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CALIFORNIA INTEGRATED REMOTE SENSING SYSTEM: LANDSAT LAND-COVER ANALYSIS

FOR THE SAN BERNARDINO COUNTY PROJECT

William Likens, Keith Maw,* and David Sinnott

Ames Research Center

The Landsat analysis carried out as part of Ames Research Center’s San Bernardino County Project, one of four projects
sponsored by NASA as part of the California Integrated Remote Sensing System (CIRSS) effort for generating and utilizing
digital geographic data bases, is described. Topics explored in this Landsat analysis include use of data-base modeling with
spectral cluster data to improve Landsat data classification, and quantitative evaluations of several change techniques. Both
1976 and 1979 Landsat data were used in the project. The Landsat analyses took place between April 1980 and Septem-

ber 1981.
INTRODUCTION

The San Bernardino County Project, sponsored by Ames
Research Center, is one of four California Integrated Re-
mote Sensing System (CIRSS) projects undertaken to inves-
tigate the concept of vertical data integration, or the util-
ization of a data set at a number of jurisdictional levels
(ref. 1). A major focus is the use of Landsat data in a digital
Geographic Information System (GIS) environment. The
use of GIS data as an integral part of the Landsat image
classification process was examined before undertaking data
base applications for San Bernardino County and the San
Bernardino National Forest. Also investigated was the
means by which Landsat can be used as a mechanism to
periodically update data bases.

A data base containing more than a dozen data layers,
including elevation, slope, aspect, soils, land use, environ-
ment hazard, and growth management data, was constructed
by integrating a number of special purpose data bases.
Through hierarchical modeling, many of these data elements
were used to guide a 1976 Landsat land-cover classification
(ref. 2). A similar model, incorporating 1976-1979 Landsat
spectral change data,in addition to other data base elements,
was used in the classification of a 1979 Landsat image. The
resultant Landsat products were integrated, as additional
layers, into the data base.

In the San Bernardino project, the institutional and
technical issues involved with an “industry-assisted” ap-
proach to vertical data integration (ref. 1) are also being
examined. The industry participant, Environmental Sys-
tems Research Institute (ESRI), has performed a major

*Staff Analyst, Technicolor Graphic Service, Mountain
View, CA.

portion of the data-base construction, integration, and
applications development tasks (ref.3). The San Bernar-
dino County Planning Department and the San Bernar-
dino National Forest, the two governmental participants,
have provided several data sets, as well as acting as the
“clients” for the applications studies. The Southern Cal-
ifornia Edison Company provided land-use data sets for the
valley portion of the project area.

Ames Research Center (ARC), through its Technology
Applications Branch, provided Landsat image processing
and technical assistance during the data-base integration
phase. This report describes the Landsat image processing
carried out at Ames to support the San Bernardino Project.

The project study area (fig. 1) consists of the southwest
corner of San Bernardino County, California. The study
area comprises 750,000 acres (1170 miles) and consists
of the urban-agricultural San Bernardino Valley, the brush
and forest covered San Bernardino Mountains, and a por-
tion of the Mojave Desert.

Two Landsat scenes were utilized by the project. The
baseline scene was an August 6, 1976 image originally used
by the Jet Propulsion Laboratory (JPL) for an earlier coop-
erative project between NASA and the California Depart-
ment of Forestry (CDF). The choice of this image, part of
a statewide mosaicked data set including Landsat multi-
spectral scanner (MSS) raw and classified data, as well as
digital terrain, was an essential part of the overall vertical
data integration theme. A near-anniversary date (July 22,
1979) Landsat update image was also chosen to evaluate
changes and data base updating potential. The original un-
manipulated August 1976 computer compatible tape (CCT)
used by JPL for the California Department of Forestry was
obtained for use in the change detection portion of the San
Bernardino project. The processed JPL raw data were not
used for change analysis (but were used during classification)
because of the extensive spectral and spatial manipulation
applied to the data. The 1976 and 1979 images differed in
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several significant ways. First, the 1976 data had not been
subjected to radiometric and geometric preprocessing by
EROS; the 1979 data were in the EDIPS format, with
haze correction and contrast enhancement. Secondly, the
August 1976 image followed an unusually dry winter in
southern California, while the July, 1979 image followed
a wet winter with extensive mountain snow coverage.

Several other data sets for various portions of the study
area were integrated by ESRI to produce a prototype in-
tegrated environmental planning data base. Data sets in-
cluded 1974 and 1979 land-use, photo-interpreted from
low-altitude black-and-white photographs; integrated ter-
rain unit (ITUM) data for the San Bernardino National
Forest (SBNF) area, containing several geologic, cover, soil,
and physiographic data items; a partial extension of the
terrain unit mapping to the valley floor area performed by
ESRI; county general plan support data; and census ge-
ography from the local GBF/DIME program (ref. 4). Many
of these various data sets were registered to an interme-
diate 1-acre grid used during much of the Landsat pro-
cessing.

The 1976 Landsat data analysis is described in the next
section; it is followed by a discussion of the 1979 Landsat
analysis and the 1976-1979 change-detection analysis.
Landsat landcover codes and information about acreages
and accuracies are presented in the appendixes.

We wish to thank the following people for their support
during the conduct of this project: Jerrold Christenson and
Russel Michel, ESRI; Craig Gooch, Ron Maytias, and
Kenneth Topping, San Bernardino County Planning De-
partment; Gay Almquist, James Bridges, Jo Bridges, and
Jeanine Derby, San Bernardino National Forest; Len
Gaydos, USGS/Ames Research Center; Ethel Bauer, Don
Card, and Robert Wrigley, Ames Research Center; and
Douglas Alexander, Frank Croft, and Kenneth Weinstock,
Technicolor Graphic Services.

1976 LANDSAT DATA ANALYSIS

Data Set Description

The August, 1976 scene consisted of two mosaicked
1° X 1° quadrangles from the CDF project statewide data
set (ref.5). This data set was prepared by JPL through
geometric and radiometric mosaicking of 32 Landsat MSS
scenes, most of which were acquired during August 1976.
During mosaicking, the data were registered to a rotated
Lambert conformal conic projection grid, with a nominal
cell size of 80 meters square. The full data set was then
subsectioned into fifty-four 1° X 1° sections to facilitate
file-handling operations during subsequent classification.
Defense Mapping Agency digital terrain files, obtained
from the USGS National Cartographic Information Center,

were used by JPL to generate registered elevation (40-ft
quantization), slope, and aspect files for use in the classi-
fication process. The Landsat MSS data had been classi-
fied using an unsupervised classification process with ex-
tensive pre-classification stratification (ref. 6). This process
was executed by (1) dividing the state of California into
32 ecological zones (or ‘“‘ecozones™), (2) unsupervised
clustering of spectral data within each ecozone, (3) max-
imum likelihood classification of each quadrangle once
spectral classes had been developed for all ecozones in that
quadrangle, creating an ungrouped classified image, (4)
identifying cover types for each of the classes developed,
and (5) creating a grouped classified image consisting of
the aggregation of spectral classes into a land-cover type
categorization developed by CDF. The bulk of the clus-
tering and classification was performed on the EDITOR
image processing system at ARC.

The San Bernardino study area includes portions of four
CDF ecozones, each with about 40 ungrouped spectral
classes. Additionally, elevation data had been used in one
of the ecozones to split roughly a dozen classes at the
5000-ft elevation point into a “high-mountain” zone to
better differentiate conifer types, and a low-mountain
component. A total of 178 spectral classes had been devel-
oped for the study area. Resource labels were assigned to
each spectral class after extensive review of each quad
using the interactive color display. Photo-interpretation
and label assignments were performed by both NASA and
CDF staff. The final grouped classification included 16
land-cover types, with emphasis on forest covers.

The classification produced over the study area during
the CDF project lacked sufficient detail for the SBC project.
This was particularly true in the urbanized valley area, pri-
marily because of a lack of emphasis on stratifying and
developing detailed classes for urban areas. Illustrative of
the problems with the CDF data set was the complete
omission of agricultural land in the valley, which was a
part of the Los Angeles basin ecozone. Since agriculture
was a very minor constituent of the ecozone, no agri-
cultural classes were identified. Brush areas in the valley
were similarly overgeneralized as “urban.”

