
N83-13838

SOFTWARE ENGINEERING LABORATORY SERIES SEL-82-002

FORTRAN STATIC SOURCE

CODE ANALYZER PROGRAM

(SAP)

SYSTEM DESCRIPTION

AUGUST 1982

National Aeronautics and
Space Administraton

Goddard Space Flight Center RPi0DUCD By
Greenbelt Maryland 2077! NATIONAL TECHNICAL

INFORMATION SERVICE
USDEPARTMENTOFCOMMERCE

SPRINGFIELD,VA 22161

N83-13838

FORTRAN STATIC SOURCE CODE ANALYZER PROGRAM (SAP) SYSTEM4DESCRIPTION

National Aeronautics and Space Administration

Greenbelt MD

Aug 82

FOREWORD

The Software Engineering Laboratory (SEL) is an organization

sponsored by the National Aeronautics and Space

Administration, Goddard Space Flight Center (NASA/GSFC) and

created for the purpose of investigating the effectiveness

of software engineering technologies when applied to the

development of applications software. The SEL was created

in 1977 and has three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)

The University of Maryland (Computer Sciences Department)

Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (1) to understand the software

development process in the GSFC environment; (2) to measure

the effect of various methodologies, tools, and models on

this process; and (3) to identify and then to apply

successful development practices. The activities, findings,

and recommendations of the SEL are recorded in the Software

Engineering Laboratory Series, a continuing series of

reports that includes this document. A version of this

document was also issued as Computer Sciences Corporation

document CSC/SD-82/6045.

Contributors to this document include

William Decker (Computer Sciences Corporation)

Wayne Taylor (Computer Sciences Corporation)

Other contributors include

Phil Merwarth (Goddard Space Flight Center)

Mike O'Neill (Computer Sciences Corporation)

Charles Goorevich (Computer Sciences Corporation)

Sharon Waligora (Computer Sciences Corporation)

Single copies of this document can be obtained by writing to

Frank E. McGarry

Code 582.1

NASA/GSFC

Greenbelt, Maryland 20771

1iiPreceding page blank

ABSTRACT

This document presents the FORTRAN Static Source Code Anal­

yzer Program (SAP) system description. SAP is a software

tool designed to assist Software Engineering Laboratory (SEL)

personnel in conducting studies of FORTRAN programs. SAP

scans FORTRAN source code and produces reports that present

statistics and measures of statements and structures that

make up a module. This document presents a description of

the processing performed by SAP and of the routines, COMMON

blocks, and files used by SAP. The system generation proce­

dure for SAP is also presented.

BLAN"pRCEDING PTGE

[Prceding page bank j

TABLE OF CONTENTS

Section 1 - Introduction. .l.............. 1-1

Section 2 - SAP Structure 2-1

2.1 SAP Processing............ 2-1

2.1.1 Session Initialization......... 2-4

2.1.2 File Loop Control and Initialization. 2-4

2.1.3 Source Code Input 2-8

2.1.4 Statement Analysis (Subroutine TYPE). 2-11

2.1.5 Module Reports and File Summary 2-28

2.1.6 Project Analysis. 2-33

2.2 SAP Utilities. 2-35

2.2.1 Symbol Table Utilities. 2-35

2.2.2 Delimiter/Token Table Utility (LOOKAH)- . 2-41

2.2.3 Transfer Operator List Utilities. 2-42

Section 3 - SAP Module Descriptions 3-1

Section 4 - SAP COMMON Block Information. 4-1

Section 5 - SAP File Structure. 5-1

Section 6 - System Generation 6-1

6.1 PDP-11/70 System Generation. 6-1

6.2 VAX-1l/780 System Generation. 6-1

Section 7 - Moving SAP to Another Computer....... 7-1

7.1 The SAP Distribution Tapes 7-1

7.2 SAP Dependence Upon Computer Word Size 7-2

7.3 Environmental Considerations. 7-3

References

Bibliography

vii

LIST OF ILLUSTRATIONS

Figure

2-1 Processing Flow for SAPMAIN. 2-2

2-2 Routines Called by SAPMAIN 2-3

2-3 Session Initialization Routines 2-5

2-4 File Loop Control and Initialization

2-6
Routines_.
2-5 Source Code Input Routines 2-9

2-6 Statement Analysis Routines. 2-12

2-7 Module Report and File Summary Routines. . 2-29

2-8 Sample Symbol Table Dump 2-32

2-9 Project Analysis Routines. 2-34

2-10 Symbol Table Access. 2-37

2-11 Symbol Table Linkages. 2-38

5-1 SAP Data Flow Diagram 5-3

6-1 SAP PDP-11/70 Preprocessing Command

Procedure...... 6-3

6-2 SAP PDP-11/70 FORTRAN Compilation Command

Procedure....
..... 6-6

6-3 SAP PDP-11/70 Task Building Command

Procedure.................. 6-9.

6-4 SAP PDP-l1/70 Overlay Description. 6-10

6-5 SAP VAX-11/780 Preprocessing Command

Procedure.. o...........

6-6 SAP VAX-11/780 FORTRAN Compilation and

Linking Command Procedure. 6-14

6-11

LIST OF TABLES

Table

2-1 Transfer Operators 2-43

4-1 SAP BLOCK DATA File Names............ 4-2

5-1 SAP File Names and Usages.5-2

7-1 System Routines Used by SAP. 7-4

7-2 Language Extensions Used in SAP........ 7-5

viii

SECTION 1 - INTRODUCTION

The FORTRAN Static Source Code Analyzer Program (SAP) auto­

matically produces statistics on occurrences of statements

and structures within FORTRAN program modules and provides a

facility for reporting the statistics. SAP is available in

versions to run on either a PDP-ll/70 or a VAX-l1/780 compu­

ter. This document describes SAP Version 2, a result of

program modifications to provide several new reports, addi­

tional complexity analysis, and recognition of all state­

ments described in the American National Standards Institute

Programming Language FORTRAN standard (FORTRAN 77), ANSI

X3.9-1978 (Reference 1).

SAP accepts as input syntactically correct FORTRAN source

code written in the FORTRAN 77 standard language. In addi­

tion, code written using features in the following languages

is also accepted: PDP-11 FORTRAN IV or FORTRAN IV-PLUS

(References 2 and 3); VAX-ll FORTRAN (References 4 and 5);

IBM S/360 FORTRAN IV Level H Extended, with the exception of

the S/360 FORTRAN DEBUG Facility statements (References 6

and 7); and Structured FORTRAN (Reference 8).

Other documents that contain supplementary information are

the SAP user's guide (Reference 9) and the SAP design docu­

ment (Reference 10).

This document describes the SAP software system in detail to

assist programmers in maintaining, enhancing, and installing

SAP. Section 2 presents an overview of the structure of SAP

software and internal tables. Much of the material appear­

ing in this section appeared originally in the SAP design

document (Reference 10) and has been updated to reflect the

current version of SAP. Section 3 presents descriptions of

1-1

each routine in the SAP system. Section 4 presents descrip­

tions of COMMON blocks used by SAP and Section 5 describes

each external file referenced by SAP. The instructions for

installing SAP on the PDP-11/70 and VAX-11/780 computers are

given in Section 6. Section 7 lists areas of concern when

moving SAP from one computer to another.

1-2

SECTION 2 - SAP STRUCTURE

This section presents an overview of the SAP software struc­

ture. The main processing elements are presented in Sec­

tion 2.1, SAP Processing. The SAP utility software used to

support SAP internal data structures is presented in

Section 2.2, SAP Utilities. Software that performs house­

keeping functions such as report formatting, error process­

ing, and page counting is described only in Section 3, SAP

Module Descriptions.

2.1 	SAP PROCESSING

This section describes SAP processing, which is divided into

the following six phases:

1. 	 Session initialization (Section 2.1.1)

2. 	 Input file loop control and initialization

(Section 2.1.2)

3. 	 Source code input (Section 2.1.3)

4. 	 Statement analysis (Section 2.1.4)

5. 	 Module reports and file summary (Section 2.1.5)

6. 	 Project analysis (Section 2.1.6)

The overall program flow is controlled by the main program,

SAPMAIN. Figure 2-1 describes the logic of this flow.

The routines called by SAPMAIN are each discussed in the

subsections noted in Figure 2-2. Figures 2-3 through 2-7,

and Figure 2-9 show portions of Figure 2-2 expanded to

greater detail; for reader convenience these figures are

contained in the subsections describing the routines shown.

The dashed lines in these figures indicate that the routines

shown 	constitute only a portion of SAPMAIN routines.

2-1

Load keyword table

IF no load error

DOWHILE no end of file on control input

Read control input

IF project analysis is requested

Initialize SAP data base

ENDIF

Initialize global counters

DOWHILE no end of file on source input

Initialize module counters

DOWHILE no END statement

Read a statement

Process a statement

END DOWHILE

Output module statistics

IF Halstead summary requested

Report Halstead summary

ENDIF

Collect global statistics

Output module directory entry

END DOWHILE

IF global statistics requested

Output global statistics

ENDIF

Clc se source input files

END DOWHILE

IF project analysis is requested

Report on each project requested by the user

ENDIF

ENDIF

Terminate SAP

Figure 2-1. Processing Flow for SAPMAIN

2-2

SAPMAIN

SESSION INPUT FILE LOOP SOURCE CODE STATEMENT MODULE REPORT PROJECT

INITIALIZATION CONTROL/INITIALIZATION INPUT ANALYSIS FILE SUMMARY ANALYSIS
(SEE SECTION 2.1.1) (SEE SECTION 2.1 2) (SEE SECTION 2.1.3) (SEE SECTION 2.1 4) (SEE SECTION 2 I 5) (SEE SECTION 2 1.6)

00n

-tLO0O,-]I F"1 -- EE -{ J -[130­]-t -1[E] --LOD IPTIIMREADER TYPE COLGLB STATG REPH-AL

HALREPDEFINE

I[NITG MCPL

- MOIRY

F r 2STATM

- STOUMP N

Figure 2-2. Routines Called by SAPMAIN

2.1.1 SESSION INITIALIZATION

SAP uses two table initialization subroutines at the start­

of each SAP session: LOADK and USRWTS (see Figure 2-3).

LOADK loads keywords from the KEYWORDS.SAP file into the

keyword table stored in COMMON block KEYCOM; USRWTS loads

the WEIGHTS.SAP file into the weights table stored in COMMON

block WTSCOM. A user-specified statistical weighting file

can be read in Reference 9.

2.1.1.1 LOADK

LOADK (load keyword table) opens the keyword file and loads

the keyword table (in COMMON block KEYCOM). An error flag

is set to °TRUE. if an open failure or read error occurs.

2.1.1.2 USRWTS

USRWTS (load weights table) opens the default weights file

and loads the weights table (in COMMON block WTSCOM). An

error flag is set to .TRUE. if an open failure or read error

occurs.

2.1.2 FILE LOOP CONTROL AND INITIALIZATION

The processing loop for each input file to SAP is controlled

and initialized by the routines shown in Figure 2-4. The

routines called by SAPMAIN are discussed below.

2.1.2.1 CINPUT

Control for SAP file loop processing is handled by subrou­

tine CINPUT (read control input). CINPUT calls subroutine

INPUT, which reads the user input command line; CINPUT then

opens the source input file and interprets the switch

settings.

INPUT prompts the user with SAP> and reads one line of

control input information from logical unit LUNCIN. Input

line syntax is as follows:

SAP>FILE.EXT/Sl/S2/-S3

2-4

V-j-,. .OOFPO0R';QPALIW

SAPMAIN

LOADK

USR WTS0

Figure 2-3. Session Initialization Routines

2-5

OF POORU

I TIN ITG
CINPUTN

DFE

INPUT

Figure 2-4. File Loop Control and Initialization Routines

2-6

where FILE.EXT is the file name and extension of the input

source file to be processed and Si, S2, and S3 are option

switches (Reference 9).

CINPUT scans the input line for slashes (/), which are

assumed to beswitch delimiters. The slashes are replaced

by zeros and a check is made for minus signs (-) and any

switches that are found are set to .TRUE. (or .FALSE. if

preceded by a minus sign).

CINPUT calls two routines, DEFSEL and INCLUD, to handle the

/SL and /XP control switches, respectively. DEFSEL opens

the sequential output file used to communicate with the SEL

data base. If an ALL.SAP file exists in the user's default

directory, the file is opened with the APPEND option; other­

wise it is opened as NEW. INCLUD copies the input file into

a scratch file while examining each record looking for an

INCLUDE statement. Each INCLUDE statement is replaced with

the contents of the included file.

CINPUT opens the input file (or the scratch file created by

INCLUD) and returns control to SAPMAIN.

If the user enters an end-of-file (CNTL Z) in response to

the request for an input file name, the ENDC flag is set to

.TRUE. and CINPUT returns.

2.1.2.2 DEFINE

DEFINE (define SAP data base) initializes or locates a data

base file when the /DB control switch is set to on. The

user is prompted for the file name to be used as the data

base for this session. If the file does not exist, DEFINE

opens the specified file as NEW and initializes as many

records as specified by the user. If the file does exist,

the file is opened. The user is prompted for a project

character to be used for identification of the group of mod­

ules to be processed.

2-7

2.1.2.3 INITG

INITG (initialize globals) resets all variables and arrays

used to accumulate statistics describing all the modules

within an input file. This routine is called once for each

input file.

2.1.2.4 INITM

INITM (initialize module) resets all variables and arrays

used to accumulate statistics describing each module within

the input file. This routine is called before each module

in an, input file is processed.

2.1.3 SOURCE CODE INPUT

Each statement from the input file is read as one or more

records by routine READER; the routines it calls are shown

in Figure 2-5 and discussed below.

2.1.3.1 READER

READER (source code reader) controls all source input; accu­

mulates counts of input lines, statements, comments and com­

ment packets; and generates the packed statement string.

READER calls GLINE and HSCAN in performing these functions.

