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DEVELOPMENT OF ADVANCED ACREAGE ESTIMATION METHODS

INTRODUCTION

A practical application of remote sensing whizh is of considerabie interest
is the use of sateliite-acquired (LANDSAT) multispectral scanner (MSS) data to
conduct an inventory of some crop of economic interest such as wheat over a
large geographical area. Any such inventory requires the development of accurate
and efficient algorithms for analyzing the structure of the data. The use of
multi-images (several registered passes over the .ame area during the growing
season) increases the dimension of the measurement space. As a result, charac-
terization of the data structure is a formidable task for an unaided analyst.

Cluster analysis has been used extensively as a scientific tool to generate
hypotheses about structure of data sets. Sometimes one can reduce a large data
set to a relatively small data set by the appropriate grouping of elements
using cluster analysis. In some cases, the algorithm which effects the grouping
tecomes the basis for actual classification. In other cases, the cluster
analysis produces groupings of the data which in turn serve as a starting point
for other algorithms which produce acreage estimates. Additional uses of
cluster analysis arise in conjunction with dimensionality reduction techniques
which are used to generate displays for purposes of further interactive analysis
of th. data structure.

Work carried out under this contract dealt with algorithm development,
theoretical investigations, and empirical studies. The algorithm development
tasks centered around the refinement of the AMOEBA clustering/classification
algorithm, and its subsequent use as a starting point for HISSE, a maximum

likelihood proportion estimation procedure. Theoretical results were obtained



which form a basis for the maxirum 1ikehood estimation procedures. In addition,
some investigations were made into the use of the Akaike information criterion
(AIC) when applied to m®xture models. Additional work was concerned with the
development of a preliminary research plan which delineates some of the
technical issues and associated tasks in the area of rice scene radiation
characterization.
Specifically, investigations were carried out in the following areas:

Refinements and Documentation of the AMOEBA Clustering Algorithm

Rice Scene Radiation Characterization Applied Research

Spectral-Spatial Classification Algorithm Development

Use ¢f the Akaike Information Criterion

Each of these investigations is discussed in turn in the sequel.



1. REFINEMENTS AND DOCUMENTATION OF THE AMOEBA CLUSTERING ALGCRITHM

Detailed documentation of the AMOEBA clustering/classification algorithm
for the version implemented on the HP-3000 System at EROS Data Center appears
in an attached report entitled:

Jack Bryant, System support documentation--IDIMS FUNCTION--AMOEBA,

Department of Mathematics, Texas A&M University, March, 1982.

Included throughout the documentation are comments which indicate where code

changes could or should be made to transport the program to another system.



2. RICE SCENE RADIATION CHARACTERIZATION APPLIED RESEARCH

Work for this task was performed by Dr. James Heilman, Remote Sensing
Center, Texas A&M University. The results of his investigations are presented
in the attached report entitled:

James Heilman, Rice Scene Radiation Research Plan, Remote Sensing

Center, Texas A&M University, December, 1981.



3. SPECTRAL-SPATIAL CLASSIFICATION ALGORITHM DEVELOPMENT

The objoctive of this study was to formulate and test algorithms based
on a likelihood function which respected the integrity of some predetermined
structure in the data.

For purposes of these investigations, the "pure field data" (patches)
determined by the AMOEBA algorithm were used as the predetermined structure.
A maximum likelihood parameter estimation procedure (HISSE) was designed to

respect (take iito account) field integrity.

A mathematical description and implementation of the procedure, along
with results from preliminary tests, appear in the report:

Charles Peters and Frank Kampe, Numerical trials of HISSE, Contract

NAS-9-14689, SR-H0-00477, Department of Mathematics, University of

Houston, August, 1980.

Theoretical results underlying the apnroach used in the HISSE algorithm
are discussed in the report:

Charles Peters, On the existence, uniqueness, and aymptotic normality

of a consistent solution of the likelihood equations for nonidentically

distributed observations--applications to missing data problems.

Contract NAS-9-14€89, SR-H0-00492, Department of Mathematics, University

of Houston, Sentember, 1980.

Additional theoretical results were obtained which address the conver-
gence of a particular iterative form of the likelihood equations in the
case of a mixture of densities from (possibly distinct) exponential families.

These results appear in the report:



Richard A. Redner, An iterative procedure for obtaining maximum
1ikelihood estimates in a mixture model, Contract NAS-9-14689,
SR-T1-0481, Division of Mathematical Sciences, University of Tulsa,
September, 1980.

Use of a modification of the HISSE model for the case of pure LANDSAT
agricultural data sets are discussed in the attached report:

Charles Peters, On possible modifications of the HISSE model four pure

agricultural data, Contract NAS-9-14689, SR-H1-04037, Department

of mathematics, University of Houston, February, 1981.
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4. USE OF THE AKAIKE INFORMATION CRITERION

The objective of this study was to investigate the application of the
Akaike Information Criterion (AIC) to a mixture model. In particular, inves-
tigations were carried out concerning the use of the AIC in selecting the
number of components of a mixture model. The results of these investigations
are discussed in the attached report:

Richard A. Redner, The Akaike information criterion and its application

to mixture proportion estimation, Contraqt NAS-9-14689, SR-T1-04207,

Division of Mathematical Sciences, University of Tulsa, November, 1981.
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COMPUTER PROGRAM ABSTRACT

Sites At Which Developed: Texas A&M University and EROS Data Center
Symbolic Name: AMOEBA

Parent System: IDIMS

Language: FORTRAN 100%

Key Words: Clustering, Boundary detection, Classification, Spatial
model, Pair probability of misclassification

Contact: Jack Bryant, Department of Mathematics, Texas A&M University,
College Station, TX, 77843, 713-845-3169
Susan K. Jenson, Applications Branch, ERQOS Data Center,
Sioux Falls, South Dakota

Status: Completled

ABSTRACT

AMOEBA is a clustering program based on a spatial-spectral model for
image data. It is fast and automatic (in the sense that no parameters are

required), and classifies each picture element into classes which are
" determined internally. As an JDIMS function, no limit on the size of
the image is imposed.
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1. INTRODUCTION

AMOEBA is a clustering program desicied during the Large Area Crop
Inventory Experiment in 1977-78. The original idea* was developed in an
agricultural setting (large fields, few real classes). It was a nice
surprise to discover that the program solves other problems. It has an
uncanny ability to discover structure in image data, at least when the
structure exists. Because of the nature of the method, it operates
efficiently on small (16 bit) computers lacking floating point hardware.
In some sense, the smaller the computer the better it works.

Bugs? Before going on, we report a problem experienced at the EROS
Data Center (EDC), a U.S. Geological Survey installation at Sioux Falls,
South Dakota. Unquestionably correct FORTRAN source code produces non-
sensical results. The bug is easily demonstrated, and may be related to
the file management system of IDIMS. It is not encountered unless huge
images with many bands are being processed. We do not know whether it
is FORTRAN, IDIMS, the operating system, or local hardware. We do know
it is not a problem in the source code. The source code is believed to
be without error. Scores of hours with the Hewlett-Packard DIMS-DEBUG
utility only prove the program is lost. We welcome suggestions of any
kind whatever which may indicate what is wrong. Fortunately, the bug
shows up as a simple failure with meaningless cluster centers, or a
bounds violation where, according to the source, none is possible. That
is, it seems unlikely that the bug causes real damage since the user
will be informed of garbage answers. A cynical systems programmer could
suggest that a disappointed user use ISOCLS instead. A diligent one
would find the bug, whatever it is. We are neither. We are only ex-
hausted, and wish you luck if you look for it.

The Program. The idea underlying the program is easy to state. A
full description is given in Appendix A. Here we sketch the idea. Our
goal is to sort the pixels of an image into classes that will show an

*Jack Bryant, On the clustering of multidimensional pictorial data,
Pattern Recognition 11, pp. 115-125, 1979.



analyst the structure of the image. Suppose one has two partitions of a
set into a family of disjoint subsets. A measure of the distance between
the partitions is the probability that points are clustered alike in the
first and differently in the second, plus the probability they are
classified alike in the second and differently in the first. Using a
boundary finding algorithm, we can extract samples from the data we

believe are alike. These will reside in spatially connected patches in

the complement of the boundary. By ordering samples on some one-dimensional
attribute, we are able to find some we believe are likely to be in different
real classes. The samples, calied test pixels, come in test sets of five
each, and are used to evaluate our clustering. Test set means form
starting cluster centers.

The number of clusterings of an image is astronomical. Rather than
evaluate all clusterings, AMOEBA successively eliminates cluster centers
which are involved in nearest neighbor assignments that split pairs from
the same test set, or gather pairs from widely separated test pixels.
Clusters are never combined, chained, or split. They are merely eliminated,
starting with the set of test set means, ancd ending with a set of clusters
between the user-supplied maximum and mi~imum numbers.

There are a number of general features about the program which have
nothing to do with the clusteriig and classification method, but which
do make the program harder to understand (harder, that is, than the big
system original version in which data was assumed to be all in memory at
once). Before we start detailed documentation, we comment on some of
the trickier details which apply to more than one component. Nomenclature

for the following:

COUNT -- a counter of the number of elements in each class.

ND -- the dimensionality or number of bands.

REJECT -- a vector of thresholds used to check classification

based on a spatial mixture model.

Wide Image Logic. There is no limit to the size of input image
which can be processed (other than disk storage). Yet there is a severe
limitation on data storage: subroutines START and CLASSIFY each require
three lines of data storage and three lines of labels. About 20,000 words




are available, so the maximum width is about 20,000/((ND+3)x3). If ND is
4, for example, fewer than 1000 samples per line can be processed. There-
fore, the program segments the image into strips of width NC, with the
actual width NZ being passed to various subroutines.

The Mask. In IDIMS, imagery is organized in rectangular arrays;
however, the image itself is often not rectangular. The value O is usually
stored in each band or channel of the "Mask". In AMOEBA, a logical flag
MASK (optional parameter, default .TRUE.) is used to tell the program
whether a value 0 in channel 1 is to be used as a mask. If set, no
processing is wasted on these pixels. They are labelled with the label
99 and counted in COUNT(100). If some are found, their count is printed
at the conclusion of the program.

Four Neighbors. Each pixel inside an image with rectangular organi-
zation has exactly four nearest neighbors. There are concepts for which
more than the four neighbors can be considered. Discrete connectedness,
however, is not one of them. AMOEBA uses discrete connectedness to form
patches in the complement of the boundary. More precisely, a path is
a sequence py,...,p o“ pixels such that P; is a neighbor of Pi+) for

n
i=1,..,n-1. A set of pixels is said to be connected if each pair of
points in the set 1S contained in a path lying entirely in the set.

For example, a singleton (a set containing only one pixel) is a con-
nected set, as is the entire image. In this discrete setting, the

concept is simple, but has considerable power. Let A be an arbitrary

set of pixels. For each a in A, the set of all elements of A which can

be joined to a by a path within A is a connected subset of A, and is,

in fact, the largest (maximal) connected subset of A containing a.

Maximal connected subsets of a set are called components of the set.

The patches of AMOEBA are the components of the complement of the boundary.
For this to work, only the four nearest neighbors can be considered when
deciding what a path is.

In the classification step, again only four neighbors are considered.
Here, however, we are really making a concession to the relatively low
resolution of Landsat MSS data, to poor registration of multi-temporal
imagery, and to computer-time spent in classification. It would

SO



certainly be possible to consider 8 neighbors; this has, in fact, been
done in areas dominated by agricultural activity, but for general usage
with Landsat resolution four neighbors are enough.

Circular Buffers. The boundary-finding and classification sections
of the program require not only a pixel but the neighborhood of the pixel.
With only the four nearest neighbors to consider, three lines suffice.
Rather than move the data or maps around, we simply switch pointers,
rolling old labels or maps out to disk and new data in. The logic is
simple, and is programmed as follows: Initially, pointers I1, 12, and
I3 are 1, 2, and 3. Il is the eldest, 12 the current time to be processed,
and 13 the newest. After a line has been processed, the 1ine pointed to
by Il is stashed, data is read into the data slot pointed to by i1, and
the data buffer is "rotated" by saving I1, setting I1 = I2, I2 = I3, and
then I3 = the old Il.

Tricking FORTRAN. Short FORTRAN integers are 16 bits long; in the
HP-3000, this is the word size. Other than 16 bit processing consumes
time all out of porportion to the benefit. An obvious case is floating
puint processing, but long (32 bit) integer processing is also expensive.

However, standard FORTRAN two's complement arithemtic is simply not
adequate. We "trick" FORTRAN by biasing all distance calculations by
-32768 (in octal, 100000, in hex 8000). That is, "zero" is actually
the bit pattern 1 followed by 15 zeros, and numbers grow fror:. there
to the largest two's complerment integer, 32767. The same trick is used
in forming labels for patcnes of sure pixels. We allow for 64K labels
by starting the labels at -32767 (-32768 is used to mark boundary). In
several places, the bias needs to be removed, and care must be taken to
insure this is properly executed.

Rejection Thresholds. Boundary pixels come in two flavors: pure
and contaminated. The pure ones are rare (usually not more than 20% of
the image), but are easy to model. Consider the spectral picture in
which a pixel represents the sensor-average of two pure classes. This
we call a pure boundary pixel. A case can be made for classification of
such a pixel in the nearer of the classes of which it is a mixture.
Obviously, such a pure mixture is nearer the one to which it is assigned
than half the distance between. This is the basis underlying the




Rejection Thresholds. For each cluster, the Rejection Threshold (calculated
in subroutine REJECTH and kept in REJECT(ND)) is half the distance between
this cluster and the other cluster the greatest distance away. (Actually,
the square of the distance, biased by -32768, is maintained.)

The model is strictly applicable in the absence of registration error,
but the model can be extended. The result, easily obtained from Jensen's
inequality, is: for registration errors, the otherwise uncontaminated
distances should be no farther than v2 times the pure model. Pixels which
fail this test are not classified (or reclassified). However, test pixels
are believed to be pure, particularly the third in a test set of five.
Therefore, in MOREQUES, the stricter test is imposed. New classes are
introduced when the center test pixel fails the strict test.

Memory Management and Subroutine Linkage. Although the HP-3000
system allows dynamic array definition, we only use this in opening files

(these routines must be changed to mcve the program to another system anyway).

Memory is managed in the main program in an interger array called WORK (which
is equivalenced to a logical array LWORK). This gets memory managed but
makes subroutine linkage difficult to follow. As an aid to the Systems
Analyst who must maintain the program, we give the exact calling sequences as
they appear in MAIN, the subroutine version, and the various values of

memory management parameters.

THRFND (finds integer vector thresholds, returned in WORK(1))

CALL THRFND (NFL,WORK(MM1), WORK(MM3), UICB, IND, WORK(MM4), NR, NC,
ND, MASK, IMGIN)

SUBROUTINE THRFND(NFL,INTTHR, SCANLINE, UICB, IND, DOUNT, NR, NC, ND,
MASK, IMGIN)

MMI =1 WORK(MM1) INTTHR{ND)
MM3 = MM + ND WORK(MM3) SCANLINE(NC,ND)
MM4 = MM3 + ND*NC WORK(MM4 ) KOUNT(ND)

START (using the thresholds, estimate the boundary and create a disk
file of boundary labels and patch labels)

T ——————



CALL START(WORK(MM1), ND, NR, NC, NZ, WORK(MM3), WORK(MM4), WORK(MMS),
UICB, IND, IMGIN, IMGCLAS, LABF, MASK)

SUBROUTINE START(INTTHR, ND, NR, NC, NZ, DATBUF, LABBUF, ISCAN, UICB,
IND, IMGIN, IMGCLAS, LAD, MASK)

MM1,3 as before WORK(MM1) INTTHR(ND)

MM4 = MM3+NC*ND*3 WORK(MM3) DATBUF(NC,ND,3)

MM5 = MM4+CN*3 WORK(MM4 ) LABBUF(NC,3)
WORK(MM5) ISCAN(1)

Note: Parameters NC and NZ and their interaction are described in the
documentation to START.

ASELECT (select test sets and write on temporary disk file)

CALL ASELECT(WORK(MM2), WORK(MM3), WORK(MM4), NL, NS, NR, NC, NZ, ND,
NTS, WORK(MM5), WORK(MM6), FILENO, UICB, IND, IMGEN, IMGCLAS)

SUBROUTINE ASELECT(DAT, LAB, KNT, NL, NS, NR, NC, NA, ND, NTS, DATA,
LABEL, FILENO, UICB, INC, IMGEN, IMGCLAS)

MM2 = MMI+ND WORK(MM2) DAT(NL,ND,NS)
MM3 = MM2+NL*ND*NS WORK(MM3) LAB(NL)

MM4 = MM3+NL WORK(MM4) KNT(NL)

MM5 = MM4+NL WORK(MMS5 ) DATA(NC,ND)
MM6 = MM5+NC*ND WORK(MMs6 ) LABEL(NC)

Note: Parameters NL and NS are described in the documentation to ASELECT.
THINTSTM ("thin" test sets and form mean vectors)

CALL THINTSTM(WORK(MM2), WORK(MM3), LWORK(MM4), WORK(MM5), WORK(MM6),
N25, N60, N288, N140, N388, N428, ND, NTS, FILENO, UICB, IND)



SUBROUTINE THINTSTM(MP, TSP, TTP, CLASS, COUNT, N25, N60, N288, N140,
N388, N428, ND, NTSI, FILENO, UICB, IND)

MM2  as before WORK(MM2) MP(ND,N140)

MM3 = MM2+ND*N428 WORK(MM3) TSP(ND,5,N428)

MM4 = MM3+ND*N428*5 LWORK (MM4) TTP(ND,5,N25

MM5 = MMA+N25*ND*5 WORK{MM5 ) CLASS(N25)

MM6 = MM5+MM428 WORK (MM6 ) COUNT(N140)

Note: N25, N60, N140, N428, N388, and N288 are described in the documentation
to THINTSTM.

SORT (sorts test pixel sets in average odd channel order)
CALL SORT(WORK(MM3), WORK(MM4), WORK(MMS5), ND, N428T5, N428)

SUBROUTINE SORT(TSPXL, DUMMY, INDEX, ND, NP, NPS)

MM3  as before WORK(MM3) TSPXL(ND,NP)
MM4 = MM3+ND*N428T5 WORK(MM4) DUMMY (NP5)
MM5 = MM4+NPS WORK (MMS) INDEX(NP5S)

N428T5 = N428*5
NUMCLU (determines the number of clusters and their centers)

CALL NUMCLU(WORK(MM2), ND, N140, N428TS5, WORK(MM3), NFCLUS, MINCLN,
MAXCLN, WORK(MM4), WORK(MM5), WORK(MM6), WORK(MM7), WORK(MM8), WORK(MM9),
UICB, IND, WORK(MM10))

SUBROUTINE NUMCLU(MEAN, ND, NP5, NP, TSPXL, NFCLUS, MINCLN, MAXCLN,
CLASS, COUNT, ERROR, SAVE, DUM, CSAVE, UICB, IND, NUM)

MM2, MM3 as before WORK (MM2) MEAN(ND,NP5)
N140 and N428 were modified WORK(MM3) TSPXL(ND,NP)
MM4 = MM3+ND*N428TS WORK (MM4) CLASS(NP)
MM5 = MM4+N428TS WORK (MM5) COUNT(NP5)
MM6 = MM5+N140 WORK (MM6 ) ERROR({NP5)
MM7 = MM6+N140 WORK (MM7) SAVE(NP5)
MMB = MM7+N140 WORK(MM8) DUM(NPS)
MMO = MMB+N140 WORK (MM9) CSAVE(NP)

MMIO = MMI+N428TS WORK(MM10) NUM(NP5)

L ———— -



MOREQUES (Classifies center test pixel and adds more clusters if they are
needed; also initializes REJECT)

CALL MOREQUES(WORK(MM2), WORK(MM3), MAXCLUS, NFCLUS, ND, N428T5, WORK(MMS))

SUBROUTINE MOREQUES(MEANS, TESTS, MAXCLUS, NFCLUS, ND, NTS, REJECT)

MM2, MM3 as before WORK(MM2) MEANS(ND, MAXCLUS)
MM5 = 20900 WORK(MM3) TESTS(ND, NTS)
WORK(MM5) REJECT(MAXCLUS)

CLASSIFY (performs a spatially checked per pixel nearest neighbor
classification)

CALL CLASSIFY(WORK(MM3), WORK(MM2), WORK(MM4), NR, NC, NZ, ND, WORK(MMS),
NFCLUS, UICB, IND, IMGIN, IMGCLAS, MAXCLUS, COUNT, MASK)

SUBROUTINE CLASSIFY(PIXELS, CLUSTERS, LABELS, NR, NC, NZ, ND, REJECT,
NFCLLUS, UICB, IND, IMGIN, IMGCLAS, MAXCLUS, COUNT, MASK)

MM2 as before WORK(MM3) PIXELS(NC,ND,3)

MM3 = MM2+N288*ND WORK(MM2) CLUSTERS(ND,MAXCLUS)
MM4 = MM3+NC*ND*3 WORK (MM4) LABELS(NC,3)

MM5 as before WORK(MM5) REJECT(MAXCLUS)
COUNT 1is INTEGER*4 COUNT(100) COUNT(100)

These comments should make it easier to follow subroutine linkage and memory
management.

Organization of Detailed Documentation. There are only five sub-
routines with logic complex enough to require a detailed description of
the algorithm. These are THRFND, START, ASELECT, THINTSTM, a d NUMCLU, and
will receive mcre attention in the documentation which follows. As for the
main program, IDIMS parameter p.-ompting and file management is easilv
followed from the source. Because of the elaborate interface IDIMS puts
between the user and the outside world, the I/0 portion of the program is
at least three times the length it would be in a normal FORTRAN environment.
But mere length does not make a program hard to understand, and the main

EUR N 1



program of AMOEBA is truly self-documenting. The remainder of this docu-

ment consists of a tisting of the main program followed by documentation
of each subroutine (in alphebetical order). Appendix A con” ‘ns a
detailed description of the theoretical foundation of the program,
Appendix B contains a summary of each of the system subroutines used in
AMOEBA, with references to IDIMS and HP documentation, Appendix C con-
tains IDIMS User documentation, Appendix D shows the listing obtained in
an interactive: sample use of the function, and Appendix E shows a batch
job to use the function.

Acknowledgement. We would like to express our gratitude to each
of the many scientists who took time to evaluate the results of AMOEBA
clustering. Their suggestions and critical remarks led to several
improvements.
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Program AMOEBA Listing

PRECEDING PAGE BLANK NOT FIiLiED



[

13 Al
pL PAT Y
O o0n GUA

PRt Vel HPI21036 21 23 FURIFANSICC. o Y WENLER Y- Pulrakre 13 190¢  TYE. OCT 13, 191, $: 33 an

OUCCLuve SCONTROL SEGMENTaAMOERASEG
00 02v00  BCONTRUL LIST.LOCATION.AAP

6033Y oo To0e SUSROUTINE ANODECA VICS. JERQY)
00333 COvI4000 INTEGER 'L RECSIZE.ERR.SHARED, THINCEY
0QTIIT 00093000 CHARACTER+] SYNBOLLSY)
v¥Tr 004948000 IHTEGERSY UECECL ), ZEROCT >, INDC4) VORK(21000),0UTTYPE.FILEND
[T > R DAL F 4 T INVELEReS DLAS.COUNTC LR Y
00332 0000000 LusfChe STATFILC . LVORKI2L000) . LA. LB, HASK. CHANINAP . LABLRAP,CLASRAP
00337 00009000 CHARACTER®] EGCHNAP . EQLAAP . COLLRAF.EQNASK
00333 00010000 CHARACTER®22 SNAKE
(TR LE ST RERY-T 1Y CHARACTEF <44 EONAN
o33 0vwl2e0n CHARARCTER 72 THING
20K - B 1 INTEGER*2 NARES(S8).ADDRS(O),. COCESCE) . FILNUN.CHNAP.LRAP ,CLAAP
OvIST  wodN40N . COLASTZEC L) JPCRARCIIS) . TNASKR . PRINTSL. PRINTINL . FRINTSES
¢u33r  coul18000 €O ULVALENCE (LVORKCL) . VORK(CL)D D, CEQNAR.NARIS) . (LA .IAD, CLD.E0)
00398 o0vigo00 COUIVALENCE CSHNARER. SNANE)  (THING, THINGER). CERCHNAP.CHRAP)
fu3t aTei7000 . CACQUARP . LAAP ). (CEQCLAAP.CLRAP).SCORASK, IRASK)
0U3IT 0018000 SYOTEN INTRINSIC FOPEN.FUNELK
V93T 00019000 SHANE = ° hd
Ou3ts 00020000 NFARRS = @
091,76 00021000 EONARN =
LT S S TOVF ¥ X1 1 SCSTATFILEPCNTFLOSCHANINAPLABELAAPCLASINAPANSK RINCLUS NAXCLN®
D044 00223000 COOESCL) « Xtvel
OvdtL  C0v24000 COPES(2) =~ X1
0L 4% Mvei%000 CODESC(I) o %303
004%6  CVO26000 CODESC(4) »« X103
Tleel 9027080 TGOES(S) = X103
vided DIulBo00 CODEB(8) ~ X103
PR ' QU029000 COLESC?: « "1
cedly Oovlooee CUPES(BY v g
LR 3 K LI APDRSCL) o FACDRESSCINARER)
Y cooldene A0CREIZY = IATCRESS(NFL)
LN AT '8 & K1 T ADCRSCY) = IADORESSC(CHAAP)
00314 00034000 ADOREC4) = IACORESSCLAAP)
00321 00039000 ADCRSCS) = JADORESSCCLRAP)
0ul3de  Qvolioed ADORSCé)> » [ADORESSCINASX)
00337 0v21T7000 ACDRS(7) » [ADORESS(MINCLN)
0034¢  00V3IN000 AQDRECE) = JADDRESSCRAXNCLN)
6U34T  0vil%000 BLASIZECL) = 912
QUSTu  0vve0000 CalL ATHUDSCUICH.IND. ). BLKSIZE. IPCOAR.128)
003€d 00241V 0 ITF CINDOLD LT 0) CALL CHRTIOCUTICH. IND. 1 . OLKSIZECYI ). IPCOANRCLY) . 0,37)
00412 00042010 € =-- IMITIALIZE BEFORE CALL TO PARANS
00813 00043y . NFL = 43
GCold 00044000 STATFILE = TRUE
OCdis 0043000 EQTHRAP = ‘N’
0UedT 00146000 EULNAP « N’
Ovela OvvdaTO0V EQULRAP » N’
0064T 00048000 EOnASK LIRS
00eTy  00,490C0 RINCLN » 10
visIe 00230000 CHANINRP = rFALSE
Gved? 0v35060 LaBLRAP = FaLst
biati Oui332000 CLASKAP o FaLSE
[ZXT X 1T 3 YT RASK = TRUE
OCebE  CU134000 RAXCLN = 99
(oa?¢ 2493000 CALL PARANSCUICO.MNANES,CODE. ADDRS . NPARNS )
CUedia 0 %9000 TF CMA CLN. LT -9 OR MANULN GT 98) AAXCLN = 9%
00714 02:37000 NI0S » UICACel)

PRECEDING PAGE BLANK NOT FiLMED




14

CRIGINAL PRLE T
OF POOR QUALITY

PACE 9002  ANOESA

0719 00038000 NCOS = UICHC(E2)

G720 00039000 IF CHIDS NME.1) TALL PABORY(UICE.1,0)
00733 00080000 IF CNODS NE.1) CoLL PABORT(UICS.1.,0)
00746 00281000 C CMECK [F STATFILE NARE IS NOT SUPPLIED
00746 00082000 IF (COOESC1)X(011) . €EQ.¢) GO TO 1009
00734 00063000 00 3 1 = 0,1,

0CT61 00044000 IF (SHANECI1).NE.* ') GO YO ¢

*1002 00063000 9 conTinve

0100 00088000 CALL PARORTCUICH.-63,0)

01013 00087000 [ SNARE[LI+117] = ¢ STATS *

01032 00768000 Ia = 1

21074 00059000 I8 = 1

01936 00270009 RECSIZE = 140 + 2+HD ‘
01042 00421000 ¢ OFEN STATFILE AS OLD TO CHECK FOR DPUPLICATE MNANE
01082 00072000 FILNUR = FOFENCSHANE,LA.LD.RECSIZE)
01021 00073000 CALL FCHECK(Q.ERR.,..)

O1GED  ©0OTA000 IF (ERF.E0.0) CALL PABORT(UICH. 43, 0)
o1c73 00073000 I = o

91072 oo0o0Tg000 FILNUN = FOPENCSHANE.LA.LB,RECSIZ2E)
01106 00977000 CALL FCHECKCO.ERR...,)

01118 00278000 IF CERR.EQ.0) GO 1O 1110

0112¢ 00079000 CALL PABORT(VUICS,43.0.

01132 00080000 1099 STATFILE =  FALSE.
01137 00731000 1110 CONTINUE

91172 007892000 C-- ASSIGN LOGICALS

01132 00183000 IF CEQCHAAP EQ.°Y' ) CHANINAP = . TRUE.

O1188  CONBAOOO IF CEQLRAP E9.°Y') LABLRAP =  TRUE.

01196 0023000 IF CEQCULNAP €G.°Y' ) CLASHAP =  TRUE.

0117¢ 50486000 IF (EQURMASK .EQ.°N') NASK = FALSE.

012€2 00087000 C -- DU RAPPING PARANS

01262 090038000 INGIN =

01204 00389000 IAGCLAS » -1

0120€ 00290000

01256 00091000 C OPEN [NPUT TO GET NDO & NC, THEN CLOSE

0120¢ 00192000 CALL OPENPICUTICO,IND, INGIN,. INTYPE, ND,NR,NC. 1
01227 00893000 IF CINGC1).LT.0) CALL CHKIOCUICS, IND, IMGIN,NO,NR,NC,100)
01247 00094000 TF (MO .CT 16.0R ND. LT 2) CALL PABORT(UICH,40,0)
01261 00093000 QUTTYPE « 2

01282 00¢96000 CALL CLOSEPCUTICH.,IND, INGIN,0)

01274 00097000 UF CINCCT). LY 0) CALL CHKYOCUILS, IND.IRGIN,1,2.3.99)
01317 00799000 IF < NOT CCHANIMAP OR LAELMAP CR CLASHAF)Y GO TO 6
01324 00093000 NPAERS = 3

51310 00100000 PRINTSL o 1

01372 00101000 PRINTNL = MR

01314 0192000 PRINTSS o )

01336 09133000 EONAM = “PRINTSL PRINTNL PRINTSS *

01382 00104000 CODESC1) = X)

013¢T 00103000 CORER’2) = %)

51774 00106000 COCE 4> = 21

Q17T GCI9T000 ADDKRSC1) = [ACCRESS(PRINTSL)

91e3. 00138000 ADERSC2) = JAGDRESS(PRINTAL)

01402 00109000 ADORSC3) = IAGORESSC(PRINTSS)

01412 00110000 CALL POARAMSCUTCE, NANES, CODES. ADDRS . NFARRS »

01424 00111000 ] CONTINUE

01424 00112000 C

01424 00113000 C TRtE CARE OF MICE INAGES:
Q1424 00114000 C
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: Y !:;
f ORIGINAL Pive
: ()‘: "()()F‘ (;;.;\;k‘if

PAGCE 0003 ANOERA

01424 00113000 C N2 IS ACTUAL VIDTN

01428 00116000 C NC IS TARGET NUNBER CRABBED AT A TINE

01424 00117000 C €ERTH TUBROUTINE RUST NANAGE ACTUAL PARARETERS FOR
01424 00118000 C READP, WRITEP, ANO INEIR SUBROVTIRES.

01424 00119000 Nl » NC

01424 0C0120000 HCT = T0000/03¢(ND*1))

01434 CO121000 00 tool 1 = 1.99

91441 Q0122000 NC = NT/14)

01436 00123000 IF (NC LE NCT) GO TO 1002

01434 oolR4000 1001 .ONTINUE
014%T 00123002 1002 CuNTINVE

014%T 00126000 C

014%3 00127000 C INLVIAaL ESTIMATES FOP BUFFERS

01433 00120000 C NEP -- NUNBER OF BUFFERS ON READ

01497 00129000 C MNEBV -- NUMODER OF BUFFERS ON URITE

0147 00130000 C CEV AS RNANY READ A% POSSISLE!

01433 00131000 NOF = NINOI(NDeZ, D

014€4 00132000 new = 2

01466 00133000 C

01466 06134000 C OFPEN INAGES FOR REAL NOV

014€% ©0133000 C OPEN OUTPUT INARE

01446 00136000 CALL OFENPOCUTICO, IND, INCCLAS, ZERD. OUTTIYPE. 1. NR. N2, NBW)
0130 ¢0137000 IF CINDCE). LY O) CALL CHKIO(UICE, IND. INGCLAS, RR. N2, N0V, 103
01323 00138000 C OFPEN INPUT -- TRY UNTIL NBR 1S 2

01%23 00139000 994 CALL OFPENPICULCE, IND, IRGIN,INTYPE.ND . NR.NZ.NBR)
01340 00140000 TF CINDC1Y. GE.O0) GO TO 9%

0134 00141000 C OUY OF VIFTUAL ANERNORY?

01342 00142000 IF CINDC2) NE 97) CALL CHKIOCULICSE., IND, INGIN,
01343 00143000 ¢ NBR.NEV,0.,102)

013¢6 00144000 IF (NBR LE.2) GO TO 993

01373 00143000 NER = NOR - 1

01373 021468000 GO0 TO 994

01278 00147000 T WEF IS LESS THAN OR EQUAL YO 2, SO

1374 00140000 993 IF (WBV €0 1 AND NBR.EQ . 1) CALL PABORT(UVICS.17.0)
01612 0014%000 tF (HOV £0.2) GO TO 993

01616 00130000 L1 LI}

01622 091%1000 993 NBY ¢

016i2 ©0132000 € REDOC QUTPUT MITH FEVER BUFFERS & TRY AGAIN

01624 00133000 COLL CLNSEPCYTICH., IND, INGCLAS. 1)

01673 00134000 TF CINECLY LT . 0) CTALL CHKIO(UICH.IND . INGCLAS.¢,0,0,09)
01633 00133000 CALL OPENPOCUTICH,. IND, INGCLAS., JERD, OUTTYPE, L. NR, KT .NBY)

01674 00136000 LF CINDCL > LY 0) CALL CHRIOCULCE. IND.INGCLAS.NZ,NOV.NER, 103)
01714 00137000 GO TO *93

01719 00198000 C CAN'T CO IT - INPUT INAGE 70O RIC

0171% 0v139000 997  CALL PARORY(VICH.17.0)

01723 00180000 C -- alLlL OPENS COMNPLETE AMD SUCCESSFUL

0172 00161000 2% CONTINUE

01729 00162000 ¢
¢

01722 00163000 TELL ME NOV NANY QUFFERS I GOT

0172y 00184000 VRITE CTHING. 1010) NOR, NOY

o174C 00169000 1010 FOPNATIIN YOU MAVE, 13,1908 READ BUFFERIS > AND. 12,
0173¢ 00166000 ¢ 17N URITE BUFFERCS) )

QLT 0187000 CALL PRINTPCUICD.IND. 1. THINGED, 90,0.0,0,0,0,0.¢,0

01777 CO1E900¢ C JOFY (ML) IS INTTHRR -- USEC BY START

Q17T 00189000 C
C CETERVIME If THE DPATA CONTAINS ANY VALUE GE 1;8
<

FIFST FERL THE DaTa

QL7 Y 00170000
0L1TTT  eRiTIC0Y



ORIGINAL FAGE i3
* OF POOR QUALITY

MRS = 14NR/9Y

NCS = 1eNZ/199

80 32 (R = 1,HR,NRS

00 32 Kk = 1.MD

CALL READPIUICH, IND, INGIN, VORK,. 2.3,.1R. 1. NZ, IR, Ke1,1,¥2)
IF CENBCE ). LY. 0) CALL CHKIOCULICH, IND,INGIN, IR, HZ.R,02)
00 32 J = 1.,M2Z.NCS

IF (YORKCJ) . GE.128) GO YO 33

CONTINUE

G0 TO 34

VRITECTHING,39S)

FORNAT(ION YOUR IMAGE CONTAINS A VALUE OVER 127.)

CALL PRINTPCUICSE, IND, 1, THINGER,38,0.0,0,0,0,0,0,0)
VRITECTNING.36)

FORKAT(4&N PLENSE USE MAP TO PUT INTO THE RANGE 0-127 )
CALL PFINTPC(ULICR.EIND, 1, THINGED.44,0,0.0.0,0,0,0,0)

CALL PABORT(UI(8.,40.0)

CONTINUE

X & (20760 . -FLOATC(NCOCHD*L)I)/FLOATC(ND))

NL = IFIXCSORT(X))

NS = [FIXCC21000 ~FLORTC(IONL)-FLOATCNCOCND*] Y))I/FLOATINDONL )

€ THPFNC COESH'T NEED AS RUCH ROON. . .

PAGE 0004 ANOERA
0L1TI?  00L72000

02003 00173080

02007 00174000

02014 00173000

02021 00178000

020%1 00177000

02071 oo0t7m000

0207¢ 00179000

02107 00190000 32
CZ1le 0010000

02111 00182000 313
02132 00183000 33
0213¢C 00184000

02137 0018%000

023172 00136900 3¢
0217T 00197000

0223% 001909%00

02234 00109000 34
02224 00190000

02247 00191000

02276 00192000

02222 00194000 C
02271 00193000

0227 00196000

02277 00197000

023¢C 001908000

058307 00199000

02307 00200000

02312 00201000

€231¢ 00202000

02316 0Qu203000

02337 00204000

0ZTse 00203000

0233 ¢©0204000 37
02384 00207000

03404 00208000 it
0ZeCE 00209000

04437 00210000 C
024IT 00211000 € RE
02433 00212000

0TAI7T 00213000

024838 00314000

03430 00218000

03474 006000

0Ze%¢ 00217000

02311 00219000

0291 09219000

02321 00220000

0d3e2 00221000 2222
02243 00222000

623’y 00223000

0371 00224000

24611 00228000 2013
0261t 00326000

02611 00327000

02634 00220000

0268t

00329000

NCS = NC

NC = NCe3

IF (NC.GT N2> NC = NI

ANyl = |

AN = RALeND

N4 o ANZeNDeONC

CALL THRFHOCNFL, VORK(HUAL ), VORK(NN3 ), UICH, IND,VORK(NNG),
* NF.NC.ND,MASK,IRCIN)

00 37 I = 1.M0

IF (VORKC1) . LE O0) WORKCI) =

CONTINUE

URITECTHING,1113) CVORK(K).K = 1,ND)

FORRAQATC INTTHR = ',1613)

CALL PFINTPCITD, IND. 1, THINGED, 10430KD,0,0,0,0,0,¢,0,0)

STORE NC

NC = NS

ARG = ANI+NCOND]

CALL SETSYR(SYROOL)

KRS o MR4INCe

CALL START(VORK(ANI), ND, MR, NC,.NZ, VORK(NNS ), VORKC NG ). HORK(RNS),
¢ UICH, IND.INGIN, INCCLAS, LABF, FRSK)

OLAS » LASF

CLAS = DLAB+32748

VPITECTHING.2222) DLAD

FOPRATC’ OLABELS = ', 13)

CALL PRINTPCULCD, IND, 1. THINGEC,18.0,0,0,0,0,0,0,0)
IFCCHANIMAP ICALLNAPFCPRINTSL, PRINTHL ,PRINTSS . UICE,IND, INGIN,
v NP,NZ,SYRBOL)
TF(LABLAAPICALLNAPP(PRINTSL, PRINTNL. PRINYSS. UICE. IND, IMGCLAS.
¢ NF,NZ,SYRBOL>

TN = "W1eND

AN? = "A2¢NLOeNDONS

Pr: « PRIeNL



PACE 0003 ANOERA
02644 00230000

02647 00231000

02633 00232000

02633 00233000

02704 00234000 C NY
02708 00233000

0272¢ 00236000 3333
0272% 00237000

€2734 00238000

0273¢ 00239000

02726c 00240000

027€2 00241000

02767 00242000

02772 00243000

0277T 20244000

030¢2 00243000

0300E 00286000

03013 00247000

0202¢ 00248000

0¥C2T 00289000 C VO
©€7023 c¢0230000 C wO
0FCc2T 00231000 C O
0302 002352000

0rYO02T 00333000

0362 00234000

03033 00233000

0F0TE 00238000

030670 00237000

0¥0rT 00238000

0157 00339000

0110 00260000

0112 00261000

03118 00262000

03121 00263000

0124 Q0284000

07127 00263000

02127 00286000

03127 00367000

02164 00268000

031€6 09269000

CI1TL oc02To0000

03170 oo0271000

22201 00272000

03214 00273000 C
0Xits 00274000 C CL
0214 00273000

01227 00276000

03287 00277000

022%s 00278000

03276 00279000

023.C 00200000

033¢ o003R1000

6¥34c 00292000

03348 00283000

03371 00394000

0TIl 00293000

07411 00296009

17
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ORICINAL PAcs 1

OF POOR GuUALiTY

ANS = RAG4NL

RRE = AASINCOND

CALL ASELECTC(VORKCHNAZ), VORKCANY ), VORKC NG ), NL, NS, NR,
¢ NC,NZ NONTS, WORK(AND), VORK(MRE) . FILENO, . UILH, IND.IRGCIN, INCCLAS)
S IS THE NURBER OF TEST SETS STASHEO BY SELECT
VRITECTHING.3333) NTS

FORRATC' OTSTSTS = *,19)

CALL PRINTPCULICO.IND, 1, THINCER,16,0,0,0,0,0,0,0,0)
N2% = 23

NGO = $0

N140 = 140

N42B = J00O0/(ND+3)

N388 = N4289-40

H288 = N3B9-100

EF (N2E0.LT.100) V288 = (00

ANS = RNZ+HDoNE29

HR4 = MAJ+NDeN42S: S

ANS = RRG4N2TeNDY

ANG = MASeNd2E
PECAAZ) 1S NEANCND,. N140)
RN IS TSTFXLC(ND , N428e3
SEVER, ALLOV FOR N420 IN CARSE VE WAYVE FEV

CALL THINTSTACVORKCNNZ)?, VORKCAND ), LYORKCANG ), YORKCANS ),
¢ MORKCNNG ). N29.NCO, N288,N140,XI0D.NE20.HD,NTS,

¢ FILENOQ.UICPH,IND)

HEIBTI = NE2EeS

ARG = RASENA20TIIND

FA3 = BAG+N4A2S

CALL SORTCYORKC(NNI) VORKCANS ), VORKCANI ), ND, N428TS, N42D)
RARS = ANGIN428TS

nng = ARSeNtdO

AA7 = RNG+N140

AR = AN7+N140

KNS = ARGeNL4O

ANIO = NA2+NE20TS

CALL NURCLUCVORK(RNZ),.ND,N140.N420T73,WORKC(ANI), NFCLUS.
¢ RINCLN, HORKCARS), VORKC MRS ), VORK(AME ), WORK(NAT ),

¢ WIRK(ANS ), WORKCRAS ), UICH, IND, . WORK(RNIO ), RAKCLN)
NAXCLUS = 98

AN3 = 20%00

CALL MCREQUES(VOFK(MNZ), VORK(NAZ), MAXCLUS . HFCLUS. ND,
¢ M4BTI, ORK(NANI))

CALL MSORTCUORKCNNZ ), ND, NFCLUS, VORKC ARG >, VORK(NAT7 )

GSE TEMF IMAGE AND OPEN CLUSTER MAP

CALL CLNSEPCUTLCH.IND, INGCLAS., 1)

IF CIMBCLIY LY 0> CALL CHMKIOC(UICE, IND,IRGCLAS.0.0,0.77)
CALL DELUDS(UICP.IND)

IF CINCCEY. LT 0) CALL CHKIOCUICS, INO,INGCLAS.0.0.0,78)
IRGCLAS = 2

CALL OFENPOCUICS, IND, IFGCLAS, ZERD. 1,1, MR, N2, NBY)