Because of the ‘‘vertical integration” objective of the
project, it was decided to proceed with the utilization of
the CDF data set despite these difficulties. The relabeling
of spectral classes present in the ungrouped classification
was chosen as the best means of generating an improved
classification within the available time and resources.
Formulating new “spectral class-to-land cover” assign-
ments would allow the development of classes that would
be both more accurate and specifically tailored to the
needs of the County and the Forest Service.

Spectral Cluster Label Modification Methods

A previous pilot vertical-integration project completed
by ESRI and ARC in 1978 suggested a rationale for cluster



relabeling (ref. 7). This project, conducted in the Redlands,
California 7.5’ quadrangle in the east-central portion of the
study area, generated a small test data set consisting of the
CDF 1976 Landsat classified data, 1974 and 1977 photo-
interpreted land use, and several other data sets. Contin-
gency tables were generated between the CDF 1976 un-
grouped Landsat classification and both the 1974 and 1977
land-use data for use in relabeling Landsat spectral classes.
Spectral classes were labeled according to their predomi-
nant land-use category. For those few classes without a
clear majority, compound labels (i.e., grass/baresoil) were
developed. This approach was tentatively chosen for Landsat
class relabeling for the SBC project.

Because of two factors, the task of relabeling CDF Land-
sat spectral classes was split into valley floor and mountain
area: (1) CDF ecozone boundaries treat the mountain and
valley areas in two separate ecozones (the two other eco-
zones present have limited coverage within the study area,
and (2) the major supplemental data sources were photo-
interpreted land-use mappings for the valley floor (1974)
and a separate vegetation mapping (1977) as part of the
Integrated Terrain Unit Map (ITUM) file for the San Ber-
nardino National Forest. Initial relabeling efforts concen-
trated on analysis in the valley area.

Attempts to analyze the original CDF spectral classes in
light of the contingency analysis revealed a much lower
apparent correlation between Landsat classes and photo-
interpreted land-use categories than anticipated, based on
the earlier Redlands results. Although some spectral classes,
generally with relatively few pixels, fit well with the land-
use data, other caused substantial problems. Five spectrat
classes, together accounting for well over 50% of the inter-
section between the classified Landsat and land-use data
sets, each correlated equally well with each of the following
four photo-interpreted land uses: single-family residential,
undeveloped-improved, orchards and vineyards, and brush.
Two distinct situations were noted: (1) the area in ques-
tion consisted largely of old, apparently abandoned vine-
yards and small farms invaded by low-density residential,
presenting an extremely high-frequency spatial pattern; and
(2) minimum-mapping-unit conventions used in developing
the land-use map (nominal 3-acre land-use minimum map-
ping unit versus 1.3-acre pixel size for the Landsat data)
had apparently resulted in identical landcover types being
placed in quite different land-use classes, depending on
their situation.

It was initially thought that these problems could be
overcome by partitioning the valley area into several large
“block-strata,” corresponding generally to 7.5" quadrangles,
in order to reduce overall diversity. This approach was
tested, but it too produced unsatisfactory results, owing to
high-frequency variations in spatial patterns of land use in
the valley. The satisfactory operation of these techniques
in the Redlands test site was probably attributable more
to high scene-homogeneity than to small test-site size.

Development of Relabeling Model

In an attempt to solve the cluster-labeling problems re-
sulting from low homogeneity, a new approach was devel-
oped. It used the 1974 photo-interpreted land-use data to
develop 13 land-use-based strata for use as masks. A sep-
arate cluster relabeling table could then be developed for
each stratum. This “microstratification” is conceptually
similar to the pre-classification stratification approach used
in the original CDF project.

The strata developed from the 1974 land-use data, in-
cluding such broad groups as residential, orchard/vineyard,
and brush, were used to mask the Landsat classified data
such that each stratum could be produced as an image on
an Interactive Digital Image Manipulation System (IDIMS)
display (ref.8). The residential image, for example, showed
the Landsat spectral class for each pixel classed as residen-
tial in the 1974 land-use image. Both spatial orientation and
class identification were greatly improved over previous
approaches in which entire spectral classes were examined
without reference to the land-use data. Several types of
residential cover could be differentiated in the residential
stratum, including some significantly sized grass and brush
areas between developments that had been classed as res-
idential by the land-use data. Differentiation between
orchards and vineyards was possible within the orchard/
vineyard stratum, and many areas cleared for development
were also detected in the Landsat data. Several distinct,
fairly narrowly defined orchard classes, including a mature-
to-declining citrus class, were identified, as were several
classes of declining or apparently abandoned vineyards.

A similar technique-development process was followed
in the mountainous SBNF area. Contingency analysis be-
tween CDF grouped data and 1977 photo-interpreted
vegetation revealed a high degree of disagreement and
potential classification error. These differences were be-
lieved to be related to several factors: (1) mislocation
(resulting from mis-registration within the original CDF
data set) of the 5000-ft elevation strata use to separate
certain conifer classes in the Landsat data; (2) relatively
large minimum mapping units (nominally 40 acres but in
practice much larger) and species-level classification in the
photo-interpreted vegetation data, resulting in large amounts
of “misclassified” intermixture within vegetation polygons;
and (3) substantial unresolved spectral similarity between
various chapparal and conifer types. ‘

Six broad strata, described by combinations of normally
geographically adjacent vegetation categories, were devel-
oped for use in postclassification stratification. Separate
cluster-labeling decision tables were developed for each
stratum, and in many cases for specific elevation and aspect
substrata. Figure 2 describes the general model and structure
and strata employed for both valley (land use) and moun-
tain (vegetation) areas.
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Model Structure

A total of 49 land-cover classes (Appendix A) were de-
veloped for the composite valley/mountain area relabeling
scheme. These relabeling decisions were first constructed as
a large matrix that related ungrouped 1976 Landsat spectral
classes to a total of 19 primary microstrata defined by land
use and vegetation. Eleven special case microstrata blocks
were delimited by line-sample location. Several strata were
further subdivided by elevation and aspect, particularly in
the mountain areas.

None of the conventional image-processing techniques
available at ARC provided a workable method for imple-
menting these decision rules without the generation of an
extremely large number of intermediate images and logical
masks. Instead, the decisions were incorporated into a
model, using the ESRI GRID MAP/MODEL software. The
several data layers required were registered and merged into
a multivariable file (MVF), similar in structure to a pixel-
interleaved-by-band image file.

A typical model statement consists of a range check that
conditions the addition to or multiplication of an accumu-
lator. “IF” statements can be concatenated with “AND”
statements to generate logical forms equivalent to “IF
Landsat class within rangel AND vegetation class within
range2, then add x (in this case, the new class number) to
the accumulator and skip to the designated instruction
(usually the end of the model).” A full expansion of the
decision matrix would yield approximately 175 Landsat
classes x 19 microstrata x 6 elevation strata x 8 aspect
strata or more than 160,000 pairs of model statements.
This fully expanded decision matrix was not directly im-
plemented in the model. By selectively processing certain
cells in the matrix, it was possible to collapse remaining
rows and columns with similar decisions, greatly reducing
the required number of statements. Certain spectral classes,
such as those representing water, were treated as “universals”
and routed to the same decision table regardless of contain-
ing strata. The model evaluated remaining decisions through
decision-tree structures representing five smaller matrices:
(1) land-use strata areas; (2) vegetation strata areas with
“mountain” Landsat classes; (3) vegetation strata area with
“high-mountain” Landsat classes; (4) desert ecozone; and
(5) special cases, primarily gaps and overlaps among the
various masks. The final model contained about 400 state-
ments. Although some thought was given to optimizing the
model by arranging most frequent cases to the top, no for-
mal optimization was performed. The data layers used by
the model included (1) 1976 ungrouped Landsat spectral
class data; (2) 1974 landuse data; (3) SBNF 1977 vegeta-
tion data; (4) elevation; (5) topographic aspect; (6) line
coordinate; and (7) column coordinate. Because of the
complexity of the model and the size of the data sets, sev-
eral iterations were required on both test and complete
data sets before a satisfactory analysis was completed.

Generation of the final classification required nearly 7000
CPU seconds on ARC’s IBM 360/67, including generation
of a complete line-printer map. Much of this time may be
attributable to somewhat inefficient FORTRAN I/O under
the TSS operating system.

Evaluation and Secondary Stratification

A brief review of the output classification was made by
Ames, SBC, and SBNF personnel. No noticeable deficiencies
were found in the valley, but several errors needing correc-
tion were noted in the mountains. These errors seemed to
be of a systematic nature and appeared resolvable through
the incorporation of rainfall information and revision of
some terrain-based decisions. A second model was con-
structed to effect improvements, using as input the output
from the 1976 classification model, 1976 classified Landsat,
average annual rainfall, elevation, and aspect to create a
final 1976 modeled classification.