2.1.3.2 GLINE

GLINE (get one line) reads input from the source file one

line at a time. GLINE maintains a one-line-look-ahead,

calling TABCCC to detect comment and continuation lines.

Output is via COMMON block INLCOM.

2.1.3.3 TABCCC

TABCCC (check for tabs, continuations, and comments) checks

for the presence of a tab character in any of positions 1

through 6 in the input line. If one is found, it tests the

next character to see if it is a nonzero numeric. If it is,

the continuation flag is set to .TRUE. and the character is

replaced with a blank. If no tab is found, position six is

2-8

ORIGINAL PAC, isOF POOR QUALITY

Figure 2-5. Source Code Input Routines

2-9

checked for a nonzero, nonblank character. If one is found,

the continuation flag is set to .TRUE. and a tab is set in

position six. In both cases, the first position is checked

for a nonnumeric character. If one is present, the comment

card flag is set to .TRUE.. Finally, all tabs following the

initial tab are replaced by blanks and TABCCC returns.

2.1.3.4 HSCAN

HSCAN (remove literals, holleriths, and blanks) processes

the source code input line which was loaded in array INPUT

(in COMMON block INPCOM) by READER and produces a packed

source string in the same array. HSCAN first scans INPUT

for single quotation marks (apostrophes), removing any char­

acter occurring between matched pairs of quotation marks.

HSCAN then scans the string for the character "H". Wherever­

it appears, the previous characters are tested for numerics.

If the characters are numeric and are preceded by any of the

following characters (/,*'), the field following the H is

considered to be a Hollerith field. The numerics are con­

verted to integer and the value tested to make sure that the

end of the H field is within the line. Then, the field is

replaced by two quotation marks and removed. HSCAN next

scans for an exclamation point (!), the PDP-l1 delimiter for

inline comments. If one is found, the inline comment counter

is incremented and the exclamation point is replaced by a

null character. LASINP, the end of line pointer, is reset

to point to the null character.

Finally, HSCAN removes all embedded blanks remaining and

returns.

2-10

2.1.4 STATEMENT ANALYSIS (SUBROUTINE TYPE)

SAP processes each input file on a module-by-module basis.

The module statistical counters are initialized by routine

INITM at the beginning of a module. Module statistics are

accumulated until an END card is encountered within the

input code.

Statement analysis is controlled by subroutine TYPE, called

from SAPMAIN. Figure 2-6 shows the statement analysis

portion of SAP. Analysis falls into the following three

phases that are discussed separately in Sections 2.1.4.1

through 2.1.4.3:

1. 	 Construction of the delimiter/token table and

statement classification

2. 	 Statement specific analysis

3. 	 Statement label processing

DSCAN controls the delimiter/token table building. ASGNID

and TESTK identify and classify the statement. STATE con­

trols statement type specific analysis, and LABEL processes

statement labels. Section 2.1.4.4 discusses two utilities

frequently used while performing statement analysis.

TYPE (control statement analysis) initially calls DSCAN to

build the delimiter/token table. TYPE then examines the

table produced to locate a tab symbol. The table pointer

LDTPTR is set to point to the table location following the

tab. If the pointer is not pointing to the end of the

table, processing proceeds. If it is, processing of the

statement terminates. Next, ASGNID is called to identify

assignment statements, followed by TESTK to identify state­

ments with leading keywords. TESTK returns the statement

class (specification, control, etc.) and the statement type

(IF, 	DO, etc.). TYPE calls STATE to process the statement

2-11

0pRIGIT4AL PAGE 'S'
Of QPOOR

SAPMAIN

TYPE

PRTYPE
PRSTRCPRPRSPECPRIOPRCNTLPRASGN

PRDOS PRIP

PAUB
PRIFS

Statement Analysis Routines
 Figure 2-6.

2-12

and then increments the appropriate class and type counters.

LABEL is called to store the statement label (if present) in

the statement label list and to gather DO loop statistics.

TYPE checks the statement type to see if an end statement

has been reached. If it has, ENDM is set to. .TRUE. to indi­

cate an end of module. Any fatal error return from a sub­

routine called by TYPE causes ERROR to be set to .TRUE..

2.1.4.1 Statement Identification

2.1.4.1.1 DSCAN

DSCAN (scan for delimiters and tokens) processes the packed

input string in array INPUT prepared by HSCAN. DSCAN

searches the input string for a delimiter (as defined in the

delimiter table IDELIM), comparing one character at a time

with the first character of each defined delimiter. When a

first character match is found, the remainder of the delimi­

ter is compared with the subsequent characters in the INPUT

string. If a match is found, DSCAN then checks to see if

any nondelimiter characters exist between the current del­

imiter and the previous delimiter. These characters (if

any) are then hashed by IHASH and LOOKS is called to see if

a symbol table entry for the token already exists. (Sec­
tion 2.2.1 contains a complete description of the symbol

table utilities, including the hash algorithm used.) If it

does not exist, a new symbol table entry is created and

entered into the symbol table by calling POKES. The symbol

table pointer IPOINT is entered into the delimiter/token

table LISTDT, in the next available location.

In creating the symbol table entry, the first character of

the token is tested to determine whether the token is an

identifier or a constant (numeric or logical). The new

token pointer is then entered into LISTDT. The next loca­

tion in LISTDT is given the value of the negative of the

2-13

index of the located delimiter. The LISTDT array thus con­

tains a series of negative and positive numbers, where

negative numbers represent delimiters and positive numbers

are pointers to the symbol table entries for the intervening

tokens. The scanning process proceeds until the scan

pointer is pointing at LASINP, the last location in INPUT.

DSCAN sets ERROR to .TRUE. if the LISTDT array limits are

exceeded or if LOOKS or POKES returns a fatal error.

2.1.4.1.2 ASGNID

ASGNID (assignment statement identification) scans the

LISTDT array to identify assignment statements. Statement

function definitions identified as assignment statements in

ASGNID will be detected and reclassified in routine PRASGN.

The following conditions will lead to a classification as an

assignment statement:

* 	 The LISTDT array contains an equals sign not

enclosed in parentheses.

* 	 All commas following the equals sign are enclosed

in parentheses.

* 	 The first token in LISTDT does not start with the

keyword PARAMETER.

* 	 The first token in LISTDT does not start with the

keyword IF, which is then followed by a pair of

matching parentheses, which are followed by a

token. (That is, a logical IF statement whose

object is an assignment statement is classified as

an IF statement at this point.)

Keyword statement classification is done by TESTK and

LOOKK. In FORTRAN, most statement types are preceded by a

keyword.

2-14

2.1.4.1.3 TESTK

TESTK (test for a leading keyword) examines the token pointed

to by LDTPTR in the array LISTDT. TESTK calls LOOKK to test

this symbol against the keyword list. LOOKK returns the

keyword located and its length. If no keyword is located,

TESTK sets ISCLAS to 12 (undecoded) and returns. If a key­

word shorter than the test token is found, then thetinitial

token is rehashed after the keyword portion is deleted.

LDTPTR, the LISTDT pointer, is returned pointing to the

location following the keyword.

2.1.4.2 Statement Specific Processing (Subroutine STATE)

STATE (statement type specific analysis) is an executive

driver-to routines that perform specific statement anal­

ysis. Routines that fall into this classification use PR as

the first two letters of their name. These routines are

described in Sections 2.1.4.2.1 through 2.1.4.2.14. Before

calling STATE, the specific statement class and type have

been determined. It is the function of routines called by

STATE to gather those statistics that are both class and

type dependent. Specific classes examined in STATE are

assignment statements (PRASGN), control statements (PRCNTL),

subprogram statements (PRSUBS), specification statements

(PRSPEC), type specification statements (PRTYPE), input/

output statements (PRIO), and special structure statements

(PRSTRC).

2-15

http:2.1.4.2.14

2.1.4.2.1 PRASGN

PRASGN (assignment statement analyzer) is entered when sub­

routine ASGNID has detected statements of the following form:

v=e

where v = variable name or array element name

e = expression

The analyzer performs a scan of statement tokens to advance

program counters and update the status of items in the sym­

bol table. Specifically, PRASGN performs the following

functions:

* 	 Counts the number of variables in assignment state­

ments.

* 	 Determines the maximum number of variables in any

given assignment statement in the module.

* 	 Counts the number of operators in assignment state­

ments. (Operators are defined as follows: **, *,

/, +, -, .AND., .OR., .XOR., .EQV., .NEQV., .NOT.,

.LE., .LT., .EQ., .NE., .GT., .GE. Operators used

in describing array variables or in function argu­

ments are not counted.)

* 	 Detects and flags Arithmetic Statement Function

(ASF) definitions.

* 	 Performs analysis on any variables encountered.

Performs analysis on any function or ASF

encountered.

0

* 	 Marks in the symbol table that specific variables

or functions were encountered.

2-16

2.1.4.2.2 PRCNTL

PRCNTL (control statement analyzer) accepts statement tokens

that have the following FORTRAN keywords: ASSIGN, CALL,

CONTINUE, DO, GOTO, IF, PAUSE, RETURN, and STOP. PRCNTL

acts as an executive to specific control statement analyzer

routines, which scan each type of statement to advance pro­

gram counters and update the status of items in the-symbol

table. Specifically, PRCNTL performs the following func­

tions:

* 	 Switches control to the specific statement analyzer

routines:

-	 PRASS--Keyword ASSIGN

-	 PRCALL--Keyword CALL

-	 PRDOS--Keyword DO

- PRGOTO--Keyword GOTO

- PRIFS--Keyword.IF

- PRRET--Keyword RETURN

* 	 Returns control to subroutine STATE when the

specific routines are completed or when keywords

CONTINUE, PAUSE, or STOP are encountered

2.1.4.2.3 PRASS

PRASS 	(ASSIGN statement analyzer) analyzes ASSIGN state­

ments. The ASSIGN statement is used to associate a state­

ment label with an integer variable. The variable can then

be used as a transfer destination in a subsequent assigned

GOTO statement.

The ASSIGN statement has the form

ASSIGN s TO i

where 	s = label of an executable statement

i = integer variable

2-17

PRASS will scan for the statement label and add it to the

statement label list if it is not in the list.

2.1.4.2.4 PRCALL

PRCALL (CALL statement analyzer) analyzes CALL statements.

The CALL statement causes the execution of a SUBROUTINE

subprogram; it can also specify an argument list for use by

the subroutine.

The 	CALL statement has the form

CALL sub [([a [, a]])]

where sub = name of a SUBROUTINE subprogram

a = 	argument to a subprogram. Arguments can be

variables, arrays, array elements, constants,

expressions, alphanumeric literals, subprogram

names, or alternate return label specifiers

The analyzer performs a scan of statement tokens to advance

program counters and update the status of items in the sym­

bol table.

Specifically, PRCALL performs the following functions:

* 	 Counts the number of arguments in all CALL state­

ments encountered

* 	 Determines the maximum number of arguments in any

CALL statement

* 	 Adds the subroutine name and alternate return

labels to the alternate return transfer table list

when an alternate return is located

* 	 Performs analysis on any functions or ASFs

encountered

* 	 Marks in the symbol table that variables or

functions were encountered

* 	 Marks in the symbol table that a subroutine name

was encountered

2-18

2.1.4.2.5 PRDOS

PRDOS (DO statement analyzer) analyzes loop control state­

ments. The DO and DOWHILE statements are used to specify

discrete loop processing. The DO statement causes the

statements in its range to be repeatedly executed a speci­

fied number of times. DOWHILE statements are used to spec­

ify conditional loop processing.

The DO statement has the form

DO [s[,]] i = el, e2 [,e3]

where s = label of an executable statement

i = integer variable (control variable)

eI, e2 , e3 = integer expressions

The DOWHILE statement has the form

DO [s[,]] WHILE (e)

where s = label of an executable statement

e = logical expression

The analyzer performs a scan of statement tokens to push

target labels onto the DO loop stack and update the status

of items in the symbol table.

Specifically, PRDOS performs the following functions:

* 	 Completes the identification of DOWHILE statements

when a statement label is present.

* 	 Completes the identification of a DO statement when

no statement label is present.

2-19

* Pushes the target label (if present) and the

current statement number onto the stacks LBLSTK and

DOSTAN (in COMMON block LBLCOM). A value of zero

for the statement label is pushed when no label is

present.

* 	 Performs analysis on the control variable and other

variables encountered in the expressions.

2.1.4.2.6 PRGOTO

PRGOTO (GOTO statement analyzer) analyzes all types of GOTO

* statements. A GOTO statement transfers control within a

program unit, either to the same statement every time or to

one of a set of statements, based on the value of an ex­

pression. There are three types of GOTO statements:

* 	 Unconditional GOTO statement (GOTO s) where s is

the label on an executable statement

* 	 Computed GOTO statement (GOTO (slist) [,]e) where

slist is a list of one or more executable statement

labels separated by commas and e is an arithmetic

expression

0- Assigned GOTO statement (GOTO v[[,] (slist]) where

slist (when present) is a list of one or more ex­

ecutable statement labels separated by commas and v

is an integer variable

The analyzer performs a scan of statement tokens to advance

program counters and update the status of items in the sym­

bol table. Specifically, PRGOTO performs the following

functions:

* 	 Identifies the specific type of GOTO and maintains

counters on the number of unconditional, computed,

and assigned GOTO statements encountered

2-20

0
 Marks in COMMON block LBLCOM whether or not a label

is a target of an unconditional GOTO

* Adds the statement label (or statement label list)

to the unconditional, computed, or assigned GOTO

transfer table list

2.1.4.2.7 PRIFS

PRIF 	(IF statement analyzer) analyzes IF statements. The IF

statement causes a conditional control transfer or the con­

ditional execution of a single statement or block of state­

ments. There are four types of IF statements:

* 	 Arithmetic IF statement (IF (e) Sl, s2' s3) where

e is an arithmetic expression and Sl, s2, and s3

are labels of executable statements

* 	 Logical IF statement (IF (e) st) where e is a log­

ical expression and st is a complete FORTRAN

statement

* 	 Block IF statement (IF (e) THEN) or (.IF (e)) where

e is a logical expression

* 	 ELSEIF statement (ELSEIF (e) THEN) where e is a

logical expression

The analyzer performs a scan of statement tokens to advance

program counters and update the status of items in the sym­

bol table. Specifically, PRIFS performs the following func­

tions:

* 	 Maintains counters on the number of ELSEIF and log­

ical, arithmetic, and block IF statements

* 	 Performs analysis on any statement labels encoun­

tered

* 	 Performs analysis on any variables or arrays en­

countered

2-21

* 	 Performs analysis on any functions or ASFs encoun­

tered

* 	 Marks in the symbol table that a variable or func­

tion was encountered

* 	 Sets IREPT = .TRUE. for logical IF statements and

sets LDTPTR to point to the beginning of an object

statement

,2.1.4-.2.8 PRRET

PRRET (RETURN statement analyzer) analyzes RETURN state­

ments. The RETURN statement is used to return control from

a subprogram unit to the calling program unit.

