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Abstract.

This paper presents a class of new explicit second order accurate finite
difference schemes for the camputaiton of weak solutions of hyperbolic conservation
laws. ‘"hese highly nonlinear schemes are obtained by applying a nonoscillatory
first order accurate scheme to an appropriately modified flux function. The so
derived second order accurate scheTes achieve high resolution while preserving

the robustness of the original nonoscillatory first order accurate scheme.

Numerical experiments are presented to demonstrate the performance of these

new schenes.



1. Introduction.

In this paper we consider numerical approximations to weak solutions of the

initial value problem (IVP) for hyperbolic systems of conservation laws.
u, + f(u)x =0, u(x,0) = ¢X), == <x <o, (1.1)

Here u(x,t) is a cloumn vector of m unknowns, and f(u), the flux, is a
vector valued function of m components. (1.1) is called hyperbolic if ali

eigenvalues a;(u),..., a (u) of the Jacobian matrix A(u)

AQu) = fu (1.2a)

are real and the set of right eignevectors Rl (u),..., R'(u) is compliete.

e assure that the eigenvalues {aJ'(u)} are arranged in a nondecreasing order
) a2(u) € ... g @), (1.2b)

We consider systems of conservation laws (1.1) that possess an entropy

function U(u), defined as follows:

(i) U is a convex function of u, i.e., U_ > 0,

(ii) U satisfies

U f (1.3a)

]
")

where I is some other function called entropy flux. Admissible weak solutions

of (1.1) satisfy, in the weak sense, the following inequality:



Uu), + Fu), 0 (1.3b)
(see [11]). The inequality (1.3b) is called an entropy condition.
In the following we shall discuss numerical approximations to weak solutions

of (1.1) vhich are obtained by {2k+ l)-point explicit schemes in conservation

form

. n+l n : fﬂ Pn
° = - Lpd 1 ) - -
‘}J\ vZl [ J*%' 3'7,1]
where
P’j‘+% z f(vg‘_k+l,...,vg‘+k) (1.4b)

Here v;' = v(jax, nAt), an ¥ is a numerical flux function. We require the
mumerical flux function to be consistent with the flux f(u) in the following
Sense:

fCu,...,u) = flu). (1.4c)

Ve say that the difference scheme (1.4) is consistent with the entropy condition

(Q.3b) if an inequality of the following kird is satisfied:

+1 =
ug'sug.‘-x[t‘g‘%_-r;’_ﬂ {1.52)
where U;' = U(vg‘), }";’1’?1_ = P(v?—k+1""’vrjl+k) ; here T is a numerical entropy

flux, consistent with the entropy flux F(u), i.e.



Flu,...,u) = FQu). | (1.5b)

Ve twrn now to discuss the question of convergence of the finite difference
solution of (1.4) to weak solutions of the conservation laws (1.1). Since the
finite-difference scheme is nonlinear and the computed solutions are certainly
not smooth, therefore L2-stabi1ity of a consistent finite-diference scheme
does not imply convergence. One can establish convergence of finite - difference
solutions of (1.4) to weak solutions of (1.1) when the following carnditions

are gutisfied:

(i) The total variation with respect to X of the finite-difference solutions

is uniformly bounded with respect to t, At and Ax.

(ii) The finite-difference scheme (1.4) is consistent with the entropy ocndition

(1.3b) for all entropy functions of (1.1).

{(3ii) The entropy condition (1.3b) implies uniqueness of the solution to the IVP

1.1).

Using compactness arguments one can deduce from condition (i) the existence
of convergent subsequences. The conservation form (1.4) and cordition (ii)
imply that each limit solution is a weak solution which satisfies the entropy
cordition (1.3b). When the entropy condition implies uniqueness of the IVP
(conditon (iii)) then all subsequences have the same limit solution, and con-

sequently the finite-difference scheme is convergent. (see [2],[9], [10]).

It seems possible to satisfy conditions (i) and (ii) by adding a hefty
amount of artificial viscosity to the finite difference scheme (1.4). The addi-

tional visccsity terms damp possible oscillations in the computed solution,and
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make the convergence process simulate the zero-dissipation-limit which is used
to select the unique physically relevant weak solution. Unfortunately, viscosity
represents an irretrievable loss of information and therefore the addition of

artificial viscosity brings about some deterioration in resolution.

In thic paper we describe a new method to design finite-~difference schemes
that satisfy conditions (i) and (ii), but arw second-order accurate and have
high resolution.



2. Monotonicity in the scalar case.

In this section we consider the IVP for a scalar conservation law.

u, + f(u)x =u ¢t a(u)ux =0, al)-= % (2.1a)

u(x,0) = ¢(2), -» < X < @, (2.1b)
where ¢(x) is assumed to be of bounded total variation. Every
weak solution of the scalar IVP (2.1) which satisfies the entropy

condition has the following monotonicity property as a function of t:

i) No new local extrema in x may be created.
ii) The value of a local minimum is nondecreasing, the value of a local maximum

is nonincreasing.

It follows from this monotonicity property that the total variation in

x, TV(u(t)), of ulx,t), is nonincreasing in t, 1i.e.,
'I’V(u(tz)) 3 'I'V(u(tl)), for all t, > ty. (2.2)

We consider now explicit (2k + 1) point finite difference schemes in con-

servation form (1.4) apprexdmating (2.1)

n+l _ n n n = oy EeN n
Vj - H(vj-k’ vj-k+1,.-.’vj+k) - Vj A[f(‘vj-k+1,...’vj+k)

(2.3a)
= W n
- 3 (Vj“k"'..,vj+k—3)].

and denote (2.3a) in an operator form as



v o L0 (2.3h)

We say that the finite difference scheme (2.3) is total variation nonincreas-

ing (TVNI) if for all v of bounded total variation

TV(L-v) ¢ TV(V) (2.4a)
where
V) = ] &g, ,.ul 3 (2.4b)
2o /2
here, and throughout this paper, we use the standard notation
Bippsot T Usey T Yso (2.5)

We say that the finite-difference schieme (2.3) is monotonicity preserving

1f the finite difference operator L is monotonicity preserving, i.e., if v

1s a monotone rmesh function so is Lev.

We say that the finite difference scheme (2.3) is a monoton: scheme if

H in (2.32) is a monotore nordecreasing function of each of its 2k + 1

arguments.

The following theorem states the hierarchy of these properties.

Treorem 2.1. (i) A monotone scheme is TVNI. (ii) A TVNI scheme is monotonicity

preserving.



