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FOREWORD

This study was performed under Contract NAS5-26362 fo--

the Goddard Space Flight Center of the Nationai Aeronautics and

Space Administration under the direction of Richard Donnelly, the

Contracting Officer's Representative. The final report consists

of one volume with four (4) attached appendices.
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1.0 INTRODUCTION

This study was conducted to evaluate the feasibility and economics

of mounting and operating a new set of solar scientific instruments in

the backup Skylab Apollo Telescope Mount (ATM) hardware.

The new instruments used as the study test payload and integrated

into the ATM were; the Solar EUV Telescope/Spectrometer; the Solar

Active Region Observing Telescope; and the Lyman Alpha White Light

Coronagraph. Detailed experiment requirements data was obtained from

furnished "Experiment Requirements Documents"(ERDs).

The backup ATM hardware consists of a central cruciform structure,

called the "SPAR", a "Sun End Canister" and a "Multiple Docking Adapter

End Canister", as shown in Figures l-1 and 1-2. Basically, the ATM hard-

ware and software provides a structural interface for the instruments;

a closely controlled thermal environment; and a very accurate attitude

and pointing control capability. The hardware is an identical set to

the hardware that flew on Skylab. The latest status indicates that

the hardware is in bonded storage and relatively intact at the Marshall

Space Flight Center. The ten remaining ATM rate gyros have been re-

worked to fix a problem that occurred during the Skylab mission.

Tares concepts were baselined from the study: The "ATM Integrated"

and the "IPS" and "AGS" concepts. The ATM concept utilized to the maxi-

mum extent possible the remaining backup hardware and software. A sepa-

rate structure was required for this zoncept to mount it into the

Orbiter payload bay. The IPS and AGS concepts utilized only the canister

and associated canister equipment. In both of these concepts, the cani-

ster was mounted to the attachment rings of the pointing systems. All

three concepts are shown in Figure 1-3.

Study results concluded that the test instrument payload was

physically too large to fit within the ATM canister envelope and that

extensive modification would be required to accommodate them. However,

it was also concluded that the ATM backup hardware and software had a

high potential for reuse, for payloads that fit within the canister

I
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envelo, . By selecting payloads, very little modification of the ATM

is required; making the ATM reuse approach economicall y attractive, as

well as providing the close thermal control, poin'ing and stability

required by many of the instruments being developed for the Spacelab!

Orbiter era.

1.1 Purpose

The purpose of this report is to summarize and document the re-

sults of the ATM hardware and software reuse stud y effort. It further

defines and details (Section 7.0 "Recommendations") those additional

tasks that should be considered for further study.

1.2 Scope

The study effort was limited to conceptural design. Analyses were

con..cted only where necessary to validate design concepts and establish

subsystems approaches. Additional studies will be required to recine

the baselined concepts discussed in this report.

1-5



2.0 INSTRUMENT INTERFACE AND OPERATIONAL DATA ANALYSIS

The instrument interface and operational data was compiled to

provide a standard data base for the study team on the three (3) speci-

fied instruments; 1) Solar Extreme Ultraviolet (EUV) Telescope and

Spectrograph (SUETS), 2) Solar Active Region Observing Telescope (SAROS),

and 3) Spacelab Lyman Alpha (SLA) - White Light Coronagraph (WLC) (i.e.,

combination of these two instrumenLS is defined as the Acceleration

Region Coronographs - ARC).

2.1 Solar Extreme Ultraviolet Telescope and Spectrograph (SEITTS)

2.1.1 Instrument Description - This instrument is a alrazing in--

cidence telescope with high EUV reflectivity feeding a diffraction

grating at near-normal incidence. This grating spectrall y disperses

the radiation and images in each point of the spectrometer's entrance

aperture onto a small spot in the focal plane so that spatial informa-

tion is preserved. Adequately stigmatic images are produced over an 8

arc min long slit and over a spectral range of 21.0 to 47.0 nanometers.

Szhumann-type photograph film is used to gain the full performance of

the optical system. Spatial resolution of at least 2 arc sec and spec-

tral resolution of 0.005 ranometers is achievable throughout the central

4 arc min field of view (FCV) at all wavelengths with even better per-

formance in the Rowland Plane.

The experiment objective is to execute a scientific investigation

addressing several fundamental problems of solar physics, these are:

1) The energy and mass balances in closed magnetic field

regions in the corona and the processes by which these

regions are heated.

2) Mass and energy transport into the solar wind.

3) The characteristics of the emergence and evolution of

coronal active regions and their relation to flare activity

and coronal holes.

C	 2-1



2.1.2 InF.---ment Characteristics

2.1.2.1 Structural and Mechanical - The telescope is mounted on

a rigid stable optical bench to achieve stability in longitudinal dis-

placement. The SEUTS is attached to an offset adjusting system and will

be mounted to the Pointing System with a three point kinematic mount

(See Figure 4.1.3.1-1 and 4.1.3.1-5). The instrument will be constructed

in two packages, connected by electrical and electronic control and data

cables. The larger part (Figure 2-1) is an optical bench with all optics

and mechanisms. The smaller part is the electronics (Figure 4.1.3.1-1).

The telescope and spectrograph are shown in Figure 2-1 and is 135

inches long, 22 inches wide, and 36 inches high. This package is at-

tached to the offset adjusting system and mounted to the ATM, as shown

in Figure 4.1.3.1-5/7,by the three point kinematic mount. The offset

adjusting system will provide a +0.5 degree movement to the optical

axis. The three point kinematic mount consists of three individual

mounts and consists of two fixed mounts and one flexible mount and weigh

approximately 100 lbs.

The SEUTS electronics assembly (Figure 4.1.3.1-7/5) is 23 inches

long, 9 inches high and 17 inches wide, having a weight of approximately

60 pounds. This assembly contains the electronics to accomplish the

following functions: Command and data handling; data collection, power,

sun sensor control, offset pointing control, camera mechanism control,

and general mechanism control.

The SEUTS weight is shown in Table 2-1.

Table 1-1 SEUTS Equipment Weight

1) Telescope & Spectrograph Unit - 360 lbs

2) Offset Adjustment System b 	 -	 100 lbs
Kinematic Mount

3) Electronics Package	 -	 60 lbs

Total Weight	 - 520 lbs

2-2
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2.1.2.2 Electrical Power - The SEUTS has five (5) operating

modes and requires an average power of 160 watts. The power usage for

these operating modes are as shown in the following table.

Table 2-2 Operations Power Requirements

Mode Descriptiot► r^ 
-"'"er"

Operating	 No.
 Time	 3perations

1 Camera line profile 114 W 60 min. 10

2 Camera Flare 114 W 60 min. 5

3 Combined Modes 1 & 2 114 W 60 min. 15

4 Amplifying Image Detector 129 W 60 min. 10

5 Mode 2 Flare Standby 62 W 10-20 hrs.

Heater Power:	 50 W Continuous for all Modes

2.1.2.3 Thermal Control - The SEUTS will be aligned and operated

at room temperature (22 degrees centigrade). The design is relatively

insensitive to bending and side-to-side distortions. However, since

its focus is sensitive to longitudinal displacements, the structure must

be held at very close to the alignment temperature and thermal control

is needed to minimize temperature differentials from front to rear of

the instrument. Passive thermal control will be used and is provided

by the ATM, with heaters used, as necessary, to maintain the minimum

operating temperature.

The ATM will provide no active interface with the SEUTS but will

provide a controlled benign environment as described in Section 4.3.

The film carried in the Telescope and Spectrograph film reel assembly

require temperatures below 110 0 F. The maximum temperature the film

can withstand is 1100 F for no more than 1.0 hour. After landing, the

film must be removed before this temperature limit is reached.

2.1.2.4 Controls and Displays - A television display of the slit-

jaw camera data is required (i.e., He TV image). Controls on the Aft

Flight Deck (AFD) to initiate command sequences necessary to carry out

X
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observing programs stored on-board. The AFD and Payload Operation

Control Center Controls (POCC) are listed below in Tables 2-3, 2-4,

and 2-5.

Table 2-3 Operation Control Requirements

1) Point and Roll Direction/Redirection

2) ATM Pointing and Roll Control

3) Offset Adjuster Position Control

4) Exposure Control

5) Instrument Control/Command Reissuance

6) Instrument Safing

Table 2-4 POCC/AFD Instrument Status Display (By Request from AFD)

Parameter Status

Instrument Controller Power (on/off)

H-alpha Camera Power (on/ofi)

H-alpha Cooler Power (on/off)

TV Camera Power (on/off)

Film Camera Power (on/off)

AID Camera Power (on/off)

Aid Cooler Power (on/off)

AID High Voltage (on/off)

Offset Adjuster Power ion/off)

Zero-Order Monitor Power (on/off)

Film Camera Advance (on/off)

Film Clamp (open/closed)

Film Camera Door (open/closed)

Telescope Door (open/closed)

H-alpha Shutter (open/closed)

EUV Shutter (open/closed)

AID Mirror (in/out)

Launch Lock (lock/unlocked)

Parameter Status

Entrance Slit Position (1 thru 4)

Offset Adjuster Position

Film Frame Number

Zero-Order Monitor Reading

UTC of Shutter Operation

Sun Sensor Reading

Offset Adjuster Position

Pointing System Pitch

Pointing System Yaw

Pointing System Roll

Temperature Sensor ill - #7

2-5



Table 2-5 POCC/AFD CO210L ND AND CONTROL CAPABILITY

ti

Instrument Controller Power on/off

H-alpha Camera Power on/off

H-alpha Cooler Power on/off

TV Camera Power on/off

Film Camera Power on/offs

AID Camera Power on/off

AID Cooler Power on/off

AID High Voltage on/off

Offset Adjuster Power on/off

Zero-Order Monitor Power on/off

Film Camera Advance

Film Clamp open/close

Film Camera Door open/close

Telescope Door open/close

H-alpha Shutter open/close

EUV Shutter open/ close

AID Mirror in/out

Launch Pin lock/unlock

Entrance Slit Step forward/
reverse

Offset Adjuster Step right/left

Converter Power on/off

Instrument Controller Reset

Sun Sensor Power on/off

i

(Total Commands - 44

2.1.2.5 Contamination Control - During the SUETS Operation, it

will be necessary to constrain thruster firings, waste dumps, and water

dumps.

2.1.2.6 Comma!ad and Data Handling - A data transmission rate of

1250 bits per second on the data bus, and high rate data transmission

of 2.05 Mega bits per second is required. Details of these require-

ments are described in Section 4.2.

2.1.2.7 Operating Time and Modes - The operating modes and times

are described in Section 2.1.2.2, Table 2-2. The total experiment

operating time is to be approximately 90 hours. The total sunlit opera-

tional time for a Shuttle mission of 7 days is approximately 102 hours

when post insertion and pre re-entry thermal conditioning is considered.

Due to the these experiment operating time requirements, joint opera-

tional programs with other experiments must be worked out.

2-6



2.1.2.8 Orbital Requirements - The Orbit altitude desired is to

be as high-as-possible, consistent with other pointing platform in-

struments. The desired inclination is to be 28.5 degrees or higher.

The launch time and inclination is to be chosen so that the Orbiter

Beta angle constraint of 60 degrees is not exceeded, but so that sun

time is maximized. The Orbit parameters are to be chosen to minimize

time in the Sot:th Atlantic Anomaly (SAA).

2.2 Solar Active Region Observations from Spacelab (SAROS)

2.2.1 Instrument Description - The SAROS instrument consists of

two (2) distinct components; 1) an x-ray Telescope and 2) a pointed

collimated Bragg Spectrometer. These components are packaged in a

single integrated package, Figure 2-2.

The prime objective for SAROS is to make detailed measurements of

the temperature, density, and pressure within coronal loops in order

to precisely determine the absolute values of the radiative and conduc-

tive heat loss terms for a given solar magnetic field loop. Secondary

objectives are 1) Evaluate the magnetohydrodynamics of coronal loops,

and the problem of the reconnection of magnetic field lines; 2) Evalu-

ate x-ray bright points to establish a physical description, 3) Evalu-

ate eruptive prominences, coronal transients, and depletions; and

4) Evaluate element abundances to assist in understanding both plasma

and solar behavior.

The imaging system will provide high spatial resolution full disk

x-ray Heliograms which can be recorded either as images on photographic

film or as a video image. In addition, pointing information from the 	 }

spectrometers in the form of a fiducial mark can be superimposed cn the

video image. This allows control of the spectrometer pointing in real

time and records their location for later analysis. The video image

will be available to the payload specialist on the Shuttle aft flight

deck. It is also available to the experimenters on the ground by

transmission in digital form, via the high rate multiplexer (HRM).
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The imaging system consists of:

1. A grazing incidence x-ray mirror fabricated of fused silica

and having a spatial resolution in visible light of 0.5 arc

seconds.

2. An invar mirror mount and optical bench are provided to hold

the mirror withqut distortion and maintain the location of

the focal plane to within +5 x 10- 3 cm over a temperature

range of +30 C.

3. A focal plane assembly consisting of two photographic cameras

and one video camera mounted on a three position rotary turret.

4. The two (2) photographic magazines are sized to hold 19.00 cm

diameter film magazines. Each of the two magazines will con-

tain one of two complementary types of film, one film being

chosen for high sensitivity and one for high spatial resolution.

5. The video camera consists of a microchannel plate with r. proxi-

mity focussed phosphor coupled by relay optics to a slow scan

vidicon. The resulting pictures will have a spatial resolu-

tion of 5 arc seconds.

6. An Ha telescope consisting of a narrow band filter and optical

train is mounted within the x-ray mirror. The telescope will

allow Ha images to be recorded on film silultaneol , aly with the

x-ray images. The images will be used to provide independent

roll information and to align the x-ray images with ground

based observations.

The spectrometer consists of:

1. A three channel multi-grid collimator mounted in a single

assembly which defines the field of view of the spectrometer.

2. Three Bragg crystal analyzers each of area 12.5 x '25.0 cm2.

The crystals used will be ADP, Beryl and RBAP.
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3. Individual detectors for the three crystals. The

detectors i;,:e thin windowed, flow proportional counters

using a 90:10 mixture of argon and methane as the detec-

tor gas. They are mounted to a common drive assembly

which is not counterbalanced.

4. The pointing drive which employs two motors for operating

recirculating ball screw-jacks which provide the two-

axis motions. These motions are sensed by transducers

installed across the gimbal elements and additionally by

shaft encoders fitted to each motor shaft. The single

step size of the pointing system is 5 arc second with a

total scan capability of +^ degree. 'The pointing drive

is protected during launch and re-entry by latching

the spectrometer in a position where it is held clear

of the screw-jacks and thus unloaded.

The latching mechanism is motorized and will be fully

redundant to ensure relatch prior to re-entry.

5. A fiducial system which is mounted to the collimator

backbone. It consists of a back-illuminated mask which

projects an image of the collimato- field with cross

hairs to locate the center of the collimator filed on

the sun.

6. Tne proportional counter gas flow system with its associ-

ated gas storage reservoirs, regulators, valves and gas

delivery and density control electronics.

Access is required to provide pre and post flight access to the film

canisters of the two (2) cameras. The nitrogen purge system must

also be accessible for filling prier to flight during the offline

Ground Operations activities'.

2-10
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2.2.2 Instrument Characteristics

2.2.2.1 Structural Mechanical - The experiment is contained

within a cylindrical structure of octagonal cross section. The over-

all dimensions are length 109.5 in., width 39.4 in., and depth 37

inches. The main load bearing structure is an aluminum honeycomb

center plate running the '.ength of the instrument and dividing the

package into two halves. Radial stiffness is provided by bulkheads

positioned at various locations along the center plate. A cylindrical

thin walled aluminum shell provides torsional rigidity and environmental

protection for the instrument system. The two instruments are located

on either -ide of the center plate. In both cases, the electronic

packages are mounted at the rear of the instruments, within the basic

envelope. The total mass of the instrument is 555 kg (1224 lbs.).

Three mounting adapters as described in Figure 4.1.3.1-5 are used

for mounting to the ATM. One of the mounting points is at the forward

or sun-pointed end and the remaining two are at the central bulkhead.

In order to allow sufficient access to the instrument after it is

attached to the ATM, the adapters can be attached to either side of the

experiment structure. Since the load bearing structure is symmetrical,

this does not affect the structural integrity.

2.2.2.2 Electrical Power - The SAROS requires an average DC power

of 212 watts per orbit (including 60 watts of heater power) and 34C

watts of peak power. Continuous power is required after Ground Operations

integration (Level IV) to maintain a vacuum in the video camere'; Mi'-ro-

.• hannel Plate of (TBD) watts. There are five (5) operating modes for

the SAROS and these are described in Table 2-7 in Section 2.2.2.7.

The average power for each of these modes are shown below in Table 2-6.

Table 2-6 SAROS Power Summary

Modes Operating Power Heater Power

1 104 watts 135 watts

2 222 watts 20 watts

3 148 watts 20 watts

4 264 watts 20 watts
5 150 watts 20 watts

2-11
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2.2.2.3 Thermal Control - The SAROS requires a non-operating

environment of 0-30 deg C (32-86 deg. F) and an operating environment

of 20 + 30 deg. C (68 deg. F). The integrated package environment is

to be 10 + 5 deg. C (50 deg F). Hot spots such as the electronics

package must either be supplied with cold straps or allowed to radiate

directly to the ATM cold plates mounted on the canistered walls.

2.2.2.4 Controls acid Displays - The controls and displays

(Tab -.e 2-7) that are required consist of a TV display at the AFD for

display of video images so that pointing programs and Spectrometer/

Camera sequences can be commanded to experiment.

The SAROS Will be controlled by an instrument controller which will

provide sequences of commands to operate the instrument. Command se-

quences needed to -arry out observing programs will be stored on-board.

When a sequence is initiated, from the POCC o; :'D, the controller will

sequence the operation_ of shutter, film advance, etc. to provide the

desired set of photographic exposures.

Table 2-7 POCC/AFD Controls and Display Requirements

Display

+28V Source
A +5V

B +5V
Dep 2 Voltage

Dep 3 Voltage

Dep 1 Run
Dep 2 Run

Dep 3 Run

Dep 1 Backup Run

Dep 1 Backup On
Survival Heater On

Commands

Power A On/Off
Power B On/Off

Dep 1 Restart On/Off
Dep 2 Restart On/Off

Dep 3 Restart O:I /Of f

Dep 1 Backup &n/Off

Survival Heater On/Off

Move Cursor Up/Down

Move Cursor Right/Left

Change Step Size 3
Go to Special Sequence

2.2.2.5 Contamination Control - During the SAROS Operation, it will

De necessary to constrain thrusted firings, viste dumps, and water dumps.

2.2.2.6 Commane and Data Handling - The command and data handling

requirements include providing for a data rate of 7300 bits per second

2-12.
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on the data bus and 524.3 kilo hit* per second of high rate data. as

nua; continuous coaununication with the ground as possible is required

during the experiment operating time.

2.2.2.7 tly rant Modes - The SAROS has five (5) operating model.

per Orbit as : + hobo t in Table 2-8.

'rabic 2-8 Modes of Operation

	

Mode 1	 -	 the-Orbit Standby. 30 min.

	2 	 -	 Video Imaging and Display, 15 min.

	

3	 -	 Normal Data Taking, 15 min.

	

4	 -	 Data Taking with Interactive Spettromotor

Control, 20 mitt.

	5 	 -	 Data Taking wiih Two Cameras. Ill min.

F.".".8 - The Orbit altitude desired Is to ho

between 200 to 400 km at a near equatorial circular orbit. An experiment

desire is to ntinimi e the time exposed to high radiation source:, such

as the :south At larnt it ,,T- n:aly.

2.3	 I-yman A13&ha - _White Lihht l'orona^ralh

..3.1 lnstrumonC Doscrt3?tion - The Spacelah Lyman Alpha - White

Coronagraph is a _joint program of tht' Smithsonian Astrophysicatl Observa-

tor y (SAO) and the Nigh Altitude Observator y (i.AO). The Spacelah Alpha

Coronagraph (SIAC) and tale White light Coronagraph (WI.C) will be operated

III a joint fashion as co-observing instruments which together crmprist-

the Acceleration region Coronagraphs (ARC) experiment. The ARC Is const-

dcred to he a single instrument in tale mechanical/optical sense. but the

,,LAC and I&C will function as separate instruments in the olvetricatl/

thermal sense. The instruments will interface separately with the

command and Data Management St • stems and with the electrical Avstems.

Fach tn:Arument has its: ot.n th^rmati control rvstem and the thermal inter-

action is to be minimized. A mechanical interface exists and the W1.0 is

litotinted to the SIAC with a throe (3) point kinematic mount but other-

wise each coronatgrAph is -structurally self-sufficient.
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The ARC co-observing instruments will measure coronal temperatures,

densities, and flow velocities for solar structures throughout the solar

wind acceleration region of the inner corona. Data from both ARC instru-

ments are required to achieve the following principal scientific ob-

jectives:

1) Determine the coronal atomic hydrogen and proton

temperatures from 1.2 to 8 solar radii from sun center.

2) Dete.rine coronal atomic hydrogen and electron densities.

3) Determine coronal mass flow velocities.

4) Specify at least an upper limit to non-thermal velo-

cities in the Corona.

5) Determine the coronal electron temperature.