IF CINDCLY LT ©) CALL CHKTIOCUICR. IND,.IRGCLAS, ND.NF,N2,79)
ARY - PAI+NDON283

AN4 = RASINCoNDe]

CALL CLASSIFY YOBr(MA3)>, VORKCMNZ) . VORKCMMNG). KK, NC . N2, ND.
* VTRFVCRAI L NFCLYS. UICe. INDL.INGIN. [NGCLAT, MAXCLUS . COUNT . RASK)
HFFE ~ NP 47




ORIGINAL PAGE (3

18 OF POOR QUALITY

PAGE 0006 ANOEBA
03403 00287000 URITES TNING.222)NFCLUS
03426 00308000 222 FORAATC' FINAL NUNDER OF CLUSTERS +=°,13)
03428 00209000 CALL PRINTPCULCS, IND, 1, THNINGED, 31,0,0,0,0,0,0,0,0)
07493 00290000 00 10 T » 1,NFCLUS
034€2 00391000 (F CCOUNTCI®1)>.LE. Q) GO TO 1O
Q3ars ©02%92000 VRITECTHING,333) COUNTCI*L ), CUORKCKIFoND)
02477 00293000 ¢ K s 1.ND)
02288 00394000 333 FORRATCLIT.1608)
03328 00293000 CALL PEINTPCUTICH, IND, 1, THINCER, NPP,0,0,0,0,0,0,0,0)
03362 00296000 10 CONTINVE
03%€? 00397000 IF CCOUNTCT) . EQ.0) GO TO 443
0373 00298000 CSRITECTNING.484) COUNTCL)
CIsLE 00299000 444 FOFRATC’ THERE APE . 17.,° UNCLASSIFIED.*)
03616 00300000 CALL PRINTPCUTICS,IND. 1. THINGER, 32,0,0,0,0,0,0,0,0)
02647 00301000 443 [F (COUNTC(100).€EQ.0) GO TO 336
026 00302000 URITECTHING,393) COUNTC100)
037¢0 00303000 39S FORMATCION THE MASK CONTRINS ,17.8W POINYS.)
0IrLCc C0304000 CALL PPINTPCYICE.IND, 1. THINGER,33,0,0,0,0,0,0,0,0)
0rrad 00303000 336 CONTINVE
03r2r 00308000 TFCCLASRAP)ICALLARFPCPRINTSL.PRINTNL, FRINTSS, UICH. IND, IMGCLAS,
0T72T 00307000 ¢ NR.NZ,SYRBOL)
02247 02308000 CALL CLOSEPCUICSE.IND, INGCLAS,O0)
0276Cc 00309000 IF CINOGCI).LT . O) CALL CHKIOCUICH, IND,INGCLAS,.0,0.0,400)
040062 00310000 CALL CLOSEPCUICS.INMD, IRGIN,O)
04017 00311000 TF CINDCID). LY O) CALL CHKIOCUICD, IND,ENGIN,0.,0,0,300)
04032 00312000 C-- WRITE STAT FILE
040 00313000 IF CSTATFILE) CALL ANSTATS (FILNUN.ND,WORKCRNZ ), COUNT,NFCLUS,UICS)
04091 00314000 RETURN
040% 00213000 E£ND

SYRBOL MRP
HANE TYere STRYUCTURE ADDRESS NARE TYPE STRUCTURE ADDRESS
ACORS INTEGER ARRAY gex17 .t AROERA SUBROUTINE
ARSTATS SUBROUTINE ASELECTY SUBROUTINE
ATHECS SUBROUTINE BLKSIZE INTEGER ARRAY Q+223 .1
CHAN | RRF LOGICAL SIRFLE YAR @+x113 CHK 1D SUBROUTINE
CHRAF INTEGER SIRPLE VAR Q23 .1 CLASRAF LOGICAL SIAPLE VAR QX107
CLRSSIFY SUBROUTINE CLMAP INTEGER SINPLE vAR Qex1t .}
cLecer SUBROUTINE CODPES INTEGER ARRAY 021 1
COuUnT INTEGERSE ARRAY @+4220 .1 DELWDS SUBROUTINE
DLAR INTEGERE SIAPLE VAR Q@+2123 EOCHRRF CHARACTER SINPLE VAR Q%6 1
ECCL NAF CNARACTER SINPLE VAR 04X13 .1 EOL AP CHARACTER SINPLE VAR QX110 I
(11348 CHARACIER SINFLE VAR DO4X18 .1 EONAR CHARACTER SIANPLE VAR Q*%16 .1
(11} INTEGER SIRPLE VAR Q42122 FCRECK SUSROUTINE
FILENO INTEGER SIAFLE VaR Q4+X104 FILNUK INTEGER SINPLE VAR Qex10¢
FOPEN INTECER FUNCTION I INTEGER SINFLE VAR Q226
ie INTEGER SIAFLE vaR 94227 1ADDRESS INTEGER FUNCTION
10 INTEGER SIRFLE VAR 04130 INASK INTECER SINPLE VAR Q%13 .1
TECCLAS INTECER SINPLE var D+23% RGN INTECER SINPLE VAR Q273
1N INTECER RfRAY o222 .1 INTYPE INTEGER SIMNPLE VAR Q+%7)
1144 114 INTEGES RFERNR, a+224 .1 1F INMTEGER SINPLE VAR G167
4 INTEGES SINFLE VAR 9+370 r INTEGEP SINFLE VAR Qo217

LR LoGIC =L SITFLE VoR D27 LABF INTEGER SIRPLE YAP QX932
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LAELRAP
LRAP
RAFP
ARXCLN
ARINCLN
LYY
LLE]

L 1]
wr?
nre
nsory
na3
nNI9S
nazevs

OFENFI
SUTTAPE
FHRFAPS
PRINTP
PEINTSS
RECELZE
SHRPE
SCRTY
STRAFY
STMEOL
THINGES
THEFHD
VCEY
ZERC

PRCGRAD

LOGICAL
INTEGER

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGEP
INTEGER
INTEGER

INTEGER

INTEGER
INTEGER
CHARACTER

CHARRLTErR
INTEGER

INTEGER
INTEGER
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SINPLE
SInPLE

VAR
VAR

SUBROUTINE

SINFLE
SIAFLE
SINFLE
SINFLE
SINPLE
SIAPLE
SIAFLE

VAR
var
VAR
Vak
VAR
VAR
VAR

SUBSROUTINE

SINPLE
SINFLE
SINFLE
ARRAY

SINPLE
SINFPLE
SINPLE
SINPLE
SIAFLE
SINFLE
SINPLE
SIAPLE

var
VAR
vag

VaR
vaRr
VAR
var
VAR
VAR
VAR
VAR

SUBRQUTINE
SUBRODUTINE

SINFLE

Vag

SUBROUTINE
SYBROUTINE

SIAPLE
SINPLE
SIRPLE

VAR
VAR
VAR

SUBROUTINE
SUBROUTINE

AFRAY
SINFLE

vag

SUBRQUTINE

AFRAY
AFRAY

24236
[ 23 NN |

Q4263
4262
2+2103
Q4234
04237
P44
g+x30

a+27s
94253
R+21i6
a+x18 1
2+261
Qo110
Q291
242121
2+272
2+233
gexio00
Q0+%101)

e+X114

0113
0+264
24322 o1

9+223 ,1
@+z3 1

Q213 .1
e-x4 1
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Le
LUORK
AASK
RAXCLUS
Rl

nng

LLL

LLTJ

nne
AOREQUES
Nido
N2og
H420
NGO

NBR

NC

NCT
NFCLUS
nips
Hoes
NFP

HRS

NTS

Nz
OFENPO
PASORY
PRINTNL
PRINTSL
READP
SETSYN
SNAREQ
SORTY
STATFILE
THING
THINTSTH
vice

x

OOR QUALITY

LOGICAL
LOGICAL
LOGICAL
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

INTEGER
INTEGER
INTECER
INTEGER
INTEGER
INTEGER
INTCGER
INTEGER
INTEGER
IMTEGER
INTEGER
IMTEGER
INTEGER
INTEGER

INTEGER
INTEGER

INTEGER
REAL
LOGICAL
CHARACTER

INTEGER
REAL

SINPLE
ARRAY

SINPLE
SINPLE
SINPLE
SINPLE
SINPLE
SIAPLE
SINPLE

VAR

VAR
VAR
VAR
var
VAR
VAR
VAR

SUBROUTINE

SIAPLE
SIRPLE
SIAPLE
SIAPLE
SIAPLE
SINPLE
SINPLE
SINPLE
SINPLE
SINPLE
SIAPLE
SINPLE
SINPLE
SINPLE

VAR
VAR
VAR
VAR
VAR
vaR
VAR
vaR
VAR
VAR
VAR
VAR
VAR
vaR

SUBROUT I NHE
SUBROUTINE

STHPLE
SINPLE

VAR
VAR

SUBROUT INE
SUBROUTINE

SINPLE

VAR

FUNCTION

SINPLE
SINPLE

VAR
VAR

SUBROUTINE

ARRAY
SINPLE

VAR

[ 12 % 1)
0+x13
Q4260
Qex?¢
[ 12 %}
[ T2 % 8]
PYSEL)
Qen4t
Q443

Qex3?
QX34
Q102
0+x40
QX 47
Qx4
X112
gex120
9ex4a2
Qe243
[ 2284
Q266
[ 22313
Qex11

Qo263
Qezt03
[ L2 3]

[ 12344
[ 121

0-x93
Qex123
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3. DETAILED DOCUMENTATION OF SUBROUTINES

rRECEDING PAGE BLANK NOT FILMED
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Parent: MAIN AMSTATS
AMSTATS (FILNUM,ND ,MEAN, COUNT NFCLUS,UICB)

After the classification step, subroutine AMSTATS writes the means of
the clusters to a disk file using the standard IDIMS format for
statistics files.

Method: AMSTATS receives the means and counts as parameters. It then
writes all the means and counts to a previously opened disk file, one
mean vector per record. Vectors with count equal zero are not written.
The file is written and closed using HP standard intrinsics. Since this
statistics file does not contain a covariance matrix, it cannot be used
in maximum Tikelihood classification or ellipse plotting.

Program Variables

BUFFER INTEGER ARRAY I/0 array

CLASS CHARACTER Creator ID for statistics file

CONTROL LOGICAL Carriage control bit mask for FWRITE

COUNT DOUBLE INTEGER Pouplations of classes

FCLOSE INTRINSIC To close files

FILNUM INTEGER File number

FWRITE INTRINSIC To write a record

1 INTEGER Index for number of classes loop

IM INTEGER I minus 1

J INTEGER Class number counter

K INTEGER Index for number of dimensions loop

LBUFF LOGICAL ARRAY Equivalenced to I/0 array because FWRITE
requires a logical array

MEAN INTEGER ARRAY Array of mean vectors

ND INTEGER  Number of dimensions

NFCLUS INTEGER Number of final clusters

NFCP INTEGER Number of final clusters plus one

NUMPTS INTEGER Field that must hold COUNT, overflow possible

PABORT SYSTEM SUBROUTINE

PRECEDING PAGE TiAnK NOT FILMED
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REVFF REAL ARRAY Equivalenced to 1/0 buffer to allow stuffing
of means in mandatory real format.
RESIZE INTEGER Record size

uICB INTEGER ARRAY User Information Control Block
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H

OF POOR QuaLity

PacE 0916 NEVLETT-FACKARD 321029 0t 03 FORTRAN/ 3000 TEE, VCT 3. 1901, 9137 AN

00493000 SCONTROL SEGRENTAROERASEC
00494000 C-- THIS SUBROUTINE URITES THE STATISTICS FILE AV TNE
00493000 C-- CORFLETIIN OF THE PROGRAR

00194000 SUBROUTINE ARSTAISCFILAUN, ND, REAN. COUNT , NFCLUS.VICH
00897000 REAL RBUFFCL)
00499000 SYSTER INTRINSIC FURITE.FCLOSE
00024 00499000 INTEGER*2 FILNUR. REANCHD . NFCLUS ). RECSI2E,
0eo2s 00300000 o BUFFERCI20).NUNRP TS, UICB( L)
0028 00308000 INTEGER*4 COUNT(100)
0028 00303009 LOGICAL CONTROL.LBUFF(20)
0ce24 00303000 CHARACTER D CLASS
90020 003504000 COUIVALENCE C(BUFFER.CLASS) . (OUFFER(I ). NURPTS),
90024 00303000 ¢ (BUFFER‘141).ROUFF) . CLOUFF,.DUFFER)
90024 00304009 RECEIZE » §4002+MD
0003¢ 00387000 QUFFERT) o 0
00033 00900000 NFCP = NFCLUS ¢ 1
0C3E 00309000 CLASS « “ANOIBA °
00030 00310000 SUFFERIE)> = ND
eoct? 00311000 CONTROL = FALSE.
00083 00313000 LA |
00037 00313000 C CLAES & COUNT 1 ARE UNCLASSIFIED PIXRELS
00087 00314000
0097 00313000 00 903 [ = 2,NFCP .
000Es 00716000 IF C(COUNTC(1). E@.0) GO TO 003
000871 00917000 C
S007Y 0QU31B00OG T -- NURFTIS CAN OVEIRFLOV OUT THE CRURARY STATFILE
900/ 00919000 C -- MAS ONLY AN INTEGER®Z FIELD AVALILABLE
00073 00320000 C
e0C?? 00921000 NURFTS « COURTCY)
00107 00922000 QUFFERCY) o
0106 00323000 L ARC I R |
00107 00324000 =1 -1
00112 00323000 00 331 K e« |, ND
00117 00326000 RBUFF(A) = AREANIK, IN)
001%C 00327000 931 CONTINUE
00111 00328000 CALL FURITECFILNUN.LOUFF.RECSIZE . CONTROL)
0CIIT 00329000 IF C CC ) 003.903,.90)

00141 00330000 803 Catl PADORTIC(VICSH,.43.0)
eCiI?l 00331000 903 CONTINUE

9I¥TT 00332000 CALL FCLOSECFILNUN. §,0
0C1%E co33I3000 IF ¢ CC * 607,009,007
®0180 00334000 907 CALL PAROORT (VICE. 43, 0)
0170 00833000 0%  CONTINUE

20170 00338000 RETURN
0O0LTL 00837000 ene

SYRGOL %aAP
nart TYee STRUCTURE ADDRES S NANE TYPg STRUCTURE ADDRESS
ARSTATS SUBROUTINE BUFFER INTECER A RaY Qexy 1
CLASS CHARACTES  SINFLE vaF Q000 .1 contTROL LOCICaL SINPLE VAR  Qe11)d
count INTECEPee  ARRAY -2 o1 FCLOSE SUOROUTINE
Flinvn Intgcon SINFLE vag w-1211 I renttre SUDROUTING
] mrgces SIRPLE vaRr Qex? N inrgcen SINPLE YAR  Qen1e
[ IntEcer SINPLE voR Qo112 K mnrgeen SINPLE YAl @elte
Lovr?r LOGICAL ARRAY Ge33 1 (1{]] inrgeen ARRAY e-zr .1
"o [LRL 414 SINPLE YAR 0-R10 1 neeLes Intgsee SIAPLE YAl  @-1Y% .|
nree mmrecee SIAPLE varR @213 NURPTS INTECER SIAPLE var  @ex9 .1
ragest SURPOVTING ROVFF REaL AkRay 03 .1
[ 1SS RT13 INTECES SINPLE vaR Qe vice TNTEGER ARRAY a-34 .|

PROGERAR UNIT ARSTIATS CONPILED
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Parent: MAIN ASELECT
Calls: CLOSEC

ASELECT(DAT,LAB,KNT,NL ,NS ,NR,NC,NZ ,ND,NTS ,DATA,LABEL ,FILENO,UICB, !
IND,IMGIN, IMGCLAS) |

Subroutine ASELECT takes a label map created by START and extracts test
sets. Both the label map and test sets reside in temporary disk files.
The test sets are passed to THINTSTM

Method. Using Wide Image Logic (see above), ASELECT segments the image
into strips. Each strip is about 6666/(ND+1) elements wide. Within a
strip, the labels map is scanned looking for samples having the same
label. The data values are collected as encountered in a buffer
DAT(NL,ND,NS). One scan line of data and labels, requiring NC*(NC+1)
words of memory, are resident. For each label active, buffers KNT
counting how many and LAB pointing to which are required. Thus
NL*ND*NS+2*NL+NC+(ND+1) < 21000 is required. If NL < 120 is estimated,
we have NL*NS < (20760 - NC*(ND+1))/ND. We set NL equal to the

square root o7 the right hand side, and NS as large as possible satisfying
the first inequality. This memory allocation is performed in the main
program. For example, suppose we are processing an image of NZ = 2048
elements wide. For ND = 2, 4, 8, 12, and 16, we tabulate NC, NL, and

NS in Table 1. Even in the worst case, sufficient buffer space is
available to collect 31 samples. Note that NC/NL is relatively constant,
as is desirable. NC/NL is about 56.2 /ND/(ND+1), and /ND/(ND+1) varies
slowly with ND, e.g. as ND goes from 4 to 16, NC/NL should vary from
11.6 to 13.2 (these estimates are for very large NZ).

Subroutine CLOSEC is called when:
(a) The number of elements KNT(J) in buffer J for a particular
label equals NS; or,
(b) A new label is encountered and no slots are available to
stash data having that label; or,

PR
Sk : v 17 P A
Pf‘(uvgu,.‘* = e a .o, f =|.¢IT l‘iL?ﬁE‘:D
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ASLECT-2

(c) 1n a new line, an old label ¢s not found; or,
(d) a line with no labels whatever is found; or,
(e) when all lines have been processed.

CLOSEC performs the following functions:

(1) It closes buffer J by setting LAB(J) = Z (Z = -32768 marks no
label).

(2) It shows another slot available by decrementing NA, the slot
available pointer. (No slots are available if NA = NL.)

(3) If KNT(J) is at least 5, it selects five test pixels as
spread out as possible and writes then on disk; a count is
kept of this event, called NTS in ASELECT.

(4) It sets KNT(J) = O.

In case (a), that slot is made avaiable. Action taken in (b) is to seek
the eldest active label, close that one, and then begin the new label here.
In case (c), each such buffer 1s closed (since this label will no longer
be encountered). In (d) and (e), all active labels are closed.

In the Wide Image Logic, a boundary is generated when a new strip
is started. This prevents the bottom labels of one strip from being
joined to tic top of the next, and also frees all buffers for a new
start.

Program Variables
CHKIO SYSTEM SUBROUTINE

CLOSEC SUBROUTINE Writes test sets on disk after sampling,
and frees buffer.

DAT(NL,ND,NS) INTEGER ARRAY Used for accumulating patches by
label (the first variable), dimension (second) and

by count.
DATA(NC,ND) INTEGER ARRAY One 1ine of data.
FILENO INTEGER The file of test pixels, opened and written

by CLOSEC.



I,IREAD,J,JS,K
IMGCLAS

IMGIN

IND(1)

KN

INT(NL)

LAB(NL)

LABEL(NC)
LOLD
NA

NC,NW,NX,NY ,NZ
ND

NDS

NL

NR

NS

NTS

READP

TSP(80)
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ASLECT-3

INTEGER DO loop index.

INTEGER Label map file number.
INTEGER Data file number.
INTEGER ARRAY Error indicator.
INTEGER Count number.

INTEGER ARRAY Running count of number of each label
found.

INTEGER ARRAY Label of particular slot.

Nete: For each J, KNT(J) is the number found so far
with label LAB(J); these samples are stored in DAT(J,.,1)
through DAT(J,.,KNT(J)).

INTEGER ARRAY A Tine of labels.
INTEGER Used in finding oldest active label.

INTEGER Used to indicate when a search for an available
slot should be undertaken. When NA = NS, no slots are
available.

INTEGER Used in Wide Image Lugic.

INTEGER Dimensionality.

INTEGER ND*5; used as a dimension parameter for CLOSEC.
INTEGER Number of labels collected at once.

INTEGER Number of lines.

INTEGER Number of samples for each label.

INTEGER Number of test sets written.

SYSTEM SUBROUTINE

LOGICAL ARRAY Buffer for writing test sets to disk ir
CLOSEC.
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ASLECT-4
UICB(1) INTEGER ARRAY User Information Control Bleck
A INTEGER Boundary marker: -32768.
Table 1. Example of Memory Allocation for ASELECT
Number of Samples = 2048
2048 85 86
1025 62 63
683 42 43
12 513 34 34
16 342 20 31




N ORIGINAL PAST Iy
OF POOR QUALITY

Patt o020 REVLETT-PACKARD 321020 01 03  FORTRAN/JONG TOE, OCY 13, 1900, 9:30 o

0020 92040000  SCONTROL SRACNENTeAROERASES

20020 N JN1NO SUBROUTING ASELECTCOAT, LAD.KNT, NL, NS . NR. NC. NT,. N0 NTS. DATA, LABEL,
90030 00842000 ® FILERQ.VYICH, INO. TRGIN, LRGCLAS)
00€29 9043000 CNTERER®D BATI(RL. NP RS LABCHL) . KNTCNL ) OATACNC. HR)I  LABELLNC).
0020 0004400 * L. PILENG,UICOC) ). INDCY)
00020 0BT LOGICAL TOnTROL. TSPCO®)
00020 00846000
00020  00Bar0e0 C
0020 00R40000 C PaFaANCTERS)
00020 00849000
0030 00830000 C TSP -- QUFFER FOR ACLOSEC
00028 00031000 C OAT -- DATA BEING SavES
00020 00832000 ( LAR -~ LABEL vECTOR
833000 ¢ KNT -- COUNT vECTOR
0834000 C KNTCL) o ¢ REANS SLOT 1 1S FREE
00033000 ¢ WL -- RAX NUNSER OF LaBELS
00838000 ¢ NS -- NAR SANRPLES PER FaTON
00897000 N - DINENSIONALITY
0830000 € NC -~ GLENENTS PEAR SCan LINE
o o83%000e ¢ NE -~ ACTURL NURBER OF CLERENTS PER SCAN LINE
0oBeecee ¢ WY -- STARTING CLENENT READ
061000 C AY - LAST SLENENY READ
*ee3000 ¢ RE == NURASER REAR C(NC 10 TARGETY. BUT MX 18 ACTUAL nUNBER)
0843000 ¢ AR -- NEABER OF BCan LINES
0084 d00e ¢ WA -- HUBRER OF LAGEL SLOTS ORING wilP
WNsIoee ¢ NTS -- RUNNING COURT OF RUNOER OF TUST sRTY
0sdoee ¢
* Tooe C INITVIALLZE
0848000 H23 = NDe)
00889000 = -32760
00070000 CoOnTROL = TRUL
eo8ricee LA TN J
00872000 LL I ]
Q000 80 10 1 * 1.0t
sotTA0N KNTCL) = @
(A1 22 111 10 LARCLE) o 2
0076000 ¢
OCEITO00 C PROCESS DY STRIPY ABOUT NC VINE
(1114 I11) 00 %4 My o 1. NI, NC
00879080 NY © NVINC-13
(L1121 1] P (NY &Y N2> RY o N2
0801000 NX & NY-N¥eL
00892000 ¢
00003000 C PROCESS BY SCAN LINES
00004000 00 300 IREAD = |, .00
000803000 ¢
00004000 C  AKL IF START OF A NEV 8TRIP
(12122 1]] IF CIREAD 8T 1 OR WO . KO 1) GO TO o7
00116 000000 00 %90 1 = 1.mx
0121 00009000 8 LABLL(L) = 2
1TT 3490000 80 T0
0136 00091000
GO126 00093000 ( READ LABELS
00126 ovntioee OF CALL READPCUICH. IRO. IRECLAS. LABEL 2.1, 1RCAQ. NV, MK,
00128 0024000 * 1 IREALG L, NV, NN
00133 oe0pv800e EF CINOGU1) LT ©) CALL CHKIBCUVITE. IND, IRGCLAR,. IRUAD. NN, NZ.923)

GOLTY  G0%ie0e ¢



PACE 0029  ASELECT
00173  089700¢ C
001TS 000908000
00202 00899000
00211 00900000
00212 00901000 C
00212 00902000 ¢
00212 00903000
00217 00904000
SvZ1T 00903000 C
00217 00906000
00223 o0vere0e
00224 00908000
00257 00909000
00260 00910000
00261 00911000 ¢
00261 00912000 C
00261 00913000
00266 00914000
00271 00913000
00273 00916000
©0302 00917000
00310 00918000
0311 00919000
00311 00920000
00340 00921000
00341 00922000 C
003¢1 00923000 C
00341 00924000
00343 00923000 C
00343 00926000 ¢
0343 00927000
00350 009280e0
00390 00929000
90400 00930000
00420 00931000
90421 ©0932000 ¢
00421 00933000 ¢
00421 00934000
00426 00933000
00431 00936000
00436 00937000 ¢
00436 0093800¢ C
043¢ 00939000
00443 00940000
00430 00941000
00438 00942000
00437 00943000
00437 00944000 C
00497 00943000 €
00437 00948000
00463 00947000 C
00463 00948000 ¢
00463 00949000
00466 00930000
00470 00981000
00473 00982000

00302

00933000
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SEE IF VNERE UAS A LABEL THIS LINE.
93 00 30 1 = 3.mx

IF CLABELCI) . NE . Z) GO TO 99
30 conTINGE

SEE IF ANY ACTIVE.
IF (KA €0 . 0) GO TO Se0

CLOSE ALL ACTIVE LAGELS.
00 €0 J = 1,.NL
IF CLABCI) . NE.2) CALL CLOBECC(Z.J.TSP,.LAG. KNT,PAT,.NL.
L NE. N0 . NA,NTS. FILEND . UICH, IND.CONTROL. . NDI)
60 CONTINGE
€0 TO %00

CHECK FOR INACTIVE OLD LABEL
99 00 100 J = 1.NL

L = Lascd)

IF CL.EG.Z) €O TO t00

00 110 1 e I,NX

IF CLABELCI).EQ.L) €O YO 100
110 coNTINUE
CALL CLOSECCZ 4. TSP, LAD.KNT, DAT . NL. NS, KD.NA . NTS,
® FILENO.UICH. IND,.CONTROL,.NDS)

100 CONTINUVE

POINT TGO START
4 = 3

READ OATA
00 607 K = 1.ND
CALL READPCUICH. IND, . INCIN. DATACL.K), 2. K. READ. NV, NX,
¢ K21, IREAD, HE . NX)
IF CINDCL). LT . 0) CALL CHKIOCUICE. IND, IRGIN. K, JREAD, NC, 330)
6e? CONTINUE
PROCESS CURRENT SCAN LINE

00 200 1 = t,NX
L o= LABELCT)
IF (L. €0.2)> G0 0O 200

LAREL FOUND. LOOK FOR A DUPE
IF CLABCJY).EQ@. L) CO TO 210
00 220 J o 1.NL
1F CLABCY) EQ L) GO TO 210
220 CONTINVE

FELL THROUGN -- NO RATCH FOUND
CHECK IF THERE IS RroOONM
IF (WA .LT ML) GO TO 300

N0 ROOR. CLOSE TME ELDEST
LOLD = LaBt
J = 1
00 310 J$ » 2.0
1F CLABCJS) GE LOLD> GO FO 310
4 =4S



PALE 0030

(L4 1]
(14 14
e e
0310
se3le
e
ee3sTr
00340
30340
00360
0340
0380
00343
0383
00334
00337
0362
00343
00367
(1214}
(11144

00934000
0933000
90334000
00937000
0938000
0739000
00960000
00961000
0962000
00963000
0764000
00963000
0 96b000
00967000
00968000
00969000
00970000
0971000

974000
00973000
0074000

007 9000

00980000
0901000
00902000
00632 00983000
0063¢C 00904000
00636 00983000
00696 00986000
00662 00907000
00862 00988000
00862 00909000
00867 00990000
00867 00991000
00722 00992000
00723 00993000
00724 00994000
SYRBOL WAP
nant
asELECY
cLesec
ont
FILENe
IRGCLAL
({1}
é
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({1
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LoLe
ne
"o
"t
nrs
nx
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z
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ORIGINAL TR0 o
OF POOR QUALITY
LOLD = LABCIS)
J10 ConvINvE

GLOEST IS POINTED TS 9Y J
ColL CLOSETCZ. 2, TSP.LAD. KNT.OAT . NL.NS. ND. NA, NTS,
o FILEND.¥ICH.IND,CONTROL.RDI)
6@ 10 1330
CATCN SP ON LOGIC: ROOR FUK NERE PERE
FING a sLOY
300 08 320 J = 1.NL
1F (LABCJ) EQ.2) GO TO 450
ConTINGE
NTCI) = o
LASCd) =
NA = Rast
KN = KRTCI)Iey
KNTCI) = KM
00 400 K = 1,00
PATCKR. K, 32 = SATRIL. K)

ano

W

CLESE IF &N = AL
IPCRN. €. NL) TAL  CouOSECCT. . TSP, LAB. KNV .DAT.NL. NS, ND. NA. . NTS,

® FILENQ,VICR. TR™ SOMTROL.NH0I)

coLURN Lo0P ENP
200 CONTINUE
SCAN LOOP END
300 CONTIN.E

STRLIP LOOP END
96 CONTINJE

CLOSE EVERYTNING 1IN SIGNTY
00 €00 J = 1.NL
IFCLAGCY) NE. Z)CALL CLOSECCZ.J. TSP, LAB. KNY. . DAT . NL, NS . ND,. NA,NTS,
¢ FILENO.UICO,IND,CONTROL :NDS)
§00 CONTINUL

RETURN
(1.1

TYee STRUCTURE AODRESS NANE TYPE

SUBROVTING CHKio

SUSROUTINE CONTROL LoCICAL
mmrecen ARRAY 8-224 .1 DATA INTEGER
INTECER SIAPLE var 0-210 .1 1 INTEGER
mrecen SINPLE VAR 9-24 .1 IncIn INTEGER
1argcer ARRAY -z .1 IREND INTEGER
mmreser SINPLE VAR @312 48 INTEGER
inresee SIRPLE VAR 0221 L3 INTECER
nrgsen ARRAY e-222 .1 t INTEGER
LA { {7 {} aRtay 2-%23 .1 LOSEL INTEGER
mreseen SIRPLE YaR @*X17? L L] INTEGER
mrecae SIAPLE VAR 0-x16 . "o INTEGER
INTECER SINPLE VAR Q213 [ 18 INTEGER
1nTECER SINPLE vaR B8-217 ,1 ns INTEGER
INTEGER SIAPLE VAR @0-213 .1 ww INTEGER
INTEGER SINPLE YAR 0X38 Ny INTEGER
mrEceEr SIRPLE YAR 9-213 .1 RERDP
LegICAL AFRAY [ T2 3 Y § vice INTEGER
[LA{< 14} SINPLE VAR 04322

PROCRAN UNIT ASELECT CORPILES

STRUCTURE

SUSROUTINE
SIAPLE VAR
ARRAY
SIAPLE
SINPLE
SINPLE
SINPLE
SINPLE
sInPLE
ARRAY
SINPLE
sInPLE
SIAPLE
SIAPLE
SIAPLE vaAR
SINPLE vaR
SUBROUTINE
ARRAY

VAR
VAR
VAR
vaR
YaR
VAR

(L1}
AR
ver
vaR

0223
.'1]2 "
0226
-3 I
eex13
eexty
0ex2¢
Qexto
e-313 .1
eox?
e-x14 .8
e-x21 .1
e-220 .1
[ X231}
eex20

[ B2 ¥ Y |
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Parent: MAIN CLASSIFY
Calls: PERPIXEL, MARKUP, FIXUP

CLASSIFY(PIXELS,CLUSTERS,LABELS,NR,NC,NZ ,ND,REJECT ,NFCLUS,UICB, IND,
IMAGE , IMGCLAS ,MAXCLUS ,COUNT ,MASK)

This subroutine performs a spatially supervised classification of multi-
image data. The underiying spectral classifer is a nearest neighbor
(Euclidean distance) per pixel classifer. Such a classifer behaves poorly
on mixtures: a point on the spatial boundary between classes will some-
times be classified in another actual class. In CLASSIFY, the mildest
possible reclassification is performed: only points classified unlike

all four of their neighbors are reclassified, and even these are left
alone if the nearest class of a neighbor is too far away.

Method: CLASSIFY uses: Wide Image Logic, the Mask, Four Neighbors,
Circular Buffers, and Rejection Thresholds. These concepts are documented
separately. Assuming they are understood, the method can be described
briefly. In each (wide image) strip of data, a circular buffer of three
scan lines of data and labels is formed. Initially, all three lines are
classified (subroutine PERPIXEL). Then a big loop is entered (label 30),
and the center, pointed to by I2, is marked (subroutine MARKUP) to
indicate pixels classified 1ike at least one neighbor. Subroutine FIXUP
is entered to reclassify unmarked pixels 1ike one of their solidly
classified neighbors. (These subroutines could, of course, be differently
restrictive.) Then the eldest label iine, pointed to by I1, is written on

disk, the buffer is rotated, and a new line of data is read and classified.

When no more data can be read, the last two lines of labels are written,
and the next Wide Image Strip is processed.

A count is kept of the number in each class. This is returned in
vector COUNT, a long integer array. COUNT(1) is reserved for unclassified
elements (which appear on disk with label 0). COUNT(2) through COUNT(99)
are the number irs class 1 through 98. COUNT(100) is the number of points
in the Mask, given label 99 on disk.

L A

por

A
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CLASSIFY-2

The classification routine may introduce new classes; because the
data is only scanned once, the new classes will not be attractors until
they are formed. The reason for introducing new classes lies in the
profound unpopularity of unclassified pixels, as well as the stubborn
adherence to the mixture model. Since these classes are usually small,
the percentage of errors is likely to be tiny.

Program Variables
CHKIO SYSTEM SUBROUTINE

CLUSTERS(ND,MAXCLUS) INTEGER ARRAY The cluster centers or attractors.
Their actual number is NFCLUS, which may be changed
in PERPIXEL.

COUNT(100) LONG INTEGER ARRAY The count of the number in each
cluster. COUNT(1) in the number unclassified, COUNT(100)
is the number in the mask, and COUNT(I) is the number
in the cluster I-1 for I = 2,...,99.

FIXup SUBROUTINE Processes points classified unlike each
of their four neighbors, attempting reclassification
according to the mixture model.

I INTEGER DO loop index

11,12,13 INTEGER Circular buffer pointers

IMAGE INTEGER Input image number.

IMGCLAS INTEGER Output image number.

IND(T) INTEGER ARRAY Error indicator.

IREAD, IROW INTEGER Line numbers on read and write, managed in
each strip.

IT INTEGER Scratch variable, used to rotate buffer.

JC INTEGER Used to index into COUNT while counting
LABELS.

JJ,K INTEGER DO loop index.
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CLASSIFY-3

LABELS(NC,3) INTEGER ARRAY Circular buffer of classifications.

MARKUP SUBROUTINE Adds 101 to the center label when that
label is 1ike at least one of the four neighbors.

MASK LOGICAL If .TRUE., a value of 0 in channel 1 of the
data is classified "mask" and labelled 99.

MAXCLUS INTEGER The maximum number of clusters allowed.

NC INTEGER Width of each stirip.

ND INTEGER Dimensionality of data.

NFCLUS INTEGER Dynamic number of clusters.

NR INTEGER Number of lines.

NW,NX,NY,NZ INTEGER Used, in loop 96, to segment the image into
strips.

PERPIXEL SUBROUTINE Performs a per pixel nearest neighbor

classification. Introduces new clusters when the
nearest neighbor is too far away to fit the mixture
mode]l.

PIXELS(NC,ND,3) INTEGER ARRAY One circular buffer of data in a strip.
READP SYSTEM SUBROUTINE

REJECT(MAXCLUS)  INTEGER ARRAY The rejection thresholds.

UICB(1) INTEGER ARRAY User Information Control Block

WRITEP SYSTEM SUBROUTINE
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SUBROUTINE CLASSIFYCPINELS,.CLUSTERS.LABELS, MR, NC, N2, ND . REJECT,
s KECLUS.UICS, INO, INAGE, INGCLAS, NAXCLUS, COUNT . RASK)

INTEGEF®Z HICBCI) . INDZY D, REJECT(NAYCLYS  , CLUSTERS(ND. HAXCLUS).
¢ PIXELSCHE,ND.3? LAFELSCNC, 3

INTEGER*4 COUKTC100)

LOGICAL MASK

P0 1 1 = 1,100
1 COUNTCL) = O

VIGE INAGE LOGIC
NV IS STARTING COL IN INAGE
MY 1S ENDING
NX IS ACTUAL NUMBLR READ
00 96 NV = 1,NT.NC
MY = NU+NC-1
IF CNY GT MZ) NY = N2
NX & NY-ME:]
SET READ/URITE COUNTERS

IRERD = 3
(koY = 1§

SET UF CIPCULAR BUFFER PUINTER
1 =1
12 » 2
13 3
GET STARTED: READ I SCAN LINES DATR
0o 201 = 1,3
P9 10 + = f,ND
CALL READPCUICH, IND. INAGE.PIY 3(1.K,12,2.K,1.N¢,
¢ NY, Kel, 1. N¥.NX)
IF CINDCCI).LT.0) CALL CHR.GIDICB. IND, IRAGE. I ,K,.NC,11)
10 CONTINVE
CLASSIFY FIRST THREE SCaAN LINES

29 CALL PERPIXELC(PIXELSCL,1.,1),CLUSTERS,LABELSCL. 1),
® MO, NC NFCLUS, REJECT,ARXCLUS, NASK, MX )

TEFEFENTE FOK BIG LOF

RAPY PIXELS CLASSED LIKE IMEIR NEIGHBORS
T0 caLL MARKUPCLABELS. WL, I1.12,13,N8X)
USE CTHTEXT TO ATIENFT RECLRASSIFICATION

CALL FINUFCLARELS, NC, 1), 02,13, FIXELSAT1,1,32),REJECT,
¢ CLUETERS ND,NaX LUS. NV

¥FITE & STAN LINE OF LHEELS
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00236
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00276
00270
00311
00116
00326
0033s
00388
0336
00326
00327
00340
00344
00344
00344
00344
00381
00371
00404
00426
00422
oce1®
00429
Y7L
voea?
oceT!
00437
[IX 341
003
00439
004y
[1X) M
004t
ocass
00486
ocass
0ces¢
00466
0046¢
[ 13-4
o0%4c
0084t
00%3s
0098
co%e?
00tai
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00667
ocesT
008eT
v067e
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CLASSLFY
00893000 C
00394000 CALL URITEPCULCO.IND, INGCLAS, LASELSCT. 110,21, 1ROV, NV, HX,
00397000 o 1 IRONSL NV, HX)
00390000 IF CINOC1).LT . 0) CALL CAKIOCUICSE.IND,IRGCLAS,IROV.0.0,21)
00999000 PO 2 44 = 1.MX
00600000 JC & LABELSCII. 11041
00401000 2 COUNTCIC) » COUNTCJIC)]
00602000 ¢
00603000 C AOINT 1O NEXT SCAN LINE
0004000 ¢
00609009 IR0 = 1ROW4I
00696000 IREAD = IREAD+1
00607000 If CIREAD GT NR) GO 10 1490
00608000 ¢
00609000 C GRAE ANOTHER SCAN LINE
00610000 ¢
00611060 B0 40 X = §,ND
00612000 CALL READP(UICS, INO, INAGE, PIXELSC1,K,11),2,K, IREAD,
00613000 o NU,NK. KoL, IREAD, NV, NK)
00614000 IF CINDC1).LT.0) CALL CHKIOCUICSE, IND,TNAGE.K, 11, IREAD, 263)
00619000 40 CONTINUE
00416000 ¢
00617000 € ROTATE CIRCULAR SUFFER
00610000 ¢
00619000 It = 11
00620000 11 e 12
00621000 12 = 13
09622000 13 - 11
09523069 ¢
00624000 C CLASSIFY TNE NEV CRITTER
00629000 ¢
©0$26000 CALL PERPIKELCPINELSCY,1.13), CLUSTERS. LARELSCT. 135, KD, NC,
00627000 * HECLIS,REJECT.NAXCLUS, NASK, NX)
00628000 G0 Tr 30
00629000 C
00630000 € FINISN UP
00671000 ¢
0063200¢ 1000 CONTINVE
094633060 CALL WEITEPCUTCH, IND, INGCLAS. LABELS(1.12),2,8, 1ROV,
00634000 ¢ MU, NX, 1, ROV L, MU, HX)
00613000 IF CINGC1).LT 0) CALL CHKIOCUICH. IMD.INGCLAS,12, 1ROV, NC,282)
00436009 00 3 JJ = 1,N2
09637009 4C = LABELSCII, T2)01
00838000 3 COUNT(JCY » COUNTCJC) 41
00639000 CALL VURITEPCUTCO. IND, INCCLAS, LABELSC(L.13),2,1.1R0041,
00840000 ¢ NU,NX,1.0,1.1)
¢Nntel1000 IF CINCCIY LT O0) CALL CHKIO(UICE, INC, INCCLAS. 1T . IROV NC. 287
00642000 00 4 JJ = J.NX
00643000 JC = LABELSC(JJI 13O
00644000 4 COUNTCJIC) = COUNTCJC)+]
00643900 96 CONTINCE
00646000 RETLEN
cI647000 €40
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INTEGER
INTECER
fmrecen
IFTECEP
INTECER
LOGI%AL
INTECER
InTECER
InTEGER
INTEGER

INTECER

sTRUCTURE

SUBROUTINE
ARRAY

SUBROVTINE
SIRFLE var
SIRFLE var
SINPLE var
SIAPLE VAR
SIRPLE vaR
SIRFLE vak
AFRRY

SIAFLE VAR
SIRPLE vak
SINPLE VAR
SINPLE vanr
SIAPLE VAR
SUBROUTINE
SUBROUTINE
ARRAY

PROCRAN UNIT CLASSIFY CONFILEC

ADDRESS

a1 4
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-7
aextl
[ 22 4
o+23
9-221
e-14
e-x17
*-2x13
[R231
e+213

e-212
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Couny

I

12
INAGE
N0
1ROV

(14

[ 4
ROARKUP
RAXCLUS
L1

L1

nx

N2
PIXELS
REJECY
URITVEP

TYPE

INTECI®eq
INTECER
INTEGER
INTECER
INTEGER
INTECER
INTECER
INTEGER

INTECER
INTEGER
INTEGER
INTEGER
INTECER
INTEGER
INTEGER

STRUCTURE

SUBROUTINE
ARRAY

SIRPLE VAR
SINPLE var
SINPLE var
ARRAY

SINPLE vaR
SINPLE vaR
SINPLE vaAR
SUBPOUTINE
SINPLE vaR
SINPLE VAR
SINPLE var
SINPLE VAR
SIRPLE var
ARRAY

ARRAY

SUBROUTINE

-2 .1
[ R2 %)
QX183
e-210 .1
.'t.l o1
[ L2193
QeX20
Qex1?

e-xé .1
e-x19 .1
#-320 .1
[ X213}

a-21¢ .1
e-223 .1
e-x14 .1
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Parent: ASELECT CLOSEC

CLOSEc(z,J,TSP,LAB,KNT,DAT,NL ,NS,ND,NA,N,FILENO,UICB, IND,CONTROL ,ND5)

In this subroutine, a patch of pure pixels is closed by selecting a
test set from the patch (5 representative pixels) and writing the
test set to disk.

Method: If the file has not yet been opened (i.e., if CONTROL is true),
then it is opened. The file name is TSTPXL__ where ___ is a number

from 1 to 99, depending on how many test pixel files are currently

open in concurrently running sessions. The test pirel file is job-
temporary, that is it is deallocated when it is closed.

If possible, five test pixels are selected from the patch by
choosing them at equally spaced intervals along the array. This test
set is written to a disk record. The test set count is incremented
and the count of occupied labels is decremented.

Program Variables

CONTROL LOGICAL If CONTROL is true, the test pixel file is
opened and CONTROL is set to false.

DAT(NL ,ND,NS) INTEGER ARRAY At J, contains the list of pixels
(brightness values) that constitute the current patch.