The final version of the 1976 land<over product was
evaluated for accuracy. A stratified random sampling was
used to select 8 x 8 pixel blocks within 11 land-cover
strata. On average, seven blocks were selected per stratum,
with each stratum consisting of a unique subgroup of the
49 land-covers mapped. The study area was gridded into a
series of 8 x 8 pixel blocks, with blocks being assigned to
strata based on the land-cover evaluation group having
plurality in a given block. A total of 74 blocks were eval-
uated (109 plots originally selected), with accuracies being
determined for most of the 49 land covers. Accuracies
could not be determined for some land covers because of
an insufficient number of pixels with those land covers
being selected for evaluation. The 1976 Landsat-derived
land cover for each block was compared to photo-interpreted
land cover obtained from examination of 1976 aerial
photographs. The evaluation compared each pixel in the
Landsat data to the grid cell in the corresponding location
in the 8 x 8 photo-interpreted block. The overall accuracy
for the 1976 classification was computed by summing the
accuracies after weighting by the number of pixels in each
individual class.

The Landsat classification was evaluated at several levels
of thematic detail (see appendix B). The original land-cover
mapping was at a high level of thematic detail, approxi-
mately equal to a modified information Level III,as defined
by the U.S. Geological Survey (ref. 9). The U.S. Geological
Survey’s Level I and II specifications were modified to allow
the Landsat land-cover data to be evaluated at more gen-
eralized informational Levels as well. Overall classification
accuracies at Levels I, II, and HI were 76%, 69%, and 52%,
respectively. There were several possible factors that ad-
versely affected the accuracy of the 1976 classification: (1)
poor spatial integrity of the Landsat data (the data were



resampled once during the CDF project and once more in
the San Bernardino project, with potentially detrimental
effects; (2) the unsupervised classification technique used
as part of the CDF project, and subsequently used in the
San Bernardino project, may have been inadequate for this
area and application; (3) emphasis on mapping Level III
features may have resulted in lowered Level I and II accur-
acies; (4) analysts had difficulty in photo-interpreting the
land-cover classes developed on a per-pixel basis, and (5)
the classification modeling technique may not be as suitable
as hoped, or may have been less than optimally executed
because of inexperience. Level III land-cover classifications
are rarely attained, so the 52% accuracy obtained at this
level is not necessarily bad.

CONCLUSION

The advantages of integrating Landsat classified data
with other data sets in the context of a geographic infor-
mation system can include (1) potential improvements in
the spatial resolution of the data base; (2) identification of
land-cover features not previously included on other data
layers; (3) the use of Landsat on a periodic basis to provide
updates; and (4) potentials for geographic area expansion
of the data base, using signature-extension techniques. The
combination of spectrally based Landsat MSS classification
with a more spatially based aerial photograph classification
may provide useful information not readily available from
independent analysis of either data set. In this project, only
one potential avenue for combining two such data sets was
investigated. The specific technique examined here involves
using several data base layers including photo-interpreted
land use, to develop a postclassification microstratification
for a hierarchical-cluster-labeling mode! for use with an
existing unsupervised classification. This technique signif-
icantly reduced confusion between spectral classes and
allowed the development of more sophisticated thematic
information than would have been possible with a conven-
tional unsupervised classification. The Landsat classification
produced is more compatible with other data layers, and
contains fewer of the classification irregularities that some-
times result from mis-registration. Yet to be examined are
possibilities for obtaining better results through (1) using
hierarchical modeling techniques in conjunction with super-
vised classification data; (2) semiautomated training site
selection; or (3) extending the modeling technique to in-
clude pre-classification stratification. Using some or all of
the layers of the data base to model the classification of
Landsat data to be incorporated can result in thematic
classes more in tune with data-base layers, higher thematic
detail, and better spatial registration of the product to
other data base layers.

1979 LANDSAT ANALYSIS AND 1976-79 CHANGE-
DETECTION ANALYSIS

Introduction

The San Bernardino County Planning Department had
expressed interest in detecting urban changes and monitor-
ing growth. In one possible method of detecting change
with Landsat, a direct pixel-by-pixel comparison between
independent image classifications from each of the two
dates would be used. This classification comparison ap-
proach would yield both information on whether change
had occurred, as well as the combinations of “from-to”
changes taking place. Previous studies, including a parallel
CIRSS project being conducted by researchers at the Uni-
versity of California-Santa Barbara (ref. 10), have found
several problems with this approach. Given a random dis-
tribution of errors within each classification, owing to both
classification and minor registration errors, the accuracy of
the detection of correct “from-to” change combinations
would tend toward the product of the accuracies of the two
classifications. Given two independent classifications, each
with an accuracy of 80%, their ability to correctly portray
accurate information for both dates would be only 0.8 x
0.8 = 0.64, or 64%. As the assumption of random error
among classes is not likely to be met, actual errors might
vary widely. Two independently conducted classifications
may result in either dependent or independent data. Re-
ported results in the literature do not yet describe the full
relationship between errors during classification compari-
sons. The multiplicative error hypothesis was taken as being
descriptive of the problem, and procedures were examined
which would result in less error than the multiplicative case.
Whether errors are multiplicative, or conform to some other
relationship, any errors directly attributable to the compar-
ison process are bound to be undesirably larger than the
actual change in a given area, as typical high-growth areas
experience only about one or two percent change per year.
Provided that image registration and radiometric correc-
tions are satisfactory, lower errors might be expected from
either (1) a single classification of an image containing
spectral information from two dates or (2) a classification
of only those pixels in the second date identified as
“change” pixels through an independent analysis. The
second of these two options was chosen for demonstrating
change analysis and land-use updating; that is, a two-step
process, a detection of change and determination of “from-
to” combinations. As a further means of minimizing mul-
tiplicative comparison errors, a modeling process was used
in the classification of the update image within change areas
to constrain changes to likely combinations (table 1).



TABLE 1.— MATRIX OF ALLOWED CHANGE

POSSIBILITIES

1977 1979 Land-cover types?
land-cover

types Urban | Agr.] Range| Water| Forest| Barren
Urban X — — - - -
Agriculturg X X X - X
Range X X X X X X
Water - = - — X - X
Forest X - X - X X
Barren X X X X - X
4Symbol x indicates an allowed change; “—” indicates

prohibited change.

A mask of possible change areas between the 1976 base-
line image and the 1979 update Landsat image was created,
using several change-detection techniques. The *“change
image” thus developed was used as a mask to limit analysis
of the 1979 update Landsat image. The use of a change
mask to limit areas classified in an update image has pre-
viously been examined by Angelici as a means of reducing
computer computation time and minimizing erroncous
changes from occurring when two independent classifica-
tions are compared (ref. 11). A similar approach was also
undertaken by Todd (ref. 12).

Data Preparation

The first step in the multidate analysis was construction
of a composite 1976-1979 image. Because of the geometric
problems with the 1976 JPL-processed MSS data, it was
necessary to revert to the original CCT. After de-skewing
(oblique correction) and de-stripping the 1976 data, com-
mon ground-control points were chosen in each image. A
second-order polynomial transformation, along with a
cubic-convolution resampling algorithm, were used to reg-
ister the 1976 image to the 1979 image. Histograms of the
two images revealed considerable differences in both means
and variances in each channel. Most of these radiometric
differences were not related to per-pixel change, but
rather to atmospheric differences, complex cover-variant
reflection changes owing to sun angle (ref.13), satellite
performance parameters (Landsat 1 versus Landsat III),
substantial ground-moisture differences, and ground-
processing system differences. Rather than invest the con-
siderable time that might be involved in an attempt to
analytically remove each of these factors, a histogram
normalization procedure, similar to that used in destriping,

was developed and applied band-by-band to the 1979 image.
The procedure developed used a contingency analysis be-
tween 1976 and 1979 spectral values. The contingency
table was used to generate a histogram of 1979 spectral
values for each 1976 digital spectral value. These histo-
grams were then examined for modes (local maximums)
in order to determine for a given 1976 digital number the
corresponding 1979 digital number. For example:

1976 1979
digital digital
number number
0 0
1 2
2 4
3 5
127 119

In some instances, several 1979 digital number modes corre-
sponded to a single 1976 value. These were resolved through
interpolation between the 1979 digital number modes for
the 1976 digital numbers that are centered about the 1976
value in question in order to insure that the 1979 values in-
creased monotomically. The resulting 1976 to 1979 digital
value correspondence table was applied as a piecewise linear
mapping function with 128 steps.