The RETURN statement has the form

RETURN [el

where e is an integer expression indicating an alternate

return.

The analyzer performs a scan of statement tokens to advance

program counters. Specifically, PRRET performs the follow­

ing functions:

* 	 Maintains a counter on the number of normal returns

encountered

* 	 Maintains a counter on the number of alternate re­

turns encountered

2.1.4.2.9 PRSUBS

PRSUBS (subprogram statement analyzer) accepts statemeht

tokens that have the following FORTRAN keywords: BLOCKDATA,

END, ENTRY, FUNCTION, PROGRAM, and SUBROUTINE. The analyzer

performs a scan of the statement tokens to advance the pro­

gram counters and update the status of items in the symbol

2-22

table. Specifically, PRSUBS performs the following func­

tions:

* 	 Determines the module type

Saves the module name in array MODNAM in COMMON

block MODCOM

0 Flags ENTRY names in the symbol table

0

* 	 Counts and flags argument list names passed to a

module

2.1.4.2.10 PRSPEC

PRSPEC (specification statement analyzer) accepts statement

tokens that have the following FORTRAN keywords: COMMON,

DIMENSION, EQUIVALENCE, EXTERNAL, INTRINSIC, PARAMETER,

SAVE, and VIRTUAL. The analyzer performs a scan of the

statement tokens to advance program counters and update the

status of items in the symbol table. Specifically, PRSPEC

performs the following functions:

* 	 Flags COMMON block names

* 	 Flags EXTERNAL variable names

* 	 Flags COMMON block variable names

* 	 Flags variable names in DIMENSION and VIRTUAL

statements as arrays

o 	 Counts number of dimensions per array

* 	 Flags equivalenced variable names

No processing is performed on INTRINSIC, PARAMETER, or SAVE

statements.

2.1.4.2.11 PRTYPE

PRTYPE (type specification statement analyzer) accepts

statement tokens having the following FORTRAN keywords:

BYTE, CHARACTER, COMPLEX, DOUBLECOMPLEX, DOUBLEPRECISION,

2-23

http:2.1.4.2.11
http:2.1.4.2.10

IMPLICIT, INTEGER, LOGICAL, and REAL. The analyzer performs

a scan of the statement tokens to advance program counters

and update the status of items in the symbol table.

Specifically, PRTYPE performs the following functions:

0
 Flags dimensioned arrays

* 	 Counts the number of dimensions per array

* 	 Deconcatenates the length specifier (if any) from

the first variable name token

* 	 Checks for the FUNCTION keyword and reclassifies

the statement if it is found

* 	 Calls PRIMPL to process an IMPLICIT statement

* 	 Calls PRSUBS to process a typed FUNCTION

2.1.4.2.12 PRIO

PRIO (input/output statement analyzer) accepts statement

tokens that have the following FORTRAN keywords: ACCEPT,

BACKSPACE, CLOSE, DECODE, DEFINEFILE, DELETE, ENCODE,

ENDFILE, FIND, INQUIRE, OPEN, PRINT, READ, REWIND, REWRITE,

TYPE, WRITE, and UNLOCK. The analyzer performs a scan of

the statement tokens to advance program counters and update

the status of items in the symbol table. Specifically, PRIO

performs the following functions:

* 	 Counts the number of statements that use ERR =

* 	 Counts the number of statements that use END =

* 	 Performs analysis on any variables encountered in

an input/output list

* 	 Performs analysis on any functions or ASFs encoun­

tered in the input/output list

* 	 Marks in the symbol table that a variable or func­

tion was encountered in the input/output list

2-24

http:2.1.4.2.12

* 	 Performs analysis on any label encountered after an

END = or ERR =

* 	 Adds the statement label to the END = or ERR =

transfer table list

2.1.4.2.13 PRIMPL

PRIMPL (implicit statement analyzer) accepts statement

tokens following the IMPLICIT statement in groups beginning

with the following FORTRAN keywords: BYTE, COMPLEX,

CHARACTER, INTEGER, LOGICAL, DOUBLEPRECISION, DOUBLECOMPLEX,

and REAL. The analyzer performs a scan of the statement

tokens to advance program counters and update the status of

items in the symbol table. Specifically, PRIMPL performs

the following functions for each group of tokens:

* 	 Determines the keyword type

* 	 Deconcatenates the length specifier (if any) from

the keyword type

* 	 Stores (in COMMON block IMPCOM) the default type to

be assigned to untyped variables whose name starts

with the specified letters

2.1.4.2.14 PRSTRC

PRSTRC (structured construct analyzer)-accepts statement

tokens that have the following FORTRAN keywords: DOWHILE,

ELSEIF,-ELSE, ENDDO, ENDIF, .IF, and THEN. The analyzer

performs a scan of the statement tokens to advance program

counters and update the status of items in the symbol

table. Specifically, PRSTRC performs the following func­

tions:

* 	 Calls PRDOS to process DOWHILE statements

* 	 Calls PRIFS to process .IF and ELSEIF statements

* 	 Pops the DO loop target STACK if an ENDDO statement

has no label

2-25

http:2.1.4.2.14
http:2.1.4.2.13

* 	 Adjusts the IF block nesting level if the statement

is an ENDIF

2.1.4.3 Statement Label Processing

SAP statistical processing requires analysis of statement

labels; this analysis falls into two categories:

1. 	 Processing of target labels encountered in ASSIGN,

DO, DOWHILE, GOTO and IF statements

2. 	 Gathering DO loop statistics at the time the loop

target statement-is processed

The first function is performed by the statement processors

described in the previous sections; the second is performed

by subroutine LABEL'. Both LABEL and the statement proc­

essors utilize two label processing utilities, LABLST and

INTGR4.

2.1.4.3.1 LABEL

LABEL (process DO loop target label) is called by TYPE for

all non-FORMAT statements. LABEL tests the first token in

the LISTDT array for the presence of a tab.. If a tab is

found, no label is present and LABEL returns. If no tab is

found, a statement label is present and LABEL calls LOOKP to

fetch the token, and then calls INTGR4 to convert it to

INTEGER*4 format. LAbEL then calls LABLST to add the label

to the label list array LBLIST in COMMON block LBLCOM.

LABLST returns the location of the label in LBLIST. If the

label is the target of a DO loop, its integer representation

will have been previously pushed onto the DO loop target

stack LBLSTK (in COMMON block LBLCOM). LABEL tests this

stack and pops it if a match is found. If the label is a

target, the DO loop length counter and depth of nesting

counter are updated and LABEL returns.

2-26

2.1.4.3..2 LABLST

LABLST (add a label to the label list) searches the LBLIST

array (in COMMON block LBLCOM) for a match to the input

label. If a match is found, a pointer is set to the entry

in LBLIST, and LABLST returns. If no match is found, LABLST

adds the label to the end of LBLIST and returns with the

pointer indicating the new entry. If no space remaits in

LBLIST, the error flag is set to .TRUE..

2.1.4.3.3 INTGR4

INTGR4 (convert a token to INTEGER*4 representation) con­

verts the ASCII input array into an integer and returns it.

INTGR4 utilizes DECODE and is limited to five decimal digits

(the maximum label size). Any illegal decimal conversion

will result in a syntax error message and a returned value

of zero.

2.1.4.4 Token Processing Utilities

SAP processing requires that several standard counts and

calculations be applied to each token encountered while

parsing a statement. These standard operations are perfor­

med by routine FLVARI for specification and declaration

statements and by routine PRTOKE for executable statements.

These routines are discussed below.

2.1.4.4.1 FLVARI

FLVARI (flag variables) identifies arrays and sets flag bits

in the symbol table.

Processing includes the following:

* 	 Counting the number of dimensions within paren­

theses following the token (if any)

* 	 Classifying the token as a variable or array

depending upon the presence of parentheses

following the token

2-27

* 	 Combining the token type with a bit mask using the

OR function

2.1.4.4.2 PRTOKE

PRTOKE (process token) identifies and processes a token as a

constant, variable, or function.

Processing includes

* 	 Determining subscript complexity (level of paren­

theses and operators)

* 	 Classifying the token as a function or ASF,

constant, variable, or variable array and as either

CHARACTER or numeric

* 	 Counting the number of arguments to a function or

ASF

The item is processed until a balancing of parentheses

occurs..

2.1.5 MODULE REPORTS AND FILE SUMMARY

The results of each -module loop and input file loop are

gathered and reported by the routines shown in Figure 2-7.

Each routine called by SAPMAIN in this phase is discussed

below.

2.1.5.1 STATM

STATM (module statistics report) produces a report of the

statistics for each module in an input file. STATM calls

subroutine TABLES to accumulate token use statistics from a

scan of the entire symbol table and to count statement label

use from a scan of the statement label list.

STATM produces each paragraph of the module statistics re­

port (except the complexity paragraph) based upon the cur­

rent settings of the control switches.

2-28

STATM MCMPLX HALREP COLGLR MDIRY STDUMP STATG

Figure 2-7. M PRTDF WRtSE LI I [

HPR1 HPR2 HPR3 HPANDS PTA

Figure 2-7. Module Report and File Summary Routines

2.1.5.2 MCMPLX

MCMPLX (module complexity) controls the calculation and pre­

sentation of the source code complexity measures. Subrou­

tine COMPWT is called to calculate the SEL complexity using

the weights table. Subroutines HPRl, HPR2, HPR3, and CNTXFR

are called to count the delimiter, keyword, procedure, and

transfer Halstead operators, respectively. Subroutine

HPRNDS counts the Halstead operands. After the measures

have been calculated, MCMPLX produces the complexity para­

graph of the module statistics report.

Subroutines WRTDB and WRTSEL are called to write to external

SAP files if the respective /DB and /SL control switches are

set.

2.1.5.3 HALREP

HALREP (Halstead report) is called from SAPMAIN when the /HL

control switch is set. HALREP produces a report showing all

Halstead operators and operands detected in a module and

their use counts. Subroutine PRTXFR-is called to produce

the paragraph that reports on the Halstead transfer opera­

tors.

2.1.5.4 COLGLB

COLGLB (collect global statistics) adds the module statistic

accumulators to the input file accumulators. The global

maxima variables are adjusted when exceeded by the module

maxima variables. COLGLB is called after each module is

processed.

2.1.5.5 MDIRY

MDIRY (module directory report) is called from SAPMAIN to

write a module entry in the module directory. The module

directory always appears as part of SAP output and is not

influenced by any of the listing control switches.

2-30

2.1.5.6 Symbol Table Dump (Subroutine STDUMP)

Figure 2-8 is an example of a symbol table dump produced

when the control switch /DU is set. In the example given,

there are 6000 words in the symbol table, of which 441 were

used. Only a representative sample of the symbol table dump

is shown in Figure 2-8. Each hash table entry pointing to a

chain of symbol table entries is shown. A description of

each symbol table entry in the chain follows the description

of the hash table entry. The explanation of the items in a

symbol table entry is as follows:

Item 	 Meaning

NEXT 	 Location in the symbol table of next entry

in the linked list. If this is the last

entry in this list, the value will be zero

LAST 	 Location in the symbol table of previous

entry in the linked list. If this is the

first entry in this list, the value will

be zero

NACTIV 	 Halstead operand activity counter. In­
cremented each time this entry was ac­
cessed while parsing an executable

statement

ICLASS 	 Binary value, indicating the class of the
token:
= -2, Arithmetic Statement Function (ASF)
= -1, Function
= 0, Undefined (initially set to this)
= 1, Constant
= 2, Variable (further defined by ITYPE)
= 3, Array (further defined by ITYPE)
= 4, Other name (further defined by

ITYPE)

ITYPE 	 Token type defined when ICLASS = 2, 3, or

4. The interpretation of ITYPE is as

follows:

If ICLASS = 2 or 3, ITYPE should be inter­
preted as a bit string with the following

.attributes assigned to the token if the

indicated bit is set. (Bits are numbered

from zero starting with the least signif­
icant bit)

2-31

i o'TEST. IOR/DU
.l.... TALLF DUMP, MAXSYM = 6000 NEXSYII 4=41

.,1LCOM RCU'D = NEZXT, LAST, NACTIVP ICLASS, ITYI:E,

AT HlASH LOCATION 77, IPOINT = 220
AT 220 RECORD = 0 0 1 0 0 0

AT HASH LOCATION 85v IPOINT = 44
(IT 44 RECORD = 0 0 1 3 8 1

AT HASH LOCATION 97? IPOINT = 141
AT 141 RECORD = 0 0 1 1 0 1
AT HASH LOCATION 98, IPOINT = 36
AT 36 RECORD = 0 0 1 1 0 0

AT HASH LOCATION 216, IPOINT 432

AT 432 RECORD = 0 0 0 0 0 0

AT HASH LOCATION 241, IPOINT = 394
AT 394 RECORD = 0 0 1 2 8 1

AT HASH1 LOCATION 298P IPOINT = 385

AT 385 RECORD = 413
 0 1 2 8 1

AT 413 RECORD = 0 385 0 0 0 0

IUSED, LTOKE, TOK'E-N

1 L

I

2

2

T

2t

10

00

0

_X

3 END

"4

3 ITS

4 MINE
4 ELSE

Figure 2-8. Sample Symbol Table Dump

Item ..,Meaning

ITYPE Bit 0 set, argument to module
(Cont'd) Bit 1 set, equivalenced

Bit 2 set, appears in COMMON
Bit 3 set, numeric variable or array
Bit 4 set, CHARACTER variable or array

If ICLASS = 4, ITYPE should be interpreted
as a binary value with the following
meanings:
= 1, Module name
= 2, ENTRY name
= 3, EXTERNAL name
= 4, COMMON block name
= 5, NAMELIST name
= 6, Externally defined subroutine or

function

IUSED Symbol utilization count. Incremented
each time token is used in an executable
statement

LTOKE Length of token in characters

TOKEN Token

2.1.5.7 STATG

STATG (global statistics report) produces a report of the

statistics for each input file. The global accumulators and

global maxima are used in preparing this report. STATG is

called from SAPMAIN when the /GB control switch is set.

