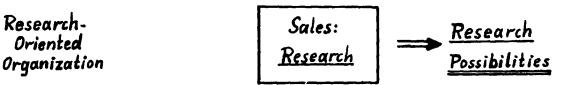
ORIGINAL PAGE IS OF POOR QUALITY

[NE3 10517 Dz.44


RESEARCH POSSIBILITIES? NO! Needs for Research to Make PV Solar Energy Utilization Broadly Competitive

UNIVERSITY OF PENNSYLVANIA

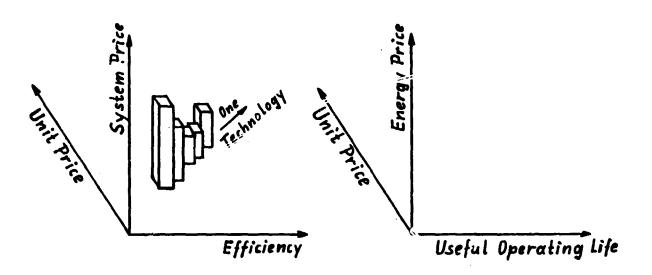
M. Wolf

Two Types of Research Philosophies

Product-Oriented Organization Sales <u>Research</u> <u>Manufactured</u> <u>Product</u> <u>Needs</u>

MAJOR CRITERION

FOR


COMPETITIVENESS:

PRICE OF ELECTRIC ENERGY

161

PLENARY SESSION: M. WOLF

The Subsystems

LIGHT PROCESSOR (CONCENTRATOR, TRACKER)

MODULE --- CONVERTER ARRAY

POWER CONDITIONING

ENERGY STORAGE

CONTROL. PROTECTION

AUXILIARY ENERGY

SYSTEM TYPE LIKELY USE MARKET SIZE MOST LIKELY CANDIDATES I SINGLE CRYSTAL AL, GA1-xAS/ HIGH CONCENTRATION, ARID CLIMATES. LIMITED TRACKING CENTRAL STATION GAAs VERY HIGH EFFICIENCY (ATTENDED OPERATION) (SINGLE CRYSTAL SI?) MULTI-BANDGAP SYSTEMS CONVERTER Ł I ALL USES, FLAT-PLATE, SINGLE CRYSTAL SI LARGEST COMMERCIAL INSTALLATION (MULTI-BANDGAP SYSTEMS?) HIGH EFFICIENCY LONG LIFE 1 THIN-FILM A-SI VERY LOW COST. PRIN. LY RESIDENTIAL, LIMITED LOW EFFICIENCY DO-IT-YOURSELF INSTALLA-OTHER THIN FILM SEMICOND. (CU2INSE/CD S?) LIMITED LIFE TION

System Characteristics Determine Market

Research Needs on BOS

SUBSYSTEN	NEEDED ATTRIBUTES	PAYOF	RJSK	TIME RANGE TO ATTAINMENT
PCHER CONDITION-	LOW PRICE, HIGH FFFICIENCY	1	L	S то I
CONTROL, PROTECTION	LOW PTICE, SIMPLE	I	L	S
ENERGY STORAGE	LOW PRICE LONG LIFE HIGH EFFICIENCY HIGH DISCHARGE RATE DEEP CYCLE CAPABILITY	VH	H	Ĺ
FIELD INSTALLATION	LOW PRICE	٧н	VH	?
HIGH-RATIO CONCENTRATOR	LUW PRICE LOW MAINT-NANCE	I	H	I
AUXILIARY ENERGY	LOW PRICE	H TO VH	VH	L
S = SMALL OR SHORT I = INTERMEDIATE	H ≈ HIGH VH ≈ VERY HIL.	Risk	L = LONG = INVERS	SE PROBABILITY FOR