6) Study coronal momentum and energy transfer in con-

junction with model3 of the coronal expansion.

7) Estimate the mass flux of the solar wind, particularly

that arising from regions other than coronal holes.

The SLAC is an ultraviolet coronagraph using a slowly-scanning tele-

scope mirror to observe a 30 arc minute x 100 arc minute sector of the

corona from 1.2 to 7.4 solar radii. The sector is selected by rolling

the pointing system ATM) around the sun center. Offset pointing also

permits occasional solar disk observations as well as coronal observa-

tions out to 8.0 solar radii. A Spectrograph analyzes the telescope

image light spectrally and observes a coronal strip. Disc mte-anode

microchannel array detectors provide spatial and spectral ii.formation.

The SI.AC is comprised of the following major subsystem: Mechanical

(i.e., front aperture and door, sunlight trap, telescope/internal oc-

culter mirror, baffles, entrance slit, spectrograph case, grating; drive,

detect oor ;count and main instrument case), Optics (i.e., telescope mir-

ror, diffraction grating, sunlight trap mirrors and alignment mirror),

detector assemblies, thermal control and electronics.

The WVI is comprised of the following~ major subsystems: Mechanical

(i.e., aperture door. light Cube/optical bench combination, optics

housing and structural mounts:), Optical (i.e., external occulting disks,
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heat dump mirror, focussing lenses, folding mirrors, internal occult-

ing disk and polaroid filters), thermal control (i.e., heated panels,

multilaver insulation and surface coatings), data recording (i.e., 35 mm

film camera), and electrical (i.e., 8080A processor, motor drivers,

thermal control system controller and power supplies. The door mecha-

nism, flip mirror and calibration path devices are designed with a

manual override system so that in the event of a primary drive system

failure the component can manually be removed from the optical path.

2.3.2 Instrument Characteristics

2.3.2.1 Structural and Mechanical - The Spacelab Lyman Alpha-

White Light Coronagraph is shown in Figure 2-3, and is 130.5 inches

long, 40 inches high, and 37 inches wide. The combined instrument

weight is 749 lbs. The SLAC and the 14LC are mounted together on the

three (3) point kinematic mount and the SLAC will be mounted to the

ATM through a co-alignment system. This interface and system are shown

in Section 4.1, Figures 4.1.3.1-7i8.

In addition to the main structure, an electronics assembly, sepa-

rate from the telescope will operate the WLC. The electronics rack

will be detached from the telescope primarily to eliminate the thermal

heat source from the precisely aligned telescope. This electronics

package will not be coupled to the SLAC. The WLC will be kinematically

hard-mounted onto the SLAC and the joint instrument will be a co-aligned,

co-observing instrument package. Access is required to the WLC film

assembly.

2.3.2.2 Electrical Power - The ARC requires an average DC power

of 197 watts, with the SLAC using 150 watts average power during its 9

operating modes, and the WLC using 47 watts average power during its 6

operating modes. These operating modes are shown in the following

Tables 2-9 and 2-10.
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Table 2-9 SLAC Power Operating Modes

Mode 1	 - Launch and Reentry -	 0 Watts

2	 - Power Down	 - 60 Watts

3	 - On-Orbit Standby -	 84 Watts

4	 - Survey	 - 147 Watts

5	 - Intensity -	 153 Watts

6	 - Profile	 - 153 Watts

7	 - Hi Spert. Res.	 - 153 Watts

8	 - Elect. Temp.	 - 147 Watts

9	 - Disk	 - 153 Watts

Table 2-10 WLC Power and Operating Modes

Mode 1 -	 Launch and Reentry	 - 0 Watts

2 -	 Turn-On	 - 55 Watts

3 -	 Standby	 - 40 Watts

4 -	 Operate	 - 70 W-itts

5 -	 Turn-Off	 - 0 Watts

6 -	 Troubleshoot	 - 70 Watts

2.3.2.3 Thermal Control - The ARC is designed to operate in the

near 0 degree centigrade operating conditions of the spacelab thermal

shroud. The 14LC has an active TCS in conjunction with multi-layered

insulation blankets and surface finishes will heat the structure to hold

the temperature to within a 21 + 30 C range from proper operation. The

SLAC could operate at higher temperatures than O o C but a thermal re-

design would be required. The externally mounted SLAC electronics box

must be cooled separately. The WLC Film Canister contains film which

is subject to damage when the film is subjected to high temperatures

for prolonged periods of time.
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2.3.2.4 Controls and Displays - The ARC requires AFD controls

and displays but no television display is required. Normally, the ARC

is controlled or operated via canned observing modes or data collection

modes stored in the Dedicated Equipment Processor (DEP), but these

modes can be specified by sending mode sequence commands from the AFD.

Table 2-11 identifies the SLAC Controls and Displays, and Tables 2-12

and 2-13 identifies the WLC Controls and Displays.

Table 2-11 SLAC Controls and Displays

U

Controls Source

1. Science Mode Load POCC/AFD

2. Mode Sequence POCC/AFD

3. Message to DEP POCC/AFD

4. Discrete Commands (8) POCC/AFD

- SLAC Power

- Heater Power 1

- Heater Power 2

- Vacuum Override

- TBD

- TBD

- TBD

- TBD

Display

1) Detector Data

2) Instrument Status Data #1/12

3) Survey Data

4) Wavelength Scan Data

5) DEP Message to DDS

6) DEP Memory Load

2-18
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"_'able 2-12	 WLC Controls

Controls

Standby Power on/off
TCS on/off
Ha TCS on/off
Instrument pwr on/off
initialize instrument
door - open/close
single/double Sequence
halt
std mode
calibrate
transient
clear exp
motorpower off/on
insertHa
insertcal
insert/remove mirror
pathcornal
pathHa
pathcal
nextfilter
filterN(n)
close/open Shutter
matrix
advance
advanceN(n)
time exp(n)
coronal time(n)
Hatime(n)
filter seq
inhibit/enable Film
setframes
inhibit/enable Sync
wait(n)
syncpulse
door open override
D4 auto/manual
center D4
step D4 R, Y
read CMD register(n)

Source

POCC/AFD

2-19



Table 2-13 WLC Displays (AFD on Command)

Descretes	 Analogs

SLAC Sync Temp Ha

Shutter Open/Closed Temp 1

Shutter Closed. Temp 2

Door Closed CMD Temp 3

Door Closed +28V SLPwr

Door Open CMD T28V Stby Pwr

Door Open +5V PWR

F.W.P.	 1A-4A +15V PI,'R

Geneva Lock A/B -15V PWR

Calib Mirror In

Ha In Serial Data

Program Run
+28V Motor PWR

Up Running
X Pointing Error

Flip Mirror In/Out
Y Pointing Error

Film Advance
X D4 Error

DEF Busy
Y DR Error

Motor Power
Film Remaining

Temperatures (10)

2.3.2.5 Contamination Control - Du:ing the operation of the ARC,

it will be necessary to constrain thruster firings, waste and water dumps.

2.3.2.6 Command and Data Handling - The command and data handling

r^quirements of the ARC are divided into those required by the SLAC and

those required by the WLC. The data requirements of the SLAC are 900

bits per second through the data bus and frcm 25 to 50 kilobits per sec-

ond of high rate data.

The data requirements of the WLC are 300 bits per second through the

data bus and the 35 mm film which is to be removed after landing.
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2.3.2.7 Operating Times and Modes - The ARC requires six (6) dedi-

cated Orbits per day having two (2) hours of daylight observing on eight

(8) hour centers. The operating modes for the SLAC and the WLC are de-

scribed in T.:bles 2-9 and 2-10 respectively.

2.3.2.8 Orbital Requirements - The Orbit altitude required is

above 200 km, but a higher altitude of 400 km or better is preferred.

No inclination is specified.

2.4 Pointing Requirements

The pointing requirements or all the instruments are discussed

in Section 4.5.

2.5 Mission Requirements

Mission requirements have been reviewed of all instruments

selected for this study as well as the instrument/experiment operating

requirements nd scientific objectives in order to establish an inte-

grated set of mission requirements and still. satisfy the thermal, communi-

cations, and power requirements. The integrated requirements are as

follows: Altitude 400 km (216 n.mi.); Inclination 28.5 degrees; Beta

angle of approximately 52 degrees'(Launch date Dec. 18); Attitude will

be solar inertial with the x axis in the Orbit plane; mission duration,

7 days. These requirements also place specific requirements on the

Orbiter such as, no OMS kits are required and 1 energy kit is required

for supplemental electrical power.
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3.0 ATM REUSE REVIEW AND ASSESSMENT

The ATM reuse review was accomplished in three (3) phases:

1) The post Skylab Spacelab/Multiple Telescope Mount (MT':I) ATM feasi-

bility study documentation review; 2) ATM drawing review; and 3) Review

meetings with the Lead Engineers of the Spacelab /MTM ATM feasibiliL•

study.	 '

3.1 Documentation Review - The documents shown in Table 3-1 were

reviewed. These documents covered both the initial Spacelab feasi-

bility study al,d the follow-on Multiple-Telescope mount study as well.

as the Skylab Operations Handbook. All Working Group Minutes and

Action Items were also reviewed.

3.2 ATM Drawing Review - In addition to the documentation review,

ATM drawings were obtained from storage and reviewed. These drawings

and a parts list and hardware status is presented in the attached

Appendix A.

This status contains the drawing number and hardware list, the lo-

cation of the part on the ATM, the No. required, spares in storage,

modification requirement, and the Original vendor.

3.3 ATM Review Meetings - The review meetings held wiLh the

Original STS/Spacelab/MTM Study conducted in 1974 and 1975 are as

follows:

Engineering Technical Lead	 - G. Stone

Structures	 - J. Swickard

Thermal	 - C. Class

G & C	 - L. Cloud

C & DM	 - T. Rasser

Power	 - O.B. Smith

Contamination	 - E. Ress

All original stud y leads are still employed by Martin-Marietta, Denver.
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Table 3-1 ATM Review Documents

Document/Title	 Date Prepared

1) Spacelab ATM Payload Interface Definition Document Feb. 1974

2) Spacelab ATM Feasibility Study:

Vol. I Technical Report Sept. 1974

Vol. II Executive Summary March 1975

Vol. III Structures Nov. 1974

Vol. IV Thermal Nov. 1974

Vol. V Attitude and Pointing Control System Nov. 1974

Vol. VI Instrumentation ar.1 Communication Nov. 1974

Vol. VII Controls and Displays Nov. 1974

Vol. VIII Contamination No,. 1974

Vol. IX Electrical P,^wer Nov. 1974

3) Final Report ATM Shuttle Payload Feasibility Study
(F74-07)	 Oct. 1974

4) Progress Report, Multiple Telescope Mount (MTh)
(ED-2002-1764)	 Feb. 1974

5) Integrated Mission Planning, First Two Years of
Shuttle Missions, Mission ATM-B, Spacelab Mission
Pallet Only, Apollo Telescope Mount 	 Oct. 1974

6) APCS Analysis of the ATM as a General Payload Carrier Dec. 1974

7) Spacelab MT*i ceasibility Study Working Group Meeting
Presentations and Minutes

8) Skylab Operations Handbook, Apollo Telescope Mount
Systems and Experiments Description 	 July 1971

C,
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4.0 ATM, IPS 6 AGS DESIGN CONCEPTS

4.1 Structural/Mechanical

4.1.1 Introduction - This section provides the results of the

structural/mechanical portion of the study on the feasibility of mount-

ing new solar instruments in the existing ATM hardware. The study work

has been of a conceptual design nature consisting primarily of layouts

and providing analysis only where required to validate the design

.approach. The previous ATM study work has been utilized as a starting

point, and new approaches have been investigated only where benefits

could be gained without the sacrifice of the existing, workable system.

The ATM hardware was evaluated for use in three different point-

ing systems; the existing ATM fine pointing control. system, the Instru-

ment Pointing System, and the Annular Gimbal System.

A set of self-imposed requirements/guidelines used during the

study are listed below:

- Utilize to a maximum the existing ATM hardware.

- Maintain the canister center of gravity to within 1.5

inches of the spar/canister centerline (to achieve

similar pointing accuracies as on Skylab).

- Baseline film removal in the OPF after ATM removal

from the Orbiter (previous studies have shown film

able to withstand re-entry soak temperatures).

- Assume shared STS flights (payload of opportunity).

4.1.2 ATM Hardware 'teview - This section is presented to review

the characteristics and capabilities of the existing ATM hardware and

to provide the background such that the design concepts presented in

following sections can be more easily followed. The existing ATM

hardware can be divided into three major structural levels; the SPAR

Assembly, the Canister Assembly, and the Canister Support Structure.

Figure 4.1.2-1 depicts the ATM SPAR as configured for the Skylab

mission.

4-1
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This cruciform SPAR provides the structural interface for the instru-

ments and serves as the system optical bench. The SPAR consists of the

experiment mounting plate, stiffener rings, and the girth ring. Tile

experiment mounting plate provides eight mounting surfaces for Instru-

ment attachment. These plates arc made from 1-118 inch aluminum

plate and are approximately 60" x 120" each. Two-inch diameter lighten-

ing holes are located over the surface of the plates and cause a 40%

weight reduction. In use, multilayer insulation blankets completely

enclose the mounting plate to prevent thermal gradients on the plates.

Stiffener rings located top and bottom increase the overall stiffness

of the assembly. The girth ring adapts the SPAR assembly to the next

structural assembly (Canister Assembly) and also interfaces with the

fine pointing system,gimbal rings and the launch lock system. The girth

ring is 88 inches in diameter and is 8 inches deep in cross section.

The overall SPAR assembly is 88 inches in diameter and has a length of

approximately 120 inches. The total assembly weighed approximately

1400 lbs. on Skylab.

As shown in Figure 4.1.2-2, the ATM Canister is made up of the

SPAR assembly, the Sun End Canister and the MDA End Canister. This

assembly contains the instruments, has a complete self-contained active

thermal control system, and is the element that is pointed by the fine

pointing system. The girth ring from the SPAR assembly ran be seen in

the figure at the interface of the two canister assemblies.

The Sun End Canister is a cylinder, open at one end, made up from

two concentric shells and the sun shield assembly. Eight cold plates

form the inner shell and permit heat transfer via radiation from the

SPAR mounted instruments. The outer shell is made up of four radiator

panels which exchange heat from the cold plates via the fluid medium

and radiate it to space. Forward on the canister is the sun shield assembly

which shades the radiator panels from solar impingement and houses the

aperture doors for experiment viewing.

The MDA End Canister is similar in construction to the Sun 1:nd Cani-

ster excent that there is only a single shell consistin- of 8 cold ;dates.
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Additionally, five of the cold plates have access doors in the panels

for film and experiment access. The aft end of this canister has a

simple bulkhead design for the external mounting of subsystem equip-

ment. Overall ATM Canister dimensions are: 107 inch diameter at the

sun shield and a length of 128 inches. Without instruments, the

assembly weighs approximately 4100 pounds.

In actual usage, the instruments are built up on the SPAR assembly

which is supported by a CSE support fixture. After instrument inte-

gration and checkout, the canisters are installed over the top acid bot-

tom of the SPAR and are structurally connected to the girth ring.

Cabling hookup and fluid connections between the cold plates and radia-

tors complete the i-asembly.

The third major ATM structural element is that structure which

supports the ATM Canister and provides the interface to the vehicle.

On Skylab, the ATM Pack Structure performed this function and inter-

faced with the MDA. Due to size problems (cargo bay envelop violations),

the previous ATM study determined that the ATM Rack Structure approach

could not be used.

Figure 4.1.2-3 is the Canister Support Structure (CSS) developed

in the earlier ATM feasibility studies. This structure interfaces with

the ATM Canister Assembly via pitch and yaw gimbal rings connected to

the SPAR girth ring. The CSS also provides the launch/landing lock in-

terfaces between the structure and the ATM Canister. Construction is a

combination of an eight-sided torque box and truss-type structure. A

direct Orbiter interface is used with a standard statically determinate

type interface consisting of two primary longeron attachments (at the

canister centerline), one stabilizing longeron attachment, and the keel

fitting located also at the canister centerline. Truss structure ties

the Orbiter interface trunnions back to the torque box structure.

The inner surface of the torque box provides the structural attach-

ments for both the gimbal rings and also houses a new launch/landing	 h

lock arrangement also developed during the earlier studies.	
r
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The one shot, ordinance initiated loco on Skylab does not lend itself

to a redesign that allows relatch for landing. A ball-screw driven

latch concept was proposed as the design fix and this concept will be

baselined for this study also.

The figure also depicts the ATYL Canister/CSS in the cargo bay en-

velope and shows the limits imposed on the ATM Canister len-th. Two

areas on the existing canister syst em require modification to fit the

cargo bay envelope. The Sun End Canister Sun Shield requires a re-

duction in diameter from 107 inches to 104 inches to fit the envelope

and provide sufficient clearance. A cable drum which maintains control

over the cabling during roll maneuvers is shown near the keel area.

As configured on Skylab, the cable drum would extend beyond the bay en-

velope. The figure shows 	 :h the modifies: cable drum and sun shield.

The top surface of the CjS incorporates a slight slant which

serves to prevent solar reflection back onto the radiator surfaces. A

startracker and acquisition sun sensor from the ATM Rack Structure have

also been relocated to the CSS.

Preliminary design data from the earlier study indicates 	 total

weight of 1900 pounds for the 142 inch x 194 inch x 173 inch structure.

Figure 4.1.2-4 illustrates a new element developed during the pre-

vious studies. This Electronics Component Unit (ECU) supports the sub-

system equipment (control, power and pointing) that was originally

mounted on the ATM Rack Structure. This concept uses a Spacelab pallet

to m.:lnt a new equipment truss which supports approximately 2500 pounds

of subsystem equipment. Thermally sensitive equipment is located on

Spacelab cold plates on the truss and a sun shield is provided over the

entire pallet to prevent solar entrapment.

4.1.3 ATM Pointing System Concept

4.1.3.1 Ins trument Mounting Concept - This section ad-

dresses the integration of the Solar Instruments into the existing ATM

hardware. In this ATM Pointing System concept, the ATM Canister Sup-

port Structure with the ATM Pointing System is baselined and the main

4-7

i

a
t





discussion is centered on the instrument mounting approaches.

The relationship between the volume available for instrument

mounting as provided by the ATM Canister and the Instrument size is

shown in Figure 4.1.3.1-1. Note that SEUTS will fit within a quad-

rant if mounted at a diagonal. The mounting envelope restrictions

(i.e., 36.5 inch radius) are due to the canister cold plates and SPAR
s

stiffener rings. It is apparent from the figure, that a simple ap-

proach involving secondary structure to adapt the instrument is not

feasible.

Three design concepts for instrument mounting were evaluated:

An external shroud concept, a new canister approach, and a two instru-

ment concept.

The external shroud concept (Figure 4.1.3.1-2) was an attempt to

mount two instruments within the existing canister and provide an ex-

ternal shroud on the outside surface of the canister to house the third

instrument. There are a couple of obvious problems with this approach.

i	 Due to the geometry of the gimbal rings and the CSS, the third instru-

ment ends up being locates approximately 80 inches off the canister

centerline. The CG offset effect on the pointing system is so signi-

ficant that an almost equal weight (750 pounds) must be provided at a

similar offset as ballast. Additionally, at this amount of offset,

the canister can only be rotated through less than 900 due to inter-

ference with the cargo bay side walls. These problems were deemed to

be of sufficient magnitude to drop this approach from further considera-

tion.

The second approach considered, examined the potential of providing

a new structural enclosure to mount the three instruments end utilize

as much of the existing ATM hardware to outfit the thermal and pointing

systems. Potential reuse items identified include: ATM Sun End Cani-

ster radiators, Sun End and MDA End Canister cold plates, thermal con-

trol system pumps, valves and other components, and the pointing drives

(assuming the ma.-:.s properties for the new canister would be similar to

the existing canister). New components required include; the canister
i
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structure (approximately 90 inches x 90 inches x 140 inches) and new

gimbal rings (pitch and yaw). Figure 4.1.3.1-3 shows a preliminary

version of the new canister concept. During the evaluation, it was

concluded that the new canister approach was not feasible based on the

following points. Additional qualification testing would be required
t

for the new canister approach which could involve thermal vacuum test- 	 s

ing as well as vibration'testing. The most significant drawback to

this new canister scheme is that the pointing system accuracy may not

be maintained at the precise levels achiev •:d using the Skylab ATM sys-

tem. Finally, the cost involved in the design and fabrication of the

new elements along with the cos*_ incurred in testing make this option

unattractive.

In keeping with one of the groundrules to minimize ATM hardware

modifications, a minimum mod approach was developed where only two in-

struments would be utilized on a single mission. This approach for

SEUTS and SAROS is shown in Figure 4.1.3.1-4. The modification re-

quired to accomplish this arrangement involves primarily a change out

of the experiment mounting plate. This deletion of the cruciform spar

and replacement with a "H" section is a fairly simple modification.

The previous ATM study had noted that, due to the complexity of

the Sun End and MDA End Canisters, structural mods should be limited

to the SPAR and the experiment mounting plate area. The new "H" sec-

tion mounting arrangement uses the existing girth rings and stiffener

rings from the SPAR assembly and would require new 1-1/8 inch aluminum

plates along with some bracket changes. As noted in the figure, the

two instrument arrangement also includes the mounting of existing ATM

SPAR equipment (rate gyro, fine sun sensor, pre-amplifier) and the

RAU's for instrument data interfacing. The SEUTS electronic package

is shown located near the telescope on the instrument mounting plate.