2.1.6 PROJECT ANALYSIS

The SAP project analysis phase produces an optional summary

report of data stored in a SAP data base file. The project

analysis is controlled by subroutine REPHAL, which is called

by SAPMAIN as shown in Figure 2-9.

REPHAL searches the data base to locate.each record with a

project character that matches the requested project. The

data on each located record is passed to routine ESTIM,

where the derived Halstead quantities (References 9 and 11)

are calculated. REPHAL reports the data from the data base

and the Halstead quantities in the project summary report.

2-33

ORIGINAL PAGE I

OF pOOR QUALIIY

Project Analysis Routines
Figure 2-9.

2-34

After the project summary report is produced, routine COEF

calculates and reports the correlation coefficient matrix

for the requested project.

2.2 SAP UTILITIES

SAP processing is based upon the use of three internal data

tables: the symbol table, the delimiter/token table, and

the transfer table. The following subsections discuss each

table and the utility routines used to maintain them.

2.2.1 SYMBOL TABLE UTILITIES

A central feature of the SAP design is the symbol table. The

SAP symbol table, which is stored in COMMON block SYMCOM, is

a hash-keyed linked list that is used to store all nondelim­

iter symbols identified in the statement scan. A set of

utility routines allows access to this table via the single

table entry COMMON block STECOM. Subroutines LOOKS and LOOKP

allow read access to the table; POKES and POKEP allow write

access (see Sections 2.2.1.1 through 2.2.1.4).

Deletion of a symbol table entry is accomplished by KILLP

(Section 2.2.1.6), which relinks around a designated symbol

and flags it for deletion. Compression of deleted symbols

is done whenever there is insufficient space to add a new

symbol; a "garbage collection" subroutine, GARCOL (Sec­

tion 2.2.1.7), compresses and relinks the table. If still

more symbol table space is needed, the table is structured

to allow easy implementation of a paging algorithm.

The SYMCOM and STECOM COMMON blocks are described in detail

in Section 4. COMMON block SYMCOM may be thought of as a

file with variable length records and COMMON block STECOM as

a single record from that file. Access to COMMON block

SYMCOM is via the hash table stored in COMMON block HSHCOM;

2-35

the hash table (the pointer to which is calculated by the

function IHASH (Section 2.2.1.5)) points to a position in

COMMON block SYMCOM (Figure 2-10). This position is the

beginning of the symbol "record." In cases of hash colli­

sions, the NEXT pointer points to the next symbol table

"record" having the same hash value.
The list search and

comparison necessary to find a symbol is performed by LOOKS

and a utility comparison routine, COMPAR. Necessary trans­

fers between COMMON blocks STECOM and SYMCOM are performed

by LOOKP and POKEP. COMMON block SYMCOM linkage also in­

ciudes backward pointers (Figure 2-11). Unlinked pointers

(upward at the top of the chain and downward at the bottom)

are set to zero. Linking in of new symbols is accomplished

in POKES, which utilizes the auxiliary pointer NEXSYM, which

points to the next available unused position in COMMON block

SYMCOM. A formatted sample symbol table dump was shown in

Figure 2-8 and described in Section 2.1.5.6.

2.2.1.1 LOOKS

LOOKS (symbol look-up) searches the symbol table (COMMON

block SYMCOM) for a specified input string. LOOKS requires

as input, IHPNTR, the hash table pointer (hash value of the

input string). The hash table value at IHPNTR points to the

head of a symbol table chain, which is searched for the re­

quired string. An empty chain results in the symbol table

pointer variable (IPOINT) being set to zero. A chain that

is not empty but does not contain the desired string is in­

dicated by a negative IPOINT value where the absolute value

,of IPOINT points to the last entry in the chain. If a

matching string is located, IPOINT is returned pointing to

the entry.

2-36

SYMBOL

TABLE

HASH
TABLE NEXT

LAST 0

[POINT' NACTIV 0 C

LA)

j
TOE TRING

Do

IHASH

~COMPUTE
HASH

POINTER
IPOINTPN:,

CLASS

TYPE

USE

LENGTH

0.

;D

j
"

T
0
E
N

NEXT'

LAST'

NACTIV'

CLASS'
TYPE' 9"1

Figure 2-10. Symbol Table Access

ORIGINAL R.AG!EI
of: JOOR" QU?4ATY

HASH SYMBOL LINKAGES
TABLE TABLE

"_______ __ 0
0

0

0

NSYM 00

Figure 2-11. Symbol Table Linkages

2-38

2.2.1.2 LOOKP

LOOKP loads the symbol table entry beginning at IPOINT into

COMMON block STECOM. If IPOINT is invalid, the error flag

is set to .TRUE. and no transfer takes place.

2.2.1.3 POKES

POKES (poke entry into symbol table) establishes a new entry

in the symbol table. POKES requires IPOINT (as-defined in

LOOKS) and IHPNTR. If IPOINT indicates that a chain exists,

POKES updates that chain to point to NEXSYM. If a chain

does not exist, one is started at NEXSYM (that is, IPOINT is

set equal to NEXSYM, and the hash table is updated to point

to NEXSYM). In either case, NEXSYM is checked against

MAXSYM to see if the input symbol in COMMON block STECOM

will fit. If it will not, GARCOL is called to compress

COMMON block SYMCOM. If sufficient space is available,

POKEP is called to insert the symbol; if not, the error flag

is set to .TRUE.. In the case where IPOINT is greater than

zero, POKES simply calls POKEP to insert the symbol at the

already established location.

2.2.1.4 POKEP

POKEP (write a symbol table entry) moves the contents of

COMMON block STECOM into COMMON block SYMCOM starting at

location IPOINT. The error flag is set to .TRUE. if IPOINT

is out of range.

2.2.1.5 IHASH

IHASH (compute a hash pointer) computes the hash table

pointer by summing the characters in the input array STRING,

shifting LHSHFT bits to the right, and masking out all but

the low bits and adding one. LHSHFT and LHMASK (the bit

mask) are stored in COMMON block HSHCOM and are set to zero

and 1777 (octal), respectively.

2-39

2.2.1.6 KILLP

KILLP (delete a symbol table entry) deletes a symbol table

entry by removing its linkages to the rest of the symbol

table and marking it for compression. KILLP first calls

LOOKP to load the symbol into COMMON block STECOM. If the

forward and backward pointers, NEXT and LAST, are both zero,

KILLP deletes the hash table entry by zeroing location

IHPNTR in the IHTBLE array and sets location IPOINT in

COMMON block SYMCOM to -1. If NEXT' is 0 and LAST is non­

zero, location IPOINT is set to -1 and location LAST is set

to 0 (the chain is terminated at LAST). If NEXT and LAST

are both nonzero locations, LAST is set to NEXT and NEXT is

set to -1. If NEXT is not zero but LAST is 0, IHTBLE

(IHPNTR) is set to NEXT and location IPOINT is set to -1.

The error flag is set to .TRUE. if any illegal address is

encountered.

2.2.1.7 GARCOL

GARCOL (symbol table compression) frees space by compressing

out symbol table entries flagged for deletion by KILLP.

GARCOL proceeds by starting at the top of the symbol table,

calculating the length of the first entry, checking its for­

ward pointer for a delete flag (-l), compressing out the

entry if the delete flag is on, resetting the hash table

entry to point to the new location (for head of chain only),

and then iterating until NEXSYM is reached. NEXSYM is reset

to point to the last entry +1 and GARCOL returns. Any

illegal address calculation will cause error to be set to

.TRUE..

2-40

2.2.2 DELIMITER/TOKEN TABLE UTILITY (LOOKAH)

The delimiter/token table is the result of the statement

decomposition performed by subroutine DSCAN. The table is

contained in array LISTDT in COMMON block LDTCOM. The

entries in this table are either positive integers, which

point to tokens in the symbol table (Section 2.2.1) tor

negative integers, which point to one of the delimiters in

COMMON block DELCOM (Section 4). The sequence of pointers

is terminated by a pointer to the null delimiter (IYNULL).

The interpretation of the contents of the delimiter/token

table is specific to each individual statement parsing rou­

tine. Each parsing routine will advance a pointer through

the delimiter/token table while performing a specific anal­

ysis of the FORTRAN statement. As the pointer is advanced,

two functions are usually performed: (1) each token encoun­

tered is marked in the symbol table and (2) a limited syntax

check is performed. One utility, LOOKAH, is used when exa­

mining the delimiter/token table.

LOOKAH (parsing look-ahead) searches the delimiter/token

table for a specific entry. LOOKAH searches the

delimiter/token table between specified limits until one of

the following conditions is met:

* 	 The end of the table is encountered

* 	 An unmatched close parenthesis is encountered

* 	 The end of the specified range in the table is

encountered

* 	 The first occurrence of the specified entry which

is not enclosed within parentheses is encountered

2-41

2.2.3 TRANSFER OPERATOR LIST UTILITIES

The transfer operator list is used to track the occurrences

of individual Halstead transfer operators. The transfer

list and the pointers associated with the list are stored in

COMMON block XFRCOM.

The transfer list is a-set of six singly-linked lists that

are built from the same list of available space. Each list

is made up of nodes of variable lengths.' Each node is made

up of three or more cells. The first cell of each node

points to the first cell of the next node in the list. If

the node is the last node in a list, the first cell contains

a zero. The second cell contains the use count of the

transfer operator. The third cell contains a count of the

number of cells belonging to the node which follow the third

cell. The cells following the third cell contain pointers

to the tokens in the symbol table which make up the transfer

operator. Table 2-1 shows which tokens from the transfer

operators are pointed to by these cells.

A set of utility routines is used to establish and maintain

the transfer list. These routines are described below.

2.2.3.1 INITN

INITN (initialize the transfer lists) creates six empty

nodes from the list of available space. These header nodes

never contain data and serve only as starting points for

each list. Six pointers to the header nodes are also

established.

2.2.3.2 NEWPOT

NEWPOT (establish new potential node) obtains three cells

from the list of available space and initializes each cell

to zero. An error flag is returned as .TRUE. if there are

insufficient cells remaining in the list of available space.

2-42

Table 2-1. Transfer Operators

Statement
Type Syntax Token Pointer List

Alternate
Return

CALL sub[([a[,a]...])] List = sub,a,...,a
where each argu­
ment(a) in the
token list is an
alternate return
specifier label;
this operator ex­
ists only if at
least one argument
is an alternate
return

Any I/O
statement

10 Keyword
(...[,END=s]...)

List = s

Any I/O
statement

1O Keyword
(...[,ERR=s]...)

List = s

Unconditional
GOTO

GOTO s List = s

Computed GOTO GOTO(s[,s]...) [,]i List = s,...,s i
where the index (i)
is included in the
token list

Assigned GOTO GOTO i[,](s[,s]...)] List = i where the
statement label

list is not in­
cluded in the token
list

2-43

2.2.3.3 ADDPOT

ADDPOT (add a cell to potential node) obtains the next cell

from the list of available space and attaches it to the

potential node. An error flag is returned as .TRUE. if the

list of available space is empty. A pointer to a token in

the symbol table is placed in the new cell and the node's

third (length) cell is incremented.

2.2.3.4 LOOKND

LOOKND (test potential node) compares the potential node to

each node in a specified list. A match between the poten­

tial node and a node in the list occurs when the lists of

pointers into the symbol table are the same. If a match is

found, the potential node is erased and the use count cell

in the matching node is incremented. If a match is not

found, the potential node is linked into the list with a use

count of one, and a new potential node is obtained.

2.2.3.5 LNKPOT

LNKPOT (link potential node to list) adds the potential node

to the end of a specified list.

2.2.3.6 ERAPOT

ERAPOT (erase the potential node) returns the potential

node's symbol table pointer cells to the list of available

space. The potential node's third (length) cell is reset to

zero.

2-44

SECTION 3 - SAP MODULE DESCRIPTIONS

The detailed module descriptions provided in this section

are arranged alphabetically by module name. In addition to

the modules listed, SAP uses the following system modules:

ISHFT, ERRSET, DATE, and TIME.

All SAP modules are written in structured FORTRAN (Refer­

ence 8), although not all modules use the extensions per­

mitted by this language.

3-1

ROUTINE: ADDPOT

TYPE: -Subroutine

PURPOSE: Adds an item to the comparison portion of a poten­

tial node in the transfer operator list.

USAGE:

1. Calling Sequence:

CALL ADDPOT (ITEM, ERROR)

FORTRAN Dimen-

Name I/O Type sion Description

ITEM I 1*2 - Item to add to node

ERROR 0 L*2 - = .FALSE., processing com­
plete

= .TRUE., not enough room to
add item to node

2. COMMON Blocks Used: LUNCOM, XFRCOM

3. Subroutines Used: None

4. Subroutines Called by: PRCALL, PRGOTO, PRIO

5. External Data Sets Referenced:

LUN 	 File Name Operation(s)

6 FOR006.DAT Write

3-2

ROUTINE: ASGNID

TYPE: Subroutine

PURPOSE: Performs an initial scan of the delimiter/token

list to recognize assignment statements.

