N83-13838

SOFTWARE ENGINEERING LABORATORY SERIES - SEL—BZ-—UU

FORTRAN STATIC SOURCE
CODE ANALYZER PROGRAM
(SAP])

SYSTEM DESCRIPTION

AUGUST 1982

National Aeronautics and
Space Administrahon

Goddard Space Flight Center CREPRODUCED BY Tt
Greenbe!t Maryland 20771 NATIONAL TECHNICAL -
INFORMATION SERVICE

US DEPARTMENT OF COMMERCE
SPRINGFIELD, VA 22161

N83-13838

FORTRAN STATIC SOURCE CODE ANALYZER PROGRAM (SAP) SYSTEM DESCRIPTION

National Aeronautics and Space Administration
Greenbelt MD

hug 82

FOREWORD

The Software Engineering Laboratory (SEL) is an organization
sponsored by the National Aeronautics and Space
Administration, Goddard Space Flight Center (NASA/GSFC) and
created for the purpose of investigating the effectiveness
of software engineering technologies when applied to the
development of applications software. The SEL was created

in 1977 and has three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)
The University of Maryland (Computer Sciences Department)
Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (1) to understand the software
development process in the GSFC environment; (2) to measure
the effect of various methodologies, tools, and models on
this process; and (3) to identify and then to apply
successful development practices. The activities, findings,
and recommendations of the SEL are recorded in the Software
Engineering Laboratory Series, a continuing series of
reports that includes this document. A version of this

document was also issued as Computer Sciences Corporation
document CS8C/SD-82/6045.

Contributors to this document include

William Decker (Computer Sciences Corporation)
Wayne Taylor (Computer Sciences Corporation)

Other contributors include

Phil Merwarth (Goddard Space Flight Center)

Mike O'Neill (Computer Sciences Corporation)
Charles Goorevich {(Computer Sciences Corporation)
Sharon Waligora (Computer Sciences Corporation)

Single copies of this document can be obtained by writing to

Frank E. McGarry

Code 582.1

NASA/GSFC

Greenbelt, Maryland 20771

Preceding page blank 1id

ABSTRACT
This document présents the FORTRAN Static Source Code Anal-
yzer Program (SAP) system description. SAP is a software
tool designed to assist Software Engineering Laboratory (SEL)
personnel in conducting studies of FORTRAN programs. SAP
scans FORTRAN source code and produces reports that présent
statistics and measures of statements and structures that
make up a module. This document presents a description of
the processing performed by SAP and of the routines, COMMON
blocks, and files used by SAP. The system generation proce-
dure for SAP is also presented.

IS
(——J’”f—jr T H‘b }
- o FILEE
BLANKK“T? e
E PREQEmNGﬁ"f_E,__.M-f‘*‘”

Preceding page b[ank ;

TABLE OF CONTENTS

Section 1 - IntrodUcCtioN.: « « « o o « s « o o o o &

Section 2 = SAP StruchUre® + « o« « = o o o s o o +

2.1 SAP Processing - L] - - - L - - - . L3 - - - - -

2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.1.6

Session Initialization. « « « + « « &
File Loop Control and Initialization.
Source Code Input “« e = e s
Statement Analysis (Subroutlne TYPE)
Module Reports and File Summary . .
Project Analysis. « « « « o o o = &

2.2 SAP Utilities. - - - - - - - - - » L - - - - -

Section

Symbol Table Utilities. « « .

Delimiter/Token Table Utility (LOOKAH)

Transfer Operator List Utilities. . .

SAP Module Descriptions . . « .+ « « .« &

=3 [¥3]
1

Section

SAP COMMON Block Information. + « « .+ &

Section 5

SAP File StructuUre. + « « « « « = o o

Section 6

System Generabtion « o« « ¢ o o o o 2 2 «

6.1 PDP-11/70 System Generation. . « .« « « « « + &
6.2 VAX-11/780 System Generation « « « + &

Section 7 - Moving SAP to Another Computer. . . «

7.1 The SAP

Distribution Tapes + « + « = = o « « =

7.2 SAP Dependence Upon Computer Word Size
7.3 FEnvironmental Considerations . « ¢« « « o« o« « o

References

Bibliography

vii

e e e

Precedmg

page blank

-
I

1
WO [= =

W o

[y8]
13 1 | |

o)) w i L NN [y] I}JMNNNN [y
| 1 | I 1 I
[b [VS)
N LR U

- O
T
O N N = = T T

I

:

[
o
[}
]

BNB B
| O T I | 1
- VER O o

LI B B
48] HHMHFWO-IOW
i)

(=)} Gy NN RN N

[=3]

LIST OF ILLUSTRATIONS

Processing Flow for SAPMAIN., . . « o« « o «
Routines Called by SAPMAIN . o o o« o« o « =
Session Initialization Routines.
File Loop Contrcl and Inltlallzatlon
ROULINES o ¢ ¢ o o 2 o o o o o o o o o =
Source Code Input Routines . .
Statement Analysis Routines. .
Module Report and File Summary
Sample Symbol Table Dump . . .
Project Analysis Routines. .
Symbol Table ACCeSS. « « s«
Symbol Table Linkages. « .+ .
SAP Data Flow Diagram. . . .
SAP PDP-11/70 Preprocessing Command

e o o + s it e
(o]

. & 4 a0
(T

* & 9 e w
3

« 8 s (D @
143]

a L - L] - []

Procedure. o
SAP PDP-11/70 FORTRAN Compllatlon "command
Procedure. e .

SAP PDP-11/70 Task Bulldlng Command
Procedlr@. o « o o o o o = o s + 2 ¢ o =
SAP PDP-11/70 Overlay Description.
SAP VAX-11/780 Preprocessing Command
ProcedUir. « o+ o o o = o o o s s = = o
SAP VAX-11/780 FORTRAN Compilation and
Linking Command Procedure. . . « « « « =

LIST OF TABLES

Transfer Operators . « « « « =
SAP BLOCK DATA File Names. . .
SAP File Names and Usages. . -
System Routines Used by SAP. .
Language Extensions Used in SAP

L] - L] L] L
L

L] » - L] -

. - - - -

L] L] L - »

viii

ST GO S]
[|

W hr

[¥%] WWwwWwwn =Oo o
W~ =W N

* ¢ & 5 o 8 & @
i 1 !

Hw O

oo

]

A B O T NRMNRNN NN

[+))
] i
[
—

h
L
=
o8

SECTION 1 - INTRODUCTION

The FORTRAN Static Source Code Analyzer Program (SAP) auto-
matically produces statistics on occurrences of statements
and structures within FORTRAN program modules and provides a
facility for reporting the statistics. SAP is available in
versions to run on either a PDP-11/70 or a VAX-ll/?Bd\compu—
ter. This document describes SAP Versiocn 2, a result of
program modifications to provide several new reports, addi-
tional complexitv analysis, and recognition of all state-
ments described in the American National Standards Institute
Programming Language FORTRAN standard (FORTRAN 77), ANSI
X3.9-1978 {Reference 1).

SAP accepts as input syntactically correct FORTRAN source
code written in the FORTRAN 77 standard language. In addi-
tion, code written using features in the following languages
is also accepted: PDP-11 FORTRAN IV or FORTRAN IV-PLUS
(References 2 and 3); VAX-1ll FORTRAN (References 4 and 5);
IBM S/360 FORTRAN IV Level H Extended, with the exception of
the S/360 FORTRAN DEBUG Facility statements {(References 6
and 7); and Structured FORTRAN (Reference 8).

Other documents that contain supplementary information are
the SAP user's guide (Reference 9) and the SAP design docu-
ment {Reference 10).

This document describes the SAP software system in detail to
assist programmers in maintaining, enhancing, and installing
SAP. Section 2 presents an overview of the structure of SAP
software and internal tables. Much of the material appear-
ing in this section appeared originally in the SAP design
document (Reference 10) and has been updated to reflect the

current version of SAP. Section 3 presents descriptions of

1-1

each routine in the SAP system. Section 4 presents descrip-
tions of COMMON blocks used by SAP and Section 5 describes
each external file referenced by SAP. The instructions for
installing SAP on the PDP-11/70 and VAX-11/780 computers are
given in Section 6. Section 7 lists areas of concern when

moving SAP from one computer to another.

SECTION 2 - SAP STRUCTURE

This section presents an overview of the SAP software struc-
ture. The main processing elements are presented in Sec~
tion 2.1, SAP Processing. The SAP utility software usg@ to
support SAP internal data structures is presented in i
Section 2.2, SAP Utilities. Software that performs house-
keeping functions such as report formatting, error process-
ing, and page counting is described only in. Section 3, SAP
Module Descriptions.

2.1 SAP PROCESSING

This section describes SAP processing, which is divided into
the following six phases:

1. Session initialization (Section 2.1.1)

2. Input file locop control and initialization
(Section 2.1.2)

3. Source code input (Section 2.1.3)

4, Statement analysis (Section 2.1.4)

5. Module reports and file summary (Section 2.1.5)
6. Project analysis (Section 2.1.6)

The overall program flow is controlled by the main program,
SAPMAIN. PFigure 2-1 describes the logic of this flow.

The routines called by SAPMAIN are each discussed in the

- subsections noted in Figure 2-2. Figures 2-3 through 2-7,
and Figure 2-9 show portions of Figure 2-2 expanded to
greater detail; for reader convenience these figures are
contained in the subsections describing the routines shown.
The dashed lines in these figures indicate that the routines
shown constitute only a portion of SAPMAIN routines.

2-1

Load keyword table
IF no load error
DOWHILE no end of f£ile on control input
Read control input
IF project analysis is requested
Initialize SAP data base
‘ENDIF
Initialize global counters
DOWHILE no end of file on source -input
Initialize module counters
DOWHILE no END statement
Read a statement
Process a statement
END DOWHILE
OQutput module statistics
IF Halstead summary requested
Report Halstead summary
ENDIF
Collect global statisties
Output module directory entry
END DOWHILE
IF global statistics regquested
Qutput global statistics
ENDIF
Close source input files
END DOWHILE
IF project analysis is requested
Report on each project requested by the user
ENDIF
ENDIF
Terminate SAP

Figure 2-1. Processing Flow for SAPMAIN

SESSION
INITIALIZATION
(SEE SECTION 2.1.1}

- ~

SAPMAIN

INPUT FiLE LOOP SOURCE CODE STATEMENT
CONTROLIINITIALIZATIOI‘:I INPUT ANALYSIS

(SEE SECTION 2,1 2} (SEE SECTION 2,1.3} | (SEE SECTION 2.1 4)

. -~

MOBULE REPCRT
FILE SUMMARY
(SEE SECTION 2 1 5)

PROJECT
ANALYSIS

{SEE SECTION 2 1.6}

~ ’) ’ ~

e

-

>

—1 LOADK

—

CINPUT — INITM —--i HEADER —] TYPE —— COLGLB
PEFINE —1 HALREP
INITG

Figure 2-2. Routines Called by

1 MCMPLX

—— MDIRY

—1 STATM

L1 sTOUMP

STATG

=1 HEPHAL

SAPMAIN

8796/82

ALYNS ¥00d 40
&1 3DYd TYNIDIRNO

2.1.1 SESSION INITIALIZATION

SAP uses two table initialization subroutines at the start
of each SAP session: LOADK and USRWTS (see Figure 2-3).
LOADK loads keywords from the KEYWORDS.SAP file into the
keyword table stored in COMMON. block KEYCOM; USRWTS loads
the WEIGHTS.SAP file into the weights table stored in COMMON
block WTSCOM. A user-specified statistical weighting file
can be read in Reference 9.

2.1.1.1 LOADK

LOADK (load keyword table) opens the keyword file and loads
the keyword table (in COMMON block KEYCOM). An error flag
is set to .TRUB. if an open failure or read error occurs.

2.1.1.2 USRWTS

USRWTS (load weights table) opens the default weights file
and loads the weights table (in COMMON block WTSCOM). An
error flag is set to .TRUE. if an open failure or read error
occurs.

2.1.2 FILE LOOP CONTROL AND INITIALIZATION

The processing loop for each input file to SAP is controlled
and initialized by the routines shown in Figure 2-4. The
routines called by SAPMAIN are discussed below.

2.1.2.1 CINPUT

Control for SAP file loop processing is handled by subrou-
tine CINPUT (read control input). CINPUT calls subroutine
INPUT, which reads the user input command line; CINPUT then
opens the source input file and interprets the switch
settings.

INPUT prompts the user with SAP> and reads one line of
control input information from logical unit LUNCIN. Input
line syntax is as follows:

SAP>FILE.EXT/S1/S2/-83

.. . ORIGINAL PAGE IS
itaq, §F FOOR QUALITY
SRR

SAPMAIN

LOADK

USRWTS

8796/82

Figure 2-3. Session Initialization Routines

P{AGE)
OR‘%‘%“' UALITY
SAPMAIN
CINPUT DEFINE INITG INITM
INPUT DEFSEL INCLUD

Figure 2-4.

8796/82

File Loop Control and Initialization Routines '

where FILE.BEXT is the file name and extension of the input
source file to be processed and Sl, S2, and S3 are option
switches (Reference 9)}.

CINPUT scans the input line for slashes (/}, which are
assumed to be switch delimiters. The slashes are replaced
by zeros and a check is made for minus signs (=) and any
switches that are found are set to .TRUE. (or .FALSE. if
preceded by a minus sign).

CINPUT calls two routines, DEFSEL and INCLUD, to handle the
/SL and /XP control switches, respectively. DEFSEL opens
the sequential cutput f£file used to communicate with the SEL
data base. If an ALL.SAP file exists in the user's default
directory, the file is opened with the APPEND option; other-
wise it is opened as NEW. INCLUD copies the input file into
a scratch file while examining each record looking for an
INCLUDE statement. Each INCLUDE statement is replaced with
the contents of the included file.

CINPUT opens the input file (or the scratch file created by
INCLUD) and returns control to SAPMAIN.

If the user enters an end-of-file (CNTL Z) in response to
the request for an input file name, the ENDC flag is set to
.TRUE. and CINPUT returns.

2.1.2.2 DEFINE

DEFINE (define SAP data base) initializes or locates a data
base file when the /DB control switch is set to on. The
user is prompted for the file name to be used as the data
base for this session. If the file does not exist, DEFINE
opens the specified file as NEW and initializes as many
records as specified by the user. If the file does exist,
the file is opened. The user is prompted for a project
character to be used for identification of the group of mod-

ules to be processed.

2.1.2.3 INITG

INITG (initialize glorals) resets all variables and arrays
used to accumulate statistics describing all the modules
within an input file. This routine is called once for each
input file.

2.1.2.4 INITM-

INITM (initialize module) resets all variables and arrays
used to accumulate statistics describing each module within

the input.file. This routine is called before each module
in an input file is processed.

2.1.3 SOURCE CODE INPUT

Each statement from the input file is read as one or more
records by routine READER; the routines it calls are shown

in Figure 2-5 and discussed below.
2.1.3.1 READER

READER (source code reader) controls all source input; accu-
mulates counts of input lines, statements, comments and com-
ment packets; and generates the packed statement string.
READER calls GLINE and HSCAN in performing these functions.

2.1.3.2 GLINE

GLINE (get one line) reads input from the source file one
line at a time. GLINE maintains a one-line-look-ahead,
calling TABCCC to detect comment and continuation lines.
Output is wvia COMMON block INLCOM.

2.1.3.3 TABCCC

TABCCC (check for tabs, continuations, and comments) checks
for the presence of a tab character in any of positions 1

through 6 in the input line. If one is found, it tests the
next character to see if it is a nonzero numeric. If it is,
the continuation flag is set to .TRUE. and the character is
replaced with a blank. If no tab is found, position six is

2-8

ORIGINAL PagE g
OF POOR QuaLTy

SAPMAIN

READER

GLINE HSCAN

TABCCC

B8796/82

oFigure 2-5. BSource Co@e Input Routine;

checked for a nonzero, nonblank character. If one is found,
the continuation flag is set to .TRUE. and a tab is set in
position six. In both cases, the first position is checked
for a nonnumeric character. If one is present, the comment
card flag is set to .TRUE.. Finally, all tabs following the
initial tab are replaced by blanks and TABCCC returns.

2.1.3.4 HSCAN

HSCAN {remove literals, holleriths, and blanks) processes

the source code input line which was loaded in array INPUT
(in COMMON block INPCOM) by READER and produces a packed
source string in the same array. HSCAN first scans INPUT

for single quotation marks (apostrophes), removing any char-
acter occurring between matched pairs of quotation marks.
HSCAN then scans the string for the character "H". Wherever -
it appears, the previous characters are tested for numerics. .
If the characters are numeric and are preceded by any of the
following characters {(/,*'), the field following the H is
considered to be a Hollerith field. The numerics are con-
verted to integer and the value tested to make sure that the
end of the H field is within the line. Then, the field is
replaced by two quotation marks and removed. HSCAN next
scans for an exclamation point (!}, the PDP-11 delimiter for
inline comments. If one is found, the inline comment counter
is incremented and the exclamation point is replaced by a
null character. LASINP, the end of line pointer, is reset

to peint to the null character.

Finally, HSCAN removes all embedded blanks remaining and
returns.

2-10

2.1.4 STATEMENT ANALYSIS {SUBROUTINE TYPE)

SAP processes each input f£ile on a module-by-module basis.
The module statistical counters are initialized by routine
INITM at the beginning of a module. Module statistics are
accunulated until an END card is encountered within the
input code.

Statement analysis is controlled by subroutine TYPE, called
from SAPMAIN. Figure 2~6 shows the statement analysis
portion of SAP. Analysis falls into the following three
phases that are discussed separately in Sections 2.1.4.1
through 2.1.4.3:

1. Construction of the delimiter/token table and
statement classification

2. Statement specific analysis
3. Statement label processing

DSCAN controls the delimiter/token table building. ASGNID
and TESTK identify and classify the statement. STATE con-
trols statement type specific analysis, and LABEL processes
statement labels. Section 2.1.4.4 discusses two utilities
frequently used while performing statement analysis.-

TYPE {control statement analysis) initially calls DSCAN to
build the delimiter/token table. TYPE then examines the
table produced to locate a tab symbol. The table pointer
LDTPTR is set to point to the table location following the
tab., If the pointer is not pointing to the end of the
table, processing proceeds. If it is, processing of the
statement terminates. WNext, ASGNID is called to identify
assignment statements, followed by TESTK to identify state-
ments with leading keywbrds. TESTK returns the statement
class (specification, control, etc.) and the statement type
(IF, DO, etc.). TYPE calls STATE to process the statement

2-11

ORGINAL PAGE 15
SAPMAIN
TYPE
DECAN ASGNID TESTK STATE LABEL
PRASGN -PHCNTL PRIC PRSPEC PRSUBS PRSTRGC PRTYPE
I~ PRCALL PRDOS PRIMPL
— PRGOTO PRIFS PRSUBS
™1 PRASS
— PROOS
- PRIFS
—— PRARET

Figure 2-6.

Statement Analysis Routines

87@6/82

and then increments the appropriate class and type counters.
LABEL is called to store the statement label (if present} in
the statement label list and to gather DO loop statistics.
TYPE checks the statement type to see if’an end statement
has been reached. If it has, ENDM is set to. .TRUE. to indi-
cate an end of module. Any fatal error return from a sub-
routine called by TYPE causes ERROR to be set to .TRUE..

2.1.4.1 Statement Identification

2.1.4.1.1 DSCAN

DSCAN (scan for delimiters and tokens) processes the packed
input string in array INPUT prepared by HSCAN. DSCAN
searches the input string for a delimiter (as defined in the
delimiter table IDELIM), comparing one character at a time
with the first character of each defined delimiter. When a
first character match is found, the remainder of the delimi-
ter is compared with the subsequent characters in the INPUT
string. If a match is found, DSCAN then checks to see if
any nondelimiter characters exist between the current del-
imiter and the previous delimiter. These characters (if
any) are then hashed by IHASH and LOOKS is called to see if
a symbol table entry for the token already exists. (Sec-
tion 2.2.1 contains a complete description of the symbol
table utilities, including the hash algorithm used.} 1If it
does not exist, a new symbol table entry is created and
entered into the symbol table by calling POKES. The symbol
table pointer IPOINT is entered into the delimiter/token
table LISTDT, in the next available location.

In creating the symbol table entry, the first character of
the token is tested to determine whether the token is an
identifier or a constant (numeric or logical). The new
token pointer is then entered into LISTDT. The next loca-
tion in LISTDT is given the value of the negative of the

2-13

index of the located delimiter. The LISTDT array thus con-
tains a series of negative and positive numbers, where
negative numbers represent delimiters and positive numbers
are pointers to the symbol table entries for the intervening
tokens. The scanning process proceeds until the scan
pointer is pointing at LASINP, the last location in INPUT.
DSCAN sets ERROR to .TRUE. if the LISTDT array limits are
exceeded or if LOOKS or POKES returns a fatal error.

2.1.4.1.2 ASGNID

ASQNID (assignment statement identification) scans the
LISTDT array to identify assignment statements. Statement
function definitions identified as assignment statements in
ASGNID will be detected and reclassified in routine PRASGN.
The following conditions will lead to a classification as an

assignment statement:

. The LISTDT array contains an equals sign not
enclosed in parentheses.

] All commas following the egquals sign are enclosed

in parentheses.

@ The first token in LISTDT does not start with the
keyword PARAMETER.

® The first token in LISTDT does not start with the
keyword IF, which is then followed by a pair of
matching parentheses, which are followed by a
token. (That is, a logical IF statement whoég
object is an assignment statement is classified as
an IF statement at this point.)

Keyword statement classification is done by TESTK and

LOOKK. In FORTRAN, most statement types are preceded by a
keyword.

2-14

2.1.4.1.3 TESTK

TESTK (test for a leading keyword) examines the token pointed
to by LDTPTR in the array LISTDT. TESTK calls LOOKK tc test
this symbol against the keyword list. LOOKK returns the
keyword located and its length. If no keyword is located,
TESTK sets ISCLAS to 12 (undecoded) and returns. IE a key-
word shorter than the test token is found, then theiinitial
token is rehashed after the keyword portion is deleted.
LDTPTR, the LISTDT pointer, is returned pointing to the
location following the keyword.

2.1.4.2 Statement Specific Processing {(Subroutine STATE)

STATE (statement type specific analysis) is an executive
driver- £to routines that perform specific statement anal-
ysis., Routines that fall into this classification use PR as
the first two letters of their name. These routines are
described in Sections 2.1.4.2.1 through 2.1.4.2.14. Before
calling STATE, the specific statement class and type have
been determined. It is the function of routines called by
STATE to gather those statistics that are both class and
type dependent, Specific classes examined in STATE are
assignment statements (PRASGN), control statements (PRCNTL),
subprogram statements (PRSUBS), specification statements
(PRSPEC), type specification statements {(PRTYPE), input/
output statements (PRIO), and special structure statements
{PRSTRC) .

2-15

http:2.1.4.2.14

2.1.4.2.1 PRASGN

PRASGN (assignment statement analyzer) is entered when sub-
routine ASGNID has detected statements of the following form:

]

where v variable name o¢r array element name

expression

I

e

The apalyze} performs a scan of statement tokens to advance
program counters and update the status of items in the sym-
bol table. Specifically, PRASGN performs the following

functions: .
® Counts the number of variables in assignment state-
ments.
® Determines the maximum number of variables in any

given assignment statement in the module.

] Counts the number of operators in assignment state-
ments. (Operators are defined as follows: **, *,
/+ +, -, JAND., .OR., .XOR., .EQV., .NEQV., .NOT.,
.IL.E., .LT., .EQ., .NE., .GT., .GE. Operators used
in describing array variables or in function argu-

ments are not counted.)

o Detects and flags Arithmetic Statement Function
(ASF) definitions.

® Performs analysis on any variables encountered.

'Y Performs analysis on any function or ASF
encountered.

[Marks in the symbol table that specific variables

or functions were encountered.

2.1.4.2.2 PRCNTL

PRCNTL (control statement analyzer) accepts statement tokens
that have the following FORTRAN keywords: ASSIGN, CALL,
CONTINUE, DO, GOTO, IF, PAUSE, RETURN, and STOP. PRCNTL
acts as an executive to specific control statement analyzer
routines, which scan each type of statement to advance pro-
gram counters and update the statuys of items in the-symbol
table. Specifically, PRCHNTL performs the following func-

tions:
° Switches control to the specific statement analyzer
routines:

- PRASS--Keyword ASSIGN
- PRCALL~~Keyword CALL
- PRDOS--Keyword PO
- PRGOTO--Keyword GOTO
- PRIFS--Keyword. IF
- PRRET~~-Keyword RETURN

® Returns control to subroutine STATE when the

specific routines are completed or when keywords
CONTINUE, PAUSE, or STOP are encountered

2.1.4.2.3 PRASS

PRASS (ASSIGN statement analyzer) analyzes ASSIGN state-
ments. The ASSIGN statement is used to associate a state-
ment label with an integer variable., The variable can then
be used as a transfer destination in a subsequent assigned
GOTO statement.

The ASSIGN statement has the form

ASSIGN s TO i

il

where s label of an executable statement

integer variable

il

i

2-17

PRASS will scan for the statement label and add it to the
statement label list if it is not in the list.

2.1.4.2.4 PRCALL

PRCALL (CALL statement analyzer} analyzes CALL statements.
The CALL statement causes the execution of a SUBROUTINE
subprogram; it can also specify an argument list for use by

the subroutine.

_The CALL statement has the form
CALL sub [([a [, 8] «s++.1)]

name of a SUBROUTINE subprogram

li

where sub

a = argument to a subprogram. Arguments can be
variables, arrays, array elements, constants,
expressions, alphanumeric literals, subprogram
names, or alternate return label specifiers

The analyzer performs a scan of statement tokens to advance
program counters and update the status of items in the sym-
bol table.

Specifically, PRCALL performs the following functions:

® Counts the number of arguments in all CALL state-
ments encountered

] Determines the maximum number of arguments in any
CALL statement

® Adds the subroutine name and alternate return
labels to the alternate return transfer table list

when an alternate return is located

e Performs analysis on any functions or ASFs
encountered
® Marks in the symbol table that variables or

functions were encountered

® Marks in the symbol table that a subroutine name

was encountered

2-18

2.1.4.2.5 PRDOS

PRDOS (DO statement analyzer) analyzes loop control state-
ments. The DO and DOWHILE statements are used to specify
discrete loop processing. The DO statement causes the
statements in its range to be repeatedly executed a speci-
fied number of times. DOWHILE statements are used to spec-
ify conditional loop processing.)

The DO statement has the form

Do (sf,]1]1 1 = elr e2 [re3]

where s = label of an executable statement
i = integer wvariable (control variable)
€ys €5s €3 = integer expressions

The DOWHILE statement has the form

DO [s[,}] WHILE (e)

il

where s label of an executable statement

e logical expression

The analyzer performs a scan of statement tokens to push
target labels onto the DO loop stack and update the status
of items in the syvmbol table.