Center of gravity constraints in all three axes have been maintained

by the positioning of the instruments and subsystem equipment. Heat

rejection from the instruments is primarily towards the open quadrants,

however, openings could be provided through the side plates to provide

additional local radiation paths.

4-12
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Figure 4.1.3.1-5 is a side view of the ATM Canister cut along the

section lines indicated in the previous figure. An envelope restric-

tion of 124 inches is shown at the bottom of the sketch. This restric-

tion is due to the internal length of the ATM Canister. SAROS, at 109.5

inches in length, fits within the length envelope with enough margin to

allow positioning to match its CC with the required SPAR CC.

SEUTS has an overall length envelope of 135 inches which includes

an eight inch clearance at the aft end for thermal reasons. To accom-

modate SEUTS, a number of options were considered. Lengthening the en-

tire ATM Canister by providing spacers at 'ie attachment of the Sun and

MDA End Canisters to the girth ring is not workable due to the protrusion

into the cargo bay envelope. Allowing the SEUTS to protrude through

the forward sun shield has some potential in that new aperture doors

must be provided in any case to handle the new instrument locations.

This local protrusion could accommodate an eleven inch extension and

remain within the cargo bay envelope, but only 2-3 inches would be avail-

able for the aperture door and insulation forward of the telescope. An

offset door arrangement could possibly be devised to handle this space

limitation. Another consideration with this approach is the effec` of

thermal gradients on the instrument. Approximately 15 inches of the

telescope would be forward of the cold plate region. Further study is

required in order to reach a conclusion on the feasibility of extension

through the Sun End Canister.

Access to the instruments is achieved through the five MBA End

Canister access doors and two access doors on the Sun End closure. Fi-

gure 4.1.3.1-6 indicates a preliminary orientation of the new "H" section

spar within the canister that allows fairly good access through the MDA

End Canister cold plate access doors. However, due to Oe location

of the access doors near the lower end of the MDA End Canister, they

will not provide complete access over the length of the instruments.

The forward two access doors are useable only for access just aft of the

sun shield. SAROS does have the majority of its access doors on the

lower half of the instrument. SEUTS, however, has the film camera

4-15
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located approximately at the midpoint, and access compatibility re-

quires additional investigation and data.

Figure 4.1.3.1-7 is an end view of the canister showing a two in-

strument arrangement with SEUTS and ARC. Note that it is not possible

to ccmbine SAROS with ARC in the available canister space. The same

"H" section spar arrangement as for SEUTS and SAROS is used for these

instruments with the same subsystem equipment locations. Here again,

the CG can be maintained by relocation of subsystem equipment or by

the use of ballast. Figure 4.1.3.1-8 is the side view of the SEUTS

and ARC instrument configuration. In this combination, both SEUTS and

ARC exceed the 124 inch length envelope. At 130.5 inches, ARC appears

to be better suited to the protrusion approach because additional space

would be available for door construction. The large forward cross

section would, however, require a sizeable door and cutout to handle

the protrusion. Access provisions are similar to that shown in Figure;

4.1.3.1-6.

In both instrument approaches, the forward sun shield area requires

modification to align the aperture doors with the new instruments field

of view. The existing ten doors in the Sun End Canister were checked

against the new solar instrument requirements, and were found to he

incompatible.	 Because of malfunction during Skylab, the aperture

door mechanism will also require some upgrading to insure better reli-

ability. Any door redesign effort should consider a universal Ooor ap-

proach that would allow alternate instruments and locations to be flown

without a -omp' , te door redesign. The two instrument design concept

has baselined the replacement of the existing door arrangement with two

new doors that will handle either SEUTS and SAROS or SEITTS and ARC.

Revision of the entire sun end closure assembly is required to provide

the new doors and also provide the cargo bay envelope clearance.

4.1.3.2 ATM System Configuration Options - In order to provide a

complete pointing system, the ATM Canister/Canister Support Structure

requires a sizeable list of supporting electronics and equipment.

4-18
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As mentioned in Section 4.1.2, the Skylab supporting hardware •'Fas

proposed to be relocated off the ATM Rack Structure and integrated

into the new Electronics Component Unit (ECU). In addition, to inter-

face properly with the instruments, the use of Spacelab data system

components have been baselined (see Section 4.2). The use of these

three major system elements allows for two primary system configura-

tions. The first system uses the ATM Canister/Canister Support Struc-

ture along with the ECU that includes the Spacelab Igloo (containing

C & DH components). The second option involves the ATM/:SS and the

ECU, but utilizes the Spacelab module to provide the C & DH inter-

faces. Both of these approaches were looked at during the former

ATM studies.

This study investigated the feasibility of combining the sub-

system equipment from the ECU (including the Igloo) onto the Canister

Support Structure. Figure 4.1.3.2-1 depicts this Integrated ATM

configuration.

The Spacelab Igloo is shown mounted on the Canister Support

Structure torque box structure using a similar structural interface

as on the pallet. Mounting of the three Control Moment Gyros (CMG)

uses the orthogonal arrangement similar to Skylab. A truss structure

supports the CMG's and reacts the launch and landing loads (as well as

the reaction torques) back into the CSS structure. Control and data

handling, power, and pointing control equipment is now located below

the CSS octagon structure on equipment trusses located off the keel

support truss members. A list of the truss-mounted equipment is pro-

vided in Table 4.1.3.2-1.

A thermal enclosure is provided over this equipment and as noted

in the table, cold plates are required on some of the electronics.

The Orbiter active cooling system would be connected to the cold plates

using the Orbiter to payload, interface system.

The integrated ATM Figure 4.1.3.2-1 also shows the new. two door,

aperture door arrangement discussed previously.
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Table 4.1.3.2-1 Integrated ATM Subsystem Equipment List

ITEM WEIGHT(lbs) QTY. REMARKS

CMG Assembly 420 3

OIG Inverter Assembly 52 3 Cold Plate Mtg.

ATM Digital Computer 100 2 it
	 "

Experiment Pointing 165 1
Electronics

Workshop Computer 105 1 Cold Plate Mtg.
Interface

Acquisition Sun Sensor 1.5 2
Elect.

Voltage Regulator 14 1

Signal Conditioner Rack 15 4

Memory Load Unit .20 1

MLU Tape Recorder 10 1

Startracker Electronics 32 1

Remote Acq. Units (RAU) 21 4 New Equipment

Amplifier Package 8 1 it

Electrical Power Dist. Box 18 1 Spacelab Equipment

Inverters 73 1

High Data Rate Recorder 104 1

Fine Sun Sensor Sign.Cond. 17 1

Access to the ATM canister is achieved through an opening between the

CSS keel trusses (end view -in figure). This access arrangement makes

use of the capability of the pointing system roll ring to rotate the

canister under 1g conditions. This allows the five access doors to be

positioned in alignment with the opening.

As shown on the figure, the Integrated ATM measures 204 inches in

length (Igloo to CMG's) 194 inches wide (dimension across cargo bay

trunnions),and is 170 inches in height. The total system weight with

the heaviest combination of instruments is approximately 14,700 lbs.

This compares to 16,600 lbs. for the ATM and ECU (Igloo) option which

is 307 inches long.
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4.1.4 Instrument Pointing System (IPS) Interface - In this con-

cept, the ATM canister is used with very little external modification.

The existing thermal control system maintains an acceptable tempera-

ture for the experiments. A cylindrical shell provides the structural

interface between the ATM canister and the pointing system. The exist-

ing ATM pointing system is not utilized because the Instrument Point-

ing System controls the dxperiment orientation.

The European Space Agency's Instrument Pointing System (IPS) is a

precision pointing mechanism with three rotation gimbals: An azimuth

gimbal, a roll gimbal, and an elevation gimbal. (See Figure 4.1.4-1)

The payload is connected to the gimbal system at the Payload Attach-

ment Ring (PAR), which is attached in turn to the elevation gimbal.

The PAR, which is provided by Spacelab, connects to the ATM/IPS

Structural Interface Shell. This shell as previously mentioned, is a

cylindrical support structure which encloses the MDA end of the ATM

and attaches to the existing ATM girth ring.

During launch and landing, the payload is separated from the IPS

to prevent excessive loading of the gimbal system. The Payload Clamp

Assembly (PCA) supports the payload at the girth ring during these

periods. The PCA hardware is supplied with the IPS.

An Optical Sensor Package completes the Spacelab-provided IPS

equipment. This sensor, which can be used fir either solar or stellar

experiments, is mounted on the ATM at the girth ring. New hardware is

required to mount the optical sensor to the ATM girth ring.

The ATM/IPS system is mounted on a two-pallet train. The Payload

Clamp Assembly and the IPS gimbal structure are attached at the pallet

hardpoints. The two pallets are fastened together which allows four

sill trunnions (two primary, two secondary) and one keel trunnion to

support the entire assembly. (See Figure 4.1.4-1)

A Spacelab-provided Igloo also is mounted on the pallet train.

This contmins electronics associated with the Spacelab data and power

interfaces.
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The overall length of the payload from the edge of the Igloo

to the outside of the sun end canister of the ATM is 301.3 inches.

The center of gravity of the entire assemi:ly, including pallets, is

129.6 inches from the sun end toward the IPS gimbal.

The ATM/IPS concept can accommodate experiment equipment length

increases. Canister extenders can lengthen either the sun end canister

or the MDA end canister of the ATM.

The total weight of the payload is about 13,000 lbs. The modi-

fied ATM canister with experiments and optical sensor weighs approxi-

mately 5,762 pounds. This is greater than the 4,405 pounds (2,000 kg)

design load for the basic Payload Clamp Assembly hardware. However,

if the pallet hardpoints are reinforced and replaceable PCA struts with

high enough load carrying capacities are used, the IPS and the PCA

can support 6,608 lbs. (3,000 kg), which is well over the ATM weight.

The payload lies within the STS Cargo Bay Envelope when in the

stowed condition. The centerline of the stowed ATM is at Z 0400; the

outside edge of the sun end of the ATM is at 20582.4 when the ATM is

deployed.

4.1.5 Annular Suspension and Pointing System Gimbal System (AGS;-

Tt►e ATM/AGS concept incorporates much _f the same equipment as the ATM/

IFS concept. The modified ATM canister is exactly the same with the

same structural shell; the existing thermal control system provides the

temperature control. The AGS controls the experiment orientation.

The ASPS Gimbal System (AGS) is a precision three-gimbal pointing

system similar to the IPS. (See Figure 4.1.5-1) The payload is attached

to the AGS at the Payload Adapter Plate (PAP) which is part of the Pay-

load Mounting Structure (PMS). The PMS connects to the roll gimbal.

The PAP is attached to the ATM/AGS Structural Interface Shell

which is identical to the ATM/IPS shell. The launch and landing lock

is also the same as in the ATM/IPS concept: the Payload Clamp Assembly.

The same two-pallet train with Igloo is used, and four sill trun-

nions and one keel trunnion attach the pallets to the Orbiter. The
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framework supporting the AGS is new.

The overall length is 301.3 inches, with the center of gravity

129.6 inches from the sun end. The ATM/AGS concept can accommodate

length increases in the experiments just as the ATM;IPS concept can,

using canister extenders.

The total payload weight is about 12,700 lbs.

4.1.6 STS Integration - This section deals with physical inter-

faces between the Orbiter and the various ATM pointing system options.

All of the pointing system options have been evaluated for potential

cargo bay locations and have been checked against the following

criteria: availability of Orbiter attachment.fittings, space for addi-

tional cargo, weight of STS cargo chargeable items, location near the

Orbiter-combined CG, and the cargo element longitudinal CG location.

Of these criteria, cargo chargeable weight and location near the Orbi-

ter CG, bear further explanation.

Included in the STS cargo chargeable weight items are: the bridge

and retention fitting weights (keel and longeron), one EPS kit (See

Section 4.4, Electrical Power), and the Standard Mixed Cable Harness

(SMCH). For purposes of cargo CG, the entire SMCH (786 pounds) was

included in the cargo element weight. For a shared flight, the SMCH

weight would be shared with other cargo elements, dependent on weight

and cargo bay length relationships.

Location of the pointing system near the Orbiter center of rotation

(the Orbiter-combined CG is between X0 1077 and X0 1109) allows the point-

ing system to deal primarily with rotations (excludes translation ef-

fects), and also eliminates the coupled accelerations (due to lever arm

effects) on the pointing control system.

Figure 4.1.6-1-illustrates the ATM. and ECU arrangement in the Orbi-

ter cargo bay. The location selected puts the ATM canister/SPAR CG as

close to the Orbiter-combined CG as possible. With this configuration,

the ATM CG is five feet forward of the nominal Orbiter combined CG.
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ATM/CSS to Orbiter interfaces are .c attachment fittings X01061.13

(keel and primary longeron) and X 01002.13 (stabilizing lon4eron).

The Spacelab pallet has been located in its most aft location and the

proper clearance between the Igloo and the ATM has been provided.

Thirty-four (",4) feet of cargo bay space is available forward of the

ATM for additional payloads.

The arrangement using the Spacelab module is shown in Figure

4.1.6-2. Here the ATM and pallet are in the identical locations as

the previous sketch. Removal of the Igloo from the pallet does not

allow the ATM to move aft (nearar the CG) due to a lack of Orbiter

attachment points in this region. The module is shown in one of the

standard positions. It is apparent from the figure, that no additional

cargo can be lown with this configuration.

An Integrated ATM cargo is depicted in Figure 4.1.6-3. Here the

ATM has been located as close as possible to the region of the Orbiter-

combined CG. Lack of keel attachment fittings again prohibits a nomi-

nal combined CG range location. This configuration provides thirty

(30) feet of available space for shared payloads.

The ATM/IPS and the ATM/AGS concepts result in almost identical

cargo geometries and CG's. For this reason, a single STS ir:Legration

figure is used to represent either the ATM/IPS or the ATM/AGS. Fi-

gures 4.1.6-4, 4.1.6-5, and 4.1.6-6 represent STS integration as far

forward as possible, as far aft as possible, and with the cargo CG lo-

cated at the STS combined CG, respectively.

Loading the cargo in the forward location leaves 5 feet forward

and 30 feet aft of the assembly. In the aft location, the space for-

ward of the cargo is 27 feet,, with 7 feet aft. When the ATM pallet

train is loaded at the CG location, 30 feet of space is lift forward

and 4 feet is left aft. All'cases result in the cargo element being;

within the Orbiter longitudinal CG envelope.

4.1.7 Mass Properties - The mass properties effort has been

limited to top level weight and CG assessments due to the preliminary
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nature of the study. Table 4.1.7-1 provides a weight comparison of

the five pointing system options investigated in the cour3e of the study.

Most of the entries are self-explanatory; however, the growth and STS

chargeable numbers can use some clarification.

The growth or weight margin number is based only on new structure

and new equipment weight and therefore, may appear small when compared

to the total cargo element weight. The margin is actually greater than

20% of the new equipment weight.

The STS chargeable weight includes; one EPS kit, the complete SMCH,

and the retention/attachment hardware. ECU options include a larger

STS chargeable weight because they include retention hardware for both

pallet and CSS. The module option includes airlock and tunnel plus re-

tention hardware for module, CSS, and ECU.

The CG row at the bottom of the table provides the total cargo

element CG location, in Orbiter coordinates, for the five approaches.

The capability entry, presents a weight comparison of the maximum pay-

load weight for shared cargo. This weight comparison is based on an

assumed 32,000 pound sortie mission. A CG location is also given for

the shared payload. This number represents the most forward CG lo-

cation of the shared payload weight such that, the total cargo remains

within the Orbiter lor.eitudinal CG curve.

4.1.8 Summary - The study results show that the ATM hardware has

the potential for reuse in either the ATM Pointing System mode or the

NASA-provided pointing platform options. Additional study effort is

required, for any of the hardware usage options, in the areas of; In-

strument size (both cross section and length) versus canister envelope,

aperture door configuration (universal door versus dedicated doors for

each mission), and overall instrument accessibility.

a
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4.2 Conanana and Data Handling (C&DH)

C&DH aspects of integrating the pointing systems into the Shuttle

payload bay .L_1 be discussed in this section. Payload instrument and

support system telemetry and command requirements will first be defined.

Data system concepts which accommodate these requirements in conjunction

with the pointing systems under evaluation will then be explored.

Finally, recommendations will be made for onboard multiplexing, record-

ing, and eventual recovery of these data using the Shuttle RF system.

4.2.1 Previous Study Conclusions - In reviewing the C&DH conclu-

sions reached during the earlier ATM feasibility study, it should be

noted that the scientific payload then consisted of the ATM solar in-

struments flown previously on Skylab. For that payload, it was con-

cluded that the ATM data system flown on Skylab, and presented in

Figure 4.2-1, be fully utilized. Obviously, this eliminated any ques-

tions of compatibility between the instruments and data system; but

did present some compatibility problems with the Orbiter data system.

The 72 kbps ATM telemetry consisting of 10 bit words had to be converted

to a PCM signal containing 8 bit words with a rate less than the 64 kbps

limit for Orbiter payloads. It was further recommended that the ATM

command system presented in Figure 4.2-2 be used. Using this approach,

onboard control of the payload was to be achieved by locating ATM con-

trol and display panels in the Orbiter aft flight deck.

4.2.2 Payload C&DH Reguuirements - Data and command requirements

were extracted from the instrument ERDs; and similar support system re-

quirements oere obtained from the earlier ATM study report. The in-

strument telemetry requirements are summarized in Table 4.2-1. Sample

rates for the individual analog and discrete channels identified in

the ERDs were assumed based on the data available v. past experience

with similar payloads. The serial PCM signals were defined in the ERDs.

The 1 ; bps serial PCM rate used for SEUTS was based on data provided

by the GSFC project office.

Our interpretation of ERD statements indicates that r:iere is a

similarity of data content in the SAROS video signal and the 524.3 kbps

4-38
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signal. The video is intended for onboard display and the digital

signal is transmitted to the POCC, and both are used simultaneously by

ground and onboard personnel for correlated instrument setup. ERD

statements indicate a desirability for some video transmission to the

i'OCC, but this is not specifically a requirement. Finally, it should

be remembered that the primary payload data is recorded on film, and

the data listed in Table 4.2-1 is intended for status monitoring, in-

strument setup, and subsequent data analysis.

Estimated telemetry required for the ATM subsystems e.g. the APCS,

TCS, and S&M, were extracted from the previous ATM study, and are

listed in Table 4.2-2, with no modification since the APCS and TCS sub-

systems remain intact and similar S&M monitoring is assumed. ATM tele-

metry for the C&DH (previously referred to as Instrumentation and Com-

munication) and EPS have been deleted since we plan on using available:

Spacelab capabilities in these areas. However, to assess data bus load-

ing, estimates of data were made for these Spacelab subsystems. As in-

dicated in Table 4,2-2, a rather low level of experiment and subsystem

data 'bus loading is anticipated.

In evaluating the uplink command and control requirements of the

payload, consideration was given to potential uplink operational con-

straints identified by previous GS1'C studies. These constraints on

uplink command capability are introduced by the fact that these command

data flow through numerous facilities, equipment, and interfaces associ-

ated with the POCC, GSFC, NASCOM, MCC, TDRSS, Orbiter, and Spacelab.

The result is a considerably reduced effective command rate on the order

of 10 tc 100 bps rather than the 2 kbps published capability, due to

compounded processing and communication delays, numerous verification

loops, and communication interruptions. These constraints could result

in an average command processing time of 1-2 seconds. With these limi-

tations in mind, the payload command requirements tabulated in Table.

4.2-3 were analyzed. Except for updating stored command pages associ-

aged with SAROS, and the SLAC memory update; the estimated uplink times

required are quite manageable ,-nd should not adversely affect payload

s
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operations.

4.2.3 Data System Concepts - A decision was made early in this

study to utilize the Spacelab C&DH subsystem rather than the ATM data

and command system indicated in Section 4.2.1. The factors affecting

this 'ecision are listed in Figure 4.2-3 and offer very compelling

reasons for the decision. It should be noted that the previous study

evaluated a payload consisting of the Skylab ATM instruments with which

the ATM data system was very compatible. Current instrument concepts

are more oriented toward a Spacelab-type system.

Our evaluation of data system concepts was initiated with a de-

finition of the detail interface between each of the instruments and

the Spacelab data system components, basically the Remote Acquisition

Unit (RAU). These interfaces are illustrated for each instrument in

Figures 4.2-4 and 4.2-5. It should be noted in Figure 4.2-5 that sepa-

rate interfaces are shown for the WLC and SLAC although these are

physically recognized as a single instrument package. They have been

shown separately because, in reality, there are two separate data sys-

tems.

It can be seen from the summary of snare channels on each figure

that each of the instrument pairs requ`res a substantial part of an

RAU's capacity, without giving any consideration to spare or rcdundant

channels. Redundant command channels would probably be quite desirable.

For either of the instrument combinations presented in Section 4.1, two

RAUs will be required, and will provide adequate spare and redundant

channel capability.