Proof: (i) It was proven by B. Keyfitz in [ 8] that monotone schemes form an

L l—contr*active semigroup, i.e.

||Lev - L-z||z1 s |lv - zHll (2.6a)

"

X Iujl. (2.4) follows
J:-@

T-v, (i.e. 2 = Vil for all 1).

for all g,-summable v and 2z; Here uijy,

immediately frem applying (2.%a) to v and z

(ii) Let (2.3) be a TWNI scheme and let v be a monotone mesh function of
bounded total variation, and denocte w = L:v. Since L %as a finite support

of 2k + 1 points it is sufficient to prove that w is monotone for all v of

the form
constant = vp 3¢ J_
Y = 1 monotone J_s 34, s Jp2J_ .
constant = Vp iz Jd,
™) = l‘.’H - VLI {2.6b)

We prove (ii) by negation. Suppose w is not monotare, then it has at
least cne local minimum and one local maximum. Denote by Vin and M the values

of the first 1wo successive local extrema, then
VG 2 fvg = v | + lvp vyl > TV,

which contmadicts the assumption that the scheme Is TVNI. This completes the

proof of Theorem 2.1



Mcnotone schemes approximate solutions of the viscous modified equation

u, + £u), = st[8(u,1) ux]x , A= % (2.7a)

Blu,1) = —?[ 2%, (u,u,...w - A (u)] (2.7b)
ZA l--k

B(x,A) 2 0, 8, %0 (2.7¢)

to second arder accuracy; Since g(u A) # 0, monotone schemes are necessarily
: . : kil
first order accurate; H, in (2.7¢c) denotes a‘%-(w_k, w—k+l,“"wk)' (see[8 1)
Since monotcne schemes are TVNI, there exist convergent subcequences for all
initial data of bounded total variation. FEach limit is a weak solution of (2.1)
that satisfies Oleinik's entropy condition (see [ 8 ]). Since Oleinik's entropy
condition implies uniqueness of the IVP (2.1), we conclude that all subsequences

converge to the same limit, and therefore the scheme is convergent (see [2 1).

Let us consider now the scalar constant coefficient case a(u) = constant

in (2.1). A linear finite-difference approximation

n+1 Z oV
L=k

g 3+2 , ¢, = const. (2.8a)

is monotonicity preserving if and only if

20, -k £ 2 sk



(see [t ]). Hence any linear monotonicity preserving scheme, and therefore any

TV}T linear scheme, is a monotone scheme, and consequently first order accurate.

We remark that the previous statement does not exclude the possibility of
having norlinear monotonicity preserving and TVNI schemes that are second order
accurate (and consequently are not monotone schemes). In fact the schemes presented
in [7 ) and [6 ] are monotonicity preserving (at least in the constant coefficient

case) and second order accurate.

It is the purpose of this paper to present new high-resolution second order
accurate TVNI schemes. These new schemes are generated Ly converting known
3-point first order accurate TVNI schemes into new 5-point second order accurate
TYNI schemes. Both the 3-point schemes and the nrew 5-point schemes can be re-
vritten in the form

n (2.9}

vt s Ly

(L’V)j = Vj + C (2.9b)

“+,541 728941727 T Co 5-17285-172Y

where Aj+—;"‘- is defined in (2.5) and

C+,j+l/2 = C+(vj_1 ”"j’vj+l’vj+2/’ C—'-,j-l/2 z C_(v:.'_2,v:.‘_.:|.,vj ,vi+1) (2.9¢)

The follewing Lemra states conditions on the coefficients (2.9¢c) which are

sufficiant to ensowre that the scheme (2.9 ) is TVNI.
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Lemma 2.2

Let the coefficients € in (2.9c) satisfy the inequalities
C,341/220+ Cf 44/ 20 (2.10a)
Cj#1/2 * C4 ja172 21 5 (2.10b)

then the scheme (2.9) is TVNI.

Proof: Denote w = L.v and subtract (Z.9b) at j = 1 from (2.9b) at J o= 441

to obtain
A - - -
+41/2% 7 Co am172840172Y F (7C 140797C 1417208441727 * C4, 14372 BisasaV
(2.11)
By (2.10) all the coefficients in (2.11) are non negative, therefore
18500729 € Q= C_ 54170 =C 5017201850170 * € 51700851/
(2.12)
* Cy searalBiaaseVl
Summing (2.12) for -= < i <« we obtain
0 [}
VW) = i§.°|A1+1/2w| $ iE-»‘l - C_ 54172 = Ca 14172718541 /2Y1
(-] [ ] @
+ 1 C o sanlanl + iE_”°+,i+3/2|°i+3/z"| y iZ_J“iu/z"' = VW)

which shows that (2.4) is satisfied. The equality is cbtained by changing the

summation index in the last two sums in the RHS of *+': inequality.



In the next secticn we sh2ll use Lemma 2.2 to design second order accurate
TYNI schemes. We remark that any 3 point finite difference scheme in conservation
form with a differentiable numerical flux can be rewritten as (2.9), in the follow-
ing way: It follows from the mean value theorem that there exist C, and C_
such that

A[?(Vj ’vj"'l) - f.(Vj ,Vj)] = "C+(Vj ,Vj+1) A- (2-13&)

j+1r2Y

J\[f(vj_l,vj) - f(vj,vj)] - C_(vj_l,vj) A. (2.13b)

j-172v

Expressing the numerical flux valuves in (2.3a) with k = 1 by (2.13) results

in the form (2.9).
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3. Second order accurate TVHNI schemes.

Let us consider a general 3-point finite difference scheme in conservation

form (1.4) with a numerical flux f of the form

S ' 1oca2
Blvgovsyy) = 5 [EQvg) + £lvg ) - 30003, %) 8 %_ v] (3.1)
where
[£Ci549) - £0v4)1/0y %_ v when 4 %_ vis
aj'%_ (3.1b)
alvy) when by +_]f_ v=0

Here Q(x) is some function, which is often referrec to as the coefficient cf

nunerical viscosity.
Lemma 3.1 Let Q(x) in (3.la) satisfy the inequalities
Ix] s Qx) s 1 for 0 ¢ |x| s » g1, (3.2)

then the finite-~difference scheme (1.4) with (3.1) is TVNI under the CFl~like

restriction.
amax. |a%,1] < u
377 (3.3)

Proof: Using the notation

(3.4a)
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where a.,1 is (3.1b), we rewrite (3.la) as

Ity
"Tj%. = Af(vj ’Vj+1) = xf(vj) - -12-[-'\3j+%_ + Q{3j+%)'] Ajﬂ%- v (3.ub)
and similarly
xfj_% = lf(vj_l,vj) = Af(vj) - %—[\7 1+ O(Vj_%')] By LV (3.140.)

e - = vy Hos,,n - 5s,2] 8,1 v
T eVl aEL - F D = g 2[« 542 v3+.2_J 543V
(3.5a)
1 - n n n
- Q. » 45, 1] A 1V eV 4,18 1Y - C s LA LV
?[ -7 33 7 e R ) 17 173
whare
C1f s - y
C,y.,1 = (v.. D) £ v.,1 7 (3.5b)
1334._2_ T[Q J+_2_ ]+§'] . )
Since
Chos,l #+C ,..1 = QY. D) (3.5¢)
+’J+-§- -’j+§- ‘ 3+-?-

i+ follows from (3.2) and (3.5) that conditions (2.10) of Lemma 2.2 are satisfied
under the CFL restriction (3.3) and therefore the finite-difference scheme (3.1)

is TVNI.

