
the management parameters and relate directly to our Rayleigh parameters. Development effort
is 0.4K, development time is tj, and average manpower is [OA(K/t^)]. When one looks at the
Rome data polts (see Figures 1, 2, and 3), one notices the vast range of the independent variable
from a hundred or so lines of code (small program) to systems of several million lines. The range
of the dependent variables is large also. A clear functional behavior with good correlation is evi-
dent, but the value of the functions are severely limited as predictors because of the very large
standard deviations. Some attribute this to "poor data." I submit it is inherent in any non-
homogeneous data collection spanning many years, different languages, different system types,
different design philosophies, etc. The variability combined with the good overall functional char-
acter is just what I have observed elsewhere with an independent data set. What it says to me is,
"Hey, you've got a parametric variation present or an eigenvalue solution here - no single functional
relation can handle it."

When I superimposed the software equation and the gradient constraint relation on the Rome data,
I found a remarkably good fit. The slopes of the effort, manpower and duration curves of the
functions obtained from the software equation were virtually the same as those determined by the
RADC computer. However, no single technology constant (C^) was capable of spanning the entire
Rome data set. Indeed, it took two sequences of six or seven technology constants (ranging from
about 600 to 14,000) to do this. No rational range of manpower for one technology constant can
span the data range. For example, a range of 1 to 1,000 people working on a project will take in
less than 1/2 the data points. The effort data say the same thing. The conclusion is that the real
solution has to be parameterized; or be a discrete set of eigenvalues. The software equation, gradi-
ent and manpower constraints we have arrived at do span this data set, can rationally explain it,
and the functional behavior is virtually the same as the data average; i.e., the Rome data 'proves'
the software equation and constraint relations in all practical engineering respects. See Figures
1-5.

SIMULATION AND LINEAR PROGRAMMING

Management answers for effort, schedule and cost can be obtained using two powerful techniques
that are well established.

Recall that our PERT estimate of source statements had associated with it a standard deviation re-
flecting the uncertainty in this e^rimate (and the nature of the way the programs and modules will
be built; i.e., each program could be written many different ways to accomplish the same thing
functionally; each of these would have a similar but different information content (bit count).
The gradient relations were determined empirically and also had a statistical uncertainty in their
determination. Now, if we let these two parameters vary randomly in a simultaneous solution
that we run several thousand times, we can generate not. only the expected value solutions for K
and t(}j but also estimates of the standard deviations (more correctly, standard errors of the es-
timates). This is extremely valuable, because heretofore we have been totally mired in uncertainty
very precise single-value answers of completely unknown validity. Now, when the track record
has been 200-300 percent overruns in cost and 50-100 percent overruns in schedule, decision
makers do not believe single-value answers. They want to know the risk — the probability profile
they have been stung too often. In an immature discipline like software development (and the
economics of it) managers need the risk information — and are entitled to it.

L. Putnam

i A* ' QSM
145 . 8 of 84



Linear programming lets us introduce the managerial constraints into the problem. Indeed, we
can solve the linear programming problem with only the system size and the managerial constraints
of maximum cost, maximum time, maximum peak manpower and minimum peak manpower, since
these are all functions of our Rayleigh/Norden parameters; however, we also include system con-
straints such as difficulty and the difficulty gradient to prevent managers from attempting the im-
possible. The linear programming solution is possible because we can linearize the relations between
our variables by taking logarithms and can express all the relations in terms of the two Rayleigh
managerial parameters K and t&. A two dimensional linear programming problem can be done
graphically. Since our relations are linear in logarithms, we do it on log paper. The solution is
trivial, but the insight and understanding in being able to visualize the interrelationships is rather
profound. The minimum cost solution is immediately evident, the minimum time solution is
immediately evident — the duals, maximum time and maximum cost, are also present as they must
be in a linear programming solution — and the feasible trade-off range is identified in between the
extrema. In being able to invoke this powerful technique, we produce constrained optimal solutions
the best that can be done within the constraints, and all other feasible choices. A graphical linear
programming solution along with a brief write-up is attached. It works equally as well in the
computerized simplex form. A sample output corresponding to the graphical solution is attached.
Ideally, both these approaches should be combined — then managers can interactively iterate op-
tima] solutions graphically on the CRT - using their constraints - until they have the best size,
time, cost, manpower combination to meet their needs. With the smart graphics terminals available
today, this can be done at negligible cost and time. See Figures 6-8.