Change Analysis

Following the normalization process, four potential
change-detection methods were developed: (1) unsuper-
vised classification of a 5-7-5-7 multidate image (a four-
band image containing 1976 bands 5 and 7, and 1979 bands
S and 7; (2) band-by-band thresholding of a four-band
1976-1979 spectral arithmetic difference image; (3) un-
supervised classification of the band-difference image; and
(4) a multiband chi-square analysis of the band-difference
image. Upon subjective visual analysis, the results of
methods 1, 3, and 4 were found to produce potentially
adequate delineations of change. Rather than choosing
a “best” approach, these three images were combined and
spatially filtered, as explained below, to form a composite
“change mask.” This change mask was used to limit the
1979 unsupervised classification to those areas with high
likelihood of change. The final 1979 land-cover update
classification was created by a model that grouped 1979
image unsupervised spectral classes for change areas into
cover types; the cover types were based on spectral char-
acteristics, the 1976 baseline classification, elevation aspect,
SBC General Plan designation, and in special cases, distance
of a spectral class to water. For nonchange areas, the 1976



baseline classification, values were retained. By combining
the new classification for the change-mask areas with the
baseline classification for nonchange-mask areas, multiplica-
tive errors, when comparing the baseline and update images
for change detection, were limited to areas within the change
mask. The effect of these errors was further reduced by
using a “change possibilities™ matrix in the 1979 classifica-
tion model to prohibit the accuracy of unlikely “from-to”
change combinations (table 1—. Change from agriculture to
urban is “likely” to be a real change, and was therefore al-
lowed; apparent change from urban to agriculture probably
represents classification error and is an examply of those
types of changes not allowed in the 1979 classification.

Unsupervised classification of multidate image— The four
band 5-7-5-7 multidate image underwent unsupervised clus-
tering for 63 clusters (number arbitrarily chosen), followed
by classification. Seven clusters were determined to repre-
sent change, by examining the classification on a color
video display and comparing the classification with land-use
and cluster spectral plots. An image of change areas was
generated and incorporated along with the products from
clustering and chi-square analysis of the difference image.
Subsequent comparison of the multidate change classifica-
tion with the photo-interpreted land-use change for the
Redlands area indicated that one of the clusters selected as
representing change was not a significant change indicator.

Thresholding 7% tails of the distribution in difference
image— The spectral values of the difference image as orig-
inally created ranged from -127 to +127, with no change
centered on zero. The final difference image had the no-
change mean shifted to 127, resulting in a data range from
0 through 255. Histograms were generated of each band
and were used to define breakpoints in the distribution tails
that were useful in delineating change. The 7% tails of the
spectral distribution in each of the four bands were selected
as best delineating change based on evaluation of the histo-
grams and of the image, using a color video monitor. The
areas delineated in each band were summed to yield the
change image. Visual comparison of this product with those
from the other change detection approaches showed the
thresholded product to be much noisier. Comparison of the
distribution threshold product with aerial photography
showed that most of areas delineated did not in fact rep-
resent useful thematic change. The thresholding of the
spectral distribution of the difference image was not fur-
ther investigated, because of noise and excessive commis-
sion errors. Additionally, this approach required more work
than the other change detection approaches examined. A
detailed evaluation to determine whether the selection of
different breakpoints would yield better results was not
undertaken.

Unsupervised classification of difference image— an un-
supervised clustering followed by classification was carried
out on the difference image. The classification was evaluated

using a color monitor in conjunction with land-use and
cluster spectral plots. Ten clusters of the 30 developed
were identified as indicating change and were grouped to
create an image depicting change areas. This change image
was then combined with the change products created by
multidate image classification and difference-image chi-
square analysis. Later, detailed comparison of the differ-
ence classification with the 1976-79 photo-interpreted land-
use for the Redlands area indicated that three of the clus-
ters originally selected as change may not be significant
change indicators.

Chi-square analysis of difference image— Using EDITOR
image analysis software at Ames Research Center, it was
possible to cluster and classify the four-banded difference
image for just one class (the mean of which corresponded
to the mean difference between the two images) and, as a
by-product, obtain a threshold value for each pixel class-
ified. The resulting threshold values generated by the algo-
rithm were chi-square values. The chi-square values define
how well each pixel has fitted the general population; in
this case change pixels should fit poorly and thus have high
values. The image of chi-square values was compared with
aerial photographs and photo-interpreted land-use data in
order to select a chi-square breakpoint score that was sig-
nificant in detecting change. Chi-square scores of 7.779
and over (chi-square probability score less than 0.1) were
determined to indicate pixels with significant change. An
image delineating these pixels was created and incorporated
into the composite map of change areas. Later, detailed
comparison of the chi-square image to the edited land-use
change for the Redlands area confirmed that in this case
chi-square scores above 7.779 were significant indicators
of change and that lower scores were not.

Development and Use of Composite Change Mask

A change image resulted from each approach just dis-
cussed. These were assessed by the project participants
through subjective comparison with land-use data and
through participant knowledge of the study area. As a
result of this assessment, the thresholding of the distribu-
tion tails of the band-by-band difference image was dis-
carded as a useful change indicator owing to excessive
noise. The other three change detection indicators were
merged to create a composite map of change areas. Change
pixels in the composite image consisted of all those pixels
flagged as change by two or more of the input images. The
composite image was spatially smoothed using a 3 x 3 filter
to minimize noise through removal of isolated change pixels
and isolated nonchange pixels within change areas. Todd
had previously cited noise removal algorithms as having po-
tential for improving change-detection products (ref. 12).
The smoothed composite change image was then used as



a mask to limit classification of the 1979 Landsat update
image to those areas that were determined to be possible
change areas. A matrix of change possibilities and a variety
of other ancillary data were used to constrain the classifi-
cation to likely “from-to” combinations, thereby minimi-
zing to some extent the introduction of multiplicative
classification errors when the 1976 and 1979 classifications
are compared.

Evaluation of Change Products

During the preparation of the multidate and difference
image products to be incorporated in the composite change
mask, the emphasis had been minimizing omission-of-
change features. The three change-image inputs to the com-
posite were developed as the result of rather cursory anal-
ysis and without detailed evaluation. The compositing of
several change products was undertaken as a means of
reducing commission errors without the necessity for
detailed change-product evaluation. Detailed evaluation
of the various change products was only carried out after
all processing was completed. After-the-fact evaluation
had the advantage of testing whether the process of com-
positing several minimaleffort change-detection products
was an effective means of generating a product as accurate
as one resulting from a more thorough analysis for change,
using a single change-detection technique.

The various Landsat change data were compared with
previously created (as part of a Southern California Edison
effort) 1974 and 1979 land-use generated by a combination
of aerial photographic interpretation and examination of
zoning and other collateral planning data. Initial compar-
isons of the photo-interpreted land use and the Landsat-
based change data showed several irregularities which had
to be removed. The photo-interpreted 1974-79 land-use
data revealed unlikely changes resulting from two factors:
(1) slight mis-registrations between the 1974 and 1979
land-use data sets, and (2) coding errors that were present
in the 1974 land use which were not duplicated in the 1979
land-use data, thus resulting in apparent changes where no
changes had occurred. Another problem was that many of
the changes detected by comparing the photo-interpreted
1974 and 1979 land-use data sets occurred before 1976,
and thus were not changes in the 1976-1979 timeframe
period of the Landsat data sets. Manual editing on a pixel-
by-pixel basis of the photo-interpreted land-use change data
through comparison with 1976 and 1979 aerial photographs
was used to minimize these extraneous irregularities and
maximize the comparability of the photo-interpreted land-
use and Landsat data. An additional factor introducing ir-
regularities was not compensated for: namely, that the
photo-interpreted land-use information mapped a different
class of features than the land-cover-oriented information
extracted by Landsat.
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Data editing and subsequent evaluations were limited to
a portion of the Redlands 7.5" quadrangle in order to min-
imize the scope of editing required. All Landsat change
products (both the composited and uncomposited products)
were evaluated against the edited land-use data. Changes in
the Redlands quadrangle were considered representative of
types of changes in the rest of the urbanized valley floor,
but not those in the San Bernardino Mountains. The Red-
lands site was also attractive because 1976 and 1979 photo-
graphs were available, and because previous work had
emphasized examining the Redlands area (1979). Limiting
evaluations to the Redlands quadrangle does not provide
definitive data on the accuracy of various Landsat change-
products across the whole study area, but does allow infer-
ences to be made of the performance of the Landsat data
in the urban areas.