Specifically, PRDOS performs the following functions:

. Completes the identification of DOWHILE statements

when a statement label is present.

] Completes the identification of a DO statement when
no statement label is present.

° Pushes the target label (if present) and the
current statement number onto the stacks LBLSTK and
DOSTAN (in COMMON block LBLCOM). A wvalue of zero
for the statement label is pushed when no label is
present.

° Performs analysis on the control variable and other

variables encountered in the expressions.

2.1.4.2.6 PRGOTO

.. PRGOTO (GOTO statement analyzer) analyzes all types of GOTO

statements. A GOTO statement transfers control within a
program unit, either to the same statement every time or to
one of a set of statements, based on the value of an ex-

pression. There are three types of GOTO statements:

® Unconditional GOTO statement (GOTO s) where s is
the label on an executable statement

® Computed GOTO statement (GOTO (slist) [,]e) where
slist is a list of one or more executable statement
labels separated by commas and e is an arithmetic
expression

® Assigned GOTO statement (GOTO vi{{,](slist]) where
slist (when present) is a list of one or more ex-
ecutable statement labels separated by commas and v
is an integer variable

The analyzer performs a scan of statement tokens to advance
program counters and update the status of items in the sym-
bol table. Specifically, PRGOTO performs the following

functions:

-] Identifies the specific type of GOTO and maintains

counters on the number of unconditional, computed,
and assigned GOTO statements encountered

2-20

'y Marks in COMMON block LBLCOM whether or not a label
is a target of an unconditional GOTO

] Adds the statement label (or statement label list)
to the unconditional, computed, or assigned GOTO
transfer table list

2-104.2-7 PRIFS &

PRIF (IF statement analyzer) analyzes IF statements. The IF
statement causes a conditional control transfer or the con-
ditional execution of a single statement or block of state-
ments. There are four types of IF statements:

™ Arithmetic IF statement (IF (e) S1r Sy s3) where '

e is an arithmetic expression and s s,, and s

17 72 3

are labels of executable statements
® Logical IF statement (IF (e) st) where e is a log-
ical expression and st is a complete FORTRAN

statement

° Block IF statement (IF (e) THEN) or {(.IF (e})) where

e is a logical expression

® ELSEIF statement (ELSEIF (e) THEN) where e is a
logical expression

The analyzer performs a scan of statement tokens to advance
program counters and update the status of items in the sym-

bol table. Specifically, PRIFS performs the f£ollowing func-
tions:

. Maintains counters on the number of ELSEIF and log-
ical, arithmetic, and block IF statements

* Performs analysis on any statement labels encoun-
tered

® Performs analysis on any variables or arrays en-
countered

] Performs analysis on any functions or ASFs encoun-

tered

° Marks in the symbol table that a variable or func-

tion was encountered

° Sets IREPT = .TRUE. for logical IF statements and
sets LDTPTR to point to the beginning of an object

statement
2.1.4.2.8 PRRET

PRRET (RETURN statement analyzer) analyzes RETURN state-
ments. The RETURN statement is used to return control f£rom

a subprogram unit to the calling program unit.
a

The RETURN statement has the form
RETURN [e]

where e is an integer expression indicating an alternate
return.

The analyzer performs a scan of statement tokens to advance
program counters. Specifically, PRRET performs the follow-
ing functions:

[Maintains a counter on the number of normal returns
encountered
. Maintains a counter on the number of alternate re-

turns encountered
2.1.4.2.9 PRSUBS

PRSUBS (subprogram statement analyzer) accepts statement
tokens that have the following FORTRAN keywords: BLOCKDATA,

END, ENTRY, FUNCTION, PROGRAM, and SUBRQUTINE. The analyzer
performs a scan of the statement tokens to advance the pro-

gram counters and update the status of items in the symbol

table. Specifically, PRSUBS performs the following func-
tions:

] Determines the module type

e Saves the module name in array MODNAM in COMMON
block MODCOM '

] Flags ENTRY names in the symbol table
® Counts and flags argument list names passed to a
module

2.1.4.2.10 PRSPEC

PRSPEC (specification statement analyzer) accepts statement
_tokens that have the following FORTRAN keywords: COMMON,
DIMENSION, EQUIVALENCE, EXTERNAL, INTRINSIC, PARAMETER,
SAVE, and VIRTUAL. The analyzer performs a scan of the
statement tokens to advance program counters and update the
status of items in the symbol table. Specifically, PRSPEC

performs the following functions:
) Flags COMMON block names
° Flags EXTERNAL variable names
. Flags COMMON block wvariable names

® Flags variable names in DIMENSION and VIRTUAL
statements as arrays

s Counts number of dimensions per array
. Flags equivalenced variable names

No processing is performed on INTRINSIC, PARAMETER, or SAVE

statements.
2.1.4.2.11 PRTYPE

PRTYPE {type specification statement analyzer) accepts
statement tokens having the following FORTRAN keywords:
BYTE, CHARACTER, COMPLEX, DOUBLECOMPLEX, DOUBLEPRECISION,

2-23

http:2.1.4.2.11
http:2.1.4.2.10

IMPLICIT, INTEGER, LOGICAL, and REAL, The analyzer performs
a scan of the statement tokens to advance program counters
and update the status of items in the symbol table.
Specifically, PRTYPE performs the following functions:

° Flags dimensioned arrays
® Counts the number of dimensions per array
® Deconcatenates the length specifier (if any) from

the first variable name token

® Checks for the FUNCTION keyword and reclassifies
the statement 1f it is found

e Calls PRIMPL Ep process an IMPLICIT statement
] Calls PRSUBS to process a typed FUNCTION
2.1.4.2.12 PRIO

PRIO (input/output statement analyzer) accepits statement
tokens that have the following FORTRAN keywords: ACCEPT,
BACKSPACE, CLOSE, DECODE, DEFINEFILE, DELETE, ENCODE,
ENDFILE, FIND, INQUIRE, OPEN, PRINT, READ, REWIND, REWRITE,
TYPE, WRITE, and UNLOCK. The analyzer performs a scan of
the statement tokens to advance prodram counters and update
the status of items in the symbol table. Specifically, PRIO
performs the following functions:

® Counts the number of statements that use ERR =
e Counts the number of statements that use END =
s Performs analysis on any variables encountered in

an input/output list

. Performs analysis on any functions or ASFs encoun~
tered in the input/output list

0 Marks in the symbol table that a variable or func-
tion was encountered in the input/output list

http:2.1.4.2.12

' Performs analysis on any label encountered after an
END = or ERR =

® Adds the statement label to the END = or ERR =
transfer table list

o

2,1.4.2.13 PRIMPL

PRIMPL (implicit statement analyzer) accepts stateméﬁt
tokens following the IMPLICIT statement in groups beginning
with the following FORTRAN keywords: BYTE, COMPLEX,
CHARACTER, INTEGER, LOGICAL, DOUBLEPRECISION, DOUBLECOMPLEX,
and REAL. The analyzer performs a scan of the statement
tokens to advance program counters and update the status of
items in the symbol table., Specifically, PRIMPL performs
the following functions for each group of tokens:

o Determines the keyword type

® Deconcatenates the length specifier (if any) from
the keyword type

° Stores (in COMMON block IMPCOM) the default type to
be assigned to untyped variables whose name starts

with the specified letters
2.1.,4,2.14 PRSTRC

PRSTRC (structured construct analyzer) .accepts statement
tokens that have the following FORTRAN keywords: DOWHILE,
ELSEIF, ELSE, ENDDO, ENDIF, .IF, and THEN. The analyzer
performs a scan of the statement tokens to advance program
counters and update the status of items in the symbol
table. Specifically, PRSTRC performs the following func-

tions:
) Calls PRDOS to process DOWHILE statements
- Calls PRIFS to process .IF and ELSEIF statements

° Pops the DO loop target STACK if an ENDDO statement
has no label

http:2.1.4.2.14
http:2.1.4.2.13

] Adjusts the IF block nesting level if the statement
is an ENDIF

2.1.4.3 Statement Label Processing

SAP statistical processing requires analysis of statement
labels; this analysis falls into two categories:

1. Processing of target labels encountered in ASSIGN,
DO, DOWHILE, GOTO and IF statements

2. Gathering DO loop statistics at the time the loop
target statement is processed)

The firs£ function is performed by the statement processors
described in the previous sections; the second is performed
by subroutihe LABEL. Both LABEL and‘the statement proc-
essors utilize two label processing utilities, LABLST and

INTGR4.
2-1-4-3.1 LABEL

LABEL (process DO loop target label) is called by TYPE for
all non-FORMAT statements. LABEL tests the first token in
the LISTDT array for the presence of a tab. If a tab is
found, no label is present and LABEL returns. If no tab is
found, a statement label is present and LABEL calls LOOKP to
fetch the token, and then calls INTGR4 to convert it to
INTEGER*4 format. LAbBEL then calls LABLST to add the label
to the label list array LBLIST in COMMON hlock LBLCOM.
LABLST returns the location of the label in LBLIST. If the
label is the target of a DO loop, its integer representation
will have been previously pushed onto the DO loep target
stack LBLSTK (in COMMON block LBLCOM). LABEL tests this
stack and pops it if a match is found. If the label is a
target, the DO loop length counter and depth of nesting
counter are updated and LABEL returns.

2.1.4.3.2 LABLST

LABLST (add a label to the label list) searches the LBLIST
array (in COMMON block LBLCOM) for a match to the input
label. If a match is found, a pointer is set to the entry
in LBLIST, and LABLST returns. If no match is found, LABLST
adds the label to the end of LBLIST and returns witﬁ the
pointer indicating the new entry. If no space remaihs in
LBLIST, the error flag is set to .TRUE..

2.1.4.3.3 INTGR4

INTGR4 (convert a token to INTEGER*4 representation) con-
verts the ASCII input array into an integer and returns it.
INTGR4 utilizes DECODE and is limited to five decimal digits
(the maximum label size). Any illegal decimal conversion
will result in a syntax error message and a returned value

of zero.

2.1.4.4 Token Processing Utilities

SAP processing requires that several standard counts and
calculations be applied to each token encountered while
parsing a statement. These standard operations are perfor~
med by routine FLVARI for specification and declaration
statements and by routine PRTOKE for executable statements.
These routines are discussed below.

2.1.4.4.1 FLVARI

PLVARI (flag variables) identifies arrays and sets flag bits
in the symbol table.

Processing includes the following:

] Counting the number of dimensions within paren-
theses following the token (if any)

. Classifying the token as a variable or array
depending upon the presence of parentheses
following the token

2-27

° Combining the token type with a bit mask using the
OR function

2.1.4.4.2 PRTOKE

PRTOKE (process token) identifies and processes a token as a

constant, variable, or function.
Processing includes

e Determining subscript complexity (level of paren-
theses and operators)

e Classifying the token as a function or ASF,
constant, variable, or variable array and as either
CHARACTER or numeric

° Counting the number of arguments to a function or
ASF '

The item is processed until a balancing of parentheses

OCCUrS..
2.1.5 MODULE REPORTS AND FILE SUMMARY

The results of each module loop and input file loop are
gathered and reported by the routines shown in Figure 2-7.
Each routine called by SAPMAIN in this phase is discussed
below.

2.1.5.1 STATM

STATM (module statistics report) produces a report of the
statistics for each module in an input file. STATM calls
subroutine TABLES to accumulate token use statistics from a
scan of the entire symbol table and to count statement label

use from a scan of the statement label list.

.STATM produces each paragraph of the module statistics re-

port (except the complexity paragraph} based upon the cur-
rent settings of the control switches.

6¢~¢

SAPMAIN

STATM MCMPLX HALREP COLGLB MDIRY STDUMP STATG
TABLES PRTXFR
CNTXFR COMPWT WRTDEB WRTSEL
HPR1 HPR2 HPR3 HPRNDS PATHAL

FPigure 2-7.

Module Report and File Summary Routines

8796/82

2.1,5.2 MCMPLX

MCMPLX (module complexity) controls the calculation and pre-
sentation of the source code complexity measures. Subrou-
tine COMPWT is called to calculate the SEL complexity using
the weights table. Subroutines HPR1l, HPR2, HPR3, and CNTXFR
are called to count the delimiter, keyword, procedure, and
transfer Halstead operators, respectively. Subroutine
HPRNDS counts the Halstead operands. After the measures
have been calculated, MCMPLX produces the complexity para-
graph of the module statistics report.

Subroutines WRTDB and WRTSEL are called to write to external
SAP files if the respective /DB and /SL control switches are

set.
2.1.5.3 HALREP

HALREP (Halstead report) is called from SAPMAIN when the /HL
control switch is set. HALREP produces a report showing all
Halstead operatcors and operands detected in a module and
their use counts. Subroutine PRTXFR-'is called to produce
the paragraph that reports on the Halstead transfer opera-

tors.
2.1.5.4 COQOLGLB

COLGLB {collect global statistics) adds the module statistic
accumulators to the input file accumulators. The global
maxima variables are adjusted when exceeded by the module
maxima variables. COLGLB is called after each module is

processed.
2.1,5.5 MDIRY

MDIRY (module directory report) is called from SAPMAIN to
write a module entry in the module directory. The module
directory always appears as part of SAP output and is not
influenced by any of the listing control switches.

2-30

2.1.5.6 Symbol Table Dump {Subroutine STDUMP)

Figure 2-8 is an example of a symbol table dump produced
when the control switch /DU is set. In the example given,
there are 6000 words in the symbol table, of which 441 were
used. Only a representative sample of the symbol table dump
is shown in Figure 2-8. Each hash table entry pointing to a
chain of symbol table entries is shown. A description of
each symbol table entry in the chain follows the description
of the hash table entry. The explanation of the items in a
symbol table entry is as follows:

Item - Meaning

NEXT Location in the symbol table of next entry
in the linked list. If this is the last
entry in this list, the value will be zero

LAST Location in the symbol table of previous
entry in the linked list. If this is the
first entry in this list, the value will
be zero

NACTIV Halstead operand activity counter. In-
cremented each time this entry was ac-
cessed while parsing an executable

statement

ICLASS Binary value, indicating the class of the
token:
= -2, Arithmetic Statement Functicn (ASF)

-1, Function

0, Undefined (initially set to this)
1, Constant
Variable (further defined by ITYPE)
3, Array (further defined by ITYPE)
4, Other name (further defined by

i nnu
48]
-

ITYPE)
ITYPE Token type defined when ICLASS = 2, 3, or
4. The interpretation of ITYPE is as
follows:

If ICLASS = 2 or 3, ITYPE should be inter-
preted as a bit string with the following
.attributes assigned to the token if the
indicated bit is set. {(Bits are numbered
from zero starting with the least signif-
icant bit)

AN

BOTEST.FOR/DU ’
EYHIOL TALLY DUMP: MAXSYM = 4000 NEXSYM = 441
SHTECOH RUCORD = NEXT, LAST, NACTIV, ICLASS, ITYFE, IUSEDR, LTOKE, TOREN

AT 1IASH LOCATION 775 1PDINT = 220

AT 220 RECORD = 0 0 1 0 0 0 1L
AT HASH LOCATION 83y IFOINT = 44 -
nT 14 RECORD = 0 0 1 3 8 1 17
AT HAEH LOCATION @7y IFOINT = 141

AT 141 RECORD = 0 Y i 1 0 1 2 2.
AT HASH LOCATION 78s IFOINT = 346

AT 346 RECORD = 0 0 1 1 0 0 210
AT HASH LOCATION 218: IFOINT = 432

AT 432 RECORD = 0 ¢ 0 0 0 0 3 END
AT HASH LOCATION 241, IFOINT = 374

AT 394 RECORD = 0 0 1 2 8 1 3 178
AT HASH LOCATION 2928, IFOINT = 385

AT 380 RECORD = 413 0 1 2 8 1 4 MIHE
AT 413 RECORD = 0 385 0 0 0 v 4

cl.5E

Figure 2-8, Sample Symbol Table Dump

30
ALITYND ¥0O0d
g1 =9Y¥d TYNIDIBO

(3

W x
+

Item Yijr...r. . Meaning

T ety 0]

ITYPE Bit 0 set, argument to module

{(Cont'd) Bit 1 set, egquivalenced
Bit 2 set, appears in COMMON
Bit 3 set, numeric variable or array
Bit 4 set, CHARACTER variable or array

If ICLASS = 4, ITYPE should be interpreted
as a binary value with the following
meanings:

1, Module name

2, ENTRY name

3, EXTERNAL name
COMMON block name
5, NAMELIST name
6, Externally defined subroutine or

O T N I 1 I |
e
-

function)

IUSED Symbol utilization count. Incremented
each time token is used in an executable
statement

LTOKE Length of token in characters

TOKEN Token

2.1.5.7 STATG

STATG (global statistics report) produces a report of the
statistics for each input file. The global accumulators and
global maxima are used in preparing this report. STATG is
called from SAPMAIN when the /GB control switch is set.

2.1.6 PROJECT ANALYSIS

The SAP project analysis phase produces an optional summary
report of data stored in a SAP data base file. The project
analysis is controlled by subroutine REPHAL, which is called
by SAPMAIN as shown in Figure 2-9,

REPHAL searches the data base to locate.each record with a
project character that matches the requested project. The
data on each located record is passed to routine ESTIM,
where the derived Halstead quantities (References 9 and 1l1)
are calculated. REPHAL reports the data from the data base
and the Halstead quantities in the project summary report.

2-33

- PAGE 12
RIGINAL P
gF BOOR QUALITY

SAPMAIN
-

l REPHAL

COEF - l ESTim
e

Figure 2-9, Project Analysig Routineg

879682

After the project summary report is produced, routine COEF
calculates and reports the correlation coefficient matrix
for the requested project.

2.2 BSAP UTILITIES

SAP processing is based upon the use of three internal data
tables: the symbol table, the delimiter/token table, and
the transfer table. Thé following subsections discuss each
table and the utility routines used to maintain them.

2.2.1 SYMBOL TABLE UTILITIES

A central feature of the SAP design is the symbol table. The
SAP symbol table, which is stored in COMMON block SYMCOM, is
a hash~keyed linked list that is used to store all nondelim-
iter symbols identified in the statement scan. A set of
utility routines allows access to this table via the single
table entry COMMON block STECOM. Subroutines LOOKS and LOOKP
allow read access to the table; POKES and POKEP allow write
access (see Sections 2.2.1.1 through 2.2.1.4).

Deletion of a symbol table entry is accomplished by KILLP
(Section 2.2.1.6), which relinks around a designated symbol
and flags it for deletion. Compression of deleted symbols
is done whenever there is insufficient space to add a new
symbol; a "garbage collection" subroutine, GARCOL (Sec-
tion 2.2.1.7}, compresses and relinks the table. If still
more symbol table space is needed, the table is structured
to allow easy implementation of a paging algorithm.

The SYMCOM and STECOM COMMON blocks are described in detail
in Section 4. COMMON block SYMCOM may be thought of as a
file with variable length records and COMMON block STECOM as
a single record from that file. Access to COMMON block
SYMCOM is via the hash table stored in COMMON block HSHCOM;

the hash table {the pointer to which is calculated by the
function IHASH (Section 2.2.1.5)) points to a ﬁosition in
COMMON block SYMCOM (Figure ?-10). This position is the
beginning of the symbol "record." In cases of hash colli-
sions, the NEXT pointer points to the next symbol table
"record" having the same hash value. The list search and
comparison necessary to find a symbol is performed by LCOKS
and a utility comparison routine, COMPAR. Neceésary trans-
' fers between COMMON blocks STECOM and SYMCOM are performed

' by LOOKP and POKEP. COMMON block SYMCOM linkage also in-

cludes backward pointers (Figure 2~11). Unlinked pointers
{upward at the top of the chain and downward at the bottom)
are set to zero. Linking in of new symbols is accomplished
in POKES, which utilizes the auxiliary pointer NEXSYM, which
points to the next available unused position in COMMON block
SYMCOM. A formaéted sample symbol table dump was shown in
Figure 2-8 and described in Section 2.1.5.6.

2.2.1.1 LOOKS

LOOKS (symbol look-up) searches the symbol table (COMMON
block SYMCOM) for a specified input string. LOOKS requires
as input, IHPNTR, the hash table pointer (hash vaiue of the
input string). The hash table value at IHPNTR points to the
head of a symbol table chain, which is searched for the re-
quired string. An empty chain results in the symbol table
pointer variable (IPOINT) being set to zero. A chain that
is not empty but does not contain the desired string is in-
dicated by a negative IPOINT value where the absolute value
,0f IPOINT points to the last entry in the chain. 1If a
matching string is located, IPOINT is returned pointing to
the entry.

Lg-2

IHASH

TOKEN STRING

COMPUTE

SYMBOL
TABLE

!\

HASH
TABLE

NEXT

e

LAST

=

IPOINT"

NACTIV

CLASS

TYPE

HASH
POINTER

Figure 2-10.

IPQINT

h A

USE

LENGTH

Z2mA0—

NEXT'
LAST
NACTIV'
CLASS’
TYPE'

-

~

Symbol Table Access

N

g796/82

)

4

5! 3Dvd N0

ra

ALYNO ¥00d 40

GE 18
ORIGINAL PAGE
OF POOR’ ,Q,up\ggﬂ

HASH SYMBOL LINKAGES
TABLE TABLE
. Q-

=]

4

/|

—p O

A

o 4

o 4

NEXSYM »

8796/82

Figure 2-11. Symbol Table Linkages

2.2.1.2 LOOKP

LOOKP loads the symbol table entry beginning at IPOINT into
COMMON block STECOM. If IPOINT is invalid, the error flag

is set to .TRUE. and no transfer takes place.

2.2.1.3 POKES

POKES (poke entry into symbol table) establishes a ng&w entry
in the symbol table. POKES requires IPOINT (as-defined in
LOOKS) and IHPNTR. If IPOINT indicates that a chain exists,
POKES updates that chain to point to NEXSYM. If a chain
does not exist, one is started at NEXSYM (that is, IPOINT is
set equal to NEXSYM, and the hash table is updated to point
to NEXSYM). In either case, NEXSYM is checked against
MAXSYM to see if the input symbol in COMMON block STECOM
will fit. If it will not, GARCOL is called to compress
COMMON block SYMCOM. 1If sufficient space is available,
POKEP is called to insert the symbol; if not, the error flag
is set to .TRUE.. In the case where IPOINT is greater than
zero, POKES simply calls POKEP to insert the symbol at the
already established location.

2.2.1.4 POKEP

POKEP (write a symbol table entry}) moves the contents of
COMMON block STECOM into COMMON block SYMCOM starting at
location IPOINT. The error flag is set to .TRUE. if IPOINT

is out of range.
2.2.1.5 IHASH

IHASH (compute a hash pointer) computes the hash table
pointer by summing the characters in the input array STRING,
shifting LHSHFT bits to the right, and masking out all but
the low bits and adding one. LHSHFT and LHMASK {(the bit
mask) are stored in COMMON block HSHCOM and are set to zero
and 1777 (octal), respectively.

2-39

2.2.1.6 KILLP

KILLP (delete a symbol table‘entry) deletes a symbol table
entry by removing its linkages to the rest of the symbol
table and marking it for compression. KILLP first calls
LOOKP to load the symbol into COMMON block STECOM. If the
forward and backward pointers, NEXT and LAST, are both zero,
KILLP deletes the hash table entry by zeroing location
IHPNTR in the IHTBLE array and sets location IPOINT in
COMMON block SYMCOM to -1. If NEXT is 0 and LAST is non-
_zero, location IPOINT is set to -1 and location LAST is set
to 0 (the chain is terminated at LAST). If NEXT and LAST
are both nonzero locations, LAST is set to NEXT and NEXT is
set to -1. If NEXT is not zero but LAST is 0, IHTBLE
(IHPNTR) is set to NEXT and location IPOINT is set to -1.
The error flag is set to .TRUE. if any illegal address is

encountered.
2:.2-.1.7 GARCOL

GARCOL (symbol table compression) frees space by compressing
out symbol table entries flagged for deletion by KILLP.
GARCOL proceeds by starting at the top of the symbol table,
calculating the length of the first entry, checking its for-
ward pointer for a delete flag (-1}, compressing out the
entry if the delete flag is on, resetting the hash table
entry to point to the new location {(for head of chain only),
and then iterating until NEXSYM is reached., WNEXSYM is reset
to point to the last entry +1 and GARCOL returns. Any
illegal address calculation will cause error to be set to

. TRUE. .

2.2.2 DELIMITER/TOKEN TABLE UTILITY (LOOKAH)

The delimiter/token table is the result of the statement
decomposition performed by subroutine DSCAN. The table is
contained in array LISTDT in COMMON block LDTCOM. The
entries in this table are either positive integers, which
point to tokens in the symbol table (Section 2.2.1) ¥or
negaﬁive integers, which point to one of the delimiters in
COMMON block DELCOM (Section 4). The sequence of pointers
is terminated by a pointer to the null delimiter (I¥YNULL).

The interpretation of the contents of the delimiter/token
table is specific to each individual statement parsing rou-
tine. BEach parsing routine will advance a pointer through
the delimiter/token table while performing a specific anal-
ysis of the FORTRAN statement. As the pointer is advanced,
two functions are usually performed: (1) each token encoun-
tered is marked in the symbol table and (2) a limited syntax
check is performed. One utility, LOOKAH, is used when exa-

mining the delimiter/token table.

LOOKAH (parsing look-ahead) searches the delimiter/token
table for a specific entry. LOOKAH searches the
delimiter/token table between specified limits until one of
the following conditions is met:

® The end of the table is encountered

& An unmatched close parenthesis is encountered

° The end of the specified range in the table is
encountered

[The first occurrence of the specified entry which

is not enclosed within parentheses is encountered

2-41

2.2.3 TRANSFER OPERATOR LIST UTILITIES

The transfer operator list is used to track the occurrences
of individual Halstead transfer operators. The transfer
list and the pointers associated with the list are stored in

COMMON block XFRCOM.

The transfer list is a-set of six singly-linked lists that
are built from the same list of available space. Each list
is made up of nodes of variable lengths. Each node is made
up df three or more cells. The first cell of each node
points to the first cell of the next node in the list. If
the node is the last node in a list, the first cell contains
a zero. The second cell contains the use count of the
transfer operator. The third cell contains a count of the
number of cells belonging to the node which follow the third
cell. The cells following the third cell contain pointers
to the tokens in the symbol table which make up the transfer
operator. Table 2-1 shows which tokens from the transfer

operators are pointed to by these cells.

A set of utility routines is used to establish and maintain

the transfer list. These routines are described below.
2.2.3.1 INITN

INITN (initialize the transfer lists) creates six empty
nodes from the list of available space. These header nodes
never contain data and serve only as starting points for
each list. 8Six pointers to the header nodes are also
established.

2.2.3.2 NEWPOT

NEWPOT (establish new potential node) obtains three cells
from the 1list of available space and initializes each cell
to zero. An error flag is returned as .TRUE. if there are
insufficient cells remaining in the list of available space.