SCHEDULE SENSITIVITY

Schedule is the most critical problem in software development. Software development acts like a
low pass filter with sharp cut-off characteristics (call it a Rayleigh filter). This means that if the
development time is arbitrarily specified by managerial fiat, then there is a high chance the system
bandwidth will not match the arbitrary time (bandwidth) specified by management. This means
the filter characteristic of the system "will shape the input manpower and work profile to match as
best it can. Attempts to force the system faster just generate power (manpower) losses. This
can all be shown with vector arguments, Fourier analysis, and simulation. All methods give the
same results - software development is very time sensitive — development time specification is
not the prerogative of management - it belongs to the system. Management must iterate con-
straints to get into and stay within the feasible (schedule) region. (Fortunately, the linear pro-
gramming solution bounds this region in time, effort, manpower, and cost.) To get some idea of
development time sensitivity, consider the following table generated by simulation showing time
sensitivity as a system size for a typical government development environment (CK = 5168).

Size
(Source Stmts)

Avg a

15,000 1500
50.000 5000

100,000 10000
250,000 25000
500,000 50000

Dev Time
(Months)

Avg a

12.9 0.6
21.6 1.1
29.1 1.4
43.1 2.1
57.9 2.8

Dev Effort
(MM)

Avg a

34.7 6
376.5 60
992.9 152

3188.2 498
7782.3 1204

Within Normal Range
RADC Data Base?

MM Dur Avgf ProdPeople

Y Y Y Y
Y Y Y Y
Y Y Y Y

N(>) Y N(» N(<)
N(>) Y N(» N(<)

= 5168, VD = 14.7. a D = 2.3

146
L. Putnam
QSM

9 of 84



This table tells us that the time window is very narrow. For example, a 15,000 source statement
system has a standard error of 0.6 month. If management picks the time at one year (very natural
to do) then the probability of successful completion is small. 12.0 - 12.9 = -0.9 month, the no.
std errors = -0.9/0.6 = -1.5, and p{t^ < 12 months} = 7% - certainly not odds for the betting
man. However, a slip of a few weeks is usually forgivable by managers and customers so we hear
little about these cases - nevertheless, the time sensitivity is there, but the absolute magnitude is
below most people's response threshold. At the other extreme, 500,000 source statements, it is
very hard to guess 57.9 months and 7782 manmonths. More managers and decision-makers would
pick 48 months rather than 60 months knowing there is a better chance of getting funding. Yet
48 months is impossible (< \% probability). Furthermore, 3 standard deviations in time (about
8.5 months) is easy to lose on a 5-year project. There are many external factors that can cause
that much delay (late delivery of computer; late start with fixed end date, etc.). The only accept-
able solution to this management dilemma is to get realistic time estimates, and then bias them for
risk. Managers and decision-makers have to give up guessing schedules if they expect to succeed.
The process is too counterintuitive, too time sensitive, making the guessing odds unacceptable.

DYNAMICS AND CONTROL OF THE PROCESS

I have described some good ways to estimate software projects BEFORE THEY START. But
software development is a dynamic process. Requirements change. Functional descriptions change.
Statutes change. All these things impact an ongoing software project. The change process may be
so great that it invalidates a superb earlier estimate of size, cost, and schedule. So regardless of
how good our prior estimate is, we still need to know what it is now, based on currently available
information. We need a real-time process controller. This is nothing strange to us. It has been
done in space operations. For example, we wouldn't think of sending astronauts to the moon if
we couldn't measure where they were, compare it to where they should be and then make course
corrections. The same concept can be applied to software development. We have a time-varying
model that describes the expected manpower trajectory. All we need to do is feed it with the real
data in real time so it can update and converge to the true (or present best estimate of the) tra-
jectory. If we feed it manpower data, then we measure and predict resource consumption; but
more importantly, if we feed it code production rate, we can measure, update, and predict task
accomplishment — rate and % of source code complete. This lets us compare consumption versus
accomplishment to see if the rates and predicted times are in agreement - a very important con-
trol checkpoint heretofor unavailable. This technique lets us control the process based on the
existing system dynamics and make revised estimates of where we are heading.

We can also model the requirements change process in real time just before it takes place. This
means decision-makers can know how much the change will cost over the life cycle, and what its
slippage consequences are. The tecnhique is to use the 2nd order Rayleigh differential equation,
solve it numerically in discrete steps and perturb the driving term by an amount proportional to
the % change in the system (% of modules impacted, say). This linear approximation is representa-
tive and valid for the noise levels we are working within.

We apply the perturbation at the time the change is to occur and then project ahead to study the
new predicted behavior compared to the predicted behavior before the change. Very complex
situations can be modeled in this way with excellent indications of the expected response. The
managerial insight one gains from this procedure is considerable — the "What if" possibilities

L. Putnam
147 QSM

10 of 84



abound - "What if I double my effort for a month?" — "What if I am constrained on computer
time for 2 months?" - "What if 25% of the system is cancelled half-way through development?"
and so on. Graphical presentation of these situations on the CRT lets them be iterated and solved
on-line interactively.