Table 2 summarizes the accuracies of the various change
products when compared with land-use change data within
the Redlands portion of the study area. The multidate im-
age classification and the chi-square analysis of the differ-
ence image both yielded similar results. The chi-square
approach is notable as requiring the least analyst evaluation
of the four techniques explored. The multidate and differ-
ence classifications, and chi-square data were reevaluated
using the following relationship to determine whether the
change products developed from these approaches were the
optimum possible: category (spectral class or chi-square
interval) was determined to be a significant detector of
change if K./T, > Kp/Tye, where K, is the number of
pixels of the category in question that were identified as
change by land-use ground-truth; T, is the total number
of pixels of change as identified by land-use ground truth;
K,,c is the number of pixels of the category in question
that were identified as nonchange by land-use ground-truth;
and T, is the total number of pixels identified as non-
change by ground-truth.

The chi-square analysis was determined to have been op-
timally executed while both the multidate and difference
classification change products incorporated in the compos-
ite change-mask were not the optimum possible. The assess-
ment indicates that an optimized multidate classification
would have an accuracy similar to the chi-square analysis,
and that the optimized difference image still would have
more commission error than the other techniques (table 2).
The cause may be either the low number of cluster devel-
oped (30 for the difference image classification versus
63 for the multidate classification) or the possibility that
difference-image clustering and classification is inherently
less accurate. The relatively high commission errors in the
difference classification have had only a small effect on the
composite product, indicating that products may not need
to be optimized, if a number of products are merged. In
areas without preexisting change data it may in fact not be
possible to create optimized change products using any one
technique. Smoothing the composite change mask through



TABLE 2.— LANDSAT PRODUCT-CHANGE DETECTION ACCURACY COMPARED WITH LAND-USE
GROUND-TRUTH FOR REDLANDS AREA2

Total Landsat Landsat Percent of Percent Percent
Landsat- change
d . ified change ixels real land-use change changes
Landsat change product 1de}111t1ﬁe pixels p[;l;{cz n; change omitted committed
change by Landsat | by Landsat
pixels correct correct detected y Landsa y

Difference image

7% distribution tails not evaluated - - - — —
5-7-5-7 Multidate image

classification 1273 258 20 47 53 80
Difference-image

classification 2552 312 12 57 43 88
Difference image

chi-square analysis 907 240 26 44 56 74
Change mask: unsmoothed 1213 253 21 46 54 79
Change mask: smoothed 528 252 48 46 54 52
Change detected by 1976

baseline and 1979 update

classification comparison

(irrespective of whether

changes detected were

properly identified as to

“from-to” land<cover

combination) 396 240 61 44 56 39
Optimized 5-7-5-7 multidate

image classification 896 250 28 46 54 72
Optimized difference image

classification 1622 293 18 54 46 82

4547 pixels were identified by photo-interpreted land-use as change. The area evaluated comprised 7161 pixels.

use of a 3 x 3 spatial filter greatly lowers commission errors
without affecting the degree of capture of real changes, and
appears to have potential for improving the per-pixel accur-
acy of any change-detection technique.

Despite the utilization of several techniques that have
made change detection more accurate than it would other-
wise have been, the actual land-use change-detection accur-
acy remains low. Many of the change features identified by
Landsat but determined to be in error based on comparison
with the photo-interpreted land-use data in the Redlands
area, were agricultural and water-level changes and changes
in characteristics of the Santa Ana river wash. These changes
were not land-use changes but were counted as errors even

though real spectral change had occurred. The land-use
changes undetected by Landsat were, in order of occur-
rence, from (1) orchards and vineyards to vacant, (2)
orchards and vineyards to residential, and (3) vacant to
residential. The detailed evaluation of the Landsat prod-
ucts in the Redlands area indicate that no amount of
spectral data manipulation would have made detection
of about 50% of the omitted land-use change. Examination
of aerial photographs revealed that some land-use changes
around Redlands actually involved no land-cover change,
particularly those changes from orchards and vineyards to
vacant. About 75% of the commission errors appeared to
be actual land-cover changes that were not land-use changes.
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Changes from fallow to planted agricultural fields, small
changes in the course of the Santa Ana wash, and the fill-
ing of water basins and gravel pits with water in 1979 com-
posed most of the land-cover changes not present in the
land-use data. No amount of spectral manipulation could
have resulted in the removal of these features from the
Landsat change data. Better change-detection accuracies
therefore appear to be possible for applications stressing
detection of land-cover rather than land-use, changes.

The comparison of various Landsat data with land-use
change has allowed the generation of readily comparable
accuracy figures for technique evaluation. These accuracies
do not state the actual Landsat accuracies with respect to
detecting land-cover change. The 1976 and 1979 classifica-
tions describe land cover, and not land use, and must ulti-
mately be evaluated from the land-cover perspective.

A brief land-cover accuracy evaluation of the 1976 and
1979 land-cover classifications when grouped and evaluated
at a generalized information level (urban, range, forest,
agriculture, barren) was conducted by comparing a number
of randomly selected change-mask features with photo-
interpreted 1976 and 1979 ground-truth. Land-cover
change detection accuracy was also evaluated, and overall
results are summarized in table 3. Ashad appeared probable,

TABLE 3.— LANDSAT ACCURACIES WHEN EVAL-
UATED AGAINST PHOTO-INTERPRETED LAND

COVER
Pixels evaluated : 77
Photo-interpreted land<over pixels
Change 29
Nonchange 48
Landsat land-cover classification
comparison
Change 29
Nonchange 48

Landsat land-cover pixels correct

1976 baseline classification 57(74%)
1979 update classification 17(22%)
Landsat change pixels correct 35(73%)
Landsat pixels with correct from-to
land cover (includes pixels correctly
identified as having same cover on
both dates) 12(16%)

the accuracy of Landsat-detected land-cover change is higher
than that of land-use change (73% versus 61%). The 1979
land-cover accuracy is very low, possibly because the
analysts did not have sufficient contiguous areas in the
classification with which to make their evaluations, as a
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result of the small size (15 pixels average) and separated
locations of the change-mask polygons. During analysis,
the 1979 clustered data were superimposed over the 1976
classification to enhance analyst-perceived spatial relation-
ships. Spectral plots were also heavily used, but these tech-
niques did not appear to fully overcome the problem. Ar-
tificial expansion of change-mask polygons to yield more
contiguous units or reliance upon supervised classification
techniques that do not require post-clustering cluster iden-
tification may be needed. The from-to accuracy of 16%
within the change mask is identical to that which would be
predicted by multiplying the 1976 and 1979 land-cover
accuracies. The 16% accuracy is also much lower than the
73% accuracy developed for the detection of 1976-1979
land-cover changes, without respect to the amount of cor-
rect from-to cover assignments. Applications that require
the ability to detect change, without respect to type, ap-
pear to have much greater chances for success than those
that require determination of the types of change. Use of
Landsat change data as a detector of change areas to be
further evaluated by photo-interpretation and ground-
truthing may be desirable, particularly if the number of
change areas is small.

By using tables 2 and 3, it is possible to determine if the
overall technique used in the project, the chaining of base-
line and update image classifications through use of change-
detection and masking techniques, has successfully reduced
multiplicative comparison errors when two classifications
are compared for changes. If we are charitable and assume
that an independently completed 1979 classification would
have the same accuracy as the 1976 classification, the pre-
dicted accuracy for detecting changes when comparing the
two classifications would be 0.74 x 0.74 = 0.55, or 55%.
The accuracy actually achieved can be predicted as:

A=A Fi+ApF

where
A = overall accuracy
A; = accuracy within change-mask boundaries
F; = fraction of image covered by change mask
A, = accuracy outside change mask (after omission
error is considered)
F, = fraction of image covered

or (0.73 X 0.9856) +(0.16 X 0.0144) = 72%.