Referring to Tables 4.2-2 and 4.2-3, it can be seen that the ATM

support subsystems require about 380 RAU channels for telemetry and up

to 125 channels for command. It seems safe to assume that these re-

quirements could probably be reduced by a more detail-;d requirements

analysis if it became necessary to reduce the RAUs required. At least

4 RAUs are required to satisfy these subsystem requirements, and it

would be desirable for one of these RAUs to be located on the ATM Cani-

ster to support the TCS and some APCS components. However, the thermal

i
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analysis presented in Section 4.3 will suggest an insufficient thermal

margin to accommodate any RAUs on the canister. In this event, all

the RAUs will be located on the CSS. This, or course, implies that the

instrument and support system telemetry and command leads, a total of

about 450 signals, will cross the ATM gimbals. Because of the limited

canister movement, this should not be a serious problem as substanti-

ated by Skylab performance where more than a thousand leads crossed

this interface.

4.2.3.1 ATM Approach - The C&DH configuration recommended for in-

tegration of the ATM and its payload with the Spacelab and Orbiter data

systems is shown in Figure 4.2-6. Major data system equipment within

the Payload, Spacelab module and Orbiter is indicated. The Payload part

of the diagram shows the instruments, the TCS and some APCS components,

and 3 of 4 RkUs located on the ATM canister. If necessary, because of

thermal limitations, the RAUs can be located on the CSS with the remain-

ing 2 subsystem RAUs. Approximately 100-110 telemetry parameters from

the TCS and APCS require low level signal processing and amplification

before interfacing with an RAU. This signal processing is provided by

3 or 4 ATM Signal Conditioning Racks (SCR), each of which can accommo-

date 40 low level signals. These 100-110 conditioned, low level (20

millivolt) signals must then be amplified to the 5 volt level for com-

patibility with the RAU's. This will require design of a new amplifier

package consisting of about 120 parallel, integrated circuit amplifiers.

The RAUs interface with the Spacelab experiment and subsystem data

busses and computers within the module. The bus data plus the high rate

serial digital signals from the payload are combined in the high rate

multiplexer (HRM) and tra:.c°erred to the Orbiter Ku-band system for

transmission, or stored on the high data rate recorder (HDRR). Payload

video is available for display in the module or she Orbite~ of flight

deck (AFD). Payload control is possible from the module keyboard, the

AFD keyboard, or from the ground POCC.

Figure 4.2-7 shows the C&DH configuration when the Spacelab mdule

is not used, and tae data system hardware is housed in the Igloo. Pay-
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load control is then effected from either the AFD or POCC. The other

change of significance is the fact that the HDRR does not fit in the

Igloo, and will, therefore, be located on the CSS.

An option exists to control ATM pointing using either the ATM

Digital Computer (ATMDC) or the Spacelab subsystem computer. Avail-

ability of both the ATMDC and the required software makes this the

cost effective approach. It is therefore necessary to interface the

ATMDC with the Spacelab data system for control and monitoring purposes.

An approach to achieving this interface is presented in Figure 4.2-8.

One problem is presented by the telemetry data generated by the com-

puter, which is a 50 bit word format occurring 24 times per second.

Serial digital inputs to the RAU must be in a 16 bit word format up to

a maximum of 32 words per message, at a clock rate of 1 ^tbps. This in-

compatibility can be resolved by providing a Buffer consisting of a 50

bit register to receive the ATMDC telemetry, which is then clocked out

in 16 bit words at a 1 Mbps rate. The Buffer would also process the

User Time Code (UTC) signals to provide the 1 and 24 pulse per second

signals required by the ATM. For on-off commands, the ATMDC requires

a minimum 28 millisecond pulse and the RAU generates a 100 millisecond

pulse. There may be some pulse level or drive current processing re-

quired, which would also be included in the Buffer package.

Figure 4.2-8 also shows an ATMDC interface with the Workshop Com-

puter Interface Unit (WCIU) via dual parallel 16 line interfaces. The

WCIU provides signal conditioning for two-way data exchange between the

ATMDC and components of the APCS, as indicated in Figure 4.2-9. Even if

a decision is made , t to use the ATMDC, it will probably be desirable

to retain the WC -L,;, and therefore, an interface with the data bus must

be provided for two-way data exchange. The 16 line input to the WCIU

can be provided by adding a serial-to-parallel converter to accept the

16 bit serial words from the RAU. The 16 line output from the WCIU can

be directly introduced to the RAU discrete inputs.

4.2.3.2 IPS Approach - The r&DH configuration recommended for in-

terfacing an IPS mounted payload to the Spacelab data system is presented

4-52



C..^''Jf	 h^

OF POOR QUALiTY

W
U Q

U-
N _J W

-- W W
V O

C- .—.
C
W
C

V-
- U

C ^

LJ -
L".

V7 U
car.-.

v^

G C-. L
3

a= C-
F—	 ] V ^ U
ui e.

c.^ Z-.._ s ^-
C— L j	 :1 C C: J L^L ^j c G

W ,_!
F - Qf L-) pC

N .--I W
I

V c

W vj

LL
I:^

UF-

m
v
u
cn
w
H
41
•.1

H
c^
a.^
co
A
N
GJ
u
a

OU

a
a
00

Q

e;

co
1N

S

d
H
a
00

w

4-53



OR10i -':l' 7-" • .

OF POCK Q

[ 1

c c,-,
U F- Q

`^
^_ p

C C-3 C	 Ci i	 V U ♦ Q,c 	 W
>-  	 f--	 C : w W ^-^-
C,L, 	 Wh-:j-cnoJ L^,	 F— c : CU F— a-J

c_ L L J
CD

U	 cr	 F— U U c' ^
•

G_'v c --•	 f --_
c .-4 C- -I

-	 U V)
L ; . o..

_, cn	 C
J	 F—

cn
CC

G
S L-î
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in Figure 4.2-10, which assumes use of the Spacelab module. The over-

all configuration and data interfaces are very similar to those re-

quired for the ATM. Some constraints do exist with the number of wires

crossing the IPS gimbal interface. A cabling harness accommodates wiring

for three RAUs mounted on the IPS attachment ring, which would be ade-

quate to support the instruments considered in this study. The harness

also includes wiring for three HRM channels, which again is adequate;

but provides wiring for only one video cable, whereas our instrumentz

generate two video signals.

Some consideration his been given to mounting the ATM canister

plus instruments on the IPS. The numerous TCS telemetry channels and

commands could be accommodated by a single RAU, but a problem would be

encountered in processing the approximately 40 low level measurements.

One possible solution would be to mount the required Signal Conditioning

Racks and associated Amplifier stages external to the ATM canister so

the low level data could be conditioned and fed into the RAU before

crossing the gimbals.

Figure 4.2-11 illustrates the C&DH configuration for the Spacelab

Igloo configuration, which indicates the sage impact as for ATM with

respect to the HDRR.

4.2.3.3 AGS Approach - The typical C&DH configuration and data in-

terfaces associated with an AGS mounted payload are depicted in Figure

4.2-12. The diagram clearly shows two data bus interfaces with the

platform-mounted components. One-bus interface is typical for a science

payload interfacing with the Spacelab data system. The other bus inter-

face controls and monitors pointing control hardware on the platform

under control of a dedicated NSSC-II computer located on a pallet.

As in the case of the IPS, a limited wiring interface across the

AGS gimbals is provided for payload power and signals. An adequate num-

ber of twisted-shielded pairs are available to accommodate data bus

wiring to several RAU9 plus high rate digital channel inputs to the HRM.

A possible problem appears to be the lack of any capability to carry
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payload video signals across the Rimbals.

4.2.3.4 Payload Data Handling - The primary components within the

Spacelab data system which process the scientific data are the HRM and

HDRR, regardless of the pointing platform involved. The HRM combines

the high rate digital signals from the payload, as shown in Figure

4.?-13, with the data bus, digitized voice, and timing signals. The

HRM has the capability to combine up to 48 Mbps of data, so any combi-

nation of the instruments in questic7j utilizes only a small part of that

capability. The combined rate of the three instrument data signals,

as indicated in the figure, is about 1.7 Mbps. Since the HRM and HDRR

operate at binary multiples with respect to 1.024 Mbps, the HRM would

generate a 2 Mbps signal to accommodate the peak payload data rate.

For a combination of only the SAROS and SLAC instruments as an example,

a 1 Mbps HRM rate would be adequate.

During those periods when RT transmission is not possible, the

HDRR is available to store the 2 Mbps for extended periods if required.

Playback of this data is possible at a 1:1 rate or in binary multiples.

As presented in Figure 4.2-13, the data is played back through the HRM

and combined with any K, data being generated. Tie figure also in-

cludes a table of Ku-hand link capability, which shows a PM mode

capacity to hand s - digital rates up to 50 Mbps. Also interesting is

the FM mode capability used to recover video data simultaneous with a

digital signal up to 2 Mbps. This means that RT payload digital data

of 1.7 Mbps could be transmitted at the same time as a payload video

signal.

The approach used to combine the various data signals within the

HRM is clarified somewhat by the format diagram illustrated in Figure

4.2-14. The basic HRM format consists of a 96 word (16 bit) frame

generated by sequencing through 16 columns of 6 lines each, and result-

ing in 1536 bits/frame.

The 2 Mbps HRM rate is produced by repeating this sequence 1330

times per second. Since the SEUTS produces a 1 Mbps signal, this will

cons-ne about half the format or 48 words, with 25 required for SAROS,
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and 1 or 2 for SLAC. The synchronization, voice, timing, and bus data

require less than 10 format words. This format will then produce

about 1.7 Mbps of multiplexed payload data plus 0.3 Mbps of spare or

filler bits.

Figure 4.2-15 presents a possible HRM format capable of accommo-

dating 2 Mbps of RT data at the same time as 2 Mbps of recorded data is

played back through the HRM.

4.2.4 RF Link Support - RF support to the payload will be provided

by the Shuttle RF systems, principally the Ku-band system. A summary

of predicted RF link circuit margins for the Shuttle communication

links is provided in Figure 4.2-16. 't can be seen that the Ku link

provides a +3.3dB margin for a 50 Mbps signal, w:;ich indicates that

strong margins in excess of 10 dB can be expected for payload rates on

the order of 10 Mbps or leas. The margin for a video signal is pre-

dicted to be +5.5 dB, which should be adequate for the intended use of

these data to support onboard instrument setup. A good uplink margin

of +7.3 dB is predicted for command and voice transmission to the

Shuttle. Only very limited support is provided by the S-bank Shuttle-

to-TDRSS system. As the fig-ce indicates, this link can only handle

the Shuttle engineering data at a 192 kbps rate, which can contain up

to 64 kbps of payload engineering data. This link should not be consi-

dered for recovery of payload science data.

4.2.5 C&DH Conclusions - The following conclusions are drawn from

the C&DH study effort:

a) It is both performance and cost effective to use the

Spacelab data system rather than the ATM data system,

which has some serious incompatibilities.

b) The ATM payload instrument and support system data and

command requirements can be satisfied efficiently in

either the Spacelab module or Igloo configuration.

c) It is probably cost effective to use tho ATM digital

computer and available software for control of the

{	 pointing system. Only minor interface problems will be
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encountered between the ATM computer and the Spacelab

data system.

d) Thin instrument payload under consideration can be supported

satisfactorily by the Spacelab data system when mounted on

either the IPS or AGS, if a way is found to carry the two

video signals across the gimbals. Use of the ATM canister s

for thermal and structural support of the payload on either

the IPS or AGS will require mounting of 2 or 3 RAUs in the

ATM to avoid wiring problems across the gimbals.
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4.3 Thermal Control System

This section describes the solar scientific instruments thermal

requirements, ATM canister thermal environment, instrument combinations

and ATM/STS design concepts. The main objective is to illustrate thermal

compatibility if possible of the configurations (Integrated ATM, IPS/ATM

and AGS/ATM) introduced in Section 4.1.

'.3.1 Instrument Thermal Control Requirements and Descriptions -

The scientific instruments thermal control requirements and descriptions

are summarized in Table 4.3-1. The operating temperatures and accept-

able thermal gradients of the instruments are within the design capa-

bility of the A -N' thermal canister pr o vided environment. It may be re-

quired to coordinate localized instrument hot spots with view ports in

the instrument support structure to the ATM canister cold plates to ob-

tain the instrument thermal gradient requirement. The internal scienti-

fic instrument thermal control systems are all compatible with the pro-

vided ATM canister thermal environment, (i.e., designed to operate in

an enclosed thermal environment).

4.3.2 ATM Thermal Canister - The ATM canister incorporates an

active thermal control system to provide the instruments with acceptable

non-operational and operational thermal environments. The system in-

corporates a closed fluid loop (methanol/water) with a 900+ 50 lb/hr

flow rate. The fluid loop splits prior to the cold plates, therefore,

there are two parallel flow paths with eight cold plates in series per

path, for a total of sixteen (16) cold plates. One path removes heat

from the sun end of the canister and the other from the MDA end. The

flow then combines and is directed to a modulation flow control valve.

This control determines the percent of fluid flow to be directed to the

500 watt capacity in-line heaters and the balance of the fluid is directed

to the radiators for fine temperature control. The fluid loop is then

completed. The ATM canister thermal control system provides 500+ 1.50E

(100 + 0.60C) cold plate temperatures and a 500 watt heat transport

capacity. The thermal control system is illustrated on Figure 4.1.

r
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4.3.3 Two Instrument Concept - Both ATM/Instrument concepts ana-

lyzed incorporated two instrument combinations. 7%ese two configurations

are illustrated in Figures 4.3-2 and 4.3-3. The maximum power dissipa-

tion for the two instrument concepts and available power design margin

provided by the ATM canister are illustrated in Table 4.3-2. Tt's table

was generated based on a 500 watt heat load with a 30F temperature rise

across the cold plates. A heat load of up to 800 watts can be handled

by the system if a 50F temperature rise is acceptable to the scientific

instruments.

4.3.4 ATM/STS Design Concepts - The three design concepts consi-

dered are Integrated ATM, 1PS/ATM and AGS/ATM. Each concept will be

discussed separately.

4.3.4.1 Integrated ATM - The Integrated ATM configuration is illus-

trated on Figure 4.3-4. There are a number of thermal considerations to

be addressed for this cunfigu.-ation.

a) The aft end of the canister provides mounting surface

fo: experinont and TCS components. The components are

thermally isolated from the surface by fiberglass stand-

off mounts and multilayer insulation. The components'

temperature limit range is -120 to 500 C. An exposed

payload (P/L) bay would provide a eink temperature of

approximately 105  C which is unacceptable to the com-

ponents. By shielding the P/L bay from the sun around

the canister support structure with a silverized Teflon

coated shade, it would provide a sink temperature of ap-

proximately -40 C. Passive thermal control of aft mounted

components is feasible in this environment. It is impor-

tant that the sun shield be tilted Pway from the ATM

radiator surface to prevent additional heat load on the

ATM canister TCS.

b) The components that were originally mounted on the Skylab

ATM rack will be mounted on the canister support structure.

An all-passive TCS would not be adequate for a number of
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these components, therefore, the utilization of the Spacelab

active thermal control system is recommended.

The system, by means o" cold plates and a Freon 21

fluid loop, is capable of transferring to the Or-

biter radiator via the payload heat exchanger up to

6.3 kw of thermal energy. The proposed components

to be cold plated are three CMG Inverter Assemblies,

two ATM Digital Computers, one Workshop Computer I/F

Unit, and two High Data Rate Recorders.

4.3.4.2 IPS/ATM and AGS/ATM - From a thermal viewpoint, the IPS

and AGS systems are similar and will be discussed as one. The IPS/ATM

configuration is illustrated on Figure 4.3-5. One ATM thermal control

system component was moved into the canister environment and provides an

additional 25 wart heat load for these two concepts. To reduce parasitic

heat load on the ATM thermal control system, the support housing to the

IPS and AGS mounting rings are lined with multilayer insulation. Addi-

tionally, since the TCS is self-contained in the canister, no fluid

lines need to cross the gimbals.

4.3.5 Conclusions

The following conclusions were derived from the thermal analysis:

• The ATM TCS is compatible with instrument temperature

limits and constraints,

• The AT4 TCS is compatible with power dissipation require-

ments	 both instrument combinations, ane

• All the thermal problems related to Integratad ATM, IPS/ATM

and AGS/ATM are workable.
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4.4 Electrical Power System

The ATM, IPS, or AGS have no active power systems and must re-

ceive all of their electrical power from the Orbiter /Spacelab power	 -	 1

system. Therefore, the power analysis . coweisted of an evaluation to

determine if the Orbiter/Spacelab could supply the power required by

each of the concepts discussed earlier in this section. The avail-

ability of power for the analysis was obtained from the Spacelab Ac-

commodations Handbook.

4.4.1 Power /Energy Constraints - The electrical energy for ATM is

supplied by fuel cells located in the Orbiter and is, therefore, depen-

dent on availability of fuel cells dedicated to payload use. The

normal configuration of the Orbiter power system provides 50 kw hours

to the payload and a dedicated fuel cell provides 840 additional kw

hours. The power available from the fuel cells is limited by the heat

rejection capability of the Orbiter and is 7 kw for normal maximum

continuous operation and 12 kw for pulse load operation.

4.4-2 Power/Energy Usage - The power levels required for each in-

strument considered for the ATM program are given in Table 4.4-1.

"SIAC" and NW" are combined into a single instrument designated

as "ARC". The only feasible combination of instruments due to physical

constraints are "ARC" . "SEUTS" and "SEUTS" + "SAROS". Peak power re-

fers to the worst case peak having a duration of less than approximately

1 minute in duration. Average power is power averaged over the mission

and maximum continuous power is continuous power exclusive of peaks.
^	 I

Figure 4.4-1 demonstrates the load requirements for each power

user that makes up the total load requirement. The total load that

comes out of the 7 kw, allotment consists of the ATM instruments,

mission dependent CbDH components, ATM support (subsystems) and basic

Spacelab power. The basic Spacelab power requirement depends on equip-

ment configuration. If the pressurized Spacelab module is used, 655

watts are required. If the pallet / Igloo or integrated ATM Igloo confi-

guration is used, only 235 watts are required. Both the power limit of
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seven (7) kw and the energy limit of 890 kwh are exceeded for the

module configuration, whereas considerable margin exists for the other

configurations.

-4.4.3 Electrical Power Distribution - the simplified blu(: dia-

gram of the electrical power distribution sy stem is shown ir. Fik;ure

4.4-2. Electrical power is routed from the Orbiter fuel cells to

either the Spacelab module or to the p ressurized Igloo where C&DH

components requiring pressurization are located. Power is then routed

to either the pallets or to the canister support structure (CSS) where

ME component., are mounted and then to the subsystems and experiments

in the ATM canister. The emergency box power has limited usage for

equipment designated as warning and caution. The primary DC bus from

the Orbiter provides subsy stem and experiment power in the module by

way of distribution boxes and distribution panels for the module con-

figuration. In the pallet/Igloo configuration subsystem CSDH power

is supplied in the Igloo and experiment power is supplied b y wav of the

Igloo to the pallet for experiments end subsystems (IPS and AGS confi-

guration).

In the integrated ATM configuration, the Igloo is physicall y mounted

to the CSS. Power is supplied to the subsystems and experiments through

the Igloo to a power distribution box also mounted on the CSS.

4.4.4 Conclusions - The Orbiter/Spacelab systems provide and dis-

tributes the power required by the ATM subsystems and experiments. There

is, however, an operational constraint associated with the use of the

Spacelab module configuration. Power management would be required in

this configuration to limit both power and energy to the constraints

of the Orbiter. No new hardware is required by the Power system except

interconnecting power distribution harnesses.
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4.5 .Attitude and Pointing Control

Three systems for attitude and pointing; control of the Solar

Scientific Instruments in the Shuttle Orbiter/Spacelab were reviewed.

The first system identified as the "ATM Integrated" maximizes the re-

use of the ATM control system hardware and software from t:,e past Sky-

lab Program. The second and third s y stems reviewed utilized the Space-

lab Instrument Pointing System (IPS) and the Annular Suspension and

Pointing System Gimbal System (ACS). In both the IPS and :ACS concepts,

the ATM canister, with instrument payload was attached directl y to the

pointing platform's payload mounting rings. See Figures 4.1.4-1 and

The payload instruments used for each review consisted of the

SAROS, SEUTS and ARC as defined in Section ..0. Pointing requirements

with respect to pointing accuracy, knowledge of accuracy, stability,

jitter and roll range were extracted from the GSFC furnished Exreriment

Requirements Documents (ERDs). These extracted requirements are listed

in Table 4.5-1. Also listed in the last column of this table are the

performance characteristics of the ATM/CMG s ystem as demonstrated

durin£ Skylab. Discussion on this subject is covered in Section 4.5.8.

There are some areas of ambiguity with respect to these requirements.

For example; the stability requirement is usually related to an exposure

or integration period of the experiment during which the movement is not

to exceed some specified value. For the SAROS, the line-of-sight sta-

bilit y requirement fits this definition, but the roll stabilit y does not

and requires some further interpretation from the experimenter.

The notes pertaining to roll range requirements (Table 4.5-1) bring

out the conflicting requirements among the three experiments with re-

spect to control of the roll axis of the pointing system.