RISK = INVERSE PROBABILITY FOR ATTAINMENT OF EXPECTED PAYOFT

ORIGINAL PAGE IS OF POOR QUALITY

PLENARY SESSION: M. WOLF

فترك متعادية ومراجعها ومحمد والمتار والمعامة كرموالا المحمسة أشبره فأعاقهما والمؤلوم والمنافية مرشد فالعامية كالألب

TIME TO PAYOFF ITEN NEEDED ATTRIBUTES RISK ATTAINMENT CELL (MANUF'S COST REDUCTION 10-20 TIMES VH I S TO I PROCESS) VH ŒLL EFFICIENCY INCREASE 25 TO 66% SIHPLE CELLS I S TO I TO 300% MULTI-BANDGAP VH L SYSTEMS (WILL REQUIRE MODIFIED CELL PROCESSING) MODULE ≥ 20 YEAR LIFE COMPATIBLE? VH I I TO L COST REDUCTION

Research Needs on Modules

Current Status of Major Module Processes

Technology Area	Approach	Expected Results	STATUS
SILICON SOLAR/MCDU	LES:		
LOW COST PURIFICATION	SIHy PROCESS	~\$14/kg Semiconductor- grade Si	PRIVATE INDUSTRY (UNION CARBIDE) GOES IPTO PILOT PLANT OPERATION.
	SI H2CL2 PROCESS	~\$25/kg Semiconductor grade Si	PRIVATE .NDUSTRY (HEMLOCK Semiconductor converts existing S:HCL3 plant
SHEET GENERATION	(Semi-) Continuous Automated Cz X-tal growth	150kg/crucible, 15 cm dia	NEARLY PRODUCTION READY BOTTLENECK: SLICING
	SEMICR' STAL SI	Lower CCCT THAN Cz, comparable performance	PRODUCTION COST/PERFORMANCE EXPERIENCE NEEDED. BOTTLENECK: SLICING
	SLICING	HIGH THROUGHPUT, LOW KERF, LOW COST	LITTLE ADVANCEMENT. Problem Area.
	Ribbon growth: EFG	LOW COST, CZ COMPATIBLE CELL PERFORMANCE	PILOT PRODUCTION CLL EFFICIENCY STILL TOO LOW

Of POOR QUALITY

PLENARY SESSION: M. WOLF

والمستقومة وعرجين تقريب وراسا ومعادية والمعادة

f

Technology Area	Approach	Expected Results	<u>Sutatus</u>
	WEB-DENDR I TE	LOW COST, CZ COMPATIBLE CELL PERFORMANCE	CZ COMPATIBLE EFFICIENCY PROVEN. ONLY MATERIAL WITH INTERNAL GETTERING. PRE-PILOT STAGE. PRODUCTION COST EXPERIENCE NEEDED. WILL PRIVATE INDUSTRY GO AMEAD?
CELL FABRICATION:	PROCESS SIMPLIFI- CATION, BY-PROD. T REDUCTION, AUTOMA- TION	\$0.5 TO 1.5/Wp MODULES OF 14-17X EFFICIENCY	Considerable techn ⁻ logy advance- ments made. ~\$10/W _p at 7-12% efficiency. Continued slow progress in private industry. Stagnation at a price level of 5-10\$/W _p ahead?
Module Assembly	BETTER MATERIAL SELECTION, AUTOMA- TION	dto 20-year life	DTO COST/LIFE TRADE-OFF UNCERTAIN.
<u>A Si</u>	THIN FILM PROCESSES, LOW-COST ENCAPSULA- TION	< \$0,5/W _p Limited Effi- Ciency	RESEARCH STAGE. Production in Japan for calcu- lator/watch market
Al _x Ga _{1-x} As/GaAs	SINGLE X-TAL CELLS.	HIGHER EFFICIENCY THAN SI CELLS, SUPERIOR HIGH TEMPERATURE PER- FORMANCE, BETTER RADIATION RESIS- TANCE FOR SPACE CELLS	PILOT LINE QUANTITIES AVAILABLE PRIMARILY CONCENTRATOR AND SPACE CELLS. MAY FORM COMPONENT IN MULTI- BANDGAP SYSTEM
Cu ₂ S/CDS CELLS	THIN FILM PROCESSES, LOW-COST ENCAPSULA- TION	< \$C.5/W _p . LIMITED EFFI- CIENCY, LIFE	TECHNOLOGY BEING ABANDONED?
Cu2INSE/CDS CELLS	DTO	HIGHER EFFICIENCY, LORGER LIFE THAN LuzS/CDS	RESEARCH STAGE, MAY FORM COMPONENT IN MULTI-BANDGAP SYSTEM,
ALL OTHER COM- POUND SEMICON- DUCTORS	MOSTLY THIN FILM PROCESSES	MOSTLY LOW COST	VARIOUS LEVELS OF RESEARCH. LIKELY REDUNDANT WITH FURTHER ADVANCED APPROACHES. SOME CANDIDATES FOR MULTI- BANDGAP SYSTEMS.