With these specific application techniques applied as described, we have been able to quantitatively
come to grips with and produce reasonable engineering answers to the software cost estimating and
life cycle control problem. We see that it is a more complicated problem than we would like it to
be; yet, when we treat it as the time-varying problem it is, we see the solution is not as difficult
as some that have been solved before in other fields — (indeed, we are able to pick up and use the
best of those solutions in a number of cases) — and the solution can be easily updated wherever
one is in the life cycle. The data requirements are small and occur naturally as a consequence of
other normal reporting and record keeping; accordingly, the cost of driving the estimating and
control system is negligible. The economics of the software development process is startling. The
indications are clear that (apparently innocent) management choices can.be made that affect cost
by multiples of 5 to 10. With that kind of variation on multimillion dollar projects, managers
need to know the choices, sensitivities and influences they can bring to bear — and they need it
in numbers - over the whole life cycle.

The managerial questions — "Can I do it? How much? How long? How many people? What's
the risk? What's the trade-off? - can be answered with numbers.

L. Putnam

148 QSM
148 • 11 of 84



C
J

C
O
aenen

w
 

—
£o
 

Z
E 

2H
-

crai—e_5U
J.

—3oa.

—
 

en
U

_
 

<
£

*- 
o
i

U
J
 

—
ae. 

—
> 

in
c
 

e
n
 to

3
 

t*»
 r>

j
a
 

^
. 

a
v
i 

a
 
a

enC
£

it 
H

>• 
at.

8

K
 

c

rl g

SsO
T

uzuooin ~a
,
 
Q

* 
oo

W
 

C
b

>
 o

OO
r-S

 
-JtoQ

-
8

149
L

. P
utnam

Q
SM

12 of 84



3

S
H

1N
C

W
 

N
tJH

 
1U1Q

I

150
L

. P
utnam

Q
SM

13 of 84



C
J

o_
l

enaenU
J

—
j

Q
_

O
. U

J

U
 

j^
IN

- 
V

L
.

3
 
O

o
U

J
03U

J
Ocr.
O

i
U

J
>cr

^
 I

In
 

a
U

J
 

(2

tu 
—

2U
J

S
3

CC
cnaas

it 
M

- 
a•Jl

enCdO2S§

r-9
 

-J a c<]
u
 a

as o
M

 C
J

>M
 
i.

•J O
aQC
J

oena

(W
l/W

W
U

 
31d03d

 
-0 ciS

151
L

. P
uinam

Q
SM

14 of 84



•- 
ft

U
. 

(0

5 i
en 

x
U

J 
—

oc 
—

 
in

c
 

<
n
 

«
o

en

-

enuzuO5
 C

d
O

 Q
O

T
 O

—
 

B
 

W
 C

n
B

 
O

S
 
O

*" 
U>MiOena

—
 8

8(S
H

iN
D

W
)

152
L

. P
utnam

Q
SM

15 of 84



inC
d

-v5o

r- 
lwzO01 aQ
a
 o

W
 

C
J

OSU
 C

b
>

 o

uQo
-a -j

-
3

§ 
•

CSRLNQWJ

153
L

. P
utnam

Q
SM

16 of 84



FIGURE 6.

Linear 3roQr3ircning Alternative

An alternative mecnod for the Sayle.ign'para-
meter determination is linear orooramming. Since
we are dealing with only txo unknowns, K and t.,

and *iave a number of constraint conditions involving
these sarameters, we can easily turn it into a two
iinensicnal linear programming oroblem whicn can be
solved graohically. The nice feature of this ap-
proach is that a numoer of the constraints can be
exoressed directly in management terms. Design to
cost ana design to contract time is possible within
the constrained ootimization procedure. This pro-
cedure 's outlined below. The following constraint
conditions apply:

These translate into:

CK K
1/3 td

4/3

*"* ± * 'max

Software equation

Maximum peak manpower

Minimum peak manpower

K/tj; < jon _ ' Maximum difficulty

K/td 1 i70' Maximum difficulty gradient

t, <, contract delivery time

S/MY (.4K) <_ Total budgeted amount for develoo-
ment

"hese constraint conditions can be linear-zed
by taking logarithms and using the simplex method
of solving the linear programming problem. The
simolest objective functions are cost and time. One
general.y wants to minimize one or the other of
these. Typically we do both and then trade-off In
the region in between.