(3]
I

42

Table 2-1. Transfer Operators

Statement
Type Syntax Token Pointer List

Alternate CALL sub[([al,al...]1)1] List = sub,a;...:a

Return : where each argu-
ment(a} in the
token list is an
alternate return
specifier label;
this operator ex-
ists only if at
least one argument
is an alternate
return

Any I1/0 I0 Keyword List = s

statement (¢« [,END=s5]...)

Any 1/0 I0 Keyword List = s

statement («ee[,ERR=s5]...)

Unconditional GOTO s List = s

GOTO

Computed GOTO

Assigned GOTO

GOTO(s[,8]...) [,]1

GOTO if,]1(sf,s]l...}]

List = S;esesS,1
where the index (i)
is included in the
token list

List = i where the
statement label
list is not in-
cluded in the token
list

2.2.3.3 ADDPOT

ADDPOT (add a cell to potential node) obtains the next cell
from the list of available space and attaches it to the
potential node. An error flag is returned as .TRUE. if the
1ist of available space is empty. A pointer to a token in
the symbol table is placed in the new cell and the node's
third (length) cell is incremented.

2.2.3.4 LOOKND

LOORND (test potential node) compares the potential:node to
each node in a specified list. A match between tﬁé poten-
tial node and a node in the list occurs when the lists of
pointers into the symbol table are the same. If a match is
found, the potential node is erased and the use count cell
in the matching node is incremented. If a match is not
found, the potential node is linked into the 1list with a use
count of one, and a new potential node is obtained.

2.2.3.5 LNKPOT

LNKPOT (link potential node to list) adds the potential node
to the end of a specified list.

2.2.3.6 ERAPOT

ERAPOT (erase the potential node) returns the potential
node's symbol table pointer cells to the list of available
space. The potential node's third (length) cell is reset to

ZerQ.

2-44

SECTION 3 - SAP MODULE DESCRIPTIONS

The detailed module descriptions provided in this section
are arranged alphabetically by module name. In addition to
the modules listed, SAP uses the following system mqgules:
ISHFT, ERRSET, DATE, and TIME,

I
o)

* All SAP modules are written in structured FORTRAN (Refer-
ence 8), although not all modules use the extensions per-

mitted by this language.

ROUT
TYPE

PURP
tial

USAG
1.

INE: ADDPOT
: -Subroutine

QOSE: Adds an item to the comparison portion of a poten-
node in the transfer operator list.

E:
Calling Sequence:
’ CALL ADDPOT {ITEM, ERROR)

RAN Dimen-

FORT

Name |, 1/0 Type sion Description

ITEM I I*2 - Ttem to add to node

ERROR o) L*2 - = .FALSE., 'processing com-
plete

= ,TRUE., not encugh room to

add item to node

2. COMMON Blocks Used: LUNCOM, XFRCOM

3. Subroutines Used: None

4. Subroutines Called by: PRCALL, PRGOTO, PRIQ

5. BExternal Data Sets Referenced:

LUN File Name Operation(s)

6 FOR006.DAT Write

ROUTINE: ASGNID

TYPE: Subroutine

PURPOSE: Performs an initial scan of the delimiter/token
list to recognize assignment statements.

USAGE:
1. Calling Sequence:

CALL ASGNID (LDTPTR, INDIC, ERROR)

FORTRAN Dimen-
Name I1/0 Type sion Description
LDTPTR I i*2 - Pointer to start of state-
_ ment in delimiter/token list
INDIC 0 I*2 - = (, statement is not assign-
ment statement
= 1, statement is an assign-
ment statement
ERROR 0 L*2 - = ,FALSE., processing com-~

pleted
. TRUE., unrecoverable error

2. COMMON Blocks Used: DELCOM, LDTCOM, MODCOM, STECOM,
' TYDCOM

3. Subroutines Used: LOOKAH, LOOKK, LOOKP
4. Subroutines Called by: TYPE

5. External Data Sets Referenced: None

ROUTINE: CINPUT.
TYPE: Subroutine

PURPOSE: Requests the command line, interprets the
switches, and opens the appropriate file.

USAGE:
1. Calling Seguence:
CALL CINPUT (ENDC, ERROR)

FORTRAN Dimen-

Name 1/0 Type sion . Description
ENDC 0 L*2 - Control input end-of-file
flag
BERROR 0 L*2 - = ,FALSE., processing com-

plete
= ,TRUE., error opening
source input file
2, COMMON Blocks Used: INFCOM, LUNCOM, SWICOM
3. Subroutines Used: COMPAR, INPUT, DEFSEL, INCLUD
4. Subroutines Called by: SAPMAIN

5. External Data Sets Referenced:

LUN File Name Operation(s)

6 FOROO6.DAT Write
2 FOROO2.DAT Open
11 FORQ11l.DAT Open

ROUTINE: CNTXFR
TYPE: Subroutine

PURPOSE: Accumulates the count of distinct operators and
total operators from the transfer operator list.

USAGE:
1. Calling Seguence:
CALL CNTXFR
2. COMMON Blocks Used: OPCOM, XFRCOM
3. Subroutines'USed: None
4. Subroutines Called by: MCMPLX

5. External Data Sets Referenced: None

ROUTINE: COEF

TYPE: Subroutine

PURPOSE: Computes the correlation coefficients for the
project summary analysis.

USAGE:
1, Calling Seguence:

CALL COEF (NCOL, NLINES, K, TITLE)

FORTRAN Dimen-~
Name ~I/0 Type sion Description
NCOL I I*2 - Number of measures correlated
NLINES I I*2 - Number of modules correlated
K I 1*%4 (100, Matrix of data to be corre-
10) lated
TITLE I R*8 (10) Title of rows and columns

2. COMMON Blocks Used: LUNCOM

3. Subroutines Used: None

4. Subroutines Called by: REPHAL
5. External Data Sets Referenced:

LUN File Name Qperation(s)

8 FOR0OQ8.DAT - Write

3-6

ROUTINE: COLGLB
TYPE: Subroutine

PURPOSE: Collects the global statistics for output by rou-
tine STATG.

USAGE:
1. Calling Sequence:
QALL COLGLB

2. COMMON Blocks Used: CT1COM, CT2COM, CT3COM, CT4COM,
CT5COM, GLBCOM, MODCOM, TYPCOM

3. Subroutines Used: None
4, Subroutines Called by: SAPMAIN

5. External Data Sets Referenced: None

3-7

ROUTINE: COMPAR
TYPE: Subroutine

PURPOSE: Compares two strings of ASCII characters for
equality.

USAGE:
1. Calling Sequence:
CALL COMPAR (STR1l, STR2, L1, L2, SAME)

. FORTRAN Dimen-

Name 1/0 Type sion Description

STR1 I L*1 1 Comparison string. one

STR2 I L*] 1 Comparison string two

Ll I I*2 - Length of comparison string
one

L2 I I*2 - Length of comparison string
two ’

SAME o] L - Truth switch:

= ,TRUE., strings equal
= ,FALSE., strings not equal

2. COMMON Blocks Used: LUNCOM
3. Subroutines Used: None

4, Subroutines Called by: LOOKS, PRDOS, PRIFS, WRTDB,
PRIO, CINPUT

5. External Data Sets Referenced:

LUN Pile Name Operation(s)

6 FOR006.DAT Write

ROUTINE: COMPWT

TYPE: Subroutine

PURPOSE: Computes the SEL complexity from the collected
statistics and the current weights file data.

USAGE:
1. Calling Sequence:
CALL COMPWT

2. COMMON Blocks Used: CTl1COM, CT2COM, CT3COM, CT4COM,
CT5COM, KEYCOM, WTSCOM

3. Subroutines Used: None
4, Subroutines Called by: MCMPLX

5. External Data sets Referenced: None

ROUTINE: DEFINE
TYPE: Subroutine
PURPOSE:

/DB control switch is set true.

Initializes or locates a data base file when the
Prompts user for a data

base name, maximum record count, and project character to be

used for identification in the correlation coefficient

report.
USAGE:

1. CallingWSequence:

CALL DEFINE (DBFILE, PROJ)

FORTRAN Dimen-

Name /0 Type sion Description
DBFILE 0 L*1 70 Data base file name
PROJ 0 L*1 1 Project character
2. COMMON Blocks Used: LUNCOM
3. Subroutines Used: PFINDIT

4. Subroutines Called by:

5. External Data Sets Referenced:

LUN File Name
9 User supplied
5 Terminal
12 FOROC6.DAT

SAPMAIN

Operation{s)

Open, write, close
Read

Write

ROUTINE: DEFSEL
TYPE: Subroutine

PURPOSE: Opens the ALL.SAP sequential file if control
switch /SL is set to on. If an ALL.SAP file exists in the
user's default directory, the file is opened with the APPEND
option; otherwise it is opened as NEW.

USAGE:
1. Calling Sequence:
CALL DEFSEL
2. COMMON Blocks Used: LUNCOM, SELCOM
3. Subroutines Used: None

4, Subroutines Called by: CINPUT

5. External Data Sets Referenced:

LUN File Name Operation(s)
5 Terminal Read
6 FORO06.DAT Write

12 ALL.SAP Open

ROUTINE: DSCAN
TYPE: Subroutine

PURPOSE: Scans the packed input array, locating delimiters

and testing tokens against the symbol table. Any new tokens
are entered into the symbol table, and a list of delimiters

and tokens is created in /LDTCOM/.

USAGE:
1. -‘Calling Seguence:

CALL DSCAN (ERROR)

FORTRAN Dimen-
Name /0 Type sion Description
= ,FALSE., processing com-

ERROR 0 L*2 -
’ plete
.TRUE., error in locating
and/or entering
token in symbol
table

2. COMMON Blocks Used: DLICOM, INPCOM, LDTCOM, LUNCOM,
STECOM

3. Subroutines Used: TIHASH, LOOKS, NUMER, POXES
4. Subroutines Called by: TYPE
5. External Data Sets Referenced:

LUN File Name Operation(s)

6 FOR(06.DAT Write

ROUTINE: ERAPOT
TYPE: Subroutine

PURPOSE: Resets the potential node in the transfer operator
list to empty.

USAGE:
1. Calling Segquence:
CALL ERAPOT
2. COMMON Blocks Used: XFRCOM
3. Subroutines Used: None
%. Subroutines Called by: LOOKND, PRCALL, PRGOTO, PRIO

5. External Data Sets Referenced: None

3-13

ROUTINE: ERRMSG
TYPE: Subroutine

PURPOSE: Lists the source statement and delimiter/token
list contents that have caused a syntax error during SAP

processing.
USAGE:
1. Calling Seguence:

CALL ERRMSG (LIST, PARSED, LDTPTR)

FORTRAN Dimen-
Name 1/0 Type sion Description .
LIST I L*2 - = ,TRUE., print card image
PARSED I L*2 - = ,TRUE., print card image
by token and de-
limiter
LDTPTR I I*2 - Pointer to beginning of card

image in LISTDT array

2. COMMON Bloqks Used: DLICOM, INPCOM, LDTCOM, LUNCOM,
MODCOM, STECOM

3. Subroutines Used: LOOKP
4, Subroutines Called by: PRTOKE, STATE

5. External Data Sets Referenced:

LUN File Name Operation(s)
6 FOROO06.DAT Write

3-14

ROUTINE: ESTIM
TYPE: Subroutine

PURPOSE: Computes a number of Halstead's complexity measures
(predicted program length, program volume, potential volume,
language and program level, effort required, programming
time, and predicted bugs).

USAGE:
l. Calling Sequence:

CALL ESTIM (ICTHIO, IETAl, IETA2, NETAl, NETAZ,
IETA, NETA, LENGTH, IVOL, PRGLVL,
ALNGLV, IEFORT, TOTIM, NBUGS, IVSTAR,
STROUD, ERROR)

FORTRAN Dimen-

Name I/0 Type sion Description

ICTHIO I I*2 - Sum of count of argument .
variables (including ENTRY
arguments) and count of ref-

_ erenced COMMON variables

IETAL I I*2 - Number of unigue operators

IETA2 I I*2 - Number of unigue operands

NETAlL I I*2 - Total number of operators

NETA2 I I*2 - Total number of operands

IETA o I*2 - Number of unigque operators
and operands

NETA 0 I*2 - Total number of operators
and operands

LENGTH 0 I*2 - Predicted length

IVOL 0 I*2 - - Program volume

PRGLVL 0 R*4 - Program level

ALNGLV 0 R*4 - Language level

IEFORT 0 I*2 - Effort required

TOTIM 0 R*4 - Total program time required
in hours

NBUGS 0 I*2 - Predicted number of bugs

3-15

FORTRAN Dimen-

Name 1/0 Type sion Description
IVSTAR o I*2 - Potential volume
STROUD 0 I*2 - Stroud number

{(discriminations/hour)
ERROR 0 L*2 - Error flag

2. COMMON Blocks Used: HNone
3. Subroutines Used: None
4. Subroutines Called by: REPHAL
5. FExternal bata Sets Referenced: None

ROUTINE: FINDIT
TYPE: Subroutine
PURPOSE :

Extracts a character string, up to a specified

delimiter, from an input character string.

USAGE:

1. Calling Seguence:

CALL FINDIT (INFILE, IC; DELIM, N, OUTPUT, ICX)

FORTRAN Dimen-
Name 1/0 Type sion Description
INFILE I L*1 80 Input source character string
IC 1/0 I#2 - Number of characters proc-
essed in INFILE

DELIM I L*] - Delimiter character

N I*2 - Number of characters in
INFILE

QUTPUT 0 L*1 80 Extracted character string
up to delimiting character

IC% 0 I*2 - Number of characters in
QUTPUT

2. COMMON Blocks Used: None
3. Subroutines Used: WNone

4, Subroutines Called by:

5. External Data Sets Referenced:

DEFINE, INCLUD

None

3-17

ROUTINE: FLVART
TYPE: Subroutine

PURPOSE: Flags variables and arrays in the symbol table and

counts array dimensions.
USAGE:
1. Calling Sequence:
- CALL FLVARI (IC, MASK, SYNERR, ERROR)

FORTRAN Dimen-

" Name /0 Type sion Description

ic 1/0 I*2 - Pointer to next location
within the delimiter/token
list

MASK I I*2 - Mask for numeric or charac-
ter data types

SYNERR 0 L*2 - Syntax error flag:
= FALSE., no syntax error
= ,TRUE., syntax error

ERROR 0 L*2 - Fatal error flag:
= .FALSE., processing com-

plete

= ,TRUE., error processing
symbol table en-
tries

2. COMMON Blocks Used: CT2COM, CT5COM, DELCOM, LDTCOM,
LUNCOM, STECOM

3. Subroutines Used: LOOKP, POKEP, PAGER
4. Subroutines Called by: PRSPEC, PRTYPE
5. External Data Sets Referenced:

LUN File Name Operation(s)

6 FOR0O06.DAT Write

- ROUTINE: FNNAME

TYPE: Subroutine

PURPOSE: Extracts a character string, up to and including a

specified delimiter, from an input character string.
USAGE:
1. Calling Sequence:

CALL FNNAME (INFILE, IC, DELIM, N, OUTPUT, ICX)

FORTRAN Dimen-

Name . 1/0 Type sion Description

INFILE I L*) 80 Input character string

IC I/0 I*2 - Location of delimiter within

: the input string

DELIM I L*1 - Specified delimiter

N I I%2 - Number of characters in
INFILE

QUTPUT 0 L*1 80 Extracted character string
including delimiter

ICX 0 I*2 - Number of characters in
OUTPUT

2. COMMON Blocks Used: None
3. Subroutines Used: None
4., Subroutines Called by: INCLUD

5. External Data Sets Referenced: None

ROUTINE: GARCOL
TYPE: Subroutine

PURPOSE: Compresses the symbol table by removing areas
flagged for deletion ‘and relinking the chain pointers.

USAGE :
1. Calling Seguence:
CALL GARCOL (ERROR)

FORTRAN - Dimen-

. Name 1/0 Type sion Description
ERROR o] L*2 - Fatal error flag

2. COMMON Blocks Used: HSHCOM, LDTCOM, LUNCOM, SYMCOM
3. Subroutines Used: IHASH

4., Subroutines Called by: POKES

5. External Data Sets Referenced:

LUN File Name Operation(s)

6 FOR006.DAT Write

ROUTINE ¢ GLINE
TYPE: Subroutine

PURPOSE: Reads input source code into a two~line rotating
buffer.

USAGE:
1., Calling Seguence:

CALL GLINE (INITR, ICOMM, NCOMM, ICONT, NCONT, ENDN,
ENDS, ERROR)

FORTRAN . Dimen-

Name 1/0 Type sion Description

INITR 1/0 L*2 - Initial read flag

ICOMM 1/0 L*2 - Current card comment flag

NCOMM 1/0 L*2 - Next card comment flag

ICONT I/0 L*2 - Current card continuation
flag

NCONT I/0 L*2 - Next card continuation flag

ENDN 0 L*2 - End of input on read flag

ENDS 0 L*2 - End of input on initial read
£flag

ERROR 0 L*2 - Read error flag

2. COMMON Blocks Used: INLCOM, LUNCOM, MODCOM, SWICOM
3. Subroutines Used: TABCCC, PAGER
4. Subroutines Called by: READER

5. External Data Sets Referenced:

LUN File Name Operation(s)
2 FOR0Q02.DAT Read
6 FORO06.DAT Write

ROUTINE: HALREP

TYPE: Subroutine

PURPOSE: Prints the specific Halstead operators (delimiters,

keywords, procedures, and transfers) and operands when the

/HL control switch is set to on.

USAGE:

l.

Calling Seguence:
CALL HALREP

COMMON Blocks Used: DLICOM, HSHCOM, LUNCOM, OPCOM,
STECOM

Subroutines Used: LOOKP, PAGER, PRTXFR
Subroutines Called by: SAPMAIN

External Data Sets Referenced:

LUN File Name Operation(s)
6 FOR006.DAT Write
FOR007.DAT Write

ROUTINE: HOPRN
TYPE: Subroutine

PURPOSE: Increments the activity pointer for a symbol in
the symbol table when a Halstead operand has been
encountered.

USAGE:
1. Calling Sequence:

CALL HOPRN (IPOINT)

FORTRAN Dimen-
Name /0 Type sion Description
IPOINT I I*2 - Starting location for symbol

block in symbol table
2. COMMON Blocks Used: STECOM
3. Subroutines Used: FPOKEP

4, Subroutines Called by: PRASGN, PRASS, PRCALL, PRDOS,
PRGOTO, PRIFS, PRIO, PRSTRC

5. External Data Sets Referenced: None

3-23

ROUTINE:: HOPTRL
TYPE: Subroutine

PURPOSE: Determines whether a given delimiter is a Halstead

operator and increments the associated counter.
USAGE :
l. Calling Seguence:

CALL HOPTR1l (IDLM)

-FORTRAN . Dimen-
Name 1/0 Type sion Description
IDIM I I*2 - Delimiter .code from

delimiter/token table
2. COMMON Blocks Used: OPCOM -
3. Subroutines Used: None
4. Subroutines Called by: PRSTRC

5. External Data Sets Referenced: None

ROUTINE: HOPTR3
TYPE: Subroutine

PURPOSE: Increments the counter corresponding to the proce-
dure {subroutine or function) specified by the current
symbol in the delimiter/token table.

USAGE:
1. Calling Sequence:
CALIL HOPTR3
2. COMMON Blocks Used: LUNCOM, OPCOM, STECOM
3. Subroutines Used: None
4. Subroutines Called by: PRASGN, PRIFS, PRSTRC
5. External Data Sets Referenced:

LUN File Name QOperation(s)

6 FORCO06.DAT Write

3-25

ROUTINE: HPR1
TYPE: Subroutine

PURPOSE: Calculates the contributions to the unique and
total operator counts from the delimiter operators.

USAGE:
1. Calling Seguence:

CALL HPR1 (LINE)

FORTRAN . Dimen-
Name 1/0 Type sion Description
LINE I*2 - Not used

2. COMMON Blocks Used: DLICOM, LUNCOM, OPCOM
3. Subroutines Used: None
4. Subroutines Called by: MCMPLX

5. External Data Sets Referenced: None

ROUTINE: HPR2
TYPE: Subroutine

PURPOSE: Calculates the contributions to the unique and
total operator counts from the keyword operators.

USAGE:
1. Calling Sequence:

CALL HPRZ (LINE)

FORTRAN ' Dimen-
Name I/0 Type sion Description
LINE I*2 - Not used

2. COMMON Blocks Used: LUNCOM, OPCOM
3.. Subroutines Used: None
4. Subroutines Called by: MCMPLX

5. External Data Sets Referenced: None

3-27

ROUTINE: HPR3
TYPHE: Subroutine

PURPOSE: Calculates the contribution to the unique and
total operator counts from the procedure operators.

USAGE:
1. Calling Sequence:
CALL HPR3 (LINE)

FORTRAN Dimen-

Name 1/0 Type sion Description
LINE T#2 - Not used

2. COMMON Blocks Used: LUNCOM, OPCOM.
3. Subroutines Used: None
4. Subroutines Called by: MCMPLX

5. External Data Sets Referenced: None

ROUTINE: HPRNDS
TYPE: Subroutine

PURPOSE: Calculates the count of unique and total operands -
from a scan of the symbol table.

USAGE:
1. Calling Seguence:
CALL HPRNDS

2. COMMON Blocks Used: HSHCOM, LUNCOM, OPCOM, STECOM,
SYMCOM

3. Subroutines Used: IHASH, LOOKP
4. Subroutines Called by: HNone

5. External Data Sets Referenced: None

3-29

ROUTINE: HSCAN
TYPE: Subroutine

PURPOSE: Scans the input line, removing literals, Hollerith

strings, embedded blanks, and inline comments.
USAGE:
1. Calling Sequence:

CALL HSCAN (ICTSXP, ERROR)

FORTRAN Dimen-

Name I/0 Type sion Description
ICTSXP o] I*2 - Inline comment counter
ERROR 0 L*2 - Patal error flag

2. COMMON Blocks Used: INPCOM, LUNCOM, MODCOM
3. Subroutines Used: None

4, Subroutines Called by: READER

5. External Data Sets Referenced:

LUN File Name dperation(s)

6 FORO06.DAT Write

ROUTINE: THASH
TYPE: Function

PURPOSE: Hashes the input character string to obtain a
pointer into the symbol table.

USAGE:
1. Calling Segquence:

IHASH (STRING, LHASH)

FORTRAN Dimen-

Name 1/0 Type sion Description

IHASH 0 I*2 - ~ Hash value of STRING

STRING I L*1 1 Input character string to be
hashed

LHASH I I*2 - Length of input string

2. COMMON Blocks Used: HSHCOM, LUNCOM
3. Subroutines Used: WNone
4. Subroutines Called by: - POKES

5. External Data Sets Referenced: None

ROUTINE : INCLUD
TYPE: Subroutine

PURPOSE: Expands INCLUDE statements, nested up to three
deep, when the /XP control switch is set on.

USAGE:
1. Calling Sequence:
CALIL INCLUD (FILEI, FILEO, NPS)

. FORTRAN - Dimen-

Name 1/0 Type sion Description
FILEI I L*1 72 Input source file name
FILEO 0 L*1 72 Expanded source file name
NPS I I*2 - Length of name in FILEI

2. COMMON Blocks Used: LUNCOM
3. Subroutines Used: FNNAME
4, Subroutines Called by: CINPUT

5. ¥xternal Data Sets Referenced:

LUN File Name Operation(s)
1 From INCLUDE statement Open, read, close
2 From INCLUDE statement Open, read, close
3 From INCLUDE statement Open, read, close
4 From INCLUDE statement Open, read, close
11 FORO11.DAT Open, write, close
6 FOR006.DAT Write

ROUTINE: INITG
TYPE: Subroutine

PURPOSE: Initializes symbol table and global counter

variables.
USAGE:
1. Calling Sequence:

CALL INITG (ERROR)

FORTRAN Dimen-
Name 1/0 Type sion Description
ERROR 0 L*2 - Fatal error flag

2. COMMON Blocks Used: GLBCOM, LUNCOM, SYMCOM, WISCOM
"3. Subroutines Used: None
4. Subroutines Called by: SAPMAIN

5. External Data Sets Referenced: None

ROUTINE: INITM

TYPE: Subroutine

PURPOSE: Initializes the symbol table and the module

counter variables.

USAGE:

l.

Calling Sequence:
CALL INITM

COMMON Blocks Used: CT1COM, CT2C0M, CT3COM, CT4COM,
CPSCOM, DLICOM, OPCOM, HSHCOM, IMPCOM, LBLCOM, LUNCOM,

MODCOM, SYMCOM
Subroutines Used: None
Subroutines Called by: SAPMAIN

External Data Sets Referenced: None

ROUTINE INITN
TYPE: Subroutine

PURPOSE: Creates the initial header node for the transfer
lists.

USAGE:
1. Calling Sequence:

CALL INITN (ERROR)

FORTRAN . Dimen-
Name I1/0. Type sion Description
ERROR o L*2 - = ,FALSE., processing com-

plete
-——= _TRUE., error creating
first potential
node
2. COMMON Blocks Used: XFRCOM
3. Subroutines Used: NEWPOT
4. Subroutines Called by: INITM

5. External Data Sets Referenced: None

ROUTINE: INPUT
TYPE: Subroutine

PURPOSE: Obtains a line of control input from the user.

The user may specify an indirect file to be used as a source
of control input until the file is exhausted.

USAGE:

1. Calling Seguence:

CALL INPUT (PROMPT, RSPOND, LENRSP, MAXRSP, EXTFIL,
TERM, EOFTRM)

FORTRAN Dimen-
Name 1/0- Type sion Description
PROMPT I L*1 1 Prompt displayed when
requesting from terminal or
echoing from indirect file
(Must be terminated by '@’
character)
- RSPOND 0 L*1 1 Input string
LENRSP 0 I*2 - Length of input string
MAXRSP I I*2 - Maximum length of input.
string. allowed
EXTFIL I I*2 - Logical unit number for
indirect file)
TERM /0 L*3 - Input logical unit £lag:
= ,TRUE., terminal is current
input file
= _FALSE., indirect file is
current input file
EOFTERM O L*1 - = ,TRUE., last input from

terminal was end
of file character
{CNTL 2)

.FALSE., no end of file
from terminal

2., COMMON Blocks Used: None
3. Subroutines Used: LOCCHR, SKPCHR

4., Subroutines Called by: CINPUT

5. External Data Sets Referenced:

LUN

5
6
10

File Name

Terminal
FOR006.DAT
User supplied

Operation(s)

Read
Write .
Open, read, close

ROUTINE: INTGR4

TYPE;: Subroutine

PURPOSE: Converts a character string to INTEGER*4 internal

form.