FCHECK SYSTEM INTRINSIC to check for I/0 errors

FILEINX INTEGER Part of test pixel file name

FILENO INTEGER Test pixel file system file number

FILESIZE INTEGER*4 Maximum number of records in test pixel
file

FNAME CHARACTER Test pixel file name

FOPEN SYSTEM INTRINSIC Opens a file

FWRITE SYSTEM INTRINSIC MWrites a record

I,IS,K,KN INTEGER Do Loop Index

IA " File options bit mask

IB " File access bit mask

PRECEDING FPAGE ELANK NOUT FIiLMED



IERR
IMSG
IND

ITSP

KNT

LA

LAB

LB
LTSP
MSG

N

NA

ND

ND5

NL

NS
PABORT
PIXELND
PRINTP
TSP
ulcse

Z
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INTEGER I/0 Error code
" ARRAY holds message to be printed
" ARRAY IDIMS error indicators
" Temporary test pixel storage
" The pointer into KNT and DAT for the current
patch to be processed.
INTEGER ARRAY At J, the population of the current
patch.
LOGICAL File options bit mask
INTEGER ARRAY Label vector
LOGICAL File access bit mask
LOGICAL Test pixel temporary storage
CHARACTER Message to be printed
INTEGER Count of test sets written to disk
" Count of occupied labels
" Number of dimensions
" " " " times five
" " " lines
" " samples in strip
SYSTEM SUBROUTINE
" Counter for pixels written to a record (1 to 5*ND)
SYSTEM SUBROUTINE
LOGICAL ARRAY Test pixel record
INTEGER ARRAY User information control block
" Absolute zero, see “"Tricking Fortran"
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0002F O0TFPE000 FCONYROL SECHENT=AROEDASEC

00823 00777000 CUBROUTINT. CLOSECCZ.J TSP, LAB.KNT,DAT, WL, NS, R0, AA.N.FILEND.
00023 00770000 ) UICH. END, CONTROL. NP3

00023 ©077909C T THIS SUDROUTINE 1S A PORTION OF THE ARDEDA JDIRS FUNCTION.
00023 00280000 L IT CNOOSES TEST PINELS FROM A PATCH THAT IS PEINC CLOSED,
000297 007BIC00 T AND RESETS APPROUPRIATE COUNTERS.

009023 00782000 C

00023 08783000 LOGICAL LTSP, TEPINDS).LA.LB,CONTROL

00027 00TRAE00O INYECER®S FILESIZE

0023 00T7¥3000 INTEGER®D Z, . ETSP.OATCNL . ND NS, KNTCI ), LABCL Y, INSCCIN), FILEINX
00029 00786000 COQUIVALENRCE (LTSP,1TSP)

90023 00207000 INTEGER®2 PIXELNG, TR FO, VICBCL), INRDCY), FILEND

00023 00790000 SYSTEN INTRINSIC FOPEN, FONECK,.FURITE

0023 00709000 CNARACTERSTY nes

20028 00290000 CHARACTER*9 /FNANRE

40023 00791000 TQUIVALENCE CLA, IA).CLB. 1B). CIRSEC.ASE)

40023 00792000 {F C.NOT CONTROL) GO TO 3

0036 00793080 ik = 0

00032 0794000 FICESIZE = 63936

0034 40793000 I8 » 4

00036 007984000 CONTROL = FALSE.

90040 00P97000 C OPEN TNHE DISn FILF
00040 OOT90000 - FHARE » °“ISTPXL .°

00056 00799000 P9 6 FILEINX » 1,99

00063 00800000 FRAREL712) = STRCPILUINX)

20100 0893000 FILEND = ©

00102 00802000 FILENG = FOPENCFNARE.LR.LO.N03. ..., 2, . FLLEBIZ2L, 16)
06120 06883000 tf ¢ .CC.02.3.,2

90123 40804000 1 contTinve

00123 o0g09000 CALL FONECKC(FILENG, JERR)

00130 00806000 tF CIERR €0 .100.0R IZRR €0 .101) GO YO &

00140 0OBOTO0O ASC = ° QPEN CRROR ON TEST PIXEL DISK FILE"
0173 03808000 ASGC13:9) = STRCLERR)

20212 0080%000 CALL PRINTPCUICE.IND,1,IN85,45.0.0.,9,0,0,0,0.0)
00282 o00B10000 CALL PADORIC(HILS . 45.0)

20272 0081000 ] CoOmTINUE

eI 00812000 3 COoNTEINUE

00232 Qe8il000 N = KNTC )

003%¢ o0gid00e IFCRN. LT .8) €O TO to0

00362 00819000 I8 = CKN-1)/4

0C2Me 00816000 PIXELNG = ¢

600270 ooNiT000 00 10 1 = 1.KN. IS

0C2TY 00810000 00 10 ¥ = 1,0WP

9¢362 0o0l%000 PIXELNG = PIXELNO + )

00303 C0820000 1T18P = DATC(I. X, J)

90313 woR21000 10 TSPCPIXELND) = LTSP

GC222 00NI2000 L WRITZ Y247 PIXELS TO OISK FILE

603221 00823000 CALL FURITECFILEND. TSP, . NDI, CONTROL ?

0031¢ <¢os24000 ffF ¢ . CC.» ¢.%.4

90312 00823000 4 CALL FCHECKCFILEND, LERRD

00327 00826000 NG « ° ERROR PURING NKITE OF TESY PIXEL FILE®
00376 00827000 ASCL0:6) = STRLIEPR)

00413 00020000 CALL PRINTPCUTICE,.IND.1.1M86.45,0.0.0,0,0.0,0.,0)
00442 0082%000 CALL PABORT(UICH,43,0)

00432 00830000 9 LoNTINUE

9048 COBJIC0OO €
G047 00832000 € INTPEREST £0UNT OF TEST PIXEL CROUPS WRISYEN T8 £]3K

GeL o
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00482 00838000
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00444 0083%000 ene
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CLOtEC SUMROUTINE
[ L3 [Lh{¢1 14 ARRAY
FILELINX inveaer SIRPLE VAR
FILESIZE INTEGER?S  SIFPLE VAR
Foren INTECER FUNCTION
1 INTIGER SIAPLE vaR
[ 4 ) ILA{4] 4} SINPLE vaR
1886 INTEGER APRAY
18 INTEGER SIAPLE vl
é INTECGER SINPLE VAR
[ 1] InNTECER SIAPLE VAR
%} LoclicaL SIAPLE VAR
Ls LocICAL SINPLE vaR
L3 1 CHARACTER SINPLE VAR
ne INTLGER SIAPLE VAR
"3 mmrecee SIRPLE VaR
ng INTEGER SIAPLE var
PIXELNO INTEGER SIAPLE vaAR
e LocICAL ARRAY
t mreeee SIAFLE VAR
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CONTROL
FONECK
FILENO
FHaRE
FURITE
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e
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"
PABORY
FRINTP
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TYPE
LaCICat

INTEGER
CHARACTER

INTECER
INTEGER
INTEGER
INTEGER
INTECER
INTEGER
INTEGRR
LOGICAL
INTECER
INTECGER
INTEGER

INTEGER

STRUCTURE

SIRPLE VAR
SUBPOUTINE
SIRSLE VAR
SIAPLE var
SUBROUTINE
SINPLE var
SINPLE var
ARRRY

SIAPLE VAR
SIRPLE Vvar
ARRAY

ARRAY

3INPLE Va2
SIAPLE vk
SIRPLE VAR
SIAPLE Var
SUPROUT I NE
SUBROUTINE
ARRAY

ALORESS
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€x23 .1
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uexty
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Parent: NUMCLU COLAPS
COLAPS (MAX ,MEAN, SUM,ND)

In this subroutine, each vector in MEAN with corresponding index in
SUM zero is eliminated. The calling program NUMCLU uses SUM to mark
vectors in MEAN which are no longer in force. Classification is more
efficient when needless branches on SUM(.) = 0 are avoided.

Method: The method is as simple-minded and as inefficient as a bubble

sort. Any time SUM(.) = 0 is encountered, mbve the entire array down
one slot. (But) It is self-documenting.

Program Variables

1,J,K,MM,IP1 INTEGER DO loop parameters

MAX INTEGER Number of vectors in MEAN.

MEAN(ND,MAX) INTEGER ARRAY The mean vectors, to he collapsed.
ND INTEGER Dimensionality

SUM(MAX) INTEGER ARRAY Pointer array; vectors in MEAN with

SUM(.) = 0O should be eliminated.
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00006 02092000 SCONTROL SEGHENT=ANOEBASEC
00006 €2¢93000 SUBROUTINE COLAPSCAAX.NEAN, SUR, ND)

00006 02094000 C
00006 02093000 C PAPENT PROGRAN! NURCLY
90008 02096000 C
00006 02097000 C SUBSROUTINE COLAPS GCOES THRU THE CLUSTERS In NERN
00006 02098000 C AN DELETES ANY CLUBTER VWITH SUACK) = O, CONPRESSING
00006 021799000 C TNE ARRAY NEAN 3 THIS ALLOVUS SLIGHNTLY RORE EFFICIENT
0000¢ 02100000 C SERRIH WHEN TRYING TO CLASSIFY A POINT.
00006 02101000 INTEGER®Z NEANCRD, RAX ), SUNCRAX)
00008 02102000 AN = AAX-}
90011 02103000 00 1 I = 1.MM
00016 02104000 IF (SUNCE) NE.O) GO TO I
00023 02103000 IPl = 41
00026 02104000 IF CI*1L.EQ.FAX) R ET U R N
00032 02107000 90 2 J » (PL,NAX
00037 02198000 IF CSUNCY) . EQ.0) €0 TO 2
00044 02109000 SUNCT) = SUNCY)
0030 02110000 SUNCI) = O
00093 02111000 00 3 K * 1,ND
00060 02112000 B REANCK.I) » RLAN(K,d)
40073 02113000 6¢ Yo 1
00077 02114000 T CONTINVE
00100 02113000 RETURN
00101 02116000 1 CONTINUE
00162 02117000 RETURN
0C103 02118000 END
SYROOL NAP
NANE TYPE STRUCTURE ADORESS HARE TYPE STRUCTURE ADDRESS
coLars SUBROUTINE I INTEGER SINPLE vat Qex3
w1 INTECER SIAPLE VAR Q4217 4 INTEGER SIAPLE VAR @4
[ 3 INTECGER SINPLE VAR @+2X6 LL14 INTEGER SIAPLE varR @-x7 ,1I
AEAN INTEGER RREAY a-x%6 . nn INTEGER SIAPLE vaR @exS
[ 14 INTECGER SINPLE VAR 9-24 1 sun INTEGER ARRAY a-x3 I

PROCRAN UNIT COLAPS COMPILED
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Parent: START CONNCT
CONNCT(FINISHED,Z,N,A1,A2,BUF,IN,LAB)
This subroutine grows components from intervals.

Method: Label line Al contains either Z or patch labels; Z marks boundary.
Line A2 contains Z (boundary) or interval marks. A2 is scanned; when an
interval is found, Al is examined looking for a patch label. If a

patch label is found, it is saved in BUF.

Then A2 is scanned again. An interval mark is replaced by the
corresponding label in BUF. If none is found, the label counter LAB is
incremented and LAB is stored as the new label. Labels begin at -32767
and are allowed to grow to as much as 32767. On reaching 32767, flag
FINISHED is set to .TRUE. so the calling program will know the supply
of patches has exhausted the labels.

"U" shaped components will not be found by this method. Rather,
they will be pieced together as two different fields of labels. We do
back up one 1ine in loop 50, which sometimes removes single element
patches.

Program Variables

A1(N) ,A2(N) INTEGER ARRAY Al is the elder line with patches
already marked. A2 is the new line of intervals to
be turned into patch labels. (The first patches
are created in the calling program.)

BUF{IN) INTEGER ARRAY Used to stash labels to be transfered
to intervals.

FINISHED LOGICAL When we run out of labels, FINISHED is set
to .TRUE. The calling program uses this flag to
terminate processing (gathering patches).

I,K INTEGER DO loop index.

PRECEDING PAGE BLANK NOT FILMED
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IN
IS,IT
LAB

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
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CONNCT-2

Number of intervals in A2.
Temporary labels.

Current label pointer.

Number of elements in a line.

Boundary marker, -32768.
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PAGE 0037

00007
00007
0007
00007
00007
0014
00020
90029
%0030
00038
ooeos?
00043
00046
00047
00034
00061
000¢€2
e007¢
00073
0074
ocore
0Go7se
00101
0104
eons
90114
00118
%0114
00121
00124
00130
00137
06140
%0141
00143
00144

01169000
01170000
01171000
01172000
01173000
01174000
01173000
01176000
01177000
01170000
01179000
01180000
01181000
01182000
01183000
01184000
01183000
01186000
01187000
01108000
01189000
01190000
ol1191000
01192000
01193000
01194000
01193000
01196000

01197000

01199000
01199000
01200000
01201000
01202000
01203000
01204000

SYROCL naP

al
Sur

FINISRED

1IN
17
LAS
4

ORIGINAL PAGE IS
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HEULETT-PACKAPD 321020.01 .02 FORTRAN/3000 TUE. OCTY 13,

SCONTROL SECHENT=AMNCEDASEG

SUSROUTINE CONNCT(FINISHED,Z.N.A1,A2,8UF,IN.LAD)
LOGICAL FINISHED
INTEGERe2 Z.ALCN),A2(N),.BUFCLIM)
00 10 K = 1.1IN
10 QUFCK) » 2
90 20 I = 1.,%
IT = A2CT)
IF CIT.€Q.Z) €0 YO 20
1$ = AICD)
IF C15.€0.2) GO TO 20
BUFCIT) =» IS
20 CONTINUE
00 30 K = 1,IN
IF (BUFC(K).NE.Z2) GO TO 30
LAS = LAB*1
If (LAS.E0.32767) CO T0 60
SUFCK) = LAB
30 CONTEINUE

c
C HOV TRANSFER ACTUAL LABELS
- 00 40 1 = 1.,N
IT = A2¢D)
IF CIV . NE.Z) R2CL) = DUFCIT)
40 CONTINUE
4
C BACK UP AND CLEAN UP SINSLETORNS (HAYBE)
00 30 1 = 1.N
IT = A2¢C1)
IF CIT . €Q.2) GO TO 3¢
IF CALCT) . ME. Z) AICT) = T
30 CONTINUE
RETURMN
60 FINISHED = .TRUE.
RETURTMN
ENO
TYPE STRUCTURE ADDRESS NARE
INTEGER ARRAY e-%10 ,1 2
INTEGER AFRAY e-26 1 CONNCT
LOGICAL SINPLE vAR 89-213 ,1 !
INTEGER SINPLE VAR @-23 1 18
INTEGER SINFLE VAR 0413 K
INTEGER SINFLE var 9-%¢ .1 L

INTECER SINFLE VAR @-212 ,1

PROGRARN UNIT CONNCT COMPILED

TYPE
INTEGER

INTECER
INTECGER
IKTEGER
IMTECGER

STRUCTURE

ARRAY

SUBROUTINE
SIRPLE VAR
SINPLL VAR
SIRPLE vaAR
SINPLE vaR

ADDRESS
"27 a1
QX3
i 221
9ex6
e-211 I
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Parent: NUMCLU DIAMTR
DIAMTR(MEAN,ND, ITL,IDIAM)

This routine determines the square of the diameter of the vectors in
array MEAN.

Method: Except for the bias of -32768, the method is self-documenting.
The biased squared distance from MEAN(.,I) to MEAN(.,J), with

1 <1< d=1ITL, is computed, and the maximum such value is returned as
IDIAM.

Program Variables
1,J,K,IP,ITLM INTEGER DO loop parameters.

IDIAM INTEGER Square of diameter of vectors in MEAN.

ITL INTEGER The total number of vectors in MEAN.

MEAN(ND,ITL) INTEGER ARRAY The array whose diameter is to be
determined.

PRECEDING PAGE BLANK NOT FILMED



PACE 0039

00008
0N
00003
00003
"0y
90003
(XX}
9000y
00009
00010
00017
00024
ooo2r
00034
00034
00034
00036
00043
00034
0071
e007s
oo102
00104
00106
o107

02067000
02040000
02069000
02070000
02071000
02072000
02073000
02074000
02073000
03078000
02077000
02078060
02079000
02090000
02081000
02082000
02003000
02004000
02003000
020860¢0
02087000
02008000
02009000
03090000
02091000

SYROOL AP

PIARTR

101nn
18
L

d
LY 1]
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HEVLETT-PACKARD 321020 01.)3 FORTRAN/ 300 TUE, OCT 13, 1981,

SCONTROL SECHENTeANCEDASEC
SUSROUTINE DIARTR(NEAN, ND, ITL.IDIAN)

c
C PARENT PROGRAN: NURCLU
c
C SUSROUTINE DIAATR FINOS TNE SQUARE OF THE DIANETER
C OF THE SET OF CLUSTER CENTERS IN REANM

INTEGER®Z NEANCIND, ITL)

ITLN = ITL-8

I01AR = -32768

PO 8t I = L, ITLR

P = ey

00 1 4 = [P, ITL
C
C FIND THE CISTANCE o922 BETUEEN NEANC.. 1) AND NEANC .. J)

1§ = -32767

00 2 K = L1.,ND

IF C1$.CE.16300) GO YO 1

IT = REANCK, I)-REANCK,.J)

2 1S = 1841717
IF CIS.LE.IDIAR) GO YO 1
[pram = 1§
1 CONTINUE

RETURMN

(1]
TYee STHUCTURE ADDRESS NARE

SUBROUTINE 1

INTEGER SINPLE vAR Q-2¢ .1 1P
INTEGER SIAPLE VAR @+26 17
INTEGER SIRPLE vAR @-x3 .1 1L
INTEGER SINPLE VAR @423 K
INTECER ARRAY 9-27 1 ND

PROGRARN UNIT DIARTR COMPILED

PRECEDING PAGE BLANK NOT FILMED

9141 AR

TYPE

INTECER
INTEGER
INTEGER
INTECER
INTECER
INTEGER

STRUCTURE

sInPLE
SINPLE
SINPLE
SINPLE
SIAPLE
SINPLE

VAR
VAR
yar
AR
ar
VAR

Qex3
Qex4
QeX7
a*x10
X111
e-3¢
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Parents: START, MARKUPDN, MARKLR FILLLR
FILLLR(Z,LAB,N)

This subroutine works along a 1ine of labels and replaces a label with
its two neighbors marked boundary with the label boundary. 1It, so to
speak, fills inleft-right cracks in the boundary map.

Method: Only one tricky point is involved. LL, LR, and LM are used

to save labels down a Tine. This minimizes indexing while preventing
propogation of boundary down lines. As usual, Z = -32768 is used to

mark boundary.

Program Variables

I INTEGER DO loop index

IM INTEGER Pointer to current position.
LAB(N) INTEGER ARRAY The labels being processed.
LL,LM,LR INTEGER Labels down the line.

N INTEGER Number of labels.

Z INTEGER Boundary: -32768

PRECEDING Faul CuAng NOT HIRED
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ORIGINAL PAGL 5

OF POOR QUALITY

PAGE o040 NEWLETT-PACKAPD 321028.01.01 FORTRAN/3000 TUE, OCT 13, 1981, 9:39 AN

00004 01243000 SCONTRNL SECRENT=ANOEDASEC

00004 01246000 SUSRUGUTINE FILLLRCZ,LAB.N)
0C008 01247000 INTECER®2 Z,LANCN)
00008 ©1240000 IFC(N LT DR ETURN
00010 031349000 LL = LABCT)
00013 01230000 LA = LABCD)
00016 012351000 In = 2
90020 01232000 00 10 [ = 3.,
00027 01233000 LR = LABCT)
00070 012954000 IF CLR €E0.2 . AND.LL . E0.2) LABCIN) = 2
00041 01233000 LL = LN
90043 01336000 (S BN
00047 012337000 1¢ IR = |
00e%0 01298000 RETUPN
0C¢eT1  0133%000 Enp
SYNOCL nAP
NARE TYPE STRUCTURE ADDRESS NARE TYPE STRUCTURE ADORESS
FILLLR SUPROUTINE 1 INTEGER SIRPLE VAR QX2
ir INTEGER SIRFLE VAR 0423 LAs INTEGER ARRAY e-x3 .1
(48 INTEGER SIRPLE VAR Q424 Lh INTEGER SIRPLE YAR Qe}3
e Invecer SIAFLE YAR 8426 N INTEGER SIRPLE var Q-%4¢ I
4 INTEGER SINRPLE VAR 0-26 I

PROGRAN UNIT FILLLR CONPILED

FRAvEheia Fivdle o sun . oan e i
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Parent: CLASSIFY FIXUP
FIXUP(LABELS,NC,11,12,13,PIXELS,REJECT,CLUSTERS,ND,MAXCLUS)

This subroutine follows MARKUP and attempts reclassification of a pixel
classified unlike each of its four neighbors. The attempt fails when
each nieghbor is too far from the pixel to stand that reclassification.

Method: As in MARKUP, a circular buffer LABELS is maintained. I1 points
to the eldest, I2 to the current (which may have been modified by the
addition of 101), and I3 to the nearest (unchecked) line of labels.

We regard the classifications in line I1 as final, those in I3 as
tentative. Those in I2 marked over 100 are fixed by subtraction of the
101 added by FIXUP. Of the rest, note they are classed unlike any
neighbor. Collect, from the four neighbors, the classes of each

neighbor (a) in line I1, (b) in line I2 and marked, or (c) in line I3 and
like at least one neighbor in that line. This gives up to four classes.
Reclassify the pixel in the nearest unrejected class of those up to four
classes. If no unrejected class exists, leave the classification alone.
A1l distances are biased by -32768.

Program Variables
CLUSTERS(ND,MAXCLUS) INTEGER ARRAY The cluster cneters.

FOUR(4) INTEGER ARRAY Used to store the (up to) four
classifications of OK neighbors.

1 INTEGER DO loop index.

n INTEGER Pointer to eldest label line.

12 INTEGER Pointer to current label line.

I3 INTEGER Pointer to newest label line.

IM INTEGER I-1; pointer to current slot.

IS INTEGER Sum accumulator for diccance.

PRECEDING PAGE BLANK NOT FiLMED
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FIXUP-2
T INTEGER Scratch variable.
J INTEGER Index into FOUR: DO loop index.
J4 INTEGER Value of FOUR(J) in Toop.
K INTEGER DO loop index.
L INTEGER DO loop index.
LL INTEGER Label on left.
LM INTEGER Label in middle.
LR INTEGER Label on right.
MAXCLUS INTEGER Dimension for CLUSTERS.
NC , INTEGER Number of samples per line.
ND INTEGER Dimensionality
NDIST INTEGER Distance from nearest neighbor classifier,
pixel to nearest of up to four.
NRST INTEGER Index of nearest, or zero if all are
too far away.
PIXELS(NC,ND) INTEGER ARRAY One line of data along line I2.

REJECT(MAXCLUS) INTEGER ARRAY Rejection thresholds.




Pace 0022

00014 00669000
00014 00470000
90014 00671000
90014 00472000
00014 00673000
00014 00874000
00020 00679000
00026 00676000
00033 00§77000
00082  $0470000
00051 00679000
00094 00680000
00060 00601000
00062 00,82000
00071 00683000
00079 00584000
00077 00683000
00102 00686000
00106 00487000
00107 00698000
00113 00699000
00117 0690000
00120 00691000
00124 00gYv2000
0C131 00693000
00193  0069400¢
00156 00693000
00161 00696000
00169 0697000
00167 00698000
0CI7T1 00699000
00178 007d00COO
00201 007031000
00210 00702000
00219 00703000
90226 00704000
00247 03703000
90347 00704000
00299 00707000
00296 00708000
00262 00709000
00364 00110000
00266 00711000
00367 00712000
00351 00r1%000
00302 00714000
00312 00718000
00314 00716000
00317 00717000

*0320

for18000

scomt

30

40

30

[ 1

90

10

101
1
10
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HEWLETT-PACKARD 321020 .01.03  FORTRAN/ 3000 TUE, 0CT 13, 1961,

ROL SECNENT-AROCOASEC

SUBSROUTINE FIXUPCLADELS, . NC.i1.12,13.PIXELS, REJECT,
¢ CLUSTERS . NO, ARXCLUS, NX)
INTEGERY2 LABELSINC. 3V, PIXELSINC. ND) . REJECT(NAXELUS),
¢ CLUSTERSCND. RAXCLUS . TOURL S

IF (NX LT 3)RETURN

LL = LABELS(1.12)

LA = LABELS(2.12)

00 10 1 = 3.KX

LR = LABELSC(L,12)

In e 1=

IF CLR . GT7.100) 6O TO 1981

4.0

ITT = LABELSCIN. T

iF CITT €0.0)> GO TO 30

4 s i

FOURCJI ) & ITY

IF CLL.LE.100) GO TO 40

4 8 o

FAUPCd) o LL-101

IF CLR.LE.100) GO TO 30O

4 s 1

FOURCJI) = LR-10}

ITT o LAGELSCIN.IY)

IF CITT NE. LABELSCI-2,13) AND IYT _NE . LADELSCT.13))C0T060
d = Yot

FOURCY) s ITT

IF ¢CJ.E2.0) €O YO 11

NRST = o

NOLSTY o 327647

DG 7O L = 1.J

Jé = FOURCL)

1S = -32768

00 80 K = |.,%0

IF CIS.CE.16393) GO TO 70

ITF o PIXELSCIA. K)-CLUSTERS(K,.JG)
1S o 1SoITTOUTY

IF CI18 . CGE.REJECTCJI4)) CO TO 7o
CONTINYE

IF CNDIST LE.IS) GO 10 70

NOIST » IS

NRET = J4

CONTINVE

IF CHRST NE O LABELSCIN,12) = NRST
Go 70 11

LASELSCIN,12) o LA-101

LL e LN

LR = LR

RETURN

EnD

2137 AN
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PACE 4023 FlxvP

SYROOL RAP
NARE

cLusTERS
Four

11

13

1t

¢

[
LABELS
(3.
RAXCLUS
no

nege
PIXELS

PROGRAR UNIT FIRUP CORNPILED

TYee

INTECER
Inrecer
INTEGER
inrgeeer
LA {1
Inrgeer
INTEGER
INTEGER
HLAL €] 4]
INTEGER
mreceEe
INTEGCR
INTECRR

STRUCTURE

ARRAY
ARRAY
SIAPLE
SINPL
SIRFLE
SINFLE
SinFLE
ARRAY
SIAFLE
SINPLE
sineLe
siarLe
ARPRAY

VAR
yeR
vaR
VAR
VAR

vaer
VAR
AR
VAR

e-x7 .
[ L2 1 SN
a-x14 ,

L)

ORIGINAL PAGE IS
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REJECY

OF POOR QUALITY,

Tyee

Inrgeen
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTECE.
INTECER
INTEGER
INTEGER
INTEGER

STRUCTURE

SUBROVTINE

stnrLe
sinrLt
sInPLE
SINPLE
LYLLIN
sineLe
sInPLE
SINPLE
LRLLIN
SInPLE
sinrLe
ARRAY

VAR
vaR
VAR
var
VAR
vaR
VAR
VAR
VAR
yaR
vaR

[ L2 % ]
-213
7

QX1

Q2112

[ 22 19

Qex1e

Qext?

e-213

Qo321

0-24

9-R10
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Parent: THINTSTM GETNZ25
GETN25( FRSTFLG,TTP,N25,NDS ,FILENO,UICB,IND)

This program fetches N25 test sets from a disk 7ile written by the
subroutine CLOSEC.

Method: On the first call to the subroutine the disk file is rewound.
On each call, N25 test sets are read from the file. A test set is

five test pixels. The file is job-temporary.

Program Variables

FCHECK SYSTEM INTRINSIC Error checking

FCONTROL SYSTEM “ Used to rewind file
FILENO INTEGER System file number

FREAD SYSTEM INTRINSIC File read

FRSTFLG LOGICAL Marks first call

1 INTEGER DO loop index

ICALL " Number of words returned by read
IERR " Stuffed with error code

IMSG " ARRAY Message to be printed

IND INTEGER ARRAY Error code location

MSG CHARACTER Message to be printed

N25 INTEGER Number of test sets requested
NDS " 5 times number of dimensions
PABORT SYSTEM SUBROUTINE

PRIKTP " " Prints a message

TTP LOGICAL ARRAy Sutffed with test sets
UICB INTEGER ARRAY User information control blcok

ZERO LOGICAL Dummy argument for FCONTROL
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PAGE 0046  NEWLETT-PACKARD 371028.01.03  FORTRAN/3000 TOE, OCT 13, 1901, %140 AN
00012 01492000 SCONTPOL SEGMENTOAROEIASEC
00019 01498000 SUSROUTINE GETN2SCFRSTFLG. TTP.N25, NDS. FILENG.UICS, IND)
00713 O1899000 C TAIS SUBROUTINE FETCNES N23 SETS OF 3 TEST PIXELS FROM A DISK FILE TNA
#0013 01900000 C WAS CREATEC EARLIER
0001% 01301000 C
e0CcotY 01302000 INTEGER®*2 UICHCL 2, INDC1).FILEND.,
e0etT 21303000 ' INSGC3Y)
6Le1Y 013504000 CYSTEN INTRINSIC FCOMNTROL,FREAD .FCHECK
0COo01IT 01303000 LIIICAL TTP(NDI.N23). ZERO,.FRSTFLE
00017 01%06000 CHARACTERO79 MSE
occ1?Y 21397000 ECYIVALENCE (IRSG.NSC)
orotY 01509000 C
0cets 21309909 [F ( NCT FRSTFLC) GO TO 10O
00C¢2¢ ©1310000 ZEFD = FALSE
0CCad ©13311000 FESTFLG = FALSE.
00028 01312000 C ON FIFST CALL, REVIND FILE
0Coas O1%13000 CALL FCONTROL (FILENO.S.ZERO)
00Tt 01354000 F v C2.) o006
[ INESP 3 21919000 & h AR FOILUFE TN REVIND TEST PIXEL FILE"
00064 01916000 CRLL PEINTPC(YTICE, IND,3,.1INSC,.34,.0,0.0.0,0,0,0,0)
[1'2 8 B4 ¢1317000 CRA. L PPACFTFC(1CB,.43.0)
06127 01318000 10  CONTINUE
0cya? 21919000 T SE-D N2 SETS OF 3 VYEST PIXELS
00127 01920000 00 30 1 = {,MN23
0r1¥¢ 01321000 ICALL o FREQDCFILEND, TTPC1.,.1). M08
06142 01322000 IF C.CC.) 20.30,20
00148 01523000 20 CALL FIMECK/FILENG, IERR)
00131 013264000 nS3 = - ERROR ¢ ON TESY PIXEL FEILE READ *
9cice 1329000 NSEC10:6) = STRCTIERR)
00242 01326000 CALL PRINTPCUTICO,IND,1,1INRSC.40.0,¢.,0,0,0,0,0.0
00232 01327000 CALL PABORTCUICS.43,0)
00262 01928000 30 CONTINVE
00247 01329000 RETURN
0Cc264 01330000 Enp
SYROOL NAP
HERE TYPE STRUCTURE  ADDRESS NAYE 1YPE STRUCTURE  ADORESS
FCRECK SUBROUTINE FCONTROL SUSROUTINE
FILEND INTEGER SIARFLE vAR Q-26 .1 FREAD INTEGER FUNCTION
FRSTFLG LOGICAL SINFLE var @9-212 .1 GETN2S SUBROUTIME
1 INTEGER SINFLE VAR 0423 reaLt INTEGER SINPLE VAR @27
114 44 INTEGER SINFLE vAR O+26 InSG INTEGER ARRAY Q23 1
1.1 INTEGER AFRAY 0-24 . 1 nse CHARACTER SINPLE vaR Qo4 » 1
Nae INTEGEP SIAFLE vAR 0-X10 .1 ND3 INTEGER SINPLE vAR @-27 .1
PAGORT SUBROUTINE CRINTP SUBROUTINE
Ty LocICcaL arRAY e-xt1 .t vice INTEGER ARRAY e-28 I
zeho LOGIT AL SINFLE VaF Q210

PROCEAR UNIT CETNZS rQreg. €

PRECEDING PAGE BLAMK NOT FiLiAED
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PARENT: MAPP ITIFN

FUNCTION ITIFN(I)

Maps -32768 to 32767 into 1 to 59 so that: -32768, 0, and 99 all map
into 0; other integers I map to numbers between 2 and 59. This function
is used by MAPP to index into SYMBOL. Special numbers -32768, 0, and
99 are all mapped to print as blanks. Others print as symbols so that
when I and J are close, the symbols are different.

Method: Self-documenting.

Program Variables
I INTEGER Function argument

femiarm mm e oy e BYeae TR v e
e a e SRR AT riLalo

N




i L T Wi

73

PACE 0213 HEWLETT-PACKARD 331028.01.03 FORTRAN/3O00O TYE, OCY 13. 1981, 9137 AR

00037 00679007 SCONTFNL SEGRENT=ANOERASEC

000¢E 92489007 FUNCTINKN T[J1FN:])
000z  Guasiceen tF (1 .67 .06) G0 1G 3
00006 00432002 IF + 1 €0 ¢ OR 1.€0 . -32768) GO 10 4
00022 00483009 T =~ -1

00023 0va%4000 G0 10 9

0026 0493000 3 1IF (1 €2 *9) 60 19 4
06022 0vAS600O S 1 = NOCCY.€0)

00026 20487000 IF C1.LE 1) 1 = (e3¢
00Cas 00488002 111F0 =~

06044 0049%000 RETUEREN

0Coa7T 09899000 4 JLIFN *

Geo%t 00491009 RETUERMN

0C03S 20292000 Eno

SYRSCL MAP

RARE TYPE STRUCTURE ADDRESS NARE TYPE STRUCTURE ADDRESS
1 INTEGER SINFLE VAR Q@-24 I 111FR INTECER SINPLE vAR 0-X3
TLIFN INTEGER FUNCTION

PPOGFAN uNIT LIIFN CONPILED

PRECEDING PAGE BLANK NOT FILMED
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Parent: MAIN MAPP
Calls: IIIFN

MAPP(N1,N2,N3,UICB,IND, IMAGE ,NR,NC,SYMBOL )

Produces a quick look at a segment of data, labels map, or cluster
map. Output is directed to the default device. This program is intended
for debugging.

Method: The subroutine prints N2 lines in band one of an image, starting
at line N1 sample N3. Because of the limitations of PRINTP, only 64

samples can be printed. Line numbers are printed, but rot column numbers.

Program Variables

CHKIO SYSTEM SUBROUTINE

IC INTEGER DO Toop index

ITIFN(IV) INTEGER FUNCTION

IMAGE INTEGER Image number.

IND(1) INTEGER ARRAY Error information.

1PX(36) INTEGER ARRAY Dummy array to compensate for the
inadquacies of PRINTP. Equivalenced to PICTURE.

IR INTEGER DO loop index.

N1 INTEGER Starting 1ine number.

N1PN2 INTEGER Last line number to print.

N2 INTEGER Number of lines

N3 INTEGER Starting sample number

NC INTEGER Number of samples in image.

NCL INTEGER Last sample to be printed.

NCP INTEGER Actual number printed.

PREGELING ¢ ALE wis o b bitnicl

e a———




NCP8
NR
PICTURE

PRINTP
READP
SCAN(64)
SYMBOL(59)

uIcs

76

MAPP-2

INTEGER NCP+8, the number sent to PRINTP.
INTEGER Number of lines in image.

CHARACTER*72 area for core-to-core write under FORMAT
control.

SYSTEM SUBROUTINE
SYSTEM SUBROUTINE
INTEGER ARRAY Array to read from image.

CHARACTER*1 AKRAY The symbols printed; created by
SETSYM.

INTEGER ARRAY

——
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ORIGINGE o e,
OF PoOR Quéftrfs

FAGE oMl NEWLETT-TRfRafl 31038 01 O3 FORTRAN/ 3000 TUE, OCT 13, 1983, 9:37 AN

0CO2E 000143002 SCONTFDL CEGRENTSANNEBASEC

OCCaé  naeqe0t " SEFIUTINENAFT N N2 . HY . UICE. IND, INAGE . NR.NC,SYNDBOL
00Cii 7543040 IRTELES D IFY 377 BISEOL (NS 1. CECANCRY)

0C02€¢ 22846000 CHAFRLTEFeT2 FICTURE

0CCIs C2487009 THIFACTEFe]) SYNBGLLSY)

QU0gI¢  C244800Q ECLIVA_ENTECFICTURE. IPX

el ~r449%000 NIFHD = NieHZ-

QCCTE  CraIVNG? IF CNEFNZ GT NR: NIFN{ = KR

CeCYT 8510990 €
QCC??T 02332000 C FRINT FRON COL N3 TO COL N3+63, ROVUS NI TO MIPNZ.

oCcerr 09433000 NTL = NIMCONC.NI*ADI)
02534000 NCF 2 NCL-N3et
ct3%000 NCFS = NOCF+gS
* 0:4%4000 00 100 IFf = NU.HIFN2Z
(A SUNENR R4 DR CALL READF UICR. IND, INAGE, SCAN, 2, 1, 1R NI, HCP. 1. FR*),. N3 . HCP )
SOV 00838000 VFITECFICTURE. LLIDIR.CSVNBOLY LIIFNCSCANCIC))). IC = 1, NCP)
25121 02439000 L1l FOFRAaT: 14.2X.64A1)
0C 1YL 00480000 190 CALL FRINTFCYICHE. IND. L. IPX.NCFE8,0.,0,0,0,0.0.0.0)
ey ertgloon EF CINCCEY LT 0) CALL CHMRIOCUICR. IND. 3. IR0, 0,101
0C&2Y 00sb2000 RETURN
0€a2s 0463000 END
SYPRCL naP
NANE 1YFE STRUCTUFRE AODPESS NANF TYre TIRUCTURE ADDRESS
|91 8 ¥ SUBFOUTINE 1C INTECER SINPLE VAR QxS
| B8 LN INTERES FuUNCTION INARGE INTEGER SIAPLE var @-27 1
Ixg INTEGESR AFRAY 0-%10 .1 1ex INTECER ARRAY Q2 .1
if INTEGER SINFLE V=R 0¢36 RAPP SUBROUT INE
L3 IRTENESF SINFLE var Q-%1yg Lt NIPNZ INVECER SINPLE VAR 024
L INTEGER SINFLE valR Q-%13 .1 N3 INVEGER SINPLE VAR 0-212 .1}
NE INTEGES® SIAFLE varR @-23 .1 NCL INTEGER SIRPLE VAR Qex7?
NCF INTEGER SINFLE V&R QeX10 NCPR INTEGER SIRPLE VAR QX111
NF INTEGES SINFLE v<R 0Q-36 .1 FICTURE CHARACTER SIRPLE var QX2 .1}
PEINTP SUEBROUTINE REAQP SUBROUT I NE
SCRN INTEREP RERAY [ B | SYRROL CHRRACTER ARRAY 9-z4 1
vice INTEGES® AFPRY e-xt1 .1

FROGERT UMIT MaPF COnFILE!
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Parent: STAKT MARKLR
Calls: FILLLR

MARKLR(Z ,DATA,INTTHR,NC ,ND,LABELS ,MASK)

This subroutine marks boundary points left-right.

Method: A line of data is scanned. Points in the mask are marked

boundary (under control of MASK). Points which, in any band, are closer

to their left neighbor than INTTHR(.) are marked boundary. Finally, subroutine

FILLLR is used to fill in a single point gap along the Tine.

Program Variables

DATA(NC,ND) INTEGER ARRAY One line of data

FILLLR SUBROUTINE Fills in gaps along a line.

I,K INTEGER DO loop index

IM INTEGER I-1

INTTHR(ND) INTEGER ARRAY The thresholds for boundary finding.

LABELS(NC) INTEGER ARRAY A line of labels

MASK LOGICAL The mask flag. When .TRUE., zero in band
1 marks a point off the image, i.e., masked.

NC INTEGER Number of samples per line.

ND INTEGER Dimensionality

Z INTEGER -32768, passed as a parameter, and used to

mark boundary points.

PRECEDING PAGE BLANK NOT FILMED
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Parent: CLASSIFY MARKUP
MARKUP(LABELS,NC,11,12,13)

This subroutine "marks" pixels classified 1ike at least one neighbor.
This follows a nearest neighbor classification by PERPIXEL, and is followed
by a possible reclassification of errant pixels by FIXUP.

Method: The pixel labels reside in a circular buffer LABELS of NC labels
per line Il points to the eldest 1abel, I2 to the current label, and I3
to the newest. The eldest label may have been spatially modified, but
labels along scan line I2 are not propagated down that scan line. The
number 101 is added to any labei classified 1ike at least one of the four
neighbors along scan line I12.

“rogram Variables

I INTEGER DO loop index

n INTEGER Eldest line pointer.

12 INTEGER Current line pointer.

I3 INTEGER Newest line pointer.

IM INTEGER I-1

LABELS(NC,3) INTEGER ARRAY The labels; LABELS(.,I2) is modified
by adding 101 when at least one neighbor has the same
label.

LL INTEGER Label on left.

LM INTEGER Label in middle.

RL INTEGER Label on right

NC INTEGER Number of samples per line.

TR
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OF POOR QUALITY

PACE 0021 NEVLETT-PACKARD 321020.01 .03 FORTRAN/3000 TUE, OCT 13, 1961, $:37 AN

0000¢ 00648000 SCONTROL SECRENT=ANNEBASEG

00004 00649000 SUEKOUTINE MARKUFCLABELS.NC. 11,12, 13.0X)
00004 00630700 C THIS PROGFAN RRDS +add 10 ANY CLASSIFICATION WHICH 18 LIKE
00004 00531000 € AT LEAST ONE KEIGHBGF  /C/
0cecs ooss2000 INTECEReZ LABELSCNC,?:
00004 00633000 IF (KX LT 3)RET URN
00010 00£340¢0 ine2
00012 00633000 LL = LABELSCI, 12)
00020 00626000 LA = LABELS(Z,12)
00027 00637000 00 10 1 & 3N
oo0rs o00s38000  4/"T LR o LUBELSCI,12)
00043 00689000 TP-teR €0.0) GO 10 30
00047 00660000 IF (LL.EQ.LN.OR.LF.EQ.LR) GO TO 20
00036 00661000 IF CLABELSCIA. 13} EQ.LM) GO TO 20
00067 00462000 IF (LASELELIN443 HE LMY 5O T0 30
00100 00663000 20 L..ELS(l"'lz’t:_::"o’
00110 00664000 30 LL = LA )= 101
00112 00663000 Ln e Lr msecs( Em L)
00114 00666000 10 1M « 1
0C117 00567000 RereRw
00120 00468000 Eno
sYasoL mae
NARE TYPE STRUCTURE  ADDRESS HANE TYeE STRUCTURE  ADORESS
1 INTEGER  SINPLE VAR Q432 1 INTEGER  SINPLE vaR @-17 1
12 INTEGER  SINPLE VAR G-36 ! 13 INTEGER  SINPLE VAR @-XS I
i INTEGER  SINPLE VAR 09423 LaseELs INTEGER  ARRAY e-11 .1
w INTEGER  SINPLE VAR 8436 tn INTEGER  SINPLE VAR  @+23
e INTEGER  SIAPLE VAR B+%6 narkuP SUBROUT INE
ne INTEGER  SIMPLE vAR D-%10 .1 "X INTECER  SINPLE VAR  @-2¢ .1

PROGRAN UNIT WHARAUP COMPILED
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Parent: START MARKUPDN
Calls: FILLLR

MARKUPDN(Z,D1,D2,L1,L2,L3,NC,ND, INTTHR ,MASK)

This subroutine marks boundary points up-down.

METHOD: If, in any band, data in D1 is cioser to or equal to data in D2
than the threshold INTTHR, then labeis L1 and L1 and L2 at that sample are
marked by being set equal to Z. The reason for the "less than or equal to"
rather than "less than" as appears in MARKLR is that the data is generally
less variable down scan lines than across scan lines. Points off the image
are also marked as boundary provided MASK is set. At conclusion of this
scan through the data, FILLLR is called on center line L2.