Assume these constraints applied to SAVE:

Numoer of S • 98475

'••aximum development cost ^$2 million

'•'aximum time (contract delivery) <_ 2 years

"aximum manpower available at peak manning
(hiring constraint, say) <. 28 people

Minimum manpower you desire to employ at
peak manning _>_ 15 people

Maximum difficulty gradient < 15

Maximum difficulty < 50

Minimum productivity > 2000 S$/ MY

1/3 log < * 4/3 log td • log 98475 - log 10040

log K log (2 x 105/5

log

log

log

log

log

.< -

K -

1C -

K -

K

log

log

log

3 log

2 log

td'
ed'
td •

<d"

V
•

log

log

log

log

log

log

2

{'e

(*

IS

50

23)

15)

(9847S/ .4(2000))

The intersection of these lines bound the
feasible region. An ootimal solution will be at
some intersection point. Further, because of the
equality constraint it must be along the S « 98475

line. The limiting conditions in this case are: ,
td <_ Is 2 years, maximum peak manoower < 28 people

and S • 98475 source statements. Figure 4 snows
the solution.

Reading off the solutions we see that:

Minimum
Time

Minimum
Cost

<1 K £
(yrs) ( M Y ) ( M Y )

1.83

2.0

84

61

33.5

21. <1
SI. 22M

PR .
(S S /MY)

198475/33.6 •
1

1
190475/24.4 »
i

2931

4036

Trade-off is possible along the S line between
td « 1.83 years. K - 84 MY and td - 2 years.

K • 61 MY without violating constraints.

Here ft Is easy to see the countei intuitive
nature of productivity. Note that productivity In-
creases with development time because the required
effort (E) goes down as time is increased.

One other point is imoortant. If the techno,
logy constant Is smaller, the S5 • 98475 line would

shift parallel to the riant (direction of increas-
ing time). If the constraints remained numerically
the same, the feasible region would change because
of the relocation of the S line. The time con- •
straint could probably not be met and a relaxation
of that constraint would have to be sougnt.

This 1s" a deterministic solution. However, by
extending the idea of simulation, the linear pro-
gramming concept can be embedded within a sinulation
and the uncertain constraints can be allowed to vary
randomly about Weir mean values and the statistical
uncertainty for the minimum time and minimum cost
solutions can be obtained by running the problem a
few thousand times.

154
L. Putnam
QSM
17 of 84



FIGURE 7.

LINEAR PROGRAMMING SOLUTION
FOR SAVE

98475

'"^ ' '" > : 'MINIMUM TIME SOLUTION
IIUUl-LJ I I I I I I H I

CCST = M

if TRADE-OFF REGION

!!iiT*-^| MINIMUM COST SOLUTION
T!T!

1 2 3 ^ 5 5 7
DEVELOPMENT TIME (YEARS )

155
L. Putnam
QSM
18 of 84



LINEAR PROGRAM 20

GATE: 17-J2P.-7 3SAVE

THIS FUNCTION USES THE TECHNIQUE OF LINEAR PROGRAMMING (SIMPLEX ALGORITHM)
TO DETERMINE THE MINIMUM EFFORT (AiJD COST) OR THE MINIMUM TIME IN WHICH
A SYSTEM CAN BE 30ILT. THE RESULTS ARE 3A3ED ON THE ACTUAL MANPOWER, CC5T,
AND SCHEDULE CONSTRAINTS OF THE USER, COMBINED WITH THE SYSTEM CONSTRAINTS
YOU HAVE 'PROVIDED EARLIER TO YIELD A CONSTRAINED OPTIMAL SOLUTION.

ENTER THE MAXIMUM DEVELOPMENT COST> 2300000

ENTER MAXIMUM DEVELOPMENT TIME IN MONTHS> 24

ENTER THE MINIMUM AND MAXIMUM NUMBER OF PEOPLE YOU
CAN HAVE ON 30ARD AT PEAK MANLOADING TIME> 15,23

TIME EFFORT COST (X S1B03)

MINIMUM
COST

MINIMUM
TIME

24.3 MONTHS

21.9 MONTHS

278. MM

399. MM

1159.

1662.

YOUR REALISTIC TRADE-OFF REGION LIES BETWEEN THE LIMITS OF THE TABLE ABOVE.

(INTERPOLATION IN THE TRADE-OFF TA3LE BETWEEN THESE LIMITS WILL PRODUCE ALL
ACCEPTABLE ALTERNATIVES. WOULD YOU LIKE TO SEE A TRADE-OFF ANALYSIS WITHIN
THESE LIMITS (Y OR N) ? Y

TIME

21.93

22.43

22.93

23.43

24.00

MANMONTHS

399.

364.

334.

396.

278.

COST (X S1903)

1662.

15i».

139*.

1276.

1159.

CGUP.E 8.

156
L. Putnam
QSM
26 of 84