Conclusions

Land-cover updating using change-detection and mask-
ing techniques requires (1) the creation of an initial baseline
classification, (2) use of spectral change analysis techniques



to generate a map of possible change areas, (3) the classifi-
cation of the possible change areas within the update image
data, and (4) creation of a final update classification by
combining the classification of the baseline image for the
nonchange areas with the update classification of the change
areas. Generating an update classification only within areas
defined as having changed, results in fewer errors than
would result from comparing two independently generated,
fullimage, landcover classifications. Minimization of com-
parison errors between co-registered products is of particu-
ular importance to geographic information system users
who interact with a multitude of co-registered data sets.
The technique also requires less effort than the generation
of two separate classifications, for the area to be evaluated
in the update image has been greatly reduced. Yet to be
examined is the issue of how well the technique can be
repeated, with change-detection and masking techniques
being used between new Landsat images as they are ob-
tained, and what may be only the latest of a series of chained
classifications.

Several other techniques were also shown to improve
Landsat change-detection accuracies over some standard
methods. Spatial smoothing of Landsat-derived change-

detection products greatly minimizes commission error,
with little or no increase in omission error. Conducting a
single-date land-cover classification of the update image-
change within areas delineated as change by conventional
techniques, followed by comparison with a baseline classif-
ication, also reduced commission error, with small effect
on omission error. Using several different change products
in combination required less ground-truthing and change-
product evaluation than would have been required to gen-
erate a comparable quality product using a single change-
analysis approach.

Mapping conducted based on the concept of extracting
land use was found to yield unresolvable differences in re-
sults from mappings based on the extraction of land-cover
data. It appears that spectral change, inherently an indicator
of land<cover change, accounts for only about half of the
real change in land use. Therefore, applications emphasizing
the detection of land-cover rather than land-use changes
will have greater chances of success.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, California 94035, May 12, 1982
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APPENDIX A

LANDSAT LAND-COVER CODES

The Landsat data have been evaluated at several levels of
thematic detail. The original land-cover mapping was at a

Information Level II (Continued)

high level of thematic detail, approximately equal to a Codes Land Cover
modified information Level III, as defined by the U.S.
Geological Survey (ref. 10). The data can also be used at 17 Crops
more generalized information levels by grouping land-cover
types. The US. Geological Survey’s Level I and II specifi- 6-12,34 Orchards and vineyards
cations were modified to allow the Landsat land-cover data
developed in this project to be interpreted at more general- 15,16 Grass
ized informational levels (generalization has been concep-
tual only—there was actual modification of digital values). 3-5,44-49 Brush
Use of the data at generalized, rather than detailed, levels
of information may be desirable either because detailed 25 Water
information is not required, or because the detailed infor-
mation is insufficiently accurate. 13,41 Deciduous forest
The following land-cover legends describe both the 1976
and 1979 Landsat land cover classifications. 35-40,42-43 Coniferous forest
1,2,21,22,26 Mixed bare
LANDSAT LAND-COVER DIGITAL CODES
20 Extractive
Information Level I
Information Level III
Codes Land Cover
Code Cover
18,19,23,24,27-33 Urban
28 Residential: with trees
6-12,17, 34 Agriculture
29 Residential: newer irrigated
3-5,15,16,44-49 Rangeland
30 Residential: sparse cluster
25 Water
31 Residential: large lot unirrigated
13,35-43 Forest
32 Residential: rural strip
1,2,20-22,26 Barren
33 Mobile homes/high-density residential
Information Level II 23 Structures
Codes Land Cover 24 Structures: strip commercial
28-33 Residential 27 Structures: with brush
23,24,27 Commercial 19 Concrete
18,19 Other urban 18 Asphalt
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Code

17

34

10

11

12

15

16

46

47

45

44

48

49

25

13

41

35

36

37

Information Level III (Continued)

Cover

Crops

Orchards: young

Orchards: moderate vigor

Orchards: mature

Orchards: declining

Vineyards: moderate vigor

Vinyards: moderate vigor

Vineyards: high vigor

Vineyards: declining

Lush grass

Dry grass

Sparse brush

Moderate density brush

Thick brush

Chamise

Chamise/ceanothus mix

Ceanothus/scrub oak

Bracken fern/ceanothus

Coastal sage

Sagebrush

Water

Woodland

Riparian mixed hardwoods

Big cone Douglas fir

White fir

Jeffrey pine: closed understory

Information Level III (Continued)

Code Cover
38 Jeffrey pine: open understory
42 Jeffrey pine: ceanothus

43 Coulter pine
39 Lodgepole/limber pine
40 Pinyon/juniper

21 Cinder
1 Cleared
2 Bare
22 Slag
20 Extractive
26 Snow

LEVEL III LANDSAT CLASSIFICATION
LAND-COVER LEGEND

(The digital data value representative of each land-cover
class is noted in parentheses.)

WATER (25): Lakes, ponds, other standing water

CLEARED (i): Vegetation has recently been removed and
area is now essentially bare '

BARE (2): Exposed soil, rock, and snow

CINDER (21): Railroad roadbed rock and other blackened
rock

SLAG (22): Industrial waste tailings

EXTRACTIVE (20): Gravel pits and other mining resulting
in exposed and disturbed soil

LUSH GRASS (15): Lush grasses and forbs

DRY GRASS (16): Grasses and forbs that have dried and
yellowed

SPARSE BRUSH (3): Less than 30% brush closure, with
grass or exposed soil understory
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MODERATE DENSITY BRUSH (4):
cover with grass or soil understory

30%-70% brush

THICK BRUSH (5): Over 70% brush cover

WOODLAND (13): Trees undifferentiated as to type, with
over 50% crown closure

HIGH VIGOR VINEYARD (11): Vineyards with bright
infrared reflectance

MODERATE VIGOR VINEYARD (10): Vineyards with
moderate infrared reflectance with some soil and grass,
and a few dead vines

LOW VIGOR VINEYARD (34): Vineyards with low chlor-
ophyll content, often not presently cultivated

DECLINING VINEYARD (12): Poor condition, possibly
uncultivated with numerous dead vines

MATURE ORCHARD (8): Orchards with over 70% crown
closure

MODERATE VIGOR ORCHARD (7): Orchards of inter-
mediate age and vigor, with between 45% and 70%
crown closure

YOUNG ORCHARD (6): New orchards characterized by
young, small trees with less than 45% crown closure

DECLINING ORCHARD (9): Orchards with less than 70%
crown closure with large intermittently spaced bare
patches indicative of dead trees

CROPS (17): Agricultural plantings other than orchards
and vineyards

RESIDENTIAL WITH TREES (28): Wooded residential
lots, generally older neighborhoods with established trees

RESIDENTIAL-NEWER IRRIGATED (29): New resi-
dential neighborhoods without developed large trees,
but with well-watered lawns

RESIDENTIAL—SPARSE CLUSTER (30): Sparse, gen-
erally small, residences occurring in clusters amidst
largely undeveloped lands

RESIDENTIAL-LARGE LOT UNIRRIGATED (31):
Sparsely spaced residences on large lots of dry grass or
brush

RESIDENTIAL-RURAL STRIP (32): Sparsely spaced
residences facing onto roadways, with large vacant brush
or grass covered areas to their rear

MOBILE HOMES/HIGH-DENSITY RESIDENTIAL (33):
Trailer parks and apartment complexes with a large
amount of roof area

STRUCTURES (23):
dential

Buildings, predominantly nonresi-

STRUCTURES-STRIP COMMERCIAL (24): Nonresiden-
tial buildings sparsely located along highway corridors

STRUCTURES-WITH BRUSH (27): Predominantly non-
residential buildings surrounded by brush-covered lots

CONCRETE (19): Concrete parking lots, roofs, some
drainage surfaces, and road surfaces

ASPHALT (18): Asphalt-covered parking lots, roofs, and
road surfaces

COASTAL SAGE (48): Over 30% vegetative cover of
buckwheat, and other coastal sage types

CHAMISE (46): Over 30% crown closure of chamise-
dominated chaparral

CHAMISE/CEANOTHUS (47): Over 30% crown closure
of chaparral co-dominated by chamise and ceanothus

CEANOTHUS/SCRUB OAK (45): Over 30% crown closure
chaparral dominated by either ceanothus, scrub oak, or
a mix thereof. Some manzanita or black oak may also
be present

BRACKEN FERN/CEANOTHUS (44): Over 70% veg-
etative cover, dominated by a mix of bracken and
ceanothus