USAGE:

1. Calling Sequence:

CALL INTGR4 (STRING, L, N, SYNERR)

FORTRAN Dimen-

Name . I1/0 Type sion Description
STRING I L*1 1 Input string. for conversion
L ° I I*2 - Length of input stfing
N 0 I*4 - INTEGER*4 value of string
SYNERR 0 L*2 - Conversion syntax error flag

2. COMMON Blocks Used: LUNCOM, MODCOM

3. Subroutines Used: PAGER

4. Subroutines Called by: PRCALL, PRIO, PRGOTO, PRASS,
LABEL, PRDOS, PRIMPL

5. External Data Sets Referenced:

LUN

6

File Name Operation(s)

FOR0O06.DAT Write

ROUTINE: KILLP
TYPE: Subroutine

PURPOSE: Unlinks an entry from the symbol table and flags
it for deletion by routine GARCOL.

USAGE:
1. Calling Sequence:

CALL KILLP (IPOINT, ERROR)

FORTRAN Dimen-

Name I/0 Type sion Description
IPOINT I I*2 - Pointer to entry to be
. unlinked

ERROR o L*2 - Fatal error flag

2. COMMON Blocks Used: HSHCOM, LUNCOM, STECOM, SYMCOM
3. Subroutines Used: 1IHASH, LOOKP, POKEP
4., Subroutines Called by: PRDOS, PRTYPE, TESTK

5. External Data Sets Referenced: None

ROUTINE: LABEL
TYPE: Subroutine.

PURPOSE: Checks statement labels and, if required, adds
them to the label list. Checks labels against the DO loop
target stack and, if regquired, pops the stack and gathers DO

loop statistics.
USAGE:

1. <Calling Sequence:
CALL LABEL (ERROR)

FORTRAN Dimen-
Name I/0 Type sion Description
ERROR 0 L*2 - Fatal error flag

2. COMMON Blocks Used: CTS5COM, DELCOM,.LBLCOM, LDTCOM,
LUNCOM, MODCOM, STECOM

3. Subroutines. Used: LOOKP, INTGR4, LABLST
4, Subroutines Called by: TYPE

5. External Data Sets Referenced: None

ROUTINE: LABLST -
TYPE: Subroutine

PURPOSE: Checks whether a referenced label is in the label
list. If not found, adds it to the list.

USAGE: et
1. Calling Sequence:

CALL LABLST (LABL, LOC, ERROR)

FORTRAN Dimen-
Name 1/0 Type sion Description
LABL I I*4 - Integer representation of
statement label
LOC o] I*2 - Location of label in array
LABLST
ERROR 8] L*2 - Fatal error flag

2. COMMON Blocks Used: LBLCOM
3. Subroutines Used: None

4, Subroutines Called by: LABEL, PRCALL, PRDOS, PRGOTO,
PRASS, PRIO

5. External Data Sets Referenced: None

3-41

ROUTINE: LNKPOT
TYPE: Subroutine

PURPOSE: ILiinks a potential node into a specific transfer

operator list.
USAGE:
1. Calling Seguence:

CALL LNKPOT (LIST)

FORTRAN Dimen-
Name 1/0 Type sion] Descr;ption
LIST 1 I*2 - Pointer to header node of

transfer operator list
2. COMMON Blocks Used: XFRCOM
3. Subroutines Used: None
4, Subroutines Called by: LOOKND

5. External Data Sets Referenced: None

ROUTINE: LOADK

TYPE: Subroutine

PURPOSE: Loads the file KEYWORDS.SAP into KEYCOM.
USAGE:

1. Calling Seguence:

CALL LOADK (ERROR)

FORTRAN Dimen-
Name 1/0 Type sion Description’
ERROR o] L*2 - = .FALSE., processing
complete
= .TRUE., error opening or
reading
KEYWORDS.SAP

2. COMMON Blocks Used: KEYCOM, LUNCOM, SWICOM
3. Subroutines Used: USRWTS

4. Subroutines Called by: SAPMAIN

5. External Data Sets Referenced:

LUN File Name Operation(s)

1 KEYWORDS.SAP Open, read, close

3-43

ROUTINE: LOCCHR
TYPE: Function

PURPOSE: Locates the first occurrence of a specified

character starting at the beginning of a character string.
USAGE:
1. Calling Seguence:

LOCCHR (CHAR, STRING, LENGTH)

FORTRAN Dimen-
Name 1/0 Type sion Description
LOCCHR 0 I*2 - = 0, character not found in
STRING
> 0, location of character
within STRING -
CHAR I L*1 - Character to be searched for
STRING I L*1 LENGTH Character string to be
searched
LENGTH I i*2 - Length of character string
in bytes

2. COMMON Blocks ‘Used: HNone

3. Subroutines Used: None

4. Subroutines Called by: INPUT
5. External Data Sets Referenced:

LUN File Name Operation(s)

5 Terminal Write

ROUTINE: LOOKAH
TYPE: Subroutine

PURPOSE: Searches for a target item between specified
limits in the delimiter/token table. Sets a pointer to the
first occurrence of the target that is not enclosed within

parentheses.
USAGE:
1. Calling Sequence:

CALL LOOKAH (LOOKFR, ISTART, IEND, IPTR, ERROR)

FORTRAN Dimen-
Name 1/0 Type sion Description
LOOKFR I I*2 - Target to search for
ISTART I I*2 - Start location in delimiter/
token table
IEND I I*2 - End location in the
. delimiter/token table
IPTR o] I*x2 - = 0, target not found because
it was between paren-~
thesis or an unmatched
close parenthesis was
found or end of the
delimiter/token table
was encountered
0, position in the
delimiter/token table
ERRQOR 0 L*2 - = .FALSE., processing com-

plete

.TRUE., encountered the end
of the delimiter/
token table

2. COMMON Blocks Used: DELCOM, LDTCOM
3. Subroutines Used: None
4. Subroutines Called by: ASGNID, PRIFS

5. External Data Sets Referenced: None

3-45

ROUTINE: LOOKK
TYPE: Subroutine

PURPOSE: Looks within keyword table for a match to the
token. A match is indicated éven when only the leading part
of the token is the same as a keyword.

USAGE:
1. Calling Sequence:

CALL LOOKK (STRING, L, IKEY, LK, ISCLAS, IEXEC)

FORTRAN Dimen-

Name I/0 Type sion Degscription

STRING I L*4 1 Input string to be tested
for keyword

L I I*2 - Length of STRING

IKEY 0 I*2 - Integer index of located
keyword, if found;
otherwise, set to zero

LK e I*2 - Length of keyword pointed to
by IKEY

ISCLAS 0 I*2 - Statement class
corresponding to keyword

IEXEC 0] L*2 - Executability flag of keyword

2. COMMON Blocks Used: KEYCOM, TYPCOM
3. Subroutines Used: None
4, Subroutines Called by: ASGNID, TESTK, PRIMPL, PRTYPE

5. External Data Sets Referenced: None

ROUTINE: LOOKND
TYPE: Subroutine

PURPOSE: Searches for a match to the potential node in a
specific transfer operator list. If. a match is found, it is

counted and the potential node is erased. If no match is
found, the potential node is added to the list.

USAGE:
1. Calling Sequence:
CALL LOOKND (LIST,ERROR)

FORTRAN Dimen-~

Name 1/0 Type sion Description

LIST I I*2 - Pointer to header node of
specific list toc search

ERROR. 0 L*2 -

.FALSE., processing com-
plete

.TRUE., could not obtain a
new potential node

2. COMMON Blocks Used: XFRCOM
3. BSubroutines Used: ERAPOT, LNKPOT, NEWPOT -
4, Subroutines Called by: PRIO, PRGOTO, PRCALL

5. External Data Sets Referenced: None

3-47

ROUTINE: LOOKP

TYPE: Subroutine

PURPOSE: Locates the token starting at position IPOINT in
the symbol table and loads it into COMMON /STECOM/.

USAGE:

l.

Calling Sequence:

CALL LOOKP (IPOINT, ERROCR)

FORTRAN Dimen-

Name I/0 Type sion i Descriptioen

IPOINT I I*2 - Pointer to desired token

ERROR 0 L*2 - = .FALSE., processing complete

= .TRUE., when IPQINT is out
of range

2. COMMON Blocks Used: LUNCOM, MODCOM, STECOM, SYMCOM

3. Subroutines Used: None

4, Subroutines Called by: ASGNID, ERRMSG, FLVARI, HPRNDS,
KILLP, LABEL, POKES, PRASGN, PRASS, PRCALL, PRDOS,
PRGOTO, PRIFS, PRIMPL, PRIO, PRSPEC, PRTCKE, PRTYPE,
SThUMP, TABLES, TESTK

5. External Data Sets Referenced:

LUN File Nane Operation(s)

6 FOR(006.DAT Write

ROUTINE: LOOKS
TYPE: Subroutine

PURPOSE: Searches the symbol table for STRING and returns a
pointer to the corresponding symbol table entry.

USAGE:
1. Calling Seguence:

CALL LOOKS (IHPNTR, STRING, L, IPOINT, ERROR)

FORTRAN Dimen-

Name 1/0 Type sion) Description -
IHPNTR I I*2 - Hash table pointer
STRING I L*1l 1 String to be located
L I I*2 - Length of STRING
IPOINT 0 I*2 - Symbol table pointer:

> 0, pointer value
= 0, no pointer value
< 0, pointer magnitude set
to last entry
ERROR 0] L#*2 - Fatal error flag

2. COMMON Blocks Used: HSHCOM, STECOM
3. Subroutines Used: COMPAR, IHASH, LOOKP
4, Subroutines Called by: DSCAN, PRDOS, PRTYPE, TESTK

5. ExXternal Data Sets Referenced: HNone

ROUTINE: MCMPLX

TYPE: Subroutine

PURPOSE: Computes the module complexities, Writes
assembled data to the data base if the /DB control switch
set to on and to ALL.SAP if the /SL control switch is set on.

USAGE:

l. Calling Sequence:
CALL MCMPLX (DBFILE, PRQJ)
FORTRAN) Dimen-
Name I/0 Type sion .Description
DBFILE I L*1 70 Name of data base file in use
PRCJ I L*1 - Current project character to
tag module name in data base
2. COMMON Blocks Used: CT1COM, CT2COM, CT3COM, CT4COM,
CT5COM, DELCOM, MODCCM, OPCOM, SELCOM, SWICOM, TYPCOM,
WTSCoM
3. Subroutines Used: CNTXFR, COMPWT, HPRLl, HPR2, HPR3,
HPRNDS, PRTHAL, UCPLXl, UCPLXZ2, WRTDB, WRTSEL
4, Subroutines Called by: SAPMAIN
5. External Data Sets Referenced: None

ROUTINE: MDIRY

TYPE: Subroutine

PURPOSE: Generates-the module directory listing.
USAGE:

1, Calling Segquence:

CALL MDIRY (INLPAG, LASTPG, IPRTLN, FIRST, KNT)

FORTRAN Dimen-

Name 1/0 Type sion Description

INLPAG I I*2 - Page number for module
summary for this module

LASTPG I/0 I*2 - Page counter for directory

- file

IPRTLN I1/0 I*2 - Total line counter
(including blank lines)

FIRST I L*2 - Page header switch for first
page header

KNT I I*2 - Printed line counter

2. COMMON Blocks Used: CTICOM, CT2COM, LUNCOM, MODCOM,
OPCOM, PAGCOM, SWICOM, WTSCOM

3. Subroutines Used: PAGER
4. Subroutines Called by: SAPMAIN
5. External Data Sets Referenced:

LUN File Name Operation(s)

8 FORO(GS8.DAT Write

3-51

ROUTINE: NEWPOT
TYPE: Subroutine

PURPOSE: Creates the header portion of a potential node in
the transfer operator list.

USAGE:
i. Calling Sequence:

CALL NEWPOT (ERROR)

FORTRAN ° Dimen-
Name 1/0 Type sion Description
ERROR] L*2 - = .FALSE., processing com-

pleted
.TRUE., insufficient space
for creating a new
potential node

i

2. COMMON Blocks Used: LUNCOM, XFRCOM
3. Subroutines Used: None
4, Subroutines Called by: INITN, LOOKND

5. External Data Sets Referenced:

LUN File Name Operation(s)
6 FOR0O0G6.DAT Write

ROUTINE: NUMER
TYPE: Subroutine

PURPOSE: Determines whether a character is numeric

(including decimal points) or nonnumeric.
USAGE:
1. Calling Sequence:

CALL NUMER (IN, ANSWER)

FORTRAN Dimen-~

Name, I/0 Pype sion Description
N 1 L*1 - Character to be tested
ANSWER o] L*2 - FALSE., nonnumeric

= ,TRUUE., numeric or decimal
point

2. COMMON Blocks Used: None
3. Subroutines Used: None
4, Subroutines Called by: DSCAN, PRASS, PRDOS, TESTK

5., External Data Sets Referenced: None

3-53

ROUTINE: OQPERAT
TYPE: Subroutine

PURPOSE: Determines whether a delimiter is an operator, and

returns the operator -classification.
USAGE:
1. Calling Segquence:

CALL OPERAT (ID, ICP)

- FORTRAN Dimen- :
Name 1/0 Type sion Description
ID I I*2 - Delimiter code as defined in
a DLICOM common
0P 0 I*2 - Operator classification

¢, nonoperator
1, arithmetic operator
2, relational operator
3, Boolean operator

2. COMMON Blocks Used: None
3. Subroutines Used: None
4, Subroutines Called by: PRTOKE,; PRASGN

5. External Data Sets Referenced: None

3-54

ROUTINE: PAGER
TYPE: Subroutine

PURPOSE: Maintains the line and page counts for listing
files, prints a page header when lines to be written.exceed
page line maximum.

USAGE:
1. Calling Sequence:

CALL PAGER (LINES, LUN, ILINE, IPAGE)

FORTRAN Dimen-
Name 1/0 Type gion Description
LINES I I*2 - Number of lines to be written
LUN I I*2 - LUN on which write is to
occur
ILINE 0 I*2 - New line count for LUN
IPAGE 0 I*2 - Current page count for LUN

2. COMMON Blocks Used: INFCOM, MODCOM, PAGCOM
3. Subroutines Used: DATE, TIME

4, Subroutines Called by: COEF, GLINE, HALREP, HSCAN,
INTGR4, MDIRY, NEWPOT, POKES, PRASGN, PRCALL, PRDOS,

PRGOTO, PRIFS, PRIO, PRSPEC, PRSUBS, PRTHAL, PRTOKE,
PRTXFR, REPHAL, STATG, STATM, STDUMP

5. External Data Sets Referenced:

LUN File Name Operation(s)

specified unit numbers ’ Write

3-55

ROUTINE: POKEP

TYPE: Subroutine

PURPOSE: Transfers the token block in /STECOM/ into the
symbol table.

USAGE:

l.

Calling Sequence:

~ CALL POKEP (IPOINT, ERROR)

FORTRAN Dimen-

Name I/0 Type sion . Description

IPOINT I I*2 - Starting location for

a insertion in SYMCOM

ERROR 0 L*2 - = .FALSE., processing com-

pleted
= ,TRUE., IPOINT out of sym-

bol table range

2. COMMON Blocks Used: LUNCOM, MODCOM, SYMCOM, STECOM

3. Subroutines Used: None

4. Subroutines.-Called by: FLVARI, HOPRN, KILLP, POKES,

PRASGN, PRCALL, 'PRSPEC, PRSUBS, PRTOKE
5. External Data Sets Referenced:

LUN File Name Operation(s)

6 FORGO6.DAT Write

ROUTINE: POKES

TYPE: Subroutine

PURPOSE: Inserts a string into the symbol table. Creates a
new token block, if one does not exist.

USAGE:

1.

Calling Seguence:

CALL DPOKES (IHPNTR, IPOINT, ERROR)

FORTRAN Dimen-

Name 1/0 Tvype sion Description

IHPNTR I I*2 - Hash table pointer

IPOINT I I*2 - Symbol table pointer
ERROR 0 L*2 - = ,FALSE., processing com-

) pleted
= ,TRUE., IPOINT out of sym-
bol table range
2. COMMON Blocks Used: HSHCOM, LUNCOM, MODCOM, STECOM,

SYMCOM

Subroutines Used: GARCOL, ' 'LOOKP, PAGER, POKEP
Subroutines Called by: DSCAN, PRDOS, PRTYPE, TESTK
External Data Sets Referenced:

LUN File Name Operation(s)

6 FOR0O06.DAT Write

3-57

ROUTINE: PRASGN
TYPE: Subroutine

PURPOSE: Parses assignment statements; identifies
arithmetic statement function definitions.

USAGE:

1. Calling Sequence:

CALI, PRASGN (LDTPTR, ISCLAS, ISTYPE, ERROR)

FORTRAN Dimen-

Name 1/0 Type sion Description

LDTPTR I I*2 - Points to next location in
’ a delimiter/token table

ISCLAS 0 I*2 - Statement class

ISTYPE 0 I%2 - Statement type

ERROR 0 L*2 - Fatal error flag

2. COMMON Blocks Used: CT2COM, CT5COM, DELCOM, LDTCOM,
LUNCOM, MODCOM, OPCOM, STECOM, TYPCOM

3. Subroutines Used: HOPRN, HOPTR1l, HOPTR3, LOOKP, OPERAT,

PAGER, POKEP, PRTOKE
4. Subroutines Called by: STATE
5. External Data Sets Referenced:

LUN File Name Operation(s)

6 FORO06.DAT Write

ROUTINE: PRASS

TYPE: Subroutine

PURPOSE: Parses the ASSIGN statement, adding
label to the label list array.

USAGE:
l. Calling Sequence:

CALL PRASS (LDTPTR, ERROR)

the- referenced

FORTRAN Dimen-
Name. I/0 Type sion Description
LDTPTR I I*2 - Points to next location in
delimiter/token table
ERROR 0 L*2 - Fatal error flag

2. COMMON Blocks Used: LDTCOM, LBLCOM, OPCOM, STECOM

3., Subroutines Used: LABLST, INTGR4, LOOKP,
4, Subroutines Called by: PRCNTL

5. External Data Sets Referenced: None

3-5%

NUMER

ROUTINE: PRCALL

TYPE: Subroutine

PURPOSE: Parses CALL statements.
USAGE:

1. Calling Sequence:

CALI, PRCALL (LDTPTR, ERROR)

FORTRAN Dimen-

Name 1/0 Type sion Description

LDTPTR I i*x2 - Points to next location in
delimiter/token table

ERROR 0 L*2 - Fatal error flag

2. COMMON Blocks Used: CT5COM, DELCOM, LBLCOM, LDTCOM,
LUNCOM, MODCOM, OPCOM, STECOM, XFRCOM

3. Subroutines Used: ADDPOT, ERAPOT, HOPTR1l, HOPTR3,
HOPRN, INTGR4, LABLST, LOOKND, LOOKP, PAGER, POKEP,
PRTOKE

4. Subroutines Called by: PRCNTL
5. External Data Sets Referenced:

LUN File Name Operation(s)

6 FOR0O06.DAT Write

ROUTINE & PRCNTL
TYPE: Subroutine

PURPOSE: Controls the processing of control statements.
Actual analysis will be performed by one of the called
routines.

USAGE:
l. Calling Sequence:

CALL PRCNTL (LDTPTR, ISTYPE, IREPT, LREPT, ERROR)

FORTRAN Dimen- .

Name 1/0 Type sion Description

LDTPTR 1/0 I*2 - Points to next location in
delimiter/token table

ISTYPE I/0 I*2 - Statement type being
processed

IREPT I/0 L*2 - Repeat flag, set in routine
PRIFS when this statement is
a logical IF

LREPT I/0 L*2 - Set if this statement is
object of a logical IF

ERROR 0 L*2 - Fatal error flag

2. COMMON Blocks Used: DELCOM, LDTCOM, TYPCOM

3. Subroutines Used: PRCALL, PRGOTO, PRASS, PRDOS, PRIFS,
PRRET

4. Subroutines Called by: STATE

5. External Data Sets Referenced: None

ROUTINE: PRDOS
TYPE: Subroutine

PURPOSE: Parses DO statements by performing an initial scan
of the delimiter/token table. Determines whether the DO
statement is a DOWHILE statement.

USAGE:
1. Calling Sequence:

CALL PRDOS (LDTPTR, ISTYPE, ERROR)

FORTRAN Dimen-

Name 1/0 Type sion Description

LDTPTR I I*2 - Points to next location in
delimiter/token table

ISTYPE 1/0 I*2 - Statement type

ERROR 8] L*2 - Fatal error flag

2. COMMON Blocks Used: CT5COM, DELCOM, LBLCOM, LDTCOM,
MODCOM, OPCOM, STECOM, TYPCOM

3. Subroutines Used: COMPAR, HOPTR1, HOPTR3, HOPRN, IHASH,
INTGR4, KILLP, LOOKP, LOOKS, NUMER, PAGER, POKEP, POKES,
PRTOKE

4. Subroutines Called by: PRCNTL, PRSTRC
5. BExternal Data Sets Referenced:

LUN File Name Operation(s)

6 FORQOOB.DAT Write

ROUTINE: PRGOTO

TYPE: Subroutine

PURPOSE: Parses GOTO statements.
USAGE:

1. Calling Seguence:

CALL PRGOTO (LDTPTR, LREPT, ERROR)

FORTRAN Dimen-]

Name I/0 Type sion Description

LDTPTR I I*2 - Points to next location in
delimiter/token table

LREPT I L*2 - Indicates statement is
object of a logical IF
statement

ERRCR o) L*2 - Fatal error flag

2. COMMON Blocks Used: CT5COM, DELCOM, LBLCOM, LDTCOM,
LUNCOM, MODCOM, OPCOM, STECOM, XFRCOM

3. Subroutines Used: ADDPOT, ERAPOT, HOPRN, HOPTR1l, INTGR4

LABLST, LOOKND, LOOKP, PAGER, PRTOKE
4. Subroutines Called by: PRCNTL
5. External Data Sets Referenced:

LUN File Name Qperation(s)

6 FORO(OG6.DAT Write

ROUTINE: PRIFS

TYPE: Subroutine

PURPOSE: Parses IF statements.
USAGE:

1. Calling Sequence:

CALL PRIFS (LDTPTR, ISTYPE, IREPT, ERROCR)

FORTRAN - Dimen-

Name I/0 Type sion Description

LDTPTR I I*2 - Points to next location in
delimiter/token table

ISTYPE I I*2 - Statement type

IREPT O L*2 - Repeat flag, set true if
statement is a logical IF

ERROR 0 L*2 - Fatal error flag

2. COMMON Blocks Used: CTS5COM, DELCOM, LDTCOM, LUNCOM,
MODCOM, OPCOM, STECOM, TYPCOM

3. Subroutines Used: COMPAR, HOPRN, HOPTR1l, HOPTR3,
LOORAH, LOOKP, PAGER, POKEP, PRTOKE

4. Subroutines Called by: PRCNTL, PRSTRC
5. External Data Sets Referenced:

LUN File Name - Operation(s)

6 FOR(Q06.DAT Write

ROUTINE: PRIMPL
TYPE: Subroutine

PURPOSE: Parses IMPLICIT statements to change
types for untyped variables.

USAGE:
1. Calling Seguence:

CALI, PRIMPL (LDTPTR, SYNERR, ERROR)

the default

FORTRAN Dimen-

Name 1/0 Type sion Description

LDTPTR I I*2 - Points to next location in
delimiter/token table-

SYNERR 0 L*2 - Syntax error flag

ERROR) L*2 - Fatal error flag

2. COMMON Blocks Used: DELCOM, IMPCOM, LDTCOM, LUNCOM,

STECOM, TYPCOM
3. Subroutines Used: LOOKK, LOOKP, INTGR4
4., Subroutines Called by: PRTYPE

5. External Data Sets Referenced:

LUN File Name Operation(s)

& FOR006.DAT Write

3-65

ROUTINE: PRIO

TYPE: Subroutine

PURPOSE: Parses input/output statements.
USAGE:

1. Calling Seguence:’

CALL PRIO (LDTPTR, ISTYPE, ERROR)

FORTRAN Dimen-

Name I/0 Type - sion Description

LDTPTR I I*2 - Points to next location in -
delimiter/token table

ISTYPE T I*2 - Statement type

ERROR 0 L*2 - Fatal error flag

2. COMMON Blocks Used: CTSCOM, DELCOM, LBLCOM, LDTCOM,
LUNCOM, MODCOM, OPCOM, STECOM, TYPCOM, XFRCOM

3. Subroutines Used: ADDPOT, COMPAR, ERAPOT, HOPRN,
INTGR4, LABLST, LOOKP, LOOKND, PAGER, PRTOKE

4, Subroutines Called by: STATE

5. External Data Sets Referenced:

LUN File Name QOperation(s)

6 FOR006.DAT Write

RQUTINE: PRRET

TYPE: Subroutine

PURPOSE: Parses RETURN statements.
USAGE :

1. calling Sequence:

CALL PRRET (LDTPTR, ERROR)

FORTRAN Dimen-
Name 1/0 Type sion Description
LDTPTR I I*2 - Points to next location -in
delimiter/token table
ERROR 0 L*2 - Fatal error flag

2. COMMON Blocks Used: CT5COM, LDTCOM
3. Subroutines Used: None
4, Subroutines Called by: PRCNTL

5. External Data Sets Referenced: None

ROUTINE: PRSPEC

TYPE: Subroutine

PURPOSE: Parses specification statements.
USAGE :

1. Calling Sequence:

CALL PRSPEC (LDTPTR, ISTYPE, ERROR)

FORTRAN Dimen-

_Name I./0 Type sion Description

LDTPTR I I*2 - Points to next location in
delimiter/token table

ISTYPE I I*2 - Statement type

ERROR 0 L*2 - Fatal error flag

2. COMMON Blocks Used: DELCOM, LDTCOM, LUNCOM, MODCOM,
STECOM, TYPCOM

3. Subroutines Used: FLVARI, LOOKP, PAGER, POKEP
4, Subroutines Called by: STATE
5. External Data Sets Referenced:

LUN File Name Operation(s)

6 FOR006.DAT Write

ROUTINE: PRSTRC

TYPE: Subroutine

PURPOSE: Parses structured FORTRAN statements.
USAGE:

1. Calling Sequence:

CALL PRSTRC (ISTYPE, LDTPTR, IREPT, ERROR)

FORTRAN Dimen-

Name 1/0 Type sion Description

ISTYPE I I*2 - Statement type

LDTPTR I I*2 - Points to next location in
delimiter/token table

IRERT 1/0 L*2 - Repeat flag, set in routine
PRIFS when the statement is
a logical IF

ERROR 0 L*2 - Fatal error flag

2. COMMON Blocks Used: CT5COM, LBLCOM, LUNCOM, LDTCOM,
OPCOM, TYPCOM

3. ©Subroutines Used: HOPRN, HOPTR1l, HOPTR3, PRDOS, PRIFS,
PRTCKE

4, Subroutines Called by: STATE

5. External Data Sets Referenced:

LUN File Name Operation{s)

6 FOR0O0O6.DAT Write

ROUTINE: PRSUBS

TYPE: Subroutine

PURPOSE: Parses subprogram statements.

USAGE:

1.