USAGE:

1. 	 Calling Sequence:

CALL ASGNID (LDTPTR, INDIC, ERROR)

FORTRAN Dimen-

Name I/O T sion Description

LDTPTR I 1*2 	 Pointer to start of state­
ment in delimiter/token list

INDIC 0 1*2 = 0, statement is not assign­
ment statement

= 1, statement is an assign­
ment statement

ERROR 	 0 L*2 = .FALSE., processing com­
pleted

= .TRUE., unrecoverable error

2. 	COMMON Blocks Used: DELCOM, LDTCOM, MODCOM, STECOM,

TYPCOM

3. 	Subroutines Used: LOOKAH, LOOKK, LOOKP

4. 	Subroutines Called by: TYPE

5. 	External Data Sets Referenced: None

3-3

ROUTINE: CINPUT.

TYPE: Subroutine

PURPOSE: Requests the command line, interprets the

switches, and opens the appropriate file.

USAGE:

1. Calling Sequence:

CALL CINPUT (ENDC, ERROR)

FORTRAN Dimen-

Name I/O Type sion Description

ENDC 	 0 L*2 - Control input end-of-file
flag

ERROR 0 L*2 - .FALSE., processing com­
plete

= .TRUE., error opening
source input file

2. COMMON Blocks Used: INFCOM, LUNCOM, SWICOM

3. Subroutines Used: COMPAR, INPUT, DEFSEL, INCLUD

4. Subroutines Called by: SAPMAIN

5. 	External Data Sets Referenced:

LUN File Name Operation(s)

6 FOR006.DAT Write

2 FOR002.DAT Open

11 FOR011.DAT Open

3-4

ROUTINE: CNTXFR

TYPE: Subroutine

PURPOSE: Accumulates the count of distinct operators and

total operators from the transfer operator list.

USAGE:

1. 	Calling Sequence:

CALL CNTXFR

2. COMMON Blocks Used: OPCOM, XFRCOM

3. Subroutines Used: None

4. Subroutines Called by: MCMPLX

5. External Data Sets Referenced: None

3-5

ROUTINE: COEF

TYPE: Subroutine

PURPOSE: Computes the correlation coefficients for the

project 	summary analysis.

USAGE:

1. 	Calling Sequence:

CALL COEF (NCOL, NLINES, K, TITLE)

FORTRAN 	 Dimen-
Name I/O Type sion Description

NCOL I 1*2 - Number of measures correlated

NLINES I 1*2 - Number of modules correlated

K I 1*4 (100, Matrix of data to be corre­
10) lated

TITLE I R*8 (10) Title of rows and columns

2. COMMON Blocks Used: LUNCOM

3. Subroutines Used: None

4. Subroutines Called by: REPHAL

5. External Data Sets Referenced:

LUN 	 File Name Operation(s)

8 FOR008.DAT Write

3-6

ROUTINE: COLGLB

TYPE: Subroutine

PURPOSE: Collects the global statistics for output by rou­

tine STATG.

USAGE:

1. 	 Calling Sequence:

CALL COLGLB

2. 	COMMON Blocks Used: CTlCOM, CT2COM, CT3COM, CT4COM,

CT5COM, GLBCOM, MODCOM, TYPCOM

3. 	Subroutines Used: None

4. 	Subroutines Called by: SAPMAIN

5. 	External Data Sets Referenced: None

3-7

ROUTINE: COMPAR

TYPE: Subroutine

PURPOSE: Compares two strings of ASCII characters for

equality.

USAGE:

1. 	Calling Sequence:

CALL COMPAR (STRI, STR2, Li, L2, SAME)

FORTRAN
Name I/O Type

STRI I L*1

STR2 I L*l

Li I 1*2

L2 I 1*2

SAME 0 L

2. 	COMMON Blocks Used:

3. 	Subroutines Used:

Dimen­
sion Description

1 Comparison string-one

1 Comparison string two

- Length of comparison string
one

Length of comparison string,
two

Truth switch:
= OTRUE., strings equal
= .FALSE., strings not equal

LUNCOM

None

4. 	Subroutines Called by: LOOKS, PRDOS, PRIFS, WRTDB,

PRIO, CINPUT

5. 	External Data Sets Referenced:

LUN 	 File Name Operation(s)

6 FOR006.DAT Write

3-8

ROUTINE: COMPWT

TYPE: Subroutine

PURPOSE: Computes the SEL complexity from the collected

statistics and the current weights file data.

USAGE:

1. 	Calling Sequence:

CALL COMPWT

2. 	COMMON Blocks Used: CTICOM, CT2COM, CT3COM, CT4COM,

CT5COM, KEYCOM, WTSCOM

3. 	Subroutines Used: None

4. 	Subroutines Called by: MCMPLX

5. 	External Data sets Referenced: None

3-9

ROUTINE: DEFINE

TYPE: Subroutine

PURPOSE: Initializes or locates a data base file when the

/DB control switch is set true. Prompts user for a data

base name, maximum record count, and project character to be

used for identification in the correlation coefficient

report.

USAGE:

1. 	Calling Sequence:

CALL DEFINE (DBFILE, PROJ)

FORTRAN Dimen-

Name I/O Type sion Description

DBFILE 0 L*I 70 Data base file name

PROJ 0 L*I 1 Project character

2. COMMON Blocks Used: LUNCOM

3. Subroutines Used: FINDIT

4. Subroutines Called by: SAPMAIN

5. External Data Sets Referenced:

LUN 	 File Name Operation(s)

9 User supplied Open, write, close

5 Terminal Read

6 FOR006.DAT Write

3-10

ROUTINE: DEFSEL

TYPE: Subroutine

PURPOSE: Opens the ALL.SAP sequential file if control

switch /SL is set to on. If an ALL.SAP file exists in the

user's default directory, the file is opened with the APPEND

option; otherwise it is opened as NEW.

USAGE:

1. 	Calling Sequence:

CALL DEFSEL

2. COMMON Blocks Used: LUNCOM, SELCOM

3. Subroutines Used: None

4. Subroutines Called by: CINPUT

5. 	External Data Sets Referenced:

LUN File Name Operatioh(s)

5 Terminal Read

6 FOR006.DAT Write

12 ALL.SAP Open

3-11

ROUTINE: DSCAN

TYPE-: Subroutine

PURPOSE: Scans the packed input array, locating delimiters

and testing tokens against the symbol table. Any new tokens

are entered into the symboltable, and a list of delimiters

and tokens is created in /LDTCOM/.

USAGE:

l.' Calling Sequence:

CALL DSCAN (ERROR)

FORTRAN Dimen-

Name I/O Type sion Description

ERROR 0 L*2 = .FALSE., processing com­
plete

= .TRUE., error in locating

and/or entering

token in symbol

table

2. 	COMMON Blocks Used: DLICOM, INPCOM, LDTCOM, LUNCOM,

STECOM

3. 	Subroutines Used: IHASH, LOOKS, NUMER, POKES

4. 	Subroutines Called by: TYPE

5. 	External Data Sets Referenced:

LUN 	 File Name operation(s)

6 FOR006.DAT Write

3-12

ROUTINE: ERAPOT

TYPE: Subroutine

PURPOSE: Resets the potential node in the transfer operator

list to empty.

USAGE:

1. 	 Calling Sequence:

CALL ERAPOT

2. COMMON Blocks Used: XFRCOM

3. Subroutines Used: None

4. Subroutines Called by: LOOKND, PRCALL, PRGOTO, PRIO

5. External Data Sets Referenced: None

3-13

ROUTINE: ERRMSG

TYPE: Subroutine

PURPOSE: Lists the source statement and delimiter/token

list contents that have caused a syntax error during SAP

processing.

USAGE:

1. 	Calling Sequence:

CALL ERRMSG (LIST, PARSED, LDTPTR)

FORTRAN Dimen-

Name I/O Type sion Description-

LIST I L*2 - = .TRUE., print card image

PARSED I L*2 - = .TRUE., print card image
by token and de­
limiter

LDTPTR I 1*2 Pointer to beginning of card
image in LISTDT array

2. 	COMMON Blocks Used: DLICOM, INPCOM, LDTCOM, LUNCOM,

MODCOM, STECOM

3. 	Subroutines Used: LOOKP

4. 	Subroutines Called by: PRTOKE, STATE

5. 	External Data Sets Referenced:

LUN 	 File Name Operation(s)

6 FOR006.DAT Write

3-14

ROUTINE: ESTIM

TYPE: Subroutine

PURPOSE: Computes a number of Halstead's complexity measures

(predicted program length, program volume, potential volume,

language and program level, effort required, programming

time, and predicted bugs).

USAGE:

1. Calling Sequence:

CALL ESTIM 	(ICTHIO, IETAI, IETA2, NETAl, NETA2,

IETA, NETA, LENGTH, IVOL, PRGLVL,

ALNGLV, IEFORT, TOTIM, NBUGS, IVSTAR,

STROUD, ERROR)

FORTRAN
Name I/O Type

Dimen­
sion Description

ICTHIO I 1*2 Sum of count of argument,
variables (including ENTRY
arguments) and count of ref­
erenced COMMON variables

IETAl I 1*2 - Number of unique operators

IETA2 I 1*2 - Number of unique operands

NETAl I 1*2 - Total number of operators

NETA2 I 1*2 - Total number of operands

IETA 0 1*2 - Number of unique operators
and operands

NETA 0 1*2 Total number of operators
and operands

LENGTH 0 1*2 - Predicted length

IVOL 0 1*2 - Program volume

PRGLVL 0 R*4 - Program level

ALNGLV 0 R*4 - Language level

IEFORT 0 1*2 - Effort required

TOTIM 0 R*4 - Total program time required
in hours

NBUGS 0 1*2 Predicted number of bugs

3-15

FORTRAN Dimen-
Name I/O Type sion Description

IVSTAR 0 1*2 Potential volume

STROUD 0 1*2 Stroud number
(discriminations/hour)

ERROR 0 L*2 - Error flag

2. COMMON Blocks Used: None

3. Subroutines Used: None

4; Subroutines Called by: REPHAL

5i External Data Sets Referenced: None

3-16

ROUTINE: FINDIT

TYPE: Subroutine

PURPOSE: Extracts a character string, up to a specified

delimiter, from an input character string.

USAGE:

1. 	Calling Sequence:

CALL FINDIT (INFILE, IC, DELIM, N, OUTPUT, ICX)

FORTRAN Dimen-

Name I/O Type sion Description

INFILE I L*I 80 Input source character string

IC I/O 1*2 - Number of characters proc­
essed in INFILE

DELIM I L*I Delimiter character

N I 1*2 - Number of characters in
INFILE

OUTPUT 0 L*l 80 Extracted character string
up to delimiting character

ICX 0 1*2 - Number of characters in
OUTPUT

2. COMMON Blocks Used: None

3. Subroutines Used: None

4. Subroutines Called by: DEFINE, INCLUD

5. External Data Sets Referenced: None

3-17

ROUTINE: FLVARI

TYPE: Subroutine

PURPOSE: Flags variables and arrays in the symbol table and

counts array dimensions.

USAGE:

1. 	Calling Sequence:

CALL FLVARI (IC, MASK, SYNERR, ERROR)

FORTRAN Dimen­
*Name 	 1/O Type sion Description

IC 	 I/O 1*2

MASK 	 I 1*2

SYNERR 	 0 L*2

ERROR 	 0 L*2

2. 	COMMON Blocks Used:

LUNCOM, STECOM

- Pointer to next location

within the delimiter/token

list

- Mask for numeric or charac­
ter data types

- Syntax error flag:

= .FALSE., no syntax error

= .TRUE., syntax error

- Fatal error flag:
= .FALSE., processing com­

plete
= .TRUE., 	error processing

symbol table en­
tries

CT2COM, CT5COM, DELCOM, LDTCOM,

3. 	Subroutines Used: LOOKP, POKEP, PAGER

4. 	Subroutines Called by: PRSPEC, PRTYPE

5. 	External Data Sets Referenced:

LUN 	 File Name Operation(s)

6
 FOR006.DAT 	 Write

3-18

ROUTINE: FNNAME

TYPE: Subroutine

PURPOSE: Extracts a character string, up to and including a

specified delimiter, from an input character string.

USAGE:

1. 	Calling Sequence:

CALL FNNAME (INFILE, IC, DELIM, N, OUTPUT, ICX)

FORTRAN Dimen-

Name I/O Type sion Description

INFILE I L*l 80 Input character string

IC I/O 1*2 - Location of delimiter within

the input string

DELIM I L* - Specified delimiter

N I 1*2 - Number of characters in

INFILE

OUTPUT 0 L*l 80 Extracted character string
including delimiter

ICX 0 1*2 - Number of characters in
OUTPUT

2. COMMON Blocks Used: None

3. Subroutines Used: None

4. Subroutines Called by: INCLUD

5. External Data Sets Referenced: None

3-19

ROUTINE: GARCOL

TYPE: Subroutine

PURPOSE: Compresses the symbol table by removing areas

flagged for deletion and relinking the chain pointers.

USAGE:

1. 	Calling Sequence:

CALL GARCOL (ERROR)

FORTRAN -Dimen-

Name I/O Type sion Description

ERROR 0 L*2 - Fatal error flag

2. COMMON Blocks Used: HSHCOM, LDTCOM, LUNCOM, SYMCOM

3. Subroutines Used: IHASH

4. Subroutines Called by: POKES

5. External Data Sets Referenced:

LUN 	 File Name Operation(s)

6 FOR006.DAT Write

3-20

ROUTINE: GLINE

TYPE: Subroutine

PURPOSE: Reads input source code into a two-line rotating

buffer.