RIPARIAN MIXED HARDWOODS (41): Over 30% crown
closure of riparian woodland

BIG CONE DOUGLAS FIR (35): Over 30% crown closure
of big cone Douglas fir

WHITE FIR (36): Over 30% forest crown closure, domin-
ated by white fir

JEFFREY PINE MIXED COMMUNITY~CLOSED UNDER-

STORY (37): Over 50% forest crown closure dominated
by Jeffrey pine, and mixed with incense cedar, sugar
pine, and black oak with ceanothus understory

JEFFREY PINE/CEANOTHUS (42): 30%-50% forest
crown closure dominated by Jeffrey pine. Over 50%
ceanothus-dominated chaparral in understory



JEFFREY PINE-OPEN UNDERSTORY (38): Over 30%
Jeffrey pine crown closure, with young ponderosa and
grasses in the understory

COULTIER PINE MIXED FOREST (43): Over 30% forest
crown closure, dominated by Coultier pine, and contain-
ing varying mixes of incense cedar, sugar pine, black oak,
pinyon, or juniper

LODGEPOLE/LIMBER PINE (39): Over 30% lodgepole or
limber pine crown closure

PINYON/JUNIPER (40): Over 30% crown closure of
either pinyon pine, juniper, or a mix thereof

GREAT BASIN SAGE (49): Over 30% great basin sage veg-
etative cover

BACKGROUND (0): Some areas south of the San Bernar-
dino county line for which no Landsat classification was
carried out (principally areas covered by the CDF South
Coast Interior Ecozone
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APPENDIX B

1976 LANDSAT LAND-COVER ACREAGES AND ACCURACIES

Level 1

(Overall accuracy of Level I data = 76.5%.)

Class name: Urban
Accuracy = 74.19%
Commission errors = 25.81%
Omission errors = 19.68%
Acres identified = 47,149
Estimator = 0.924
Modified acreage = 43,552.5

Digital codes: 18,19,23,24,27-33

Class name: Agriculture
Accuracy = 75.76%
Commission errors = 24.24%
Omission errors = 30.50%
Acres identified = 20,601
Estimator = 1.091
Modified acreage = 22,473.8

Digital codes: 6-12,17, 34

Class name: Rangeland
Accuracy = 76.78%
Commission errors = 23.22%
Omission errors = 33.84%
Acres identified = 464,046
Estimator = 1.160
Modified acreage = 538,530.6

Digital codes: 3-5, 15, 16,44-49

Class name: Water
Accuracy: Not evaluated
Acres identified = 3,442

Digital code: 25

Class name: Forest
Accuracy =79.19%
Commission errors = 20.81%
Omission errors = 13.10%
Acres identified = 182,532
Estimator =0911
Modified acreage = 166,332.3
Digital codes: 13,3543

Class name: Barren land
Accuracy = 59.74%
Commission errors = 40.26%
Omission errors = 36.11%
Acres identified = 31,021
Estimator = 0,935
Modified acreage = 29,006.6

Digital codes 1, 2,20-22,26

Level I

(Overall accuracy of Level II data = 69.4%)

Class name: Residential
Per-point accuracy
Accuracy = 71.48%
Commission errors = 28.52%
Omission errors = 20.29%
Acres identified = 40,155
Estimator = 0.897
Modified acreage = 36,007.8
Digital codes 28-33
Per block accuracy: 82.95%

Class name: Commercial
Accuracy = 49.56%
Commission errors = 50.44%
Omission errors = 32.53%
Acres identified = 6,194
Estimator = 0.734
Modified acreage = 4,549.6

Digital codes 23, 24,27

Class name: Other urban
Accuracy: Not evaluated
Acres identified = 800

Digital codes: 18,19

Class name: Crops
Accuracy = 81.08%
Commission errors = 18.92%
Omission errors = 36.17%
Acres identified = 3,060
Estimator = 1,270
Modified acreage = 3,887.0
Digital code: 17



Class name: Orchards and vineyards
Accuracy = 70.33%
Commission errors = 29.67%
Omission errors = 25.58%
Acres identified = 17,541
Estimator = 0.945
Modified acreage = 16,577.2
Digital codes: 6-12,34

Class name: Grasses
Accuracy =36.11%
Commission errors = 63.89%
Omission errors = 63.07
Acres identified = 97,251
Estimator = 0978
Modified acreage = 95,089.9
Digital codes: 15,16

Class name: Brush
Accuracy = 74.71%
Commission errors = 25.29%
Omission errors = 38.92%
Acres identified = 366,795
Estimator = 1.223
Modified acreage = 448,693.9
Digital codes: 3-5,44-49

Class name: Water
Accuracy = Not evaluated
Acres identified = 3.442

Digital code: 25

Class name: Deciduous
Accuracy = 35.34%
Commission errors = 64.66%
Omission errors = 64.39%
Acres identified = 10,318
Estimator = 0.992
Modified acreage = 10,240 .4

Digital codes: 13, 14,41

Class name: Conifers
Accuracy = 81.19%
Commission errors = 18.81%
Omission errors = 10.18%
Acres identified = 172,214
Estimator = 0.904
Modified acreage = 155,661.7
Digital codes: 3540,42

Class name: Mixed/Barren
Accuracy =56.47%
Commission errors = 43.53%
Omission errors = 38.25%
Acres identified = 30,864
Estimator = 0915
Modified acreage = 28,228.2

Digital codes: 1,2,21,22

Class name: Extractive
Accuracy = Not evaluate
Acres identified = 157

Digital code: 20

Level 111
(Overall accuracy of Level IHI data = 51.5%)

Class name: Cleared
Accuracy = 16.39%
Commission errors = 83.61%
Omission errors = 77.27%
Acres identified = 10,489
Estimator = 0.721
Modified acreage = 7,565.8
Digital code: 1

Class name: Bare
Accuracy = 47.83%
Commission errors = 52.17%
Omission errors = 48 .44%
Acres identified = 19,623
Estimator = 0927
Modified acreage = 18,201.0
Digital code: 2

Class name: Sparse brush
Accuracy = 28.27%
Commission errors =71.22%
Omission errors = 75.60%
Acres identified = 25,939
Estimator = 1.159
Modified acreage = 30,053.5

Digital code: 3

Class name: Medium density
Accuracy = 10.29%
Commission errors = 89.70%
Omission errors = 90.0%
Acres identified = 17,673
Estimator = 1.03
Modified acreage = 18,192.8

Digital code: 4
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Class name: Thick brush
Accuracy: Not evaluated
Acres identified = 9,792

Digital code: 5

Class name: Young orchard
Accuracy: Not evaluated
Acres identified = 1,012

Digital code: 6

Class name: Moderate vigor orchard
Accuracy: Not evaluated
Acres identified = 6,203

Digital code: 7

Class name: Mature orchard
Accuracy: Not evaluated
Acres identified = 4,580

Digital code: 8

Class name: Declining orchard
Accuracy: Not evaluated
Acres identified = 1,216

Digital code: 9

Class name: Moderate-vigor vineyard
Accuracy: Not evaluated
Acres identified = 1,790

Digital code: 10

Class name: High vigor vineyard
Accuracy: Not evaluated
Digital code: 11

Class name: Declining vineyard
Accuracy: Not evaluated
Digital code: 12

Class name: Woodland
Accuracy: Not evaluated
Digital code: 13

Class name: Lush grass
Accuracy = 20.78%
Commission errors = 79.22%
Omission errors = 56.76%
Acres identified = 32,524
Estimator = 0.480
Modified acreage = 15,628 4

Digital code: 15

Class name: Dry grass
Accuracy = 38.35%
Commission errors = 61.65%
Omission errors = 71.58%
Acres identified = 64,727
Estimator = 1.350
Modified acreage = 87,350.0

Digital code: 16

Class name: Agriculture
Accuracy = 81.08%
Commission errors = 18.92%
Omission errors = 36.17%
Acres identified = 3,060
Estimator = 1.270
Modified acreage = 3,887.0

Digital code: 17

Class name: Asphalt
Accuracy: Not evaluated
Digital code: 18

Class name: Concrete
Accuracy: Not evaluated
Digital code: 19

Class name: Extractive
Accuracy: Not evaluated
Acres identified = 157

Digital code: 20

Class name: Cinder
Accuracy = 86.63%
Commission errors = 13.37%
Omission errors = 17.22%
Acres identified = 572
Estimator = 1.046
Modified acreage = 598.6
Digital code: 21