The second order accurate Lax-Wendroff scheme has the numerical flux (3.1)

with Q(x) = xz, i.e.,
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- 1 1 ¢ 2
IE+1/2 = '5'[f(Vj) + f(vj+l) - 'i (Vj+l/2) Aj+1/2

5 v]. (3.6a,

Clearly a numerical fiux of a second order accurate scheme ?j +1/2 has

to satisfy

w2 |
for all smooth solutions of (1.1); here A 1is the discretization parameter.
When Q(x) is constrained by (3.2), then the 3-point scheme (3.1) is only

first order accurate, for

® . AW 1 - 2 - n
*j+1/2 T Tj+1/2 T ™ (- (vj+1/2) + Q(\’j+l/2)] Aj+l/2 v (3.7)

and therefore

1 - 1 - - 2 I A
154272 = Eseaz2] 3 3x [Vsaqz0l = G222 (8545 v = 00D,

Ve describe now how to convert a 3-point first crdzr accurate TVNI scheme to
a 5-point second order accurate TVNI scheme. Conszider the application of a
3-point first order accurate TVNI scheme (3.1) to modiZied mesh values f?
of the original flux f(u): Set

1
f: = flvp) +xe 81 = 8(vy 1¥1754) (3.82)

where g is a function which will be specified below. Tie modified numerical

=M
flux fj+1/2

in (3.1a), (3.1b), by the modified values:

M et
= f (vj-l’vj’vj+1’vj+2) is obtained by rezlacing f(vi), f(.vi+1)
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Fiaye =7 U * fa = ¥ 9472850172 V) (3.8b)
where
Versz = Vg2 * Vw2 0 Yz T Gt i 3.8c)
We can rewrite (3.8b) as
B1yn = 3 EOG+ £y + 95 T+ e =0 % Yyg ) Byyygp V1- (3:80)
Lezmma 3.2 Suppose 0(x) is Lipschitz continuous and gj satisfies
By * E541 = [0G540,9) = Gypprp)] dgppp v + 0D (3.9a)
- 2
Y541/2°8441/72 V = 854 -~ &5 T 007D (3.9b)

then the nunerical flux (3.8) satisfies (3.€)

Proof: The modified numerical flux fl+1/2 (3.8q) differs from the original

flux fj+l/2 (3.1) in the following way :

- N\ - ].. -
3472 F Tyaze tox Ty Y gy Y [Q0L)
(3.10a)

= Q04072 * Yy41720d B5a1yz VP

Substituting (3.7) for f. in (3.10a) we get that (3.6) holds if the

j+1/2
relation

€ * gja1) * (0541701 - CO44170 * Y501/2MT 850172 Y

(3.10b)

QGs. TS Lo I VR R

54172 3+1/2 j+1/2

is satisfied.
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Since Q(x) is Lipschitz continuous

|Q(33+1/2) - Q(T.'jﬂ/2 + 'Yj+1/2)‘ ¢ const. |7j+l/2| , (3.10c)

therefore if follows from (3.9b) that the second term on the LHS of (3.10b)
is itself O(Az); consequently (3.9a) implies (3.10b). This completes the proof
of Lemma 3.2,

We construct g; = g(vi_l, Vi’vi+l) that satisfies (2.9) in the following

way:

. v n,

")

T n , R
S54172 ™MnCE 47 /005 185,510 when g;.1/2°€5 179 2 0

4

0 when E

54172 84172 € O

where

N

I - 2

4172 = 7 Q044790 = Cri1p? 1 8541/2 v (3.11b)
- ",

Si41/2 = SiEn (54170 . (3.110)

Lemma_3.3: let g; be defined by (3.11),then relations (3.9a) and (3.9b) are

satisfied, and

- 1 - - \2
1v50172] = 18341 = 517125000091 € 31 Q044990 = Gyagp7le GD)
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Prosf: First let us assume that 'i\?j+l/2"é1’-1/2 %> 0, then using the definition

|

(3.11a) and the relation min (a,b) = % [(atb) - |a-b|]

we get

_ 1 n N v
gy = 7 ;172 * €541/2 ~ “j+l/2‘gj+l/2 B gj-1/2|]
(3.13a)

"

= +1['(W -'é ) - s Vé - g ']
Bys172 ¥ T M 854172 T By1727 T Sje1/2iBy4172 T Byar2l

Fram (3.11b) we ccnclude that if v is smooth and Q(x) at least Lipschit=z

coritinuous then

" 2

N -
B541/2 ~ Byo172 T 087D

Thus (3.13a) ard (3.13b) imply that

g = By, * 00D, (3.13)

N n

It is easy to see that (3.13c) holds even if gj-1/2'gj+1/2 < 0, for then

gj = 0 but §j+1/2 = 0(52) itself (since Ajtl/Z = O(Az)).

Relations (3.9a) - (3.9b) follow immediately by rewriting (3.13c) as

=% 2 " 2
gj - gj+l/2 + O(A ) FY gj"'l - gj+1/2 + O(A ).

We turn now to prove (3.12). We observe from the definition (3.1la) that

gj and g) 41 camnot b2 of different sign, hence
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'554.1 - gj' £ M(Igj|9|gj+1|)

¢ maxlminClg;_y €50y o105 minCIEy,y ol s (Essq/, )

¢ !aju/z‘ y

Thus it follows from (3.11b) that

- ’ . N
1Y50072] = 18501 = 8517105070 V1 < 1850375171 85495 VI

- - 2, .
12050/l = Ggup/22°1

this completes the proof of (3.12).

We show now that the 5-point second orcer accurate scheme (3.8) with (2.11)
is TVNI under the same CFL restriction of the original 3-point first order

accurate TVNI scheme (3.1).

lema 3.u: Surpose Q(x) satisfies (3.7) and & is defined by (3.11), then
the finite-diffierence scheme (1.4) with the numerical flux (3.8) is TVNI under

the CFL restriction (3.3).