Calling Sequence:

CALL PRSUBS (LDTPTR, ISTYPE, ERROR)

FORTRAN Dimen-

. Name 1/0 Type sion Description

LDTPTR I I*2 - Points to next location in
delimiter/token table

ISTYPE I I*2 - Statement type

ERROR 0 L*2 - Fatal error flag

2. COMMON Blocks Used: CTS5COM, DELCOM, LDTCOM, LUNCOM,

MODCOM, STECOM, TYPCOM

Subroutines Used: LOQKP, PAGER, POKEP
Subroutines Called by: STATE

External Data Sets Referenced:

LUN File Name Operation(s)

6 FOROO6.DAT Write

ROUTINE: PRTHAL
TYPE: Subroutine

PURPOSE: Prints the complexity analysis on the module
statistics summary, if the /MO or /CA control switch is set
on.

USAGE:
1. Calling Sequence:

CALL PRTHAL (ICTHIO, IETAl, IETAZ, LUNMSS, NETAL,
NETAZ2, IDECIS)

FORTRAN Dimen-

Name . 1I1/0 Type sion Description

ICTHIO I I*2 - Sum of count of argument
variables (including ENTRY
arguments) and count cof
referenced COMMON variables

IETALl I I*2 - Number of unique operators
in module

IETA2 I I*2 - Number of unigue operands in
module

LUNMSS I I*2 - LUN for module statistics
summary report

NETAL I I*2 - Total number of operators in
module

NETA2 I I*2 - Total number of operands in
module

IDECIS I I*2 - Total number of decisions in
module

2. COMMON Blocks Used: WTSCOM

3. Subroutines Used: ESTIM, PAGER
4, Subroutines Called by: MCMPLX
5. External Data Sets Referenced:

LUN File Name Operation(s)

7 FOROO7.DAT Write

ROUTINE: PRTOKE

TYPE: Subroutine

PURPOSE: Processes a token to identify it as a wvariable or

a function.

USAGE:

l-

Calling Sequence:

CALL PRTOKE (LDTPTR, IFUNC, SYNERR, ERROR)

FORTRAN) Dimen=~

Name 1/0 Type sion Description

LDTPTR I I*2 - Pointer to next location in
delimiter/token table

IFUNC 8] L*2 - Switch set true when token
is function or arithmetic

i statement function

SYNERR o} L*2 - Switch set true if syntax

error encountered
" ERROR 0 L*2 - Fatal error flag
2. COMMON Blocks Used: CT5CoM, DELCOM, IMPCOM, LDTCOM,

LUNCOM, MODCOM, STECCM
Subroutines Used: ERRMSG, LOOKP, PAGER, 'POKEP, OPERAT

Subroutines Called by: PRASGN, PRCALL, PRDOS, PRGOTO,
PRIFS, PRIC, PRSTRC

External Data Sets Referenced:

LUN File Name Operation(s)

6 FORQO06.DAT Write

3-72

ROUTINE; PRTXFR
TYPE: Subroutine

PURPOSE: Lists the distinct transfer operators and their
frequency on the module statistics file when the /HL control
switch is set to on.

USAGE:
1. Calling Sequence:
CALL PRTXFR
2, COMMON Blocks Used: LUNCOM, STECOM, XFRCOM
3. Subroutines Used: LOOKP, PAGER
4, Subroutiﬁes Called by: HALREP

5. External Data Sets Referenced:

LUN File Name Operation(s)
6 FOR006.DAT Write
7 FOR0OQ7.DAT Write

ROUTINE: PRTYPE
TYPE: Subroutine

PURPOSE: Parses type specification statements and tests for
secondary keyword in the case of a typed FUNCTION statement.

USAGE:
1. Calling Sequence:

CALL PRTYPE (LDTPTR, ISCLAS, ISTYPE, ERROR)

FORTRAN Dimen-

Name 1/0 Type sion Description

LDTPTR I I*2 - Pointer to next location in
delimiter/token table

ISCLAS I/0 I*2 - Statement class

ISTYPE 1/0 I*2 - Statement type

ERROR 0 L*2 - Fatal error £flag

2, COMMON Blocks Used: DELCOM, IMPCOM, LDTCOM, MODCOM,
STECOM, 'TYPCOM

3. Subroutines Used: FLVARI, IHASH, KILLP, LOGKK, LOCKP,
LOOKS, NUMER, POKES, PRIMPL, PRSUBS, TESTK

4. Subroutines Called by: STATE

5. External Data Sets Referenced: None

3-74

ROUTINE: READER
TYPE: Subroutine

PURPOSE: Contrels the building of the packed statement
string and accumulates statistics on total cards, comment
cards, and comment packets.

USAGE:
1. Calling Seguence:

CALL READER (INITR, EXECl, ENDN, ENDS, ERROR)

FORTRAN Dimen- -

Name 1/0 Type sipn Description

INITR I L*2 - Initial read flag, .TRUE.
for new file

EXECL I L*2 - Executable statement flag,
.TRUE. after first
executable statement

ENDN 0 L*2 - End of file flag for the
initial read

ENDS 0 L*2 - End of f£ile flag

ERROR o] L*2 - Fatal error flag

2. COMMON Blocks Used: CTICOM, INPCOM, INLCOM, LUNCOM
3. Subroutines Used: GLINE, HSCAN

4; Suﬁroutines Called by: SAPMAIN

5. External Data Sets Referenced:

LUN File Name Operation(s)

6 FOROO6.DAT Write

3

75

ROUTINE: REPHAL
TYPE: Subroutine

PURPQSE: Extracts and reports on data from the data base
when the /DB control switch is set on.

USAGE:
1. Calling Segquence:

CALL REPHAL {DSNAME, PROJN)

FORTRAN - Dimen-

Name I/0 Type sion Description
DSNAME I L*1 70 Data base to be read

PROJN I L*1l - Project identifier used to

gselect modules for inclusion
in report

2. COMMON Blocks Used: INFCOM, LUNCOM, MODCOM, PAGCOM
3. Subroutines Used: COEF, ESTIM, PAGER
4. Subroutines Qalled by: SAPMAIN

5. External Data Sets Referenced:

LUN File Name Operation(s)
6 FOR0Q6.DAT Write
9 User supplied Open, read, close
8 FOR0O08.DAT Write)

ROUTINE: SAPMAIN

TYPE: Main program

PURPOSE: Performs analysis of FORTRAN source code.

USAGE:

1. Calling Sequence: None

2. COMMON Blocks Used: LUNCOM, SWICOM

3. Subroutines Used: CINPUT, COLGLE, DEFINE, HALRED,
INITG, INITM, LOADK, MCMPLX, MDIRY, READER, REPHAL,
STATG, STATM, STDUMP, TYPE ‘

4. Subroutines Called by: ©None

5. External Data Sets Referenced:

LUN File Name Operation(s)
2 FOR00Z2.DAT Close
6 FOR0OO6.DAT Write, close
5 Terminal Read, write
12 ALL.SAP Close

3-77

ROUTINE: SKPCHR
TYPE: Function

PURPOSE: Locates the first nonoccurrence of a specified
character starting at the beginning of.a character string.

USAGE:

1. Calling Seguence:

SKPCHR (CHAR, STRING, LENGTH)

FORTRAN Dimen-
Name 1/0 Type sion Description
SKPCHR 0 I*2 - = 0, CHAR is the only type of
o ‘ character in STRING
0, value specifies first
byte location in STRING
that is not CHAR
CHAR I L*] - Character to be skipped over
STRING I L*1 LENGTH Character string to be
searched
LENGTH I I*2 - Length of character string

2. COMMON Blocks Used: None
3. Subroutines Used: None
4, Subroutines Called by: INPUT

S. External Data Sets Referenced:

LUN File Name Operation(s)
5 Terminal Write

3

!

78

ROUTINE: STATE

TYPE: Subroutine

~

PURPOSE: Statement processing executive module. All
statement processing is performed by the called processing
modules.

USAGE :
1. Calling Sequence:

CALL STATE (LDTPTR, ISCLAS, ISTYPE, IREPT, LREPT,

ERROR)

FORTRAN Dimen-

Name I/0 Type sion . Description

LDTPTR I/0 I*2 - Points to next location in
delimiter/token table

ISCLAS 1/0 I*2 - Statement class

ISTYPE 1/0 I*2 - Statement type

IREPT 1/0 L*2 - Repeat flag set .TRUE.,
after parsing a logical IF
statement

LREPT 1/0 L*2 - Logical flag set .TRUE. if
this statement is object of
a logical IF statement

ERROR 0 L* 2 - Fatal error flag

2. COMMON Blocks Used: None

3. Subroutines Used: ERRMSG, PRASGN, PRCNTL, PRIO, PRSPEC,
PRSTRC, PRSUBS, PRTYPE

4, Subroutines Called by: TYPE

5. External Data Sets Referenced: None

3-79

ROUTINE: STATG

TYPE: Subroutine

PURPOSE: Computes and prints the global statistics when
/GB control switch is set to on.

USAGE:

1.

Calling Seguence:
CALL STATG

‘COMMON Blocks Used: GLBCOM, KEYCOM, LUNCOM, MODCOM,
TYPCOM, WESCOM

Subroutines Used: PAGER
Subroutines Called by: SAPMAIN
External Data Sets Referenced:

LUN File Name Operation(s)

8 FOROG8.DAT Write

3-80

the

ROUTINE: STATM
TYPE: Subroutine

PURPOSE: Computes and prints the module statistics when the
/MO control switch is set to on. '

USAGE:
1. Calling Sequence:

CALL STATM {INLPAG)

FORTRAN Dimen-
Name 1/0 Type sion Description
INLPAG O I*2 - Page number for module

summary produced

2. COMMON Blocks Used: CT1COM, CT2COM, CT3COM, CT4COM,
CT5COM, KEYCOM, LUNCOM, MODCOM, OPCOM, SWICOM, TYPCOM

3. Subroutines Used: PAGER, TABLES
4, Subroutines Called by: SAPMAIN
5., External Data Sets Referenced:

LUN File Name Operation(s)

7 FOROO7.DAT Write

3-81

ROUTINE: STDUMP
TYPE: Subroutine

PURPOSE: Produces a formatted listing of the contents of
the symbol table.

USAGE:
1. Calling Sequence:

CALL STDUMP (LDUMP)

FORTRAN Dimen-
~ Name I/0 Type sion Description
LDUMP I I*2 - Logical unit on which to

list symbol table
2. COMMON Blocks Used: HSHCOM, STECOM, SYMCOM
3. Subroutines Used: IFASH, LOOKP, PAGER
4. Subroutines. Called by: SAPMAIN
5. External Data Sets Referenced:

LUN File Name Operation(s)

6 FOR006.DAT Write

ROUTINE: TABCCC

TYPE: Subroutine

PURPOSE: Checks the first six bytes of each source code
racord for tabs, comment and continuation characters. If a
tab is found, the tab character is replaced withra blank.
When no tab is found, a tab is inserted in column 6 to
facilitate the statement parsing.

USAGE:
l. cCalling Sequence:

~CALL TABCCC (LCOMM, LCONT)

FORTRAN Dimen-~
Name I/0 Type sion ‘ Description
LCOMM 0 L*2 — = ,TRUE., if current record
is a comment line
LCON'T o] L*2 - = ,TRUE., 1if current record
is a continuation
line
2. COMMON Blocks Used: INLCOM, LUNCOM
3. Subroutines Used: None
4, Subroutines Called by: GLINE
5. External Data Sets Referenced:
LUN File Name Operation(s)
6 FPORO06.DAT Write

3-83

ROUTINE: TABLES
TYPE: Subroutine

PURPOSE: Extracts name and variable usage statistics from
the symbol table. The statistics are presented in the

module summary report.
USAGE:
1.. Calling Sequence:

‘CALL TABLES (ERROR)

FORTRAN Dimen-
Name I1/0 Type sion Description
ERROR 0 L*2 - Fatal error flag

2. COMMON Blocks Used: CT2COM, CTSCOM, HSHCOM, LBLCOM,
STECOM, SYMCOM

3. Subroutines Used: TLOOKP
4, Subroutines Called by:. STATM

5. External Data Sets Referenced: None

ROUTINE: TESTK
TYPE: Subroutine

PURPOSE: Tests the leading keyword, rehashes any token
concatenated to the keyword, and advances the
delimiter/token table pointer.

USAGE :

1. Calling Sequence:

CALL TESTK (LDTPTR, ISCLAS, ISTYPE, IEXEC, ERROR)

FORTRAN Dimen=-

Name 1/0 Type sion Description

LDTPTR 1/0 I*2 - Delimiter/token table pointer

ISCLAS 0 I*2 - Statement class identified

; for this statement

ISTYPE C I*2 - Statement type identified
for this statement

IEXEC 0 I*2 - Executability flag for this
statement

ERROR 0 L*2 - Fatal error flag

2, COMMON Blocks Used: LDTCOM, STECOM, TYPCOM

3. Subroutines Used: IHASH, KILLP, LOOKK, LOOKP, LOOKS,
NUMER, POKES

4, Subroutines Called by: TYPE

5. External Data Sets Referenced: None

ROUTINE: TYPE
TiPE: Subroutine

PURPOSE: Executive control module f£or statement

classification.
USAGE :
1. Calling Sequence:

CALL TYPE (EXECl, ENDM, ERROR)

FORTRAN Dimen-
Name 1/0 Type sion Description
EXEC1 6] L*2 - Set .TRUE. after first

executable statement has
been processed

ENDM 0 L*2 - Set .TRUE. when an END
statement has been
encountered -at end of module

ERROR 0 L*2 - Fatal error flag

2. COMMON Blocks Used: CT3COM, CT4COM, DELCOM, LDTCOM,
MODCOM, TYPCOM

3. Subroutines Used: ASGNID, DSCAN, LABEL, STATE, TESTK
4., Subroutines Called by: SAPMAIN

5. External Data Sets Referenced: None

3-86

ROUTINE: UCPLX1l
TYPE: Subroutine

PURPOSE: A dummy subroutine for which the user may substi-
tute a routine to calculate a complexity measure.

USAGE:
1. Calling Sequence:

CALL UCPLX1 (USER1)

FORTRAN Dimen-
Name 1/0 Type sion Description
USERL. o) R*4 - User complexity

2. COMMON Blocks Used: WTSCOM
3. Subroutines Used: None
4. Subroutines Called by: MCMPLX

5. External Data Sets Referenced: None

ROUTINE: UCPLX2
TYPE: Subroutine

PURPOSE: A dummy subroutine for which the user may substi-

tute a routine to calculate a complexity measure.
USAGE:
1. Calling Sequence:

CALL UCPLX2 (USER2)

‘,EORTRAN Dimen-

Name 1/0 Type sion Description
USER2 o R*4 - User complexity value

2. COMMON Blocks Used: WTSCOM
3. Subroutines Used: None
4., Subroutines Called by: MCMPLX

5. External Data Sets Referenced: None

ROUTINE: USRWTS

TYPE: Subroutine

PURPOSE: Reads the WEIGHTS.SAP file by default, or reads a

user-specified weights file if the /UW control switch is set
to on.

USAGE:
1. Calling Sequence:

CALL USRWTS (ERROR)

FORTRAN . Dimen-
Name 1/0 Type sion Description
ERROR 0 L*2 - Fatal error flag

2., COMMON Blocks Used: LUNCOM, SWICOM, WTSCOM
3. Subroutines Used: None

4, Subroutines Called by: INITG, LOADK

5. External Data Sets Referenced:

LUN File Name Operation(s)

3 WEIGHTS.SAP Open, read, close
or
User supplied

5 Terminal Read

6 FOR006.DAT Write

3-89

ROUTINE: WRTLB
TYPE: Subroutine

PURPOSE: Writes a record to the SAP data base f£ile when the

/DB control switch is set to on.
USAGE:

1. Calling Sequence:

CALL WRTDB (DBFILE, ICTARG, ICTCBV, ICTCCL, ICTCOM,
ICTEXC, ICTEXT, ICTHIO, ICTIFF, ICTIO,
ICTSLN, IDECIS, IETAl, IETAZ, LUNCIN,
LUNDB, MODNAM, NETALl, NETAZ, PROJ)

FORTRAN Dimen-
Name 1/0 Type sion Description
DBFILE I L*1 70 ‘SAP data base file name
ICTARG I I*2 - Number of arguments passed
to module

ICTCBV I I*2 - Number of variables in
COMMON blocks

ICTCCL I I*2 - Number of comment lines

ICTCOM I I*2 - Number of COMMON blocks in
module

ICTEXC I I*2 - Number of executable

statements in module

ICTEXT I i*2 - Number of external

references in module

ICTHIO I I*2 - Sum of count of argument

variables (including ENTRY
arguments) and count of
referenced COMMON variables

ICTIFF I I*#2 - Number of IF and .IF

statements

ICTIO I I*2 - Number of input/output

statements
ICTSLN I I*2 - Number of source lines
IDECIS I I*2 - Number of decisions
IETAL I I*2 - " Number of unique operators

FORTRAN Dimen-

Name 1/0 Type sion Description

IETAZ2 I I*2 - Number of unique operands
LUNCIN I I*2 - Command input LUN

LUNDB I I*2 - SAP data base LUN
MODNAM I L*1 8 Module name
NETAIL I I*2 - Total number of operators
NETAZ2 I I*2 - Total number of operands
PROJ i L*] - Project character descriptor

2. COMMON Blocks Used:
3. Subroutines Used:

4. Subroutines Called by:

None

None

MCMPLX

5. External Data Sets Referenced:

LUN

5
9

File Name

Terminal

User supplied

Operation(s)

Write

Open, read, write, close

ROUTINE: WRTSEL
TYPE: Subroutine

PURPOSE: Writes a record to ALL.SAP when the /SL control

switch is set to on.
USAGE:
1. Calling Sequence:

CALL WRTSEL (ICTARG, ICTCBV, ICTCCL, ICTCOM,
ICTEXC, ICTHIO, ICTIFF, ICTIO, ICTSLN,
IDECIS, IETAl, IETAZ2, LUNCIN, LUNSEL,
MODNAM, NETAL, NETA2, PREFIX, PROJNM,
ICTCBU, ICTDOS, ICTFNR, ICTSTR, KARGAC,
KASGN, KCALL, KFMT)

FORTRAN Dimen-

Name I/0 Type gion . Description
ICTARG I I*2 - Number of arguments in module
ICTCBV I I*2 - Number of COMMON block

] variables
ICTCCL I I*2 - Number of comment lines

ICTCOM I I*2 - Number of COMMON blocks

ICTEXC I I*2 - Number of executable
statements

ICTHIO I I*2 - Sum of count of argumeht
variables (including ENTRY
arguments) and count of
referenced COMMON wvariables)

ICTIFF I I*2 - Number of IF and .IF

statements

ICTIO I I*2 - Number of input/output

statements

ICTSLN I I*2 - Number of source lines
IDECIS I I*2 - Number of decisions
IETAL I I*2 - Number of unigque operators
IETAZ I I*2 - Number of unigue operands
LUNCIN I I*2 - Command input LUN
LUNSEL I I*2 - Data base LUN

FORTRAN Dimen-

Name 1/0 Type sion Description
MODNAM I L*1 8 Module name
NETAL I I*2 - Total number of operators
NETA2 I I*2 - Total number of operands
PREFIX I L*2 - Prefix descriptor
PROJNM I L*1 8 Project name descriptor
ICTCBU I I*2 - Number of COMMON block
variables used
ICTDOS I I*2 - Number of DO and DOWHILE
statements
ICTFNR I I*2 - Number of function references
ICTSTR I I*2 - Number of structure
i statements .
KARGAC I I*2 - Total number of variables
passed to external references
KASGN I I*2 - Number of assignment
statements
KCALL I I*2 - Number of CALL statements
KFMT I I*2 - Number of FORMAT statements

2, COMMON Blocks Used: None

3. Subroutines Used: None

4. Subroutines Called by: MCMPLX
5. External Data Sets Referenced:

LUN File Name Operation (s)

12 ALL.SAP Write

SECTION 4 - SAP COMMON BLOCK INFORMATION

Some of the wvariables used by SAP for communication between
modules appear in labeled COMMON blocks. All COMMON blocks
are initialized by an associated BLOCK DATA routine except
COMMON /INFCOM/. Table 4-~1 contains a list of the BLOCK
DATA routine file names and the associated COMMON block.

Detailed descriptions of the COMMON block variables used by
SAP are presented on the following pages arranged alphabet-
ically by COMMON block name. The variables in each descrip-
tion. are listed in the order in which they are stored. The
number (if any) enclosed within parenthesis following the
variable definition is the value assigned to the variable in
the BLOCK DATA routine.

Table 4-1. SAP BLOCK DATA File Names

BLOCK DATA COMMON Block
File Name Name
CT1iBLK.FPP CT1CcOM
CTZBLK.FPP CT2COM
CT3BLK.FPP CT3COM
CT4BLK.FPP CT4COM
CTS5BLK.FPP CT5C0OM
DELBLK.FPP DELCOM
DLIBLK.FPP DLICOM
GLBBLK.FPP GLBCOM
HSHBLK.FPP _HSHCOM
IMPBLK.FPP IMPCOM
{NONE) INFCOM
INLBLK.FPP INLCOM
INPBLK.FPP INPCOM
KEYBLK.FPP KEYCOM
LBLBLK.FPP LBLCOM
LDTBLK.FEP LDTCOM
LUNBLK.FPP LUNCOM
MODBLK.FPP MODCOM
OPBLK.FPP OPCOM
PAGEBLK.FPP PAGCOM
SELBLK.FPP SELCOM
STEBLK.FPP STECOM
SWIBLK.FPP SWICOM
SYMBLK.FPP SYMCOM
TYPBLK.FPP TYPCOM
WTSBLK.FPP WTSCOM
XFRBLK.FPP XFRCOM

COMMON BLOCK: /CTiCOM/

PURPOSE: Contains the module statistics describing module

comments.

Dimen-
Variable sion

MAXCTL
AVESCD

AVESCM

ICTSLN
ICTSCD
ICTCCL

ICTMLC

ICTNCD
ICTPRO
ICTSCM

ICTSXP

ICTMCM

ICTNCM
ICTSBC

NSINCE

Type
I*2

R*4

R*4

I*2
I*2
I*2

I*2

I*2
I*2
I*2

I*2

I*2

I%2
I*2
I*2

Definition

Number of I*2 words to follow (16)

Average number of lines of code
between comments

Average number of lines per
nonprolog comment packets

Sum of all source lines
Sum of all coded source lines

Sum of all comment card lines
(ICTSLN - ICTSCD)

Maximum number of lines in code
packet

Number of code packets
Length of prolog

Sum of all embedded (nonprolog)
comments

Sum of comments following a M!
(DEC computers)

Maximum size of embedded comment
packet

Number of embedded comment packets
Sum of all blank comment lines

Number of -lines since last comment

COMMON BLOCK: /CT2COM/

PURPOSE: Contains the module statistics describing external
communications, wvariable names, and array dimensions.

Dimen-
Variable sion Type Definition

MAXCT2 I*2 Number of I*2 words to follow (25)

IDUMC2 I*2 pummy alignment variable

AVECHR . R*4 Average number of characters per

. variable name
AVEDIM R*4 Average number of dimensions in
. an array

ICTCHR I*2 Total number of characters in
variable names

MAXCHR I*2 Length of longest variable name

ICTVAR I*2 Number of wvariables in module

ICTFUN I*2 Number of functions referenced in
module

ICTFNR I*2 Number of function references in
module

ICTCON I*2 Number of constants in module

ICTSUB I*2 Number of subroutine names
referenced in module

ICTENT I*2 Number of entry point names in
module

ICTCOM I*2 Number of COMMON block names in
module

ICTCBV I*2 Number of variables in COMMON
blocks

ICTCBU I*2 Number of COMMON block wvariables
used

ICTNAM I*2 Number of NAMELIST names in module

ICTEXT I*2 Number of external variables in
module

ICTEXR I*2 Number of references to
externally defined names

ICTASF I#2 Number of arithmetic statement
function {(ASF) names in module

ICTASR I*2 Number of references to ASFs

Dimen-

Variable sion Type Definition
ICTREF I*2 Number of.variables referenced in
module
ICTEQV I*2 Number of variables appearlng in
EQUIVALENCEs e
ICTDIM I*2 Total number of dlmen51ons of
arrays in module
MAXDIM I*2 Maximum number of dimensions -in
an array
ICTDMV I*2 Number of dimensioned variables

in module

COMMON BLOCK: /CT3COM/

PURPOSE: Contains the module statistics describing state-
ment breakdown by class and in terms of executable and

nonexecutable statements.

Dimen-
Variable sion Type Definition
MAXCT3 I*2 Number of I*2 words to follow (45)
IDUMC3 - I*2 Dummy for boundary alignment
PCTEXC R*4 Percent executable statements
;’:PCTNEX R¥*¥4 Percent nonexecutable statements
PCTSTC i3 R¥*4 Percent statements in each class
type .
ICTEXC I#2 Number of executable statements
ICTNEX I*2 Number of nonexecutable statements
ICTSTC 13 I*2 Number of statements in each
class type

COMMON BLOCK: /CT4COM/

PURPOSE: Contains individual statement type counters per-

tinent to the keywords file. The statements are ordered as
in the KEYWORDS.SAP data file.

Dimen-
Variable sion Type Definition
MAXCT4 i*2 Number of I*2 variables in COMMON
block (65)
IDUMC4 I*2 Boundary alignment space variable
ICTSTT 65 I*2 Array containing counts of

statement types, array ordered as
in KEYWORDS.SAP

COMMON BLOCK: /CT5COM/

PURPOSE: This COMMON contains the module statistics
describing control statements and complexities for

subscripted variables.

Dimen-
Variable sion Type Definition
MAXCTS I*2 Number of I*2 variables in COMMON
block (50)
IDUMCS I*2 Boundary alignment space variable
.~ AVECAL R*4 Average number of arguments in
o CALL statements .
AVEEPA R*4 Average number of arguments in
entry point
AVEFNN R*4 Average number of functions/ASF
in assignments
AVEVRI R¥*4 Average number of variables in
assignments
AVEOPR R*4 Average number of operators in
assignments
AVEDON R*4 Average level of nesting in DO
loops
AVEDOL R*4 Average length of DO loops
AVESSC R*4 Average single statement
complexity
ICTIFL I*2 Number of logical IFs
ICTIFA I*2 Number of arithmetic IFs
ICTIFG I*2 Number of GO TOs that are objects
of IPFs
ICTGUN I*2 Number of unconditional GO TOs
ICTGAS I*2 Number of assigned GO TOs
ICTGCM I*2 Number of computed GO TOs
ICTGCP I*2 {not used)
ICTGLB I*2 Number of labels used as targets
of GO TOs
ICTERR I*2 Number of ERR=
ICTEND I%*2 Number of END=
ICTRNN T*2 Number of normal RETURNs

Variable

Dimen-
sion

ICTRNI
ICTCAL

MAXCAL

ICTAMP

ICTEPA

MAXEPA

ICTEFNN

MAXFNN

ICTVRI

MAXVRI

ICTOPR

MAXOPR

ICTARG

ICTDWT

ICTUPT

ICTDON

MAXDON
ICTDOL

MAXDOL

ICTSSV

Type
I*2
I*2

I*2
I*2
I*2
I*2
I*2
I*2
I*2
I*2
I*2
I*2
I*2
I*2
I*2
I*2

I*2
I#2

I*2

I*2

Definition

Number of RETURN Is

Number of arguments in all CALL
statements

Maximum number of arguments in
any CALL statement .