Class name: Slag
Accuracy: Not evaluated
Acres identified = 180

Digital code: 22

Class name: Structures
Accuracy = 54.01%
Commission errors = 45.99%
Omission errors = 41.28%
Acres identified = 3,795
Estimator = 0.920
Modified acreage = 3,490.6

Digital code: 23



Class name: Structures strip
Accuracy = 15.18%
Commission errors = 84.82%
Omission errors = 54.05%
Acres identified = 1,477
Estimator = 0.330
Modified acreage = 487.9

Digital code: 24

Class name: Water
Accuracy: Not evaluated
Acres identified = 3,442

Digital code: 25

Class name: Snow
Accuracy: Not evaluated
Digital code: 26

Class name: Structures with brush
Accuracy: Not evaluated
Acres identified = 877

Digital code: 27

Class name: Residential with trees
Accuracy = 49.06%
Commission errors = 50.94%
Omission errors = 47.30%
Acres identified = 11,803
Estimator = 0.931
Modified acreage = 10,986 .4

Digital code: 28

Class name: Irrigated newer residential
Accuracy = 34.72%
Commission errors = 65.28%
Omission errors = 79.51%
Acres identified = 5,754
Estimator = 1.694
Modified acreage =9,749.8

Digital code: 29

Class name: Cluster
Accuracy = 28.12%
Commission errors = 71.88%
Omission errors = 43.75%
Acres identified = 3,021
Estimator = 0.500

) Modified acreage 1,510.5

Digital code: 30

Class name: Large low unirrigated
Accuracy =34.11%
Commission errors = 65.89%
Omission errors = 58.09%
Acres identified = 14,901
Estimator = 0.814
Modified acreage = 12,128.7

Digital code: 31

Class name: Rural/strip
Accuracy = 15.62%
Commission errors = 84.38%
Omission errors = 75.61%
Acres identified = 3,682
Estimator = 0.641
Modified acreage = 2,358.8

Digital code: 32

Class name: Mobil home/high density
Accuracy: Not evaluated
Acres identified = 994

Digital code: 33

Class name: Low-vigor vineyard
Accuracy: Not evaluated
Acres identified = 1,091

Digital code: 34

Class name: Big cone Douglas fir
Accuracy: Not evaluated
Acres identified = 9,138

Digital code: 35

Class name: White fir
Accuracy = 3297%
Commission errors = 67.02%
Omission errors = 35.21%
Acres identified = 12,620
Estimator = 0.509
Modified acreage = 6,423.1

Digital code: 36

Class name: Jeffrey Pine-closed understory

Accuracy =31.91%

Commission errors = 68.08%

Omission errors = 61.37%

Acres identified = 33,397

Estimator = 0.826

Modified acreage = 27,594.0
Digital code: 37
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Class name: Jeffrey Pine - open understory
Accuracy =2941%
Commission errors = 70.59%
Omission errors = 69.59%
Acres identified = 35.008
Estimator = 0.967
Modified acreage = 33.863.9
Digital code: 38

Class name: Lodgepole/limber pine
Accuracy = 85.71%
Commission errors = 14.28%
Omission errors = 49.65%
Acres identified = 9,737
Estimator = 1.702
Modified acreage = 16,576.1
Digital code: 39

Class name: Pinyon/juniper
Accuracy = 81.00%
Commission errors = 19.00%
Omission errors = 20.59%
Acres identified = 34,809
Estimator = 1.02
Modified acreage = 35,505.2

Digital code: 40

Class name: Riparian hardwood
Accuracy = 42.04%
Commission errors = 57.95%
Omission errors = 39 34%
Acres identified = 8,656
Estimator = 0.693
Modified acreage = 6,000.2

Digital code: 41

Class name: Jeffrey pine/ceanothus
Accuracy = 40.00%
Commission errors = 60.00%
Omission errors = 68.91%
Acres identified = 18,553
Estimator = 1.287
Modified acreage = 23,871.5
Digital code: 42

Class name: Coultier Pine mixed forest
Accuracy =42 .62%
Commission errors = 57 .38%
Omission errors = 29.44%
Acres identified = 18,952
Estimator = 0.604
Modified acreage = 11,4475

Digital code: 43

Class name: Bracken/ceanothus
Accuracy: Not evaluated
Acres identified = 1,260

Digital code: 44

Class name: Ceanothus/scrub oak
Accuracy = 72.57%
Commission errors = 27.43%
Omission errors = 57.74%
Acres identified = 56,066
Estimator = 1.717
Modified acreage = 96,282.1

Digital code: 45

Class name: Chamise
Accuracy =51.26%
Commission errors = 48.73%
Omission errors = 48.08%
Acres identified = 87,827
Estimator = 0.987
Modified acreage = 86,715.3

Digital code: 46
Per block accuracy: 58.86

Class name: Chamise/ceanothus
Accuracy = 62.39%
Commission errors = 37.61%
Omission errors = 61.17%
Acres identified = 57,214
Estimator = 1.607
Modified acreage = 91,933.6

Digital code: 47
Per block accuracy: 77.78

Class name: Coastal sage
Accuracy: Not evaluated
Acres identified = 14,736

Digital code: 48

Class name: Sagebrush
Accuracy = 84.03%
Commission errors = 15.97%
Omission errors = 0.99%
Acres identified = 96,288
Estimator = 0.849
Modified acreage = 81,723.4

Digital code: 49



APPENDIX C

1976 — 1979 LANDSAT LAND COVER CHANGE ACREAGES AND ACCURACIES

1976 — 1979 CHANGE DETECTION ACCURACIES

1976-1979 per-point correct assignment accuracy of
Level I from-to land-cover combinations for all those
pixels identified as change in the San Bernardino Val-
ley floor: 12%.

1976-1979 per-point accuracy of Level I from-to land-
cover combinations for the full study area (both
change and nonchange areas included): 72%.

1979 land<over accuracy for full study area: 74%.

1976-1979 per-point accuracy for detecting Level 1
land-cover change (irrespective of whether or not the
type of change identified was correct): 73%.

Inventory of acres of Level I changes over full study
area: 5,400 acres.

Acreage inventory detected for valley changes (irre-
spective of type of specific change) was determined
to 100% correlation to that obtained by ground-truth.

Accuracies for Level II and III 1976-1979 information
were not examined.

Conclusions. The 1979 land-cover accuracy may be
suitable for single-date 1979 applications work. The
number and locations of Level I 1976-1979 changes
detected may also be suitably accurate for use in ap-
plications. The detection of specific pixels with correct
1976-1979 from-to land-cover combinations is too in-
accurate to be useful. However the inventory of total
from-to change combinations (ignoring whether or not
these changes were detected in the correct locations)
is more accurate and may be useful information.

LAND-COVER CHANGES BETWEEN 1976 AND 1979

Information Level I

Acres Cover
+3410 Urban
-1885 Agriculture
-2203 Range
+1990 Water1
-1310 Forest

0 Barren

Information Level 11

Acres Cover

+3189 Residential

+ 221 Commercial

- 531 Crops

-1354 Orchards and vineyards
-3218 Grass

+1015 Brush

+1990 Water

- 132 Deciduous forest
-1178 Coniferous forest

TMostly due to increased rainfall in 1979 in high water
levels in Lakes and reservoirs; 1976 was a drought year.
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Acres

+ 338
+2064
+ 723

64
184

37
531

+ + +

- 491
- 426
- 81
- 21
- 36
- 209

- 707
-2511
+ 120
+1207
+1097
- 137
+ 150
+ 52

- 169
-1264
+1990

- 47
- 38
- 189
- 191
-172
528
- 111
197
53
436

+
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Information Level III

Cover

Residential: newer irrigated
Residential: sparse cluster
Residential: large lot unirrigated
Mobile homes/high-density residential
Structures

Structures: with brush

Crops

Orchards: young

Orchards: moderate vigor
Orchards: mature

Orchards: declining

Vineyards: poor vigor
Vineyards: moderate vigor
Vineyards: high vigor
Vineyards: declining

Lush grass

Dry grass

Sparse brush

Moderate-density brush

Thick brush

Chamise

Chamise/ceanothus mix
Ceanothus/scrub oak
Bracken/ceanothus

Coastal sage

Sagebrush

Water

Woodland

Riparian mixed hardwoods

Big cone Douglas fir

White fir

Jeffrey pine:  closed understory
Jeffrey pine: open understory
Coulter pine

Lodgepole/limber pine
Pinyon/juniper

Cleared

Bare

Snow
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