Proof: Since (3.8) is (3.1) applied to a modified flux f’l (3.8a), it can
. .,y — . M
be rewritten as (3.5) with Vj+l/2 replaced by vj+1/2 (3.8b). We conclude

from Lemma 3.1 that the scheme (3.8) is TVNI under the modified CFL

restriction
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- (3.14)

To complete the proof of Lemma 3.4 we show that (3.14) is implied by the original
CFL condition (3.3). Using (3.12) and (3.2) we get

|:"j'+1/2| = I;j+1/2 * Yj+1/2| $ |"j+1/2| + |Yj+1/z| $ l"j+1/2' +

1 = = 2 = 1 S 2y .
3 1005 = Gyl € 950l +7 [L- Og0g )70 =

- 1 s 2
=1-3 (N5l -1 51

whenever I;j+1/2| < Q(v. ) £1; this shows that (2.14) holds.

j+1/2

Remarks: (1) If Aj +1/2V © 0 then it follows immediately from the definitien (3.11)
that E5 = 8541 © 0. This shows that the modified numeric.l flux (3.€4) is consistent
with the physical flux f(u) in the sense of (l.4c). The scheme (3.8) + (3.11) is TVNI
and. therefore it has converzent subsequences for all initial data of bounded

votal variaticn: the limits of thzse subzequences are w:zx solutions of the scalar
conservation law (2.1). To complete the convergence prco? one has to show that

all these limits are the same. In the constant coefficiesnt case the solution to

the IVP (2.1) is unique and therefore the scheme is convergent (note that

the scheme is nonlinear even in the constant coefficient case!) In the nonlinear
case, convergence will fcllow if one shows that the scher: is consistent with

Oleinik's entropy condition in the sense of (1.5). We sh:il discuss consistency

with the entreopy condition in Section 6.
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(2) Condition (3.6) is only a necessary ccndition for second order accuracy.

It becomes a sufficient condition if the coefficient in the G(a?) term in (3.6}
is differentiable, except possibly at a finite rumber of points N(t, At), such
that Nat + 0 as At + 0 for all t. It is clear from (3.13) and (3.9) that

the troublescme points where the scheme (3.8) + (3.11) may degenerate locally to
0&2) truncation error are those where Sj +1/2 (3.11c) is discontinuous, i.e.
vhere Q(v) - v2 =0 or u, =0. The fact that the scheme is TVNI controls

the possible increase of the number of local extremun points in the computed
solution. The schemes that we consider in section 5 all have the monotonicity
property (see section 2); i.e. the number of local extremum points in the computed

solution is nonincr asing in time, and thus bounded by that of the initial cata.

(3) The modified equation of the scheme (3.1), i.e., the equation which it approxi-

mates to second order accuracy, is (2.7) with
- 21 1 - .
8(u,2) =1Qv) - v° ==, v = Aa(u) (3.15a)
2

We rewritethe modified equation as

u, + {£-25 1q(v) - v23 wl, =0, (3.15b)

222

and observe that § (3.11b), and consequently g. (3.11a), iz an
i+1/2 i

approxiration to the term

g %{Q(v) - u, = %- [Q(v) - w21 (ax. ud. (3.15¢?
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Our rethod to convert a first order accurate TVNI scheme into a second order
accurate TVNI scheme is based on the following heuristic argument: The first order

scheme (3.1) approximates
1 -
u, + [f—;g]x =0 (3.16a)
to second order acéuracy. Therefore, applying the same scheme to
u, + [f +3gl =0 (3.16b)

results in a second order accurate approximation to u, + f x © 0. To be able

t
to apply the scheme to (3.16b) we have to define g(u) with a bounded derivative

dg/du, therefore Ei (3.11b) 1is replaced by g; (3.11a) (see [ 51).

+1/2
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4. Systems of Conservation Laws.

In this section we describe how to extend our new scalar scheme of séction 3
to systems of conservation laws. Our extension technique is a somewhat generalized
version of the procedure suggested by P. Roe in [14]. The basic idea is to extend
the scalar scheme to the system case by applyiny it"scalarly" to each of the (approp-

riately linearized) characteristic variables.
Let S(w) = (RM(w), R2(V),...,R(u)) (4.1a)

be a matrix, the colams of which are the right eigenvectors of the Jacobian

matrix A(u) (1.2a). Then

) P (4.1b)
AS = A s nij" a (u)Gij .

The rows Ll(u), Lz(u),... ,Lm(u) of S"l(u) constitute a camplete systemn of
laft eigenvectors of A(u) which is bi-orthonormal to the system of right eigen-
vectors, i.e.

LRI = &... (4.1c)

In the constant coefficient case A(u) = A = const.

u

" + Aux = 0, ulx,0} = ¢x), -0 < X < @, . (4.2)

one defines characteristic variables w = (wk) by

W = My, ws= st (4.3)



It follows from (4.1) that (4.2) decouples into m scalar charac*eristic

equations, 1l sk<m
w]: + ak wkx = 0, wk(x,o) = Lk¢(x), -0 < X < ®, (4.4)

This offers a natural way of extending a scalar scheme to a constant coefficient
system of equations (4.2) by applying it "scalarly" to each of the m scalar

characteristic equations (4.4).

1
The characteristic variables w’< in (4.3) can also be viewed &35 the com-

ponents ¢f u 1in the coordinate system {Rk}, i.e.

m
u= } wR (4.5)
k=1

We use this interpretaticn of charscteristic variables to extend the scalar

scheme to general nonlinear systems of conservation laws.

Let Vj+1/2 = V(vj, vj+1) be an average of vj and V3419 i.e. a smooth

function V(u,v) such that

V(u,v) = V(v,u) (4.6a)

|
c

V(u,u) = (4.6b)
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k - . .
and let S341/2 denote tl.e component of Aj s1/72V © Vj a- vj in the coordinate

system {R“(v,, /)

binsY = )£1°j+1/2 j+1/2 (4.7a)
Kk ok ,
e341/2 = Lysr/2 Bye1/2Y 3 (4.7b)

here we use the notation convention bj +1/2 ° b(vj o /.2) = b(V(vj,vj +l)).

We now extend the scalar scheme (3.8) + (3.11) to general systems c”

conservation laws as follows:

ntl _ n z =
Vj s V. -X(frj\"'l/z - %1-1/2)’ ('4.83)

- 1 ,

(4.8b)

X K, k X X
g8 541 ~ V54172 * V341720 Y5412

Ve

1 x Kk
t X N Riss2leg *

k N
where vj+1/2 = AQ (Vj+1/2) and

k_ k .k ~k k X . Ak
g = Siay/omaxl0, mm(Igi+1/'z! 8517251417285 Sisrz2 = SiEn(Ei41/9) (4. 80)

k )2) o

vk _1 k, k

Eiv1/72 °7 [Q (“i+1/2) - ("i+1/2 i+1/2 (4.8d)
k ky, % k

ko {@ina - 8oy, When 0y, 70

Yir/2: (4.8¢e)

0 when 0

'.‘!k =
i+l/2 ~
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The second order accurate one-step Lax-Wendroff scheme can be represented

M 1 1 Tk 2.k
WPAEE L CS ORI O IR M LR L L S

41z 5 3 R TN ja/2 Ry 9

1 A 2

'l [f(vj) + f(vjﬂ)l -3 [A(Vj+1/2” Aj+1/2V

Lemma 4.1. Suppose {Qk(x)} are Lipschitz continuous, then (!4.8) satisfies
=N+ 00d) (4.10)

i'lj4 1/2 j+1/2

Proof: Rewrite (4.8b) as

m

_ ¢~ k k
fj+1/2 =f j+1/2 * k§1R3+1/ZTj+1/2 (4.11a)
vhere
k = 1k, ko ek K k429 K
34172 T % {.gj t e Q" 0v5h172) = 3417207 944172}
(4.11b)

1 X k K, k 2k
- 2% W0 * 5y - €050 g
and then use (2.10c) and conclude (3.9) from Lemma 3.3.

We define the total variation TV(v) of the vector mesh function v to

V(v) E ! |
vio= a. (4.12)
- /
joe k1 1112
where °]:]t+l/2 is defined by (4.7), and show:
lemma 4.2 Suppose Q (x) satisfies (3.2) for all "k, and that A(u) = A = constant,

then the scheme (4.8) is TVNI under the CFL restriction



- 26 -

lmxlAkI €y = min uk € 1 (4.13)

w}m'euk

are the restrictions in (3.2).