PLENARY SESSION: M. WOLF

Who Fays What Research?

SHORT RANGE, LOW RISK	IN BETWEEN	LONG RANGE, HIGH RISK Government
MANUFACTURING INDUSTRY	MANUFACTURING INDUSTRY	GOVERNMENT
GRADUAL PROCESS ADVANCEMENT, AUTOMATION FOR COST REDUCTION.	SOME THIN FILM APPROACHES (HOW LONG, IF MARKET DOES NOT DEVELOP SOON?)	SJ-CELLS: EFFICIENCY >20% (AM1) MULTI-BANDGAP SYSTEMS GRAIN BCUNDARY RESEARCH
SMALL STEPS TO EFFICIENCY IMPROVEMENT, EXTENSION OF OPERATING LIFE	<u>?WHO?</u>	THIN FILM DEVICES (?) BATTERIES/FUEL CELLS
GRADUAL POWER CONDITIONING PROGRESS	RADICAL PROCESS ADVANCEMENT RELIABILITY DEVELOPMENT STANDARDIZATION	MANUFACTURING INDUSTRY A-SI APPROACHES
	CONCENTRATORS FIELD INSTALLATION	

Identifiable Research Needs for Efficiency Improvement

SINGLE CRYSTAL SI CELLS

GOAL	NEEDED UNDERSTANDING	FURTHER ACTIONS
LONGER MINORITY CARRIER LIFETIME SI	CRYSTAL STRUCTURE, ROLE OF IMPURITIES (HEAVY METALS?) ROLE OF COMPLEXES (0 ₂ , C, STRUCTURE DEFECTS?)	PROCESS CONTROL IN CRYSTAL (RIBBUN) GROWTH
	ORIGIN OF DEFECTS, IMPURITIES INTRODUCTION MECHANISM OF DEFECTS, IMPURITIES POTENTIAL AND LIMITS OF GETTERING INFLUENCE OF POST-GROWTH HEATING, LIGHT	PROPER POST-GROWTH Process selection