Program Variables
DléNC,NDg INTEGER ARRAY Two adjacent lines of data, D1 is the

D2{NC,ND eldest, D2 newer.

FILLLR SUBROUTINE Fills in gaps along a line.

I,K INTEGER DO Toop index.

INTTHR({ND) INTEGER ARRAY Vector thresholds for deciding boundary.
L1(NC) INTEGER ARRAY Three scan lines of labels. LI is
tgs:g; oldest, L3 newest.

MASK LOGICAL Flag used to decide whether a value of 0 in
D1(.,1) or D2(.,1) marks the mask. Mask points are
marked boundary.

NC Number of samples per line

ND Dimensionality

7 -32768, used to mark boundary.
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PACE 0030  AEVLETT-PACKARD 321020.01.03 FORTRAN/ 3000 TUE, OCT 13, 1901, 9:39 an

00012 01208000 GCONTRNL SEGRENT=ANOENASEC

00012 01206000 SUSROUTINE MARKUFONCZ,01.02,L1,02,L3,MC.ND, INTTHR, NASK,NX)
00012 01207000 ENTEGERS2 2, 00CNC, ND)D,02CHC, MDD, LEICNC), LZ2CMC I, LECNC ), INFTTHRCND)
erol2 01200000 LOGICAL MASK
00012 01209000 0 10 I » 1.NX
00017 01210000 tF CLICI).E0.2.AND.L3C1).EQ.2) 6O TO 20
00030 01211000 IF ¢ NOT WASK) GO TO 1
00033 01212000 IF CDICI.1) . €ER.0) LICE) = 2
00043 01213000 IF CD2C1,1).€0.0) L2CI) = 2
00037 01214000 100 S0 K = 1,ND
00064 01219000 IF CEABSCOICE.K)=-D2CI.K)).LE. INTTNRCKD ) O TO 30
00106 01216000 LICE) = 2
00181 01217000 60 TO 20
00113 01210000 30 CORTINVE
e01ts o1519000 €0 10 10
00113 01229000 20 L2CL) = 2
00120 01221000 10 CONTINUE
0012t  €1222000 CALL FILLLRCZ.L2.WX)
0 c12¢ 01223000 ReETURN
00127 01224000 ene
SYRBOL mAP
nARNE TYee STRUCTURE  ADORESS nARE TYPE STRUCTURE  ADDRESS
o1 INTEGER ARRAY =215 .1 02 INTECER ARRAY e-x14 .1
FILLLE SUBROUTINE 1 INTEGER SINPLE VAR @33
INTTNR tnrecer arRAY a3 1 K INTECER SINPLE VAR  @eR4
Lt InTecee ARRAY e-113 .1 L2 INTECER ARRAY 0312 .1
L3 INTEGER ARKAY e-%11 .t RARKUF O SUBROUTINE
nRsr LOGtCAL SINPLE VAR 0-33 .} ne INTEGER SINPLE VAR @-X10 .1
no INTECER SIRPLE voR @-x7 .t ux INTEGER SINPLE VAR @-%4 I
z INTEGER SINPLE VAR 8-X16 . I

PROCRAR UNIT MARKUPDN COMPILED

ORIGINAL PAGE IS
OF POOR QUALITY

PRECEDING PAGE BLANK NOT ri_j:
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Parent: MAIN MOREQUES
Calls: REJECTH

MOREQUES(MEANS, TESTS ,MAXCLUS,NFCLUS ,ND,NTS ,REJECT)

The purpose of MOREQUES is to detect when a necessary cluster has been lost
and add it in. The test is based on the pure rejection thresholds apnliad to
classification of the center (i.e., third of 5) test pixei in each test

set.

Method: Initially, REJECTH is called to determine the pure rejection
thresholds. Then a loop on center of test sets is entered. Each time no
cluster center is closer than its rejection threshold to the test pixel,
that test pixel is added as a new cluster center, the reject thresholds are
calculated, and the next test set examined. On completion of all examina-
tions, the reject thresholds are multiplied by 2 (effectively miltiplying
the Euclidean distance test by /2, preparing for misregistration mixtures).
Since there is a bias of -32768, the actual calculation goes as follows:

If r is the unbiased rejection thresnold and R the biased, then

r = R + 32768, so the new unbiased threshold 2r has its biased threshold

R' = 2r - 32768 = 2R + 32768. (If R' is greater than 16000, use R' = 16000.)

Program Variables

AO INTEGER*4 Long integer used to perform long calculations
1,J,K INTEGER DO loop parameters

IS,IT INTEGER Used in accumulating distance.

MAXCLUS INTEGER Maximum number of clusters.

MEANS(ND,MAXCLUS) INTEGER ARRAY The cluster centers.

ND INTEGER Dimensionality
NFCLUS INTEGER Current number of clusters.
NTS INTEGER Number of test sets.

PRECEVING Froc wenanik NOT §e D
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MOREQUES-2

REJECT(MAXCLUS) INTEGER ARRAY Rejection thresholds.
REJECTH SUBROUTINE Calculates REJECT.

TESTS(ND,NTS) INTEGER ARRAY Test pixels.
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PACE 0924 NEULETT-PACEARD 321020 .01.03 FORTRAN/JOOO TUE, OCV 13, 1981, 9:27 AN

00010 00719000 SCONTROL SECHENTCANOKDASEG

0010 00720000 SUSROUTINE MORCQUESCNEANS, TESTS. RAXCLUI, NFCLUS . RO, NTS, REJECT)
0010 00721000 INTEGEF*2 REANSOND, MAXCLUS . FESTSINO . NTS),REJECTCAAXCLYS)
00010 00722000 INTEGEP+4 RO

00010 00723000 CALL REJECTHCMERNS, MO, REJECT, NFCLUS, RAYCLUS)

W00GEC 00724000 00 10 1 = 3.NTE,S

00023 00723000 00 30 J = 1,NFCLUS

90032 eoT28000 18 = -32740

0008t 00727000 00 20 K = 1.ND

00046 007200060 IF C13.GE.16393) €0 10 30

00036 00729000 IT = TESTISCK, 1)-REANSCK.J)

000r3 00730000 IS o 18¢(Tel?

oCerr 00731000 IF CI1S.GE.REJECTC(J)) CO TO 3O

00108 00732000 20 conTImveE

0106 00733000 C

00106 90734000 C CETTING MERE REANS WE SUCCESSFULLY CLASSIFIED TESTSC .. D)
00106 00733000 60 1O 10

90110 oo0r34000 30 COnNTiINug

0011 oo?37000 C

0011t 00730000 C CGETTING MERE MEANS VE DION'T.  ADD ONE

90111 0073%000 NFCLUS o PrCLusst
00512 00740000 93 40 K e 1.ND
00117 0d741000 40 REANS(E,NFCLYUS) = FESTSC(K. D)
0013¢ 00782000 CALL REJECTTHCMEANS, MO, REJECT, NFCLUS, RAXCLUS)
00148 00743000 IF (NFCLUS. GE RAXKTLUS) GO TO 30
00131 00744900 10 COMTINUE
00132 00743000 30 00 66 1 = 1.MFCLYS
00137 oeTeg000 a8 = REJECTCD)
00164 00747000 A0 = AQ0e2+327¢8
*0IT4  S0T48000 IF (A0 .CT. 16000 A0 = 16000
$026C 00749000 60 REJECTCL) = AQ
00237 00720000 tETURNMN
00223 e0731090 11.]]
SYNBOL RAP
N LN 1YFE STRUCTURE ADDRESS vant TYPE STRUCTURE ADDRESS
a0 INTEGER*d  SIAPLE VAR QX1 ! INTEGER SIRPLE VAR  @+X4
18 INTEGER SINFLE VAR @X§ 17 INTECER SINPLE VAR Qo7
4 INTEGER SIAPLE VAR Qo293 L4 INTECER SIAPLE VAR @exie
AANCLUS INTEC. .2 SINPLE vaR 0-2x10 .! NEANS INTEGER ARRAY e-212 .1
ACREOVES SUBROUTINE ND INTECER SINPLE VAR Q-3¢ .1
NFCLUS InTCGER SIAPLE vaR 0-27 I NTS INTEGER SIRPLE vaR @-x3 .|
REJECT INTecER APRAY -4 1 REJECTH SUBROUTINE
TESTS INTECER ARRAY -211 .1

'

PROCRAN UNIT ROREOUES COMPILEL
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Parent: START MRKIVL
MRKIVL(Z,A,N,M)

This subroutine prepares the complement of the boundzry for accumulation
of components.

Method: Recall that boundary points are marked with Z (-32768). The
rest are counted left-to-right along line A in intervals, replacing the
slot in A by the interval number. For example, a 20 point 1ine on input
might be

7700022727202 00720221200
and the 1ine returned would be
221112217122133724127217155.

On return, M is the number of intervals found.

Program Variables
A(N) INTEGER ARRAY One line of boundary labels, in which
intervals are to be found.

I INTEGER DO loop index

M INTEGER  I-1

M INTEGER Interval counter.
N INTEGER Number in a line
z INTEGER Boundary marker.

PRECEDING PAGL GLAGK NOT FILWED
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PACE 03¢ HEVLETT-PACKARD 321028 $i .93 FORTRAN/ 3000 TUE, OCY 13, 1981, 9:39 An

50004 01130000 SCONTPQOL SECHMENT=ANCEBARSEG

00004 o1131000 SUSROUTINE MRXTVLIZ,A. K. M)
00004 01132000 INTEGER®2 Z2,.A(N)
0C0% 01133000 L L
00006 013134000 IF (AC(1) EQ.2Z) GO TO (O
00013 01133090 A1) = N
0colC 01136000 n o« nl
00¢17 01137000 10 00 20 1 = 2.0
00024 01138000 iR = 1-1
00027 0113%000 IF (#C1).EQ.Z) GO TO 20
80038 01160000 IF CACIR) EQ@.2) GO TD 3¢
000481 01161000 All)> = ACIW)
00CeI 01162000 €0 Y0 20
00046 01163000 30 ACT) =
00031 01164000 = Ny
00032 01163000 20 CONTINVE
00033 01166200 R=f-1
00034 01167000 RETURRN
00033 1168000 ENe
SYRBOL Nar
NARE TYPE STRUCIURE ADDRESS HARE TYPE STRUCTURE ADORESS
L] INTEGER ARRAY -6 .1 1 INTEGER SIRPLE VAR 8422
| Y] INTEGER SINPLE VAR @423 n INTEGER SIRPLE VAR @-3¢ .1
IRKIVL SUBROUTINE N INTEGER SINPLE VAR @-23 I
4 INTECGER SINPLE VAR @8-2x7 .1

PROGERNN UNIT NRKIVL CORPILED

PRUCEIING 1Al © ANA MUT FiniD
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Parent: MAIN MSORT
Calls: SHELL

MSORT(MEAN,ND,{FC,DUM, INDX)

Sorts final clusters by average odd channels to aid interpretation of
clustering.

Method: First the sums are accumulated. At the same time, an index is
set so that INDX(I) = I. Then SHELL is called. On return from SHELL,
the means are reordered by the permutation of INDX. The actual means are
now switched in place.

Program Variables
DUM(NFC) INTEGER ARRAY Used to accumulate sums in odd bands,
and then as temporary storage to switch MEAN.

I INTEGER DO loop index

INDX(NFC) INTEGER ARRAY The pointer array, used by SHELL to
indicate actual order of DUM.

J INTEGER DO Toop index.

K INTEGER DO loop index.

MEAN(ND,NFC) INTEGER ARRAY The means to be sorted.

ND INTEGER Dimensionality of MEAN.

NFC INTEGER Number of vectors in MEAN.

SHELL SUBROUTINE Sorts vector in increasing order.
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FRGE ¢°1)  MEWLETT-FAchbaf( 321228 31.07  FGRYFAN/300¢ TUE, OCT 13, 1981, 9:3¢ AN

02I50000 SCONTFAL SEGRENT=ANCEBASEG

0oL’
eccs7  orlgt000 SUSROUTINE NSOKTITEAN.ND,NFC,DUN, INDX)
QeorT 00352000 INTEGEFs2 MEANCND. NFC ). OURCHFC). INDX(NFC)
e0csy 00363000 0G 1 I = 1.NFC
00014 C0154000 PYrCl) = ©
0CCIT  ¢0363000 00 1602 34 = 1.4D.2
eCL2t 00256000 102¢ QURCL) = DURCIXHMEANC S, T -
0006 00367000 1 INGYCly = |
esc2l (0160000 CALL SHELLC(DUR,INDX,NFC)
00030 c03g9000 00 110 Kk = 1.mM0
eC¢cYT 00370000 o0 120 I = 1,NFC
00062 00271000 120 @YRCI) = MERNIK, INDX(1))
0CcC74 02372000 0 130 1 = 1,NFC
00101 00373000 LIG MEANCK.E) = DUNCL)
0C112 003740y 110 CINTTNUE
octtY 0037300 T ETUERN
eCi1y 00376000 END
SYRBOL NAP
NARE TYPE STRUCTURE ADDRESS NARE TYPE
oun INTEGER APRAY e-23 .1 1 INTEGER
180X INTEGER ARRAY a-24 .1 J INTEGER
K INTEGER SINPLE VAR Q13 REAN INTEGER
ASORTY SUBROUTINE L1 INTEGER
NFC INTEGER SIAFLE var @-x6 .1 SHELL

PFCCSAY UNIT WNSOFT CONFILED

PRECEDING PAGE BLANK NOT FILMED

STRUCTURE

SINPLE VAR
SIRPLE vaR
ARRAY

SINPLE vaR
SUBROBUTINE

[ 12 %)
QeR4
a-x10 I
e-27 .1
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Parent: MAIN ' NUMCLU
Calls: COLAPS, DIAMTR, UNCLE

NUMCLU (MEAN ,ND,NP5,NP , TSPXL ,NFCLUS ,MINCLN ,MAXCLN, CLASS ,COUNT ,ERROR, SAVE,
DUM, CSAVE ,UICB, IND,NUM)

NUMCLU is the main clustering segment in AMOEBA. It carries out cluster
formation ac-ording to the strategy suggested by the model (Appendix A).

Method: On entry to NUMCLU, the set of all possible means is MEAN, and
the test sets are in T3PXL. Also furnished is MINCLN (which, if negative,
requests exactly MINCLN (too many) cilust:rs, or if positive at least
MINCLN, and MAXCLN (which specifies tbe raximum number of clusters to seek).
The following steps are carried out;

(1) Classify the first and last of each test set in the nearest
cluster (Euclidian distance). Save the classification in CLASS
and count it in COUNT. Set LIVING = the initial number NP5 of
clusters.

(2) For each I, if COUNT(I) = 0, eliminate that cluster by setting
NUM(I) = 0 and LIVING = LIVING -1.

(3) If fewer than 101 clusters are present, go to step (6), else set
IF = 1.

(4) Eliminate successively each cluster I with COUNT(I) = IE;
raclassify test pixels assigned to eliminated classes; exit (5)
when the number of viable clusters falls helow 101.

(5) Increment IE and repeat (4).

(6) Call COLAPS to remove 2liminated centers.

(7) Call DIAMTR to determine the diameter of starting clusters.

(8) Set the initial elimination protectior threshold IDIAMP. Except
for the bias, IDIAMP is the diameter divided by 4*MINCLN.

(9) Classify each test pixel by nearast neig“hor and save the
classification.

FRECEDNG FALL wofiay DIOT VILMED
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NUMCLU-2

(10) Set NERR, an error counter, to zero; also set ERROR(I) =0, I =1,
.. »LIVING.

(11) Count the number of times a cluster attracts a pixel from a test
set and a pixel from a "far away" test set (in the order inplied
by the pre-sorting of test sets). Also accumulate in ERROR the
count of this event per cluster.

(12) Count the number of times a pair from the same test set is split,
and credit to each of tne clu.ters by incrementing ERROR of each.

(13) Save the running minimuu of NERR in MIN provided the current
number of clusters is not greater than MAXCLN.

(14) Determine which cluster I has ERROR(I) maximum.

(15 Tentatively reassign test pixels assigned to class I; however,
if any test pixel J is assigned more than IDIAMP away, execute (17).

(16) Now dummy eliminate class I, set IDIAMP = IDIAMP-ND, and decrement
the running number of clusters. If this number is less than or
equal to MINCLN, execute (18). (Similar logic implements
exactly so many clusters.) Otherwise execute step (10).

(17) The biased distance is ID; set IDIAMP = (IDIAMP/3)*2 + ID/3 + ND
and replace the mean in question by the (far away) test pixel.
Replace the error counter here by half its former value and
repeat step (14).

(18) Now actually eliminate the clusters to the minimum NERR (the
earlier eliminations were only dummies), and again call COLAPS to

move means to the beginning of MEAN. The number of clusters is
now NFCLUS. Exit.

Program Variables

CHKIO SYSTEM SUBROUTINE
CLASS(NP) INTEGER ARRAY The class a test pixel is nearest.
COLAPS SUBROUTINE Moves the vectors in MEAN to start,

eliminating gaps.

COUNT(NPS) INTEGER ARRAY. Tne number of classifications a mean
receives.



CSAVE(NP)

DIAMIR

DUM(NP5)

ERROR(NPS)

I1,d,K,
11,12,13,14,I5

IC
ID
IDIAM

IDIAMP

IE

N

IND(1)
IPMC
IPRINT
IT
LIVING
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NUMCLU-3

INTEGER ARRAY Scratch array used to save classifications
while checking distances.

SUBROUTINE Finds biased square of diameter of starting
clusters.

INTERGER ARRAY Dummy, used to mark which are eliminated
while computing the minimum number of errors.

INTEGER ARRAY Number of errors for each cluster center;
see above.

INTEGER DO loop index.

INTEGER The classification of the first through fifth
of each test set pixel.

INTEGER The classification of a test pixel far away.
INTEGER The biased distance returned by UNCLE.

INTEGER Square of diameter (biased) of starting
cluster centars.

INTEGER Elimination protection threshold (biased by
-32768).

INTEGER Number of classifications to eliminate (a
DO loop index).

INTEGER Running current number of clusters being
tested.

INTEGER ARRAY Error indicator.

INTEGER Estimate of PPMC (see Appendix A).
INTEGER IDIAM with bias remcved.

INTEGER Far away index.

INTEGER Current number of living clusters.

R




R At

MAXCLN
MEAN(ND,NP5)
MIN
MINCLN
MJ

MP

ND
NERR
NFCLUS
NP

NP5
NPA

NPA2
NUM(NP5)

PRINTEQ(66)
PRINTIT
PRINTP
SAVE(NPS)

SEEK

TSPXL(ND,NP)
u1cs(1)
UNCLE
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NUMCLU-4

INTEGER Maximum number of clusters sought.

INTEGER ARRAY The cluster centers.

INTEGER Running minimum number of errors found.
INTEGER Minimum number of clusters sought.

INTEGER The class with most errors during elimination.
INTEGER Error count for seeking maximum number of errors.
INTEGER Dimensionality

INTEGER Local count of number of errors each trial.
INTEGER Final number of clusters.

INTEGER Number of test pixels.

INTEGER Number of means.

INTEGER NP/4; 1/4 of the way through the set of test
pixels.

INTEGER NPA*2; 1/2 of the way.

INTEGER ARRAY Indicator to point to classes eliminated.
Used at first and last of the program.

INTEGER ARRAY Used for PRINTP I/0.
CHARACTER Used for core-to-core formated write.
SYSTEM SUBROUTINE

INTEGER ARRAY Used to save classes eliminated (tentatively)
in order.

LOGICAL Used to carry cut lcgic for exactly so many
clusters (if .TRUE.).

INTEGER ARRAY The test pixels.
INTEGER ARRAY User Information Control Block.

SUBROUTINE Finds closest MEAN with NUM # 0 to TSPXL;
distance is ID, class is I1.
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PAGE 0030 HEVLETT-P ,CKARD 321020.01.03 FORTRAN/3000 TOE, OLT 13- 1901, 9140 AR

00266 01437000 SCONTROL SECRENTSANOERASEC

00266 01638000 SUSROUYINE NUMCLUCNEAN, ND, NP3, NP, TSPXL, NFCLUS, NINCLN,
00268 0143%000 * CLASS, COUNT,ERROR.SAVE, DUN,CSAVE,VICH., IND., NUA. RAXCLN)
00266 01640000
00266 ¢1641000
00266 01642000
00266 01643000
00266 01444000
00266 01§435000