Number of ampersands in CALL
statements

Number of arguments in all entry
points

‘Maximum number of arguments in

any entry point

Number of functions, ASF in any
assignments

Maximum number of functions, ASF
in any assignment

Number of variables in all
assignments

Maximum number of variables in
any assignment

Number of operators in all
assignments

Maximum number of operators in
any assignment

Number of arguments in module
calling seguence

Number of unconditional downward
transfers

Number of unconditional upward
transfers

Number of levels of nesting of DO
loops

Maximum level of nesting

Number of statements in all DO
loops

Maximum number of statements in
any DO loop

Number of references to
subscripted variables

Dimen-

Variable sion Type Definition
ICTSSC I*2 Total subscript complexity
MAXSSC I*2 Maximum subscript complexity
ICTTBR I*2 Total number of branches
ICTIFB I*2 IF block counter
IéTEIF T*2 ELSE IF counter
IFLEV I*2 Level of IF block
_MIELEV I*2 Maxiﬁum level of IF blocks

4-10

COMMON BLOCK: /DELCOM/

PURPOSE: Contains the integer codes for the delimiters con-
tained in the IDELIM array in COMMON /DLICOM/.

Dimen-

Variable sion Type Definition
IYCCAT I*2 Integer code for //
IYEXPO I*2 Integer code for **
I¥YMULT I*2 Integer code for *
IYDIVI I*2. Integer code for /
IYADDX I*2 Integer code for +
TYMINU I*2 Integer code for -
IYEQUA Ii*2 Integer code for =
IYOPAR I*2 Integer code for
IYCPAR I*2 Integer code for)
IYCOMA I*2 Integer code for ,
IYAPOS I*2 Integer code for !
I1YAMPR I*2 Integer code for &
IYCOLN I*2 Integer code for :
I¥YQUOT I*2- Integer code for "
IYLEFT I*2 Integer code for <
IYRIGH I1*2 Integer code for >
IYTAB I*2 Integer code for Tab
IYNULL I*2 Zero
IYNEXX I*2 Integer code for .NE.
IYLTXX I*2 Integer code for .LT.
IYLEXX I*2 Integer code for .LE.
IYEQXX I1+*2 Integer code for .EQ.
I¥GEXX I*2 Integer code for .GE.
IYGTXX I*2 Integer c¢ode for .GT,
IYANDX I*2 Integer code for LAND.
IYORXX I%2 Integer code for .OR,
I¥YXORX I*2 Integer code for .XOR.
IYEQVX I*2 Integer code for .EQV.

Dimen-

Variable sion Type Definition
IYNOTX I*2 Integer code for .NOT.
IYNEQV I*2 Integer code for .NEQV.

4-12

COMMON BLOCK: /DLICOM/

PURPOSE: Contains the character representation of wvalid

delimiters and their lengths.

Dimen-

Variable sion Type ’ Definition
NDELIM: I*2 Number of delimiters ({30)
LDELIM 30 o I*2 Array of delimiter lengths
IDELIM 6,30 L*1 Array of delimiters

4-13

COMMON BLOCK: /GLBCOM/

PURPOSE: Contains the accumulated global statistics for the
input file.

Dimen-

Variable sion Type . Definition

MAXGLB I*2 Size of global counter array (100)
MAXSTC I*2 Size of statement c¢lass array (13)
MAXSTT I*2 Size of statement type arrays (65)
" IDUMG I*2 Dummy alignment variable

AVEGBL 100 R*4 Global averages array

IGTSTC 13 I*¥2 Global statement class counters
IGTSTT 65 I*2 Global statement type counters
MAXGBL 100 I*2 Global maxima array

NUMGBL 100 I*2 Global counter arrays

IEXGBL 100 I*2 Global counters for auxiliary

counts

COMMON BLOCK: /HSHCOM/

PURPOSE: This COMMON contains the pointers to the symbol
table entries for the hashed input character string. The

hash is computed by the square sum central bit algorithm.

Dimen- :
Variable sion Type
NHASH I*%2

LEMASK I*2

LHSHFT I*2

THTBLE 1024 I*2

Definition

Size of hash table (1024)
Mask for hash bits (1777g)

Number of bits to shift hash key
(0)

Table of pointers to symbol table
entries

4-15

COMMON BLOCK:

PURPOSE:

Contains codes used to type variables typed by

/IMPCOM/

default or by an IMPLICIT statement.

Variable

Dimen-
sion

IVASC
IVTYP

IVBYTE
TVLOG

IVLOGL
IVLOG2
IVLOG4
IVINT

IVINT2
IVINT4

IVREA
IVREA4

IVREAS
IVRELSG
IVCPX

IVCPX8
IVCPle

IVDBP

26

26

Type
BYTE

I*2

I*2
I*2

I*#2

I*2

I*2

I#2

I*2

I*2

I*2
I*2

I*2

I*2

I*2

I*2

I*2

I*2

Definition

ASCII representation of letters A

through 2

Assigned data type for letters A

through Z
Type number

Type number
LOGICAL

Type number
LOGICAL*]

Type number
LOGICAL*2

Type number
LOGICAL*4

Type number
INTEGER

Type number
INTEGER*2

Type number
INTEGER* 4

Type number

Type number
REAL* 4

Type number
REAL*8

Type number
REAL*16

Type number
COMPLEX

Type number
COMPLEX*8

Type number
COMPLEX*16

Type number

for

for. variable

for variable
for wvariable
for variable
for
for variable
for variable

for variable

for variable

for variable

for wvariable

for variable
for wvariable
for variable

for variable

DOUBLE PRECISION

4-16

variable

type

type

type

type

type

type

type

type
type

type

type

type

type

type

type

variable type BYTE

REAL

Dimen-
Variable sion

IVDBC

IVCHAR

MASKNU

MASKCH

I*2

I*2

I*2

I*2

Definition

Type number for variable type
DOUBLE COMPLEX

Type number for variable type
CHARACTER

Type mask for numeric type
variable (8) 2

"t
=

Type mask for character type
variable (16)

4-17

COMMON BLOCK: /INFCOM/,

PURPOSE: Contains the user's command line.

Dimen-
Variable sion Type Definition
INF I*2 Length of INFORM array
INFORM 80 L*1 Command line array

COMMON BLOCK:

PURPOSE:

/INLCOM/

Contains the two-line rotating input buffer used

by SAP while processing the source code input.

Dimen-
Variable sion
MAXINL
LASINL
INLPTR
INLDUM
INLINE 100,2

Type Definition

I*2 Size of INLINE array {100)

I%2 Last valid character in INLINE {0)
I*2 Current line pointer ‘ .

I*2 Dummy alignment variable

L*1 Rotating input line buffer

4-19

COMMON BLOCK: /INPCOM/

PURPOSE: Contains all the characters in one input source

statement. INPUT has the capability to hold up to 19 con-
tinuation cards.

Dimen-
Variable sion Type Definition
MAXINP I*2 ~ Size of INPUT character array
(1440) ‘
LASINP I*2 Location of last character in
- - INPUT {0) '
INPUT 1440 L*1 Input source statement array

COMMON BLOCK:

/REYCOM/

PURPOSE: Contains information read from the KEYWORDS.SAP
file.
Dimen-
Variable gion Type Definition
MAXKEY I*2 Size of keywords array (&5)
LASKEY I*2 Last entry in keywords table (0)
CLASS 65 I*2 Statement class of keyword
EXEC 65 L*2 Statement executability flag:
= ,TRUE., executable
= ,FALSE., nonexecutable
LKEY 65 I%2 Keyword length array
KEY 16,65 L*1 Keyword arcay

COMMON BLOCK:

/LBLCOM/

PURPOSE: Contains pointers to a label list array for GO TO

statements and DO loop targets

Dimen-
Variable sion Type Definition
MAXLBL I*2 Size of LBLIST, LABLOC, and
GOTARG arrays (256)
NEXLBL I*2 Pointer to next free location in
) . label list (1)
- MAXSTK I*2 Maximum stack depth (size o©
. . LBLSTK) (20) .
ISTKPT I*2 Pointer to current top of stack
(0)
LBLIST 256 I*%4 List of all non-FORMAT labels. in
module
LABLOC 256 I*2 List of corresponding statement
numbers of labeled statements
GOTARG 256 L*1 Set .TRUE. if label is target of
a GO TO ’
LBLSTK 20 I*4 Push down stack for DO loop
targets
DOSTAN 20 I*2 Corresponding stack of statement

numbers of DO statements

4-22

COMMON BLOCK: /LDTCOM/

PURPOSE: Contains the list of pointers to the delimiters
and tokens making up the current statement.

Dimen-
Variable sion Type Definition
MAXLDT I*2 Size of LISTDT array (256)
LASLDT I*2 Location ¢of last entry in LISTDT
array
LISTDT 256 I*2 List of delimiter and token

pointers

4-23

COMMON BLOCK:

/LUNCOM/

PURPOSE: Contains the logical unit assignments for SAP.
'Dimen-
Variable sion Type Definition
LUNKEY I*2 LUN of keyword file (1)
LUNSOR I*2 LUN of source input file (2)
LUNWTS I*2 LUN of weights file (3)
LUNOUT I*2 Not used
LUNCIN I*2 LUN of command input unit (5)
LUNLST I*2 LUN of listings and error message
file (6)
LUNMSS I*2 LUN of module statistics summary
file (7)
LUNGSS I*2 LUN of global statistics summary
file (8)
LUNDB I*32 LUN of data base (9)
LUNDIR I*2 LUN of indirect file input (10)
LUNSCI I*2 LUN of INCLUDE file (11}
LUNSEL I%*2 LUN of intermediate Halstead file

(12)

COMMON BLOCK: /MODCOM/

PURPOSE: Contains the current module type, name, statement
count, and SAP error and warning counts.

Dimen-~ ‘
Variable sion Type Definition

MODTYP I*2 Module type: 3
1, main program (default)
2, subroutine

3, function

4, block data

MODNAM L*] Module name (8 characters
maximum), (default name = MAIN)

ISN I*2 Current statement number

NERR I*2 Number of SAP errors in current
module

NWARN I*2 Number of SAP warnings in current
module

COMMON BLOCK: /OPCOM/

PURPOSE: Contains the counts for the operators and operands.

Dimen-
Variable sion Type Definition
SUB 50 R*8 List of subroutines, entry
points, and functions found so far
NSUB 50 I*2 Use count of each subroutine/
entry/function found
MXSUB I*2 Maximum number of different
subroutine/entry/functions
allowed (50)
NDLM 30 I*2 Use count of each delimiter oper-
ator
KLOGIF I*2 Number of logical IF statements
KARTIF I*2 Number of arithmetic IF statements
KSTIF 1*2 Number of structured IF statements
KELSIF I*2 Number of ELSE IF statements
KELSE S I*2 Number of ELSE statements
KDO I*2 Number of DO statements
KDOWH I*2 Number of DOWHILE statements
KASGN2 I*2 Number of ASSIGN TO statements
KEOS I*2 Number of end-of-statement ({EO0S)
IETAL I*2 Number of uniqgue operators (+, =,
'y /+ .EQ., .GE., etc.)
IETAZ2 I*2 Number of unique operands (e.g.,
variable, constant)
NETAL I#2 Total number of operators
NETA2 I*2 Total ‘number of operands
IDECIS I*2 Number of decisions (IF, .IF.,
DO, DOWHILE, etc.)
NKEYWD i*2 Number of keyword operators (9)
AKEYWD 9 R*8 Labels for keyword operator report

COMMON BLOCK: /PAGCOM/

PURPOSE: Contains the page count and line counts for each
logical unit written by SAP.

Dimen-
Variable sion Type Definition
HEAD 5,12 R*8 Page header P
LPAGE 12 I*2 Page number {12%0)
LINCNT 12 I*2 Current line counter (12%9999)
MAXLIN 12 I*2 Maximum lines per page per

logical unit (12%59)

COMMON BLOCK: /SELCOM/

PURPOSE: Contains the project name and prefix code for the
sequential output file (ALL.SAP}.

Dimen-
Variable sion Type Definition
PROJNM 8 L*1 Project name
PREFIX) L*2 Prefix code of two characters

4-28

COMMON BLOCK: /STECOM/

PURPOSE: Contains the current token block from the symbol
table.

Dimen-
Variable sion Type Definition
MAXTOK I*2 Maximum size of token block in
words (23)
= (Maximum Token Length + 1)/2 + 7
NEXT I*2 Pointer to next block with same
key
TAST I*2 Pointer to previous block with
same key -
NACTIV I*2 Activity counter for Halstead
operands
ICLASS I*#2 Token class (variable, constant,
etc.)
ITYPE I*2 Token type (subclass)
IUSED I*2 Symbol utilization count
LTOKE I*2 Length of token
TOKEN 32 L*1 Token

COMMON BLOCK: /SWICOM/

PURPOSE: Contains the switch variables corresponding to SAP

control switches.

Dimen-
Variable sion - Type - Definition

NSWIT I*2 Number of switches defined

LSWIT 2,20 L*1 Array of two-character control
switches

ISWLI L*2 OQutput listing switch (F)

ISWGB L*2 Output global statistics switch
(T)

ISWMO L*2 Qutput module statistics switch
(T)

ISWDU L*2 Output diagnostic symbol table
dump switch (F)

ISWUW L*2 Accept user weights switch (F)

ISWEC L*2 OQutput external communication
statistics switch (F)

ISWCO L*2 Qutput commenting statistics
switch (F)

isWsc L*2 Output statement class statistics
switch (F)

ISWST L*2 Output statement type statistics
switch (F)

ISWCS L*x2 gutput contrel statement
statistics switch (F)

ISWAS L*2 Output assignment statement
statistics switch (F)

ISWSP L*2 Output specification statement
statistics switch (F)

ISWCA L*2 Qutput complexity analysis switch
(F}

ISWHL L*2 Print Halstead measures switch (F)

ISWDB L*2 Write to Halstead data base
switch (F)

ISWXP L*2 Bxpand INCLUDEs statements switch
(F)

ISWSL L*2 Write to sequential output file

' switch (F)
ISWXX 3 L*2 Spares

4~30

COMMON BLOCK:

/SIMCOM/

PURPOSE: Contains the symbol table values and pointers.
Dimen-
Variable sion Type Definition
MAXSYM I*2 Size of symbol table (6000)
NEXSYM I*2 Next unused symbol table location
(1)

IOURFL I*2 Not used

ISYDUM I*2 Not used

ISYMBL 6000 L*1 Symbol table

COMMON BLOCK: /TYPCOM/

PURPOSE: Contains pointers to each statement type recog-

nized by SAP.

Dimen-
Variable sion Tvpe Definition

IZASFD I*2 Arithmetic Statement Function
Definition

IZASSI I*2 Assignment Statement

IZACCE I*2 ACCEPT

IZASGN I*2 ASSIGN

IZBACK I*2 BACKSPACE

IZBLOC I*2 BLOCKDATA

TZBYTE I*2 BYTE

IZCALL I*2 CALL

TZCHAR I*2 CHARACTER

IZ2CLOS I*2 CLOSE

IZCOMM I*2 COMMON

IZCOMP I*2 COMPLEX

IZCONT I*2 CONTINUE

IZDATA I*2 DATA

IZDECO I*2 DECODE

IZDEFI I*2 DEFINEFILE

IZDELE I*2 DELETE

IZDIME I*2 DIMENSION

IZ2poucC I*2 DOUBLECOMPLEX

I1ZDouB I*2 DOUBLEPRECISION

IZDOWH I*2 DOWHILE

IZDOXX I*2 DO

IZELSI I*2 ELSEIF

IZELSE I*2 ELSE

IZ2ENCO I*2 ENCODE

IZENDD I*2 ENDDO

IZENDF I*2 ENDFILE

IZENDI I*2 ENDIF

4-32

Dimen-

Variable sion Type Definition
IZENDX I*2 END
TZENTR I*2 ENTRY
1ZEQUI I*2 EQUIVALENCE
TZEXTR I%2 EXTERNAL
IZFIND I%2 FIND
IZFORM I*2 FORMAT
IZFUNC I*2 FUNCTION
I1Z2GOTO I%2 GOTO
I%ZSTIF I%2 LIF
IZIFXX 1*2 IF
I1ZIMPL I*2 IMPLICIT
IZINCL I*2 INCLUDE
IZINQU I*2° INQUIRE
IZINTE I*2 INTEGER
IZINTR I%2 INTRINSIC
1ZLOGI I%2 LOGICAL
1 ZNAME I*2 NAMELIST
IZOPEN ©I*2 OPEN
IZPARA I*2 PARAMETER
IZPAUS 1*2 PAUSE
IZPRIN 1#2 PRINT
1%ZPROG CI*2 PROGRAM
IZREAD I%2 READ
IZREAL I%2 REAL
IZRETU 1%2 RETURN
IZREWI - I%2 REWIND
IZREWR I%2 REWRITE
IZSAVE 1%2 SAVE
1%STOP i*2 STOP
IZSUBR I#2 SUBROUTINE
IZTHEN , I*2 THEN

4-33

Dimen-

Variable sion Type Definition
I1Z2TYPE I*2 TYPE
IZWRIT I#*2 WRITE
IZBADK I*2 undecoded
IZUNLO I*2 UNLOCK
IZVIRT I*2 VIRTUAL,

COMMON BLOCK: /WTSCOM/

PURPOSE: Contains the statistical weights used to compute

the SEL complexity.

Dimen-
Variable sion Type
MAXWTS I*2
IZWTS I*2
TOPLWT R*4
WEIGHT 256 R*4

Definition

Number of elements in weight
array (256) '

Boundary alignment variable
Computed module weight

Weighting factors for SEL
complexity computation

4-35

COMMON BLOCK:

PURPOSE:.

operator analyses.

Contains

/XFRCOM/

the information on module transfer

Dimen- .
Variable sion Type Definition

LUGOTO I*2 Pointer to header node of uncondi-
tional GO TO list

LCGOTO I*2 Pointer to header node of computed

. .o GO TO list

LAGOTO I*2 Pointer to header node of assigned
GO TO list

LERR I*2 Pointer to header node of ERR =
list

LEND I*2 Pointer to header node of END =
list

LPROC I*2 Pointer to header node of proce-
dure alternate return list

LXFR 512 I*2 Cells of transfer list

NAVAIL I*2 Pointer to next available cell

NPOT I*2 Pointer to first cell of
'‘potential' node _

KPOT I*2 Pointer to 'length' cell of
potential node

LNULL I*2 Value used for end-of-list (0)

MAXXFR I*2 Total length of transfer list

(512)

SECTION 5 - SAP FILE STRUCTURE

Table 5-1 contains a list of the files used in the SAP sys-
tem, Files named KEYWORDS.SAP and WEIGHTS.SAP are found in
the directories (VAX) DBBl:{TOOLS] and (PDP) DBLl:{213,2].
All other files are located within the user's directory.
Listings of either the default or sample files aré presented
in the SAP user's guide (Reference 9) for the keywords,
weights, module statistics, global statistics, data base,

and sequential output files.

Figure 5-1 shows the relationship between the SAP software
and the SAP data files. Each data flow path to a file is
labeled with the logical unit name and number. A data flow
path which is dependent upon a particular SAP control switch
setting (/XX or /-XX) is indicated. Most of the files and
processes shown are also labeled with the name of the sub-
routine (Section 3) that is primarily responsible for the
process or file.

Detailed descriptions of each file used by SAP are presented
on the following pages. The descriptions are arranged by
logical unit number in ascending order (as presented in
Table 5-1}).

Table 5-1. SAP File Names and Usages

Logical
Unit) File
Variable LUN 1/0 Name Use

LUNINN 1 I FOROO1.DAT Source input contain-
ing INCLUDEs

LUNINN 2 I FORQOZ2.DAT Included source
(level one)

LUNINN 3 I FOROO3.DAT Included source

) (level two)

LUNINN . 4 I FOROG4.DAT Included source
(level three)

LUNKEY 1 I KEYWORDS.SAP Keywords file

LUNSOR 2 FORQ002.DAT Source input file

LUNWTS 3 I WEIGHTS.SAP: Weights file

. or
User supplied

LUNOUT 4 Not used ,

LUNCIN 5 I FOROO5.DAT User terminal

LUNLST 6 o) FOR006.DAT Error message and
source listing file

LUNMSS 7 0 FOROO7.DAT Module statistics f£ile

LUNGSS 8 0] FOR0O08.DAT Global statistics file

LUNDB 9 I/0 User supplied Data base file

LUNDIR 10 I User supplied Indirect file

LUNSCI 11 I/0 FORO11l.DAT Scratch file

LUNSEL 12 0 ALL.SAP Sequential file

5-2

URIGINAL PAGE I8
OF POOR QUALITY

LOADK USRWTS

S

KEYWORDS
SAP

READER

WRTSEL

AP SL_ LUNSEL U2 | a0 enn

INCLUD

EXPAND
INCLUDES

HALREP STATM . STATG p REPHAL
e || v aome, | | pms
ANALYSIS STATISTICS STATISTICS SUMMARY

_.

PRINTER
FORO07 VIA SYSTEM FOROGE
-DAT UTILITY) .DAT

.\/—

Figure 5-1. SAP Data Flow Diagram

B796/82

FILE (Logical Unit): FORO01l.DAT, FOR002.DAT, FOR003.DAT,
FORO04.DAT (LUNINN)

DEVICE/DIRECTORY: User's default

PURPOSE: Internal scratch files to expand INCLUDE state-
ments when the /XP switch is set to on. When an INCLUDE is
read, the included file is opened, read, and written to unit
FORO11.DAT. The INCLUDE files can be nested to a depth of
three INCLUDE statements.

FILE OPERATION RY SUBROUTINE:
Open INCLUD
Close INCLUD
Read INCLUD

FILE LAYOUT:

i. Format: Formatted, variable length
2. Access: Seqguential

FILE (Logical Unit): KEYWORDS.3AP (LUNKEY)

DEVICE/DIRECTORY: VAX-11/780 DBBl: [TOOLS]
pDP-11/70 DBl:[213,1}]

PURPOSE: Allows flexibility in classifying statements and

in marking statements executable or nonexecutable.

FILE OPERATION BY SUBROUTINE:

Open LOADK
Read LOADK
Close LOADK

FILE LAYOUT:

1. Format: Formatted; fixed length
2. Access: Seguential

3. Record Length: 32 bytes

4, Record Description:

Format Byte

Code Position Contents

L3 1-3 Statement executability flag

I3 4-6 Obsolete

I3 7-9 Obsolete

I3 10-12 Statement class

I3 13-15 Number of characters in the keyword
1X 16 Blank

1Al 17-32 Keyword

FILE (Logical Unit): FORCOZ2.DAT (LUNSOR)
DEVICE/DIRECTORY: User's default

PURPOSE: The source code that is to be processed by SAP is
read from this unit. If the /XP switch is set to on to ex-
pand INCLUDEs, the input source is read from this f£ile and
the expanded source is written to a scratch file and then
read. (See the description of file FOR011.DAT.)

FILE OPERATION BY SUBROUTINE:

Open CINPUT
Read GLINE
Close SAPMAIN

FILE LAYOUT:

1. Format: Formatted, variable length

2. Access: Seguential

FILE (Logical Unit): WEIGHTS.SAP (LUNWTS)

DEVICE/DIRECTORY: VAX-11/780 DBBL1: [TOOLS]
PDP-11/70 DBl:[213,2]

PURPOSE: Contains a weight or weights to be applied to a

particular statistic or range of statistics. If the user

specifies a weights file with the /UW switch, that.weights
file must match the file layout given below.

FILE OPERATION BY SUBROUTINE:

Open USRWTS
Read USRWTS
Close USRWTS

NOTE: These operations apply to both the default and
user specified weights files.

FILE LAYOUT:
1. Format: Formatted; fixed length

2. Access: Sequential
3. Record Length: 16 bytes

4. Record Description:
Format Byte
Code Position Contents
I5 1-5 Lower limit of module statistic number
range
I5 6-10 Upper limit of module statistic number
range
F6.1 11-16 Statistical weight assigned to all

statistics in the specified range

FILE (Logical Unit): FOROO5.DAT (LUNCIN)
DEVICE/DIRECTORY: User's default

PURPOSE: Assigned to the user input device. The user's
commands are read from this unit.

FILE OPERATION BY SUBROUTINE:
Read INPUT
"FILE LAYOUT:

1. Format: Formatted, wvariable length

2. Access: Sequential

5-8

FILE (Logical Unit): FOR006.DAT (LUNLST)
DEVICE/DIRECTORY: User's default

PURPOSE: Digplays any error messages encountered during SAP
processing. If the /LI switch is set to on, the source code
processed by SAP is listed on this unit.

FILE OPERATION BY SUBROUTINE:

The following operation is performed only when the /LI

switch is set to on:
Write GLINE

Almost all SAP routines contain code to write error or
warning messages to this file. The following operation is

performed before SAP is terminated:
Close SAPMAIN
FILE LAYOUT:

1. Format: -Formatted, variable length
2, Access: Seqguential

5-9

FILE (Logical Unit): FOROO7.DAT (LUNMSS)
DEVICE/DIRECTORY: User's default

PURPOSE: Module statistics are written to this unit. The
statistics are added to this unit as each module is proc-
essed. The operator/operand summary is written to this file
when the /HL switch is set to on.

FILE OPERATION BY SUBROUTINE:
Write, PRTHAL, HALREP, STATG, PRTXFR
"FILE LAYOUT:

1. Format: Formatted, variable length
2. Access: Seguential

5-10

FILE (Logical Unit): FOROO8,DAT (LUNGSS)
DEVICE/DIRECTORY: User's default

PURPOSE: Module directory, global summary, and project
summary are written to this file.

FILE OPERATION BY SUBROUTINE:
Write 'COEF, STATG, MDIRY, REPHAL
FILE LAYQUT:

1. Format: Formatted, variable length
2. Access: Sequential

FILE (Logical Unit): SAP Data base (LUNDB}
DEVICE/DIRECTORY: User's default

PURPOSE: Stores statistical data, when the /DB switch is
set to on. The statistics are gathered for each module

processed while the /DB switch is on. The correlation
summary is produced from the contents of this file.