PLENARY SESSION: M. WOLF

7

OF POOR QUALITY

GOAL		FURTHER	ACTIONS		
	SINGLE CRYSTAL SI CELLS, CONTINUED				
SURFACE PASSIVA	ION EXACT HECHANISH	POCESS	DEVELOP-		
JORFACE FAJJIVATIVA		IENT			
	ATION LAYERS				
	WAYS TO MEET REQUIREMENTS				
	OPTICAL PROPERTIES OF				
	PASSIVATION LAYERS				
	INTERACTIONS WITH AR				
	COATINGS				
ATTAINMENT OF P					
DESIGNED DEVICE	INDIVIDUAL PROCESSES				
	(DIFFUSION, CVD or LPE				
STRUCTURE	EPI, ETC)				
	"LOW TEMPERATURE" PRO-				
	CESSING FEASIBLE?				
	LIFETIME MAINTENANCE				
	THROUGHOUT PROCESSES? OR				
	RECOVERY?				
	SIMPLER PROCESS METHODS?				
"CLOSED LOOP DE					
	WHICH INFLUENCE PERFORMANCE				
	OR ENTER MODELLING				
	LACKING:				
	RELIABLE MEASUREMENTS OF				
	FRONT LAYER DIFFUSION LENGTH				
	MEASUREMENT OF:	•			
	DIFFUSION LENGTH OF MORE				
	HEAVILY DOPED LAYERS;				
	EFFECTIVENESS OF HIGH/LOW				
	JUNCTIONS;				
	FRONT SURFACE RECOMBINATION				
	VELOCITY.				
	TWO METHODS BASED ON COM-				
	PLETELY DIFFERENT EFFECTS				
	SHOULD BE AVAILABLE FOR COR-				
	ROBORATION OF RESULTS.				
	UNDERSTANDING OF HEAVY-DOPING	G			
	EFFECTS TO ALLOW MORE PRECIS	E			
	MODELLING, ASCERTAIN ULTI-				
	MATELY ACHIEVABLE EFFICIENCY				

POLYCRYSTAL DEVICES

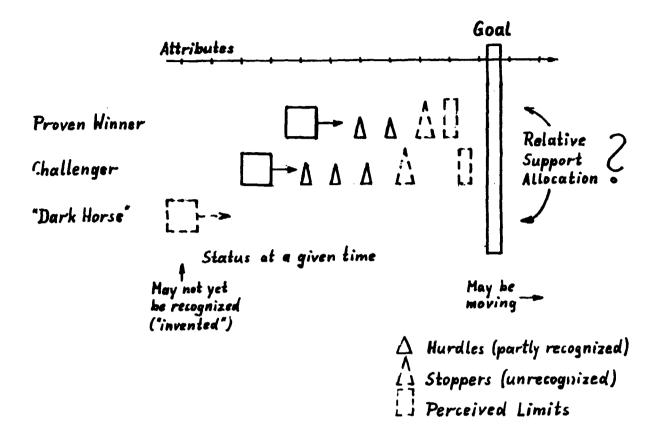
ALL THE ABOVE, PLUS: EFFECTS OF GRAIN BOUNDARIES ON DEVICE PERFORMANCE; CONTRJL OF ELECTRICAL EFFECTS OF GRAIN BOUNDARIES DEVICE DESIGN TO MINIMIZE EFFECTS OF GRAIN BOURNDARIES

PLENARY SESSION: M. WOLF

فتخلككم فتنصب أرجري فالمتحدة أحماله فعمسا كأسر فللتلا

ORIGINAL PAGE IS OF POOR QUALITY

_	GOAL	NEEDED UNDERSTANDING	FURTHER	ACTIONS
		COMPOUND SEMICONDUCTORS		
		(INCL. AMORPHOUS SI H, ETC)		
		ALL OF ABOVE, EXCEPT FOR GRAIN		
		BOUNDARIES, WHERE NOT APPLICABLE.		
		PLUS: LEVEL OF EXISTING KNOWL-		
		EDGE GENERALLY MUCH LOWER THAN		
		FOR SI		
		EFFECTS OF STOCHIOMETRY DEVIA-		
		TIONS,		
		CONTROL OF FABRICATION PROCESSES.		
_				


THETI-BANDGAP SYSTEMS

ALL OF ABOVE; EXCEPT FOR GRAIN BOUNDARY EFFECTS, WHERE NOT APPLICABLE. PLUS: INTERFACES BETWEEN CELLS OF DIFFERENT BANDGAP (TUNNEL-JUNCTIONS?) PROBLEMS OF MISMATCH BETWEEN CELLS UNDER DIFFERING INTENSITY, SPECTRAL DISTRIBUTION (AM), TEMPERATURE,

168

7

The Technology Race