PARENT PROGFAN: AAIN
DAVUGHTIER PROGRANS: UNCLE.COLAPS.DIANTR

~~~PARANETERS IN NUNCLU---

002€€ 01844000 CLASS -~ INTEGERe¢2 VECTOR USED YO STORE THE CLUSTER
0026€ 01647000 TO UNICH A TEST PIXEL (IN TSPXL ) 1S
00266 01648000 ASSIGNED.

00266 01649000
00266 016350000
00266 01631000
00266 01632000
00it6 01653000
0CicE 01434000
0Cies ©1633000
0036& 01696000
0C266 01637000
002€6 01638000
0C266 01639000
00266 01660000
00266 01681000
00266 01662000
00266 01663000
00266 01654000
00i€6 01663000
0C268 01666000
022¢% 01647002
00266 01668000
00266 01669000
00266 ©1670000
0C2€¢ 01671000
00266 01672000
0c2¢6 01673000
00268 01674000
00Z€8 01679000
62268 ©1676000
072¢¢ oYETTO0Y
00266 01678000
0026¢ 01679000
00268 01680000
0CiEE 01691000
0C266 01682000
002€8 01683000
9C2€E 61684000
[ ] ¥ 1 “1693%00
2¢ase 01636000
ocdec 01687000
0caes C1698002
0U266 01699000
00266 01690000
00268 01891000
00268 01492000
0026¢ 01493000

COUNT -- INTEGER*2 VECTOR USED TO VALLY THE WUROER
OF TINES A TEST FIXEL IS ASSIGNED VO
EACH CLASS CIR  NEAN )

ERROP -- INTEGERe2 VECTOR USED TO ESTYINATE THE
RELATIVE PERFORAANCE OF ERCH CLUSTER
Ve ALL THE OTHERS. MOTE

ERRORCK) IS) INCREASED BY t WHEN
CLUSTER K IS INVOLVED IN SPLITTING
A PAIR FROM THE SANE PATCH:

INCREASED BY 1 WVHEN
CLUSTER K ATIRACTS A PALIR FRON
DIFFERENT REAL CLASSES.

AT EATH ELININATION CYCLE, THE CLUSTER WITH ERROR RELATIVELY
LAPGEST 1S ELIMINATED) THME AFFECT OF THIS IS
THAT A CLUSTER SURVIVES IF 1T

C(R) ONES NOT SPLIT PAIRS
FROR THE SANE PATCH

(8> OOES SPLIY PAIRS FRON
DIFFERENT PATCHES.

SAVE -- INTEGER*2 VECTOR USED TO STORE THE ORDER
IN WHICH CLUSTERS ARE 7O BE ELININATED
ONCE THEIR NURBER IS DETERMINED.

DUN -- INTEGEFe2 VECTOR USED TO NARK CLUSTERS
VHICH VERE ELININATED IN THNE INITIAL
ELININATION CYCLE PRIOR TO THELR
RCTUAL ELIRINATION.

CEAYE -- TERMPORDRY YECTOR USED TN SAVE CERTAIN CLASSIFICATIONS
WHILE THE ENTIRE SET 1S BE!NG CHECKED FOR ACCURACY.

LIVING -- FATALETER TARYING THE LURRENT NUNBER
OF " LUSTERS

NERF -~ THE NUNBEF OF TEST PIXEL PAIRS WNICH
AFE SPLLT PLUS THE NURBEP OF CIFFERENT
FAIRS wHitH ARL JOINEC DURING A CYCLE

ﬂﬂl‘lﬂﬂnﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
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PAGE 0051

00266 01¢94000
00268 01699000
002868 01696000
00266 01697000
00246 01690000
00268 01699000
00266 ©1700000
00268 01701000
0C¢26¢ 01702000
0026¢ 01703000
00266 01704000
00266 01703000
00266 01706000
00266 01707000
0026t 01708000
06266 01709000
00266 01710000
00266 01711000
90266 01712000
00266 01713000
0036¢ 01714000
0c266 01713000
00266 01716000
0026¢ 01717000
00248 01718000
0c266 01719000
00266 01720000
00266 01721000
00266 01722000
00270 01723000
00279 01724000
00301 01723000
00301 01726000
00301 01727000
oo3er  o01728000
0030 01729000
003tT 01730000
0C340 01731000
00370 01732000
00413 01733000
00417 01734000
0042¢ 01739002
ooasc 01736000
00432 01737000
004%7 01739000
00s8c? 017319000
0 0T2¢ C174000
06326 ¢1741000
90326 01742000
00327 01743000
00327 01744000
00317 ol174300¢
00%17 01746000
20932 01747000
00682 1740000
00627 o0174900¢

0082y

01730000

NORCLY

AN NNN

c
¢

aMme
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OF POOR QUALITY

RINCLN =- THE NININUN NUNSER OF CLUSTERS SOUGHNT.
IF MINCLN IS NEGATIVE, EXACTLY -~RINCLN
CLUSTERS ARRE SOUGHT (RATHER THAN.GE.)

AAXCLN =- THE NAYXIRUR MUNKBER OF CLUSTERS SOUGHT CIN NUNCLU)
(W THE CUPPENT VERSION, MAXCLN = 90,

ALTHOUGH IT COULD EASILY BE MADE A PROGRAN PARANETER.

SEEX -- A FLAG TO SVITCN BETUEEN EXAITLY AND . GE
AINCLN CLUSTERS.

(D1AY -~ THE SQUARE OF THE DIAMETER OF THE STARTING CLUSTER SEY

IOIARP -~ AN ELININATION PROTECTION THRESHOLD UMICH PREVENTS

THE LOSS OF CLUSTERS NEEDFD FOR THE REASONAILE CLASS-

IFICATION NF SONRE TEST PIXELS.
NIN -~ RUNNING RINIMUR NURBER OF ERRORS.
NIN -~ MURBER OF CLUSTERS VITH HMIN ERRORS.

INTECERSZ TEPXLCND, NP ), REANCND, NP S ), NUNCHPI Y. CLASS(NP)
® ,COUNTCNPS), ERRORCNPI), SAVECHPS) , DUNCNPS ), CSAVECNP)
¢ ,PRINTED(ES). VICOC1), IND( &)Y
LOGICAL SEEK
CHRPACTERST2 PRINTIY
CQULIVALENCECPRINTIT,PRINTER)
AINCLN = MINCLN
00 111 1 = 1,NPS

1111 NURC L) = ¢

THLIS SEGRENT FOLLOVS ORDERS RE HOU MANY CLUSTERS ARE REQUIRED

SEEK = FALSE.
IF CRINCLN. LT . 0) GO TO 9¢
IF CRINCLN.LT 2. 0F MINCLN GT 100> NINCLN = 3
97 URITECFRINTIT.®O) AINCLN
CALL PRINTPCUICB.IND, 1, PRINTER, 42,¢,0,0,0,0,0,0,0)
IF CINOCE). LT 0) CALL CHKIO(UICEB, IND,1,0,0,0,1200)
G0 10 93
96 RIRCLN = -AINCLN
IF CRINCLN.GT 100 OR RIMCLN LT.2) WRINCLN 13
SEEX » TRUE
WRITE(PRINTIT,%4) NINCLN
CALL PPINTPCUTICD.IND,1.PRINTED,32,0,0,0,0.9,0,0,0)
IF CINDCLY LY &) CALL CHXIOCUICA, IND,1,0.0.0,1300)
8 FOFDAT: " EYRCTLY' .19, CLUSTERS SOUGHT ')
98 FORNAT( " PININUN HUFEER OF CLUSTERS SOUCGHT:’.L])
98 WINCLN = AINCLN-1

AAXCLN = 99 SEPILIINANCLN HOV R PROGRAR PARRAGsccsensveee

PRINT SYAPTING COMOITIONS.
WRITECFRINTIT.100) NPS. NP
CALL PRINTPCUYICS.IND,. L. PRINTED, 47.0.0,0,0,0,¢,0,0)
tF CINOCP Y. LT O0) CALL CHKIOCUICH, IND.1.0.0,0,1400)

100 FOPRATC" EYRPT WITH' ,14.° CLUSTERS, ". !5, TESTY POINTS

'y
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PACE 0032 NUNCLY

00623 01731000 C CLEAR A COUNTER OF THE NUNBER OF TINRES A CLVSTER 183 NIT

00623 01732000 C @Y A TEST PIXEL IN THE INITIAL CLASSIFICATION.

00623 01733000 00 2 I = L.,0PY

00632 01734000 2 COUNTCI) = o

0083¢ 01733000 C

0CETE 01736000 C CLASSIFY AND COUNT TNE CLASSIFICATION OF EVERY S-TH TESY PIXEL.
0063¢ 01737000 C

0063€¢ 01738000 C VERSEON 11 USES AS STARTING CLUSTERS PATUN CENTERS FRON PATCHES
00636 01739000 C CONTAINING 9 OR RMORE PIXELS. TNIS REANS TNE TINE SPENT IN NURCLY
00636 01760003 C IS OCNPoed),

00636 01761000 C

00834 0©1762000 20 1 1 = 1,NP.3

9CE4Y 01763000 CALL UNCLECTSPXLCT, 1), REAN.ND . NP3, 11.RUN.10)

0CeEl  Ci764000 COQUNTCI1) = COURTLTIL)I®}

0C66S 01763000 CLASSCI) = 1}

00670 01766000 CALL UNCLECTSPXLCI, I04) . REAN,ND . NP3, 11, NUN, 1D)

o707 0.787000 COUNTCII) = COUNTC L)}

00713 01760000 1 CLASSCI46) = 11

00721 0126%000 C

oc?iy 01770000 C LIVING IS UNE TERPORARY NUNDER OF LIVING CLUSTERS

00°21 01771000 LIVING = NP3

00722 01772000 00 31 = 1,03

0oTIC 01773000 IF CCOUNTCI). GV .0) G0 TO0 3

00741 vi774000 C

00741 01773000 C ELININATE B CLUSTER TO VNICH NOTHNING T8 ASSICNED.

0741 01778000 HURCE) = o

0748 01277000 LIVING = LIVING-1

0749 01778000 3 conTINUE

¢creac o177%9000 C
0C78¢ 01780000 C REPORT NOV NANY CLUSTERS UE START ¥ITH

00746 01781000 URITECPRINTIT, 301) LIVING

00767 o1T82000 101 FORAATC' ‘414, CLUSTERS NAVE WON VOID ASSICHRENTS. ‘)
00TET O©O1T83000 CALL PRINTPCULICB.IND.L.PRINVER.43,0.:0,0.0,0,0.,0.0)
®1017 01794000 IF CINDC1) . LT . ©) CALL CHKIOCUICD -IND.1.,0.0,0.1300"
01042 01283000 €

01042 OI796000 C WE ARZ AIMING FOR ND NORE THAN 106 TO SAVE TIWNE IN TNE BAD LOCGIC
01062 01787000 IF CLIVING LE 100> CO YO 7

01080 01280000 00 ¢ (€ = 1,100

0102 017%%v0Q 00 3 I = 1,NPY

Q10635 1790009 IF CCOUMTC(I). NE . IE) CO TO 3

QL1067 o1r%1000 C

01087 01792000 C QCLIAININATE AN UNPOPULAR CLASS AND.

01067 01793000 LIVING = LIVING-1

C1CT¢ 01794000 NUNCTI) = 0

eL1e?r 01798000 ¢
01073 01796000 L .. RECLASSIFY PIXELS 'N THAT CLASS.

01073 ©179700¢ 00 6 4 = 1,NP.3

01100 017990600 IF CCLASSCI) . NE. 1) GO TO 99

01102 01799000 CALL URCLECTSPXLCI,J). NEAN. ND. NPT, 11 . NUN.ID)
01123 01900000 cLasscy) « 11

0112 o18v1000 COUNTCIL) = COUNTIL1)+)

01182 01802000 9% IF CCLASS(J*4) NE. 1) GO TO &

orie1 C1g8o03000 TALL UNCLECTSPXLCL,Jo&), REAN.NO, NPS,. 1. M0UN, 1D
Q1160 (1804000 CLASS(Jed v I

0116 c1%0300 COINTOIE Y = COUNTI T e}

®1171 018068000 & CONTINUE

01173 o180700¢ C

Js—————
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SEE IF WE ARE FINISHED.

IF CLIVING.LE. 100> GO TQ 7
S CHNTINVE
4 CORTINGE

7 CALL COLAPSCNP S, NEAN. HUR. D)
TF CAINCLN.GT . LIVIKG) CO TO 907

CSTINATE THE DIAPMCTER OF THE STARTING SET OF CLUSTER CENTERS
CALL DIANTRC(REAN. . ND. . LIVING . IDZAN)

PRINT THE ODIANETER.
(PRINT = [DIAM4Z2767¢1
TF CIPRINT.LT ) IPRINT = 32767
VRITECPRINTIT.S1) IPRINT
91 FORAATC’ SOUARE OF OIANETER OF STARTING CLUSTERS: ., 16)
COLL PRINTPCUTICH,IND, 1, FRINTES.51.0,0,0.0.0,0.0,0)
IF CINDCI). LT O) CALL CHKIO(VICH. IND.1,0,0,0,1366)

SET THRESNOLD FOR ELININATION PROTECTION
IOLANP = IPRINT/NRINCLM/4-32760

INITIALIZE & DURRY VECTOR OF POINTERS TO ELININATED CLUSTERS.
P8 8 I = 1.LIVING
8 QUNCE) = 1

PREPAPE TU COUNT ERRORS
IN = LIVING
RIN » 32767

NPA IS 1/4 OF THRE WAY ON OFCE SIDE OF THE POINT UE ARLE VORKING ONM
AFA = NP/4

NPAZ IS 1/2 IN THT ORODER IRAPLIED OV THE RESULY OF SORT.
NPRZ = NPAS2

CLASSIFY ALL TEST POINTS PRIOR TO GETTING STARTED.
00 9 1 = 1.nP
CALL UMCLECTSPXLCL, 1), REAN,ND, LIVING.11,0UN,ID)
9 CLASSCT) = It

COOPORUIECINORIRNNONRRDESIOPIBRONIORRI0QRTINNORPOENRO00OR0C0RRRRIOOUNISTS

PAGE 0035 NURCLY
01172 01800000 ¢
01172 01809000
oL17T o1Inl0000
1200 01811000
01201 01812000 €
01201 01013080
01210 01814000
0t21S 01819000 C
01219 01818000 C
*1213 01817000
01223 ol19180600 C
01222 01819000 C
01227 01820000
01227 01021000
01236 01822600
01292 01823000
01237 01824000
01303 01023000
01370 01826000 C
01370 01927000 €
01330 01828000
01343 01829000 C
01343 01830000 C
01349 01831000
01332 ¢1832000
01336 01833000 C
0133¢ 01834000 C
01338 01833000
o1360 01836000
01362 01837000 ¢
013¢2 01838000 C
01361 019839000
1363 01840000 C
01383 01841000 C
Q1262 01382000
1370 01043000 C
01370 oOLtseande €
01370 01843000
01373 01846000
ol41Y 01947000
01417 01849000
01417 01849000 C
01417 01830000 C
01417 01851000 C
01417 01832000 ¢
01417 01933000
01421 01834000
1436 01893000
01433 01836000 C
01432 01837000 C
01437 01038000
01437 0198983000 C
1437 01860000 C
01437 01063000
01462 O1RR2voOV
01447 01443000

1494

01964000

REFERENCE POINT FOR MAIN LOOP.

INITIALIZE LOCAL COUNT OF ERRORS.
11 NERE = O

00 40 t = 1,L1VIAC
40 ERROR(I) » 0

€0 THPU PATCMES (1. E. THRY TEST PIXELS 1IN SETS OF 3)
00 3% 1 ~« §.,N7.9

CRAG & TEST SET NF 3 FROR THE SANE PATCH.
11 = CLASECD)

12 = CLASSCT41)

13 = CLASSC142)

16 = CLASSC T3>



PACE 0034

010638080
01866000
ciserooo
01969000
01389000
01870000
01871000
01972000
01873000
oL874000
01873000
01876000
Q1877000
01870000
01879000
o187 " 000
18,1000
0199200
. 983000
01394000
01989000
Q1886000
Q1897000
01898000
01899000
¢1890000
01991000
01892000
01993000
01894000
01893000
01994000
01897000
01498000
01899000
01900000
01901000
01902000
01703000
01904000
01903000
o1%0£ 200
019¢7.00
01908000
01909000
01910000
01911000
01912000
¢19213000
01914000
91713000
01714000
1917000
01910008
vieiv000
01920000
c1921000

WRCLY

Mano
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13 = CLASSCI0)

RAFC AN IRDEX IN1Q THE TEST PIKELS WUNICH SHOULD BE FaR ENOVCH
AUAY TO BE IN A DIFFERENT REAL CLASS C(ALTNOUCN THIS CANNGY OF
CUARANTFED). THER CHECK IF IT IS OFF THE ARRAY.

17 o f4NPA

IF CIT.CT . NP) (T = [-WPA2

TRIS SEGRENT COUNTS THE NUNBER OF VIRES A CLUSTER ATTRACTS »
PIXEL F23n ONE OF THE TEST SETS AFD FROAN ONE IN YHE FAR AVARY
CLASS. LacY ONE CLUSTER IS INVOLVED IN TNEIS TYPE OF ERROR.
90 76 K = 1,2
(C = CLASSCLIT)
tF CIC. NE 11) GO TO 71
ERRONCLL) = EPRORC1IL )1
RERR = NERR*)L
r1 IF CIC . NE.I2) %0 TO r2
ERRONCI2) = ERRORC 1201
HERR = NCRR¢Q
72 IF CIC . NE.13) GO YO 73
CREOR(1I3) = ERROCCI3)])
NERR = NERR+Y
T3 IF CIC.NE.14) GO TO 74
EREORCLI4) & ERRORCI4)]
NERR = NERRQ
T4 1F CIC RE.13) GO TO 73
ERRORCIS) = ERRORCIII
NERR = NERReQ

RAKE ANOTHER INDEX FAR AVAY.
73 17 o 1-0PA

IF CLY . LE. Q) 1T = LonpPA2
76 CONTINUE

THIS SEGRENT COUNTS THE NURBER OF SARE PATCH -- DIFFERERT
CLUSTER ERRORS. EACN CRAOR (S CREDITED TO0 TWO CLUSTERS
SINCE WE CAN OF CONFIDENT THAT SARE PATCH SARPLES ARE
FRON THE SARE REAL CLASS.

IF (11.€0.12) GO0 TO 42

NEFP = NERRe2

EREOR( 1) = ERRORCIY )Y

ERROR(12) = ERMROR(I2)41
42 IF C11 €0 .13; GO TO 44

NERR = NERR+2

ERRORC L1 ) = EPRORCIL)¢)

ERPONCLI3) o ERRORC1II)Y
44 [F CI1.C€0.14) GO TO 46

NERR = NERR+Q

EREORCIL) o EPRORCIN)OC

ERPOR(TI4)Y o EFRORC T4
46 1F CI1 €0 13> GO TO 48

NERR = WERR2

CREORC L1 « ERROR(TL 0

o s AR
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PAGE 0093 NURCLY
'
1667 01922000 ERRORCIS) = ERROR(19)e1 i
1673 01923000 49 IF C(12.€0.13) GO YU 3¢ {
OLETT? 01924000 NERR = NERR+2
1761 01923000 CREORC 12) = CRRORC12)e)
01702 01926000 ERFORCIIY o ZRRORC1I)INY
L1711 01927000 S0 IF (12 €0.14) GO 1O 32
0TI 01720000 NERR = NERR+Z

EREORC12) » ERRORCI2)01
ERRORL J4) = ERRORC 144}

MrIT 019290
01721 01930000

72T o193100¢ 43 I1F (12 €0.19) GO 1O 3¢
*1731 01932000 HERR = NERR4Z

0733 01933000 ERRORC12) » ERRORC12)01
741 01934000 EREON(IS) « ERRORC19)01)
01749 01933000 98 IF C13.86.14) GO YO 3¢
1751 01936000 HERR = NERR+Z

0TI 01937040 ER"ORC1I3I) » ERRORCIT) I
01737 o1938000 ERRGR(L4) o ERROR(I4)01
0ITET 01919000 $6 IF (13.€0.13) GO TO 99
01767 01940000 NERR = NERR+2

Q1771 01901000 ERRORCIT) = ERRORCII)O1
01773 01943000 CREORC13) o ERROAC 1))
02001 01943000 98 IF (54 .€0.19) GO TO 23
02003 01944000 NERR » NERRZ

02007 01943000 ERFORCI4) = ERRORC 14}
02013 01946000 IRROMCIS) = ERRORC 1Sy 08

02017 01947000
02017 01748000
02017 01949000
02017 01930000 CET THE NEXY PATCH.
02017 01931000 293 CONTINUE

02026 01933000
02302¢ 01933000 SEE 17 ERRORS ARE LESS THAN BEFORE.

0203¢ 01934000 (F (MERR CE . AIN.OR iN.CE NAXCLE) CO TO (02

ALL CN17iTED FOR THIS PATCN .. ... ... .. e

anNn

"N

02027 01933000 ¢

02027 01936000 [ YES.. UPOATE RUNNING NIN

2027 01937000 RIN = NERR

02041 Q1930000 nin o N

92033 ¢1939%000 C

02037 01960000 C THIS SEGNENT CARRIES OUT THE LOGIC OICTATED BY THE NEED FuR
02033 01961000 C EXACTLY SO NANY CLUSTERS. C(IV JUSY GREV THIS VUAY.)

02033 01962000 102 In = [n-1

0203¢ 01963000 IF (SEEK) NIN o jNei

02041 01964000 IF CIN . LE.MINCLN) CO TO 103

02043 01965000 AP = -J2767

02047 01966000 ¢

02047 1967000 C FIND THE CLUSTER UNEITH SEENS TO CAUSE THE NOST E°RORS.
03047 01968000 PO 45 J = 1,.LIVING

0203¢ 01969000 I1F COURCJ) . EQ.0) GO TO 41

02062 01970000 TF CERRORCI . LE.NP) CO TO 61

02047 01971000 NP o ERRORC(J)

02072 01972000 LI

0207¢ 01973000 61 CONTINUE

02579 01974000 C

0207 01973000 C STACY THE INDEX OF TWIS ROST OFFENSIVE CRITTER

02073 01974000 SAVECIN) = R
02100 01977000
4210¢ 01970900

[a N ol

AND mAPE LT OCPRMEL CJF NOT DEAD)
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PAGE 0036 NRcLY

02160 ol979%¢0¢ SUNCRI) = &

02103 1980000 C RECLASSIFY ALL POINTS UNICH UERE ASSICNED TO THIS CLUSTER.
02103 01981000 C

02103 6t993090 C NOUEVER. IF A TEST PIXEL ASSICRED 1O THIS CLUSTER IS, AFTER TNE

92103 01293000 C ELINIRATION OF THIS CLUSTER., REASSICNED TO ONE NORE THAR [olakr

02103 01904000 C AUAY. CELININATE THE CLUSTER OITH NEXT FEUEST ERRORS .

02103 01993000 00 63 &t = 1.0F

02110 01906000 IF CCLASSCI) NE.NJ) GO 1O 63

02113 01987000 CALL SNCLECTSPXLCL.I) . REAR.ND.LIVING.1R.0VUN.10)

02133 €1988000 C SEE IF PISTANCE.LE. THRESHOLD

02133 019789000 EF CID.CT . IDIARP) CO T 1000

02140 01990000 C

0Z18C 01991000 C SOVE TRNIS CULASSIFICATION.

02140 01992000 CSAVECT) = 13

02143 01993000 €3 ConTINUE

02184 01994670 ICIANP = [DIARP-NO

02147 C1993000 C

03147 01996000 C VES. ALL CISTANCES ARE OK. . .

2147 01997000 C MOV ACTVUALLY CLASSIFY THE POINTS

02187 01998000 P8 &6 T =~ 1.0P

02138 o0199%000 IF CCLASSC(I) . BE.NJ) CO TO &6

02161 02000000 CLASSCT) = CSAVECT)

02168 02001000 €6 Conringe

02163 02002000 GO Yo 11

02167 02003000 C

02167 02004000 C DPON'T IAP CLASS NJ AFTER ALL

02167 02003000 1000 IN = INe}

02170 02006000 QUACRI) =

02173 o€2007000 ERRORC(N?I) = ERRORC(NI)I/2

02177 02008000 90 813 Kk = 1,N®

02208 02009000 ( 813 REANCK.RJ) = TSPXL(K, I

02221 02010000

02231 02011000 C INCR THE TARESHOLD TO INSURE WO INFIRITE LOSP.

02221 921012000 IOIARP = CIDIANP/3)82010/34N0

02231 02813000 e 7O 102

Q2232 OCZ014000 (6005080000000 0080000080800000000P00RRRINEC000EPR000CRIE0ED0E00C00000

82272 02013000 C

02233 02016000 T 1 SUPISE VUE ARE TRROUCGH NBVU.. .REPORT!

92234 02017000 103 RFTLUS » NIN

2234 02¢18000 GRITECPRINTIT.10) NFCLUS

€229% ©2019%9000 10 FORRAT( " MURSER OF CLUSTERS ', I8)

0223% 02529000 CALL PRINTPCUICE.IND. 1. PRINTED,.28.0.¢.0,0.0.0,90.0)
230T 02021000 IF CINPCI) LY €7 CALL CNEIOCUICS. IND.1.0.6.0,2000)

220 02022000 IPALC o IFIX(2S . +FLOATC(RINI/FLOAT(NF))

02382 02022100 IPRAC = [PRC*2/13

62346 02022200 C

02346 02022300 C ALLOWS FOR COUNTING ERRORS TWICE. . . JUST AN ESTIRATE.
3346 020230%0 URITECPRINTIT, 108) IPNC

02367 02024000 106 FORAATC’ ESTIRATE OF PAIR PRCt-.14.° PERCENT. ')

02367 02023000 CALL PRINTPC(UICE.IND.1.PRINTER, 39,0,0.0.90,0.0.9,0)
02417 020286000 IF CIRPC1) LT O0) CALL CHKIDCUICH, InD . 1,0.8,0.28500)

024873 02027000 NiN = Ninel

02443 02028000 LVNGCR « LIVING-1

02446 0202%00¢

02488 02030000 C ITS MARD TO SEE MOV THIS COULD NAPPEN, BUT . . .

0244¢ 02031000 IF (NIN CT.LYNGRA) R ET UR N

02460 02032000 C

-2
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PACE 097 wencLy

02460 02033000 C ACTUALLY PERFORR THE ELININATION NOS.

02460 02034000 96 62 1 = NIN.LYNGH

03487 02033000 62 RUNCSAVECL)) » &

02472 02036000 C

QI4TT 02037000 C AGAIN COLLAPEE TNE ARRAY TO ALLOV RORE EFFICIENT SEARCH.

SR472 02038000 CALL COLAPSCLEIVING., REAN ., NON. ND)
02301 02039000 RETOURMN
01303 92040000 007 NFCLUS = LIVING
e2308 02041000 RETYURN
02303 01042000 (1.

SYROOL mAP
RARE TYet STRYCTURE ADDRESS NANE TYPE
[4 281 ] SUSROWTINE cLasSS INTETER
COLAPS SUSROUTINE count INTECER
CSaveE INTECER aRRAY e-X10 .1 DIANTR
oun INTEGER ankay a-211 .1 ERROR INTEGER
1 INTEGER SIRPLE vAR @6 It INTEGER
12 INTEGER SINPLE var @+2318 13 INTEGER
14 nvEGER SIRPLE VAR @+232 13 INTEGER
1c fureEGcER SIRPLE vAR @eX7 1 INT: CER
1010 InTEGER SINPLE vaR @236 iviane INTEGER
113 INTEGER SINPLE vaAR QX111 w INTEGER
me InTEGER artay -2 .1 114 14 INTECER
retnt INTECER SIAPLE vaR @237 17 INTECER
4 INTEGER SINPLE vAR @e2x21 K INTEGER
Livime INTEGER SINPLE VAR @+230 Lyngn INTEGER
RARCLN urecer SIRPLE vAR 0-24 .,! REAN INTEGER
[ 24 ] INTECER SIAPLE VAR Qx4 NINC . INTEGER
a IRTECER SIRPLE VAR 82224 ne INTEGER
ne INTECER SIAPLE vaR @-223 .1 BER INTECER
AFcLYS InTECER SIAPLE VAR @-2x17 .1I nt INTEGER
KINCLN INTEGER SINPLE vaR @-216 .! [ 1d INFEGER
ars INTECER SIAPLE vaR @-X22 & nea INTEGER
araz InTEGER SIRPLE vaR Q4213 nun INTEGER
RURCLY SUIROUTINE PRINTES INTEGER
PRINIIY CHARACTER SIAPLE vAR @a+x3 .t PRINTP
SavE INTEGER ARRAY e-312 .1 SEEK LOCTICAL
18P xL nreGer ARRAY a-22¢ .1 vice INTECER
SRCLE SYSROGTINE

PROGRARN URIT RUNCLY COMPILED

STRUCTURE

ARRAY
AREAY

SUSROUTINE

ARRAY

sinPLE
SInPLE
SinPLE
sinrLE
SINPLE
SINPLE
SinPLE
SIRPLE
SIinPLE
SINPLE
ARRAY

SINPLE
sinPLE
SIAPLE
SIRPLE
sinPLE
SIRPLE
ARRAY

KRRRAY

yaR
VAR
L £
VAR
vYAR
AR
AR
vaR
AR
VAR

VAR
vak
AR
AR
VAR
vaRr

SUBROUTINE

SIRPLE
ARRAY

o

ADDRESS

e-X13
a-114

e-213
0ex27
Q232
[ 223 ¢
asxte
aen1s
[ 2231
[ 22831
§ex23
90233
0326
9-22¢
| L2 3¢ 4
0ex23
o222
Qex14
e-221
@ex12
¢-23

Qo4

Q220
e-2x7

-
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Parent: CLASSIFY PERPIXEL
Calls: REJECTH

PERPIXEL(PIXELS,CLUSTERS,LABELS,ND,NC,NFCLUS,REJECT ,MAXCLUS ,MASK ,NX)
Performs a per pixel classification of a line.

Method: This subroutine performs a checked per pixel classification

of multidimensional data in PIXELS to classes in CLUSTERS. Nearest
neighbor (Euclidean distance) classification is employed. However, when
the distance is too great, the classification is rejected, and (generally)
a new cluster center is added. On that event, the cluster reject thres-
holds are recomputed and this line classification is restarted. Labels
(i.e. class numbers) are written in line LABELS.

The program is straightforward with the possible exception of the
biased distances and the modification of rejection thresholds in loop 120.
A1l distances are biased by -32768; the rejection thresholds are also
biased by -32768 in REJECTH. We wish to make the test less severe than
was applied to pure pixels (the test pixels), so we logically multiply
the thresholds by 2 (which, in terms of distances, amounts to deciding
reject on 0.7 * distance between competing classes rather than 0.5 *
distance between). Thus, if r is the biased and R the logical threshold,
we have r = R - 32768, so that

2R - 32768 = 2(R+32678) - 32768
2R + 32768 .

r

Program Variables
A0 INTEGER*4 Long integer to carry out the threshold
arithmetic intermediate steps.

CLUSTERS(ND,MAXCLUS) INTEGER ARRAY The clusters.
I,J,K INTEGER DO loop index.

ICL INTEGER Class number of nearest cluster.

e e —— i i 7



IM

IS

IT

JR
LABELS(NC)
MASK

MAXCLUS

NC
ND
NFCLUS
NX

PIXELS(NC,ND)
REJECT (MAXCLUS)
REJECTH

INTEGER
INTEGER
INTEGER
INTEGER
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PERPIXEL-2

Distance to nearest cluster
Accumulator for computing distance.
Temporary for computing distance.

Reject threshold of current class.

INTEGER ARRAY The classification.

LOGICAL

If .TRUE., a value 0 in channel 1 is used

as a mask (i.e. not data), and the label 99 is
stored in LABELS.

INTEGER

Maximum number of clusters (current value,

set in MAIN, is 98).

INTEGER
INTEGER
INTEGER
INTEGER

Number of samples per line.
Dimensionality.
Current number of clusters.

Actual number of samples per line (approximately

NC, but often a little less). NC is used to dimension
things; NX may vary from one call to the next.

INTEGER ARRAY One line of data.

INTEGER ARRAY The reject thresholds.

SUBROUTINE Calculates REJECT.
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OF FCC: QUAlTY

PACE 9n09 HEVLETT-PACKAFD 321020 .0t .03 FORTRAN/ 3000 TUE., OCT 13, 198). 9:36 A0

00011 00316000 SCONTFOL SECNENT=ANOEBASEC

000tl 00317000 SUSROUTINE PERPIXELC(PIXELS.CLUSTERS, LABELS.ND.MC. NFCLUS.
00081 00318000 ¢ REJECT.AAXRCLYS, NASK, X

00011 00319600 LOGICAL NASK

00011 00320000 INTECER®*4 RO

00011 00321000 INTEGER®2 PIXELSCNC,.MD), CLUSTERSCND, NAXCLUS ). LABELS(NT).
i01It 00322000 ¢ REJECTCNAXCLUS)

eccrt 00323000 130 00 10 § = [.MX

cceld 00324000 [F { NQGY PMASK GO TO 30

0C02a 00323000 IF CPIXELSCI. 1) NE.O) GO TO SO
2z 00328000 1y = 99

000Ts 00327000 &g 10 10

06¢3T 00328000 30 CONTINUE

0CCII 00329000 In = 33767

0CCY7T Q0330000 1L = ¢

oocet 00331000 00 30 J = J.NFCLUS

0ccas 00332000 1S = -32760

0CeIS 00333000 JR = REJECTCY)

00CE0 00334000 00 20 ¢k = 1.N0

0CCES  C033IJ000 IF (IS RE.JR) CO TO 3O

ocerT 00336000 17 ¢ PIXELSCI.K)-CLUSTERSC(K.J)
0C112 00337000 1S = [SelTely

0C11€ 00338000 IF CIS . GE JR) GO TO 30

fC127 ©€0339009 20 CONTINUE

0C128 00380000 If CIn LE.IS) GO TO Yo

0C1IYC 09341000 in = IS

0Ci2: C0342000 | {4 G )

0ct17s 003143000 30 CONTINUE

P¢1Ye Q0344000 IF CICL . €EQ.0> GO TO 100

0Cisat 00343000 10 LABELSCI) = ICL

0L31%C 00346000 RETYUYRN

001%1 00387000 100 IF {NFCLUS.GE. MAXCLYS) GO T0 10
QC1%Y Q0388000 NFCLUS = NFCLUS+)

0C136 00349000 IcL = NFCLUS

dr1€c 07330009 00 110 X = 1,ND

0C1€T ©2331000 110 CLYUSTERSCK,ICL) = PIXELSCI.K)
0CzCg 00332000 CALL REJECTH{CLUSTERS ,HD . REJECT,NFCLUS, NAXCLUS)
0C¢z12 ©0333000 00 120 K = I.NFCLUS

0C217T  (13J4000 RO = REJECT(K)

002id 00333000 A0 = Q0e2432768

0C s 00I36000 IF a0 AT 16030) 30 = 16000
€Ci8€¢ 00337000 12 REJECT Kk = an

9r2%T 00338000 G0 T0 130

Dege? 0339000 EnNe

SYréciL naf

HAFE TiFE SIRUCTURE AODRESS NARE TYPE STRUCTURE ADDRESS
(14 INTEGEF +3  SINFLL vaF  DO+X14 CLUSTERS INTEGER ARRAY 0-214 .1
1 INTEGER SINELF Vak D34 1cL IMTEGER SINFLE vaP Q+¢2%)13

i INTEGES SIAFLE VR 0+%6 Is INTECER SINPLE VAR @e210

i In®nee SINFLE vafk Q4+211 4 INTEGER SIAPLE VAR Qex?

e INTEGER SINFLE VAR 04133 X INTEGER SINPLE VAR @+t
LAOELY INTEGES AEF LY n-13 .1 mas LOGICAL SINPLE vaP 0-23 .1
RAYCLUS INTEGER SINFLE vaR Q-%6 I ne INTECER SIRPLE VAR @-Xx11 .J
L1Y INTECER SIRFLE vl @-212 .1 NRCLUS INTECER SINPLE VAR  @0-%10 .1
N INTEGER SIMFLE var 0-4 1] PERPIXEL SUBRQUTINE

rIYELS INTEGEP APRAY e-%t% .1 REVECT INTEGER ARRAY -7 .1
REJECTH SUBROUTINE

PRGEGZA™ UNIT PERFINEL COSFILE(
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Parents: MOREQUES, PERPIXEL REJECTH

REJECTH(CLUSTERS ,ND,REJFCT,NFCLUS ,MAXCLUS)

This subroutine determines the cluster-dependent classification rejection
thresholds.

Method: Using a bias of -32768, the inter-cluster squared distance from
cluster I to cluster J is maximized. The maximum over J, divided by four,
is the classification rejection threshold for cluster I, and is stored in
REJECT(I). To minimize round-off error, the division by four is carried
out in two stages; the second accounts for the bias: R =D - 32768, so
D/2 - 32768 = R/2 - 16384 should be stored as the twice halved square of
distance.

Program Variables
CLUSTERS(ND,MAXCLUS) Integer ARRAY The cluster centers.

1,J,K, INTEGER DO ioop index.

IM,IS,IT INTEGER Used in calculation and maximization of
distances.

MAXCLUS INTEGER Maximum number of clusters.

ND INTEGER Dimensionality

NFCLUS INTEGER Actual number of clusters.

REJECT(MAXCLUS) INTEGER ARRAY Rejection thresholds.

P
RECEDING PAGE BLANK NOT FiLmep
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121 AGE |5
OF POOR QUALITY

PACE o023 HEVLETT-PACKARD 321020.051.03 FORTRAK/ 3000 TUE, OCT 13, 1961, 9137 a0

90006 00732000 SCONTROL SECHENTAROEPAHSEC

90008 00733000 SUBROUTINE REJECTHCCLUSTERS, NO, REJECT, NFCLUS,RAXCLUS)
90008 00734000 INTEGCERG2 CLUSTERSCMD,MAXCLUS ), REJECTINAXCLUS)
00006 00733000 00 10 1 = 1.NFCLUS

00013 00736000 C
90013 00737000 C FIND THE CRITTER THE CREAT™ST DISTANCE AVUAY
70013 00738000 C

00013 00739000 in = -327¢8
000221 00760000 00 20 J = 1,.NFCLUS
00027 o0761000 IF C1.£@.J) €0 TO 20
00033 00762000 C
00033 00763000 C FINO DISTC(].J)e02
00033 00764000 C
00833 00763000 1$ = -327¢8
00044 00766000 00 30 K = 1. %P
00031 00767000 It = (CLUSTERSC(K.J)-CLUSTERS(K,1))/2
00067 00758000 30 IS = MINCCIGING, 182701 T)
00100 00769000 IfF C1S.LE.IN) GO TO 20
00108 00770000 in =13
00107 00771000 20 CONTINUE
00110 00772000 REJIFCTCL) = TN/72-16384
00119 00773000 10 CONTIR'E
00116 00774000 RETUERN
00120 00773000 Eno
SYNOOL maP
RARE TYee STRUCTURE AODRESS NARE TYPE
CLUSTERS INTEG:: ARRAY a-x10 ,1 1 INTECGER
s INTEGER SIRPLE VAR Qx4 18 INTEGER
1t INTEGER SINPLE VAR Q¢3%7 J INTEGER
K Inrecer SINPLE VAR Qo0 RARCLUS INTEGER
no INTECER SINPLE vaR @-x7 .1 HFCLUS INTEGER
REJECY - mmrecer ARRAY e-x6 I REJECTH

PROGRAN UNIT RICJECTH CORPILED

PRECEDING Fihe Buang NOT FILIMED

STRUCTURE

SINPLE VAR
SIAPLE VAR
SINPLE vAR
SINPLE VAR
SINPLE vAR
SUBROVUTINE

[ X4 %]
[ 22 1)
[ 12 1 ]
e-%¢
e-1s

o1
'!
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Parent: MAIN SETSYM
SETSYM(SYMBOL)
Sets SYMBOL to the appropriate character set for display in MAPP.

Method: Because of the restrictions of HP FORTRAN-SEGMENTER and of
IDIMS, this usually straightforward task is 14 lines long. The result
is to set SYMBOL(1) equal to a blank and SYMBOL(2) to SYMBOL(59)
(printable) ASCII characters between 33 and 90 (decimal).

Program Variables

cc(2) CHARACTER*1 ARRAY Equivalenced to IC.

IC INTEGER Used to transfer ASCII binary to characters.
J INTEGER DO loop index.

NOX INTEGER Index into SYMBOL.

SYMBO..(59) CHARACTER*1 ARRAY The symbol set.

PRECEDING PAGE BLANK NOT FILMED
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OF POOR QUALITY

PRGE 0214 NEVLETT-FACKARD 321020.01.03 FORTRAN/ 2000 T<, OCT 13, 1981, 9137 AR

00CIT 00454000 SCONTPOL SECrENT=ANOEBASEC

00C1Y 0Q04é300n SUSROUTINE SETSYH. SYNBOL )
eIt 02454000 CHIFRCTEFt: B T CYRTIRLAS2D
0CC1T (2867000 EGUIVALENCE (CCC1?,1C)
0CCIT ¢3168000 NOY = ¢
0CC17T Coe6%000 1¢ = 32
0CC21 99279000 SYREOLCL1 = CC(2)
eCLTy 02471000 I 00 20 3 & 33,90
0CCYE 49872000 c 9
ercas Q0373000 SYNEOLINOX) = CC(2)
0CCes 0874000 NOY s NOX#L
QCCT] 02473000 IF -HOX GY 3% R E T YURN
QOCITe 2I4T4000 i LONTINUE
¢ 8772000 63 '8 10
42478000 END
CYHECL “AP
NenE TYPE STRUCTURE ADDRESS HANE TYPE STRUCTURE ADDRESS
ce CHARRCTEFR AFRAY 0422 .1 Ic INTEGER SINPLE VAR Qe¢x) 1
4 INTEGER SINFLE VAR QDexy HOX INTEGER SINPLE vAR QX3
SETeY M SUBROUTINE SYNBOL CHRRACTER ARRAY e-x4 .1

FECCEAM UMET CEYSYN CONFILED
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Parent: MSORT, SORT SHELL
SHELL(KEY, INDEX,NUMBER)

Sorts KEY into increasing order; the elements of K[V are not interchanged.
Rather, the array INDEX is permuted so that KEY(IND%Y(I)) < KEY(INDEX(J))
when I < J.

Method: See Shell, D. L., A high speed sorting »royram, Comm. ACM 2 (1959),
30-32.

Program Variables
INDEX(NUMBER) INTEGER ARRAY On entry, INDEX(I) = I; on exit,
INDEX is permuted.

KEY(NUMBER) INTEGER ARRAY The list to be sorted.
NUMBER INTEGER The number of items in the 1list.
I,IM,IT,J,K,M INTEGER Internal variables

-
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ocent  o09e12000
0CLIe 08100
0T 12414000
0000% ©0A19000
econ?  coatéo0n
QLT  0V17000
94LTeT 01458002
VLN 460819000
00 0.T 4082003
0CCaT 090421000
¢ 2% 532208
Qreng 5823000
Qan?  A)E24000)
oren® (2123000
06:%2 2382600
0CCLT 094827000
eriils Co428000
07Cct1é 00829000
0¢Cal 00410000
0ChdT 00831900
0CCaT  ©aaYITO0
¢ 00433000
0rcas 00474002
64T 00 393000
0C. 47 C¢o836000
0Cceg 00827009
04T onalROeON
0CcEl 00 83%000
Qrcé;  COE40007
O0Ctie 0841000
OLCET NI442000
SYPBCL nAP
L34 3
1
[ 1.14 &3
L
REY
Li%d 444
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NEVLETT-FACKA?D 311020.01.03 FORTRAN/JO00 TeE. oCT 13,

ICONTPOL SEGMENTeANROEDASEC

SUEFOUTINE SNELLCEEY, INOFX . NUNDER )

PRIGEAT UMIT SWELL COMFILED

C FeFfEU' FRIGCFAN: SOKY
I EGEFR KEY(NURBER) . I NDEXRCNUABER)
L
€ FAST S90) ROUTINE: 17 18 ASSUNED THAT INPEXCR) = K ON ENTRY
C Ok ATV, PEVCINDEXNCT)) LE KEYCIMOEXCI®1)) , .1 = 1,NUNBER-1.
£
r PEFEFENCE:
.
€ SMELL. D L., R MICH SPEED SORTING PROCEODURE, COMA
C RN, TC18%9) ., 3032
N = NURBER
to 8 ¢ NA/2
IF (M EO0 C) RETU R K
K v NURBER-N
P |
a1 =3
TE I . Jeft
IF CKEZCINDEX1)) LE KEYCINOENCINDY)Y) GO TO 40
11 ¢« INDEXC))
INREYCLY = INDEXCIND
tueExcin « 11t
1= t-r
I (1 GE 1, GO 10 30
49 3 = Je1
IF 7! G K3 GO YO Jo
60 10 20
[ 1,14
1YPeE STRUCTURE ADDRES S NABE
INTEGES SIRFLE Ve® Qe¢X2 in
INTECES RERAY a-28 .1t 17
INTEGER SINFLE VvoF Q¢4 K
INTEGEr AFRAY 0-18 . 1 n
Inrgcer SINFLE VAR 90-24 R SHELL
e B U CLowand

9:3¢6 o0

1YPE

INTECER
INTEGED
INTECER
INTECER

$TRUCTURE

SIRPLE Vak
SINPLE vaRr
SINPLE VYaR
SIRPLE vaR
SUSROYTINE

9233
013
geXx7
[ X1}
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Parent: MAIN SORT
Calls:  SHELL

SORT(TSPXL ,DUMMY , INDEX ,ND,NP ,NPS)

Sorts TSPXL in increasing order of the sum of odd channels of the first
test pixel in each test set. Sets are kept together.

Method: Firct the sums of odd bands of the first test pixel in each test
set are accumulated, and an index into the sets is formed so that INDEX(I)

= I. Then SHELL is called. On return from SHELL, the test sets are
reordered by the permutation of INDEX induced by SHELL. The actual sets are
now switched in place.

Program Variables

DUMMY (NP5 ) INTEGER ARRAY Used to accumulate sums in odd bands of
the first element of each test set, and then as a
temporary vector while TSPXL is being reordered.

I INTEGER DO loop index.

INDEX(NP5) INTEGER ARRAY The pointer array, used by SHELL to
indicate order of DUMMY.

J INTEGER DO looo index

K INTEGER DO loop index.

L INTEGER DO loop index; note: the index into TSPXL is

I *5+ | -5, where I is the test set number and L is
the number, ¥ = 1,...,NP5, L = 1,...,5.

ND INTEGER Dimensionality of TSPXL.

NP INTEGER Number of test pixels.

NP5 INTEGER Number of trst sets (= NP/5).

SHELL SUBROUTINE Sorts vector in increasing order.
TSPXL(ND,NP) INTEGER ARRAY Test pixels, organized as vectors, then

sets, then count of sets, to be reordered by increasing

sum of odd bands.
um of odd bands PRECEDING PAGE BLANK NOT FILMED
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PAGE ot NEVLETV-PACTArD 321020 01.90) FORTRAN/JO00 TUE, OCT 13, 1901, %136 AN

00010 00377000 SCONTRIL SECRENT=AROEDASEC

90016 Q0378000 SUSROUTINE SORICTSPXL,.DUNAY, INDEX.ND, NP, HPY)
00010 00179060
00010 00380000
0ce1¢ 0031000
socle 00382000
Wl 00303000 INTECERY2 TSPXLCND. NP ), DURRYC NP ), INDEXINPS)

FAFENT PROGRAN: RAIN
DAUSHIER PROGRARY  SHELL

e LN o IR

0¢c10 00384000 C

0Ge30 00393000 C  THIS SUBROUTIHE SORTS TSPXL (NTO INCREASING ORDER

00010 00394000 T OM SUT OF 00O CHANNELS ~ = AVERAGE BRIGCHINESS?)

00ote Co3aT00e

6CotC 00198000 € PLACE TME AYERAGE DPIGHNINESS OF TESY PINEL ] IR DUNBY(K)
9GO1C 07399080 € VNERE 1 ¢ 1e38(K-1) THE BRICHINESS 18 ASSUNED 10 SE IN 000
00610 00290000 C CHANNELS A LA KAUTR-THORAS OR OTHER.

00010 00391000 K e

90012 00322000 00 1 1 = 1,u0.3

00617 00393600 DUNMYCR) = o

00022 00334000 90 1000 4 = 1.ND.2

00027 00193000 1000 DUNRYIK) o DUNRYIK)eTIPXI(J, 1)

40041 00396000 IRCEXCK) = K

00Cad 00397000 1 £ o Ko}

00046 0u290000 C

$CCeE 00399000 £ $OFT pummY

06048  00¢00000 CALL SHELLLDUARY,INDEX, NPS)
00024 00893000 €

0038 00402000 C NOV PERFOFAA RCIUAL SVITCHING

03e%8 00193000 130 00 Li0 K = §,ND
Q0GEL 00424000 0é 110 L = 1,3
907€E 00803000 b 120 1 = 1, NPS
00073 Q0806000 120 DUNYCE) = TSPYLOK, INODEXRCIDO3-30L)
07114 00497002 00 130 1 = 1,MPS
0119  00sam0d0 130 TS2rLCK, 1e3-3¢L) = DURAY(])
0C1Yl 00839000 110 CONTIKYE
0¢17? Q0420000 RETuUuRMN
0C1Fs  00slg00 (4.1
SYREOL naP
N&RE 1ree sreuctyns ADPRESS NANE TYPE STRUCTURE ADORESS
| I R INTEGES AFRAY v-210 .1 ' . INTEGER SINPLE VAR QeX¢
gy INTEGER aFRAY e-27 1 J INTECGER SINPLE var QoXx$
L INYEGES LIAPLE vaRr  QeXx? L INTEGER SIAPLE var @19
L1% INTECEF CIRFLE var @-2% .1 L1} INTEGER SINPLE var 0-%3 I
L1+ mnigaer SINELE var 0-%4 SHELL SUBROUT INE
1318 SUBFROUTYI NS T$PXL INTEGEDR ARRAY 9-211 1

SPROLIAr UNET SQRY COHINTILEL
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Parent: MAIN START
Calls: MARKLP, MARKKUPDN, MRKIUL, CONNCT

START(INTTHR,ND,NR,NC,NZ ,DATBUF ,LABBUF , ISCAN,UICB, IND, IMGIN,LMGCLAS,LAB,
MASK)

START makes the vector boundary decisions and returns a map (on disk) of
the components of the complement of the boundary.

Method: The program employs Wide Image Logic to segment the image into
strips. Three lines of data and three lines of labels are active at any
given time. Circular Buffers using pointers I1, 12, and I3, manage this;
I1 always points to the eldest and I3 to the newest. Even so, we can't
phrase the description of the method in absolute terms (i.e. as if the
entire image were in memory at once). The initiai phase must be described
first.

Initially, a labels buffer is set to all one. Then the data is
scanned, and points for which the vector gradient test is failed in the
left-right direction are marked (subroutine MARKLR). Then up-down boundaries
are located (subroutine MARKUPDN), and one-pixel gaps in the bouadary map
are filled (subroutine FILLR). Then, the iogical OR of the first and second
line replaces the first. (These are details, but this is detailed documen-
tation, and FORTRAN loves it.) We now have an excellent estimate of the
boundary in the first two lines and a fair first cut on the third. Sub-
routine MRKIVL is called to mark intervals in line 1. MRKIVL replaces
each interval contained in the complement of the boundary along a line with
(successively) 1,2,... . If any patch slices were found in this step,
then the first line is initialized with patch labels (starting at -32767).

Now the big loop is entered. Intervals in line I2 are marked. If
any patches are found here, subroutine CONNCT is used to transfer old labels
to new intervals -~." to begin new labels. Row I1 labels are written and new
data is read into DATBUF(.,.,I1). New labels are marked with 1 and the
circular buffer pointers are rotated. {Now I3 is the newest). We now
cal’ MARKLR (I3) and then MARKUPDN, and return to the big loop. Exit

PRECEDING PAGE GLANK NOT FILMED
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START-2

from the loop when we run out of data (or labels). If out of data (or
at the bottom of a strip), process lines I2 then I3 and write on disk.
If out of labels, simply paint the rest of the image boundary. (Since
64K labels 2re allowed, this seems unlikely to happen on even the largest

natural images.)

The initialization phase guarantees labels are not propogated from
the bottom of one strip to the top of the next.

Program Variables

CHKIO
CONNCT

DATBUF(NC,ND, 3)

FILLLR

FINISHED

I,ITM,J,K
n,I1z,13
IMGCLAS

IMGIN

IN

IND(1)
INTTHR(ND)
IROW
IROWOUT
ISCAN(1)

SYSTEM SUBROUTINE

SUBROUTINE Transfers labels from one line to the next,
and begins new labels when no connection exists.

INTEGER ARRAY Three lines of data, organized as a
circular buffer.

SURROUTINE Replaces a boundary-not boundary-boundary
gap by three boundary points along a 1ine.

LOGICAL Returned .TRUE. by CONNCT when no more labels
exist.

INTEGER DO loop index.
INTEGER Circular buffer pointers

INTEGER Image number of the (temporary) labels-boundary
disk maps.

INTEGER Image number of the data.

INTEGER The number of intervals found by MRKIVL in a line.
INTEGER ARRAY Error indicator

INTEGER ARRAY The vector thresholds obtained by THRFND.
INTEGER Line number being read.

INTEGER Line of labels being written

INTEGER ARRAY Scratch array used by CONNCT to store labels.




B

IT

LAB
LABBUF(NC,3)
MARKLR

MARKUPDN
MASK
MRKIVL

NC
ND
NW,NX,NY

NZ
READP
UICB(1)
WRITEP
/4
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START-3

INTEGER Used to rotate pointers.
INTEGER Current label number.
INTEGER ARRAY Three lines of labels.

SUBROUTINE Mark left-right boundaries depending on
vector thresholds.

SUBROUTINE Mark up-down boundaries.
LOGICAL The Mask flag.

SUBROUTINE Mark intervals along a line in the complement
of the boundary.

INTEGER Number of columns in a strip.
INTEGER Dimensionality

INTEGER Used to partition the image into strips (see
Wide Image Logic).

INTEGER Actual number of samples.

SYSTEM SUBROUTINE

INTEGER ARRAY User Information Control Block
SYSTEM SUBROUTINE

INTEGER -32768; boundary marker.
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00012
e0012
(2 22F]
02
00012
°0012
0¢o12
[Z12% ]
0022
00024
90024
90028
90031
s0e
90021
(11 xH]
00022
00042
00042
00046
00030
00032
00034
00036
00060
N0080
00080
00693
00072
[T AL} ]
o010
00303
00110
00118
00113
001%¢
0170
0172
0172
172
o017?
003224
00224
00224
00224
00264
00264
00264
002°3
0rer3
22273
00300
003t¢
00328
0333
90338
90395¢

00993000
00996000
09997000
0999000
00999080
01000000
ol1001000
21002000
01003000

01007000
01008000
Q1009000
01010000
ol011000
01012000
01013000
01014000
01013000
01016000
o1017000
01010000
01019000
01020000
01021000
01022000
01923¢00
01024000
01023000
01026000
01027000
01028000
01029000
01030000
21031000
01032000
01033000
01034000
01033000
01036000
01037000
01038000
01039000
01040000
01041000
01042000
01043000
02944000
01043000
01046000
01047000
01048000
01049000
01030000
e1031000

ORIGINAL Fruw jia
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NEVLETT-PACKAPD 321020.01.03 FORTRAN/ 3000 TOE, OCT 13. 1981, 9:38 AR

SCONTROL CECRENT-ARCEBASEC
SUBROUTINE STARTCINTINR.MD.HR.NC.NZ,ONTOVUF., LABRUF,
CISCAN, UICH. IND.IRGCIN, INCCLAS. LAD, HASK)
INTEGER®2Z Z.INTTHRI(ND ). ORTSUFINC, N0, 3), LABBUFCNC. 3),. ISCANCT ).
s QICBC1. INDCL)
LOCICAL FINISNED,.RASK
FINISNED = .FALSE.

T = -32768
LAR = 7
4
C PROCESS IN STYRIPS ABOUY NC WIOE. ..
96 %9C B¢ = 1.8Z.0C
<
C NY IS LAST OF STRIP
NY = N¥eNC-1
1F CHY . 6T N2> NY = N2
C
C NX IS ACTUAL RURBER CRABOED
NX = NY-NUe 1l
ROy = 3
tROVONT = o
1 =1
12 = 2
13 =3
[

€ INIT LABELS BUFFER
00 10 [ = 1.,8X
90 10 J = 1.3

10 LASBUFCL.J¢) =

on

READ 3 LINES "ATA
90 20 3 = 1.3
020 20 K = 1.ND
CALL READPCUICH. IND.INCIN.DATOPF(1.K,3).,2.K,4. N8, NX, K1,
¢ J.NU.NX)
IF CINCC1I). LT . ©) CALL CHKIDCUICH, IND . INCIN, NV, RX. X, 1019)
20 CONTINUE

oo

RARK SOUNDARY 1.3 LR
20 30 J = 1,3
30 CALL MARKLRCZ.ORTBUFCL, 1.J4), INTTHR,NC.ND,LABBUF(1.J), MASK, NX)

o

NARK COUNDARY 2 UD
CALL RARKUPORCZ.OATHUFCL,1.1).DATBUFCL.1.2),.LABBUF(L,1),
® LABBUF(1,2).LABBUFCL,3),NC N0, INTTHR, BASK. NX)

FILL IN CRATKS 2
CALL FILLLRCZ.LABBUF(1,2),N8X)

[N, (ol o)

DUP LABELS 2 TO I
90 70 1 = I.NX
70 IF CLABBUF(I1.2).E0.2) LABDUFC(E. 1) » 2
CALL ARKIVLCZ.LABBUFCL, 1).NX,IN)
90 2222 1 = 1,MX
IF CLABBUFCI.1) NE Z) LADBUFCL, L)=LABRYFCL, 1)+2
2222 cONTINUE
LAk = LABIN
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PALE 0033

00363
00348
00349
e03es
(Y31
*o3re
1331
00402
00409
TITT
s0asr
e04ee
0044t
00448
00467
00467
YITY
"0srs
047y
00473
004
s0ars
*032¢
00347
00347
00847
00330
00334
00361
00361
06t
0083
00639
00633
00638
00642
00632
00632
90692
00634
0063¢
0660
00662
osE62
20662
so70¢
eor0s
0737
0Ty
0793
0079s
0733
00798
0SS
oorss
*or9s
e rel

01032000
01033000
01034000
01033000
010364000
1037000
01030000
01039000
01050000
01081000
01082000
01063000
01064000
01063000
o1066000
01667000
01068000
01069000
01670000
otort 000
oto72000
o1073000
01074000
1073000
oLe78000
ol1e77000
0i078000
01079000
01080000
o1081000
01003000
01003000
01004000
01083000
01086000

01009000
010390000
91091000
010%2000
01093000
01094000
01093000
01094000
01097000
01090000
01099000
1100000
01101000
01102000
01103000
01104000
01103000
o1106006
ot1e7000
01108000

STARY

[ 4
4

an

[ X, ] on

"o

an

140 |
ORIGINAL PiGE 15
OF POOR QUALITY

1000 CONTINVE

AARK INTERVALS (2
CALL MEKIVLCZ.LASMUFCL, 12).0X.1N)

SEE IFf ANYTHING TO COMNECT
IF CLAB.NE.Z) GO TO &1
LAY = 241N
00 1111 T = 1.MX
EF CLABOUFCI, I1) . NE.2) LABBUFCI.I1) = LABDNFCI. 11)¢2

1181 CONTINVE

GO0 TO 982
o1 IF CIN.EQ.0) GO TO 82
CALL CONMCTCFINISNED.2,UX. LABDUF(1.11),LABBUFCL.12),.18CAN.IN.LAB)

SEE IF FINISNED
§F CFINISHED) GO TO 2000

SRITE 11 LABELS
82 TROUOUT = [ROWOUTS
CALL URITEPCUICH.IND., INGCLAS.LABBUFCL,11),2.1.,I00V0UT, NV, 8X.,
* 1, IRQUOUT 1. NU.NK)
IF CINDCI).LT.0) CALL CHKIOCUICSH, IND.TNGCLAS.11.HV,0.20)

REND NEXT
TRSY = [ROW+1L
§F CIROYV.CYT . NR) GO TO 300
53 83 Xk = 1.0D
CALL READPCULICH. IND. IRCIN.ODATOUFC(1,K,.11),2,K, JROV. NV, NX,
s K*1,IROV.NE.0X)
€ CENDCE) . LY 0> CALL CHKIQCUICE. IND. INCEIN. K. 11,NV,30)
3 COnTINGE

RARK NEV LABELS
90 200 1 = 1,MX
200 LABBUF(L, 1) = 1

ROTATE BUFFERS
IT = 11
1 =12
12~ 13
3 =17

RARK
COLL RARKLR(Z.OATBUFCE, 1. 13), INTTHR,NC,Mv.LABBUFC(1,13).RASK,NX)
CALL NARKUPDNCZ . OATRUF(1.L.28).0ATBUF(1.1,12),LABBUFC(L,11)),
® LABBUFC1.,12).-LASOUFCL. I3). NC.KD. INTTAR NASK, . NX)

00 IT AGAIN
€0 T0 10900

FINISNED. . . PROCESS LAST THO SCAN LINES
390 CONTINUE

PROPOGATE 12 TO 13
00 310 [ = 1.NX
IF CLABBUF( !, 12) .€0.2) LABBUFC(I,I13) = 2



PACE 0034 STARTY

eL00t 01109000

€1002 01110000

01062 01111000

01002 o1112000

1007 01113000

01020 01114000

1020 01113000

1020 oOl116000

102¢ Ol117000

o143 oOl118000

*16351 01119000

03031 01120000

1831 01121000

1032 01122000

1032 01123000

eL104 01124000

01123 01123000

1127 01128000

*1131 O1127000

1131 01128000

01131 01129000

1132 01130000

03136 01131000

eL137T 01132000

otles 01133000

®1133 01134000

01134 01133000

1161 01136000

1161 03137000

®1212 01130000

01232 01139000

01233 01140000

01233 01141000

#1233 01142000

1240 01143000

01243 01144000

01286 01143000

Q1233 01148000

1237 01147000

1261 01148000

01261 0114%080
SYRBOL nar

NARE

[4.784]

PATOUSF

FINISHED

11

13

IPCIN

1ne

inoy

1scan

(AL

¢

LASOUr

NARKUPON

RERIVL

[ 14

L 1]

"y

REAR?P

[ 284}

4

310 CONTINVE

t2 7o 11

SCAN LINE 12 THEN I3
90 410 ITH = 1,2
CALL ARKIVLCZLLABOUFC(L, T2),MX, 1N

14]

ORIGINAL pjg
OF POOR qu

GE i3

ALITY

IF CIN.NE 0) CA.L CONNCVCFINISHED . Z . WX, LABBUFC(1, K1), LADBUFC(). 12,
s [SCAN.IN.LAS)
If CFINISHED) GO TO 2000

IROVOUT = [ROWOUT+I

oAt
IF CINDCL).LT.0) CALL CHKIOCUICH, IND.INCCLAS. J1.NV,.0,40)

[

c

4

c Jo1In

<

C srtote

.

1
12

C

<

1.1R0VOUT*1. . NU.NX)

s ]2
= 13

00 IT AGRIN CTHICD)

410 CONTINUE
9¢ CONTINUE
RETURN

2000 00 2020 J = 1.NX

2020 LABBUFCJ.1) » 2