USAGE:

1. 	Calling Sequence:

CALL GLINE (INITR, ICOMM, NCOMM, ICONT, NCONT, ENDN,

FORTRAN
Name I/O Type

INITR I/O L*2

ICOMM I/O L*2

NCOMM I/O L*2

ICONT I/O L*2

NCONT I/O L*2

ENDN 0 L*2

ENDS 0 L*2

ERROR 0 L*2

ENDS, ERROR)

Dimen­
sion Description

- Initial read flag

- Current card comment flag

- Next card comment flag

- Current card continuation

flag

- Next card continuation flag

- End of input on read flag

- End of input on initial read

flag

- Read error flag

2. COMMON Blocks Used: INLCOM, LUNCOM, MODCOM, SWICOM

3. Subroutines Used: TABCCC, PAGER

4. Subroutines Called by: READER

5. 	External Data Sets Referenced:

LUN File Name Operation(s)

2 FOR002.DAT Read

6
 FOR006.DAT 	 Write

3-21

ROUTINE: HALREP

TYPE: Subroutine

PURPOSE: Prints the specific Halstead operators (delimiters,

keywords, procedures, and transfers) and operands when the

/HL 	control switch is set to on.

USAGE:

1. 	Calling Sequence:

CALL HALREP

2. 	COMMON Blocks Used: DLICOM, HSHCOM, LUNCOM, OPCOM,

STECOM

3. 	Subroutines Used: LOOKP, PAGER, PRTXFR

4. 	Subroutines Called by: SAPMAIN

5. 	External Data Sets Referenced:

LUN File Name Operation(s)

6 FOR006o.DAT Write

7 FOR007.DAT Write

3-22

ROUTINE: HOPRN

TYPE: Subroutine

PURPOSE: Increments the activity pointer for a symbol in

the symbol table when a Halstead operand has been

encountered.

USAGE:

1. 	Calling Sequence:

CALL HOPRN (IPOINT)

FORTRAN Dimen-

Name I/O Type sion Description

IPOINT 	 I 1*2 Starting location for symbol

block in symbol table

2. 	COMMON Blocks Used: STECOM

3. 	Subroutines Used: POKEP

4. 	Subroutines Called by: PRASGN, PRASS, PRCALL, PRDOS,

PRGOTO, PRIFS, PRIO, PRSTRC

5. 	External Data Sets Referenced: None

3-23

ROUTINE: HOPTR1

TYPE: Subroutine

PURPOSE: Determines whether a given delimiter is a Halstead

operator and increments the associated counter.

USAGE:

1. 	Calling Sequence:

CALL HOPTR1 (IDLM)

FORTRAN Dimen-

Name I/O Type sion Description

IDLM I 1*2 Delimiter code from

delimiter/token table

2. COMMON Blocks Used: OPCOM

3. Subroutines Used: None

4. Subroutines Called by: PRSTRC

5. External Data Sets Referenced: None

3-24

ROUTINE: HOPTR3

TYPE: Subroutine

PURPOSE: Increments the counter corresponding to the proce­

dure (subroutine or function) specified by the current

symbol in 	the delimiter/token table.

USAGE:

1. 	Calling Sequence:

CALL HOPTR3

2. COMMON Blocks Used: LUNCOM, OPCOM, STECOM

3. Subroutines Used: None

4. Subroutines Called by: PRASGN, PRIFS, PRSTRC

5. External Data Sets Referenced:

LUN 	 File Name Operation(s)

6 FOR006.DAT Write

3-25

ROUTINE: HPRI

TYPE: Subroutine

PURPOSE: Calculates the contributions to the unique and

total operator counts from the delimiter operators.

USAGE:

1. 	Calling Sequence:

CALL HPR1 (LINE)

FORTRAN Dimen-

Name I/O Type sion Description

LINE 	 1*2 - Not used

2. COMMON Blocks Used: DLICOM, LUNCOM, OPCOM

3. Subroutines Used: None

4. Subroutines Called by: MCMPLX

5. External Data Sets Referenced: None

3-26

ROUTINE: HPR2

TYPE: Subroutine

PURPOSE: Calculates the contributions to the unique and

total operator counts from the keyword operators.

USAGE:

1. 	Calling Sequence:

CALL HPR2 (LINE)

FORTRAN 	 Dimen-
Name I/O Type sion Description

LINE 1*2 - Not used

2. COMMON Blocks Used: LUNCOM, OPCOM

3., Subroutines Used: None

4. Subroutines Called by: MCMPLX

5. External Data Sets Referenced: None

3-27

ROUTINE: HPR3

TYPE: Subroutine

PURPOSE: Calculates the contribution to the unique and

total operator counts from the procedure operators.

USAGE:

1. Calling Sequence:

CALL HPR3 (LINE)

FORTRAN Dimen-

Name I/O Type sion Description

LINE 1*2 Not used

2. COMMON Blocks Used: LUNCOM, OPCOM

3. Subroutines Used: None

4. Subroutines Called by: MCMPLX

5. External Data Sets Referenced: None

3-28

ROUTINE: HPRNDS

TYPE: Subroutine

PURPOSE: Calculates the count of unique and total operands

from a scan of the symbol table.

USAGE:

1. 	Calling Sequence:

CALL HPRNDS

2. 	COMMON Blocks Used: HSHCOM, LUNCOM, OPCOM, STECOM,

SYMCOM

3. 	Subroutines Used: IHASH, LOOKP

4. 	Subroutines Called by: None

5. 	External Data Sets Referenced: None

3-29

ROUTINE: HSCAN

TYPE: Subroutine

PURPOSE: Scans the input line, removing literals, Hollerith

strings, embedded blanks, and inline comments.

USAGE:

i. 	Calling Sequence:

CALL HSCAN (ICTSXP, ERROR)

FORTRAN 	 Dimen-

Name I/O Type sion Description

Inline comment counter
ICTSXP 0 1*2 -

ERROR 0 L*2 - Fatal error flag

2. COMMON Blocks Used: INPCOM, LUNCOM, MODCOM

3. Subroutines Used: None

4. Subroutines Called by: READER

5. External Data Sets Referenced:

LUN 	 File Name Operation(s)

6 FOR006.DAT Write

3-30

ROUTINE: IHASH

TYPE: Function

PURPOSE: Hashes the input character string to obtain a

pointer into the symbol table.

USAGE:

1. 	Calling Sequence:

IHASH (STRING, LHASH)

FORTRAN Dimen-

Name I/O Type sion Description

IHASH 0 1*2 - Hash value of STRING

STRING I L*l 1 Input character string to be

hashed

LHASH I 1*2 - Length of input string

2. COMMON Blocks Used: HSHCOM, LUNCOM

3. Subroutines Used: None

4. Subroutines Called by: -POKES

5. External Data Sets Referenced: None

3-31

ROUTINE: INCLUD

TYPE: Subroutine

PURPOSE: Expands INCLUDE statements, nested up to three

deep, when the /XP control switch is set on.

USAGE:

1. 	Calling Sequence:

CALL INCLUD (FILEI, FILEO, NPS)

FORTRAN 	 Dimen-
Name I/O Type sion Description

FILEI I L*I 72 Input source file name

FILEO 0 L*I 72 Expanded source file name

NPS I 1*2 - Length of name in FILEI

2. 	COMMON Blocks Used: LUNCOM

3. 	Subroutines Used: FNNAME

4. 	Subroutines Called by: CINPUT

5. 	External Data Sets Referenced:

LUN File Name Operation(s)

1 From INCLUDE statement Open, read, close

2 From INCLUDE statement Open, read, close

3 From INCLUDE statement Open, read, close

4 From INCLUDE statement Open, read, close

11 	 FOR011.DAT Open, write, close

6 FOR006.DAT Write

3-32

ROUTINE: INITG

TYPE: Subroutine

PURPOSE: Initializes symbol table and global counter

variables.

USAGE:

1. 	Calling Sequence:

CALL INITG (ERROR)

FORTRAN 	 Dimen-
Name I/O Type sion Description

ERROR 0 L*2 - Fatal error flag

2. COMMON Blocks Used: GLBCOM, LUNCOM, SYMCOM, WTSCOM

3. Subroutines Used: None

4. Subroutines Called by: SAPMAIN

5. External Data Sets Referenced: None

3-33

ROUTINE: INITM

TYPE: Subroutine

PURPOSE: Initializes the symbol table and the module

counter variables.

USAGE:

1. 	Calling Sequence:

CALL INITM

2. 	COMMON Blocks Used: CTlCOM, CT2COM, CT3COM, CT4COM,

CT5COM, DLICOM, OPCOM, HSHCOM, IMPCOM, LBLCOM, tUNCOM,

MODCOM, SYMCOM

3. 	Subroutines Used: None

4. 	Subroutines Called by: SAPMAIN

5. 	External Data Sets Referenced: None

3-34

ROUTINE: INITN

TYPE: Subroutine

PURPOSE: Creates the initial header node for the transfer

lists.

USAGE:

1. Calling Sequence:

CALL INITN (ERROR)

FORTRAN Dimen-

Name I/O. Type sion Description

ERROR 	 0 L*2 - = .FALSE., processing com­
plete

--__= .TRUE., error creating
first potential
node

2. COMMON Blocks Used: XFRCOM

3. Subroutines Used: NEWPOT

4. Subroutines Called by: INITM

5. External Data Sets Referenced: None

3-35

ROUTINE: INPUT

TYPEr Subroutine

PURPOSE: Obtains a line of control input from the user.

The user may specify an indirect file to be used as a source

of control input until the file is exhausted.

USAGE:

1. Calling Sequence:

CALL INPUT (PROMPT, RSPOND. LENRSP, MAXRSP, EXTFIL,

TERM, EOFTRM)

FORTRAN Dimen-

Name I/O. Type sion Description

PROMPT I L*l 1 Prompt displayed when

requesting from terminal or

echoing from indirect file

(Must be terminated by '@1

character)

RSPOND 0 *Il 1 Input string

LENRSP 0 1*2 - Length of input string

MAXRSP I 1*2 - Maximum length of input

stringallowed

EXTFIL I I*2 - Logical unit number for
indirect file

TERM I/O L*l - Input logical unit flag:
= .TRUE., terminal is current

input file
= .FALSE., indirect file is

current input file

EOFTERM 0 L*I - .TRUE., last input from
terminal was end

of file character

(CNTL Z)

.FALSE., no end of file

from terminal

2. COMMON Blocks Used: None

3. Subroutines Used: LOCCHR, SKPCHR

4. Subroutines Called by: CINPUT

3-36

5. External Data Sets Referenced:

LUN File Name Operation(s)

5

6

10

Terminal

FOR006.DAT

User supplied

Read

Write

Open, read, close

3-37

ROUTINE: INTGR4

TYPE: Subroutine

PURPOSE: Converts a character string to INTEGER*4 internal

form.

USAGE:

1. 	Calling Sequence:

CALL INTGR4 (STRING, L, N, SYNERR)

FORTRAN Dimen-
Name I/0 Type sion Description

STRING I L*l 1 Input string for conversion

L I 1*2 - Length of input string

N 0 1*4 - INTEGER*4 value of string

SYNERR 0 L*2 - Conversion syntax error flag

2. 	COMMON Blocks Used: LUNCOM, MODCOM

3. 	Subroutines Used: PAGER

4. 	Subroutines Called by: PRCALL, PRIO, PRGOTO, PRASS,

LABEL, PRDOS, PRIMPL

5. 	External Data Sets Referenced:

LUN File Name Operation(s)

6 FOR006.DAT 	 Write

3-38

ROUTINE: KILLP

TYPE: Subroutine

PURPOSE: Unlinks an entry from 	the symbol table and flags

it for deletion by routine GARCOL.

USAGE:

1. Calling Sequence:

CALL KILLP (IPOINT, ERROR)

FORTRAN Dimen-

Name I/O Type sion Description

IPOINT 	 I 1*2 Pointer to entry to be

unlinked

ERROR 0 L*2 Fatal error flag

2. COMMON Blocks Used: HSHCOM, LUNCOM, STECOM, SYMCOM

3. Subroutines Used: IHASH, LOOKP, POKEP

4. Subroutines Called by: PRDOS, PRTYPE, TESTK

5. External Data Sets Referenced: None

3-39

ROUTINE: LABEL

TYPE: Subroutine.

PURPOSE: Checks statement labels and,-if required, adds

them to the label list. Checks labels against the DO loop

target stack and, if required, pops the stack and gathers DO

loop statistics.

USAGE:

1. 	Calling Sequence:

CALL LABEL (ERROR)

FORTRAN Dimen-

Name I/O Type sion Description

ERROR 0 L*2 - Fatal error flag

2. 	COMMON Blocks Used: CT5COM, DELCOM,.LBLCOM, LDTCOM,

LUNCOM, MODCOM, STECOM

3. 	Subroutines Used: LOOKP, INTGR4, LABLST

4. 	Subroutines Called by: TYPE

5. 	External Data Sets Referenced: None

3-40

ROUTINE: LABLST

TYPE: Subroutine

PURPOSE: Checks whether a referenced label is in the label

list. If not found, adds it to the list.

USAGE:

1. 	Calling Sequence:

CALL LABLST (LABL, LOC, ERROR)

FORTRAN Dimen-

Name I/O Type sion Description

LABL I 1*4 - Integer representation of
statement label

LOC 0 1*2 - Location of label in array
LABLST

ERROR 0 L*2 - Fatal error flag

2. 	COMMON Blocks Used: LBLCOM

3. 	Subroutines Used: None

4. 	Subroutines Called by: LABEL, PRCALL, PRDOS, PRGOTO,

PRASS, PRIO

5. 	External Data Sets Referenced: None

3-41

ROUTINE: LNKPOT

TYPE: Subroutine

PURPOSE: Links a potential node into a specific transfer

operator list.