Proof: Because of the assumption A(u) = const, {Rk} s {Lk} and {ak}

are all constant. Multiplying (4.8b) from the left by Lk, we obtain (3.8d)
for the characteristic variable W< (4.3); gl:.; and y]j‘ﬂ/z in (4.8) becomes
identical with (3.11). Thus by Lemma 3.4 we conclude that under condition (4.3)

the total variation of each of the characteristic variablies is nonincreasing,

and therefore the total variation (4.12) is nonincreasing as well.

‘Corollary 4.3. The scheme (4.8) in the constant coefficient case is

convergent under the restriction (4.13) for all initial data of bounded total

variation, and is second under accurate.

We remark that this corollary is not trivial since the scheme is highly

nonlinear even in the constant coefficient case.

Our technique to extend scalar schemes to the system case does not require
any particualr form of averaging V(u,v) (4.6). Roe in [15] is using a specific
form of averaging that on top of being mathematically pleasing, also enables the

computational advantage of perfectly resolving staticnary discontinuities. ;

In [ 7 ] we show that if the system of conservation laws (1.1) possesses
an entropy function (1.3), then it is symmetrizable, ard there exists a mean value

Jacobian A(u,v) such that




- 27 -

(1) fv) - f) = Alu,v) (v-u) ' (4.14a)
(ii) A(u,u) = A(u) (4.14b)

(iii) A(u,v) has real eigenvalues {a.k(u,v)};i':l and a complete set of right

eignevectors {Rk (u,v) };::1

In the context cf the scheme (4.8) Roe's extension technique is expressed by

taking Ak 541/2 and R}.<+ 1/2 in (4.7) - (4.8) to be the eignevalues and the ri
eigenvectors of the mean value Jacobian A(v s Vs +1) (4.14a), respectively.
Thus if °]3<+l /2 are defined by (4.7a)
m
Viga =vs = ) o N (4.15a)

¥ 7 T3 T 2q 3¥/2 TNz

then it follows from (4.1l4a) that

k LY
- f pk
The relation (i4.15) makes the scheme (4.8) a more faithiul extension of (3.8)

in the sense that (4.8) for m=1 is identical with the scalar scheme (3.8).

We cbserve that if f£(u) = £f(v) in (4.14a) then v - u is a right eigenvector

or A(u,v), cerresponding to a zero eignvalue. Hence in (4.15) a k(u,v) = 0 for
k

k
k # k, and a OCu,v) = 0, for same k. It is easy to see that if Q °(0) =

in (4.8) then the stationary discontinuity

u x<0
uln,t) = ¢ () = s £(u) = f(v)
v x>0



- 28 -
is also a stationary solution of (4.8). (see [15]).

In the case of the Euler equations of gasdynamics, where the flux f£(u)
is an homogeneous functicn of u of degree 1, it is possible to express A(u,v)

in (4.14) as
ACu,v) = A(V(u,v)). (4.17)

This relatively simple function V(u,v) (see [15]) will be described in

Section 7.

Remarks: (1) Note that we use Qk (x), thus allowing different functions (3.2)
for different characteristic fields. As nbserved by P. Roe [14] the extension
technique of this section permits even the use of completely different scalar

schemes for different characteristic fields.

(2) In most applications it may be advantagous to replace the term

1 'l - N v Q .l'
5 [f(vj) + f(vjﬂ)] in (4.8b) by f(vj+1/2) z f(V(vj, Vj+l))' For sure this
sinplifies the programming and reduces the CPU time, without altering the main
properties of the scheme. A possible disadvantage of such a change is that the

scheme may lose the property of perfect resolution  f stationary discontinuities.

(3) The particular definition (4.12) of total variation is motivated by the
definition of Glimm's functional in [3 ]. When applied to a piecewise-smooth

solution u(x.t) of (1.1)

© m " -
lim V(W) = [ ] [L™udx + } b ekl (4.18)
L0 - ¢l ]
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where Xs are points of discontinuity, and uk(xj) denotes the value of u};+l /2

in (4.7) evaluated with respect to v, = u ((xj)_,t), Vi4l © u((xj)+,t).

There is no reason to expect that the functional (4.18), and consequently
(4.12), is generally nonincreasing with t. Based on Glimm's results [3 ] we
do however believe that this functional (under certain conditions) is bounded in
t. At this time we do not have estimates of the possible increase in total
variation in solutions of the scheme (4.8), and therefore cannot prove convergence

in the nonlinear sistem cace.
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S. On the choice of 0(x).

In section 3 we have presented the basic idea of our new scheme in the
scalar case, which can be described algorithmically by: "Take a 3-point TVNI
scheme (3.1), which is first order accurate, and apply it to the modified flux

value (3.8) to obtain a S5-point second order accurate TVNI 'scheme (3.11) + (3.8)

We begin section 5 by considering different choices of Q{x) in the
3-point scheme (3.1). In the end of this section we argue that most of the pro-

perties of the 3-point point scheme (3.1) go over to the modified S-point scheme
(3.8) +(3.11).

In section 6 we discuss the system case.

A natural cchice of Q(x) in (3.2) is Q(x) = |%|, which corresponds to

the least dissipative TVNI scheme of the form (3.1). The scheme (3.5) with

Q(x) = |»| can e rewritten as
ntl _ _n - - o + n
AR TRy 850172V = Gs172) 4501729 (5.1a)
vwhere
-_ . _ 1 . +_ 1.
v = minv,0) = = |v]), v = max(v,0) = 7 v+ [v]). (5.1b)

This schere (5.1) is a generalization of the well-known upstream
differencing scheme of Courant, Isaacson and Rees, and it is well investigated
in the literature (sze [5], [10] and the references cited there). We now give

a brief review of its relevant properties.
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Lerma 5.1. Solutions of the upstream differencing scheme (5.1), under the CFL

restriction

amax |a(u)| s 1, ¢ = range of initial data, ! (5.2)
uEe
have the monotonicity property stated at the beginning of Section 2.