2010 (ROVWOUT = [ROWOUTe]
00 2040 I = I[ROVOUT.NR

CALL URITEPCUICE., IND, INGCLAS,. LABSUF(1.,1),2.1.1.0V¥,0X,

IF CINDC1). LT . 0) LALL CHKIOCUICH.INO.IFGCLAS.I,.N¥.Z2.730)

c J4L . N0, NX)

2040 CONTINVE

4
C SEC IF FINRISHED
IF CAY . CENZ)RET OURN
RV = NYel
NY = NYSNC
§F CHY . GT . NZ) NY o NZ
RX = NY-NY* L
IROWOUT = o
€0 TO 2010
(4] ]
Tveg STRUCTURE ADDRESS
SUBROUTINE
INTEGER ARRAY e-x14 ,1
LocicaL SINFLE VAR @+¢Xx11
INTEGER SINFLE VAR Qexté
INTEGER SINPLE VAR @+220
INTEGER SIRFLE vaR 0-27 .1
INTEcER AFRAY 9-x10 .1
InTEGER SIRPLE VAR Q+26
INTECER RPRAY -1 .1
InTecER SIRPLE VAR Q1S
nreces SIAPLE vAR @8+x21
INTECER ARRAY 9-313 .1
SUBROUTINE
SUBROUTINE
INTEGER SIAPLE VAR 8-220 .1
mreeee SIRFLE VAR @+213
INTEGER SINPLE VAR B+¢213
sysmouTINg
mrecen ARRAY e-x31 . I
INTECER SIRPLE VAR 04222

PROGRAR UNIT START COnPLLED

CRITEPCUICH. IND., INCCLAS, LASBUF(1,11),2.1.1R0V0UT. KU .NX,

CONNCTY
FILLLR
1

12
INGCLAS
I
INTTAR
IRQUOUT
[

¢

LA
ARRELR
AASK

NC

L L}

N

"z
START
URITEP

TYPE

INTEGER
INTEGER
INTECER
INTEGER
INTEGER
INTEGER
INTEGER
INTECER
InTeceR

LocICaL
INTEGER
INTEGER
INTEGER
INTEGER

STRUCTURE

SUBROUTINE
SUBROUTINE
SIAPLE valR
SINPLE VAR
SIRPLE VAR
SINPLE Var
ARRAY

SIAPLE VAR
SINPLE vAR
SINPLE vaR
SIAPLE vaR
SUSROUTINE
SIAPLE vaR
SIRPLE var
SIRPLE var
SINPLE vaRr
SINPLE vaR
SUBROUTINE
SUBROUVTINE

023
Qexi?
0-%6
QX7
9-x2t
Qx4
oex12
eexge
-x93

e-x4
e-x16é
e-x17
[ K23 1)
a-x19

o
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Parent: MAIN THINTST™M
Calls: GETN25

THINTSTM(MP, TSP, TTP,CLASS,COUNT ,N25 ,N60,N288 ,N140,N388 ,N428 ,ND,NTSI ,FILENO,
UICB, IND)

Subroutine ASELECT creates a disk file of samples taken 5 at a time from
the patches (the components of the complement of the bouncary). There will
be many of these sets in a large image. The starting conditions for the
clustering part of AMOEBA require relatively few. Further, the starting
cluster centers have not been formed yet. Subroutine THINTSTM forms the
starting cluster centers and "thins" the test sets.

Method: In MAIN, program variables N288, N388, and N428 are selected as
large as possible depending on available menory (i.e. depending on ND).
(If ND is 4, then N288 = 288, N388 = 388, and N428 = 428). If we start
with NTS test sets (stored on disk by ASELECT), and if NTS < N428, then
THINTSTM simply forms NTS means as starting cluster centers and returns
N140 = NTS and N488 = NTS. Otherwise there are many test sets, and a
complex procedure is followed to prevent the number of means and the
number of test sets from growing too large.

1. If NTS < N25, go to step 7 (the finish). Otherwise read 25 test
sets into the temporary buffer TTP.

2. Each test set has 5 test points; classify the 25 first elements in
the class of nearest last element centers.

3. For each of the test sets classified correctly (i.e. in which the
first element was nearer its last then the last of another of the 25),
form the mean and add this mean to the mean pool MP, indicate the
main pool is occupied with COUNT, and add the test set to the test
set pool TSP, indicating it is occupied by CLASS. Count these
events in NMP (the means) and NTSP (the test sets).

4. If there are more than 100 vectors in the mean pool, proceed to
step 5. If there are more than N388 test sets, proceed to step 6.
Otherwise go to step 1 and get more.

PRECEDING PAGE BLANK NOT FILMED
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THINTSTM-2

More than 100 vectors are in the mean pool. Classify all center
test pixels in the classes of the mean pool and count the number

of times a mean is hit. Eliminate each mean which was not hit. If
NMP is greater than N60 (=60) after this operation, eliminate each
with 1, 2, ... classification until NMP s N60. At each elimination,
reclassify center test pixels which were assigned to an eliminated
mean and test if NMP < N60. When N60 is reached, test whether NTSP
is greater than N388. If NTSP < N388, return to step 1 to gather
more, else proceed with step 6.

More than N388 test sets are in the test set pool, but fewer than
100 means are in the mean pool. Moreover, the majority of the test
sets have been assigned to a class by the logic of step 5. (The
ones just added haven't been, of course, so they are kept around a
while longer.) Determine the mean which has the most test sets
assfigned. Test sets assigned to this mean are duplicates. Eliminate
one (the first one found) and decrease the count. Repeat until
fewer than N288 test sets are present, then go to step 1.

Close the disk file which contained the test sets, and compress

and count the means and test sets; N140 is the number of mea.s
(starting cluster centers) and N428 is returned the number of test
sets.

Program Variables

CLASS(N428) INTEGER ARRAY The class to which a center test pixel
is assigned.

COUNT(N140) INTEGER ARRAY The number of center test pixels assigned
to a mean.

FCLOSE SYSTEM SUBROUTINE

FILENO INTEGZR File number of scratch disk file containing
test sets.

FIRST LOGICAL Switch used to jump around rewind of file in

GETN25.



GETN25

I,11,J,K,L,LS,M

IA

ICL
IE

IM
IND(1)
IS
IT

m
Js

JT

LIT

MAX

MP(ND,N140)
N140

N25
N288

N388

o
<$»
()]

SUBROUTINE Reads N25 test sets from disk.
INTEGER DO loop index.

THINTSTM-3

INTEGER Class of nearest last test set element to first

in hatch of N25.

INTEGER Class of nearest mean to test set center.

INTEGER Count of how unpopular a mean should be to be

eliminated.

INTEGER Distance to mean of a test set center.
INTEGER ARRAY Error indicator.

INTEGER Distance accumulator.

INTEGER Used to convert logical to integer. Also

distance temporary.

INTEGER Distance temporary.

INTEGER The test set center reclassified after a mean

is eliminated.

INTEGER A classification, tested to see of a duplicate

test set has been found.

LOGICAL Equivalenced to IT; used to convert logical to
integer to compensate for the inadequacy of the Segmenter.

INTEGER The running maximum count of classification

in all means.

INTEGER ARRAY The mean pool, and, on return, the means.

INTEGER On call, 140; on return, the number starting

clusters.

INTEGER The number of test sets read at 2 time.

INTEGER Number of test sets sought after the iteration

is started.

INTEGER Test set iteration trigger.




i s

N428
N60
ND
ND5
NDXM

NDXP
NEAR

NMP

NTS

NTSI

NTSP
TSP(ND,5,N488)
TTP(ND,5,N25)
urce(1)

g

THINTSTM-4

INTEGER Number of slots for test sets.
INTEGER Means sought after iteration started.
INTEGER Dimensionality.

INTEGER ND*5, for GETN25.

INTEGER Pointer to mean pool, used in search for a
free slot.

INTEGER Pointer to test set pool.

INTEGER Used in test set to test set smallest distance
determination.

INTEGER Number in mean pool.

INTEGER Number of test sets on disk remaining.
INTEGER Number of test sets on disk.

INTEGER Number in test set pool.

INTEGER ARRAY Test set pool.

LOGICAL ARRAY Test sets for GETN25 to read into.
INTEGER ARRAY User Information Control Block.




ragt 0 l)

00013 ol260000
00813 01241000
ol ol1362000
00013 01283000
90013 01284000
0001 01263000
0001 01266000
eCetY 01787000
00013 01240000
etetS Q1249000
0001 el270000
00013 dl12r1000
00013 ol1272000
00013 01273000
0C013 01274000
0001S  cl127%000
001Y 01276000
(LX) ]

0019

90019

00013 01200000
20013 1701000
occty 01202000
00013 o0l203000
001t 01284000
00013 01203000
0CC1T 01208000
00012 oL1207000
ecelT ol298000
0C013  _.289000¢
0013 01290000
00012 01291000
0Co1? 01292000
00013 01393000
oceo1T 01294000
00013 01393000
00017 01296000
e0e1S ol2%7000
00017 01298000
00021 01399000
002Y cl1I00000
0cosc 01301000
ocers 011392000
el 01303000
0002 01304000
eCcC4T 01303000
eceTl  clYNg000
00€¢33 ot130T7000
0002% ct1300000
0LCer 01309000
0006 0110000
0C0ks 01111000
eces2 c1312000
0ce62 01313000
00cEl ott14000
0Ceel olT1%000
ecce? c1Yie000

NEWLETY-PACRARD 3210230 01.03

SCONTROL SECNENTARCEBASEC
SUSROUTINE THINTSTACAP, TSP, TTP, CLASS.COUNTY, N23.N6C,
¢ N2EG. . N140, NIIB. HEQC. N0, 81 . FILENO, UICY, IND)
SYSTER INTRINSIC FCLOSE

SUBROUTINE 7O REDUCE A LARCE NURGER OF TESY SETS

M ANAARA AN/ ARAOOAND

<

fanNAOAn

TO ABQUT N3Oy,

TO STARY wyncLy

ORIGINAL PAGE IS
OF POOR QUALITY

FORTRAN/ 3000 oL, otT 13, 1901,

AND TO FORR ABOUY N280 NEAN VECTORS

I8 THE ACTUAL NURDER

is THE ACTUAL NuUmRBER

PARARETEIRS)

AP -- NEAN POOL

TSP -- TEST SET POOL

TYF -- TERPORARY TEST SEV POOL
CLASS -~ CLASSIFICATION OF TSP In AP
COUNT =- COUNT OF NP CLASSIFICATIONS

N -+ DIRENSIONALITY
NTSL -- NURDER OF TEST SETS 1nPUT

WIS -- WURBER OF TEST SETS
NISP -« NURBER 1N TEST SET POOL

NRP -~ NHURBER In REAR POSL

N23 -- NURBER OF TEST SEIS CRADOED AT o TINE

REO - - NEANS SOUEHT AFTER ITERATION STARTED
N789 -~ NEAN ITERATION TRICGER. AND

== TEST SETS SOUGNHT AFTER [ITRATION STaRTED
N1aY =- ABSOLUTE MAX NUNDER NEANS
On RETURN, THIS PARARETER
NI -~ TEST SET TRICCER
NelE -- ABTOLUTE RAX NURBER OF TESTY SETS
ON RETURN, THIS PARARETER

NOXA -- SEARCH INDEX IN AP LOOKING FOR NEW

NOXP -- DITYO FOR TSP

LUCICAL LIV .TYPIND, 3. N23), FIRSY

COUIVALENRCE C1T.LIT)

INTEGERSZ RP(NC. NLAO).YSP(ND. 3, H420),

¢ CLASSINAZR ). COUNTINIGO)Y FILENO, UICOCT), EINDCT)
LLEREY TSP 4

FIRST = TRUE

L =1

4s = |

00 10 1 = 1.N140
10 COUNTCL) = -

00 20 J o 1.M430
20 CLASSCI) o -}

L 114

NISE o ¢

NS o NS

NPYR = 0

NORp = o

NCY v NDe3

L4

THITEALLY REAN POOL AND TEST SET POOL ARE ENPTY

FEFCRENCE POINT FOR NEXT NS TEST SETS
GET MY TEST S€13
COCTURN 1F NQT TwAT RANY)

IF (NTE SC Wa2S) GO 10 2000
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PAGE 0042 THIRTSTR

0066 01317000 N23 » NTS
$ceTo 1310000 N140 = NTS
Wword <o1%190%0 nels = ntg
oco7¢ 01720000 CALL GETNIIC(FIRST.TTP . NZI, NDI . FILEND, VICE, 1ND)
0C107 oO1121000 caty FCLOSECFILEND. A, 0)
11 01322000 00 1 1 = 1,NTS
0120 01323000 PO 2 K = 1.ND
12?7 01324000 s = 2
©$Idr  o1323¢000 0 3 LS = 1.9
C1Ts 01326000 LI & TTPCR, LS, DY
0C18¢ 01327009 18 o 18017
€191 01320000 3 TEFCK. LS. 0> » IT
@iCs or329000 2 NP, L) e 1829
WITY 01330000 1 convTInue
0C17¢ 01331000 RETVUVUERN
0CIT? 01332000 20060 (F CNTS LT N29) GO TO 6000
eCIcCe 0L1IN3000 CALL GETMICFIRST, TTP,. N33, MO, FILENO,. UICE. IND)
0C217 01334000 NS » NTY-N29
00322 01333000 €
00222 01736000 C CLASSIFY FIRST PIXEL IN EACH TEST SEY IN NEAREST
00223 01337000 C LAST PIXEL CLASS
00222 01730000 00 30 L = 1,M3S
00327 01339000 NEAR » 16000
0CEYL 01340000 C
0C231 01941000 C FIND CLOSEST TO L-TH CRITVER
e CITL 01343000 00 4¢ R = },N23
C1¢ 01343000 1S » ~32769
0C 283 01344000 00 30 Kk = 1, M0
* 0C291 01349000 IF LIS . GT NEAR) GO TO 40
00281 01346000 LIT & TEPU(K.Y.L)
00273 01347000 [ A2 TNLIN 1/
0C27T 01348000 LIT o TTPCK.S.N)
0030¢ 01349000 17T = g1-17Y
etItl 01390000 S0 IS s 1800 T0?
318 01591000 IF CIS GE .NEAF) CO TD 40
3. 01332000 1a « N
00338 01333000 NEAR = S
0C3I2L 01394000 46 CONTINVE

0¢317 0133%%000 ¢
S03IT 01334000 C  IAF ANY SUTH THAT CLASSIK)ICOK
00347 1337000 tF CIn NE L) GO TO 30

$C 33T 21¥IN000 C

0CTIT 01399000 T FIND a SLOT FOR REAN AND TESY PINELS
0CITI G13ad000 TO NO/R o NOXNeY

0CITs  ci361000 IF (HDNA GV N140) NOXA o )
0C34 Q1382000 IF (COUNTINDXNY GE ©) GO 10 1O
0C 34 c1383000 ¢ HDYP = NOXPOL

90347 01334000 IF «MDAP GT NAZH ) NDXP =

0 I 1389000 17 (CLRSSCHOXPY GE ©) GO VO o
SC 341 01368000 C

9C3i)  o01347000 T FOFR MEANS., ADD TO MEaM FONL
00361 ©C1380000 C  ADC TEELY S€TS VO TES: SEY roOnt

0 3l1 01349000 00 *¢ v = ). NC

0C 366 ©1370000 s = 2

0370  o1371000 90 100 LS = 1.9

0037y 1372000 LIt = TTFCP,LE.LY

00407 011373000 1S s 1801t
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PALE 0 THINTETR

0C412 01374000 140 TEPCK.LE. NDNP) » 1T

00423 01373000 90 RPCK,.NOXA) = 18/93

00436 01374000 C

00426 01377000 C SHOVW COVERED AND COUNT

00436 01378000 COUNTCNDXN) = @

00441 01379000 CLASECNDXP) = o

00444 01300000 HRP = NAPe}

90443 01301000 RISP = NTEPIY

00448 01392000 30 COnTINUE

00447 01303000 ¢

00447 01304000 C 00CS THEK NEAN POOL CONTALN MORE THAR 100 NEANS?
20447 01308000 IF CHRP.SL.100) GO TO 1000
00437 01306000 (ooe YEI' GO ELININATE C1000)
00433 ol1307000 ¢

00433 01398000 Ceoe NG

0CAIT 01309000 C ARE THERE NORE THAN N30S TEST SETS?
00497 017%0000 3000 IF (NISP LT N20E) GO TO 2000
00437 01391000 Cooe NO: GO ITERATE (2900)

90437 01392000 C

00437 01393000 Cose YES: IAP SONE

00437 01394000 RAX = -}

00481 01393000 90 200 1 s 1.N140

0466 01396000 RAX o RAYOCHAX,COUNT(I))
00479 01397000 200 CONTINYE

00476 01399000 3000 20 210 J = 1.N429

00303 01399000 d¥ = CLaSS( )

0306 01400000 IF CJT . LE.O) GO TO 210

00312 01401000 IF CCCUMTCIT) LT RAX)Y €O 7O 210
00317 oteeane CLAS3Cy) » -

0322 el140300, COUNTCJIT) » COUNTC(IT)-}
0326 oOl4edcee NTSP o NTSP-1

90927 01403000 {7 (NTSP LT . N209) GO TO 2000
03Te 0le0b000 219 COXTINUE

00339 olser000 %A’ & RAX-1

00376 01809000 G0 TO %000

00337 01409000 C CLASSIFY oLl CENTER OF TEST SETS AND COUNT
001 901410000 C

00387 01411000 1000 Np = 3

00T41 01812000 00 399 J = 1.Niq0

00346 oOl413000 IF (COUNT(J) GE GXCOUNT(J) ~» o
00833 01414000 399 CONTINUE

008%¢ 01413000 C WOV CLASSITY &N

005%€¢ 01416000 00 300 4 = 1.Ne28

BOTET 01417000 IF CCLASSCI). LT . 0) CO YO J00
0Care  0lajo000 Ih = 16000

90377 01319000 20 310 [ = §,Nl4Q

06STT 01820000 IF (COUNTCIY LY &) GO 1O 3t0
oLEL4 01421000 15 « -12760

o1y o1422000 00 320 Kk = 3, M0

00§26 01423000 IF CIS .CZ.IN) GO TO 310
00427 014824000 IT o TSPCK,. NP, J)-0P(K, D)
00443 01223000 320 135 o ISeITeIY

0CEIT 01426000 IF (IS ST IN) SO YO 310
0047¢C 01827000 L L

00660 CL820000 e = o

00862 Old29000 310 CONTINUE

sceey

014630000

CLAsSEC Y = ICL

i s s—;
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PAGE 0040 THINTSTR

00646 01301000 COUNTCICL)Y = COURTCICLY*t

Q0er3 0143202° 400 CONTINGE

00873 oOta33000 C

00677 01434000 C  ALL CLASSIFIED AND COUNTED. NOW SEE IF ANY RISSES

00873 0i418%00 00 330 1 o 1,NL40

00700 01430000 IF CCOUNTCI) . WNE @) GO 10 330
00703 01437000 COUNTC(L) = -1

WO7IC 01410000 WRP = NAP-§

00711 01419000 330 COmtTiNuCL

0712 Oledooee ¢

95712 01441000 C KL IF VE'RC DOUN TO NeoO

0712 014843000 IF CHNRP LE NE0)> GO TO 2000
COTIE 01843000 C NO. $0 IAF SONE HITH 1,2, . CLASSIFICATINNS
0T16 014844000 C

0718 01443000 1€ = 1

o072¢ Ol1448000 4000 00 440 I o 1,N140

0C¢T2Y Ol4elo00 1C = COUNTCID)

S0TTY 01448000 IF CIC NE.IE) GO 1O - 4o
0774 01449000 NRP = NRF-1

0G?3 01430000 COUNTCIL) » -1

0CT4L 01431000 C REMNOVED WOU RECLASSIFY I1TENS ASSICNED TO CLASS I
oCT40 O1a32000 C

00780 014393000 00 430 J = 1.ne23

00742 01834000 IF CCLASSCY) NE.BI) GO 4O 43¢
0CT7%1 01433000 " = 1§9¢0

0734 01436000 00 460 1 = 1,N140

007¢1 01487000 IF CCOUNTCID. LT .0) CO 0 440
0747 01430000 18 = -327¢0

ooT?8  Cl1i99000 00 470 & = 1.MD

01003 01480000 If I3 GL.IN) GO TO 440
e.012 014681000 (7 & T8PLK,. 3. 4)-AP(K,. 1)
1031 01442000 470 t¢ = 1%eiTelr

01036 01483000 IF C18 CGT . IR) GO TO 460
01082 01444000 48 o J

01088 01487000 IR =13

0108¢ Cla5s000 L = 1

010%7¢C QL4§T7000 460 CONTINUE

1031 Ql14gB00V CLASEC(JS) = fCL

0104 01349000 COUNTCICL) = COUNTCICL)e
01060 01420000 430 CONTINUE

oleLt ctarge00 IF LNRP LT NEQ)> CO TO 3000
01087 01472000 440 CONTINUE

t1070 ot473000 1€ = 1€}

01071 0) 874000 60 fu &000

01072 olsrgeee 8000 CALL FCLNSEFILEND.4,0)
1076 c1E78000 L=

01107 w14rP000 C MOV FPYT EVERYTHING IN THE FIRST SLOTS OF AF AND TSP
01100 o1479000 C

1160 CYEP9000 00 r000 [ o 1, Ne2S

01169 0o1380000 IF CCLA%SCI) £Q 1) GO TO 7090
o1l o14n1000 Los Lot

S1118 01482000 80 “e1 r = 1.NO

e112¢ olén3e00 PO rS1d 4 « 1,9

01128 01484000 FO1o TERIX.L 4, L) o« TRPCK.J. 1)
01181 oisgg000 7030 CONTINYE

L1 01484000 N&ZS =

911%4 01497000 [
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PalE o004y ninrsen

0119¢  o1eBB000 80 7020 1 = {.N140

SLIET 01409000 EF CCOUNTCL). RO -13 Q0 TO 020
SNLT6 01490000 Low Loy

LT 01401000 00 2030 & = 1.4

S11Te G109 2000 POYTO APLR.LY = APIL,D)
(ARIRECINS 2L 1Y) rTodo CONTINUE

SLRIE 01494000 N1eY o
QLIE 01493000 R Uruern
1217 01494000 [ LIS

SYRBOL DAl
['TY.] ¢ 12444 steuctunt ADORIEDY NARE Tveg STRUCTURE [122131]
(4% 11 mreeee ARRAY 0-x20 .1 count mreeen ARRAY e-x1? 1
reLose SUBROVTING riLEno mmrgeen SINPLE YR @-2¢ .}
Fiosy (4 1354 18 SIAPLE VAR 0136 GETMRS SUBROUYING
t InrgcER SINPLE vaR Dol I nrgeIR SINPLE vaR Qex?
[14 InNTgeen SINFLE vYaR Dexid (148 tnrgeee SIRPLE vaR Qa3
1€ mrgGeEe SIRPLE VAR B3 1t tnrgeen CIAPLE vaR 90113
tn [LR14413] SIRPLE VAR  @ir2} e tnreecEm ARRAY o-R¢ .1
te INTELER SIATLE VAR 04123 ty LAY {18 ] SIAPLE VaR 930
n tHrgGcee SINFLE VYRR DeX32 J INIgeER SIAPLE VAR  @ex22
'} LRILY 43 SINFLE VAR @eX)6 " tetgoen SIAPLE vaR  Qaxt?
[ mmreqee SIRFLE VAR QX33 L inTgeER SINPLE VAR Qek1d¢
(W R} LOGIT ot SIAPLE VAR GeR3e LS INTEGER SIAPLE VAR Qex 3P
L] L1838 SIAFLE VAR Qer2T RAK tnrgeen SIRPLE VAR Qoxle
ne INTELER ARRAY e-x23 .1 Nie® InrgeER SIAPLE VAR @-R1) !
[ 33 L1371 SIRPLE vl 9-N18 . ¢ neee INTEEER SINPLE YAl @-314 .}
(3R]} tnteGeR SIAPLE VAR C€-X812 .1 neaze InTRGER SINPLE VAR  @-R!Y .1
nee tnteGee SIAPLE AR 3 S "o InrTgeEe SIRPLE vaR  @-R1¢ .
(1} ] tnrecee SINPLE VAR b _g9 (1211 ] 1L1g{1¢] SINPLE vaR  Qere
nexe INTEGIR SIAPLE VAR Be¢X10 NEAR mmrecen SIAPLE vaR 00338
(114 thrgeee SIAPLE VAR BeX12 L 1] tnrgoen SIAPLE VAR Qo129
[14) InrLLee SIRPLE VAR Oex2e nisi Inrgeen SINPLE VAR @-a? 1
(3114 IntEQEe SINFLE var @24 THINTRITR SUOROUTING
1114 tNIgGEer ATRAY 8-x22 .1 170 LoG1CaL ARRAY e-221 .1
vice Inigcee ARRAY 0-x3 .1

PROGAIAR UNLT THINTETR CORFILED
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Parent: MAIN THRFND
THRFND(NFL , INTTHR ,SCANLINE,UICB,IND,KOUNT,NR,NC,NB ,MASK , IMGIN)

Subroutine THRFND finds vector thrasholds INTTHR so that about NFL percent
of the scene is in patches. The thresholds are used in subroutine START
to decide boundary; a boundary dacision is made when any channel differs
from its neighbor by more than that channel's INTTHR.

Method: Initially the data is sparsely sampled to estimate the vari-
ability. The initial thresholds are, for each channel K, .15 x (NFL+5)
x A(K)//ND, where A(X) is the average estimated in that channel of the
difference of a point from its left-hand neighbor.

These initial thresholds are updated in an adaptive program which
scans the data checking when a boundary decision would be made. A count
is kept of the decisions non boundary (i.e. pure). When too few pure
points are being found, the thresholds are increased (making it harder
to be a boundary point and thus easier to be a pure point). Wher too
many are found, the thresholds are decreased. Too many or few is
decided by comparing the count NFND with the target TARGET.

Only one threshold is increased or decreased at a time. A count
is kept of the number of boundary decisions which have been made per
channel. When it is necessary to decrease the thresholds, that threshold
which has the highest count is decreased. Dually, when the thresholds
must be increased, that threshold with the lowest count is incremented.
The effect i5 that the algorithm expects all channels to contribute
equally in boundary-finding.

Flags UP and DOWN, initially .FALSE., control exit. When the
thresholds are increased, UP is set .TRUE. When they are decreased,
DOWN is set .TRUE. Another flag, BOTH (initially false) is tested
after each outer loop (the data is scanned in a pattern which spreads
the sparse sample), and then, after the test is set to UP.AND.DOWN.
Thus one more scan of the data is taken after both flags have been set.

PRECEDING PAGE GLAIK (5T vilditD

Bt
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THRFND-2

The scanning strategy has two phases: the initial phase sets NCS =
the larger of 4 or NR*NC/557039. Then data is sampled by nvery
eleventh line and evehy NCS sample along a line to estimate variability.
When the sum exceeds 32245 in any channel or when the loop falls through,
the initial INTTHR estimates are calculated and the second sampline phase
is entered. Let

NSEL = (NR/100)*(NC/100)/2 + 1

N20 = 20 ; if N20 > NC, N20 = NC/2 .

Then the loop structure is the following (in FORTRAN):

DO 665 NN = 2, N20, NSEL
DO 65 N = 1,20,5
IS = N+NN
IF(IS.GE.NR)IS = NR/2
DO 100 I + IS,NR,17
read data for line I
DO 60 J = NN,NC,5
count pure decisions and boundary
decisions per channel.
60 CONTINUE
see if too many (-»80), just right (- 100)
or too few (here) (increase and go to 63)

80 too many : decrease

63 reset counters and target
100 CONTINUE

65 CONTINUE

test BOTH ; if .TRUE., RETURN
set BOTH to UP.AND.DOWN
665 CONTINUE
RETURN

As can be seen, the sample is not sparse: in particular, the 65 loop
nust be executed at least twice, first with NN = 2 and then NN = 2+NSEL
(in a 512x512 image, NSEL = 13). Thus, the rows sampled are (with NSEL = 13)
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THRFND-3

I , 20 , 3% , 5 , 71 , 8 ,
, 2 , 42 , 5% , 76 , 93 , ...
3 , 3 , 4 , 64 , 8 , 98 , ...
8 , 3% , 5 , 6 , 8 , 103 ,
6 , 33 , 5 , 67 , 8 , 100 , ...
22 , 38 , 5% , 72 , 8 , 106 , ...
26 , 43 , 60 , 77 , 9% , 1M ,
31 , 48 , 6 , 8 , 99 , N6 ,

During the first four, every fifth line sample pair is sampled beginning at
sample 2. During the second four, the starting sample is 15. This sampling
strategy avoids staying in any place too long and is fast.

Program Variables
BOTH LOGICAL A flag which, when true, means the thresholds
have been increased and decreased.

CHKIO SYSTEM SUBROUTINE

DELTGT REAL (NFL+5)/100, used to increment TARGET when a test
is made.

DOWN LOGICAL A flag used to tell when the thresholds have
been decreased.

FLAG LOGICAL Used to tell when a pure point has been detected.

1,J,K,N,NN INTEGER DO loop index.

IMGIN INTEGER Input image number.

IND(1) INTEGER ARRAY Error indicator.

INTTHR(ND) INTEGER ARRAY The integer thresholds.

IS INTEGER Starting row in loop 100.

IT INTEGER Used to accumulate initial estimate of variaby ity.

JM INTEGER J-1; points to sample to Teft along a line.

KI INTEGER Index of threshold to be increased or decreased.




KOUNT(ND)

MASK

MAX ,MIN

N20
NC
NCS

ND
NFL

NFLD

NFND

NR

NSEL

NUM

OONUM

READP
SCANLINE(NC,ND)
TARGET
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THRFND-4

INTEGER ARRAY Used toc count the number of times a
boundary decision would have been made in a channel
if all were tested.

LOGICAL If .TRUE., a value of O in channel 1 is
regarded as a mask (i.e. not image data).

INTEGER Used to find max or min of KOUNT to determine

which channel threshold to adjust.
INTEGER Loop 665 paraneter: usually 20.
INTEGER Number of samples.

INTEGER MAXP(NR*NC/557039,4) used to sparsely sample
on the initial estimate.

INTEGER Dimensionality.

INTEGER Input parameter:
believes to be inside patches.

percent of scene which user

INTEGER NFL+5; interval parameter which allows for
"crack” fi1l in logic in start which adds boundary points
not based on thresholding. This has been found to amount
to about 5 percent.

INTEGER Running number of pure points found; tested
against TARGET to decide if too many, too few, or about
right during a pass through the data.

INTEGER Number of Tines.

INTEGER (NR/100)*(NC/100)/2+1; used as loop 665 parameter.
INTEGER Counter during variability estimation phase.

REAL Used to form initial threshold estimates.

SYSTEM SUBROUTINE

INTEGER ARRAY One line of data.

REAL Running count of the target percent pure points.



U1CB(1)
up
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INTEGER ARRAY User Information Control Block

THRFND-5

LOGICAL A flag which is set when the thresholds have

been increased.
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PAGE oo @7 NEVWLETT-PACKARD 321020.01.03  FORTRAN/J00¢ TOE., OCT 13, 1901, 9140 AN

00017 01531000 SCONTFOL SECNENT=AROEBASES

00019 013332000 SUBROUTINE THRFNOCNFL.INTINR, SCANLINE . UICH., IND.KOUNT,WR, NC, NP,
00013 01333000 * NASK, INGIN)

0C013 01334000 INTEGER®2 SCANLINECHC,.ND ), INTTHRCND) . KOUNTI(ND ), BICOCI). . INDC L),
00013 01333000 ¢ QUFFERIND)

0601t 01936000 LOGICAL MASK,FLRG, UP,DOUN,DOTH

0001 01337000 MSEL = (NRZ100)IO(NC/100)/720]

00C2Y 01330000 NCS = [FIXCFLOATCNR)®FLOATC(NG)/32767.717.)

00041 01339000 IF UNCS.LT.9) NCS = ¢

0004¢ 01340000 LULI

00090 01381000 NFLD = RAXOCHINOCNFL®S,00).23)

06061 01342000 NFND = ¢

00067 ©¢1343000 TARGET = NFLDe0O. 01

00071 01344000 QELTCT = TARCET

00072 01343000 00 20 K = {.MNp

00100 01385000 20 INTTHR(K)Y = o

90104 01347000 IR = 1

96106 01348000 uUP = FALSE.

0C11C 01349000 208 = yr

0011¢ 01330000 SOTH = VP

ecite 01331000
0Ci1s 01332000
0Ci14  0133300C
e0lt1s 01334000 90 30 1 = 2,WR,. 11

SARPLE DATA T0 GET INITIAL ESTIRATE

AN

00121 01333000 €

00121 01336000 C EVERY 11 SCAM LINES

0c121 01337000 C

0¢121 01359000 N20 = 20

0¢122 ©0133%000 IF C(N22 GE.NC) N20 = NC/2

0C131l 01380000 00 23 x = 1,.NC

0C¢136 01361000 CALL READPCUICH, IND. INCIN, SCANLINEC(].K),2,K, X, 1, MC. K¢3,1.,1,NC)
0c1T? 01362000 IF CINCC1)Y. LT 0) CALL CHEIOCUICH. IND,INRGIN, IR, NC,I1,30)
00212 01363000 29 CONTINUE

0Cc21t 01364000 00 30 ¢ » 2,NC,NCS

0C21€ 01363000 IR . J-1

06221 01388000 tF C.NOT . AASK) GO TO 3

00233 ©1367000 iF CSCANLINECJ 1) EQ. 0. OR SCANLINE(IN,1).EQ.0) €O 1O 30O
06231 01360000 1 00 40 K = 1,HD

0C2%¢C 01269000 IT = INTTHRCKDI®TABSC(SCARLINECY.K)-SCANLINECIN.K))
00277 01370000 IF CIT.GE.J2243) GO YO 460

00338 01371000 40 INTYHRCK) = IV

00311 01372000 NUR = NUN+L

0C31i 01873000 30 CONTIMUE

CC31e 01974000 66C QONUR = 193 SDELTGT/SORTCFLOATIND))/FLOATINUN)

0C3I2C C12750040 00 %0 & = §.ND

.13 01376000 30 INTTHR(K) = TFIXCFLOATIINTTHRCK))*NONUN)

0C347 01577000 00 46 X = 1.ND

0C3I34 01970000 66 KOUNT(K) o ©

00TEC 01979009 00 €63 NN = 2,M20.NSEL

00363 01390000 00 €3 N = 1,20,9

0CeT7: 01301000 IS = NeNN

¢e3TT 01382000 IF (IS GE . NR) (IS « NR/2

0C4lT 1583000 0O 120 1 * [IS.NR,17

0catc 013204000 80 <€ v s fLNT

0L81T  01%9%0N0 .. READFCULIG, IND, IRGIN, SCANLINECTE, V), 2.k, 1,1, HC, KoL, 1,],NC)
QU4sT 0138400 If INDIEY LT ) CALL THHIOCUILS, THD, 1AGIN, IF,.NC.1:.60)
004¢T 01397000 6% TONTENUE

LRSI ) DI S-SR S WP AVIETS N ST OO S RS )
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PAGE 004t THREND
00470 01788000 90 €0 J = NN.NC.S
00472 01389000 &n s J-1
00300 01970000 IF C . NOT AASK) CO TO 2
00302 01371000 IF CSCANLINECS, 1) EQ.0 OR SCANLINECIN,.1).E8.0) CO TO 60
00324 01392000 2 FLAG = TRUE.
0032¢ 01993000 00 70 k = 1.NMD
00333 01394000 SF CIABSCSCANLINECI K)-SCANLINECIN,K)) LT . INTTHRC(K)) GO TO 70
90333 01393000 KOUNT(K) = KOUNTIK)*]
00361 01394000 FLAG = FALSE.
0034 01397000 70 CONTINUE
90384 <C13¥9000 IF CFLAG) NFND = NFND¢L
00367 01399000 TARGET = TARGET+DELTGY
00373 01600000 60 COMTINUE
00878 01601000 IT o [FIXCTARGET)
00601 01802000 IF CNFND GT.1Te¢3) GO TO %O
00807 1603000 IF (HFND GE.1T-3) GO YO 100
00613 01604000 C 7T0O FEV--INCREASE
90813 01603000 NAX = KOQUNTC(L)
0C82c 01604000 Kt = ¢
00622 01607000 UP = TRUE.
0Cc€2s ol1d080C0 20 61 Xk = 2,00
00611  0l160%000 IF (KOUNT(K) . LE.NAX) GO TO 61
00836 Jl1él0000 NAX = KOUNT(K)
0064t 01811000 Kl = K
00642 01812000 €1 CONTINUE
00644 01613000 INTTHR(KE) < INTTNRC(KE)41
0ce3¢e 01614000 G0 10 €3
0Ce3t 01613000 C YOO AANY--DECREASE
00631 016416000 90 AIN e KOUKTICL)
0634 01617000 K{ = i
00€%¢ 014518000 DONN = TRUE.
20640 01619000 90 €1 K = 2,MD
00663 01620000 IF CROUNTC(K).GE.NIN) GO TD 91
0872 01621000 RIN = KOUNTC(K)
00673 01622000 Kl = X
008r7 01623000 01 CONTINUE
00700 01824000 INTTHRCKE) = INTTHARC(KED-1
00708 01623000 C RESTORE COUNTERS
00708 Q1626000 63 DO 83 X = §.ND
%0711 01627000 03 KOUNT(K) e O
00719 01629000 NFND = O
00717 01629000 TARGET = DELTGT
00721 01630000 100 CONTINVE
0722 01871000 63 CONTINUE
00723 01632000 IF C90TH) CO TO 666
00727 01633000 BOTH = UP AND . DOUN

00733 01834000 663 CONTINUVE
00738 01633000 666 RETURN
00719 01674000 ({1}

N—



SYROGL haP
NARE

(AL
CExlo
(111 ]
]

1o
1

17

"

K1
RASH
Rin
n2e
nes
nFL
aFNe
L1
nn
REMDP
1114
THREND
[ 14

vee
LOGICaL

LOGICAL
INTEGER
INTEGER
INTEGER
INTEGER
INTEGEP
INTECER
LoctcaL
INTEGER
INTEGER
INTEGER
INTEGER
INTECER
nrecee
INTEGER

REAL

LOGICAL

SYRUCTURE

SINFLE Va.f
SUBROUTINE
SIAFLE vaR
SIAPLF vag
ATRAY
SIRPLE VAR
SIRPLE vaR
SIRPLE vag
SIAPLE VAR
SIRFLE vaR
SIAPLE var
SINPLE vaR
SINPLE var
SINFLE var
SINPLE vaR
SINPLE vaRr
SINPLE VAR
SYBROUTINE
FUNCTION
SUBROUTINE
SINPLE VAR

PROCRAK UMIT THRFND COWFILED

ADDRESS
nex21

94226
(22 1)
e-x12 ,1
fex12

[ 22 31

[ 2% 13

[Ex %)
e-23 .1
31
X111
Qex29
a-316 .1
a+x10
e-%10 ,1
sex24

aex?
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NANE

BUFFER
PELTEY
FLAG
inein
INTTHR
18

J

K
KounTY
RAX

L]

NC

L1.]
NFLD
1]
NSEL
oonun
SCANL INE
TARGEY
vice

TYPE

INTZCER
REML

LoGICaL
InTEcER
INTECER
INTECER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTECER
INTECER
INTEGER
INTEGER
INTEGER
REAL

INTECER
REAL

INTEGER

STRUCTURE

APRAY

SINPLE vaR
SINPLE YR
SIRPLE VAR
ARRAY

SINAPLE VAR
SINPLE VAR
SINPLE vaR
ARRAY

SINPLE VAR
SINPLE vaR
SIAPLE VAR
SIAPLE VAR
SINPLE vaR
SIAPLE VAR
SIAPLE var
SINPLE var
ARRAY

SIAPLE VAR
ARRAY

0ex3 .t
[ 123 1)
0222
-4 .1
e-x15 .1t
eex1 4
1 123% ]
Qo227
.“ll ot
0223
Q23
e-27 ol
e-3¢ .1
[ I23% ]
[ 12384
020
QX3¢
e-X1¢ .1
Qex32
-313 .1
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Parent: NUMCLU UNCLE
UNCLE(TSPXL ,MEAN,ND,MAX ,NEAR,SUM, ID)

This program finds the cluster from MEAN nearest TSPXL. Only clusters
with index I such that SUM(I) # O are considered. The distance is
returned as ID, the index as NEAR.

Method: Self-documenting.

Program Variables

ID INTEGER The squared distance (biased by -32768) from
TSPXL to the nearest cluster in MEAN.

IS,IT INTEGER Used to compute the distance.

K,M INTEGER DO loop index.

MAX INTEGER Tne largest possible number of means. Inactive
means have SUM(.) = 0.

MEAN(ND,MAX) INTEGER ARRAY The cluster centers.

ND INTEGER Dimensionality

NEAR INTEGER Returned index of nearest cluster to
TSPXL.

SUM(MAX) INTEGER ARRAY An indicator that a cluster has been
eliminated. If SUM(I) = 0, then cluster MEAN(.,I) is
gone.

TSPXL(ND) INTEGER ARRAY The point to be classified.

PRECEDING PAGE BLANK NOT FILMED,
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PALGE 0020 NEWLLTT-PACKAPD 321020.01.03

02043000

92046000
02047000
00007 092040000

00007 02030000
00007 02031000
00907 92032000
00007 02033000
00011 02034000
00018 02093000
00024 02034000
0001T 02037000
00040 02030000
00047 02039000
00080 020480000
00043 02081000
00071 02082000
00073 02083000
00073 02064000
0007¢ 02063000
W00TT 02066000

SYRBOL AP
NANE

10
17
L]
AEAN
nEar
1§ 14 18

FORTRAN/ 3000

SCONTROL SECRENTAROLBASEG
SUBROQUTINE UNCLECTSPXL. NEAN. ND, NAX.NEAR.SUN, ID)

PARENT

BN

10 =
00 1

PROGRAN!

160900
K = 1,MAX

NURCLY

TSP XL

IF CSURCK) E0.¢) GO TO &

~32740
A= 1,N0

IF CI8.67.10) GO TO
17 & ACANCH,K)-TSPXLCN)

ADDRESS
8-3¢ 1
fexe

[ 22 %}

-1t .1
a-x6 .1
9-212 .1

2 18 o JgelToIY
IF CI8.GT.10) GO TO
10 = I
NEAR » K
1 CONTINUE
RETURN
Eno
TYPe sTRUCTURE
INTECER SIAPLE var
INTEGER SINPLE var
InrEceEr SINPLE vaR
1L R44] 4] ARRAY
inrgcee SIAPLE vAR
InTecER RRRAY

PROGRAN UNIT UNCLE CONPILED

PRECEDING PAGE BLANK NOT FILMED

VITHOUT RECARD FoOR

ORIGINAL Prur i3
OF POOR QUALITY

T 13,

SUBROUTINE UNCLE FInDS TNE CLUSTER NEAR FROR NAEMN
YNICH I3 CLOSESTY TO
THIS MICHT SE. ONLY CLUSTERS K @ITH SURCK) NOT Z2ERO
ARE CONSIDERED.

INTECER®Z TSPXLCNO ). MEANCND., NAX). SURCRAX)

HOV FAR

L]
L1}
sun
UNCLE

9141 AR

18241

INTECER
INTEGER
INTEGER
INTEGER
INTECGER

STRUCTURE

SINPLE var
SIRPLE vaR
SINPLE VAR
SINPLE vaRr
ARRAY

SUBROUT INE

ADORECS
Gex3
[ 121}
-7 ol
e-%10 .1
e*-x3 .1
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APPENDIX A

THE THEORETICAL FOUNDATION OF AMOEBA

The Assumptions. The clustering technique AMOEBA is based on three
groups of theoretical statements. The first group concerns the relation-
ship between the spatial and spectral behavior of the data. Roughly
speaking, it is assumed that spectrally homogeneous groups of pixels
ound in spatially connected blobs represent the real classes. The
second group contains a definition of a new concept (the pair probability
of misclustering) and specifies that in clustering it is desired to mini-
mize this probability The third group concerns the problem of handling
the classification of pixels which are on the spatial boundary between
two real classes.

Group A

Al Real classes exist and can be distinguished using digital
multi-imagery.

Discussion: While it might not be questionable that real classes exist,

it §s certainly not clear that this is the case for their representation

in multi-image measurements. Assumption Al may fail in clu tering if too

much is hoped for in the identification of clusters in the data with

real world classes. On the other hand, the assumption must certainly

be held, at least implicitly, by all who would cluster the data looking

for associations homologous to real classes.

It can also be observed that digital multi-image data consists of
pixels at the atomic level. A consequence of assumption Al is that,
at least for some pixels, it is meaningful to ask what real class a
pixel belongs to. It is clearly not possible to ask this of all pixels.
Pixels on spatial boundaries display erratic statistical fluxuations which
are generally difficult to model. This is particularly true of data
which is one or more cf

(a) data sampled in a particular scan line direction and

subjected to significant band-width 1imited processing
after sampling;

CRE et m e, et LT N RITDY
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(b) pictorial ‘magery with sampling at a density comparable
to the point-spread of the lens system;

(c) multi-temporal imagery in which imperfect registration
has been performed: that is, multi-imagery in which
spatial adjustments have been made so that pixels from
various single images are samples from approximately
the same spatial point.

(It can be noted that Landsat multi-temporal multi-spectral data enjoys
all of these properties.) For digital multi-imagery, we can distinguish,
at least in principle, between mixture pixels and pure pixels (the rest).
Mixture pixels arise as a consequence of finite bandwidth ({(a) or (b)) or
imperfect registration (c). If the data is sampled efficiently and real
classes are found in small groups then many pixels will be mixtures.
On the other hand, if it is to be believed that an adequate spatial
sample is available, then each real class must be represented in at least
some pure pixel associations. In order to make this more precise, we
introduce some terminology.

Let I denote the digital image. The next three assumptions concern
the existence of a set P c I of pixels such that neighboring pixels
in the set are unusually like one another in measurement space. Call
two pixels with spatial coordinates (i,j) and (n,m) neighbors if
[i-n|+!3-m|=1. (Apixel inside the image has four neighbors.)
A path is an ordered sequence Pyoe--sPy such that Pk-1 is a neighbor

of Py for k - 2,...,n. Aset Q is said to be connected if for

each pair p,q in Q there is a path Pys---sPy, in Q with py =p

and Pp=9- It is easy to see that any non-void P c I 1s a union of
non-void maximal connected sets Q » 1 =1,...,k with Qyn Qj =0
for 1 ¢ j ; the components 01 are uniquely determired.

We assume that:
A2 A subset P of 1 has the property that each pixel p e P
is a pure measurement frem a real class.
Call the components of P patches; consequences of the purity assumption
and the discussion above on sampling are the following two statements.
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Rather than formalize the sampling discussion, we simply assume:
A3. A1l pixels from a given patch are measurements from the
same real class. ,
A4. Each real class has at least one measurement pixel in P .

Group 8
Consider a clustering C = {CO....,Cm} of the data. (It is con-

ventent to include a cluster C0 which one might call "unknown"; most

classification rules allow a threshold in which a pixel is not assigned
to any cluster.) In what follows, we call a clustering of a pixel p
in C; meaningful if and only if 1 > 0. Consider also tle unknown

real partition of data into pure real classes {R,,...,R, } plus a
1 k

mixture class RO . These are not simply unknown: they depend on the
observer, and so are unknowable. In clustering, one might hope to
minimize the "probability of misclassification." Unfortunately, since
the clusters are not labellad and, indeed, no labels independent of an
external observer exist, this concept is meaningless.

One observation we can make right away is the following: it is
clearly an error if p ¢ R1 for 1#0 and pe¢ C0 . Tnis is actually

a restriction on the "rejection thresholds", and is used ir AMOEBA to
determine when the clustering is going astray. Here we simply assume
R1 n CO =@ when i#0.

Consider a pair {p,q} of pure pixels. Let r(s) denote the
real class a pixel s 1is in and c(s) the cluster. Since c(p) # 0
and c(q) # 0, p and q are clustered in meaningful clusters, and
there are four cases:
(i) r(p) = r(q) and c(p) = c(q) ;
(i1) r(p) # r(q) and c(p) ¥ c(q) ;
(i11) r(p) = r(q) and c(p) 7 c(q) ;
(iv) r(p) # r(q) and c(p) = c(q) .
The last two cases are errors.
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81 Definition. The probability that two pure pixels are in the
same real class and are clustered differently plus the
probability that two pure pixels are in distinct real classes
and are cluste:ed alike is called the pair probability of
misclustering (PPMC).

B2 Chjective. In clustering pure pixels, it is desired that
(a) each pure pixel be assigned to a meaningful cluster, and
(b) the PPMC {s minimal,

Before examining just how these assumptions arc developed into a
clustering program, we consider the problem of handling mixture pixels.

Group C
The underlying classification rule used in AMOEBA is a nearest
neighbor (Euclidean distance) to cluster center. A clustering program
basud on the model discussed above furnishes cluster centers. The pixels
are tentatively classitied by nearest cluster center and this classifica-
tion is checked spatially. We assume:
C.1.a. The nearest cluster center classification is generally
accurate.
b. Each pixel with two, three or four spatial neighbors in the
same class is acceptably classified.
¢. Each pixel with no neighbor in the same class is not
correctly classified.
Assumption C.1 allows us to locate and mark pixels with one or nho neighbor
in the same class for examinatiuon. Most of these pixels are boundary pixels.
To model this situation, we assume;
.2 Fach pixel on a spatial boundary is, as a measurement vector, a
convex combination of the cluster centers in which two of its
four neighbors are classified.

Although this model ignores both contaminated boundaries and
registration errors, it leads to a method for reclassifying apparent errors
and, unexpectedly, to a cluster-dependent rejection threshold. Note that,
it bo=apt (1 -a)g is a convex combination of vectors p and 4 ,
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then dist(b, nearer of p,q) < % dist(p,q). Suppose p 1is a pixel which
was marked as having no neighbor in the same class. Let 9y Gps 93 and
q be the cluster centers of the classes of the four neighbors of p

which are acceptably classified. (Usually at most two are distinct, and
often only one neighbor is in a valid cluster at this point.) For each

cluster i, let r(i) = %max dist(ci. cj) denote half the distance from
J

cluster center ¥ to the other furtherest away. Reclassify pixel p

in class q; Pprovided dist(p,qi) < r(i) and dist(p,qi) <min {d : d =
i#]

dist(p.qj) and d < r(j)}.

The IDIMS function AMOEBA represents one attempt to follow this
model as far as it can take us. We only make two concessions to reality:
First, the boundary estimation program is good but not perfect, so we
do not actually classify patches as one unit. Second, registration errors
blow the mixture /2 high (that is, in registration-error pixels, the o
depends on the band, but, even so, the distance to the closest is more than
V2 - 1/2 d(p,q) = .7 dist(p,q)).

R



* ATHWDS
* CHKIO
* CLOSEP
* DELWDS
** FCHECK
** FCLOSE
** FOPEN
** FWRITE
* OPENPI
* OPENPO
* pParams
* PRINTP
* READP
* WRITEP
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APPENDIX B

SYSTEM SUBROUTINES

Authorize work data sets (temporary images)
Check for errors after an I/0 is performed
Close a picture file

Deauthorize work data sets

Check for I/0 errors

Close a file

Open a file

Write a record

Open the input image disk file

Open the output image disk file

Prompt for user parameters

Print a message

Read a portion of an image

Write a portion of an image

* Supplied by ESL. Reference "IDIMS Applications Programmers Guide"

ESL-TM1047

** Supplied by Hewlett-Packard. Reference "MPE Intrinsics Reference
Manual" Part No. 3000-90010.

PRECEDING PAGE BLANK NOT FILMED
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APPENDIX C

IDIMS USER DOCUMENTATION

PRECEDING PAGE BLANK NOT FILMED
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AMOEBA

A.

PURPOSE

Performs completely unsupervised clustering and classification of

a multispectral image using a spatial-spectral clustering algorithm.

B.

INPUT AND OUTPUT

The input image must contain between 2 and 16 bands, and must

contain no measurement less than zero or greater tham 127. The output
image is of type BYTE.

C. PARAMETERS

There are 7 optional parameters. They are:

STATFILE = Statistics file name (alphanumeric character) that output
statistics data is to be stored in.

PCTFLDS = The user's estimate of the percent of the image contained
in "fields"--spatially connected spectrally homogeneous
areas; (integer)

Default = 45

CHANIMAP* = Shall a map of band one of the image be sent to the user?
(character)
Default = 'N'

J.ABELMAP* = Shall a map of labels be sent to the user? (character)
Default = 'N'

CLASSMAP* = Shall a classification map be sent to the user? (character)
Default = 'N'

MASK = Shall a value of 0 in band 1 be taken as a mask (i.e., nct
part of the image)? (character)

Default = 'Y'

MINCLUS = User's desired minimum number of clusters. If negative,
exactly -MINCLUS clusters will be sought. If positive, at
least MINCLUS clusters will be sought (integer)

Default = 10

MAXCLN = User's desired maximum number of clusters. May not exceed
98.

Default = 98
D. EXAMPLE

INIMAGE > AMOEBA > OUTCLUST PRECEDING FAZL ELANK 1CT FILMED
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*These are primarily debugging aids to give the user a quick look at the

data and follow the progress of the function. Additional parameters PRINTSL
(starting line), PRINT NL (number of lines), and PRINTSS (starting sample)
are required.

After prompting for parameters, messages to the user will appear

as follows: (assume the image is NB bands and all default options
are taken).

INTTHR = (list of boundary detection thresholds)

#LABELS = (number of distinct "fields" found; a field is defined
as a connected area of non-boundary)

#TSTSTS = (number of "test sets" found. A test set is a set of 5
pixels collected from the same field).

Minimum number of clusters sought: 10 start with nn clusters, mm
test points. kk clusters have non void assignments.

Square of diameters of starting clusters: sss

Number of clusters: cc

Estimate of Pair PMC: pp perceat.

Final number of clusters = ff

(number in 1) ("center" of 1)

(number in ff) ("center" of ff)
There are uu unclassified.

The mask contains aa points.
End function--AMOEBA

The meaning of most of these outputs is explained in the algorithm