More specifically:

a) The SAROS experiment requires the roll setting to

remain fixed through a sun-side pass in order that

a programmed sequence of observation points can be
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observed during the pass. There are no stated re-

quirements on roll range.

b) The SEUTS experiment requires alignment of the

instrument slit parallel to the long dimension of
1

the solar feature under studv. Once a feature has

been selected and the roll setting made, the settine

is to be held during the remainder of the pass.

requirement for +180 roll range is stated in the ERD,

however, it should be noted that a +90 0 range would

allow the slit to be aligned parallel to at.v given

angle on the sun disc.

c) ARC desires to carry out a survey of the solar

corona at 14 increments of roll (i.e., 26 degrees)

to provide 360 0 coverage. The assumption has been

made that this 360 0 mapping should be completed dur-

ing one sun side pass.

i

	

	 These requirements are derived from the primary operating mode of

each of the experiments.

The conclusion to be drawn is that only one of these three experi-

ments can operate in its primary objective mode at any given time.

Concurrent operation by a second experiment would of necessity be in

some secondar y objective mode.

4.5.1 Integrated ATM in Shuttle Orbiter - Similar to the Skvlab

application, the ATM Control Moment Gyro (CMG) System is used in the

integrated system to point and stabilize the Shuttle Orbiter to a coarse

alignment in three axes. The Experiment Pointing and Control System

then provides the fine pointing accuracy and stability to the ATM cani-

ster mounted instruments. This concept yields several performance

features:

a) The system has operated successfully in the

similar Skylab application during spaceflight

for an extended period of time.
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b) The system provides control which has potential

for future payload precise pointing applications.

c) The system minimizes exposure to payload contami-

nation frc,n the Orbiter VCS thrusters.

4.5.2 Control Moment Gyro Subsystem - Orbiter pointing attitude

information is derived in a strapdown reference computation in the ATM

Digital Computer (ATMDC). Sensors for the computation are mounted on

the Canister Support System (CSS). Rate gyros, as shown in Figure 4.5-1,

provide three axis rate information for stabilization and inner loop

position. The Acquisition Sun Sensor is used for updating of vehicle

attitude information for the pitch and yaw pointing system control.

The Star Tracker is used to update the pointing system roll attitude

computation. The ATMDC processes the sensors signals with a CMG control

law to generate CMG gimbal rate commands. Momentum management compu-

tations are also performed by the ATMDC.

Three double-gimballed CMGs orthogonally hardmounted to the vehicle

through the ATM Integrated Support Structure are shown in Figure 4.5-2.

They are oriented with their gimbal axes as shown in Figure 4.5-3 such

that any two can control all three axes in the event ine fails. They

provide the torques required for vehicle control. Each CMG has an

angular momentum storage capability of 2300 ft-lb-sec at torques up

to 160 ft-lb. Inner gimbal freedom is +75 degrees and outer gimbal

freedom is +215 degrees to -125 degrees. The rotor runs at approxi-

mately 9000 rpm.

The three-CMG cluster requires periodic desaturation of its momentum

buildup due to noncyclic components of gravity gradient (GG), aerodynamic,

venting, and other disturbance torques. To minimize the bias compo-

nents of the GG torques, the vehicle's principal axis of minimum inertia

(X-axis) must be maintained in or near the Orbital plane attitude.
4 f	

Periodic firing of the Orbiter's VCS thrusters will be required to coun-

teract he residual momentum buildup. This technique will eliminate

the need to perform vehicle GG maneuvers on a per orbit basis to de-

0
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saturate the 01G subsystem, and thus allow for long term experiment

viewing time.

Che Acquisition Sun Sensor has a +20 degree field of view in

each axis. Unit accuracv is approximately +2 arc minutes. l'wo of

these acquisition sun sensors are used for redundancy.

The Star Tracker has a tracking accuracy (gimbal position readout)

of +30 arc seconds (1 sigma) with outer gimbal freedom of +87 degrees

.snd inner gimbal freedom of +40 degrees. It can operate to within

sbout 5 degrees of the earth albedo and to within about 45 degrees of	 1

the sun. One star tracker is used. Backup roll attitude is obtained

from Orbiter state vector data and CMG subsystem roll rate. The Rate

Coro Packages measure vehicle rates it one of two modes: coarse is up

to +1 degree per second and fine is up to +0.1 degree per second. Com-

pensated drift rate is +0.1 degree per hour. Two Rate Gvro Packages

are orthogonally mounted in each of the three pointing axes, i.e., t1W

^vro system is full y redundant.

( 4.5.3 ATM Digital Computer/Workshop Computer Interface Unit - I'ht

ATM Digital Computer/Workshop Computer Interface Unit (ATMDC/WCIU) sub-

system provides high speed general purpose computing capabilities along

with a multi-purpose, flexible input/output capability. It accepts

analog and discrete signals from several sources which are used to per-

form calculations under the direction of a stored program, and also pro-

vides analog and discrete outputs to several devices. The subsystem

consists of two identical ATMDC units and a single WCIU unit. The WCIU

is divided into two identical sections and a common section. One

ATMDC unit and one corresponding section of the WCIU along with the

WCIU common section are always used. The other ATMDC and corresponding

WCIU section are powered down and kept in a standby mode to provide re-

dundant operation.

The ATMDC/WCIU subsystem is recommended foruse becat-3e most of the

software modules are available and proven and the hardware interfaces

are simpler than multiple interfaces to RAU's for Spacelab computa

11	 4-88(



The subsystem will be connected to the Spacelab computers through re-

dundant RAU's for uplink of commands and to obtain telemetry and house-

keeping data.

The software requirements of the Spacelab ATM payload are similar

to, but less demanding than those of the Skvlab program. Modification

of the Skylab program consists of deleting those routines no longer re-

quired, and simplification of those remaining routines, where appropri-

ate. The Spacelab ATM APCS redundancy management philosophy is quite

different from that of Skylab. For the Spacelab ATM mission, the APCS

redundancy management will consist of failure detection of the CMG sub-

system with maintenance of sufficient information to allow ground or

crew detection and isolation of failures in the Acquisition Sun Sensor

and RGP's subsystems.

4.5.4 Experiment Pointing and Control Subsystem - The Experiment

Pointing and Control Subsystem (EPCS) consists of the Experiment Point-

ing System and the Roll Positioning Mechanism, implemented in an iden-

tical fashion as on the Skylab. A block diagram of EPCS is shown in

Figure 4.5-4. The experiment package and EPC sensors are mounted to a

three-degree-of-freedom spar that is contained in the CSS.

The spar-mounted Fine Sun Sensor (FSS) provides experiment package

position information and the spar-mounted RGPs provide rate information.

In the Experiment Pointing Electronics Assembly (EPEA), the position

and rate signals are summed after passing through bending mode filters

and then amplified by a current amplifier to drive actuator (DC torquer)

pairs. One pair is located on the pitch gimbal and the other on the

yaw gimbal. The two actuators of a pair operate in parallel for re-

dundancy and power reduction purposes, and provide a total torque cut-

put of 14 lb-ft. Should a single amplifier or torquer fail, the loop

can operate with the remaining amplifiers and torquer.

The experiment package can be offset pointed in the pitch and yaw

axes over a range of +24 arc-minutes, witn the center of the solar disk

being the zero position. The solar disk measures approximately 32 arc-
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minutes from limb to limb. Offset pointing is accomplished b y pcsition-

ing an optical wedge located in each channel of the FSS. The wedge is

mounted in the path of the sunlight passing through the FSS optics, and

can be rotated to refract the sunlight a fixed angle in a controlled

direction. The wedges are positioned by a drive mechanism controlled

by an astronaut operator via the Manual Pointing Controller. A wedge

offset produces a FSS output error voltage that causes the spar to ro-

tate about the appropriate axis and point the FSS, and thereby the

experiment package, in a direction that will drive the FSS output vol-

tage to -gull. Stability is then automatically re-established at the

offset position and maintained by the EPC subsystem.

Two RGPs are mounted with their input axes aligned in the pitch

axis; two additio al RGPs are aligned in the yaw axis. One gyro per

axis is redundant and may be activated by ground command or by the astro-

naut. All spar-mounted gyros are identical to the CSS-mounted units.

The Fine Sun Sensor has a field of view of about +5 degrees in

each of two axes. Full scale electrical output is about +l arc-minute.

Pointing accuracy is +2.25 arc-seconds (2 sigma) and short term sta-

bility is +0.1 arc-second. Offset pointing range capability is +24.21

arc-minutes in both pitch and yaw. The FSS consists of a single opti-

cal system with redundant position sensors.

The EPEA is an analog electronics assembly which performs the en-

tire EPCS closed loop computation to control the actu-tors utilizing

the RGP and FSS sensors inputs. It is cross strapped redundant. Con-

nection through a RAU to the Spacelab computer provides for uplink com-

mands and transmission of telemetry data. A minor change to the EPEA

is required to tune the bending mode filters to the EPCS mass distribu-

tions.

The electromechanical system consists essentially of three large

concentric rings; a pitch gimbal ring, a yaw gimbal ring and a roll ring.

This gimballing system as shown in Figure 4.5-5 is free to pivot +2 de-

grees in pitch and yaw and +120 degrees in roll. Compensated flexure
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pivot actuators operating in parallel provide the required motion about

the two pointing axes; motion about the roll axis is provided b y a

single roll actuator. The caging system, i.e., launch locks, will be

redesigned to constrain thr pitch and yaw rings under vehicle launch

and re-entry conditions. The existing system is released on orbit and

cannot be recaged. Orbital locks provide on-orbit caging of the pitch

of yaw gimbal ring as required.

4.5.5 Orbiter Reaction Control Svstem - The Orbiter Reaction

Control Svstem (RCS) is the propulsion system used mainlv for vehicle

control during on-orbit maneuvering and Laitial re-entry control. It

is also used, to a limited extent, during ascent. Fhe Orbiter Vernier

Control Svstem (VCS), which is a part of the RCS, is a candidate for

base stabilization in lieu of the CMG system or as a backup. The VCS

is a mass expulsion s y stem composed of six 25-pound thrusters which can

be used for on-orbit Orbiter-payload pointing and stability purposes.

The VCS will be used to perform the CMG momentum desaturation for the

Spacelab ATM missions.

4.5.6 Pointing and Stability Capabilities - The CMG Subsystem

(Orbiter vehicle base pointing) and EPC Subsystem (Fine pointing)

pointing and stability capabilities are tabulated in Table 4.5-2. These

APCS stabilities, achieved during the Skylab mission, were established

from analysis of flight data for selected mission time periods. The

feasibility of the Spacelab ATM APCS to achieve these levels of stability

is a critical function of the disturbance environment for the Spacelab

ATM mission. Crew motion, Orbiter and payload venting, and the solar

experiment package operations must be controlled if the Spacelab ATM APCS

is to attain the quoted stability margins. Figure 4.5-6 is a pictorial

description of Pointing Accuracy, Stability, and Jitter.

4.5.7 Alternate Approaches - Three alternate subsystem applications

of ATM versus Orbiter/Spacelab hardware and software were reviewed.

These reviews were conducted to determine if portions of the ATM capa-

bility could be used in conjunction with the Orbiter/Spacelab capability

to enhance experiment operation and performance. The trades conducted

W 6-b
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were:

a) The ATM CMG Subsystem versus Orbiter VCS control for

base pointing.

b) The ATM versus Orbiter sensors for rate/attitude inputs.

c) The ATMDC versus Orbiter/Spacelab computers for CMG

control.

Table 4.5-3 lists the conclusions along with salient reasons

for employing the complete complement of ATM control s y stem hardware

and software.

4.5.8 Assessment of ATVs/CMG Performance - The predicted Shuttle/

ATM performance characteristics of the ATM/CMG s ystem, based on Skvlab

data have been listed in the last column of Table 4.5-1.

Those areas where the predicted ATM performance does not meet the

experiment ERD requirement have been highlighted with asterisk marks Ln

I1	
the upper left hand corner of the block.

The first area of deficiency is "knowledge of accuracy" where the

SAROS and SEUTS requirement of +1 arc second relates to the +2.5 arc

second capability of the ATM, and the corresponding roll axis require-

ments of +370 and +180 arc seconds relates to the +540 arc seconds

capability. The roll performance of the ATM is not integrated into the

fine control guidance loop and is basically set by the roll control

capability of the CMG system. Better "knowledge of accuracy" perfor-

mance could be attained b y use of the ATM star tracker to indicate th.-

roll angle at any given time. The performance in LOS knowledge is

basically set by the fine sun sensor of the ATM. Significant improvement

in this area would require a more sophisticated angle reference system

be incorporated to supplement the pointing knowledge derived from the

ATM fine sun sensor.

The second area of deficiency is the roll stability requirement of

SAROS. As was noted earlier, this requirement is suspect of being mis-

interpreted because of the apparent inconsistency with the associated

4-96
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LOS stability requirement for the same experiment.

The third area of deficiency is the +0.25 arc second limit require-

ment on jitter for SAROS which compares to the +1 arc second performance

of ATM.

The final area of deficiency is the 360 0 roll range requirement

of ARC as compared to the +1200 roll range capability of ATM.

4.5.9 Dornier IPS and Sperry AGS Pointing and Stability - Speci-

fication values for pointing and stability performance of the Dornier

IPS and Sperry AGS were extracted from the latest published documenta-

tion and are shown in Table 4.5-4. The figures are indicative of the

capability of these systems with the instruments mounted in the ATM

canister, which in turn is end mounted to the payload attachment ring

(IPS) or payload adapter plate (AGS). However, the published data was

insufficient to draw z ay conclusions as to the capability of these sys-

tems to provide the pointing knowledge, stability, and jitter required

by the solar instruments used in this study.

t
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5.0 COST ANALYSIS

This section presents the costing groundrules, methodology

and cost estimates derived for each of the three configurations

baselined during the study. As will be noted; cost estimates were

provided only for the new and modified equipment required for each

configuration. Total cost for implementing each of the configurations,

will in addition to the tabulated costs in this section, include the

costs for:

*Removal and transportation of the ATM equipment

from bonded storage to the place of rework:

eDisassemblying, inspecting and testing the

hardware;

*Replacement of time critical hardware items;

eSoftware check-out and modification; and

•Re-assembly and systems check-out of the hardware.

Further technical studies must be conducted to determine the costs

associated with these tasks.

5.1 Costing Groundrules - The groundrules listed below were used

in this costing exercise:

A) Constant 1981 dollars.

B) Estimates are contractor costs incl6ding

G & A and excluding fee.

C) All individual estimates are for an end

item quantity of one protoflight unit.

D) Estimates exclude all system level assembly

and test costs.

E) All existing ATM drawings and hardware are

GFE to contractor.

5.2 Methodology - Cost data and estimates were derived from the

following sources:

0
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A) Parametric Cost Anal^sis

1) RCA Price Model

2) NASA-JPL Cost Prediction Model for UnmanneO Space-

craft Exploration Missions.

3) Martin Marietta Aerr,space Division data base and

cost estimating relationships.

'rhe RCA Price Model is an appropriate estimating tool for concept iden-

tification cost studies and has been extensively in use at Martin

Marietta since 1977. Recently developed algorithms enabled us

to examine cost sensitivities to variations in such structural cost

drivers as material tvpe, part tolerance, number of parts per assembly.

and reliability (man rating versus lesser requirements). Further.

technology improvement features of the model provide declining cost

curves through time allowing for improved processes to reduce cost from

that otherwise extrapolated from existing hardware. tither variables

deal with weight, degrees of new design, engineering experience, cal-

!	 culation of schedules and prototype quantity and cost relationships.

The use of this model will also enable the data from the stud y to

be more readily employed by Goddard's own analysts as well as provide

a common baseline and vocabulary for inter-organizational discussion.

ThP Cost Prediction Model for Unmanned Spacecraft Exploration Missions

developed by NASA/JPL was used in this study to substantiate the RCA

Price Model cost estimates. This dollar per pound analysis was based

on an aluminum structure of an advanced spacecraft. This analysis sub-

stantiated the RCA Price Model cost estimates. In addition, reasonable-

ness checks were made by utilizing the Martin Marietta Aerospace Division

data base and cost estimating relationships.

5.3 Cost Estimates - The cost estimates for the three configura-

tions defined in this study are summarized in Tables 5-1 and 5-2.

Table 5-1 (Cost Comparison Summary by Configuration), identifies cost

by line item for each of the three configurations. Table 5-2 (Cost

Breakdown Summary by Configuration) gives a breakdown of costs for all

three configurations.

i
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The same methodologies uere used to estimate each configuration.

Therefore, a comparison of the costs of these three configurations

allows analysis .J the effect of decisions envolving the same design

parameters on cost. For further detail into the estimated costs or

input variables used in modeling, see Appendices B, C and 0 which con-

tain the RCA trice Model Reports.



6.0 CONCLUSIONS

The concept of utilizing the back up ATM hardware for Shuttle/

Spacelab flights appears to be both feasible and economical. The

specific study results, although preliminary indicate:

• The ATM hardware should be used unchanged or with only

slight modifications for maximum cost effectiveness to

Spacelab. That is, scientific payloads should be selected

that fit within the physical and performance capabilities

of the hardware---thereby eliminating much of new and modi-

fied equipment dictated by the straw man payload used in

this study;

*The ATM hardware exists, therefore, no new hardware design,

development, testing or fabrication is required;

*The hardware reliability and safety has been established

since a like set of the existing ATM hardware and soft-

ware was flight tested during Skylab;

*The ATM canister assembly has a complete self-contained

thermal control system capable of maintaining close

thermal tolerance on the payload. The assembly can be

easily mounted to the IPS and AGS eliminating the need

to cross the gimbals with fluid lines;

*The ATM attitude and pointing control capability has

been flight tested; eliminates much of the contamination

associated with VCS base stabilization; and although

additional analysis is required, it appears to be capable

of satisfying instruments requiring very accurate point-

ing and stability;

*Either concept; the "ATM Integrated" or "IPS" or "AGS" can

be integrated into the Shuttle/Spacelab as a payload of

opportunity with other payload elements;

6-1



• Very little new of modified C & DH equipment is

necessary to establish compatibility of the three

baselined concepts with existing capabilities; and

*The "ATM Integrated" concept eliminates ever having

to eject a costly attitude pointing and control

system, and scientific payload, since it always

remains within the Shuttle payload envelope.
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7.0 RECOMMENDATIONS

Preliminary results of this study indicated that there may be

many advantages for utilizing the leftover . ATM Skylab hardware and

software for Shuttle/Spacelab missions, both from the standpoint 	
l

of performance capability and cost. To substantiate these findings,

several additional tasks should be performed. These tasks are:

*ATM Hardware/Software Status/Condition Definition

This task would determine the status of each

of the hardware and software items; where they

are located; what life critical hardware re-

quires change out; the additional testing re-

quired; problems identified during Skylab

that must be fixed; and so on.

•Structural/Mechanical Analysis

This ta9k wrn±ld accomplish the detailed designs

!	 and analysis to determine the design require-

ments for modifying the ATM hardware for the

"ATM Integrated" concept and also for mounting

the ATM canister onto the IPS and AGS mounting

rings.

*Attitude and Pointing Control Analysis

Detail analysis and modeling would be accom-

plished under this task to verify the capability

of the ATM to control the Shuttle/Spacelab as well

as providing the fine pointing required by the

experiments. The tasks would further evaluate

the effects that the ATM canister (with active

thermal control system) has on the IPS and AGS

pointing and stability capabilities.
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•Program Definition/Cost Analysis

This task would prepare a detailed program plan

and schedule and perform a detailed bottoms-up

cost analysis. The cost analysis would consider

all costs associated with the program, so that

cost comparisons with other approaches could be

made.
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8.0 ACRONYMS AND ABBREVIATIONS

AFD	 - Aft Flight Deck

AGS	 - Annular Suspension and Pointing System Gimbal System

ARC	 - Acceleration Region Coronographs

ASPS	 - Annular Suspension and Pointing System

ATM	 - Apollo Telescope Mount

ATMDC	 - ATM Digital. Computer

ATMDC/	 - ATMDC/Workshop Computer Interface Unit
WCIU

C&DH	 - Command and Data Handling

CG	 - Center of Gravity

CMG	 - Control Moment Gyro

CSS	 - Canister Support Structure

DEP	 - Dedicated Equipment Processor

ECU	 - Electronic Ccmponents Unit

EPCS	 - Experiment Pointing and Control Subsystem

EPEA	 - Experiment Pointing Electronics Assembly

ERDs	 - Experiment Requirements Documents

EUV	 - Extreme Ultraviolet

FSS	 - Fine Sun Sensor

G&A	 - General and Administrative

GFE	 - Government Furnished Equipment

GSE	 - Ground Support Equipment

HAO	 - High Altitude Observatory

HDR	 - High Data Rate

IPS	 - Instrument Pointing System

MDA	 - Multiple Docking Adapter

MTM	 - Multiple Telescope Mount

PAP	 - Payload Adapter Plate

PAR	 - Payload Attachment Ring

PCA	 - Payload Clamp Assembly

PMS	 - Payload Mounting System

POCC	 - Payload Operations Control Center
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8-2

a °	 RAU

RCS

SAA

SAO

SAROS

SCR

SEUTS

SLA

SLAC

SMCH

STS

VCS

WLC

Remote Acquisition Unit

Reaction Control System

South Atlantic Anomaly

Smithsonian Physical Observatory

Solar Active Region Observations from Spacelab

Signal Conditioing Racks

Solar Extreme Ultraviolet Telescope 6 Spectrograph

Spacelab Lyman Alps:.-

Spacelab Lyman Alpha -- White Light Coron.ograph

Standard Mixed Cable Harness

Space Transportation System

Vernier Control System

White Light Coronograph
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APPENDIX A

SPACELAB ATM FEASIBILITY STUDY DRAWING

AND HARDWARE STATUS
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APPENDIX B

ATM INTEGRATED CONFIGURATION

PRICE MODEL REPORT
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PRODUCT DESCRIPTOR,:
N61NEERI116	 IONPI Ci;1 7 .70
PROTOTYPE SUPPOR

nOT0 SCHEDULE FACTOR .20:

PLATFORM

YI(AR OF	 TFCHNOI OGY 100
REKI,131117 7ACTOP 1.,
MTBF(EIFLO) 0669+

FIRST T70	 FINISH
FF8	 i;3:	 (i)	 EFL'	 i;3:-

TOOLING & PROCESS FACTORS

DEVELOPMENT TOOL.IN6	 1.40-

PRODUCTION TOTAL COST
•320.
170.