USAGE:

1. 	Calling Sequence:

CALL LNKPOT (LIST)

FORTRAN Dimen-

Name I/O Type sion Description

LIST I 1*2 Pointer to header node of

transfer 	operator list

2. COMMON Blocks Used: XFRCOM

3. Subroutines Used: None

4. Subroutines Called by: LOOKND

5. External Data Sets Referenced: None

3-42

ROUTINE: LOADK

TYPE: Subroutine

PURPOSE: Loads the file KEYWORDS.SAP into KEYCOM.

USAGE:

i. 	 Calling Sequence:

CALL LOADK (ERROR)

FORTRAN Dimen-

Name I/O Type sion Description'

ERROR 0 L*2 - = .FALSE., processing
complete

= .TRUE., error opening or
reading
KEYWORDS.SAP

2. COMMON Blocks Used: KEYCOM, LUNCOM, SWICOM

3. Subroutines Used: USRWTS

4. Subroutines Called by: SAPMAIN

5. 	External Data Sets Referenced:

LUN File Name Operation(s)

1 KEYWORDS.SAP Open, read, close

3-43

ROUTINE: LOCCHR

TYPE: Function

PURPOSE: Locates the first occurrence of a specified

character starting at the beginning of a character string.

USAGE:

1. 	Calling Sequence:

LOCCHR (CHAR, STRING, LENGTH)

FORTRAN 	 Dimen-

Name I/O Type sion Description

LOCCHR 0 1*2 - - 0, character not found in
STRING

> 0, location of character
within STRING

CHAR I L*I - Character to be searched for

STRING I L*l LENGTH Character string to be
searched

LENGTH I 1*2 - Length of character string
in bytes

2. COMMON Blocks Used: None

3. Subroutines Used: None

4. Subroutines Called by: INPUT

5. External Data Sets Referenced:

LUN File Name Operation(s)

5 Terminal Write

3-44

ROUTINE: LOOKAH

TYPE: Subroutine

PURPOSE: Searches for a target item between specified

limits in the delimiter/token table. Sets a pointer to the

first occurrence of the target that is not enclosed within

parentheses.

USAGE:

1. Calling Sequence:

CALL LOOKAH (LOOKFR, ISTART, IEND, IPTR, ERROR)

FORTRAN Dimen-

Name I/O Type sion Description

LOOKFR I 1*2 - Target to search for

ISTART I 1*2 - Start location in delimiter/
token table

IEND I 1*2 - End location in the
delimiter/token table

IPTR 0 1*2 - = 0, target not found because
it was between paren­
thesis or an unmatched

close parenthesis was

found or end of the

delimiter/token table

was encountered

0, position in the

delimiter/token table

ERROR 0 L*2 = .FALSE., processing com­
plete

= .TRUE., encountered the end
of the delimiter/
token table

2. COMMON Blocks Used: DELCOM, LDTCOM

3. Subroutines Used: None

4. Subroutines Called by: ASGNID, PRIFS

5. External Data Sets Referenced: None

3-45

ROUTINE: LOOKK

TYPE: Subroutine

PURPOSE: Looks within keyword table for a match to the

token. A match is indicated even when only the leading part

of the token is the same as a keyword.

USAGE:

1. Calling Sequence:

CALL LOOKK (STRING, L, IKEY, LK, ISCLAS, IEXEC)

FORTRAN Dimen-

Name I/O Type sion Description

STRING I L*4 1 Input string to be tested

for keyword

L I 1*2 - Length of STRING

IKEY 0 1*2 - Integer index of located

keyword, if found;

otherwise, set to zero

LK 0 1*2 - Length of keyword pointed to

by IKEY

ISCLAS 0 1*2 - Statement class

corresponding to keyword

IEXEC 0 L*2 - Executability flag of keyword

2. COMMON Blocks Used: KEYCOM, TYPCOM

3. Subroutines Used: None

4. Subroutines Called by: ASGNID, TESTK, PRIMPL, PRTYPE

5. External Data Sets Referenced: None

3-46

ROUTINE: LOOKND

TYPE: Subroutine

PURPOSE: Searches for a match to the potential node in a

specific transfer operator list. If-a match is found, it is

counted and the potential node is erased. If no match is

found, the potential node is added to the list.

USAGE:

1. Calling Sequence:

CALL LOOKND (LIST,ERROR)

FORTRAN Dimen-

Name I/O Type sion Description

LIST 	 I 1*2 Pointer to header node of
specific list to search

ERROR. 0 L*2 = .FALSE., processing com­
plete

= .TRUE., could not obtain a
new potential node

2. COMMON Blocks Used: XFRCOM

3. Subroutines Used: ERAPOT, LNKPOT, NEWPOT

4. Subroutines Called by: PRIO, PRGOTO, PRCALL

5. External Data Sets Referenced: None

3-47

ROUTINE: LOOKP

TYPE: Subroutine

PURPOSE: Locates the token starting at position IPOINT in

the symbol table and loads it into COMMON /STECOM/.

USAGE:

1. 	Calling Sequenbe:

CALL LOOKP (IPOINT, ERROR)

FORTRAN 	 Dimen-

Name I/O Type sion Description

IPOINT I 1*2 Pointer to desired token

ERROR 0 L*2 = .FALSE., processing complete

= .TRUE., when IPOINT is out

of range

2. 	COMMON Blocks Used: LUNCOM, MODCOM, STECOM, SYMCOM

3. 	Subroutines Used: None

4. 	Subroutines Called by: ASGNID, ERRMSG, FLVARI, HPRNDS,

KILLP, LABEL, POKES, PRASGN, PRASS, PRCALL, PRDOS,

PRGOTO, PRIFS, PRIMPL, PRIO, PRSPEC, PRTOKE, PRTYPE-,

STDUMP, TABLES, TESTK

5. 	External Data Sets Referenced:

LUN File Name Operation(s)

6 FOR006.DAT Write

3-48

ROUTINE: LOOKS

TYPE: Subroutine

PURPOSE: Searches the symbol table for STRING and returns a

pointer to the corresponding symbol table entry.

USAGE:

1. Calling Sequence:

CALL LOOKS (IHPNTR, STRING, L, IPOINT, ERROR)

FORTRAN Dimen-

Name 1/O Type sion Description-

IHPNTR I 1*2 - Hash table pointer

STRING I L*I 1 String to be located

L I 1*2 - Length of STRING

IPOINT 0 1*2 - Symbol table pointer:
> 0, pointer value
= 0, no pointer value
< 0, pointer magnitude set

to last entry

ERROR 0 L*2 - Fatal error flag

2. COMMON Blocks Used,: HSHCOM, STECOM

3. Subroutines Used: COMPAR, IHASH, LOOKP

4. Subroutines Called by: DSCAN, PRDOS, PRTYPE, TESTK

5. External Data Sets Referenced: None

3-49

ROUTINE: MCMPLX

TYPE: Subroutine

PURPOSE: Computes the module complexities. Writes

assembled data to the data base if the /DB control switch

set 	to on and to ALL.SAP if the /SL control switch is set on.

USAGE:

1. 	Calling Sequence:

CALL MCMPLX (DBFILE, PROJ)

FORTRAN Dimen-

Name I/O Type sion Description

DBFILE I L*I 70 Name of data base file in use

PROJ I L*l - Current project character to

tag module name in data base

2. 	COMMON Blocks Used: CTlCOM, CT2COM, CT3COM, CT4COM,

CT5COM, DELCOM, MODCOM, OPCOM, SELCOM, SWICOM, TYPCOM,

WTSCOM

3. 	Subroutines Used: CNTXFR, COMPWT, HPRI, HPR2, HPR3,

HPRNDS, PRTHAL, UCPLX1, UCPLX2, WRTDB, WRTSEL

4. 	Subroutines Called by: SAPMAIN

5. 	External Data Sets Referenced: None

3-50

ROUTINE: MDIRY

TYPE: Subroutine

PURPOSE: Generates-the module directory listing.

USAGE:

1. 	Calling Sequence:

CALL MDIRY (INLPAG, LASTPG, IPRTLN, FIRST, KNT)

FORTRAN Dimen-

Name I/0 Type sion Description

INLPAG I 1*2 Page number for module
summary for this module

LASTPG I/O 1*2 - Page counter for directory

- file

IPRTLN I/0 1*2 Total line counter
(including blank lines)

FIRST I L*2 - Page header switch for first
page header

KNT I 1*2 - Printed line counter

2. 	COMMON Blocks Used: CTlCOM, CT2COM, LUNCOM, MODCOM,

OPCOM, PAGCOM, SWICOM, WTSCOM

3. 	Subroutines Used: PAGER

4. 	Subroutines Called by: SAPMAIN

5. 	External Data Sets Referenced:

LUN File Name Operation(s)

8 FOR008.DAT Write

3-51

ROUTINE: NEWPOT

TYPE: Subroutine

PURPOSE: Creates the header portion of a 	potential node in

the transfer operator list.

USAGE:

1. Calling Sequence:

CALL NEWPOT (ERROR)

FORTRAN' Dimen-

Name I/O Type sion Description

ERROR 	 0 L*2 - - .FALSE., processing com­
pleted

= .TRUE., insufficient space
for creating a new
potential node

2. COMMON Blocks Used: LUNCOM, XFRCOM

3. Subroutines Used: None

4. Subroutines Called by: INITN, LOOKND

5. External Data Sets Referenced:

LUN 	 File Name Operation(s)

6 FOR006.DAT Write

3-52

ROUTINE: NUMER

TYPE: Subroutine

PURPOSE: Determines whether a character is numeric

(including decimal points) or nonnumeric.

USAGE:

1. 	Calling Sequence:

CALL NUMER (IN, ANSWER)

FORTRAN 	 Dimen-
Name 1/O Type sion Description

IN I L*I - Character to be tested

ANSWER 0 L*2 - = .FALSE., nonnumeric
= .TRUE., numeric or decimal

point

2. COMMON Blocks Used: None

3. Subroutines Used: None

4. Subroutines Called by: DSCAN, PRASS, PRDOS, TESTK

5. External Data Sets Referenced: None

3-53

ROUTINE: OPERAT

TYPE: Subroutine

PURPOSE: Determines whether a delimiter is an operator, and

returns the operator classification.

USAGE:

1. Calling Sequence:

CALL OPERAT (ID, IOP)

FORTRAN Dimen-

Name I/O Type sion Description

ID I 1*2 Delimiter code as defined in

oDLICOM common

IOP 	 0 1*2 Operator classification

= 0, nonoperator

= 1, arithmetic operator

= 2, relational operator

= 3, Boolean operator

2. COMMON Blocks Used: None

3. Subroutines Used: None

4. Subroutines Called by: PRTOKE; PRASGN

5. External Data Sets Referenced: None

3-54

ROUTINE: PAGER

TYPE: Subroutine

PURPOSE: Maintains the line and page counts for listing

files, prints a page header when lines to be written.exceed

page line maximum.

USAGE:

1. 	Calling Sequence:

CALL PAGER (LINES, LUN, ILINE, IPAGE)

FORTRAN Dimen-

Name I/O Type sion Description

LINES I 1*2 - Number of lines to be written

LUN I 1*2 - LUN on which write is to
occur

ILINE 0 1*2 - New line count for LUN

IPAGE 0 1*2 - Current page count for LUN

2. 	COMMON Blocks Used: INFCOM, MODCOM, PAGCOM

3. 	Subroutines Used: DATE, TIME

4. 	Subroutines Called by: COEF, GLINE, HALREP, HSCAN,

INTGR4, MDIRY, NEWPOT, POKES, PRASGN, PRCALL, PRDOS

PRGOTO, PRIFS, PRIO, PRSPEC, PRSUBS, PRTHAL, PRTOKE,

PRTXFR, REPHAL, STATG, STATM, STDUMP

5. 	External Data Sets Referenced:

LUN File Name Operation(s)

specified unit numbers 	 Write

3-55

ROUTINE: POKEP

TYPE: Subroutine

PURPOSE: Transfers the token block in /STECOM/ into the

symbol table.

USAGE:

1. 	Calling Sequence:

CALL POKEP (IPOINT, ERROR)

FORTRAN Dimen-

Name I/O Type sion Description

IPOINT 	 I 1*2 - Starting location for
ainsertion in SYMCOM

ERROR 0 L*2 - - .FALSE., processing com­
pleted

= .TRUE., IPOINT out of sym­
bol table range

2. 	COMMON Blocks Used: LUNCOM, MODCOM, SYMCOM, STECOM

3. 	Subroutines Used: None

4. 	Subroutines Called by: FLVARI, HOPRN, KILLP, POKES,

PRASGN, PRCALL, PRSPEC, PRSUBS, PRTOKE

5. 	External Data Sets Referenced:

LUN File Name Operation(s)

6 FOR006.DAT 	 Write

3-56

ROUTINE: POKES

TYPE: Subroutine

PURPOSE: Inserts a string into the symbol table. Creates a

new token block, if one does not exist.

USAGE:

1. 	Calling Sequence:

CALL POKES (IHPNTR, IPOINT, ERROR)

FORTRAN Dimen-

Name I/O Type sion Description

IHPNTR I 1*2 - Hash table pointer

IPOINT I 1*2 - Symbol table pointer

ERROR 0 L*2 - = .FALSE., processing com­
pleted

= .TRUE., IPOINT out of sym­
bol table range

2. 	COMMON Blocks Used: HSHCOM, LUNCOM, MODCOM, STECOM,

SYMCOM

3. 	Subroutines Used: GARCOL, LOOKP, PAGER, POKEP

4. 	Subroutines Called by: DSCAN, PRDOS, PRTYPE, TESTK

5. 	External Data Sets Referenced:

LUN File Name Operation(s)

6 FOR006.DAT Write

3-57

ROUTINE: PRASGN

TYPE: Subroutine

PURPOSE: Parses assignment statements; identifies

arithmetic statement function definitions.