FILE OPERATION BY SUBROUTINE:

Open =pﬁFINE, WRTDB
Read. - WRTDB

Write DEFINE, WRTDR
Close DEFINE WRTDB

FILE LAYOUT:

1. Format: Formatted, fixed length

2. Access: Direct
3. Record Length: 80 bytes
4. Record Description: (2 records per module)
Header
Record
Format Byte
Code Position Contents
1X 1 Blank
14 2-5 Maximum records allowed in this file

6-80 Blank filled

First
Record
Format Byte
Code Position Contents
1X . 1 Blank
Al 2 Project Identifier
8Al 3-10 Module name
11-80 Blank-filled

5-12

Second

Record
Format Byte

Code Position Contents

iX 1 Blank

I3 2-4 Number of arguments passed to the module

13 5-7 Number of variables in COMMON blocks

I3 8-10 Number of comment lines ’

I2 11-12 Number of COMMON blocks

I4 13-16 Number of executable statements

I2 17-18 Number of external references
(subroutines and functions)

I2 19-20 Number of X/0 statements

I4 21-24 Number of source lines

i3 25-27 Number of unique operators

I3 28-30 Number of unigue operands

I4 31-34 Total number of operators

14 35~38 Total number of operands

I3 39-41 Total number of (IF and .IF) statements

I3 42-44 Total number of decisions

13 45-47 Sum of count of argument variables
(including ENTRY arguments) and count of
referenced COMMON variables

48-80 Blank-filled

5-13

FILE (Logical Unit): FORO01l0.DAT (LUNDIR)
DEVICE/DIRECTORY: User's default

PURPOSE: Gives the user the capability to use an indirect
command file as input to SAP,

FILE OPERATION BY SUBROUTINE:

Open INPUT
Read INPUT
Clpse INPUT

FIL.LE LAYOUT:

1. Format: Formatted, variable length

2. Access: Sequential

FILE (LOGICAL UNIT}: FORO11L.DAT (LUNSCL)
DEVICE/DIRECTORY: User's default

PURPOSE: The expanded source code is written to this unit
when the /XP switch is set to on. The logical unit variable
is then redefined as LUNSOR for SAP processing of @he
current file., The expanded source code is deleted after

processing is complete.
FILE OPERATION BY SUBROUTINE:

Open INCLUD
Write INCLUD
Close INCLUD

FILE LAYOUT:

1. Format: Formatted, variable length
2. Access: Sequential

5-15

FILE (Logical Unit): ALL.SAP (LUNSEL)
DEVICE/DIRECTORY: User's default

PURPOSE: Stores statistical data to be used by other
analysis programs. When the /SL switch is set to on, the
file is either created or extended. One record for each
module is written to this file while the /SL switch is on.

FILE OPERATION BY SUBROUTINE:

Open DEFSEL, WRTSEL
Write WRTSEL
Close SAPMAIN

FILE LAYOUT:

1. Format: Formatted, fixed length
2. Access: Sequential

3. Record Length: 78 bytes

4, Record Description:

Format Byte

Code Position Contents

8al 1-8 Project name

a2 9-10 Project prefix characters

6A1 11-16 Module name

13 17-19 Number of arguments passed to module

I3 20-22 Number of comment lines in module

I4 23-26 Number of executable statements in module
i2 27-28 Number of I/0 statements in module

I4 29-32 Number of source lines in module

I3 33-35 Number of unigque operators in module

13 36-38 Number of unique operands in module

I4 39-42 Total number of operators in module

I4 43-46 Total number of operands in module

I3 47-49 ?otal number of (IF and .IF) statements

in module
I3 50-52 Total number of decisions in module

5-16

Format Byte
Code Position Contents

I3 53-55 Sum of count of argument variables
: {including ENTRY arguments) and count of
referenced COMMON variables '

I3 56-58 Number of common block variables used in
module

I2 59-60 Total number of DO & DOWHILE statements
in module

I3 61-63 Number of Function references in module

I3 64-66 Number of structured statements in module

I3 67-69 Number of variables passed to external
references in module

13 70-72 Number of assignment statements in module

I3 73=-75 Number of CALL statements in module

I3 76-78 Number of FORMAT statements in module

5-17

SECTION 6 - SYSTEM GENERATION

The SAP system can be generated from the source code by exe-
cuting a few commands. The system generation procedure for
the PDP-11/70 is described in Section 6.1, and for the
VAX-11/780 in Section 6.2.

6.1 PDP-11/70 SYSTEM GENERATION

To generate the SAP system for the PDP-11/70, only three
command procedures need to be executed: GENFPPSAP.CMD,
GENSAP.CMD, and SAP.CMD. Figure 6-1 is a listing of the
GENFPPSAP.CMD command procedure used to preprocess the
structured SAP source code. The OD: precedind each routine
name tells the FPP task image where each source code file is
located. An assignment, (for example: > ASN OD=DBO:),
before executing the GENFPPSAP.CMD. is necessary. Two files,
LOADK.FPP and USRWTS.FPP, may need to. be edited to change
the disk (DBl) and UIC ([213,3]) to reflect the disk and UIC
in which the keywords and weights files reside. Figure 6-2
is a listing of the GENSAP.CMD command procedure, which com-
piles the SAP preprocessed source code. Figure 6-3 is a
listing of the SAP.CMD command procedure that generates the
SAP task image. Figure 6-4 is a listing of the SAP overlay
used by the SAP.CMD task build command procedure. The
PDP-11/70 SAP system is generated by executing the following
commands in the sequence shown:

> @GENFPPSAP
> BGENSAP
> @SAP

6.2 VAX-11/780 SYSTEM GENERATION

To generate the SAP system for the VAX-11/780, only two
command procedures are exXecuted: GENFPPSAP.COM and
GENSAP.COM. Figure 6-5 is a listing of the GENFPPSAP,COM

command procedure. This command procedure preprocesses the

6-1

http:GENFPPSAP.COM
http:GENSAP.COM
http:GENFPPSAP.COM

structured SAP source code. Before executing this command
procedure, two routines, LOADK.FPP and USRWTS.FPP, may nee
to be edited and the disk (DBBl:) and UIC [TOOLS] assign-
ments changed to reflect the disk and UIC containing the
keywords and weights files. Figure 6-6 is a listing of th
GENSAP.COM command procedure. This command procedure com=-
pliles the source code, generates an object module library
the SAP system, and generates the SAP executable task
image. The VAX-11/780 SAP system is generated by executin
the followiﬁg commands in the sequence shown:

$ Q@GENFPPSAP
$ Q@GENSAP

http:GENSAP.COM

_— S
sod ":f ?RGE;

ORIGINAL b,

OF.‘ PbOB‘ 95%{‘! ¥ ‘;é}

15-JUM-22 GEHFPRSAP . CHD - PRAGE 1

: BEENFPPSAR

: THIZ COIMAHD PROCEDURE WILL PREPRNCESS
+ THE SAP FORTRAM ROUTINES

THERE WILL BE TLO IATA SETS RENERATED PER ROUTIHE
ROkGFLS (LISTINGY AH A Gk FTH (FRRTRAM

MOTE: BEFDORE EXECU? IHG THIS COMMAHD PROCEDURE
THE USER SHOULD EDI ROUTIME LOADK.FPP BND CHANGE
THE CUIC] OM THE OFER STATEMENT FOR THE REYWORDS.SAF FILE
AMD UM THE WEIGHTS.SAF FILE IM RUUTIHE USRWTS.FPF

FFFP BD:ADDFUT
FPF QD:ASGNID
FPP OD:CIMPLUT
FPPM OD:CHIRFR
FPE OD:COED
FPP OD:CGLGLE
FPP OD:CHIPAR
FPP O CAMPIT
FPE OD:CTIBLK
FPP OD:CT20LK
FFP OD:CISELK
FRP DI:CTABLEK
FPP OD:CTSBLK
FFPt On:DEFIHE
FPP OD:DEFSEL
FPF 0OD:DELBLE
FPP OD:DLIBLK
FPE OD:DSCAM
FFPP ONERBFDT
FFP 0D ERRMSG
FRP* OD:ESTIN
FPP OB:FIMNDIT
FPP NR:FLYAPI
FPF OD:FHHATE
FPP OD:GARCOL
FFF OD:GLLEBLK
FFPP Nb:GLIHE
FPF Oh:HALREF
FPF OD:HOPRH
FFP OD:HDOPTR1
FPP SD:HORPTRZ
PP OR:HPRHDS
FRF OR:HFRI1
FRE QR:HPRZ
FPFP QD :HFR3
PP QD:HSCAN
FRF DD:HEHBLK
FPP OL: IHASH
FPP OD: TMFBLK
FPP 0D: IMCLUD
FPE Qb IMITRH
FPE oD INITH

Figure 6-1. SAP PDP-11/70 Preprocessing Command Procedure
(1 of 3)

"\- AGE ‘s
ORIGINAL PRYE
OF POOR QUALITY

15-Jup-22 BEHFRPRSAP . CHD PAGE 2

PP OD: INITH
FPP 0D: IMLBLK
FPP D: [HFRLK
FFP UD: INPUT
FPF OD: IHTGRA
FPF 0D:KEYALK
FPP OD:KILLF -
FPP 0D:LAREL
FPT OD:LHELST
FFP 0D:LELELK
EPP §D:LDTRLK
FPF OD:LHKPOT
FEP 0D:L0ADK
FPP 0D:LOCCHR
FPP 0D: CODKAH
FPP UD:LOOKHD
FEF OD:LOAKK
FEP ND:LO0KY
FFP OD:LO0KS
FRP 0D :LLUNBLK
FEP 0D:MEHPLX
FPP OD:MDIRY
FPP OD:MODELK
FPR O0:MELPOT
FPR OD:MUMER
FFF OB:0PBLE
FEP OI:OPERAT
FFP OD:PAGELK
FFP 0D:PRAGER
FPP OD:POKE
FPP OD:POKES
FFP OD:FRASEN
FFFP OD:PRASS
FPP QD:PRCALL
FPF OD:FFCHTL
FPP OD:FRDOS
FIP 0D :PELOTO
FPP OD:PRIFS
FPP OD:PR IHPL
FFP OL:PRIOD
FPP 0D:PPRET
kPP 0D:FRSPECC
FPP OD:FRSTRC
FPP OD:FRSUBS
FPP QD:PRTHAL
FPF 0D:PRTOKE
FPP OD:PRTXFR
FFP 0D:FRTYPE
FPF OD:READER
FFP (D:REFHAL
EPP 0OD:SAPMYIN
FFP OD:SELBLK
FPP DD :SEPLHR
FPP 0D:5TATE
FPP DD:STATG

Figure 6-1. SAP PDP-11/70 Preprocessing Command Procedure
(2 of 3)

ORIGINAL PAGE IS
OF POOR QUALITY

15-JUM-232 GENFPPSAR .CHD FPRGE 3

FPP DD:STATH
FRE OD:STDUMP
FPF OD:STEELK
FRP OD:SWIRLK
FPP OD:5yHELK
FPP OD: TABCCC
FFE ND: TAGDLES
FPP OD:TESTK
FPF OD:THPBELK
FEP 0D:7IYPE

FPP OD:UCPLXI
FFP OD:UCPL>2
FPP QL :USREWTS

FPP 0D :WTSBLK
FFR OD:XFRBLK

Figure 6-1. SAP PDP-11/70 Preprocessing Command Procedure
(3 of 3)

http:GEHRPPSAP.CD

ORIGINAL PAGE IS
OF POOR QUALITY

15-JUN-82 GEHSAR .CHMD PaGE 1

EGEMSHP

THIS COMMAND PROCEDRUPE WILL COMPILE
THE PPERRDCESSED STRUCTURED CODE FOR
THE SQP.ExE LBAD MODULE

FOR ADLPOT . NRDPOT=ADRDPOT
FOR ASGHMIDL.ASGHMID=RSLHID
FOR CINPUT.CINPUT=CINPUT
FOR CHTMFR,CHTXFR=CHTHFR
FOR COFF .COEF =CUEF
FOR COLRLE.COLGLR=CTOLGLE
FOP COMPAR.COMPAR =COMFAR
FOR COFIPWT . COMPLT=COMPLIT
FOR LT1BLK.CTIBLK=CT1BLK
FOR CT2BLK,.CTZBLK=CT2BLK
FOR CTZELK,CTSBLK=CT3BLK
FOP CTABLE.CTABLK=CTACLEK
FOR CTSELK.CTSBLK=CTSBLK
FOR DEF IME.DEFIHE=DEF THE
FOR PEFSEL . DEFSEL=DEFSEL
FOR DRLSLK.DELBLK=DELELYK
COR DLIRLK.DLIBLK=DLIRLK
FOR DSCaH . DSCAM =DSCAH
TR ERAPDT.ERAPOT=ERAMFDT
FOR CRRMSE. ERRMSG=ERRFMSG
FOR ESTIM LESTIM =ESTIM
FOR FIMDIT.FINDIT=FINDIT
FOR FLMVMARTLFLYAR I=FLVARI
FOR FUHAME . FHHAME =CNHAFE
FOR GNRCOL ., GARCOL =GARCOL
FOR? GLREBELY .GLBBLK=GLBBLK
FOR GLINE .GLIME =GLIME
FOR HALREF.HALREF=HALREF
FOoR HOPRY CHOFRH =HOPRH
FOR HOPTR1 HOPTRI=HOPTR1
fOR HOPTRZ.HOPTRZ=HOPTRZ
FOR HPR1 .1IPR1 =HPP!
FOR HPFRZ2 L.HPRZ =lPRZ
FOR HFRZ .HFR3 =HPR3
FOR HPRNDS, HPRMDS=HPRHDS
FNR H5CAM . HSCAM =HSCAM
FOR HSIIBLK,HSHBLK=HSHELK
FOR IHNSH . IHASH =THAZEH
FOR IMPELK. IMPBLK=IMPBLK
FOR THCLUD. INCLUD=IMCLLUE
FGR IHITG . IMITE =IMITGH
FOR INITM JIHITH =IMITH
FOR IHITH L INITH =IMITH
FOR IHLBLK, IHLEBLK=THLBLK
FOR THPELK. INFRLK=INFBLK
FOR INFUT . IHPUT =InPUT
FOR INTGR4. INTGRA=INTGR4
FOR KEYELK.KEYBLK=KEYRLK

Figure 6-2. SAP PDP-11/70 FORTRAN Compilation Command
Procedure (1 of 3)

15-JuM-82 GEHSAF .CHMD PAGE z

FOR KILLP .KILLIM =KILLP
FOr LABEL .LARBCL =LABEL
FOR LABLST,LABLST=LABLST
FOR LBLBLK,LRLBLK=LALBLE
FOR LDTELE.LDTBLK=LDTBLK
FOR LHKPBT.LHKPOT=LHKPOT
FOR LOADK .LONDK =LOADK
FOR LOCCHR, LOLCHR=LOCEHR
FOR LOOKAR . LODKKH=LOCKOH
FOR LOGKHD, LOOKMDB=L0CKHD
FOR LOOKK .LOOKE =LODKK
FOR LOOKP ,LOOKP =LOOKP
FOR LOOKS .L0OOKS =L0OKS
FOR LUOMBLE . LUMNBEK=LUNELK
FOR MEMPL K, MOPP LY =MET P
FOR HDIRY TIDIRY =MDIRY
FOR TODBLK . MIBELK=MIDBLK
FOR MEWPOT.HEWPOT=HELFOT
FOR HUMER .HULIER =NUIER
FOF OPBLE (OPELK =0PBLK
FOR OPERAT.OPLCRAT=0PERAT
FOR FAGBLEK.PAGBLK=PAGELK
FOR PAGER .MAGER =PAGER
FOR POREP .POKEF =FOKEP
FOR POKES .POKES =POKES
FOR PRASGH.PRASGM=PRASGH
FOR PRAS: .PRASS =PRASS
FOR PRCALL .PRECALL =PRCALL
FOR PRCHTL.PREHTL=FRCNTL
FOR PRBOS (PRIDOS =PRDOS
FOR PRGOTO.PRGOTO=PRGOTO
FOR PRIFS .PRIFS =FRIFS
For PRIMPL,PRIMPL=FRIMPL
FOR PRI .PRID =RRID
FOR PRRET .PRRET =FRRET
FOR PROPEC. PRSPEC =PRSPEC
FOR PRETRC.PRSTRC=PRSTRC
FOR FPREUBS.FREUCS=FRSLBS
FOR PETHAL, PRTHAL=PRTHAL
FOR PRTOKE.FPRTOKE=PRTIKE
FOR PRTHFR.FRTHFR=FRTHFR
FOR PRTYPE.PRTYPE=PRTYFE
FIOR READER.READER=READER
FOR PEPHAL . REFHAL =REPHAL
FOR SAPFAIM. SAPME TH=SAPMA TN
FUR SELRLK.SELEBLK=SELEBLK
FOR SKPCHR.SKPCHR=SKPCHR
FOR STATE .STATE =STATE
FOR STHTG .5TATG =5TAThL
FOR STATHM .STATH =5TATH
FOR STRURF. STOUNR=57DLIR
FOR STEGLK,STEBLK=STEELK
FOR SLHELK. SLEBLE=SWIRLK
FOR SYMBLK. SYMBLK=SYTMELK
FOR TABCCC. TABCCC=TRRCLCC

Figure 6-2. SAP PDP-11/70 FORTRAN Compilation Command
Procedure (2 of 3)

ORIGINAL PAGE 19

OF. POOR QUAL‘TY

- 15=-JUN-82

FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR

Figure 6-2.

TABLES, TRELES=TADLES
TESTK .TESIK =TESTK
TvPBLE. TrPBLI=TYPELK
TVYFE .TWPE =TYPE

DCPLAT LUCPLR =UCPLX
UCPLM2 UCPL X2 =UCM 2
USRMTS, USELTS =U2ELITS
LRTDR .WRTDE -LRETDE
LRTSEL .LRTSEL =LPTSEL
WTSBLE , LITSBLK =LTSBLK
HFRELK . ®KFRELK=XFRBLK

GEHSHP .CMD

PAGE

3

SAP PDP~11/70 FORTRAN Compilation Command
Procedure (3 of 3)

ORIGINAL PAGE ,E@’
OF POOR QUALI gt

15-JUM-a2 SAF.CHD FPAGE 3

: COMMANHD FILE TO BUILD SHF TASK

SAP.SAR-SH—5P=5AR-MP
ALTFIL =8

UMITS=12

As5G=11:5:%
NSG=8Y:11:2:3:4:7:8
o

Figure 6—-3. SAP PDP-11/70 Task Building Command Procedure

ORIGINAL_PAGE 18 *
OF POOR QUALITY

15-JUN-82 SAP.0ODL PAGE i

. SAP (V2> DVYERLAY
MOTE: READER AMD GLIME CAMHOT BE OVERLRID
.ROOT ROOT—k{AA1.AAZ.AAR3.AR4,ARS,AAL, AAT)

AT TIRTIRT]

RODBT: .FCTR SAPMAIN-COMPAR-IHASH-LOO0KP-ERAPGT-ADDPOT-READER-R}
Rl {FCTR PAGER-POKEP-I_.DOKAH-LOOKMD-GL INE-HSCAN-TABCCC-ESTII-R3
R3: FCTR CTIBLK~-CTZ2BLK-CTIELK~LCT4BLK-R4

R4 .FCTR CTSBLK-DELBLK-DL IPLK-GLEBLK-RS

RS: FCTR HSHBELK-IHLBLK-INPBLK-KEYBLK-RE

Rb: FCTR LBLBLK-LDTBLK-LUHBLK-1MDDBLK-R?

R¥: .FCTR OFBLK-PAGBLK-STEBLK-SIWJIBLK-RS

RB: LFCTR SYMBLK-TYPBLE-WMTSBLK- IMPBLK-XFRBLK-SELBLK
AAl: FCTR LOADK-CINPUT-(INCLUD-USRWTS-LOLCHR-INPUT-A1
Al: .FLCTR SKPCHR-IHNAME-DEFSEL-DEF IME-FINDIT)

AR2: LECTR INITE-INITHM-INITH-HELPOT-LMKPOT

AR3: LFETR DSCAN-GARCOL-HOPRH-HOPTR!-Bl

Bi: .FCTR HOPTR3~-IHTGR4-KILLP-LABEL -B2

R2: JFCTR LABLST-LOOKK-LOOKS-MUMER-ERRMSG-B3

B3: LFCTR POKES-ASCGHID-STATE-TYPE-BA

B4: .FCTR OPERAT-PRTOKE-TESTK-(CC!.CC2)

CCi: .FCTR PRASGH-PRCHTL-PRIO-PRSTRC-CZ2

c2: LFCIR (PRGOTO,PRRET.PRIFS.PRDDS,.PRASS, PRCALLY
CC2: .FCTR FLVARI-PRSPEC-PRSUBS-PRTYPE-PRIMPL

Afd: JFCTR STAIN-TABLES-5TDULP

ARS: FCTR MCHPLX-CHTRFR-UCPLX1-UCPLXZ-A4

kN .FCTR HPRMDS-HPR1-HPR2-HPR3-COMPWT-AS

A9 LFCTR (PRTHAL-WRTDB-LRTSEL)

fA6: LFCTR COLGLB-STATG-HALREP-MDIRY-PRTKFR

ARY : .EﬁER REPHAL - {CUEF)

Figure 6-4. SAP PDP-11/70 Overlay Description

o)}
|

10

http:AI.AA2.A3.A4,ARA5,AAG.AA

" SRR SRR
OF POOR QUALITY

(
-y
AeMAY=f? GENFPPSAP,CNH PAGE 1

SRT VERTFY
RGENFPP3AP

THIS CNHMAND PROCEDURE WILL PREPRQCESS
THF SAP FORTRAM ROUTTNES

THERF WILL BE TW0O DATA SETS GENERATED PER ROUTINF
A * ,FLS (LISTING) AN A *,FTN (FORTRAM)

NQOTE: BEFORE EXECUTING THIS COMMAND PROCEDURE
THE USFR SHOULD ¥DY RONTINE LOADK,FPP AND CHANGE DISK AND
UIC NN THE OPEN STATEMENT FOR THE KEYWORDS,SAP FILE
AND ON THE WEIGHTS,SAP FILE IN ROUTINE USRWIS,FpP

el i T T e T S T N T T

Gt inon

RUN FPP
APDPQOT
ASGNIN
CTINPUT
CHMTAFR
COEF
COLGLB
CNNKPAR
CAMPYT
CT1RLK
CTZRLK
CT3IARLK
CT4RLK
CTS5BLK
DEFINE
DEFSEL
DELRLK
PLIRLK
DSCAN
ERAPQT
ERRMSG
ESTIM
FINDIT

- FLVARY
FMNAME
GARCODL
GLBRBLK
GLINE
HALREP
HNPRYN
ROPTR?
HNPTRI
HPRNDS
HPR1
HPR2

Figure 6-5. SAP VAX-11/780 Preprocessing Command Proéédure
(L cf 3)

(=2
|

11

ORIGINAL PAGE 18
OF POOR QUALITY

A=AV eaD GENFPPSAR,CNM PAGE 2

HPR3
HECAWN
HSHRLK
IHASH
I¥PRLK
INCLUD
INITG
INITM
IMITY
INLBLK
JINPBLK
IvpnT
- INTGRS
KRYBRLK
"KILLP
LABRL
LARLST
LRLRLK
LDTBLK
L¥YKPQT
LAANK
LACCHR
LNQKAH
LNQKK
LOQKND
LAk
LACKs
LINALK
MCeMPLX
MRIRY
MNDRLK
AEWPOT
NUMER |
CPBLK
OPERAT
PAGRLX
PAGER
PNKEP
PRKES
PRASGY
PRASS
PRCALL
PRCNTL
PRDNAS
PRGOTN
PRIFS
POIMPL,
PRIN
PRRET
PRSPEC

-

t

Figqure 6-5. SAP VAX-11/780 Preprocessing Command Procedure
(2 of 3)

http:GENFPPSAP.CM

ORIGINAL PAGE |5 .
OF POOR QUALITY

R=MpY=R2 GENFPPSAP,COM PAGE 3

PRSTRM
PRSURS
PRTHAT,
PRTOKE
PRTXFR
BPRTYRE
READER
REPHAL
SAPMAIN
SELRLX
SKPCHR
STATE -
*STATG
STATM
STDHMP
STERLK
SWIRLK
- SYMBLK
- TABCCC
TABLES
TESTK
TYPBLK
TYPE
urepLXxid
UrtpLXx?2
USRWTS
WRTINRB
#RTSEL
WTSRLK
XFRBLK

Figure 6-5. SAP VAX-11/780 Preprocessing Command Procedure
(3 of 3)

GE 18
|GINAL PA

SeMAY=A? GENSAP,COM PAGE 1

SET VERIFY
AGENSAP

THIS COMMAND PROCEDURE WILL COMPILE AND LINK

BR A DVNBBOBNRARODBBLOOBDORBDOABOBROLNRANONBOBOOADNN AN

G Bem don D gun g

FRR/NNIS
FAR/NDIS
FNR/NOI4
FNR/NNIA
PAR/NNTIA

FOR/NOIA"

FNR/NOTIA
FOR/NNIA
FOR/NNTA
FOR/NNIA
FOR/NALA
FAR/NAOT4
FOR/¥NNIA
FOR/NDIA

FOR/NDIA

FOR/NOIA
FOR/NNI4
FAR/NNIS
FOR/NALS
FNR/NALA
FAR/NATS
FOR/NGIA
FOR/NMIA
FAR/NNIA
FAR/NOI4
FOR/NNI4
FOR/NOIS
FAR/NNIS&
FOR/NNI4
FAR/NNIS
FOR/NNT4
FOR/NOI4
FOR/NNIA
FAR/NNI4
FOR/NNI4
FAR/NNIA
FOR/NNIA
FRR/NNI4
FNR/NNIA
FOR/NNI
FOR/NOI4
FOR/NNI4
FAR/NOI2

ADDPOT,,FTN
ASGNID,FTN
CINPUT,FTN
CNTXFR,FTN
COEF,FTN

COLGLB,FTN
COMPAR.FTH
COMPWT . FTN
CTIBLK . FTHN
CT2BLK, FTN
CT3BLK, FTN
CTABLK FTN
CTSBLK,FTN
DEFINE.FTN
DEFSEL,FTN
PELBLK,FTN
DLIBLK.FTN
DSCANFTN
ERAPOT FTH
ERRMSG.FTN
ESTIK FIN
FINDIT,FTN
FNMAME,FTN
FLYARI . FTN
GARCOL,FTN
GLBALK FTN
GLINEFTN

HAT.REP,FTN
HOPRN FTH

HOPTRL ,FTN
HOPTR3 FTN
HPRNDS,FTN

-HPRi . FTN

HPR2 ,FTN
HPR3,FTH
HSCAN,FTN
HSHBLK,FTN
THASH,PTN
TMPBLK FTN
INCLUD, FTN
INTTG,FTN
INITH,FTN
INTTN, FTN

Y

THE SAP,EXE LOAD MODULE

SAP VAX-11/780 FORTRAN Compilation and Linking
Command Procedure (1 of 3)

Figure 6-6.

http:GENSAP.COM

ORIGINAL

PAGE ig-

OF POOR qQuaLITY

ReMAY=R?Z

BRI BNOLOABHOORNR OO OO ONHOAOHON OO LB ONGOOODNRGN

FAR/NNIA
FOR/NAT4L
FAR/NNIA
FNR/NNIA
FAR/NNT A
FAR/NATA
FNR/NNTIA
FOR/NOTA
FNR/NNT4
FNR/NNT 4
FOR/NNL4
FAR/NNTI4
FAR/NOTA
FAR/NBNTI4
FAR/NNTA
FRR/NNIZ
FOR/NOT4
FNR/MNIA
FNOR/NNTI 4
FPR/NNIA
FOR/NNIA
FNR/NNTI4
FAR/NNIA4
FAR/NNT 4
FAR/NNIA
FNAR/NNTA
FAR/NNTA4
FAR/NDIA
‘FOR/NNIA
FAR/NNTA
FAR/NNTA
FOR/NNI4
FAR/NNIA
FAOR/NNI4
FRR/NNI4
FRR/MNLA
FAR/NNIA
FAR/NDI4
FOR/NNIA
FOR/NNIG
FOR/NOI4
FNR/NOT4
FAR/NMIA
FAR/NNIA
FAR/NOL4A
FAR/NNIA
FAR/NNTA
FOR/NNTIA
FAR/NNTA
FAR/NOTA

TMLBLK ,FTH
INPRLK,FTN
INPYT FTNM
TNTGR4,FTH
KEYBLK,FTH
KILLP FTN
LAREL . FTN
LARLST,.FTH
LBLRTK,FTN
LDTRLK,.,FTN
LNKPDRT FTN
LOADK ,FTN
LOCCHR FTN
LONKAH,FTH
LONKK FTN
LODKND,,FTN
LONKP ,FPTN
1.aQnNKs ,FTN
LUMBLK,FTN
HCMPLX,FTN
MDIRY ,F TN
MODBLK,FTH
NEWPOT ,FTN
NUMER FTN
NPRLK ,FTV
OPFRAT,FTN
PAGBRLK,.FTH
PAGER FTNM
POKEP FTN
POKES,FTM
PRASGN ,FTN
PRASS,FTIN
PRCALL,FT™N
PRONTL,FTN
PRNOS,FTM
PRGGTN . FTN
PRIFS,FETN
PRIMPL,FTN
PRIO,FTH
PRRET , FTN
PRSPEC,FTH
PRSTRC,FTN
PRSURS,,FTH
PRTHAL,,FTN
PRTOKE,FTH
PRTXFR,FTN
PRTIPE,FTH
READER,FTN
REPHAL ,FTN
SAPRAALIM, FTN

GENSAP,COM

PAGE

2

Figure 6-6. SAP VAX-11/780 FORTRAN Compilation and Linking

Command Procedure (2 of 3)

http:OPRLK.TM
http:NUMER.FT
http:MDIRY.VT
http:LDTBLK.FN
http:GFNSAP.COM

s=MAY=82

FNR/NNIA
FAR/NOIA
FOR/NNIA
FAR/NNI4
FOR/NNI4
FOR/NNIA
FOR/NNI4
FOR/NNI4
FOR/NOTI4
FAR/NNIA
FOAR/NNIA
FNR/nNNT4
FOR/NOIA
FAR/NOT4
FAR/NOIA
FOR/NGIA
FAR/NNIA
FOR/NOIA
FOR/NN14
FOR/NOTA

FOR/NOIA
1

]

LTIBRARY/CREATR
LIBRARY/INSFRT
LIBRARY/INSERT
LIBRARY/INSERT
LTBRARY/INSERT
LIBRARY/INSERT
LTBRARY/INSERT
LIBRAPY/INSFRT
LIBRARY/INSERT
LIBRARY/IMSERT
LTBRARY/INSERT
LIBRARY/INSFRT
LIBRARY/INSFRT
LIBRARY/INSERT
LIBRARY/INSERT
LIBRARY/INSFRT
LIBRARY/INSERT
LTBRARY/INSERT
!