445.

B1

a

.YV'.b,a •z'..•

OF POOR QUALITY

LATE 12-MAR-81

- . PRJCT	 6 -

A&HANICA

(231051)

If

SF• AR A0Y iH

YROTOTYP" UHANTITY

0001RAM ,10505 011x•,

01FiI116

GFS11iN
LYSTLMS
PROJEC T M61
f,AI P.

=0 AI,TURINS

PRODUCTION

PROTOTYPE

OUBTOTAL(MFG)

TOTAL COST

DESIGN FACTORS
0150
QFNS('F

MFG. COMET EY.ITY

NEW DF.S16N
DES16N REPFAT

EQU(PARNT CLASS
INTEGRATION IEVFL

SCHEDULE	 START

DF.VEIOPIIFNT	 ,IAN 113

SUPPLEMENTAL INFORMATION
YEAR OF LCONOMICS

ESCALATION

'NIT W1 16H7	 noao
.I)	 ANIT 53 : J;•	 .

	

-A.	 -
1

	

C	 .

J4.
'3.

c'Kr.

,T;

iD.

12.6.

370.

MECHANICAL
1400.000

4.630
5.308

4.400

0.151)

***kk*
if, i

1901

DID()

i	 )

DEV COST MULTIPLIER

^>	 COST RANGES
FROM

CENTER

TO

1.10

DEVELOPMENT

322.

:s%D.
44`,.



OR10,1111 	 IS
OF POOR QUAL ITY

PR7rF	 4 -

MECHANICAL T 1".

DATE	 J.26 --nAR-81 (:ME	 W.	 33 r11ENAMF.	 1.

0 8 1 03 111

SPAR A:39Y L.11INCH	 LOC K
T'r I- T;jC

UNIT WEISHI c;

"iNoroTYP:'	 QUANTITY NNIT	 V01.1J111F 6	 4	 6 1 A

i'ROUAM	 (.'Ofp'T($	 11500) DI'ViJ 0i'mu,4 1 c. t.i1Ui. : .	 ..
-,

J. Ck

F T NG

SY!JEMS

IR 0 1 i	 T	 76 ,'1 T
DA-1 A

U n T 0 T A	 -,:3

MANUFAC-1 lift I NI G

"'RODUCT I ON

i*ROTOTYPE
1001	 T EST

i; 0T A1.	 „ F ii) 9.

TOTAL	 COST J. j

7) 16 N	 F A C	 U Rl ,t HA t; I

1z, A-

PROTr;TY,: E	 M,'PFOR;'

IF'.	 i1'4'1 EXITY 1430 PRO T 0 - D1 E ot HI E FACTOR . 2 5 0 1

NEW DES16N 0.500 r!.ATFORM

DESIGN	 RkF'F(,T 0.7`0 k

,AE"IJ(P.IFNT CLASS RE'-.TLA61TLIT'f 	 7 AC T OR i:

INTEGkATION 1 . EVFL 0. rsF (F IFL D)

SCHF001-C.	 START	 FIRST ITEM	 FINISH

DEVUOPMFNT	 APR 03	 t	 F1)	 NOV f;3 .x	 6)	 U.Y	 f*... 14)

SUPPLEMENTAL INFORMATION

YEAR OF ECONOMICS 1981 TOOLING A PROCES., f ACT or..

ESCALATION 0. Oil DEVELOPMENT	 TO()I.INI-, 1..60 ^T

DFV COST MUL TIPLIER 1.10

i-OST RANGES DFVr'.LOPMFNT PRODUCTION	 TOTAL LOST

FROM 18. 18.
CENTER 21. All.
TO 25. 25.

B2



OF POOR QUAL11Y

1

I ( ——	 PRICE	 F14 ——	 -

MECHANICAL ITEM

^;7F	 12-MAR-Esl IME 20:34 r1i.ENAMf
(31058:

ENO PLATO A APFRTURE COVER kAAP-3 Of- -SEC

•	 UNIT WFIGHT Cl	 AOUF

;-, 0T4TYP:'	 QI1ANT(Tf 1.11	 UNIT	 VOI.IJMF. -i.30	 JOAN	 rIdHk)

;G;^hP,M	 i.0 ;T (a	 1 tii^0) i,l VI. i 01'MLNT i*iciii,lli.T

ENGINEERING
DRAFTING I 1.

OFSIGN 149.
f^YSTr^^

PROJECT MGilT

t AIA 13. -	 s.

` OATOTAL(FNG) .6'>. 265.

11ANUF (.(; I URIING

PRODOCTION - -
^R(jf0TUF ^.

'1001.-1LST	 1-;7 ^. -
SOBTOTAL MFG) '38.

TOTAL COST

CriI+.N FACTORS MECHANICAL PR40UCT r, E.;CnIFTOFS

WEIGHT On. 000 iNU NFFRING COMPID,1TY	 0.00

UNSITY 66.667* PROTOTYPE SUPPORT
t:OfsPI EXITY `r. 918 i'ROTO SCHEDULE FACTOR	 .2Z

NEW OF.SIGN 0.750 FI.irF0RMI	 :.G
"Df SJ5it	 i.k i'i (;T (1.00(1 YUN JF TECHN01 OGY	 :983
-- OUIPMF.NT CLASS -:T','	 "Ai.TOfi	 1.0
IrtiTFGUTTON LEVEL h.7 -IT I4 if T 1, LD

SCHF.DIIU-.	 START FIRS! ITCH	 FINISIi
UEVCIOPMENT	 JUL	 i:3 i	 Li	 OFC	 i.3x i	 (1)	 DCC 0—k	 i	 6)

SI1FF(.EMENTAI_ INFORMATION

YFAR OF FCONOMJCS 19ft1 TOOLING & PROCESS rACTON

ESCALATION +7.011 OEVF.I.OPMF.NT 	 TOOLING	 1.Q0
DFV COST MULTIPLIER 1.10

COST RANGFS DFVEIO.'MEN1, PRODUCTION	 TOTAL COST

FROM 271. -	 271.
CENTER 308. -	 30R.

TO 359. -	 35,9.
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mw	 ^- ----.	 .

OF POOR QUAL17 .'

F - - - PRICE 04 -	 -	 -
MECHANICAL	 ITEM

DATE .12-MAR-01 TIME 20134 FIIENAMF:	 INT.PI

(281058)

F	 SUP. STR..;UN SHIELD R APERTURE COVERS
i

UNI T WEIGHT	 1OQ.00	 MODE
PROTOTYPr QUANTITY 1.0	 UNIT VOLUME	 2.50	 QUANTITY/NHA	 t

i'R06RAfi	 (-	 T ($	 CCIO) DI VEl OP MENT r•Gul,lif.T ION	 1 O1 AI.	 (.01.1

I)RAF T INC) 47.
DESIGN

SYl,Tl rif•
r- ^- 1•.

ui Al- ( ENG) X08. 26FI.

rkNUFf,CTIikIN;

PkODUCTION - -

', iii 4".L	 i O"IT :'4 ;.

D 3I„N FACTO R", MECHAA`.CA. F-RODll-"T	 0250RIPTOR^-,

kE'iai'. i(IU.(lfl(I rt:i.:trEuirr)	 (Or,rir'1:LTY	 it.io
P•	 6TOTY'Z	 SUE':0	 ;	 1.:

PkOTO SCHEDULE "f.i 7 k
: {	 :., I).7`,^ Fi.ATFGRf. 	 Z.%

iltd	 t;[ i'r f. i ...:'CG Yl.l,k	 OF	 .FGHNOI O()Y	 19F.-:-

-	 START FIRS. IT	 r',	 FT.tf	 ;,i

^^I	 vii	 .	 ,	 t,F [. ;	 .<<; E:+	 r	 Df^ f	 r.,,:. i	 ;c	 :	 lil	 f	 ,;''	 ..

;..FF. Ff1r.Nlas	 INrCFr'iA„ui:
0 i	 -.i,h0r I

kANf+i	 t;F y r	 ref a
F R 0,

Et T! F 4 7.

i „I ) r;i, f r E(GCI 5:- i •.(.1 :!i,:.
lXV.'L0F'rFt,77001,iW,

i^kiifllif:T I ON
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OF poGR QU"'Ty

VCHANICAL I TrM

)ATF	 IME 20:34	 r 1 i F, N A A F	 1

7 ;-, AN T "i ;'F	 0 P; T	 A i J: i :' ^i i

lN I T	 Wr !C.ii*	 il.'10	 :;via

LPJA N I t i	 ;'fll.i

F-OfT($	 1 000) k•i lnJ R	 i	 T 70N	 l'J	 0	 T

FN6 I Ni:t:R

PRAFUN6

7 i 'U

J 17 " T M 6 M 7

: ;Al A

;h	 70TAi- (17 N 3

MAN Ur ?i C -1 lif: I HS

Robl ICTION

FRo TO , f :-,-

0i -T E S T 	 i 04

Ul 	 T 0 TA I	 " r ;

T 0 T A I	 %C" 0 ST

-Ar,7-'XS 3UHANIACAL PRODIX7

w, E 'A	 I i T 0	 0

UNSITY 40, 000 P R 0 T 0	 3,P7 C, R 7

MFG.	 COMPLEXITY 5	 2:+ PROTO SUEDOLE FAi- To 	 .	 0

NEW DESIGN 'i . 250 PI.A TFORA	 . G

DESIGN REPFAT ;0(1 YrAk OF	 11 FOHN01.0fl y 	 98",

EQUIPMENT CLASS REHAULITY FACTOR	 .1"

lL NTU)kA'f' l0N	 I EV71 MlAF(FJFtD)	 9 rl

qCHFDIJLF	 S TART FIRST	 ITFM	 FIN Ssllj

PEVEI-OPMENT	 JUN i4 ri JAN	 C-5-	 i	 0	 JAN	 1;5.t	 R)

SUPPI.7,1ENTAL INFORMATION

YFAk OF F*CONOMICS 15,191 i 001 JK0 & PROCES r, FACTONS

ESCALATION 11 . 011 DFVFLOPMENT TOOLINh	 .751'
DEV COST MULTIPL IER 1.10

COST RANKS DFVFLOPMENT PRODUCTION	 TOTAi	 COST

FROM 2 7. 27.
't" ENTER 31. 31.
T 17. .31.

Bs



I (--

OF POOR QUALITY

D A T Ir ' -' -BA R - A l

FIRUF 84 -

nEC:iANI.' AL	 1 7:  ;11

roE : t'

'41631058)

-- , - ,", ArF ,	 ; N1 . r"

M(';I*j TO A FRTNIRE 000:i

ON IT	 ^ ,",H i

')NIT V01 OAF

lick 	 M	 .0 f, T ( S
N;

TlAl c 'S

T	 .1 ,,17

001	 EST F 0

7,)1At	 ,OS'

DF^)IGN 7ACTUS 11 E 47,	 el

E I 1,m 1 • 0 N,	1	 F E k I N C;	 0 M F 0

t) F N S 7 7 Y 0 7 o 7 y	 :i ii':
'f ,l.	 k^,%"MPI.FXITY

NEW OF: 16N 9;0 i IA TFORM

D r -, I f, N F: F ff 6 T it.500 r.i Ft	 :)F	 TUHN01 OrY 1983 s
HOPMENT CLASS RELT.131:.ITY	 FAC70i; I

INTF5RAITON 1,FVFl 1 1 0 Ml i ,.F ( f IVA D O.t

SCHFDOLE	 START FIRST	 TrEM	 FlNfql!i

DEVU ; PMF NT	 JAN H3 8) A116	 P.3 ..x	 i	 3)	 NoV	 i:;5 k

SUPPUAFNTAL INFORMATION

YEAR OF ECONOMICS 1981 T 0,11 1 hG A F'Rou s,,, FACTORS 

ESCALATION 0.01) GFVFLOPMENT TOOLIN11)
DEV COST MIJITIPLIER 1.10

COST RANGES DFVFIOF'MFNT PRODUCTI ON 	 TOTAI	 COST

FROM 67. 67.
CENTER 76.
TO 89. w.

B6



I

OF POOR QUALITY

- - - PRICE N4 - - -
MECHANICAL TTF.1

DATF 12-MAR • R1	 TIME 20:35	 F 11 ENAMF: iNT.i•:

(28105A)

REDESIGN CA+31.r DRUM 4F I—A := iii) ;Ay.

JNIT WFJ6111 7	 ';j.: ;,	 ODF

	

ROTOTYPr' a11ANTTTY	 i.:	 UNIT V4111AF 	 00ANTITY/1*0

	

PROGkAM i.Ot T ($ 1000) 	 0Fv i OPMENT	 f 6;,ti:.7' ,,;^	 , C, ; + i.	 ► T
FN61NEERTN6

I)FSTGN

	

	 95

y

DATA P.
R	 ;I)BTOTAI.(FNG) t82.

nANUFACTURING

PRODUCTION - -

f	 PROTOTYPF 10. -	 10.

TOGI.-1F.ST	 FQ
SUB To TAi_;7rG) 13. t..i.

TOTAL COST 194. -	 194.

DESIGN FACTORS MECHANICAL PRODI;^T 0=SERIPTORS
WFIGHT ?0.00(1 FNOINFERING COMPLFXITY 1.200

DENSITY 66.667* PROTOTYPE SUPPORT 1.2

MF5.	 i:OMPLFXITY 5.620 i•ROTO	 SCHELi i F	 LAi:T-)k :50
NEW 0616N 1).x100 PLATFORM ?.0
DESIGN REPENT 0.000 YEAR OF	 IEGIiNOLOGY 1503*

EQUIPMENT CLASS ***** RELIABILITY FACTOr. 1.0
INTEGRATION LEVEL 1.0 MTRF(FIFLD)	 145015*

SCHEDULE	 START FIRST ITEA	 FINISH
^EVELOPMENT	 JUN 83 (	 10) MAR R4*	 (	 0)	 MAR (14-	 i 10)

Sl)PPI.EMFNTAL 	 INFORMATION
YEAR OF ECONOMICS 1981 TOOLING S PROCESS FACTORS

ESCALATION 0.00 DEVELOPMENT TOOLING 1.00

DEV COST MULTIPLIER 1.10

COST RANGES DEVELOPMENT PRODUCTION	 TOTAL COST

FROM 168. —	 168.
CENTER 194. —	 194.

TO 236. —	 236.

I'
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OF POOR QuAi-i7y

- - - PRICE 84 - - -
MECHANICAL	 ITEl

DATE	 12-1AAR-R1 TIME 20:35 FILrNAI1F;	 a111T.PT
(281058)

CANISTER SUPPORT STR

UNIT WEIGHT %.-+00.60	 MODE

PROTOTYPE QUANTITY 1.0	 UNIT VOLIIMF. 1384.00	 U11AN i I T 'r i:iiiA	 t

PROGRAM COST($ 1000) TIFVFIOPMFNT	 i*ODUCTION
ENGINEFRIN6

DRAFTING 6hs.

.^.SIfN ;73;. 1714.
SYSTEMS 34A.

3 G A

DATA 122.
SiiBTOTAL(ENG) it72.

MANIiFACTURIi G

PRODUCTION -
PROTOTYPE

SIId T^)TAi. (itr"G i 573. -	 .57 .3

TOTAL	 %:. O;T 3745. -	 3745.

DESIGN FACTORS MECHANICAL PRODI)CT DESCRIPTORS
WFJGHT 2360 . 000 iNGjNFERING

DENSITY 0.965* PROTOTYPE SUPPORT t.0
MFG. COMPLEXITY 5.684 i,ROTO	 SFiiEi► UI E	 FACTOR .25Dk
NEW DFSIGN 0.750 PLATFORM ?.li
DESIGN REPEAT 0.250 YEAR OF TECHNOLOGY 1903*
EQUIPMENT CLASS k**** RFL.IABILITY FAF,TO.^ 1.0

INTEGRATION i.EVFL 0.7 MTE:F(FIFLD) 30150*

SCHEDULE	 START FIRST	 ITEM	 FINISH
DEVELOPR • 'T	 JAN 63 (	 A) AUG 83*	 (	 0)	 AU6 1;3:t	 ( 8)

SUPPLEMENTAL INFORMATION
YEAR OF ECONOMICS 1981 TOOLING A PROCFSS FACTORS
ESCALATION 0.00 DEVELOPMENT TOOLING 1.00*
DEV rOST MULTIPLIER 1.10

COST V.NGES DEVELOPMFNT PRODUCTION	 TOTAL COST
FROM 3321. -	 3321.
CENTER 3745. -	 3745.
TO 4333. -	 4333.

88

.



r `fix ^^:

a y^.

1... 3t	 a	 =

OF POOR QUALITY

DATE t2-MAR-81

- PRICE 84 - - -
XCHANICAL ITF41

TIME 20:36	 F II FNAAF: IN—I .F'I
(281058)

,AUNCH7LAN0ING LOCi:i

I.	 UNIT WEIGHT	 4. DO Mofii
PROTC)TYPF. QUANTITY 4.6	 UNIT	 V01.11AF	 i.ilfl OijANi ( fY/N lA

PROGRAM COST($ 1060) OFVEIOPMFNT	 rkViAlfIION iOIAL COST

FNG INFER IN6
i^kAFi JN0 11.	 - 11.

DES IGN 35. 35.
Sr::TFM5 R.	 - R.

FRo.lr.;.r	 itrrl-
DATA 3.	 -

5i;8 0TAL(FNG) 64.

`I.NUFACTUkING

rRODUC.TION	 -

PROTOTYPF.	 12.

7001-TEST F-71 ] .
l3.

:i

TOTAL COST	 77.	 77.

GES11 14 FACTORS	 MECHANICAL
	

PRODUCT OESCRIPTORS

WFIulkI i.00 fiGINEFRING 1,OMPI EXITY 1.300
DENSITY 1.:533* PROTOTYPE SIIPPORi 1.5
MFG. COMPI EXITY S.62u vk(ylk) SCHEDULE FA(.TOk ,Stl*

NEW Da.SIGN 0.500 PLATFORM .Q
f1FSI6N REPEAT 0.000 YEAR OF TECHNO100' 1^h3*
E011IPAENT CLASS ***** RFLI,A81LITY FAcroR 1.4

INTEGRATION LEVEL I.0 MTGF(FJELD) 2)35019*

SCHFDIILF.	 START FIRST Ui3	 FINISH
DEVELOPMFNT	 JAN 83 (	 10) OCT 83*	 i	 6)	 APR 04* (	 16)

SUPPLEMENTAL INFORMATION
YEAR OF ECONOMICS 1981 TOOLING 3< PROCESS i-ACTORS

ESCALATION 0.00 DEVELOPMENT TOOLI96 1.00
DEV COST MULTIPLIER 1.10

COST RANGES DEVELOPMENT PRODUCTION	 TOTAL COST

FROM 68. -	 68.
CENTER 77. 77.
TO 90. -	 90.

B9



IQ - - PRICE 84 - -
MECHANICA! ITEM

OF POOR QUALITY

2
.t.

DATE 12-MAR-81 TIME 20:36	 F!LENAAF:	 1N7.i'I

(281058)

INVERT ROLL RING

UNIT W E IGHT	 10.110	 MODE

P ROTOTYPi WUANTITY 11.li	 UNIT VOLUME	 ii.13	 t OA;;i T i ;t";NHA

R Oui;AA (.0ST(S	 1000) DEVELOPMENT i'i:i► 11lif.T"N	 701 tit	 i_ T
FNG INEERIN6

DRAFTING
DESIGN 14. 14.
SYSTFMfi 3. -	 +.

PROJECT MGMT 2.

DATA 1.
511BTOTAL (ENG) '.S .

MANUFACTURING
PRODUCTION -

PROTOTYPE 0.

TOOL-TEST FQ 1. -

SIIBTOTAL(AFG) 1. -	 t.

TOTAL COST 26.