Sketch o Proof: Let W(x) be the piecewise-linear interpolant of vn, i.e.

W(xj) = vrj‘ » Xy C jax.

Then (5.1), under the CFL restriction (5.2), implies that there exists

a monctone nendecreasing seguenca {ij} such that

+
Bt

Wix. 2. - p

. '+ .
This shows that V" 1 has no rore local extremum points then vn, and that

the value of a local minimum (raximum) is nondecreasing (nonincreasing), which

£

is the assertion of lema S5.1.

Ve observe that the stationery jum discontinuity (4.16), admissible or
inacnissible, is also a satationary solution of the upstream differecing scheme
(5.1). Cn one hand this is a cdesirable property as it implies good resolution of
stationar: shocks:aon the other hard it indicates that the scheme many select

nonchveical weak solutionsthat do net satisfy th: entropy condition (1.3b). This
property is related to the fact that the viscosity term B(u,A) (3.15a) vanishes

forv = 9, and it is camon to all schemes (3.1) with Q(2) = G.°
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To prevent entropy condition violation of this sort and make Q(x)

Smoother at the same time, we modify Q(x) = |x| near x = 0 to be

2
X

Qx) = Tt for |x| < 2¢ (5.3)
Ixl for |x| 3 2¢

with say e = 0.05. (see Fig. 1)

This change has increased the amourt of nurerical viscosity for |[x| < 2e
so that now 8(u,A) > 0 Zfor |v| <1. 8(u,)) vanishes only for v = 1;
which can be handled by taking u <1, say u = 0.95, in the CFL restriction
(3.3). Consequently the scheme (3.1) with Q(x) (5.3), cannot have perféct
resolution of the stationary shock (4.16).

Another possible choice of Q(x) which corresponés to a schere that has
already been investigated is Q(x) = x2 + %— (see [ 1] 2nd [ 6]). This schems
is the lLax-Wendroff scheme modified by the addition of *i2 linear viscosity term
1 . _ 2 ey s .
‘§(Vj+1 - 2vg 4 vj-l)‘ Since now Q(x) = |x| = (|x| - 9" 2 0, it is the require-
ment QGd<.1 in (3.2) which restricts the CFL condizion (3.3) to

w =v3/250.866 <1 (see Fig. 1).

We turn now to discuss the second order accurate TVNI scheme (3.8) + (2.11).
We note that the truncation error of this scheme is 0(.’), except possibley where

u, = 0, independent of the particular form of Q(x). Thi: the modified scheme
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removes all 0(A2) errors due to numerical viscosity, except at the points where
u, goes through zero; there some viscosity is needed to ensure monotonicity.
Consequently we expect the new scheme to have high resolution of shocks, stationary

or noving, almost independently of the particular choice of Q(x).

Based on these considerations it seems to us that (5.3) is the best choice

of Q(x) for (3.11)

Next we deal with the question vhether properties of the scheme (3.1)
g0 over to the modified scheme (3.8) + (3.11). We expect properties of the original
scheme that can be expressed as a relation betwesn FGV  and F(vr‘ﬂ), where
F is some functional that depends on mesh values only, to go over to the modified
second order accurate scheme. We have seen that this is true for the TVNI pro-
Perty; we can also prove that for Q(x) = |%| the modified scheme has the mono-
tonicity preperty, and that iIn the stationary discontinuity cass (4.18) it behaves

the sane way as the original scheme.

To support our conjecture in general, we rote that the modified scheme is the
1
A
strictly a function of u, our statement becomes trivialiy true. However g in

original scheme applied to a medified flux £ + g (2.1fb). Thus if g were
(3.11), which is consistent with zero flux, may be cosidered g(vn) only where

V' is monotone. The particular form used in (3.11) 1is designed to match the

different definitions of g(vn) in neighbouring monotone sections by setting

g = 0 at local extremum points ({see [ 5]). That this matching is smooth, is

evicent by the fact that y = Ag/Au is well-definred everwhere, and is bounded in

absolute value by (3.12).
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Hopefully the piecewise definition of g(vn) does not spoil validity of
such properties for the modified scheme.

Based on these arguments we form the conjecture that if the original
scheme (3.1) is consistent with the entropy inequality (1.3b), so is the modified
Second order accurate scheme (3.8) + (3.11).
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6. On resolution and entrooy.

The extensicn technique of section U consists of applying scalar schemes,
not necessarily the same, to characteristic fields. Therefore we have the possibi-
lity to custom fit the scheme to the computational needs of each characteristic
field.

We consider here systems of conservation laws where the characteristic fields

are either germinely nonlinear (aSRk # 0) or linearly cdegenerate (at‘Rk = 0,
see [11])). The waves of a genuinely nonlinear field are either shocks or rarefac-
tion waves, depending whether the characteristics are convergent or divergent.

The waves of a linearly degenerate field are exclusively czntact discontinuities.

First let us consider the latter case of a linearly degenerate characteristi
field. Tt is well known that the Riemann invariants of +his field, one of which
is the characteristic epeed, are continuous across a contect discentinuity. There-
fore the propagation of a contact discontinuity is computationally equivalent
to that of a scalar discontinuity moving with a constant characteristic speed.
As remarked in s=ction 3, the solution of the first order zccurate scheme (2.1)
is the same, up to second order terms, as the solution of the modified differen-
tial equation (3.15b) (or (3.16a)). The modification of the flux f(u) = constant.u
Dy the addition of the term (- %.g) has the effect of meking the characteristic
field slightly divergent in a region of a discontinuity. Consequently the computed
discontinuity is being spread at the rate of /h, where n is the number of
time-steps taken; similarly, a p-th order accurate standard scheme spreads a contact

discontinuity a* the rate of nt/ P (oo [5 7).
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Our new second order accurate scheme is obtained by applying the original one

to the flux f + %—
the characteristics induced by the original scheme in a region of discontinuity,

and we evpect the cormputed discountinuity to spread like nl/ 3, rather than nl/ 2,

g (3.16b). This has the effect of reducing the divergence of

To ensure that the computed contact discontinuity does not. spread in time at
all, we want to make the effective characteristic field slightly convergent. To
accamplish that we increase the size of g in (3.16b) e.g. by multiplying the RHS3
of (4.8c) by A + e}ic), i.e. |

k

k _ k, k . vk vk
g; = (1+ ei)si+l/2 max[0, min (Ig1+1/2|’gi-1/2‘si+1/2)] (6.1a)
where

k _1.k k 1.k ). K .

05 =la.yyp = 25/l /Uegag olt lofy oD s (6.1b)
o is defined Ly (4.7)
i+1/2 - the

In [6 ] we show that

0cofel (6.2a)

elic = 0(Ax) in regions of smoothness. (6.2b)

and that 6]:{ = 0(1) in regions of discontinuities.