documentation (F). The principal user output is the list of clusters
"centers”" (attractors is probably a better term) and the number of image
elements assigned to that center.

E.

DIAGNOSTIC MESSAGES

There are five messages AMOEBA may return:

i.

~

Your image contains a value over 127, Please use MAP to put into
the range 0-127. FUNCTION DOES NOT SUPPORT INPUT DATA TYPE

A value over 127 was encountered.

NUMBER UF BANDS SPECIFIED NOT ALLOWED BY FUNCTION
Number of bands must be at least 2 and at most 6.
EXTERNAL FILE COULD NOT BE ACCESSED

The STATFILE name is already in use.

SPECIFIED NON-IMAGE FILE PREFIX INVALID

The STATFILE name contains more than 8 characters, or is otherwise
invalid.
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5. INPUT IMAGE SIZE EXCEEDS FUNCTION CAPABILITIES

The input image is tuo wide for even one buffer on input and one
on output. Use MOSAIC to segment the image into strips. (The
number of bands and number of lines do not matter, ounly the number
of samples).

Additional messages may be returned if I/0 problems are encountered
during operation of the function.

F. ALGORITHM

The clustering and classification function AMOEBA is based on a
simple model for image data. In the model, the concepts of boundary, field,
and classification are defined, and assumptions are made about the accuracy
of a clustering in terms of the classification. The classification is
based on a spatially modified nearest neighbor classifier (Euclidean distance);
to train such a classifier, one needs to know only the number of classes
and the class "centers". The actual function proceeds in steps as
follows; subroutine names are given in parenthesis:

Find boundary detection vector thresholds (THRFND):

Boundary detection is based on vector gradient thresholds (rather
than a norm threshold or other one-dimensional decision rule). Thus one
threshold is determined for each band. Initially the image is sparsely
sampled to estimate with each band contributing about the same number of
boundary decision estimates. These thresholds are passed to the next
step.

Find connected sets of non-boundary (START):

The data is scanned three lines at a time (in a circular buffer),
and a circular buffer of labels is created. A boundary decision results
when a point and its neighbor differ by more than the threshold it any
band. '"Cracks" are filled in, and intervals are located on each new
labels line. These are then connected to the previous line of labels, and
the previous line written to disk. The resulting intermediate image
contains -32768 (the smallest 16 bit two's complement integer) marking
boundary, or n (which starts at -32767 and 18 incremented) labeling
connected sets of non-boundary. #LABELS = n is printed.

Extract test sets and store on disk scratch file (ASELECT)

The labels map and data are scunned, and as large a buffer as there
is memory for is allocated to accumulate samples bearing the same label.
When the buffer fills (or at end of the data), each same-label batch
is sampled, taking every fifth point (from batches with at least 5), and
the sample secs are stored on disk, There can be as many as 64K-1 such sets.
These are passed to the next step. Their number is printed (#TSTSTS). The
temporary labels map is deleted from disk.

Thin test sets and accumulate starting clusters (THINTSTM)

The starting clusters are to be means of samples taken from the same
component of the complement of the boundary. Accordingly, they should
be spectrally purer, since this tends to minimize registration errors
and reduce noise. However, it is out of the question to classify 10,000
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things in 2,000 classes, and then may be even mcre than this many test
sets ({.e., more than 2,000) in a large image. We therefore reduce the
number by (a) removing apparent duplicate means, (b) removing test sets
in which the first sample is relatively unlike the last, and (c) removing
apparent duplicate test sets. The final number of test sets is printed
in the next step. The temporary test set file is deleted from disk.

Find the clusters and their number (NUMCLU)

Firast sort the test sets in increasing order based on the sum of
the odd channel values. Samples from the same test set are in the same
"field", and therefore are from the same real class (on the model assumptions).
Samples spread out in this order tend to be from different real classes.
Errors are made by the classifier when a center attracts points from
different real classes or participates in the splitting of a pair from
the same test set. Therefore, centers which make errors are eliminated.
A running estimate 1s kept of the protability that a pair from different
classes is clustered alike, plus the probability that a pair from the
same real class is clustered differently. The minimum value of this
estimate of the Pair PMC is used to determine the number of clusters and
exactly what they are.

Classify and count (CLASSIFY)

A spatially modified nearest neighbor classification 1is now performed.
Initially, each point is classified by nearest neighbor. Then this
classification is checked for accuracy by looking at the classification of
the four nearest neighbors. Points with one neighbor in the same class
are deemed OK!. Not-OK points are examined w_th the view of reclassification
in the class of OK -~ neighbors, provided this can be -‘one consistently with
the anticipated spectral appearance of a mixture pix. :. N> reclassification
based on spatial content alone is performed. Thar ie, all reclassification
must fit the mixture and registration error model. (ircular buffers are
managed (similarly t-» START), and the checked nearest neighbor classification
is written to disk as a type BYTE image.

Finish (AMSTATS)

The optional STATFILE is written.
G.  COMMENT

The user is advised to be cautious about interpreting any clustering
of image data. Many images, indeed, are not suitable for clustering. If
AMOFBA is selected, the output parameter Pair PMC is a good indication of
accuracy: more than 25 per-zent and the area was probably poorly clustered.

Under 20 and clust.ring was at least self-consistent.

Users wanting to learn more about the method or the uncerlying model
should consult the reference.

H. REFERENCE

Jack Bryant, "On the clustering of multidimeneional pictorial data",
Pattern Recognition 11, pp. 115-125 (1979).
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APPENDIX D

SAMPLE INTERACTIVE SESSION



e ———Y o

OF POOR QUALITY

ORIGINAL PAGE IS

183

[ e T R N B L I N N Y et e L)
t‘.))).:.v);:&2.-;:.()((01JJ
.l)

el Vil R X N R EaIVERE P LRI OISy ol o N B
LB X XalVlali iRl X BTl DIRVIVIVINI UV 2.
[ X Zalal SRR I LIRVTUN X XUTRRUIOR X ¥ 202 ¥ 3
@AALe e s BN NENB - BB~
il L BN CUREE P P L X 2 X 2 LW I N N N W 1
AMAAs v el NMAOABRBINNS NP * s ~+
s s AR ANG AN ~ "B e
warwrs FRBBRBANN BN Sl B e ™
sy £ X 2 3 2 2 X ¥ 2 Lial- -1 STl e bW
e ws A NNMNNARANMNBNN - "NNBOONNN~
A W NRMNNPNNEPNN B ) RSN
P NBRNAMNN NN N & Dol & ~
N WEANNAANRVENRNDI™ ~ 2O ™ |
P s VAN AGANBSRECDNN® S
(P2 Nk 2atatatal 3N BEY. BT SN BN T X PRy N
LI alalalaIVIIEWE NER NSRS 1. [VIUFr" Tar ¥ 3
S s PN B RPN -~ NS
S wws NN S b ) 2Nl s N e
a:-“.z“(:\(()-o‘;:a)o.
4
l
‘

BUFFER(S).

)
c
2
0
9
E

'
'
‘
'
(‘2‘.1\1)1(((“):0()))..
o~ Ladhe IR A SN L AN X 1 F IVE Lol IR IVEVIRN Ral ISRV ¥ XaX X 2
alk -~ lata X - XI¥ . B WM HF B R v s B BN AN
L NHIF>r OB NOND LR T ok K VI LIRVISENE F T LSRN .T N KXol

T2
UNCTION SAROEBA

o v e O\ vt o po L W Msssws ws v s s NN RN
AN ccne - ARABAN BB v BNNN s AN
U PN e e e e e RN s s v NN BB AN

= - BEXT» dddd d O PWes wn s el N PMNNW NAAAAN
WHAOD RN EIDOOIDE s .t.t&“o v 1 OOl yelwrs « wH AN
G- C - gaacla ‘““t‘ ‘(’/530“ Kol Y B ¥
EDJu Wddd bl B s s v ™ SNO NN 4B
CADW DOODOLIWWWW~ L ARSI IR RISl B L Jo 17 L £ - AR RETOR Y
ACCQO TALCTABOOOW e « W NN LONE | CPNT | 1 B s

fad- 1 "V TR T 'R RSO TTIW) W BB B MM N\NMMNO A
o W Wittty (-4 L)l 1 4PN NEMNONmN e « Ay
(-4 _{-1-¥-Y-Y-Y-1-{.4-.%- 1. {"] tENT ) ~ ™ TN OOO ¢l
(gl ‘RO R EPEWI R IV IFTITE DA v ™ AN O O i R

[ L | (AL TA T4 1 ITN LEE N A SRNRVIEIE R L £ WEREEL W W TN T 3
QWLIW VIS JIWWWWWD S el s s AN O s A AAAAs )
CEEF T XERErirr—-n S~ s el S AW AN R v w Tl
Lol 1ot Aedeiaiet.t T £ 2 4 LI L L DVE Y -1 - R L VA Y X X Xala VXWXl

O O 4 Of OF Cf O 9= 4t 2tt bt 0ot & LR Lok T WL 'O N SRR K Lalvre T, PUR Y
- X - | d ol o M pbdatals vv ~ NN St s e U N

GOWONLWVOWWWWIWE W ~ ™ « O : rweall™ | $Nwe o s v
- -l ol el e vad d OE L R IR SN A K RVl W W e I L B T S S
wIO KUK EALGLOLADL O o™ ~ B BT B o 2 a L v s e
FdddE ACITCTECEEETEN ok B K BEEEY Ealat Vil g R I e e
Ol Xt L I I sme bt 0t bt et [l L RV L L ENE Tk A AR NN P P RN
DRV QQLLVILIWOW U T ARG AR (BN & DA
- WR o s U™ L ARG 2 s s e
AW G0 > o

® Jadda V» JJNnaTEd

[--1-]-.] VN

v N
L w
[N TS
Wil et W te
(TS TR T PN T TR TV T T
LCubuuuuaa
Ll alils s
ol U b W
' "9 'S
A
A
LaXal o
A
Ea X o ¥ N
I
(& J1 )
(=T~

W I EXE DZTNDZNITIUUOASNMETNDBRNDO G~ OMEDNIDAEDOO~NMOmONMENOARDNCO—=NMETN O DO
WMl ) Jo b lad L AL Al 24 Al ad ad Ak al sd alE AL AU AN T0 LU JV AT QV 2V T M SU S a1 et o1 4 10T a1 e 1% 112 1V 1V 2V XY 2V RV YV ST TV IV Y

& ZUWNINLDWEZTZDi~Z
NUEE CTORNEZXXori e OX i
EIFr-UXXE IR~ THUK I~ »
L] SRR 3 4 78 -W. |

PR C—=IMNYTNWAOOO~(IMENVANRE T (IM TNWGNDG O IMETDIONDOC =N TN W 6 S = (NP o VIO
ettt OINCICH NG N MM P MMM e T PR T S NN NN NN 8 0 P O WIO B WP CNA A AR A

PRECEDING PAGE BLANK NCT FiLMED



ORIGINAL PAGE IS
OF POOR QUAL'TY

184

LR X B R JE R B EVEIVE Eatalelelal T I IR TN
LI B B ) LK IR IR Va R Badalk I 2 I IR N
-~ %8 N LR EVEVE Ea X I K 2R B J
L N A I R (VR B A B R B R J
LEREEE Ealel JELERVE 25 JEREERRWAE 25 3 > *te
LEER N Eakal BN e S R IE *ErYre e
AR R K Eakal Jb SRV I DIRIRSEY X X X |
LR B B Eal X 2 R ERER L L AR EREPE I I N
n LK K N Xl JR 2 2 2 LRF T LERSRTOIR )
o BB R S BBl ~ W vt - - -4
v BRREDSY- Hellabelaadal NN\ N
L. 2al Kol EEEEEEY F LU LEESRVIVE N o LT
- L 2ol X L N LN R Y L L SRV VL N
w PP R e M WP W,
- e LAk X X ENEELEE " ¥ F LEESLEVE A XUTVL .
z v LRl JE JE I 2K 2 AL AWV IR EAYE 2 -1 - X - b RUTVL W
Ll 4 il R I 6 IR K R RVEWEVE b ald ol b S RN
NOWW latal JX I S 2 B JE BE N NN et -
Q. b b= Lk JE JK R X N B Y ke ATATAYE I
= U kAR L R IR 2 F X E K BN I IR TR TOY T
- =W - IRl PIWEVPS ¥ X 2o N B R N EWIUTWIWRPIWY I
.l - LAARCEVE P IV B Eak X R N N XGRVIPRWE 3 X 2 -
TWIZw T (PEEVY 2 IV ek N B BRIV PIE X X SRR
(&1 g L] w o N W lalalak X J (VAL A B X K 2
= = © L R 2 FNAAARN S - @
QONE «x L A B AVE X & Aalalelalelal B SEWIOTVIVE IECEEEES
BN W R A A Eadad K Lol 30N SLFIVIPTER 2 I TN
<t Q. (R R R Eatalal N X LRI S IIVATIE E R X ¥ J
w - 4 -] o B Zak K Ealalalal R X RVIVIVISTIWIVE X X N X 3
X OC o E £ X Zalalalalelal B K LG O YOIV ORI Y X ]
W e AN AAAAASNRE NOON - Nt - 8BS
O ue U QAN LP P L+ 44+ NNNNNONNN - 000
NOED> QAP ENNpe ed NN NOOQOONN ¢+ P O
2D2W . - AL AL+ A2\ NODONNN e+
dZO O [ X JCOE 3 3 O OONNOON ‘oo Pee |
L0 X © - QO - R ROOONNNNN ettt
PEXNAW N € B - B BOOONNNNN et te - )
Wt W = et BBPHE R QOO N\ Nwowtrs &
O LW uwa vy lalalaloal EoXaliny-2-1 LW L O U E BT ¥ &
W=D OGN NNONN V- werre ol
[ - 22 -4 4., %. g} lalalalaX Raleal X B NN - -2 S R A X X XN
o WMHEXTaCTHALO , i laladalalalalall Jh W W - 3 W S ] DR XXX RT T
0 -y TANAAA . OO0 + N\ - et srreeR
O vowu'a alalalale BINEERE- 1 - X - X N JEEICEITEIFINEG LEIVE X X X X X ]
MmMoXe QO OCOOCOVNCTHROWNDEBMETA™N « SNOOBSE . '+ ‘4P wwteeesd1i
Wil . - Ll dalal B N X 2 X JEEEL N latal B RWISY 3 X N
OO N4+ - - - - Ltk B K N B N N Rl }
3w [ d 71 O 48 -8B s - LEalalal X 20 I N K Rat
D DUWRETHEMEDINPO R BONNL+ BB P rad - BOAAARAAAAAD,
NEr JJEWKE -0 ot o4 v ot vt v O\ @ E I K K N IR 3% B BE I X X Xalalalalolatatad U
RO ED~D K#OQ. “ahrree N K Ralalo X N X Tat T
PVEST DEX (* 1]
[l g 2 - 3=~ 17. ] ‘9332‘3"“‘,3“ =
N MVEV—NZW JONEMOGNMOA SN MAUAECSNMENONORO=NMENOAONO <MD
L) (VR N TN ONIOM MNP v [ el 2] ol o] o1 ol nlied o] 2 AF LV LV AV IV Q¥ X¥ LV IV LV 1 B4 Y S NV 7§
[ )] L v vt oyt o w
- - x ”
L ] . | o

O VOB D QO NI NP DO G IMENGNDON SN EeNOMNENO=NMETINGA.
M IR DR DDDORGET NGO TRNO OO CODC QD D ~t v vt vt vt vt vt gt =t v YOO T YNV
i gl Pt et Yol P gl vt ol 90 yod Tl ot e ert Bl et Yod vl vl el vl gud vt el guf Yl 9od



185

APPENDIX E
SAMPLE BATCH JOB

1. Create, using the Editor, and store the following file:
1J0B Jjobrard
YIDIMS

inputimage>AMOEBA(parameterlist)>outputimage
>END

1EOJ

2. Exit the Editor and enter
: STREAM filename.

3. Return later for results.

In some systems, it may be mandatory tc store the input image (or perhaps
both); someone should be around to respond to requests to hang tapes.
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RICE SCENE RADIATION RESEARCH PLAN

The goal of rice scene radiation research is to develop an under-
standing of the functional relationships between rice and its spectral
characteristics. These functional relationships will be intearated
into spectral - agrometeorological models for use in crop identifica-

tion, development stage estimation, and condition assessment.
CROP IDENTIFICATION
Introduction

Knowledge of the cultural and biophysical characteristics of
crops and their relationships to spectral response are important
inputs to the pattern recognition research effort. For crop identifi-
catior, this research will provide information on what crops can and
cannot be separated using the current and planned sensor technologies,
what additional kinds of measurements are needed, and the important
times and frequency of observations needed to enable crop discrimina-
tion and identification. For the sampling and estimetion research
effort, knowledge of the cultural and biophysical characteristics of
crops which significantly affect spectral response is needed in order
to account for the agronomic factors of mportance in an advanced

dynamic sampling and estimation approach.
Technical Issues

Scene radiation applied research issues in crop identification
which have been defined are:

l. What are the key cultural and biophysical characteristics of crops

(which are potentially observable from remotely sensed data) that




permit separability between crops and identifiability of crop
types at harvest and earlier in the season?

2. How are the cultural and biophysical characteristics related to
crop type manifested in the spectral response observed by existing
and planned sensors such as MSS, TM, and other advanced sensors?

3. What new kinds of observations are needed to improve the estimates
of key crop characteristics shown to permit separability between

crops and identifiability of crop types?
Technical Approach

Crop identification research for rice involves: field research,
canopy modeling, and Landsat data analysis. Field research data will
include intensive agronomic and spectral measurements. Canopy geome-
try measurements and available infcrmation on leaf reflectance and
transmittance will enable modeling of canopies and thus increase the
range of canopy conditions which can be studied with confidence. Use
of field measurements and canopy moceling will enable extension of

that knowledge to the relationship with Landsat M3S and TM data.
Task Descriptions

Identify Cultural and Biophysical Characteristics

Related to Cron Identification

The first technical issue has the following specific objectives:
* Determine the key difference between rice and its confusion crops
in the timing and duration of key physiological and cultural
events,

* Dete~mine the key differences in canopy gqeometry among rice varie-

ties and the optical properties of canopy components,




* Determine the cultural, regional, and environmental differences
among rice and its confusion crops.

* Represent the distribution of the key crop characteristics by func-
tional forms.

A literature review will be conducted to identify planting dates,
regional crop calendars, soil surveys and other descriptions of man-
agement practices. The periodic observations acquired on sample seg-
ments in the United States will also be used to help detail management
practices (e.g. row width, planting dates) and provide more localized
information on planting date and development stage.

When the data have been compiled, the crop characteristics will
be related to geographic region and to other scene characteristics and
management practices. Functional forms will be found which describe

the distributions within and across the geographic regions.

Relate Agronomic Characteristics to Spectral Response

The second objective is to determine how cultural and biophysical
characteristics affect in the spectral response of rice observed by
existing and planned sensors such as MSS, TM, and other advanced sen-
sors, and has two sub-objectives.

* Determine the relationships among key crop characteristics, remote
sensing observables (band means and transformations with current
and planned sensor systems), and background effects (e.g., soil and
water background, atmospheric haze, view angle, and sun angle).

*  Determine which remote sensing observables are predominantly a

function of the crop characteristics of interest and are least sen-

sitive to background effects.




A set of remote sensing observables including MSS bands, tas-
selled cap components, MSS band ratios (e.gq., 7/5), TM bands, trans-
formations of TM bands, and bands of other sensors will be examined.
For all sensors, research into appropriate bands or transformations
for estimation of particular canopy characteristics will be conducted.

The relationships of these remote sensing observables to crop
characteristics ard to scene characteristics which are not of interest
will be examined. To do this, both field-acquired data and data
modeled using canopy geometry and leaf reflectance and transmittance
measurements will be used. Correlations, regressions, and linear and
nonlinear rodels will be used as appropriate to describe the relation-
ship of the remote sensing observables to and the amount of variabil-
ity due to: greer. leaf area index, percent soil cover, green biomass,
development stage, and temporal trajectories.

After the functional relationships have been determined, sensi-
tivity analyses will be conducted on the variables of interest to
determine *he change in spectral response given a certain change in
the canopy variable. This will enable determination of which canopy
and background variables are important in determining spectral res-
ponse.

Finally, the "best" bands or transformations for each of the sen-
sors will be determined to be those which maximize sensitivity to var-
jous individual crop characteristics and minimize sensitivity to
undesired effects. The crop discrimination power of these sets of

remote sensing observables will be tested using multivariate analysis

on data from one or more intensive test sites.




Investigate Potential Improvements Due to New Data Types

The third objective is to determine what new kinds of observa-
tions are needed to immprove the estimates of key crop characteristics
shown to permit separability between crops and identifiability of crop
types. The specific objectives addressing this issue are:

* Determine the functional relationships among key crop characteris-
tics, background effects, and spectral response observable in other
spectral regions or with other types of measurements.

* ]dentify new data types which improve the relationships with key
crop characteristics used for crop discrimination while minimizing
background effects.

To address this issue, spectral measurements must be acquired in
the field and over test sites with sensors other than the current and
planned sensors. Helicopter spectrometer and/or aircraft scanner data
covering other visible and near-to-middle IR regions, thermal measure-
ments, microwave measurements, and illumination/view angle measure-
ments are required. The approach for addressing this issue will
parallel that of the second issue except for the measurements util-

ized.
Data Requirements

The selection of treatments consists of first identifying the
major sources of variation in the growth, development, and spectral
response of rice. These factors include: planting date, variety,
plant population/row spacing, soil conditions, and weather. The

levels of each factor will be selected to sample the range of expected

conditions in commercial fields.




Spectral measurements will be made in controlled plots using the
EXOTECH 100A radiometer and the Barnes multiband radiometer system
(having the TM bands). Detailed agronomic measurements of the crop
canopies including crop development stage, vegetation measurements,
crop condition, soil background condition, and grain yield will be

collected.
DEVELOPMENT STAGE ESTIMATION
Introduction

Crop development stage is important for crop identification and
yield modeling. There are three approaches for estimating crop
development stages: (1) average crop calendars based on accumulation
of days between stages, (2) meteorological methods based on
accumulation of thermal or photo-thermal units between stages, and (3)
spectral methods based on changes in spectral response as a function
of development stage. The goals of this task are to investigate the
use of spectral measurements to determine crop development stage and
to develop a meteorologically-driven stage of development model that

will accept spectral inputs.
Technical Issues

Research issues for rice development stage estimation are:

1. What are the key biophysical characteristics of crops (which are
potentially observable using remotely sensed data) that permit
their development stage to be determined?

a. What are the critical development stages of crops with respect

to crop 1identification, condition assessment and yield

prediction?




2.

3.

b. What are the key differences in timing and duration of key
developmental events?

c. What are the key differances in canopy geometry and composi-
tion related to development stage?

d. How do these differences depend on cultural. environmental and
geographical factors?

e. What are reasonably representative functional forms for the
distribution functions of the key crop characteristics?

What are the functional relationships between development stage

and the radiometric characteristics of crop canopies?

a. MSS bands

b. TM bands

c. Transformations of MSS and TM data

d. Other sensors

How are the functional relationships affected by cultural, envir-

onmental and geographic factors (e.g. variety, row width, soil

type, moisture stress)?

How can spectrally derived development stage information best be

utilized?

a. Development of models which, given spectral plus weather data,
predict development stage

b. Development of models which, given development stage, agromet
conditions, and canopy geometry, predict spectral response

What is the improvement in performance of large area crop growth

and yield models by using spectrally derived inputs (i.e., evalua-

tion of models in the context of a large area crop yield model).




Technical Approach

The general technical approach for addressing the research objec-
tives in the crop development stage area will involve estimation
theory. The radiometric characteristics of rice canopies will be
modeled to determine functional relationships with development stage
and/or time. This development will rely on both ground and satellite
measured spectral data in the MSS and TM bands, and meteorological
data. The trajectories of the development stage of crops in spectral
space will be analyzed to identify variables with superior properties
for estimating development stages of rice. Various estimators will be
examined individually and together to determine their predictive

abilities.
Task Description

Four research tasks must be completed in the area of estimating
crop development stage. Agronomic information of rice must be
obtained describing the key biophysical characteristics that permit
development stage to be determined. The necessary information will be
obtained from technical literature, Texas A& agronomists and field
measurements. The key biophysical characteristics are needed to gain
a physical understanding of problems associated with using spectral
measurements to estimate stage of development.

The second research task involves an analysis of multiyear agron-
omic, spectral, and meteorological data. The development stage tra-
jectories of rice will be examined in spectral/agronomic space to

identify worthwhile spectral estimators of crop development stage.




The third research task involves development of an agrometero-
logical stage of development model that accepts spectral inputs. The
model will be developed using agronomic and meteorological data
obtained from rice experiment stations in three different climatic
regions. The model will be developed to obtain a high degree of
accuracy for the three maturity classes of rice.

The fourth task will consist of development of a framework for
merging the spectral estimators of stage of development with the agro-
meterological model so that the spectral estimates of growth stage

can be used to "correct" the model estimates, if necessary.

Data Requirements

To identify the form of relationship between crop development
stage and spectral variables and to develop initial models, reflect-
ance measurements and observations of development stage at all growth-
development stages for a representative set of cropping practices and
soils are required.

The specific data requirements are:

Reflectance measurements in the Landsat MSS bands and TM bands.

- Rice develoment stage observations.

- All growth and development stages from pre-planting to post-harvest
sampled.

- Frequency of observations at 5-7 day intervals.

- Representatie treatments above sampled (i.e., several soil types,
varieties and planting dates)

- Daily meteorological data, temperature, relative humidity, solar
radiation, precipitation, etc.

- Atmospheric measurements on days spectral data are acquired,

9




After initial model forms have been developed, a larger data set
is required to test and evaluate the models. This data set should be
acquired over 3-5 additional domestic and international experiment
stations at locations having difference soils, weather, and cropping

practices.

CROP CONDITION ASSESSMENT

Introduction

Potentially, multispectral data contains additional information
about crops other than identification. Relatively little research has
been conducted on developing and exploiting the capability of multi-
spectral data to provide information about crop condition and yield.
For example, the ratio of near infrared to red reflectances and the
greenness transformation have highly significant relationships with
leaf area index (LAI). Agronomic variables, such as LAl and percent
soil cover, are frequently required inputs to crop models which depict
limitations imposed on crop growth and yields by weather. Additional-
ly, measures of the presence and degree of stress, such as moisture
and nutrient deficits and disease and insect infestations, are poten-
tially important inputs to crop growth and yield models. Thus, if
agonomic variables related to yield could be reliably estimated from
multispectral satellite data, then physiologically-based crop growth

and yield models can be implemented for large areas.

Technical Issues

The research and development program to assess crop condition and

provide inputs to yield models will address the following issues:

10




- What are the important biophysical variables related to the
condition and yield of rice? Which of these variables can be
potentially estimated using remotely sensed data?

- How are the functional relationships between spectral variables and
biophysical parameters of rice affected by variation 1in soil
background, crop production practices, and environmental

conditions?

Technical Approach

Field measurements which include stress (temperature and mois-
ture) treatments will be used to determine the effect of stress on
biophysical factors. The Suits reflectance model will be used to pre-
dict changes in reflectance due to the changes in the biophysical
characteristics of rice. This information will be used to support
crop identification and to develop techniques for using spectral esti-

mates of crop condition in agrometerological yield models.

Task Description

The two research tasks in condition assessment are to cstermine
the key biophysical description of crop condtion that can be observed
by remotely sensed data, and two determine how these characteristics
can be observed using remotely sensed data. These tasks will be
addressed using literature reviews, historical data analysis, and
field measurements.

Data Fequirements

Data requirements are the same as in Development Stage Estima-

tion.

1
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POSSIBLE MODIFICATIONS OF
THE HISSE MODEL FOR PURE
LANDSAT AGRICULTURAL DATA

by

Charles Peters
Department of Mathematics
University of Houston
Houston, Texas

SUMMARY .

This report explores an idea, due to A. Feiveson, for relaxing the
zssumption of class conditional independence of LANDSAT spectral measurements
within the same patch (f’eld). Theoretical arguments are given which show
that any significant refinement of the model beyond Feiveson's proposal will
not allow the reduction, essential to HISSE, of the pure data to patch summary
statistics. A slight alteration of the new model is shown to be a reasonable
approximation to the model which describes pure data elements from the same
patch as jointiyqaussianwith a covariance function which exhibits exponential

decay with respect to spatial separatinn,
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1. The Basic HISSE Model and its Modifications.

The original inathematical assumptions underlying HISSE are fully described
in [7]. Briefly, they are:
a) The sampled pure pixels are organized into p patches (fields)
and corresponding to each patch j, there 1s a set of spectral

data measurements Xj = (in. coey xJNi)’ where X is the

jk
(perhaps multitemporal) vector of spectral data from the kth pixel

in the jth patch, For each patch j, there is also an unknown

class designation Bj e {1,...,m}, where m 1is known,

b) Tre {(Xj’oj)}§=1 are treated as independent random variables.
The ej have a common unknown discrete distribution

m
Prob [ej =] = op > 0, where £§1a1 =1,

c) Given that Oj =L, X ey XjN are independently normally

i i
distributed with unknown mean My and unknown variance-covariance

matrix QQ.

A prcposed modification due to A, Felveson (3], introduces one additional

matrix parameter for each class. Assumption (c) is changed to

c') Given that Gj =8, X, =

5k T Wy + ej + djk’ where E(ej)

= = \ = =~
E(djk) 0, var (ej, Lys var (djk) by and the

ej’s and djk's are independent normal random variables. Thus

the elements le’ - xij of Xj are jointly normal with

marginal distributions xik ~ N(“z’ L+ wz), and constant

within-patch covariance ccv(Xjk. in) =Ly, for k=i,

oy
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Notice that the original assumption (c) is a limiting case of (c¢') obtained

by allowing Xg = 0. |

For reasons discussed later, we will alter (c') to

by o A 1

(c") The constant within-patch covariance for elements of the

-
T W
j

jth patch is cov (Xjk’xji)

The effect of (c¢") is that data elements from large patches are considered more
weakly correlated than those from small patches. Assumption (c') is perhaps

more appropriate if the correlation between pixels of the same patch is really
independent of their spatial separation, while {c") is better if the correlation
falls off rapidly with spatial separation, on account of the preponderance of
spatially distant pairs in larger patches. Calculationc re presented in Section

4 to suggest that (c") is a reasonable approximation t. the average covariance
between rairs when the correlation decreases exponentially with spatial separation.
In Section 3 theoretical arguments are given whichseverely restrict the covariance
models for which the patcn mean vector and scatter matrix are sufficient statistics
without, however, eliminating (c¢') and (c"). This is an important consideration,
since procedures like HISSE are feasible only if the spectral information in patches

can be summarized in a small number of statistics.

2. Numerical Procedures for th. Alternative Covariance Models.

The like'ihood function and iterative procedure for the current version of
HISSE are given in (7] and will not be repeated here. For covariance models

(c') and (c"). The likelihood functions is

m
L = F Tog £ a,f (X,) = _g log f(X.)
SR A !
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where the model (c¢')
-N.-1
)

| —

_ 2" ) 1
fR(XJ.) = Il e, + ijgl expl- 7 QR(XJ.)]

' -1 T -1
and QX)) = tri 55+ ylmeou ) (g 45 0) ™ (s, )

while for model (c")
]

_ 2 ‘_2' ‘l "
fz(xj) = 1y, by + L, expl- > Ql(xj)]

-N.-1
-

" ey =1 T -1,
and Qi(xj) - trv'L Sj + NJ(mj “g) (W2+X2) (mj UQ,).
In both these expressions mj and Sj are, respectively the patch mean and

scatter

Thus for both of these covariance models the patch mean and scatter are jointly
sufficient.

The unconstrained likelihood equations for model (c") have the form

(1.1) n, = “afety)

(1.2)

u, = 1 o

o A W
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f (x.) fo (x,)

(1.3) Y, = mﬁ S5/ r NUR) ly
p fQ(X) P f (X))
(1.4) f =y "‘“)"‘“1)/3 X, )
N J J

where the new parameter &, 1s devined as Xg M7

The expressions on the right of equations (1.1) - (1.4) are appealing in
that they are averages of quantities whose expectations, given ej = e, are
the parameters on the left. In additioq. the successive substitutions scheme
suggested by equations (1.1) - (1.4)isaslight variation of the generalized
£-M procedure cf Dempster, Laird, and Rubin {21. For covariance model (c'),
the likelihood ejuations o not sugge.t a natural iterative procedure and it
appears that the generalized E-M procedure has no simple formulation,

To be consistent with the original interpretation of the parame:er T,
as a variance-covariance matrix, it is necessary to maximize the likelihood
subject to the additional inequality constraint QE 2 wQ. Since a solution of
equations (1.1) - (1.4) need not satisfy this constraint, maximizing the likeli-
requires a much more complicated numerical procedure.

hond subject to 1, > U

Py

4
The condition Q > ¥, is equivalent to a set of scalar inequality and nonlinear

equality constraints, and numerical procedures for such problems are generally
very slow to converge, The unconstrained maximum 1ikelihood procedure is
appropriate if u. in {c") we merely assume that cov (in‘xjk) 1s the same for all

i and k, without introducing random variables ej and djk‘

3. Covariance Models for which patch mean and scatter are sufficient,

Let X = (X1t---iXN)nYN be a matrix whose columns are jointly normally
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distributed n-vectors. We are interested in characterizing those families
of distributions of X for which the statistic (m,S) 1is sufficient,

T

where n = X] + ...t XN and S = X]X] + oo 4 XNXL. We begin by recalling

the following definitions [4, p. 321.

Definition: Let G be a group of homeomorphisms on R". A function T
defined onkn is invariant under G if T(gx) = T(x) for all «x ckn. g € G.

T is a maximal invariant of G if T is invariant and T(x) = T(y) implies

that there is a g ¢ G such that y = gx. A measure X is invariant under G

if ag =1 for all g e G, where Xg(E) = A(g(E)).

Lemma 1: Let elements of ﬂfm be represented as x = (xll---lxN) and let

eT = (1,1,---,1)]xN. For each N x N real orthogonal matrix u satisfying
ue = e, Jlet gu(x) = xu. Then T{(x) = (m,S) = (xe,xxT) is a maximal invariant

of the group G = {gu}.

Proof: T(g x) = (xue, xu(xu)') = (xe, xx') = T(x). Thus T is invariant.

Suppose that T(x) = T(y) so that xe = ye and xxT = ny. If x(i) and y(i)

denote the ith rows of x and y then x(i)x(j)T = y(i)y(j)T and x(f)e = y(i)e
for all i and j. This implies that corresponding rows of x and y have the
same Euclidean norm and form the same angle with the vector eT. In addition, the
rows of x describe the same set of angles in ﬂ{N as do the corresponding rows
of y. Thus, by carrying out parallel Gram-Schmidt procedures on

T KL T Ly

{e , x' 7, and ‘e it is easy to construct an

T (1) (1)

orthogonal matrix u such that eTu =e and x ‘u =y for each 1i; that

is, such that y = g,x- Therefore T 1s a maximal invariant.
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Example: Any linear function T defined on ﬁf 1s a maximal invariant under
the group of translations by elements of the kernel of T, In fact, most of
the results in [6) characterizing 1inear sufficient statistics depend only on
this aspect of linearity,

If T 1s a maximal invariant then any invariant function on ‘[b is a
function of T(x). Moreover, a function ho T on ”{n is a maximal invariant
if and only if h 1is one to one on the range of T. In the theorems which
follow we shall require that T be a continuous open mapping, in addition
to being a maximal invariant. The following 1emma shows that to some extent T

may be cho.en for convenience, with affecting the property of openness.

Lemma 2: Let V be an open subset of ﬁﬁn let G be a group of homeomorphisms
from V to V and let P and T2 be continuous maximal invariants of G

defined on V with values in ﬂv“. If T1 1s an open mapping then so is TZ'

Proof: Since T2 and T] are maximal invariants, there is a one to one

. _ -1 _ -1
function h:T](V) + TZ(V) such that T2 = hT]. Since h = T]T2 on TZ(V)'
Tz is continuous and T1 is open, n is continuous. By the Brouwer invariance

of domain theorem [8, p. 31 h is an open mapping, Therefore, T2 1s also open.

Theorem 1: Let V be an open subset of ﬂf‘. let 7r[ be a homogeneous collection
of finite Borel measures on iln, and Tet X be a fixed element of7?z. Suppose
that A(V®) = 0 and A{U) > 0 for each nonempty open subset U of V. Let

G be a group of homeomorphisms from V to V such that A(gB) = 0 whenever

2(B) =0 and g ¢ G. Suppose that fu is a continuous representative of %%

for each u c';;l and that T:V -+ ”\m is a continuous open maximal invariant of
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G. Then T s a sufficiunt statistic for 7 1f and only if each fu is

invariant under G.

Proof: Suppose that T is sufficient. Then for each u ¢ 7:{ there exists a
Borel measureable function k“ such that kw-T is a version of du/dx, [1].
b

Let 1w «Pand g . G bhe fixed. The set
U= (x(VIfU(x) z fu(gx)}
is an open subset of B u g"(B), where
B = (x.VIf“(x) 2 k“(T(x))}.

Since X(B) = 0, A(g'](B)) =0 and A(U) = 0. Therefore, U is empty and it follows
that f“ is invariant. Conversely, if each fu is invariant, then for each

1« 1Y there exists a function h, such that f =h - T. Since f is continuous
and T is open, hu is continuous on T(V). Therefore, by {1, Corollary 6.1]

T 1is sufficient.

Corollary 1.1: Given the hypotheses of Theorem 1, if X 1is invariant then T s

sufficient if and only if each ;. « 7' is invariant.

Proof: In general, a density with respect to ) of ug is fug = (fuog)h.

where h is a version of diq/d\. If X is invariant, then we can take h'= 1

to obtain f“g = qug as a unique continuous density of ug, for each u,g. By
Theorem 1, T s sufficient if and only if fug = fu' which is equivalent to
Ug = .
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Suppose that ug « M{ for each pw e , g ¢ G and that © 1is an
r-dimensional parameterization of { ; 1i.e., a one to one function from 73¢ onto
o =0(M) < R". Then there is a homomorphism g+g from G onto a group G
of transformations on  defined by E(eo) = e(e"(eo)g). The following corollary

is clear.

Corollary 1.2. Given the hypothesis of Theorem 1, if A s invariant then T

is sufficient iff G is the trivial group consisting only of the identity mapping
on 0,
To apply these results to the characterization problem at hand, let

X = (X]I---IXN) be a random n x N matrix having one of a given family of

normal distributions and let X(i) denote the ith row of X. We think of

X -y X, as being the observed random vector, but at various times wish to

1 N
consider the parameters

by = E(Xi)
Cij = cov(Xi,Xj)
R(i‘j) - cov(X(i),X(‘j)).

For the open set V of Theorem 1, we take the set of reqular points of

T(x) = (xe, xxT); that is, the set of points x at which T'(x) is surjective
T'(x) s surjective if the matrix (;I) has rank n + 1, which is almost certainly
true for any of the probabilities under consideration as sronas N>n + 1.

Clearly any of the mappings 9, of lemma 1 is a homeomorphism from V onto itself

and T 1is a continuous open mapping on V.‘771 will be the given set of nN-variate

8
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normal probability measures. The invariant measure A of Corollary 1.2 will

1 1 nxn
a member of 7, it may be added without affecting the sufficiency of T for?].

be that given by wu, = 0, Cij =0 if =], Ci' =1 . If X ,is not already

According to Corollary 1.2, and lefma 1, T is sufficient for M. if and only if

(2.1) u(i)u = u(i)

and

(2 2) u R(i!j)ur = R(i!j)

for all i.i and ue¢ U = N x N orthogonal matrices u such that ue = e}.
Now, {2.1) holds if and only if each u(i) = AieT for some scalar '\i' which

is equivalent to by = ot oT by In (2.2) u may be replaced by the larger set

T and

U' = {N x N orthogonal matrices such that ue = +e}. Llet P = %-ee

Q=1-P. Then U' 1is the set of all orthogonal matrices which commute with

P, and (2.2) states that each R("J) commutes with each u e¢ U'. Let w

be an orthogonal matrix such that

I 1 ,014»4-1) _
6kN-1)x1l O(N-=1)x(N-1)

Then U' is the set of all orthogonal matrices u such that wuwT commutes

with wPw and (2.2) holds iff wR("J)wr commutes with wuwT for each u e U'.

Clementary calculations show that wuwT must be of the form
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(1,3),7 .
R = .
R l MR

If follows that (2.2) is true iff each R(1’J) is a linear combination of
P and 0. Therefore, (2.2) holds if and only if each R(1’J) has constant
diagonal elements and constant off diagonal elements, which may depend on i

and j. Thus, there are matrices A = (aij) and B = b(ij) such that

aij if k=212
cov(Xik,XjQ) =
bij if k=28
That is,
var(xk) = A for all k
and cov(Xk,XQ) = B if k=2.

Consequently, A and B are symmetric and we have established

Theorem 2: Let X,, .-+, Xy be jointly normally distributed n-vectors whose
joint distribution is a number of a fami]y'771. Then the mean and scatter matrix
of the X;'s are sufficient for P if and only if for each member of 74{,

(a) the X;'s are identically distributed, and (b) cov(Xi,Xj) is independent

of i and j.

4. Conclusior:
As we mentioned in Section 1 if one thinks of a patch as an approximation

to a field then it is difficult to understand how the within-patch covariance of

10
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speciral measurements from a given paich could be constant but dependent on the
patch size as in {c"). According to the results of Section 3, there is no more
sophisticated covariance medel whose parameters can be estimated with optimum
efficiency using only the patch means and scatters; however, there may be

more realistic covariance models which are well approximated by (¢') or (c').