DESIGN FACTORS MECHANICAL PRODUCT DESCRIPTORS

WEIGHT 10.000 FNGINFERING ;.OMPIiXSTY .DDD

r,FNSITY 76.923* PROTOTYPE SUPPORT 1.r

MFG, COMPLEXITY 5.620 PROTO SCHFDULF FACTOR .4
NEW DESIGN 0.500 PLATFORM 2.0
DESIGN REPEAT il.500 YrAk OF TFi.HN000C-'i 1984*

EdUIPA NT CLASS jtxx*x tir.l.IA+3l .Ii1	 rr'^s:T iK l.0

w	 '^ft

INTEGRATION LEVEL	 0.5	 MTBF(FIELD)	 i7Fs53i*

SCHEDULE	 START	 FIRST ITEM	 FINISH
DEVELOPMENT	 JAN 84	 ( 8)	 AUG 84*	 ( 0)	 AUG 841	 ( A)

SUPPLEMENTAL INFORMATION
YEAR OF ECONOMICS	 1981	 TOOLING A PROCESS FACTORS

ESCALATION	 0.00	 DEVELOPMENT TOOLING	 1.00'4
DEV COST MULTIPLIER	 1.10

COST RANGES	 DEVELOPMENT	 PRODUCTION	 70TAL COST

FROM	 23.	 -	 23.
CENTER	 26.	 -	 26.
TO	 3:.	 -	 32,

B10



.0

ORIGINAL PAC.► IS
OF POOR QUALITY

- - PRICE 04 - -
MECHANICAL ITFM

DATE	 12-MAR- Al TIME 70:37	 Fli ENAMC:	 lliT.i'I
(L81 X158 )

INSTRIJA1 14 T MOUNTING ADAFTER5
4

Q.	 UNIT WFJGHT	 !i .5	 "01)F

PROTOTYPE QUANTITY 11.1)	 UNIT VO! . UAF	 11 .0-1 	 GUAM T [ TY%NHA	 1i't

^	 ('GRAM	 ! Cu3) Dt VEL OPMFNT FkGiiUC• T I	 TOeiI.	 •T

FNIJ1 ff.Ft([N6
DRAFTING
DESIGN 2R. 26.
SYSTEMS

Pkii.iFC T AUT 7.

DATA ?. -
;06 T OTAL (ZN5u ;1.

nANUFACTURING
RO.- AICT I ON -

PROTOTYPE iii . -	 30

T001 - T EST FO :. -
SUBTOTAI_(riFu)

TOTAL COST 83. -	 ,3.

5 316N FACTORS MECHANICAL PRODI)CT Dc-SCRIPTORS

WFJGnT 10.000 FNGJNEFRING %OMPI[XITY	 1.000

OFNSITY 142.857* PROTOTYrE	 S1;PPCiRi
FC,	 % p MF'F_FXITY 5. 520 KOTO SCHEDULE	 i A('•TOR	 .250*

NEW DESIGN 0.500 PLATFORM	 ?.i)

DESIGN FXPEAT ::.,500 fIlik OF	 TFCHN01.06Y	 1984*
EQUIPMENT CLASS ***** kj LI:IBILITY FACTOR	 !..0

INTEGRATION I_EVFL 0.3 MTRF(FJELD)	 1;s9092*

SCHEDULE	 START FIRST ITEM	 FINISH

DEVELOPMENT	 JAN 84	 (	 8)	 AUG 84*	 (	 9)	 MAY Psi	 i	 17)

SFIPPLEMENTAI_ INFORMATION

c_

YEAR OF ECONOMICS

ESCALATION
DEV COST MULTIPLIER

COST RANGES

FROM
CENTER
TO

1981	 TOOLING R PROCESS FACTOT•S

0.00	 DEVELOPMENT TOOLING	 '.00*
1.10

DEVELOPMENT	 PRODUCTION	 TOTAL COST

	

711.	 -	 70.

	83.	 -	 03.

	

104.	 -	 11 /t.

Bil



ORIQINAL PAGE
 u E ISOF pOOR Q

CRATE 12-MAR-R1

-- - PRICF 54---
ELECTRONTC TTEM

7IME 20:37
(281058)

FII ENAMF : 	 -1 NT.

RAID PRE. AMP

UNIT WEIGHT
	

7 . 50 	 110[4
	 i

F';^OTOTYPf OUAN T i T `!	 1.6
	

UNIT VOLUME
	

10.03	 OIIANT (TY!NHA
	

2

" ROGRAM	 C.Oz,	 t s	 -410)	 DF V	 i )PMFNT IN	 TOTAL	 i-0ST
=NI;lN1 F R I N 6

r	 DRAFTING
nE.sccN L:. ^..._
,Y: T F M 5

PROD;"i T	 M6.1 7 ?. .:.
DATA i. -

`i119TOTAL(ENG) i+l.

^A1^IIFRCTUkING
F	

PRODUCTION -

PROTOTYPE i
TOO[ -TEST EO 1.

SUBTOTAL. (;1F3
f

TOTAL COST 30. -	 C► .

DESIGN FACTORS	 FLECTRONI,: MECHANICAL PRODUCT DESCRIPTORS

WEIGHT	 11.500* '.000 INGINEERING	 C.OMPI F )"ii'i ?..2011

DENSITY	 54.000 66.167* PROTOTYPE SUPPORT 1.+)

nrG.	 ..OMPi.FXITY	 9.410 5.770 rROTO	 `,C.HEDIILF	 FACTOR .?50*
NEW DESIGN	 0.500 CLECT VOL FRACTION .3^i93
DESIGN kEPEAT	 0.9811 0.`00 PLATFORM ?.0

EQUIPAENr CLASS	 ***** {***# YEAR Or TE0HNOLO6Y 19H3*

INTEGRATION LEVFL	 0.5 RELIABILITY FACTOR 1.0

MTBF ( FIELD)	 ;

SCHEDULE	 START FIRST ITEM	 FINISH

DEVELOPMENT	 APR R3	 ( 16)	 JUL. 84*	 i	 0)	 .IUI	 '.'4*	 i 16)

E	 SUPPLEMENTAL. INFORMATION

YEAR OF ECONOMICS	 1981 TOOLING t PROCESS (ACTORS

ESCALATION	 0100 DEVELOPMENT TOOLING .500
DEV COST MULTIPLIER 	 1.10

COST RANGES	 DEVELOPMENT PRODUCTION	 TOTAL	 t:OST

L T

FROM 26. -	 26.
CENTER 30. -	 30 

L	 TO 35. -	 35.

B12
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oaioINaL PAGE is
OF POOR Q

DATE J2-MAR-0

'&DH BUFFER

F

PROTOTYPE UWANTITY	 1.0

- - PRICF R4 - - -
i::.r.rTRONIC I TO

LIME :0::; 7	 FTlENAML'	 JK -i,i I

(281058)

JNIT WEIGHT	 3 .1110	 MOUE	 t

UNIT VOLUME	 11.0?,	 t;aANTTTY/NHA	 1

I

PROGRAM	 1000)	 DEVELOPMENT PkODUCT T ON	 i O i f%1	 C 0S ,

F.N^ 1N?7 . R IN6
DRAFTING 7.3.
DFi i6N 08. -	 1;;ti,
r,YSTEMS 17. 17.
PRO.JCCT Mr,7T 1t. t^..
,)ATA 5. -	 -.

9118TOTAL(ENG) 1,75.

"ANUF AC.T URI NG

fRODUCTION - -	 -

PR0TOTY;'- 17. 1:.
i OOi -TEST F0 2. -

S08 TOTAL (.'IFG i 19.

TOTAL COST 194. -	 ;94.

DESIGN FACTORS	 ELECTRONIC Mi7CHANICAL PRODUr.F i)FSrRIPTOKS
aEJGHT	 I.GOG* N(•	 iffiRINC,	 i.Ohf'IfXITY J..;;:;^

DT IN 	 i or 	49.1100 66.667* .`.:O	 u77 F't	 SI;PP OR- F

"F3.	 ^:O"+PI FY,JTY	 9.410 5.770 f'ftUTO	 ;.CIiEOIILE	 I Ai.TuF; .:'`0t
NEW DESIGN	 1).500 11.5Q0 FI.Fr. T VOL FRACTION .694s
DESIGN REPFAT	 0.500 O.Gt i LATFORM .'.R
E0IJIPMENf CLASS YFAR OF	 TEOHNOI.06Y t983
INTEGRATION 1 EVFL	 0.5 0.5 REl I(; PJIITY	 : A;.TuR 1.0

MTBF(FIELD:	 690271?

SCHF.DULF	 START FIRST ITEM	 FINISH
REVEL OPMFNT	 APR 63 (	 16)	 JUL 04*	 (	 0)	 J11i	 r14-.A	 ( J6) 

SUPPLEMENTAL INFORMATION

YEAR OF ECONOMICS 1991
ESCALATION 0.00
DEV COST MULTIPIIFR 1.10

COST RANGES DEVELOPMENT
FROM 172.

CENTER 194.
TO 223.

FOLLOWING DATA CHANGES MADE:

DMULT=1.36.PM0LT=1.36

TOOI.IN6 d PRO.'LSS FACTORS
DEVELOPMENT TOOI.IN,j 	 .500

PRODUCTION	 TOTAL COST
172.
194.

223.

B13
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ORIGINAL

OF POOR QUALITY

I (!
DATE 12-MAR-61

FLUTO LOOP HOSF(TCS)

PROTOTYPe UWANTITY	 1.11

-- - PRICE AS - - -

MECHANICrII.	 I iFli

TIME 20:36

(281058)

III ENAMF:	 "k NI - f'T

UNIT WEIGHT	 Iii .50	 IODF
UNIT VOI.IJAF	 1). 11	 uUANTI i'^ /NHA	 1

PROGRAM %O PT i S	 1 000) DFVFI.OPMFNT Vtoi,(ii.T T ;)N	 0	 AI	 f Oi T

FN1iiNFERING

I:RAFTING I `. -	 '.`,.
G-S1GN :9.
=. (Tf MS
P R 0 i	 .T MG17 :Y. ^ 4.

^i1^ i riTAL(cN3) 66. 66.

MANUFACTURING

PRODUCTION - -	 -
r'titi TO TY PF 44.
i0ul -ii:ST	 F 11 ?. -

708TOTAL(MFG)

TOTAL	 COST 112.

DESIGN FACTORS MECHANICAL PRODUCT OESCRIPTORS

WEI64 120.(100 INGINEERING k,OMPLLYlTY 10.3n0

DFNSiTY 11911.91,9; PROTOTYPE	 SIJPF'0RT
f F t+.	 .MF'i EY.:TY 6.100 PROTO	 SCHEDULE	 Ai:l ijk . ^5'0
NEVI	 OFSEGN 0.250 PI.ATF0Ril ..
DESIGN REPEAT 0.000 'ffr,i^	 GF	 -';Hl(Oi OGY 1983*

EOUI P MFNT CLASS ** Y REI-I+131^:TY	 -n:T,)R i.
INTFRMATION	 I.EVFL 0.3 MTFF(F;FLO) 6`173

SCHF.DOLF	 START FIRST ITEM	 FINISH

DEVELOPMENT	 APR 03 JUN	 831	 i	 0)	 .JUN	 B3*	 i 3)

SUPPLEMENTAL INFORMATION
YEAR OF F.C O NOMIC q 1981 TOOLING	 &	 F'ROCI-S:,	 ► AC.TORS

ESCALATION 0.00 iVVI:LOPMF.NT	 TOOLINI; .500
DEV COST MULTIPLIER 1.36

COST RANGES DEVELOPMENT PRODUCTION	 TOTAL	 COST

FROM 97. -	 97.
CENTER 112. -	 112.

TO ► 	 132. -	 132.

I (

II
I

B14



1e•^.rRltw.:Y	 __

ORIGi1 AL 
rer~e--

Of POOR Q <

PRIC.F	 04 -	 -
1^CHANTCAL ITri1

DATE	 1 2- MAR-hl i IME 20:30 F II ENAMF :	 I P11 .,l

c 031055 i

COLO	 r'I..1 i F. i ( Ti.ti )

;;NIT	 WFIGH) r..uu	 :1001
PRO TOTYP ; .'	 UWANT i TY ;1.1)	 UN i T	 VOLUME ,i, t :	 iil:ly	 r i (i;iii.) ri

VR06RAM	 , . OST ( t	 1000) i,l Vrl%)hMF. NT 'VI Ai
t:.h6I4r.h.R I N 6

i)RAFT I NG =:.
0F.51GN t4. L	 :.

PRO	 71;0 T ^.
+DATA 1 .

MANIIf ACT Ilk TNG
000(.T I ON - -	 -

"i)TOTYPF 19. -
001 -JEST	 rG

(	 SliH TOTAL (11F3)

TOTAL COST 4H. -

GF315N FACTORS M ECHANICAL PROoll"i	 i ^iCfili''T0R•i
WEIGHT 6.00(1 ,.i,1,Jr;EiRIr*,	 t UPIF'l l	 ITY i,.i611
vENS IT1 54.545* PROTOTYPE ;UPPOk ;.i

MFG.	 COMET FxITY 5.52tl PROTO SCHEDULE FACTOk .2t0k
4EW DESIGN 11.25C PLATFORM :.i;
DESIGN REPEAT 0.;111C, YEAR OF	 TF CHN01 OGY 1983*
EQUIPMENT CLASS RFLIA3ILIT1	 .-- ACTOR l.0

INTFGRATION LEVFL C,.;. MThF(IIFLU) G41-18t

SCHFDUL^	 START FIRST ITEM	 FINI511

DEVELOPMENT	 APR 03 (	 7)	 OCT	 F;3x	 i	 k)	 JO N 	 (:/.•+ i	 15)

SUPPLEMENTAL INFORMATION
YEAR OF LCONOMICS 1901 TOOLING	 *	 PROCE S r. F t,CTOi,S
ESCALATION 0.00 DFVFLOPHF.NT	 TOOLING 1.00*

DFV LOST MUl TIPLIER 1.36

COST RANGES DFVFIOPMENT PRODUCTION	 TOTAL	 i•OST
FROM 41. -	 41.

CENTER 48. -	 iR.

TO 58. -	 58.
n	

FOLLOWING DATA CEANGES MADE:

Dhtll.T = 1.1 ,F'MULT=I .1

815



OAIL 12-MAR-81

- - - PRICF. 04 -

MECHANICAL i rcm

TIME 20:30 FILENAMF:	 iPt1.1'I

I QUALITY

( 2810.`,8 i

El. SYSTEM HARNFSS

titlIT WF16HT
	 ,.uii	 'iOld

PROTOTYPE OI)ANTITY
	

t.	 UNIT VOLIJAC.	 i.ilD	 Till+atii i i'r;'ili.1	 l

PROGkAf,	 C.0;T(S	 1600) hFVELOF'MFNT I'R0bIC	 10 	 TOTAL
	

C-OST

c.N;i l ,ti r t.h I N 

irkArTING 3.

SYSTEMS D
PROJ: CT MGMT 3.
.;ATA

91i8 TOTAL 12. Z'.

MANDFACIORIHG

PRODUCTION -

TOOL-TEST FQ 0.
SUB TOTAI.(MFG) 4.

TOT^l COST 17.

OF.316N FACTORS MECHANICAL PRODUCT DESC1iPTORS

WEIGHT ;'5.000 FNGINEERING COMPLEXITY	 0.200

DENSITY 25.000* F'ROT(, Y^ 7	SUPPORTrrr.	 ;,0MF'LFXJTY 5.700 PROTO SCHEDIII F 	 FAIJ01.	 .250*
NEW DESIGN 11.500 Pt.A TFORM	 I. G
DESIGN RET'FAT 0.006 YEAR OF	 TFEVN01.06Y	 1984*

EGIIIPMENT CLASS **** RELIABILITY FACTOR	 1.0

INTFGMATION LEVEL 0.0 MTkF(FTELD)

SCHEDULr	 START FIRST ITEM	 FINISH
DEVELOPMENT	 MAY 04 (	 1) MAY	 84*	 (	 0)	 MAY	 T14A	 (	 1)

SUPPLEMENTAL INFORMATION
YEAR OF ECONOMICS 1981 TOOLING t PROCESS FACTORS
ESCALATION 0.00 DEVELOPMENT TOOLING	 1.00*

DEV COST MULTIPLIFR 1.10

COST RANGES DFVLLOPMENT PRODUCTION	 TOTAL	 COST

FROM 14. -	 1/i.

CENTER 17. -	 17.

TO 21. -	 21,

B16



1
t

ti

POOR QU ALITY
OF

• PRICE 84 - - -

-^ ELECTRONIC ITEM

DATE	 12-MAR-hl TIME	 20::19 FILENAMF:	 1NT.PT

(2810581

PI1AP	 ( Tr,S )

ONIT	 WF Ir,H'(	 M001-

•	 ^ROTOTYPr	 QUANTITY	 1.1) UNIT	 VOIJ)AE. ;.5A0	 iii0rli ^ iY; NHA

i'ROGRAM	 ('OST (f	 1 C(13)	 DEVIL OF-,IFNT Ili	 OL
FNGTNEFR (Ni;

OkAFTINS

GF1;16N 14. .	 .
SY:.TCMS
r: RO-Ji- CT	 M6,17

r^IA A.

.131 0T Ai.:IF iG1 .111. ;.

i , RODUCTION -
PROT1)TYPF t11.	 • -	 ::i.
iOOL-TFST FQ 2.

S1i6TOTAL("IFG) .Q.

TOTAL	 COST 4Y.

OF_S16N FACTORS	 ELECTRONIr, MECHANICAL PROOOCT OESCRIPTORS

WEIGHT	 1.(100* 34.Z^p00 FNGTNFFRING	 ;.CMPLEXITY	 3.200

DENSITY	 50.101) 68.000* PROTOTYPE SUPPORT	 t.6
MFG.	 COMPLEXITY	 9.410 5.640 PROTO SCHEDULE FACTOR	 .250*

NEW	 DESIGN	 11.2517 1).250 .:I.r:r.T	 VOL	 FRACTION.1140
DESIGN	 i;FT • FAT	 0.11011 0.0(10 ('LATrOkM	 2.L
FUIJIPMENT CLASS	 ***** YEAR OF TFCHN01.^mY	 1.983*
INTEGRATION I_EVFL	 0.7 0.5 RUL IABII.ITY	 FACTOR	 1.0

MTSF(FIELD)	 690271*

SCHEDIIL^	 START FIRST ITEM	 FINISH

DEVELOPMENT	 APR 83	 ( 3)	 JUN 83*	 i	 u)	 JUN 0--%	 i	 3)

S11PP1.EMFNTAL	 INFORMATION

YEAR OF ECONOMIC5	 1981 TOOLING R PROCFS;+ FACTOkS

ESCALATION	 0.00 DEVELOPMENT TOO 1 .06	 1.00*

DEV	 COST	 MULTTF' I.IFR 	 1.10

C
)	 COST RANGES	 DEVELOPMENT PRODUCTION	 TOTAL COST

-	 FROM 42. 411.
CENTER 49. -	 49.

TO 60. -	 61).

B17
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M"	
:3

OF POOR QUALITY

DATL 12-MAR-81

"ROTOTYF • ,:: JOANTITY

7 ,111 INr FR (NI;

n f,, i) N i,

-- - P R I C F a4 - - -
MECHANICAL ITEM

TIME 20:39
(281058)

^11ENAMr:	 iN',.i•?

^.I.,i

UNIT

 ):NIT VOID;14,'	 ,ii1At+, i i YiiiII

OCVI_IOF'MfNT	 t;iiinii•'T0.6	 :'► ^,L	 ^(,T

Si;B TOTAL (E;1;I) 14.

I I I. IF. T;:RA,&G
i • ROPUCT ION - -
P'ROTOTYP'E

1001-'if.sT	 Fis
SUBTOTAU MFG) 2. -	 ...

TOTAL COST 12. -	 12.

DESIGN FACTORS MECHANICAL PRODI;CT 0	 SCRIFTOR;
WFI6H1 `,. (al (I i-0,WERIN6 COMPI0JU "i.,Oii
FiENSiTY 21.000* FR4tOT1'FE	 SI;PPORi 1.0

"1 G, 520 rk(,ii,	 `.i.rIED(II F	 i ACTuk
NEW OF916N 1).'15171 PLATFORM .i)
DESIGN UPEAT 0.(100 iFl;ic	 OF	 IUHN01 0(,r t ;•H3*
EUIJIPMF.NT ),LASS RELIABILITY FACTOR 1.0
INTEGRATION IEVFL (f.3 MTP.F,FIFLD)	 237799*

SCHEDULE	 START FIRST	 ITEM	 FINISH
DEVEI OPMENT	 MAY N3 (	 `) SEP	 83+	 i	 0)	 ;FP	 40, 3„	 ( 5 )

SUPPLEMENTAL	 INFORMATION

YEAR OF FCONOMICS 1981 TOOLING A PF,OCFSS FUJOkS
ESCALATION 0.40 DEVELOPMENT TOOLING 1.00*
DFV	 LOST	 M111.TIF'IIFR 1.10

COST RANGES DFVEL.OPMFNT PRODUCTION	 TOTAL	 COST
FROM 10. -	 14.
CENTER 12, :2.
TO 14. -	 14.

818 — 
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FIIENAMF:	 INT.I T

a«
or POOR

- - - FRICF R4 - - -
SYSTZl COST SUMIARY

FATE 12 - MAR -81 	 TIME 20:40
(2811158)

^T	 T.tr

TOTAI	 WITH TNTHiR4TION C•OfiT
PR06RAM	 (.OE;T(S	 1(100)	 IIFVFIOPMFNT

r."ii;:.iF:FR1.G
DRAFTING y71.