It is easy to see that this change in (4.8c) modifies the numerical flux

(4.8b) by 0(A2) and thus does not spoil the second order accuracy of the scheme.

Frem (6.2a) and(3.12) it follows that now

L S A S
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k - 1K k k k k 2
le+1/2| - |gj+1 - gj|/|a3+1/2| SIQ(Vj+1/2) - (vj*l/Z) I (ﬁ.3a)
Hence for Q(x) (3.2) we get in Lemma 3.4

k k k k k 2
le+1/2| +|Yj+1/2‘ € 'Vj+1/2| + Q(Vj+l/2) - (Vj+1/2) (6.3b)

For Q(x) = |x| we have that the RHS of (6.3b) is less or equal 1 for
|vl;+1 /2l € 1, and consequently the modification (6.1) does not alter the CFL
condition for this field. The same is true for Q(x) in (5.3) with e< 1/3.

(However for Q(x) = x2 + 1/4 (6.3b) implies a more stringent restriction,

k

namely max|v
J
We remark that there are no entropy considerations associated with a

linearly degenerate characteristic field.

We turn now to the case of a ger.iinely nonlinear characteris*ic field,

where the corputational aspects to be considered are resolution of shocks and

enforcement of the entropy condition.

Unlike contact discontinuitie:, shocks are formed and main-
tained by local convergence of the characteristic curves. The
reduction in numerical viscosity due to the addition of (4.8c)
is usually sufficient to ensure good resolution of shocks. When
higher resolution is desired, one may employ & mechanism of the
form (6.1) to enhance the local convergence of tne characteristics

in the shock region and thus improve its resolution (see [5]).
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The computational aspect of the entropy condition may be demonstrated by
considering a Riemann problem for (1.1) involving two nearby states u and up.
lax in [11] proves (assuming all fields to be genuinely nonlinear) that there
exists a unique "physical" solution to this problem, which consists in general
of both shocks and rarefaction waves. One can show, using exactly the same method
of proof, that there also exists a weak solution consisting only of shocksl, which
may differ from the physical one. Whenever the first contains rarefaction waves.,
the latter has nonphysical "expansion shocks". Therefore to ensure that the scheme
selects aphysically relevant weak solution, consistency with the entropy condition,

on top of consistency with (1.1), is required.

In section 5 we have argued that the scalar scheme (3.8) + (3.11) is consistent
with Oleinik's entropy condition. The question arises now whether the system
version (4.8) of this scheme will. always select the physizal weak solution.

T.P,Liu {12] shows that if a weak solution of (1.1) com:zins only "admissible"
discontinuities that satisfy a "scalar" Oleinik conditir: with respect to the
Rankine-Hyngcniot curve, then this soluticn also satisfizs the entropy inequality
(1.3b). Using this theory the above questicn can be relsrmulated as: Will the
scheme (4.8) reject discontinuities that do not satisfy Zleinik's condition aleng
the Rankine-Hugoriot curve? It seems possible to answer this question affirmatively

for sufficiently weak shocks, and feasibly for a larger class of problems.

1 We remark that there is also a one-parameter family zf states connecting u
and up through rerefaction curves only (see [13]). Huiever a "negative rare-
faction wave" is not carputationally realizable as it i: a multi-valved function

of x.

bl oS, init, &
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7. Application to Euler equations of gasdynamics

In this sectiorn we describe the application of cur new scheme (4.8) to

the Euler equation of gasdynamics:

w + f(w)x =0 (7.1a)
(¢] 0

W= m] sy f(w) =u + [p (7.1b)
E u

p=(y -1 (E- 1/2wud). (7.1e)

Here p, u, p and E are the density, velocity, pressure and total energy,

respectively; m = pu is the momentum and we take ¢ = l.4.
The eigenvalues of the Jacobian matrix A(w) = fw are
al(w) Tu-¢ , a2(w) = u, a3(w) zu+c (7.2a)
9
)2,

where ¢ is the sound speed, c = ( yp/¢

The corresponding right eigenvectors are

’ 1 1 1
Rl.(w) = fu-c s Ry(w) = u » Ryw) = u +c (7.2b)
l H - ue .32: u2 H + uc
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where H= (E +p)/p = czl(Y-l) + %- u? is the enthalpy.

Let akaL ,wR), k = 1,2,3, be the solution of the following system

of linear equations (4.7)
-w, = % MRV (o, 4w )) (7 33)
RTWLT LG LR .

where V(WL’ wR) (4.6) 1is some average state; deno*t;e its velocity and sound

speed by U and ¢, respectively. To caiculate o in (7.3a) we first

eyaluate
C, = (v-1) {[E] + 3 G’p) - & [mI}/e? (7.3b)
C, = {[m] - GlpJ}/C (7.3¢)

where [b] denotes [b] = Ep = b3 then @ in (7.3a) are obtained by

-c, o?=lel-cp, ¥z g HC). (7.34)

1 2 1°

The second characteristic field corresponding to the eigenvalue u is

linearly degenerate, :i.e., afl R2 = 0; The other characteristic fields corres-

ponding to the eigenvalues u ¢ ¢ are genuinely nonlinear. Therefore in

by (6.1b) for k = 2 and set 6- 3

.2 -
(6.1a) we define 63 54172 © 54172

00

+1/2

. . . +
Given w‘; we now list the operations needed to calzulate wgl 1:
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i : . = m./0. . 7.
(i) Compute: (uJ mJ/oJ) and (PJ) by (7.1c)

(ii) cCompute ﬁj+1/2 and éj+1/2 from V(Vj’vj+1); calculate
maxs (i, 7l * 8541797 evaluate afyyp, k= 1,2,3 by (7.30) - 7.30).
Define A = At/Ax = u/mxj(lﬁjﬂ/?l + éj+1/2) where u 1is the prescribed

CFL restriction in (4.13)

s . k - Ak s ) . \‘k 15 Y .
(iii) Compute: Vi41/2 ° kaj+1/2 by (7.2a); £541/2 by (4.8d);
62 by (6.1b) for k = 2; CSet 61 s =)
j+1s2 7 et »oe j41/2 T V3172 T 7
(iv) Calculate ~}j< by (6.1a).

i k > oh) an Tetda
(v) Corpute Y341/2 by (4.8e), and Fiviso by (4.8b) and relaticns (7.2h)

(vi) Compute wrjﬁl by (4.8a).

We note that in carputing fj +1/7 in (v), ona could take advantage of the
k

simple form of the R~ in (7.2bh).