SELBLK,FTN
SKPCHR,FTN
STATE,FTH

STATG,.FTN

STATM,FTN

STDUNP FTN
STERLK ,FTH
SHIBLK.FTN
SYMauK ,FTN
TARCCC,FTH
TARLES,FTN

ORIGINAL PAGE IS
OF POOR QUALITY

GFRNSAP,COM PAGE 3

TESTK,FTN |

TYPRLK,FTN
TYPE,FTN

UCPLX1,FTH
UCPLX2,FTN
USRWTS.FTN
WRTDR , FTN

WRTSELFTH
WTSBLK,FTH
XFRBUK (FTN

Sap
SaP
SAP
SAP
SaP
SAP
Sap
SAP
SaP
SAP
SAP
SAP
SAP
SAP
SAP
8aP
SAF
SAP

GENERATE THE LOAN MODULE

ADDPOT,ASGNID,CINPUT,CNTXFR ,COEF,COLGLB, COMPAR
COMPWT,CTiRLK,CT2BLK,CT3RLK,CTARLK,CTSRLK,DEFINE
DEFSEL ,DELALK,DLTBLK , DSCAN , ERAPOT ,ERRMSG,ESTIN
FINDIT,FLVARI,FNNAME,GARCOL, GLBELK, GLINE, HALREP
HOPRN,HOPTR1,HOPTR3, HPRNDS,HPR1,HPR2, HPR3 ,HSCAN
HSHBLK, THASH, I¥PBLK, TNCLUD, INITG, INITH, INITN
INLBLK, INPRLK, TNPUT, INTGR4,KEYRLK,KILLP, LABEL
LARLST,LALRLK ,L,DTBLK, LNKPOT ,LOADK , LOCCHR, LNOKAH
LOPKK, LONKND , LOGKP, LADKS, LUKBLK , MCMPLX , HDIRY
MODBLK , NEWPOT , NUMER, NPBLK , OPERAT, PAGBLK, PAGER
POKEP,POKES,PRASGN , PRASS, PRCALL , PRCNTL, PRDDS
PRGOTO, PRIFS,PRIMPL, PRTD, PRRET, PRSPEC ,PRSTRC
PRSURS,PRTHAL,, PRTOKE ,PRTXFR ,READER ,REPHAL
SAPHAIN,SKPCHR,STATE,STATG,STATH,STDIMP

STFBLK, SWIRLK,SYMBLK, TABCCC, TARLES, TESTK, TYPRLK
TYPE,UCPLX1,ICPLX2,USRYTS, YRTDR , WRTSEL
WTSBLK,XFRRLK, SELBLK

LINK/EXRC=52p SAPMAIN,SAP/LIBRARY/INCLUDE={CT1RLK,-

CT28LK,CT3BLK,CT4RLK, CTS58T.K,DELRLK, DLIBLK, GLBRLK ,F5HALK, «
IMPALK,INLBLK, INPRLK,XEYBLK, LALALK, LOTBLK, LINBLK , MONABLK, =
OPBLK,PAGRLK,SELBLK,STEBLK,SWTBLK, SYMRLK , TYPBLK, WTSBALK , XFRBLK)

$
$

- o

Figure 6-6.

SAP VAX/11/780 FORTRAN Compilétion and Linking

Command Procedure (3 of 3)

http:dRrDRD.TN
http:UCPLX2.FN
http:SELBTJK.FN
http:GFNSAP.COM

SECTION 7 - MOVING SAP TO ANOTHER COMPUTER

The entire SAP system is available on distribution tapes
created for either the PDP-11/70 or VAX-11/780 computers.
Programmers installing SAP on these computers are referred
to the first file on the distribution tape, the installation
guide, for an explanation of the tape contents and instruc-
tions for generating the executable program.

The following discussion is directed to programmers who wish
to install SAP on a machine other than the DEC PDP-11/70 or

the DEC VA¥X-11/780.

Moving SAP to another model of a DEC computer that has a
FORTRAN compiler available is a straight-forward operation.
The system generation procedures described in Section 6 will
require major modification only if the operating system is
not RSX-11M for a PDP-11 model or VMS for a VAX-1l model.

When planning the installation of SAP on a non-DEC computer,
three areas should be considered: reading the distribution
tape, compatability of SAP data structures with the target
computer's word size, and the language extensions used in
the SAP source code. These areas are discussed in the

following sections.

7.1 THE SAP DISTRIBUTION TAPES

The SAP distribution tape is available for either the
PDP-11/70 or the VAX-11/780. Each tape consists of text
files that include an installation guide, command procedures
to compile and link the source code {on the respective com-
puter), source code, and required data files. There are no
binary files on these tapes.

The SAP distribution tape is a 9-track, 1600 bit-per-inch,
ASCII, unlabeled tape. The tape is written by the DEC FLX
utility (Reference 12).

The distribution tape also contains either the PDP-11/70 or
VAX-11/780 distribution tape files for the structured
FORTRAN preprocessor (SFORT) (References 8 and 13) since SAP
is written in structured FORTRAN. This document does not,
however, discuss SFORT, except to note that the discussion
in Sections 7.2 and 7.3 also applies to that program.

7.2 SAP DEPENDENCE UPON COMPUTER WORD SIZE

SAP is written with an implicit assumption of running on a
" computer with a l6-bit integer word size and addressability
to the (8~bit) byte level. .

Most mathematical calculations performed by SAP use either
16-bit integers or 32~bit floating point variables. In some
instances, integer wvariables have been éeclared to be

32 bits in length because their value frequently exceeds

32767.

Character manipulation within SAP is performed with
LOGICAL*1 (or BYTE) variables, each of which contains one
character. The structure of the SAP software that examines
source code is based upon the ability to manipulate a single
character at a time. Integer variables are equivalenced to
LOGICAL*]1 or BYTE arrays containing character data to permit
efficient transfer of this data as a block; however, no
character manipulation or mathematical calculations are

performed with these integers.

_ Reference 3, Appendix A, presents a description of the in-
ternal representation of integer, floating point, and byte
data types on the PDP computers. Reference 5, Appendix A,
presents similar information for the VAX computers. It
should be noted that both computers require 16-bit and
32-bit variables to be aligned with 16-bit word addresses.
Other computers may have more stringent requirements for
variables appearing in COMMON or EQUIVALENCE statements.

7-2

7.3 ENVIRONMENTAL CONSIDERATIONS

The environment in which SAP operates has features that may
not be available at other installations. This section

discusses the features most likely to be unavailable.

SAP references four routines supplied by DEC as support for
FORTRAN systems. These routines are shown in Table 7.1,
along with references to the appropriate documentation.

DEC file naming conventions are discussed in References 3
and 5. In some instances in SAP, the file name extension of
'.DAT' is appended to the file name if an extension is not
supplied by the user.

The symbol table used by SAP (Section 2.2.1) contains.
variables in which individual bits are set and read.
Setting and reading these bits is accomplished with the
nonstandard use of the logical operators .OR. and .AND.,

respectively.

Other nonstandard FORTRAN usage is presented in Table 7.2.
An explanation of the SFORT constructs (.IF-ELSE-ENDIF and
DOWHILE-ENDDO) 1is given in Reference 8.

The PDP-11/70 version of SAP is overlayed to execute within
65K bytes of memory. The PDP task builder manual (Refer-
ence 14) and the SAP overlay description (Figure 6-4) can be
used as a starting peint in designing an overlay for other

installations with memory restrictions.

System Routines Used by SAP

Table 7-1.

System Routine Reference 3 (PDP)
ERRSET Section D.6
ISHFT Section 4.1
DATE Section D.4
TIME Section D.16

Reference 4 (VAX)
r*)
Section C.3

Section C.4.1
Section C.4.6

*The VAX implementation of ERRSET is discussed in Refer-

ence 5, Section D.3.3

Table 7-2. Language Extensions Used in SAP

Language Extension Reference 2 (PDP) Reference 4 (VAX)

ENCODE Statement Section Section A.1
DECCDE Statement Section Section a.1
INCLUDE Statement Section Section 1.5
D-Lines Debug Section Section 1.3.3.2
Feature
OPEN Statement
Keywords
TYPE Section Section 9.1.25
RECORDSIZE Section Section 9.1.21
MAXREC Section Section 9.1.15
NAME Section Section 9.1.16
READONLY Section Section 9.1.19
Direct Access Section Section 7.2.1.4
Record Number
Specifier
Octal Constants Section Section 2.3.7
FORMAT Edit
Descriptors
Q Section Section 8.1.20
$ Section Section 8.1.21
<> Section Section 8.1.26
Type Specifications Section Section 2.2
BYTE
LOGICAL*1
LOGICAL*2
INTEGER*2
INTEGER* 4
REAL*4
REAL*8

10.

11.

12.

13.

14.

REFERENCES

American National Standards Institute, ANSI X3.9-1978,
American National Standard Programming Languagde
FORTRAN, April 1978

Digital Equipment Corporation, AA-1855D-TC, PDP-11
FORTRAN Languade Reference Manual, December

~-, AA-1884C-TC, FORTRAN IV-PLUS User's Guide, December
1979

--, AA-D034B~TE, VAX-11 FORTRAN Lanquage Reference
Manual, April 1980

- AA—D035B-TE, VAX-11 FORTRAN User's Guide, April 1980

International Business Machines Corporation, SC28-6852,
IBM OS FORTRAN IV (H Extended) Compiler Programmer's
Guide, November 1974

-- (GC28-6515, IBM System /360 and System /370 FORTRAN
IV Language, May 1974

Software Engineering Laboratory, SEL-77-003, Structured
FORTRAN Preprocessor (SFORT), B. Chu, D. S. Wilson, and
R. Beard, September 1977/

--, SEL-78-102, FORTRAN Static Source Code Analyzer
Program (SAP) User's Guide (Revision 1), W. J. Decker
and W. A, Taylor, September 1982

--, SEL-78-001, FORTRAN Static Source Code Analyzer
(S8AP) Design and Module Descriptions, E.-M. O'Neill,
S. R. Waligora, and C. E. Goorevich, January 1978

M. Halstead, Elements of Software Science. New York:
Elsevier Publishing Co., 1977

Digital Equipment Corporation, AA-5567B-TC, RSX-11
Utilities Procedures Manual, December 1977

Software Engineering Laboratory, SEL-78-004, Structured
FORTRAN Preprocessor. (SFORT} PDP-11/70 User's Guide,
D. S. Wilson, B. Chu, and G. Page, September 1978

Digital Equipment Corporation, AA-H266A-TC,
RSX-11M/M~-PLUS Task Builder Manual, June 1979

BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in
this bibliography are organized into two groups. The first
group is composed of documents issued by the Software Engi-
neering Laboratory (SEL) during its research and develcpment
activities. The second group includes materials that were
published elsewhere but pertain to SEL activities.

SEL-Originated Documents

Software Engineering Laboratory, SEL-76-001, Proceedings
From the First Summer Software Engineering Workshop,
August 1976

SEL-77-001, The Software Engineering Laboratory,

V. R. Basili, M. V. Zelkowitz, F. E. McGarry, et al., May
1977

SEL-77-002, Proceedings From the Second Summer Softwars
Engineering Workshop, September 1977

SEL-77-003, Structured FORTRAN Preprocessor (SFORT), B. Chu,
D. 8. Wilson, and R. Beard, September 1977

SEL-77-004, GSFC NAVPAK Design Specifications Langquages
Study, P. A. Scheffer and C. E. Velez, October 1977

SEL-78-001, FORTRAN Static Source Code Analvzer (SAP)
Design and Mcdule Descriptions, E. M. O'Neill,
S. R. Waligora, and C. E. Goorevich, January 1978

'SEL-78-002, FORTRAN Static Source Code Analyzer (SAP)
User's Guide, E. M. O0'Neill, S. R. Waligora, and
C. ‘-E. Goorevich, February 1978

SEL-78-102, FORTRAN Static Source Code Analyzer Program
(SAP) User's Guide (Revision 1), W. J. Decker and
W. A. Tavlor, May 1982 (preliminary)

SEL-78-003, Evaluation of Draper NAVPAK Software Design,
K. Tasaki and F. E. McGarry, June 1978

T . v s s
This document superseded by revised document.

SEL~-78-004, Structured, FORTRAN Preprocessor (SFORT)
PDP-11/70 User's Cuide, D. S. Wilson, B. Chu, and G. Page,
September 1578

SEL=~78-005, Proceedings From the Third Summer Software Engi-
neering Workshop, September 1978

SEL-78-006, GSFC Software Engineering Resedrch Regquirements
Analysis Study, P. A. Scheffer, November 1978

SEL=78-007, Apvlicabilitv of the Ravleigh Curve to the SEL
Environment, T. E. Mapp, December 1978

SEL-79-001lL, SIMPL-D Déta Base Reference Manual,
M..V. Zelkowitz, July 1979

SEL=-79-002, The Scoftware Engineering Laboratory: Rela-
tionship BEgquations, K. Preburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module Repository (CSMR) System
Description and User's Guide, C. E. Goorevich,
S. R. Waligora, and A. L. Green, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon
Program Design Language (PDL) in the Goddard Space Flight
Center {(GSFC) Code 580 Software Design Environment,

C. BE. Goorevich, A. L. Green, and ¥, Z, McGarry, September
1979

SEL-79-005, Proceedings From the Fourth Summer Software
Engineering Workshoo, November 1979

SEL-80-001, Functional Requirements/Specifications for
Code 580 Configuration Analysis Tool (CAT), F. K. Banks,
C. E. Goorevich, and A, L. Green, February 1980

SEL-80-002, Multi-Level Expression Design Language-
Requirement Level (MEDL-R) System Evaluation, W. J. Decker,
C. E. Goorevich, and a. L. Green, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground Support
Software System (MMS/GSSS) State-of-the-Art Computer
Systems/Compatibility Study, T. Welden, M. McClellan,

P. Liebertz, et al., May 1980

SEL~80-004, System Description and User's Guide for Code 58(
Configuration Analvsis Tool (CAT), F. X. Banks,
W. J. Decker, J. G. Garrahan, et al., Cctober 1980

SEL-80-005, A Studv of the Musa Reliability Model,
A. M. Miller, November 1980

13
[
)

SEL-80-006, Proceedings From the Fifth Annual Software
Engineering Workshop, November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estimation
Models for Software Systems, J. F, Cook and F. E. McGarry,
December 1980

SEL-81-001, Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., September 1981%

SEL-81-002, Software Engineering Laboratory (SEL) Data Base
Crganization and User's Guide, D. C. Wyckoff, G. Page,
F. E. McGarry, et al., September 1981

SEL-81-003, Software Engineering Laboratory (SEL) Data Base
Maintenance System (DBAM) User's Guide and Svstem De-
scription, D. N. Card, D. C. Wvckoff, G. Page, et al.,
September 1981

TSEL-él-004, The Software Engineering Laboratory,
b. N. Card, F. E. McGarry, G. Page, et al., September 1981

SEL-81-104, The Software Engineering Laboratory, D. N. Card,
F. E. McGarry, G. Page, et al., February 1982

TSEL-Bl-—OOS, Standard Approach to Software Develovment,
V. E. Church, F. E. McGarry, G. Page, et al., September 1981

SEL-81-105, Recommended Approach to Software Development,
S. Eslinger, F. E. McGarry, V. E. Church, et al., May 1982

SEL-81-006, Software Engineering Laboratory (SEL) Document
Library (DOCLIB) System Description and User's Guide,
W. Taylor and W. J. Decker, December 1981

TSEL-Sl-OO?, Software Engineering Laboratory (SEL) Com-
pendium of Tools, W. J. Decker, E. J. Smith, A. L. Green,
et al,, February 1981

SEL-81-107, Software Engineering Laboratory (SEL) Compendium
of Tools, W. J. Decker, E. J. Smith, W. A. Taylor, et al.,
February 1982

SEL-81-008, Cost and Reliability Estimation Models (CAREM)
User's Guide, J. F. Cook and E. Edwards, February 1981

‘This document superseded by revised document.

SEL-81-009, Software Engineering Laboratorv Programmer
Workbench Phase 1 Evaluation, W. J. Decker, A. L Green, ahc
F. E. McGarry, March 1981 |

SEL-81-010, Performance and Evaluation of an Indevendent
Scftware Verification and Integration Process, G. Padge and
F. B. McGarry, May 1981

SEL-81-011, Evaluating Software Development by Analvsis of
Change Data, D. M. Weiss, November 1981

SEL-81-012, The Ravleigh Curve As a Model for Effort
Distribution Over the Life of Medium Scale Software Systems,
G. 0. Picasso, December 1981 (also published as University
of Maryland Technical Report TR-1186, July 1982)

SEL-81-013, Proceedings From the Sixth Annual Software Engi-
neering Workshop, December 1981

SEL-81-014, Automated Collection of Software Engineering
Data in the Software Engineering Laboratory (SEL),
A, L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-82-001, Evaluation and Application of Software Develop-
ment Measures, D. N. Card, G. Page, and P. E. McGarry, July
1982)

SEL~-82~002, FORTRAN Static Source Code Analyzer Program
(SAP) System Description, W. Taylor and W. Decker, August
1882

SEL-82-003, Software Engineering Laboratory (SEL) Data Base
Reporting Software User's Guide and System Description,
P. Lo and S. Eslinger, September 1982

SEL-82-004, Collected Software Engineering Papers:
Volume 1, July 1982

SEL~Related Literature

Anderson, L., "SEL Library Software User's Guide," Computer
Sciences~-Technicolor Associates, Technical Memorandum, June
19890

T .
Bailevy, J. W., and V. R. Ba51l_, "A Meta-Model for Soft-

ware Development Resource Expenditures," Proceedings of
the Tifth International Conference on Software Engineering.
New York: Computer Societies Press, 1981

Banks, F. K., "Configuration Analysis Tool (CAT) Design,"
Computer Sciences Corporation, Technical “emoranaum, March
12980 -

J'-

EBasili, V. R., "The Software Engineering Laboratory:
Objectives,” Proceedings of the Fifteenth Annual Confer-
ence on Computer Personnel Research, August 1977

Fv g

T e . =
''Basili, V. R., "Models and Metrics for Software”Management
and Engineering," ASME Advances in Computer Technologv,
January 1980, wvol., 1

Basili, V. R., "SEL Relationships for Programming Measure-
ment and Estimation,™ University of Maryland, Technical
Memorandum, October 1980

Basili, V. R., Tutorial on Models and Metrics for Software
Management and Engineering. New York: CompUter Societies
Press, 1980 {also designated SEL-80-008)

?TBasili, V. R., and J. Beane, "Can the Parr Curve Help with
Manpeower Distribution and Resource Estimation Problems?",
-Journal of Systems and Software, February 1981, vol. 2,

no. 1

t o ' ,

T Basili, V. R., and K. Freburger, "Programming Measurement
and Estimation in the Software Engineering Laboratory,”
Journal of Systems and Software, February 1981, vol. 2,
no. 1

TTBasili, V. R., and T. Phillips, "Evallating and Comparing
Software Metrics in the Software BEngineering Laboratory,"
Proceedings of the ACM SIGMETRICS Symposium/Workshop:
Quality Metrics, March 1981

Basili, V. R., and T. Phillips, "Validating Metrics on Proj-
ect Data,” Universitv of Maryland, Technical Memorandum,
December 1981

Rasili, V. R., and R. Reiter, "Evaluating Automatable Meas-
vres for Software Development,” Proceedings of the Workshoo
on Quantitative Software Models for Reilabllltv, complexicy
and Cost, October 1979

This article also appears in SEL-82-004, Collactad Sofitwar

(=3
=

Engineering Papers: Veolume 1, July 1982

Basili, V. R., and M, V. Zelkowitz, "Designing a Softwars
Measurement Experiment," Proceedings of the Sofiware Life
Cycle Management Workshop, September 1977

?TBasili, V. R., and M. V. Zelkowitz, "Operation of the Sofi
ware Engineering Laboratory," Proceedings of the Second
Software Life Cycle Management Workshop, August 1978°

£
+'Basili, V. R., and M. V. Zelkowitz, "Measuring Software
Development Characteristics in the Local Environment,”

Computers and Structures, August 1978, wol. 10

Basili, V. R., and M. V. Zelkowitz, "Analvzing Medium Scale
Software Development," Proceedings of the Third Interna-
tional Conference on Software Engineering. New York:
Computer Societies Press, 1978

Card, D. N., "Early Estimation of Resource Expenditures and
Program Size," Computer Sciences Corporation, Techniczal
Memorandum, June 1982

TTChen, E., and M. V. Zelkowitz, "Use of Cluster Analysis ¢
Evaluate Software Engineering Methodologies," Proceedings
of the Fifth International Conference on Software Engineer-
ing. New York: Computer Societies Press, 198l

Church, V. E., "User's Guides for SEL PDP-11/70 Programs,"”
Cemputer Sciences Corporation, Technical Memorandum, March
1980

Freburger, K., "A Model of the Software Life Cycle" (paper
prepared for the University of Maryland, December 1978)

Higher Order Software, Inc., TR-9, A Demonstration of AXES
for NAVPAK, M. Hamilton and S. Zeldin, September 1977 {(also
designated SEL-77-005)

Hislop, G., "Some Tests of Halstead Measures" (paper pre-
pared for the University of Maryland, December 1978)

TTThis article also appears in SEL-82-004, Collected Softwar
Engineering Papers: Volume 1, July 1982

Lange, 5. F., "a Child's Garden of Complexity Measures”
(paper prepared for the University of Marvland, December
1978}

Miller, A. M., "A Survey of Several Reliabilitv Models"
(paper prepared for the University of Maryland, December
1978)

National Aeronautics and Space Administration (NASA), NASA

Software Research Technology Workshop (proceedings), March
1980)

Page, G., "Software Engineering Course Evaluation," Computer
Sciences Corporation, Technical Memorandum, December 1977

Parr, F., and D. Weliss, "Concepts Used in the Change Report
Form," NASA, Goddard Space Flight Center, ‘Technical Memoran-
dum, May 1978

Perricone, B. T., "Relationships Between Computer Software
and Assocliated Errors: Empirical Investigation" (paper pre-
vared for the University of Maryland, December 1981)

Reiter, R. W., "The Nature, Organization, Measurement, and
Management of Software Complexity" (paper prepared for the
University of Maryland, December 1976)

Scheffer, P. 2., and C. E. Velez, "GSFC NAVPAK Design Higher
Order Languages Study: Addendum," Martin Marietta Corpora-
tion, Technical Memorandum, September 1977

Turner, C., G. Caron, and G. Brement, "NASA/SEL Data Compen-
dium,™ Data and Analysis Center for Sofiware, Special Publi-
cation, April 1981

Turner, C,, and G. Caron, "A Comparison of RADC and NASA/SEL
Software Development Data," Data and Analysis Center for
Soitware, Special Publication, May 1981

Weiss, D. M., "Error and Change Analysis," Naval Research
Laboratory, Technical Memorandum, December 1977

Williamson, I. M., "Resource Model Testing and Information,"
Naval Research Laboratory, Technical Memorandum, July 1979

TTZelkowitz, M. V., "Resource Estimation for Medium Scale
Software Projects," Proceedings of the Twelfth Conference on
the Interface of Statistics and Computer Science, New York:
Computer Societies Press, 1979

This article also appears in SEL-82-004, Collected Software
Engineering Papers: Volume 1, July 1982

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of
a Software Measurement Facility," Procsedings of the Soft-
ware Life Cvcile Management Workshop, September 1977

[¥s]
|
(44}