:.Y:.TFMS ,^cr

PRO.1	 10.1T 449.
i)ATA OF,

,flAiOTAL(ENG) •,	 ,	 ,.

F?AN(JF- ACTUF:I NG
I ROT► 1i(•T ION -
FKbroTYF• F: 1iA1i.

Vkullil(.T I ON
	

106k i-05T

`
V i'

y•rY.

'i001-TEST	 'Q JJJ, iJt.
i ` ^l:^l,il	 l I f i15 0.

-TOTAL (MFG) 991.	 - 14

,oTAl.	 COST 1634.

v:•T	 iifitiGLS DLVFLOPMFNT	 I'i:Vli(I(.T	 ON T

FROA 4966. 4?66.
;.FNTI:R `;634.	 - ;•!•:•4.
Tai 6595.	 - 6 5 11) 5 .

.f^Fii^^fiF*^FtF^t3^ *•X^E^I*#^Ei*^F^E^Ei(^fiF^t^f^ld^k^t*^^f^fiF^kiEi► ^tt^lA^t#it^E^i f 9td^^ # iF^f*^f#i?fil^fd :t^f^^AS.I#4

9YST0 J 	 4333. on	 SYSTEM WS	 4.330.0^i
* SYSTEM SERIFS MTCF HRS.	 ; 7S9	 AV i.YST CM ;.0 5T

••^iflt ^^il isfriFf; lt^tiFlt^t >f AIF^IF*^ * ^xlr*11^#1F^tiliF^IFi ► ^Ff.iFlF^tiFtltit ^3^E4iF *** if***k*^^s : ^r.tst^Firfr

TO SAVE C.HANC,EU GLOBAL S, ENTER F II ENAMF=

B19
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P7 47

ORiGMAL PACE 15

0F POOR QUAL11'Y =-

-r•kIt'E	 t' ti	 - ',—
Al'SIZAL	 'I1t_

:ATC	 '.	 ;Ak-i•1 =- � 	 IIf'E	 ?.t:.;t
'

r•	 - -^-	 i 2$1058-

SFAR ASS1i M

UNIT	 bF T GH1	 t 4C:1'1. Of'	 f10i1F

PROTOTYFE WAOTITY l.ii	 UNIT V01.11AF	 2. 11 	 QUANiITIF/NHA .

=. ',- iiAM	 i-t?tiT i f	 1000) -'ALOf VE I OPMF NT	 i-WiiiUi.T; OH 	 i is;.T
-hi p  INFER Intl

DRAFT 165 F.	 -

^Y,!TFRR S.	 5.

GA i A
UhTOTAt	 f Nf•) 2 15.

i^r ►̂ 11 j IFAC T 1111 i MC,

r'FiilMICT IA ^h -
p titiliJ Typi: llh.	 -	 1	 °-

T u 10.	 -
tiiirk T 	 TM. (MFG) i21).	 -

'ji .iTA1	 O?

-	 _ 1=	 64 Fr11:r4iA M:-CtiANICAL	 P96010" r  DFirfifilTORS
----	 +F1i,n1 I4ittl.IlUU	 tNl.ihFt^JICh LO AF 'i H! f

C,^.c+ii"^ n.e•i^^	 rRi► TuTYPc	 sfJPi-utii	 ..1:
RF C..	 irARi h^(I	 Y S.:Si1A	 F*00 SCH€DOI F FAC-Ti)k 	 .'4ux

DESIGN REF-FAT ii.1`C► 	 YEA R OF 7CHN01 Gut'	 14R3*

L^ +J PMFNT CLA55 x::c+	 R` i .IABILITY	 FACTCik	 1.12

T 6Ti RkAiic,h tEVFi 0.7	 ATFsFirIFLD>	 ai~A(+Y*

i1:N^:DiIL+:	 -TART FIST	 IIC.M	 *ieti'it►

Of Vf.t Wtf NT	 .;,AN R.I. FIs	 r3s	 t	 Cl)	 i I P.	 t:3=

i1IFFi_EAFHrA i .	 ; ;FORMATTON
fFAR OF CCGNOMICS IYh1T0011hf• L PROCFSS TA	 ORS

I:Si.ALA L i()N ,;.r1}	 I.QG*

lEV	 i3O:,T	 Mlii TiF• 1 1FFt 1.10
I

- i.OST	 kAHU1.1^ --jFVLLi	 PMENT	 i-RODUC.TION	 0TAC rO!.

10
r t^iiA 326.
t EKIt.K 576.	 't{.

CI



ORIGIN,"ll PAGE IS

OF POOR QUALITY

vk j (4	 1-14

MECHANICAL ITEM

SATE 12-MAR-51 TIRE	 1.5;21 FIIIENARF.	 If,5.Pt

.--)PAk Ai-iY LOiM	 INTERFAri: FITT1.1if, A SFNSOk rIT7101,

UN I T-1	 1 GH]	 5.00	 MODF
FROTOWE QUANTITY ; . 6	 UNIT VOJLljAf ill. -13	 WiJAN T 1 f Y/ lAtKA

;60%-lkA-A	 1-0".T (S	 10001 ijkVFL0f'ftEkT ordut-T' ON	 Oi 4L Lizi

OEiNh

PROjFrT m ),17,
uA i A

,W8 fcp TAL t ENG

A N Of A C T i i ix 1 t  G

iVi rp lic T j r 

rk 0 TO T Y F F

1	 ST FO J.
568 TO T AL ( IF -5)

71 .-' TAL	 r OST 74.

; ( 1; N  JD A c T 0 R^ " CCHAh',CA,' PR00i;C f	 P TORS

iir I CiHl D.1-Ty	 1.1100

DENSITY -16oi.667* PROTOTYPE SUPPORT	 1.6

rFG.	 i-. MPLFXITY PkOTO ;qNSE014F	 • GTOR	 . d.5 0*
li-^	 Oi7iiGN,	 L, PI.ATFOR114i",

DFSIF,k REPEAT 0.7150 YEAR	 .')F	 TFCHNOLuf-f	 1904*

`561PAF,4*f	 i:LA35) Rir.'LIABILITY FAC TOR

kA ll 1 ON	 , F "FL 11.7 ATAF 07 1 D D)	 -19801

A TAR 7 Fb;--;T ITEM	 FINISH

Of-MFNT	 - ^AN	 f;4 i	 i-)	 Ai1c.	 Cc{*	 Z)	 JAN	 E;5 ,•

-liiP p L,; mrN -F-Ai.	 IRFORMATION

YrAk or • cmomic-s 1981 100LING i PROCFS!. TAC-TOf:S
EIZALATION 11.1111 OFVFI-OPMFNT	 TOOLING	 1.11(1*

DkV i-O cal	 All[ TIPIIFR I .10

co r. -I	 RANGFF. .,if V1. 1, OPMF NT F'RoLAK T I AN	 0—1 Ai-OtJ

if(I)m 21. -	 ^11
tfWk' 24.
fo
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U" t

OF POOR QUALITY

WN

i 6

C

r)

—RICE	 it4 -	 -
1ECHANIL:AL IiFA

DALE	 l; -nAk-rcl i ICE	 ' .::'1 F Ti Et ;JRF

FNQ f LA rc: •-. AI Fi %RF t;oMk	 Of ^;EC

KNIT	 WFIPIT	 ; tl, rit	 RODE	 ?
FROMTYPC QUANTITY 1.0	 11NiT	 1J01-0i	 +;.111	 uiiAHT[T-f/NHA	 1

1'ROC,RAN COST ( $	 1000) [if VEL 01-Mf NT i F.,W)UCI ION	 OTAI
rhoi i.4r.rh rNsi

ijk0 T inC• of . I	 .
GF

111.
f'FU ,i.1. !	 MII'l

i. AU)TA&-t r Nti • 249.

,0 TOT'; 3 ,. it.
'loot	 ii -

s.Ar	 . 3'i. A.

iTlli.—.
'	 r At: TARS +'1i:CNAM i ^aL ^,21iFltlr::	 ti; .ii.1i iFTOxS
ni tic'. 1160 rni•ltri FkiNG	 ,-.JAF+ FAiTY	 it.7E)tT

..rSiit ^4o.en7= Pa?OTGTtiFi:	 :it.FFAfir	 1	 3
r"F	 ,-	 Oi1F I.i xI7 y t 1 PWTO	 i of Ui .	 MJOk	 ..'Su3

^..ii.N i,.%`^A i'i t.iFk)kfl
i1,iN	 RAF ► A' si.sis;ri 7r;^n	 Or	 r.C.iiN^ii.i;t,t	 19111!

",r N i	 ^ i,SS ,^ a a: ^ i;i i	 i rti: l r	 .	 ; t	 i AiTi,k	 I . i^
r 1T1Jti	 s- FVFL IWi4!

SCiic i,ui i 	 TAt( i F UST iii A	 i i i!i SEi
i	 d)	 ,iFi.	 .l.it	 i	 si,	 r1it:	 33;

..1 F^ inrNit, ► 	 tirFknt,ltON

fLAk OF	 i CONOMIr S, r9h1 1001 1ft6 	 & PROCUS.. FAi.TOk:)
ESCALATI.IN 'j. 1;1; fWVE:.CF17y71 	 +TOCL:NG	 I.OG
LFV	 C-0 1 11	 "oil! 7 U ; ► h l.10

J	 T	 AAiir,l C. iii VF.i 0i'M1 NT Pk01)UC T 10 io" 	 T 0 s i i	 i 0 
F KOA .7 1. -	 21t.
i.EN; FR.

C3



.`. • .1`R A . ^^K r. v ► w

OF POOR QUALnY

.I

35.

PRONCT GERCRIVORi

PkJTJTYPE 'il4"F0iRf 1.
V p-)10	 , ^C IiEDOLF	 i ►iiT'?fi .^^i+a

PLATS ORA 3.t
Yr.Ak	 JT	 iErHhuloc-Y IM*
Ri:i TAB;	 TY	 rA%TOR
ATP.r(Fii 1p) t;YR	 9 ►►

F:RS T	 T i1•:A	 iyii

DFE is3a	 i	 0)	 f C. &Aa t	 n i

11 111.) hO A PFOU SS FACTORS
0fVF.t.0PM'NT TOOLING	 1.10

i k0liiit T i ON
	

0 i Al t OST

all.

29s..

- - F'kIrr 64 - - I	 I
,' UHANICAL i TEA	 I

1 I1Cm"'Al s	 It"..i

1 CID. 00	 MOhC

MAR • id	 TIMr	 .i:77
i : a 111513)

p . ` 1+1. r•ill y) S►l 1FLri h Aef.RFURf- f0i ICS

LOW WE l i+sl i
FROTOTYPf JOANTITY	 t.1i	 I1NTT VOIIsAF

;,)GRAM	 i.0;.T i f	 ' .	 tJ) W viA 0VMFNT
Evu TNFFR ( N 1l

DRAF TINC) i7.
0 F Si611i 113.
SYf.TF M:; t %,.
tn ,i .r	 T	 h	 ^' sf.

7A -1A 10.
smkroTA_ , tlrti 11ri.

•.	 ttiii► AC1NkIhG
l • ivillsl.iIin	 ^-^ -
Ph4T4TYF'F .'.9.
ioul -UST Fla 7.

SuhiaTAL(MFG) 31.

TOIAL	 + JST

iWN i Al; rui ti Ar.Grt 1N i%A^

=451TY
+.	 + i)MF'Lk XTTY `. r.: t+

M r)Fi(GH 11.iiU
.:, ! [,N  	 kf PFAT ii. ?ui►

^.^i^1iF'Ar.v+	 s;LAS;, >: a1l:^
;KTr i-kAi iJN i.ry 	. C1.7

.r.+:iliil.t	 iTART
DEV.J OF*MFN T	 .itll	 83 i	 6)

Sl1PPi.t: ,VSTA1•	 INFORMATION

TFAk	 111	 Fi.11NOMICS 1Vk1

ESCALA fON

r1EV	 4:11:,1	 MITI TlPl IFk 1 . 10

.T kAhOLS Of WA-01 ACN]
FhOA ?11.
Uhlik "4?1.
rJ '9.1.

^I I AI ii'kOGli1.T 1 ^^N

i

C4



OF POOR QUALITY

.1r t: ttA i i— Ai I I f A

-AW 1IlIF	 13::• 2 F TI FhAAf '	 t '`•.I I
(^AlilSd

CA.415Hi 511P iTr

1111) 1	 MI	 i i.rii	 ! iifi. Fi0	 huI•r ?
PRorOTYPt UiiANTiTY 1.i;	 I;;i;'	 ^41.1if1^ :	 ,' ;	 G1i.iirT :T'f	 t

1A	 + ^^`,Tif	 1C: ,.) i Y;.1	 MFNT +	 7OTAl	 FO:,T
cFllil"rrti(!.

I i K1^ • 	 'i 1 ni, 1 f .
IJ f 	l•N Vy, -	 v^.

DATA ^. -
:1•r; i u TAi- t EN,i;

ttF,lti r^l Tiih)n l.

til;Ar0TALt"C,i; 37. 37.

Tui,a	 4.OST 11R. -	 116.

USIGN FACTORS 11	 CHA?i(.:...- ihi,f,
iri i tvH i I i:ii. uilir F ni..i n i i n i ni+	 i.UAfL F) i i 'T 1 . uC.;!
UN-, ; i?T i7 .4,i1 rnuTOTYPE SUPPuKr I.1)

i1MF'I f ><1Tt `	 ..A;. I ROTO	 :•( ni r-01-F	 iAi.i:,F, .; 
nr:4	 uf.'iii.M li	 11 1`iAir'gnM Z. i1
Di- = T i,h	 i.i F F i.T 0	 `& YCAk	 OF	 i F. F iihOl :IG r 14114+
F	 ijiiAt.4i	 i;1 A-S k	 4k

.NT: 6RA7 4 i EVFL u.`. AlV-f iF Ti ! G)

_ i,FtFOIiLF	 -) T An' F IFS T I r ► m	 F INISH
14 VU iii mr 0	 ,,'AN	 Ft4 i	 1,	 MUG	 1.4	 iii	 tii ► u	 it 4 A

511PPi.FMi NFAi. 	 INFORMATION

I[Ak-	 (if 19k1 1001 W,	 .t	 PkOC) SC. 	 i t•C1;.i,:.
EiCAIATiON ii .l)!; 0FV1:l i)FMFST	 TOiJ I Irlii 1.11Q•
DI.V	 i P	 i	 f1hi I i F  	i i is .1	 j0

COST	 kt+hfil ji IJA ill riLN1 1*01)iiC.7 TON	 i ii i i11	 F o!',T

Cl
Fki)i^ lil ^. -	 L11.S .
iO41U. tll. I!

C5
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RA1i f R^: AV

I f.

ORIGIA, VT F.'.C^ 15

OF POOR QUALITY

Io
1-ATI- 12• M11k-il

PkIFf iv, - - -
Fi fr TRONIC ITLM

TMF 13::?	 ► Ti FW.Mf	 iF'tiJ 1
t: $1115$)

iINIT WEIGHT	 2. Sri	 C10T1f

FROTOTYPE.	 91)ANTITY	 1.1) UNIT VOi.00li	 11.03	 QUANTITY/4NA

i ROf.kAM	 i.0i.Ti=	 1000)	 T,FVFLOF•nFNT VkObtif-TI:N	 i%)M	 f-OFT
r4tiIYr:rhi^tli

I,k6F 11 N6 4.

AIr1 A

y (jAT0TAL(E.N5) I:i. -	 ttJ.

RANtif ACTt 1 R1N f•
i • RONICT1ON -
! il0r4)T'tFi_
'TOOL — Ii ,	 i	 Fa

iUBT^,TaLtllFii) 1 :. -

101A1	 1,OST

iGuN il;	 (11ii:HA:^ 1 i AL i'RODiU. T 4F 
i.i	 )1111	 il.`0f1* :'.;•011 i ri.inlI kliti,	 i OAFi FXII	 I, ?00
GEN S I T Y	 54	 1N 'i1) 66.667* PRO T O TYF E Si)PPOR	 ► .:
r11 Fl.	 (•0mr 1 I i ^t1 T 	 ^ .. I : `,. 110 i P0,10 	 (.i iiF Gii1 F	 i	 . i`F^f

1) .5110 - I.fT T VoL FRA C T i ON	 .30*
F FAI	 11.9PO i +.	 06 F•( i,TFtli,n	 :. P

L	 JPA0	 1:i M)')	 * Rc ** Yi'Aii	 OF	 TFt',iili! 1)V01-01	 l9A3*
10 .6h;i -00N I EVFL	 :1.`+ f+. kit 1ARI, 1 T Y	 Ff,(,Uk	 1 .tl

tITr^Ftr;i= LD)	 l.ioi5.31*

S rOUI.r.	 -S FIRST	 ITFA	 FiNISii
i1FVFA OF'MFNI	 APR 0	 t 16)	 111L fi4ii	 i	 Il)	 ,1111	 Ei4*	 (	 16)

SIIPPI.FAl:;1	 AI	 INr",R1111T10k
YF(,k	 OF	 Ff.OKOMTf,k	 I ;i:1 1001 IM, 9	 PROi.I Sr• 1 Ai TAW;
f:;1.ALi)ri1).,	 6.00 0k-Vt:1.0FMFNT	 fG1)I.IJ1+;	 .:iii4
Di V	 (.0:11	 M01 TIH.IFk	 1.10

COST kANUS	 OF• MFNT F'RODUCIION	 -07Ai	 i.0!'.7
i= i%1)A

ro 3 -	 ;:^.

C6
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I A i T T T Y

fog.

OF POOR QUALITY

oo
-,
p

riAl I I -. V.&- 1 .1

C40H RULER

FROTOTYPC QVA.4117Y

6-ECTAONIC I TLM

-ITMF

t : .3 1658)

UNIT WUH-HT

I A	 lJN'L T VOLUTE

[ , R0[,kAA	 .. VT(t	 1) f	 L 1 0 Pr. f .4 T 11MIUCT 7 ON	 ,)TAi	 CD,T

ENliINi- l : R (Nil

OhArMt^,

164.

J 7.

p R 1) 1 ;7 r T	 MiAT

S66 FOIr Al- (FbG) Mi. 115.

t.	 A r. T I i (a N G

U, Tl 17.

*'jl	 11	 F Cl

!mp. rO TAI. MF 5 19.

Ti1T AL 	 C.01,yl

0 E S	 j.4 r,1Cr	 zi	 VGMANTCAL PROOW: T

WF I 5HT r)(111 f_NGINF ikT Nf, 	 i. omri i:. i71 1.200

IEN I; i TY 66.66;t PRof,)DU ',11PPORr 1.0

"I G.	 (-Omf l l I A, I II y	 9.410 77n Il.,01`0	 f.C.,'jiblill	 [AiTCi., pscl

NEW	 ric lilfiN	 "'Ili 11.500 Cl.i7CT	 VOL	 iRACTr ,)N .6940

. .,!(,N	 UP EAT	 ij. ^.nn 0.0101  Pl ATF0r,r, "..0

c I, , -.*ts5 YFA('%-	 OF	 TECHNOI.rl _JY

:u:[(,kAII0N	 iEVFL	 0.5
o.r RE L I ABI L 1TY FACTOR 1.0

MTlY(FiFLD)	 691127.1

SrHFDQLr	 17ART FIRST TTFA	 F INI SH 

UVI I 01'At kT	 APR	 l;3	 1 16)	 Ail i:4.t	 J01-	 i;0 16)

su pp i-Fivarm.	 INFORMATION

lh%k	 -A	 ll-::NOMICS	 j 91: j 10111 W,	 I	 1 •. 0cl	 Ai-loh'S

E , ; i' A 1. A T f 0114	 0. •i0 VVLOPMENT TOOL iN;o r) Q

D1 V	 '.,O'-T	 MIIL -. )PI	 It k	 J.Jil

COST 	 RA,,i i )* ri	 J) F V17 1. OP OF N T PR00K f I 0N	 i0lAt	 C,Of)T

i k0m J72.
1 " Pi r C R 194.
10 22 3.

F01104IN6	 OATA	 rlANi',Z.S	 MAl)F-

I)MUL I	 I	 I'l)(11 T -	 I	 o6
C7



111 t.	 is -rnF- nl ) IMf ":{:: 3	 F i1 Ehr.ME r	 IF'S.f•I

F,1,11)	 LOOP	 h4Si".(TCS)

UNIT «f.15HT	 1.0. GO	 MOI:F
PROTOT1Pf.	 AUAi rlT1 1.0	 UNTT V01.11AF.	 11.11	 Li uAS	 T Y/NNa	 1

+ ROC RAM	 f 0;.7 i S ijf Vf i 0i'MFNT Vr"011(4 1 i 'N	 1 r1i_	 i Oc:T
1Yt r.Rf.4 1)

t:.^i Mi. 1, 1.
+ h' i ► :T	 M+SAT

ioM A 6.
SURTOTAL(ENG)

MA140 1 At.TiikINi:

k(lblic.T TON -,G

OF POOR QUALITY

t

Mr-CHANIZA1.	 Tff_t1

i AVIVl 11- r may. ,l.
1041 -1 U, 	 F% ?. -

itia ft) 46

TOI Al	 i•OST f 1?. -	 l iz.

U.'S 16N i V. ftiRS .1r CHAN ICAO PRV1)1)I: i	 Q^SCF If tlih::
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