Next we show how to inplement Roe's 1linearization technique (4.14) -
(4.15) in the above algorithm. Roe presents a particular form of averaging
V(wL,wR) such that for the Fuler equations of gasdynamics, the mean value
Jacobian A(wL,wR) in (4.14%a) can be ewpreszed bv (4,17). This averaging takes

the following form:
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- _ /172 /2y - 1/2 1/2
Usp/2 * e 1, ﬂj+1/2 = (o124 1 <12 ,
(7.1a)
A - 1 A2 1/2
where <¢b) denotes the arithemetic mean
By = 7.0 +byy) (7.4b)

Therefore to use Roe's linearization in our scheme all one has to do is to

We remark that the averaging in (7.4) is rather expensive. It seems to us
that in many applications the simple arithmethic average (7.4b) will do just as
well.
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8. Murerical exveriments.

In this section we present some numerical experiments that demonstrate
the performance of the proposed second order accurate scheme. We consider here

the following two versions of it:

+1 _ .n
Vi = vy oA - T2 (8.1a)
B s RIEw) * v - E T 85,0, RG] (8.1b)
472 = 7S Vi) - 5L 52 Ry -1b
where
kK . ok k ko 4k K, Xk
Be1/2 * 54172 * V5e1/2250172 = €5 * E341) (8.2)

and g)]( is defined by an appropriate variant of (6.1) and (4.8d);

k
Y5+1/2

The first version is (8.1) - (8.2) with

is defined by (4.8e).

Qe = |x| (8.3a)

and will be referred to as the scheme ULTl; The second version is (8.1) -

(8.2) with
Q(x) = %2 + 1/4 (8.3b)
and will be referred to as the schene ULT2.

For comparison sake we also present calculations with the following two

scheres:
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(i) The second order accurate Lax-Wendroff-type scheme (8.1) with

k k
(Vj

- 2
Bj+1/2 - +l/2) (8-”)

which is referred to as the IW scheme.

(ii) The first order accurate Godunov-type scheme of Roe (see [15] arnd [10])
which is defined by (8.1) with

K Xk
8572 = Va2 (8.5)

and is referred to as the ROE scheme.

In all the schemes and experiments reported herein we use the Roe

linearization (7.3) - (7.4).

(I) The shock tube problem.

Vle cosider now a Riemann problem

W x <0
! (8.62)

x>0

w(x,0)=

YR
for the Euler equations of a polytropic gas (7.1). Our first set of data is

{0.445 'o.s
0

W, = '0.3111 , W s

L (8.6b)

18.928 1.4275



- 45 =

Other numerical experiments with this problem are reported in {6 ] and the

references cited there.

In figures 2a, 2b and 2c we show the results obtained by the ROE, IW and
ULT1 schemes, respectively. The numerical values are shown by circles; the
exact solution is shown by the solid line. The calculations in figure 2 were
performed with 100 time-steps under the CFL restriction y = 0.95 in (4.13),

and 140 cells.

In figure 3 we repeat the calculations presented in figure 2 for a different

set of data for the Riemann Problem (8.6a)

1. 0.125]
W = 0. . We = | 0.
2.5 0.25

Other nurmerical experiments with this problem are presented in [16]. The
calculations in figure 3 were performed with 50 time-stsps under the CFL restriction

¥ = 0.95 in (4.13), with 100 cells.
We remark that the solution of ULT2 for these rrobelms lock almost identical
to those of ULT1. In both schemes we find almost no dependence on the CFL

nunber.

(OI) 7The Quasi 1-D nozzle oroblem.

We consider an axisvmmetric nozzle with a cross-section area A(x). The
cross-secticn average of the flow satisfy the fellowing cne-dimensional system

of equations
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4

LA + f(w)x = - s(w,x) |, s(w,x) =

&5

where w, f(w) and p are given in (7.1).

In figures 4,5 and 6 we2 present numerical approximations to steady state

solutions of (8.7a).

In figures 4 and 5 we show solutions for a divergent nozzle with the cross-

section area
A(x) = 1.398 + 0.347 tanh (0.83 - Uu); (8.7b)

the flow condition is supersonic at the entrance and subscni at the exit.
Figures Uua and 4b show steady state solutions on a crude mesh of the ROE and
ULT1 schemes, respectively. TFigure 5 shows the ULI1l results for the same problem

on a finer mesh.

In figure 6 we show a steady state solution of :h2 VLTl scheme for a

convergent-divergent nozzle with the cross-section area

1+ @G, -1)Q %/5)% X ¢5

Alx) = (8.7¢)

1+ (A - 1) [ 5)/(xE-5)]2 x> 5

exit area; Here the 7low is subsonic at the

where Ao = entrance area, AE

entrance as well as at the exit.

2 These Tfigures are by courtesy of Helen C. Yee of the NASA-Ames Research Center.
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The exact solutioms in figures 4 to 6 are shown by the solid curve; the

values of the numerical solutions are indicated by a rambus.

Hopefully a detailed report of these calculations and the particular
approach to steady state will be published elsewhere.

(III) 2-D Flow through a duct.

In figures 7a and 7b we show solutions to the problem of the flow of air
through a duct containing a step. Initially the flow is everywhere to the rignt
at Mach 3, with o = 1.4, p=1 and ¢ = 1. The duct width is 1, its length'is 3,
and the step of hieght 0.2 is located a distance of 0.6 from the entrance.
Figure 7 shows the results at t = 4 with a crude uniform Cartesian grid with

ax =ay = 0.1,

This problem was used by Voodward and Colella to test the performance of various

nunerical schemes (see [18] and the references cited htere).

The solutions in figure 7 were obtained by a Strang =type dimensional

splitting of the form
VAN P (8.8a)

L=1L, Ly Ly L, (8.8b)

where Lx and Ly are one-dimenional finite difference operators

approximating
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L, :w + fw, =0 , Ly: we + g(w)y = 0. (8.8¢c)

If L, and I.y are stable and dissipative second order accuraute approximaticns
to the one-dimensional equations in (8.8c), then the scheme (8.8a) - (8.8b) is

a stable second order accurate approximation to the 2-dimensional problem.
we + flw), + g(w)y = 0. (8.84d)

In figure 7a we show for comparison sake the results of the secord order
accurate hybrid scheme (see [ 6J) (8.1) with

k

Crek 2. 1k X

j+1/2° "3+1/2
where e}J.(+1/2 is (6.1b) for all vk.
In figure 7b we show the results of ULT2.

Both figures 7a and 7b shcw 30 equally spaced density contours; Both

calculations were performed with a CFL restriction of 0.75
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We remark that the corner of the step in our calculations is treated as
a sharp corner without any rounding (op equivalent ~ddition of numerical viscosity).
The sonic line emerging from this cormer is a curve on which an eigenvalue of (8.8d)
vanishes. It is interesting to note that the vesults of the Godunov scheme in
figure 1a of [18] indicate that part of the sonic line may turn into an expansion
shock. We find a similar behaviour in the results of ULT1 for this problem.

Altcgether we find the performance of the new second order accurate scheme to

be quite pleasing. Ve note that the scheme is simple to program and requires only

slightly more CPU time than a Lax-Wendroff scheme with some artificial viscosity.
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