For example, suppose that a natch is rectangular in shape with multidimensional
spectral information {Xij'i = Je.ory j = 1eo0c} where i and j denote the
spatial line and column number of the pixel producing Xij‘ Suppose further that
the correlation of two observations Xij and Xk2 decays exponentially with

their spati=1 separation; that is,

1. 13- 3. 1
cov(xij,xky) = A li-kigl] Q'Qz’

where 2 1is their common variance matrix and A and B are symmetric commuting
matrices of spectral radius less than 1. Let I be the average covariance over
all pairs of distinct pixels. Then a simple calculation shows that for large

r and s (large patcl size) rs) is nearly a9 A(I-A)°]B(I-B)']QE, $0

that I s nearly inversely proporticnal to the patch size, as is required by (=").
if A and B are positive semidefinite, so that zTXij is always positively
correlated with zTXkL for any z, then the expression just given is an upper bound
for the average within-patch covariance for any patch size. Therefore, the effect

of approximating the exponentiul covariance model with the constant covariance

model (c") may be predictable, and not serious.

N
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Abstract

This report discusses the Akaike Information Criterion (AIC)
with special emphasis on the application of the AIC to mixture
models. The theory and applications of the AIC are discussed.
Mixture nodel simulations and the application of the AIC to a
.large portion of a Landsat segment are presented.
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1. INTRODUCTION

Estimation of parameters in a statistical model is a familiar
and well discussed topic, but a more important topic, and cer-
tainly a more difficult one, is the selection of the appropriate
model. The AIC (Akaike's Information Criterion) is a useful
tool in model selection. It is particularly important in selec-
ting the order of the model or in selecting the number of free
parameters in a model. This report discusses the use of the AIC
in selecting the order of a model and we emphasize the use of
the AIC in de.ermiring the number of components in a mixture model.

After introducing appropriate notation in section 2, we show
that the AIC is an extension of the maximum likelihood principle,
as well as an entropy maximization principle. Section 3 will
discuss the derivation of the AIC. In secticn 4, we give appli-
cations of the AIC to model selection in a number of important
problems and we also introduce the BIC which is discussed in
Hannan [1980]. Section 5 will discuss the application of the
AIC to the mixture models. 1In section 6, we will look at the
effectiveness of the AIC in dealing with the order selection

problem on some 1 and 2 dimensional mixture problems.

2. DESCRIPTION OF THE AIC
We want to introduce the AIC as an extension of the maximum
likelihood method. ILet's begin by explaining why such an exten-
sion is needed. If we consider the case where ti.2 order of a

particular model is determined, then the maximum likelihood

?
e M



method is an excellent method for obtaining an estimate for the
unknown parameters. The maximum likelihood estimate, under weak
assumptions, is a strongly consistent, asymptotically unbiased
and an asymptotically minimum variance estimator of the unknown
parameters (Zacks [1971]). However, in the case that the order
of the model is not known, the maximum likelihood estimator no
longer has all of these desirable properties. The cause of this
difficulty is that the maximum likelihood estimator has a prefer-
ence for mode.s of high order. As the order of the model is
increased, the value of the maximum likelihood function, evaluated
at the maximum likelihood estimate ior that order model, is
increased. Therefore, the maxinum li:elihood estimator will
always have too many parameters.

The use of the maximum likelihood estimator to estimate the
order of the model will lead to an estimate which fits the data
very well (in fact too we'l), but will be a very poor estimator
of the true density function. 1In section 4, we will use histograms
as a concrete example of this problem.

As a possible replacement for the maximum likelihood estima-
tor, we wish to consider an entropy maximization principle. This
approach to the AIC was introduced and developed by
Akaike [1972b, 1973, 1977). 1t has also been supported by a
Bayseian approach in Akaik2 [1978, 1979, 1980].

Let X be s random variable with density function g(x). 1If
f(x) fs any other density function, we can define a measure of
similarity of £ and g by

f(x)

B(g:;f) = Ex log -g—(;'y
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s f(X) : :
which equals /{log §T§T} g(x)dx, in the case of a continuous random
P £
variable x, and which equals log(gi) g4 in the discrete case.
i=1 i

This measure is the entropy of f and g as defined by Kullback
[1968]. It is non-positive and equals zero only in the case that
f = g almost everywhere.

One interpretation of this, in the discrete case, is that for
a sample of size N, the quantity N - B(g;f) is approximately the
logarithm of the probability of obtaining the data distribution
g(x) from the assumed model f£(x).

Let £, a model for the data, be defined by

f(x) = £, a; < x < TPy i=1,",p

1

0 otherwise
\

p
where (I £.) (a +l-ul) = 1. Given that we have N independent
i=1 * P

observations Xyo XopttteXy from f we define Ni i l,-**,p to be

the freguency of observations in the interval a, < x <a and

i+l
define relative frequencies g; i = 1,---,p by g; = N;/N.
The probability of observing the freguencies {Nl, Nz,---,Np}

from the model f is

w = N! le £ 2_..pr
Nl! Nz!-"Np! 1l 2 P
From this we see that
p p
log w = log N! - I 1log Ni! + I Ni log fi
i=1 i=1

and usi.ig the fact that log N! =~ an log n ~ n, then

p P
logw=N1logN~-N- I Ni log N, o+ z Ni +
i=1 i=1 i

n~o

) Ni log fi

R TN———_



N P hlogden b dilog
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i=] N N i=1 N 1
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= N - B(g:;f).
So, N - B(g;f) is approximately the logarithm of the probability
of obtaining the distribution g from the assumed model f£.
From a statistical inference point of view, we wish to find

a model f(y) which will maximize the expected entropy

eq. _ £(yl0(x))
E  B(g;£(-,8(x))) = E, EY log{ 50y }

and this idea is well motivated by example 1.
Let 2(8) denote the value of the log likelihood functicn,

evaluated at the maximum likelihood estimate §,

N o
L log f(x,,0(x,,°"",xy))
el LA ] N

~

2(8) =

AL

and let k denote the number of free parameters in the model. We
define the AIC function by

AIC = -22(8) + %?.

The factor of -2 is introduced for convenience, since in the normal

case
2 2
-2 log exp(—{* = u)_) = lzL:%%Q—%
20 o
Observe, that
E 1ogif¥)) = £ 109 £(y) + (1)
Y gy b4

where ¢ is iadependent of the choice of f. Also, it can be shown
in many cascs, that for ) the maximum likelihood estimate of 8, we

have

AN - 1 N e AR 1

e b
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E, E, log £(y,8) = (2(8) - k/M). (2)

By using (1) and (2), we see that an estimator which minimizes
the AIC, should approximately maximize the entropy function. The
AIC estimate is a choice of parameters (which includes the choice
of the number of parameter) which minimizes the AIC.

There is a relationship between the AIC and certain classical
hypothesis tests. Let mé and m+k6 be the maximum likelihood
estimates for the m and m + k order models. Under certain
regularity conditions we have that 2(m+k§) - l(mé) is asymptotically
Xz(k) (Rao [1973]). 1In the case that this holds, one can apply
the Neyman-Pearson likelihood ratio test, and for a particular
level of significance this would be equivalent to use of the AIC.

The Neyman-Pearson theory is designed to handle a particular
type of conposite hypothesis test and is not applicable to a variety
of situations. In contrast to this, the AIC has wide applicability.
It can be applied in the comparison of different types of models
and can be applied when the Fisher Information matrix is singular.
We consider the AIC as a simplification of the usual hypothesis
testing approach to model building.

A second way to think about the AIC is as a penalized likeli-
hood estimate. There have been a numbcr of penalized approaches.
Good and Gaskins [1971] and later Tapia [1978] introduced
roughness penalties for estimators in infinite dimsnsional spaces.
Redne; [1980] and Rossback and Lennington [1978] discuss penalties
on mixture models. .

The AIC approach to the penalty term is appealing because
of the simplicity and generality of the approach. However, the

approximation in (2) is not valid for mixture models and we need

to investigate this problem.



3. DERIVATION OF THE AIC
Let g(x) denote the true density function and let x,,  YRLRY
xy be an independent ssmple from g(x). Let £(x,8) be our model
for g(x) and let eo be the value of the parameter 6 such that
£(x, eo) = g(x). We will let 2(6) denote the log likelihood
function and § the maximum likelihood estimate. Finally we define

2

- . .
I(eo) Ex{ae log f(x,eo) 8

log f(x,Go)}

as the Fishe. information matrix and

a2

J(eo) = -Exfggggr

log f(x, 90)}

as the negative of the expected value of the Hessian of the log
likelihood function.

If we assume that I(eo) is a nonsingular matrix, then under
certain regularity conditions we observe that I(eo) = J(Go) and

furthermore that
2(8) -oi tr(3(8.) 171(6.))
2N 0 0

is approximately an unbiased estimator for Ex 2(60). It also
follows that

A 1 -1
2(8) - tr(J(e,) I "(6,))

is approximately an unbiased estimator for the entropy. (See
appendix 1.)

since J(8,) = 1(6,), then k = tr(J(8y) I 1(6))) is the number
of parameters in the model and so

E, 2(8,) = E, L(f) - %‘ﬁ

X
and

a = & 2k
-ZEy Ex log f(y, 8(x)) = -2 E, 2(6) + N




We have made two critical assumptions in these calculations
and they are both quite significant. First, we have assumed that
the Fisher information matrix is nonsingular. 1In the case that
it is singular, then the statements above are no longer valid.

What we can say is that
< 8) oL
E, 2(90) > E, 2(8) -zx rank (I(Bo))
o N oy, 2
and -ZEY E, log £(y,8(x)) = -2E £(8) + g rank (1(84)).

These facts will become important when we discuss finite
mixtures, since in that case, the Fisher information matrix is
often singular.

Now suppose that the true distribution of the data is not
in the model. We distinguish between two different cases. Observe
that the true distribution cannot be modelled if we use too few
parameters, but this is not a problem. The maximum likelihood
estimator rarely chooses a model with too few parameters, for these
models do not fit the data. The problem is with eliminating models
with too many parameters. But here we are concerned with models
which 4o not contain the true distribution for any number of para-
nmeters. This is a case in which we almost always find ourselves.
The model seldom (if ever) exactly fits the data. But this does
not invalidate the use of the AIC.

Let us define a parameter 60 to be a choice of 6 which maximizes

E, log £(x]6). When the true distribution g(x) is in the model,

i
i
t
'

then this implies f(x,8,) = g(x). Here we have only that

E, log f(x,8,) = mgx E, £(x|8).

We then have that



E, log £(x[6g) = B, 2(8) ~F er(3™(8,) 1(8,))

and 50 E, E, log £yl8x) e, 2(®) -3 erleey) I1(8)).

If the true distribution g(x) is close to f(xleo). then J(6,)
will be close to I(6,), in which case, tr(J'l(So) I(8y)) = k.
In this case, we use the AIC and expect the AIC to choose a good
estimator of 90.

If the true distribution is not well modelled by f(x]|8),

then we should choose a better model, rather than alter the AIC.

4. APPLICATIONS

The simplicity and generality of the AIC procedure makes it
particularly useful. There are many areas in which the AIC ~an
be used. We want to discuss a very simple application of the AIC
to demonstrate its use, and hopefully, in this simple environment,
we can better understand how the AIC functions and perhaps judge
its effectiveness.

We consider the problem of determining the bin size for a
histogram of univariate data, and we recall, that for a fixed
bin size, the traditional height ol the bins iz a maximum likeli-
hocd estimate. Given independent observations Xy,°°",%y, and an
interval of numbers [a,b], we want to find the choice of bin
size which minimizes the AIC. 1If the interval is divided into p
bins and Ni i=1,«++,p is the number o: observations in each
bin, then the AIC equals (except for an additive constant)

P
-2( I N, log N, - N iog p) + 2(p - 1).
i=1 * :

. MR
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In some examples involving normally distributed observations,
we observe that the AIC chooses a conservative number of bins.

Irn 5 examples, using 100 independent normally distributed observa-
tions for each case, the AIC chose from 5 to 8 bins. This is a
reasonable, if perhaps conservative, number of bins. We can see
from the examples in Figure 1, that the AIC provides a number of
bins which gives a smooth histogram. A larger number of bins could
be used, but not too much larger. Figure 1 is typical of other
examples.

When the sample size is increased, the number of bins chosen
by the AIC is also increased. 1In each case, the resulting histo-
gram is a smooth histogram (see Figure 2).

That the number of bins increases with the sample size, at
first appears to be a problem. How can we choose the order of
the model, if the AIC chooses to use more and more parameters as
the sample size increases.

To understand this situation, it is necessary to distinguish
two cases. The first case is that the true density is in the
nodel for some finite number of parameters. The histogram is an
example of a second type, where the true density is not in the
model. The normal density function cannot be expressed as a
histogram using a finite number of bins. Therefore, for any
finite sample, the AIC chooses a small number of bins relative
to the sample size. »s the sample is increased, the AIC can
reject histograms which have only a small number of bins and uses

histograms with smaller mesh size.
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Figure 1. Graphs of histograms of normal data
using different bin sizes.
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Figure 2. Graphs of histograms of normal data
using AIC and different sample sizes.
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The AIC tends to choose the correct number of parameters
when the model matches the data. When the model does not match
the data, the AIC chooses a reasonable number of parameters to
fit the model, and this number increases with sample size.

We will return to this topic again when we discuss mixture
models. But now let's consider other applications of the AIC.
The theoretical arguments, might give the false impression that
the AIC can only be used in a maximum likelihood density estima-
tion setting, and we snould dispense with that misconception at
;his time. While it is true that our theoretical justification
of the AIC is based on the maximum likelihood density estimation
situation, the AIC can be applied (with prudence) to many situa-
tions involving observations.

One of the first applications of the AIC was to time series
analysis. Hipel [1981] gives a good set of references in this
area and we will reproduce many of them here and add a few new
entries. Autoregressive Moving Average (ARMA) process applitva-
tions of the AIC have been presented by Akaike [1974), Ozaki
(1977), and Lennox, MclLeod and Hipel [1977a,b]. For the ARIMA
process, see Ozake [1977). Applications to the Autoregressive
process were given by Akaike [1979] and Jones [1974]. Finally
Kitagawa [1980) has applied the AIC to the difficult problem of
modelling a time series which possesses a slowly changing spectrum.

There has been some recent work by Hannan [1980] on the
estimation of the order of an ARMA process. In this paper, Hannan
points out that the AIC is not a strongly consistent estimator of

the ¢ -der of an LRMA process. In fact it is not even a weakly

12 C‘_’g




consistent estimator of the order. He defines two other criterion
for estimating the number of parameters in an ARMA process. He
considers the following measures. If p and q are the number of
parameters in the AR and MA parts of the model, then

AIC = 22(8) + 2(p + q)

BIC = 24(8) + (p+ q) 1In N
and R

g(p,q) = 22(8) + (p + q) C 1n(ln N) Cc > 2.

Hannan shows that BIC and g(p,q) are strongly consistent.

While these are valuable theorems, they need to be properly
understood. 1In the case that the model does not fit the true
distribution exactly, the notion of ‘correct order' becomes
meaningless. What we want is a parsimonious use of parameters to
obtain a reasonable fit to the data. This is our overall goal in
many statistical settings. The AIC seems to perform very well in
this environment and so should not be ruled out just because of
these negative results. On the other hand, the AIC may provide
too many parameters in large sample cases.

In Akaike [1973], the author considers factor analysis,
principal component analysis, analysis of variance, and multiple
regression, as other possible areas of application of the AIC.
Kitagawa [1979] has used the AIC to detect outliers. Finally,
choosing the order of a polynomial regression has been considered
by Akaike [1972a)] and Tanabe [1974].

The overall simplicity of the AIC makes it a valuable tool
in model selection and helps integrate the model selection process
into the estimation process. Because of these facts and the

successful experience of many statistical investigators, the AIC

appears to have a bright and useful future as a model selection tool.
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S. MIXTURE MODELS
We will now focus our attention on the problem of estimating
the number of classes in a mixture model. Let X, 0000 Xy be
independent identically distributed observations from a mixture

density. That is, xl has density function

0
m
p(x[e%) = £ o B (x[6D)
i=l
where ag >0 i=1,..-, mO
m
L ug =1

i=1

and Pi(xlei) is a density function parameterized by ei e Q.

From the independent sample {xk}§=1 on Rn, we wish to estimate
the number of classes m and 6 = {a,---, a s By, Gm}.

Given a fixed value of m, we can obtain maximum likelihood
estimates of the remaining parameters in the model using the maximum
likelihood approach. We will not discuss this optimization pro-
blem here, but the reader is referred to a discussion of the EM
algorithm by Redner [19807].

Once we have obtained a maximum likelihood estimate for two
or more classes, we select as our estimate of the number of classes/

a choice of m which minimizes

AIC(m) = -2n(m§) + 2k

where km is the number of free parameters in the model with m classes.
The application of the AIC to mixture models is not as straight-
forward as many other applications. The difficulties arise in

several ways and we will now discuss them.
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Let us suppose that the true model has mo classes. That is,

the mo

component density functions are identifiabie in the sense
of Teicher [1963], and they have a positive probability of being
observed in an independent sample. Under these conditions it is
reasonable to assume that the Fisher information matrix is non-
singular. Although this is not always the case, it is usually
satisfied. Now let us consider the rank of the Fisher information

matrix for the model with m0

+ 1 classes, given that the true
distribution has exactly m’ classes.

What is the rank of the Fisher information matrix? Unfortu-
nately that is not a well defined question, for its solution
depends on how the m':h order model is embedded into the m + ISt
order model. -

Consider two alternative methods of embedding a one class model
into a two class model and let 61 and 62 be one-dimensional para-
meters. The first alteinative is that 61 equals 62, and a, and u, are
arbitrary. In this c.se, the rank of the Fisher information matrix
is 1. On the other hand, if we use another embedding, say a, = 0

and 6, is arbitrary, then the rank of I(eo) is 2. In either case,

2
we are estimating 3 free parameters.

This problem is compounded by the fact, that in practice we do
not know the true order of the model, and the possibility exists
that the I(eo) has full rank. In this case, it would be rank 3, if
the two class model were actually correct.

Fortunately we can use the AIC as it stands and not worry
about the rank of I(eo). Since its rank is not larger than the

number of free parameters (since the number of free parameters is

the dimension of the matrix) we use the AIC as stated.
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We minimize

AIC(m) = =28 (8) + 2 k|
where km is the number of free parameters in the m class model.

We propose to use the AIC even in the -ase that true distri-
bution is not in the model. We have seen with histograms that
the AIC is still an effective tool in selecting the order of a
model and small changes in the data from the model should not
have a strong effect on the performance of the AIC.

We will discuss some simulations that were performed using
the AIC in the next section, but now we wish to consider other
uses of the AIC in mixture problems. Let us consider the mixture
of several multivariate normal densities. That is each n-

dimensional observation has distribution

m

P(x) = I a, Pi(x, My Qi)

i=1l
N ( ) 1 1 -3(x = uF 9;1"‘ - H)
where P, (x, up., .) = e
i 7 R i /37 n IQirffz

m
and I o, =1and a, > 0 i=1,¢¢, m.

- i i

i=1l

. m
The parameters in the model are {ai, My Qi}i=1 and the

number of rixing components m. We may add the additional assump-
tion that, although the covariances are unknown, they are assumed
to be equal.

Choosing between the free convariance model, and the unknown
but equal covariance model, is a problem in choosing the order of

the model. The number of parameters to be estimated in estimating
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the covariance for an n-dimensional multivariate normal density is
Elﬂzi_ll . We observe that the constraint requiring the covariance
to be positive definite does not affect the number of free para-
meters,since given any positive definite matrix, all the parameters
can be varied arbitrarily by some small amount without change to
the positive definiteness.

If we have a model with m classes and n dimensions, then the

number of free parameters in the m covariances is k = m(n)(g b l),

unless the covariances are assumed to be equal. Then we have that
k = Di(n + 1)
- 2

The AIC can be used to determine which of these two models

should be used on any given data set.

6. MIXTURE SIMULATIONS

In order to understand the application of the AIC to mixture
models, we have performed several simulations. The simulations in
one dimension were designed to analyze the performance of the AIC
as a function of class separation. The simulations were performed
with relatively small data sets and we have observed that this
causes the AIC to choose a conservative number of classes. This
is similar to what was discovered in the histogram application.

The data which we generated was a mixture of two normal
densities. The mixing proportions were equal and the true covari-
ances were set egual to one. The only parameters which we varied
were the sample size and the mean values. All of the parameters

in the model were estimated. The covariances were estimated

using the assumption they were equal but unknown. The tabulated

results are in Figure 3 (all of the figures for this section are

in appendix B).
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From these data sets, we observe that the perforniance of the
AIC is indeed a function of the class separation. When the classes
are well separated (mean va‘'ues 3 stand.rd deviations apart) the
AIC unerringly chose the correct number of classes. On the other
hand, the AIC always chose the one class model when the class
separations were small (mean values were less than or equal to 1

standard deviation apart). The AIC performed well for 2 units of

separation.
To test the limits of the AIC, we considered another simula- .
tion. This simulation was composed of 10 repetitions of the one j
standard deviation separation with 300 observations. The results
are contained in Table 1. We can observe two things in this
table. Obviously the AIC consistently chose too fev -lasses for
the model. 1In fact, 8 out of 10 times too few classes were
chosen, and the i(-.ree class model was never chosen. The histo-
grams and estimated density functions for the first two runs are
in Figure 4.
One can estimate the performance of the AIC for larger sample
sizes by considering Table 1. It appears that for sample sizes
in the range of 2000 data points the AIC would choose the correct
model about one-half of the time.
Our final calculations in one dimension involve Landsat data
from one scan line of segment 1618. We use the AIC to estimate
the number of classes in the model and the resulting answer was
three classes. On consulting ground truth, we see that 88 percent
of the data lie in three ground truth classes, and no other ground
truth class comprised more than 5 percent of the scan line. The
results for channel three and the brightness component are pre-

sented in Figures 5 and 6.
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Table 1. AIC values for 10 simulaticns.

No. oF CLASSES

Run NuMBER
1 911.0 914,2 918.0
2 * 918.0 915.1 918.0
3 924.8 927.0 931.0
4 931.4 935.4 939.2
5 * 894.6 891.0 892.2
b 890.6 894.6 898.6
/4 933,2 936.0 938.8
8 924,2 927.2 931.0
9 886.6 888.4 892.2
10 907.0 911.0 914.8

The overall effect of these data sets is to show that the

AI” chooses a reasonable number of classes, considering the sample

£s & sccond stage in our investigation of the application of
the AIC tC mixtures, we investigated mixtures of bivariate normal
density functions. These investigations consisted of simulations
with three and five bivariate normal densities at several different
separations, and also, the estimation of the number of normal
classes in a portion of Landsat segment.

We initially investigated a mixture of three normal classes
at various separation. For simplicity of the example, we generated
classes which had equal probabilities and which each had the identity
matrix as its covariance matrix. As in the one-dimensional examples,
we varied the means in the simulations and estimated the covariances
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under the hypothesis that they were equal but unknown. In Figures
7, 8 and 9, the true values of the means, the values of the AIC
for the different models, and a graph of the true density function
are displayed. From the table of AIC values in each of the tnree
examples, one can see that the AIC chose the correct number of
classes except in Case III where the true mean separation was
small and Case IC. Although the classes are well separated in
Case IC the AIC chose the fourth order model. This type of error
is to be expected to happen a certain percentage of the time.

We extended our investigation to mixtures of five normal
classes. Again the proportions of the classes were equal and the
covariance of the five classes were egqual to the identity matrix.
In Figures 10 and 11, we see the true mean values, the values ol
the AIC for the different models and graphs of the true density
function. One thousand sample points were used since we must
estimate 17 parameters under the assumption that the covariances
are unknown but are equal. Again we see that the AIC chose the
correct number of classes when the populations are well separated
and chose too few classes in the case that there is considerable
over lap between classes.

Let us now consider a more realistic data set. We take a
Landsat segment for this purpose and we selected segment 1633 for
this test. Using ground truth data, we selected the pure elements
of the scene. We define a pixel to be a pure pixel, if it has
neighbors which are all of the same ground truth class. The data
set was reduced in dimension by the usa of the Kauth transformation
to the greeness and brightness plane. We used the first 20 percent

of this two dimensional data set to form our working data set.
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We modelled this data set, which comprises 1966 data points,
by a mixture of bivariate normal density functions. During some
of our calculations of the maximum likelihood estimate, we
observed that the maximum likelihood iteration was proceeding to
a singularity of the likelihood function. This not only causes
numerical problems but completely invalidates the use of the AIC
to determine the number of classes. Singularities of the Jikeli-
hood function must be avoided. There are several methods for
avoiding the singularities of the likelihood function. The
method which we implemented was an application of a penalty term.
This penalty term forces the likelihood iteration to avoid the
singularities of the likelihood function (see Redner (1980)).

This type of adjustment to the natural maximum likelihood
iteration is often necessary. Since the data is discrete, that
is the data takes on oaly integer values, this is a common problem.

With this adjustment, the maximum likelihood estimate for
various numbers.of classes was calculated. Table 2 contains the
AIC values. It was not possible to completely determine the
correct number of classes using the AIC due to limits on machine
time. But the reader can observe from these numbers that the
number of classes is quite large. With 15 classes in the model,
the maxirnum likelihood estimate for each parameter is based on
approximately 22 data points. Furthermore it appears that the
true number of classes, as determined by the AIC, might be con-
siderably larger than 15. This is unacceptable for the type of
application for which this is intended. One would expect that the
number of c'asses chosen by the :.IC for a full Landsat segment

would be much larger (perhaps two to four times as large).
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Table 2. AIC values for Landsat Segment

No. oF CLASSES AIC VaLues BIC VaLues

7 33194 33423
8 33130 33392
9 33126 33422
10 33078 33407
11 33078 33441
15 32954 33511

This brings us back to our previous remarks concerning the
consistency of the AIC and the tendancy for the AIC to choose a
large number of classes, when the true model is not a good approxi-
mation to the data. Because of the poor showing of the AIC in this
example we extended the experiment to consider the BIC. The results
of these calculations are also in Table 2. From these numbers, one
can see that the. trend of the AIC to choose a large number of classes,
is not reflected in this table of BIC values. In fact, the choice
of 8 classes by the BIC, appears to be a much better value for the
types of applications for which the model is intended. Figure 12
contains the maximum likelihood estimates for the model with 8
classes and also contains the scatter plot of the 1966 data points.

In response to the poor showing of the AIC, we considered one
final experiment. This estimate of the parameters and the number of
classes proceeded in a three step process.

First the maximum likelihood estimate for models with different
numbers of classes was calculated under the common covariance assump-

tion. The maximization of the likelihood function with the equal
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covariance hypothesis is a very stable optimization problem. It
also has fewer local maxima and so it is much easier to find the
global maxima.

The second phase of the procedure involved determination of
the number of classes to use in the model using the AIC. 1In this
case, the AIC chose 7 classes for the model. Table 3 contains the
AIC values.

Since it appears that the common covariance assumption is
not valid for Landsat data, in the final step we fixed the mean
Galues and iterated on the proportions and the covariance. The
covariances being allowed to vary independently. This provides a
significant improvement t- the fit to the data according to the
AIC. The new AIC value is 33194.

Although the XIC has performed well in numerous applications,
we observe, in the application of the AIC directly to a large
portion of a Landsat segment, that it provides a model with a
large number of classes. The cause of this problem is probaovly
the unboundedr.ess of the likelihood function. The use of the
penalty term was not sufficient to completely rectify this situa-

tion. We should emphasize that it is the type of application which

Table 3. AIC values for the equal covariance model

No. ofF CLASSES AIC
6 33546

7 33276

8 33280

10 33292
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we have in mind and the large amount of con, _.tation which has to
be done which causes us to conclude that the answer given by the
direct application of the AIC, is not suitable. 1In addition, the
ratio of the number of parameters being estimated and the number
of data points available is not particularly large. All of these
considerations icad us to consider possible alternatives. The
most natural alteration of the AIC is the BIC, which gives us a
more desirable number of classes along with scme indication that
it might consistently give the correct number of classes when the
model is correct and when we hav: large data sets. The other
possibility is given by the three step applicat’on of the AIC to
the mixture problem. This approach is appealing because of the
stability of the natural fixed point iteration if the covariances

are ascsuned to be unknown but equal.

7. CONCLUDING REMARKS

The AIC has shown to be effective in a wide range of appli-
cations. These demonstrations now include the mixture density
problems. For some (lata sets it appears that the BIC may provide:
more useful results than the direct application of the AIC. The
authors are optimistic about the possible uses of the AIC and BIC
in determing the number of components in a mixture model and in
determining which of several mixture models to use.

On the other hand, we do not consider the simulations and
examples presented in this paper as sufficient procf of the appli-
cability of the AIC or BIC in model selection for the mixture
problem. 1In particular the AIC and BIC have not been applied to
a full Landsat segment and certainly many seyments must be con-

sidered befnre a judgement on these criterion can be made.
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It is hoped that experiments along these lines will be carried
out in the near future. The application of the AIC and BIC to the
HISSE procedure is a particular experiment that should be carried
out as well as the application of these criterion to MLE methods
applied to profile data.

There are numerous other areas which need to be considered in
the &application of the AIC and BIC to mixture models. The mechanics
of applying the AIC and BIC *o mixture models needs to be considered
further. Since we are dealing with expensive non-linear optimiza-
tion problems to obtain the likelihood estimates, we must consider
the best way to find the AIC or BIC estimates. The suggestion by
Wolf (1970) may be particularly applicable to this area. Wolf
suggests the use of certain non-parametric clustering schemes to
assist in obtaining initial guesses of the MLE.

Finally we reiterate that the AIC and BIC can be used in a
wide range of applications. We have emphasized the use of the
AIC and BIC in model selection for mixture problems because that
is a problem in which we have a deep interest. However, the use
of the AIC and BIC in other areas should not be neglected and it
is hoped that the applications which we suggested in section 4

might lead to other uses of these criterion.
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in section 3.



ORIGINAL PACE IS
OF POOR QUALITY
let g(x) denote the true density function for a random variable
X and let f(x,e)‘be a model for g(x). Let eo be a choice of para-
meters 6 so that

Ex log f(x,eo) = mgx Ex log f(x,90).

In the case that the true density g(x) is in the model, then this
implies that f(x,eo) = g(x).

We also define

1(6,) = E, {2 log £(x,05) * = log £(x,8,))

to be the Fisher information matrix and define

X

J(8y) = - E, { log f(x,eo)}

3636’
to be the negative of the expected Hessian of the log likelihood
function. Let & be the maximum likelihood estimate where 8 is
shorthand for 6 (xl,"', xN), a function of the observations.
Finally we define

N

L 1log f(xk,e)
k=1

L(8) =

A

to be the log likelihood function.
Assuming the true density function g(x) to be in the model

and assuming the necessary regularity conditions, we will show that

E % (85) ~ E 2 (8) -grank (I(8;) (1)
and -2 E_ E, log £(y,6(x)) ~ -2 E ¢ (8) + Z rank (1(80)) (2)

Later on we will show that, in the case that g(x) is not in

the model and if J(e ) and I(eo) are nonsingular, then we have that

E 2 (90) ~ E g (8) -—tr {J(G )~ I(Bo)} (3)

-1

~ I~ 2
and -2 Ey E, log f(y,b(x)) ~ -2 E L (B) + tr {J(eo) 1(90)}.(4)
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Recall that by the law of large numbers we have

1 N 2
= I log f(x, ,0,) + =J(8,). (5)
N =1 3638" k’"0 0

Using the central limit theorem we can observe that

5; kgl 25 1og £(x,,680) + N(0,I(8,)). (6)
From the following equation
3 o ,a 1 ¥ oo A
55 % (8) =0=§k£lﬁ1°9 f(xk,e)
JL % 8 log f£(x e)+ll£J 2% log £(x,,8.) (8 - 8,)
N =1 38 AL WS PPY k70 0

we calculate, using (5) and (6), that

N J(65) (6 = 64) - N(0,I(85)).

If J(eo) (respectively I(eo)) is a singular matrix, then we
have a singular normal density. In this care let P: " + rR" for

T T

m > n be a matrix that P'P is the n x n identity matrix and PP

is the projection onto the range cf J(Bo). Then
a T
VN PJ(8,) (8 = 84) ~ N(0,PI(84)P")
where PI(GO)PT = PJ(GO)PT is nonsingular. From the definition of P,

/N PI(8,) pT p(f - 8) - N(O,PI(BO)PT)
and so

1

/N P(B - 8) ~ N(O,(PI(8,)PT) L (PI(8,)PT) (RI(8)PT) ™) (7

Now observe that
N

I log f(xkoé)
k=1

N 1
I log f£(x,,08,) ~ &
oy x'% T §

AL

1
-3(8y = 8) J(8,) (8, - 8)
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and so by taking expectations

- - - 67 -8
Ey2(8y) ~ Ey2(8) E, (8, = 6)°3(84) (8, = §)

1
F)
1
2
1

- " - - AT T T - A
EL(8) - 3 E (00 -~ )T TR a(e,) PTR(8, - )
= B 2(8) -4 E, tr [(23(8,)PT) (R(8, - §) (8, - )T PT)]

Therefore,
EgL(80) = Eg(§) - s tr [(B3(85)PT) (p3(0)PT) 7

T T, -1
(PI(68,)P") (PI(6,)P") ] (8)

a 1
Exk(e) - 33 rank (I(Go))

since J(eo) = I(eo).

We see that £(6) is a biased estimate of 2(90) and this bias
is on the average equal to%rank I(eo) .

We now progeed to establishing (2). First observe that

Ey log fl(y,8) = flog f(ylé) gly) dy

~ Jlog f(y,8,) gly) dy + fa;g {log £(y,85)} g(y) dy (8 - 8,)

1,2 T, 32 o
+ 5(8 = 8,) faeae’ {log f(y,eo)} g(y) dy(6 - 6,)
l,2 T A
l,a T.T T.,2
= Ey log f(y,eo) - 5(6 - BO) P PJ(BO)P P(6 - 90)

Taking expectations we find that

E, E log f(y,8) ~ E, E, log f(Y.eo)

Y y

1 T, -1 T
- St ((PI(84)PT) "M (PI(8)PT))
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1
= E, Ey log f(y,eo) - ¥y rank I(eo).

1
= Ey log f(y,eo) - 3§y rank I(eo).

We observe that equation (l) is egquivalent to

A 1
Ey log f(Y.Go) ~ Ex(l(e)) - 35 rank I(eo)

Putting these two estimates together

E, B, log £(y,8) ~ E 4(8)-F rank 1(8)
which establishes (2).

Let us now consider the case that g(x) is not in the model
and so 60 is a choice of paramete.- s which maximize Ex log £(x,0).
Let us also assume that the Fisher information matrix 1(60) is
nonsingular.

Observe that equation (6) still holds and we have immediately
that

E2(68,) - E 2(8) - gtr{(PI(6,)PT) "1 (P1(6)PT))
If J(eo) is nonsingular then

E 2(80) ~ E 4(8) = 5 tr(3(8,) 7 1(8,))
and this gives us equation (3).

We can also observe the (7) holds, that is

E, Ey log £(y,8) ~ E, Ey log £(y,6,)

1 T -1 T, -1
—mtr((PJ(eo)P ) (PI(BO)P )
and also
1 T, -1 T, -1
Ex Ey log f(y,eo) ~ Exﬁ(g) 'mtr((PJ(eo)P ) (PI(BO)P ) T.

Combining these facts one gets that
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E, E, log £(y,8) ~ sxz(ﬁ)-% t:(pa(eO)pT)‘l(px(eo)pT)

Again if J is nonsingular, then P = I and

A - a -l -1
E, E, log £(y,8) ~ E2(8)=§ tr 3(6g) ™" 1(8y)

and this establishes our final result.
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Figure 3. Tables of AIC values for 4 simulations.

Each table contains AIC values for varying
numbers of classes and class separation.
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CASE 11 TABLE OF AIC VALUES (500 POINTS)
True Mean VaLuss No. oF CLasses AIC VaLues
Cuass 1 3.12, 1.00 . 1 3514.4
Ciass 2 1.00, 3.12 2 3471.0
Ciass 3 3.00, 3.00 3 3467.4 ©
y 3472.4
5 199
s !

CASEL 11, MODEL MIXTURF DENSITY.

Figure 8. Mixture model density and table of AIC wvalues.
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Figure 9.

CASE 111

True Mean VaLues

3.12, 1.00
1.00, 3.12
2.06, 2.06

AL PAGE 1S
g‘:‘%‘goR QUALITY

TABLE OF AIC VALUES (500 POINTS)

No. of Ciasses

1
2
3
4

111. MODFL MIXTURE DENSITY.
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AIC VaLues

3285.8
3250.2 ¢
3250.8 0
3256.4

Mixture model density and table of AIC values.
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CASE Iv TABLE OF AIC VALUES (1000 POINTS)
Taue Mean VaLues No. of Ciasses AIC VaLues
Cass 1 1.00, 1.00 1 8702.4
CLass 2 5.24, 1.00 2 8560.6
Cass 3 5.24, 5.24 3 8564.4
Ciass &4 1.00, 5.24 4 8ul1.4
Cass 5 3.12, 3.12 5 B8B15.4 ¢
6 8321.6
2
8.‘ [ 4

S.260

200

CASE  1v, MODEL MIXTURE DENSITY,

Figure 10. Mixture model density and table of AIC values.
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CASE V TABLE OF AIC VALUES (1000 POINTS)
True Mean VaLues No. or CLasses AIC VaLues
Cuass 1 1,00, 1.00 1 6803.8
Ciass 2 3.12, 1.00 2 6795.6 0
Cuass 3 3.12, 3.12 3 6801.6
Cass & 1.00, 3.12 4 6794.2 *
Cass 5 2.06, 2.06 5 6796.8 0
6 6802.0

R

N\

N
NN

\\\\\\:

CASE v, MODEL MIXTURE DENSITY,

Figure 11. Mixture model density and table of AIC values.

B9



ORIGINAL PACE I8
OF POOR QUALITY

MAXIMUM LIKELIHOOD ESTIMATES

Crass No. PROPORTION MEAN VALUES

.34 149, 26
.08 83, 12
.16 110, 23
21 102, 42
.04 47, ¢
01 104, &7
.07 103, 35
.09 99, 62

00N OV IS WD =

L L
- L]
- L]
90,0+
- .
- L]
- L
2.0¢
- 2
- ¢ »
0 *
"M
L] L]
2 . e
L] 282
34.0 [] [
o see
28 2 ¢
[ L )
[} ”2e .
8.9 20
o830 e 0
2222 o
* 8
s 3 22
.0 L J o o3
$ 58 02220330
$ 2 ¢ 0aeran2s 0 s
¢ s B2
] 09 00994332 7 a¢ . »
2.0 302 9s 82 92 @ ] ]
[ 0UB4Z005004 B " [
e 2 2 L]
29 37 a3 022 ¢S se 2 s
- 2 20002202 23 0 282 0 *3 288 .
.00 o e2essveceiee @ 2 seses 3
. L L LHE . s 008 @
LI L] 2 2 3 220
833344333 %8 0 B9837% 4377 92269 261 2 ¢
- s [ ] 88 7 332 00w 8l3r 2000 e 41429 320
16.0¢ 8] 40 o 4 09 32 s 0 L
L 2 € 3 430842 3 28 9832008834 52 03829 3 ¢
. T E A0 201 a3 20080 7 le 200 L]
[} [ e 020308 @ .
[ [ - | 030 3 233234293 33 »
L] 33 8 82 L 2
22 2 ) 0 2 o0
2 ¢ a3 2 02
e 2
313 32 e82 2 [
23433¢ 3422022300 2 L
---------------------------------- -4 R o 1]
» 0 100. (L) 100 .
*» ”» 139, 00

Figure 12. Maximum likelihood estimates with B class
matter plot.
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