USAGE:

1. 	Calling Sequence:

CALL PRASGN (LDTPTR, ISCLAS, ISTYPE, ERROR)

FORTRAN Dimen-
Name I/O Type sion Description

LDTPTR I 1*2 - Points to next location in
0 delimiter/token table

ISCLAS 0 1*2 - Statement class

ISTYPE 0 1*2 - Statement type

ERROR 0 L*2 - Fatal error flag

2. 	COMMON Blocks Used: CT2COM, CT5COM, DELCOM, LDTCOM,

LUNCOM, MODCOM, OPCOM, STECOM, TYPCOM

3. 	Subroutines Used: HOPRN, HOPTR1, HOPTR3, LOOKP, OPERAT,

PAGER, POKEP, PRTOKE

4. 	Subroutines Called by: STATE

5. 	External Data Sets Referenced:

LUN 	 File Name Operation(s)

6 FOR006.DAT Write

3-58

ROUTINE: PRASS

TYPE: Subroutine

PURPOSE: Parses the ASSIGN statement, adding the-referenced

label to the label list array.

USAGE:

1. 	Calling Sequence:

CALL PRASS (LDTPTR, ERROR)

FORTRAN Dimen-

Name I/O Type sion Description

LDTPTR I 1*2 - Points to next location in­
delimiter/token table

ERROR 0 L*2 	 Fatal error flag

2. COMMON Blocks Used: LDTCOM, LBLCOM, OPCOM, STECOM

3. Subroutines Used: LABLST, INTGR4, LOOKP, NUMER

4. Subroutines Called by: PRCNTL

5. External Data Sets Referenced: None

3-59

ROUTINE: PRCALL

TYPE: Subroutine

PURPOSE: Parses CALL statements.

USAGE:

1. 	Calling Sequence:

CALL PRCALL (LDTPTR, ERROR)

FORTRAN Dimen-

Name I/O Type sion Description

LDTPTR I 1*2 Points to next location in

delimiter/token table

ERROR 0 L*2 Fatal error flag

2. 	COMMON Blocks Used: CT5COM, DELCOM, LBLCOM, LDTCOM,

LUNCOM, MODCOM, OPCOM, STECOM, XFRCOM

3. 	Subroutines Used: ADDPOT, ERAPOT, HOPTRI, HOPTR3,

HOPRN, INTGR4, LABLST, LOOKND, LOOKP, PAGER, POKEP,

PRTOKE

4. 	Subroutines Called by: PRCNTL

5. 	External Data Sets Referenced:

LUN 	 File Name Operation(s)

6 FOR006.DAT Write

3-60

ROUTINE: PRCNTL

I

TYPE: Subroutine

PURPOSE: Controls the processing of control statements.

Actual analysis will be performed by one of the called

routines.

USAGE:

1. 	Calling Sequence:

CALL PRCNTL (LDTPTR, ISTYPE, IREPT, LREPT, ERROR)

FORTRAN Dimen-

Name I/O Type sion Description

LDTPTR I/O 1*2 - Points to next location in
delimiter/token table

ISTYPE I/O 1*2 - Statement type being
processed

IREPT I/O L*2 - Repeat flag, set in routine
PRIFS when this statement is
a logical IF

LREPT 	 I/O L*2 - Set if this statement is
object of a logical IF

ERROR 0 L*2 - Fatal error flag

2. 	COMMON Blocks Used: DELCOM, LDTCOM4 TYPCOM

3. 	Subroutines Used: PRCALL, PRGOTO, PRASS, PRDOS, PRIFS,

PRRET

4. 	Subroutines Called by: STATE

5. 	External Data Sets Referenced: None

3-61

ROUTINE: PRDOS

TYPE: Subroutine

PURPOSE: Parses DO statements by performing an initial scan

of the delimiter/token table. Determines whether the DO

statement is a DOWHILE statement.

USAGE:

1. 	Calling Sequence:

CALL PRDOS (LDTPTR, ISTYPE, ERROR)

FORTRAN Dimen-
Name I/O Type sion Description

LDTPTR I 1*2 Points to next location in

delimiter/token table

ISTYPE I/0 1*2 - Statement type

ERROR 0 L*2 - Fatal error flag

2. 	COMMON Blocks Used: CT5COM, DELCOM, LBLCOM, LDTCOM,

MODCOM, OPCOM, STECOM, TYPCOM

3. 	Subroutines Used: COMPAR, HOPTR1, HOPTR3, HOPRN, IHASH,

INTGR4, KILLP, LOOKP, LOOKS, NUMER, PAGER, POKER, POKES,

PRTOKE

4. 	Subroutines Called by: PRCNTL, PRSTRC

5. 	External Data Sets Referenced:

LUN File Name 	 Operation(s)

6 FOR006.DAT 	 Write

3-62

ROUTINE: PRGOTO

TYPE: Subroutine

PURPOSE: Parses GOTO statements.

USAGE:

1. 	Calling Sequence:

CALL PRGOTO (LDTPTR, LREPT, ERROR)

FORTRAN Dimen-
Name /___ Type sion Description

LDTPTR I 1*2 - Points to next location in
delimiter/token table

LREPT I L*2 	 Indicates statement is

object of a logical IF

statement

ERROR 0 L*2 	 Fatal error flag

2. 	COMMON Blocks Used: CT5COM, DELCOM, LBLCOM, LDTCOM,

LUNCOM, MODCOM, OPCOM, STECOM, XFRCOM

3. 	Subroutines Used: ADDPOT, ERAPOT, HOPRN, HOPTRI, INTGR4

LABLST, LOOKND, LOOKP, PAGER, PRTOKE

4. 	Subroutines Called by: PRCNTL

5. 	External Data Sets Referenced:

LUN File Name Operation(s)

6 FOR006.DAT Write

3-63

ROUTINE: PRIFS

TYPE: Subroutine

PURPOSE: Parses IF statements.

USAGE:

1. 	Calling Sequence:

CALL PRIFS (LDTPTR, ISTYPE, IREPT, ERROR)

FORTRAN Dimen-
Name 1/0 Type sion Description

LDTPTR I 1*2 - Points to next location in
delimiter/token table

ISTYPE I 1*2 - Statement type

IREPT 0 L*2 - Repeat flag, set true if
statement is a logical IF

ERROR 0 L*2 - Fatal error flag

2. 	COMMON Blocks Used: CT5COM, DELCOM, LDTCOM, LUNCOM,

MODCOM, OPCOM, STECOM, TYPCOM

3. 	Subroutines Used: COMPAR, HOPRN, HOPTR1, HOPTR3,

LOOKAH, LOOKP, PAGER, POKEP, PRTOKE

4. 	Subroutines Called by: PRCNTL, PRSTRC

5. 	External Data Sets Referenced:

LUN File Name Operation(s)

6 FOR006.DAT 	 Write

3-64

ROUTINE: PRIMPL

TYPE: Subroutine

PURPOSE: Parses IMPLICIT statements to change the default

types for untyped variables.

USAGE:

1. 	Calling Sequence:

CALL PRIMPL (LDTPTR, SYNERR, ERROR)

FORTRAN Dimen-

Name 1/O Type sion Description

LDTPTR 	 I 1*2 - Points to next location in
delimiter/token table'

SYNERR 0 L*2 - Syntax error flag

ERROR 0 L*2 - Fatal error flag

2. 	COMMON Blocks Used: DELCOM, IMPCOM, LDTCOM, LUNCOM,

STECOM, TYPCOM

3. 	Subroutines Used: LOOKK, LOOKP, INTGR4

4. 	Subroutines Called by: PRTYPE

5. 	External Data Sets Referenced:

LUN File Name Operation(s)

6 FOR006.DAT Write

3-65

ROUTINE: PRIO

TYPE: Subroutine

PURPOSE: Parses input/output statements.

USAGE:

1. 	Calling Sequence:

CALL PRIO (LDTPTR, ISTYPE, ERROR)

FORTRAN Dimen-
Name I/O Type sion Description

LDTPTR I 1*2 Points to next location in

delimiter/token table

ISTYPE I 1*2 - Statement type

ERROR 0 L*2 - Fatal error flag

2. 	COMMON Blocks Used: CT5COM, DELCOM, LBLCOM, LDTCOM,

LUNCOM, MODCOM, OPCOM, STECOM, TYPCOM, XFRCOM

3. 	Subroutines Used: ADDPOT, COMPAR, ERAPOT, HOPRN,

INTGR4, LABLST, LOOKP, LOOKND, PAGER, PRTOKE

4. 	Subroutines Called by: STATE

5. 	External Data Sets Referenced:

LUN 	 File Name Operation(s)

6 FOR006.DAT Write

3-66

ROUTINE: PRRET

TYPE: Subroutine

PURPOSE: Parses RETURN statements.

USAGE:

1. Calling Sequence:

CALL PRRET (LDTPTR, ERROR)

FORTRAN Dimen-

Name I/O Type sion Description

LDTPTR I 1*2 - Points to next locatio in
delimiter/token table

ERROR 0 L*2 - Fatal error flag

2. COMMON Blocks Used: CT5COM, LDTCOM

3. Subroutines Used: None

4. Subroutines Called by: PRCNTL

5. External Data Sets Referenced: None

3-67

ROUTINE: PRSPEC

TYPE: Subroutine

PURPOSE: Parses specification statements.

USAGE:

1. 	Calling Sequence:

CALL PRSPEC (LDTPTR, ISTYPE, ERROR)

FORTRAN Dimen-

Name I/O Type sion Description

LDTPTR I 1*2 Points to next location in

delimiter/token table

ISTYPE I 1*2 Statement type

ERROR 0 L*2 Fatal error flag

2. 	COMMON Blocks Used: DELCOM, LDTCOM, LUNCOM, MODCOM,

STECOM, TYPCOM

3. 	Subroutines Used: FLVARI, LOOKP, PAGER, POKEP

4. 	Subroutines Called by: STATE

5. 	External Data Sets Referenced:

LUN 	 File Name Operation(s)

6 FOR006.DAT Write

3-68

ROUTINE: PRSTRC

TYPE: Subroutine

PURPOSE: Parses structured FORTRAN statements.

USAGE:

1. 	Calling Sequence:

CALL PRSTRC (ISTYPE, LDTPTR, IREPT, ERROR)

FORTRAN Dimen-

Name 1/O Type sion Description

ISTYPE I 1*2 - Statement type

LDTPTR I 1*2 - Points to next location in
delimiter/token table

IREPT I/O L*2 - Repeat flag, set in routine
PRIFS when the statement is
a logical IF

ERROR 0 L*2 - Fatal error flag

2. 	COMMON Blocks Used: CT5COM, LBLCOM, LUNCOM, LDTCOM,

OPCOM, TYPCOM

3. 	Subroutines Used: HOPRN, HOPTRI, HOPTR3, PRDOS, PRIFS,

PRTOKE

4. 	Subroutines Called by: STATE

5. 	External Data Sets Referenced:

LUN File Name Operation(s)

6 FOR006.DAT 	 Write

3-69

ROUTINE: PRSUBS

TYPE: Subroutine

PURPOSE: Parses subprogram statements.

USAGE:

1. 	 Calling Sequence:

CALL PRSUBS (LDTPTR, ISTYPE, ERROR)

FORTRAN 	 Dimen-
Name I/O Type sion Description

LDTPTR I 1*2 - Points to next location in

delimiter/token table

ISTYPE I 1*2 - Statement type

ERROR 0 L*2 - Fatal error flag

2. 	 COMMON Blocks Used: CT5COM, DELCOM, LDTCOM, LUNCOM,

MODCOM, STECOM, TYPCOM

3. 	 Subroutines Used: LOOKP, PAGER, POKEP

4. 	 Subroutines Called by: STATE

5. 	 External Data Sets Referenced:

LUN 	 File Name Operation(s)

6 FOR006.DAT Write

3-70

ROUTINE: PRTHAL

TYPE: Subroutine

PURPOSE: Prints the complexity analysis on the module

statistics summary, if the /MO or /CA control switch is set

on.

USAGE:

1. Calling Sequence:

CALL PRTHAL (ICTHIO, IETAI, IETA2, LUNMSS, NETAl,

NETA2, IDECIS)

FORTRAN Dimen-

Name I/O Type sion Description

ICTHIO I 1*2 	 Sum of count of argument

variables (including ENTRY

arguments) and count of

referenced COMMON variables

IETAl 	 I 1*2 - Number of unique operators
in module

IETA2 I 1*2 - Number of unique operands in
module

LUNMSS I 1*2 - LUN for module statistics
summary report

NETAl I 1*2 - Total number of operators in
module

NETA2 I 1*2 - Total number of operands in
module

IDECIS I 1*2 - Total number of decisions in
module

2. COMMON Blocks Used: WTSCOM

3. Subroutines Used: ESTIM, PAGER

4. Subroutines Called by: MCMPLX

5. External Data Sets Referenced:

LUN 	 File Name Operation(s)

7
 FOR007.DAT 	 Write

3-71

ROUTINE: PRTOKE

TYPE: Subroutine

PURPOSE: Processes a token to identify it as a variable or

a function.

USAGE:

1. 	Calling Sequence:

CALL PRTOKE (LDTPTR, IFUNC, SYNERR, ERROR)

FORTRAN Dimen-
Name I/O Type sion

LDTPTR I 1*2 -

IFUNC 0 L*2

SYNERR 0 L*2 -

ERROR 0 L*2 -

Description

Pointer to next location in

delimiter/token table

Switch set true when token

is function or arithmetic

statement function

Switch set true if syntax

error encountered

Fatal error flag

2. 	COMMON Blocks Used: CT5COM, DELCOM, IMPCOM, LDTCOM,

LUNCOM, MODCOM, STECOM

3. 	Subroutines Used: ERRMSG, LOOKP, PAGER, POKEP, OPERAT

4. 	Subroutines Called by: PRASGN, PRCALL, PRDOS, PRGOTO,

PRIFS, PRIO, PRSTRC

5. 	External Data Sets Referenced:

LUN File Name Operation(s)

6 FOR006.DAT 	 Write

3-72

ROUTINE: PRTXFR

TYPE: Subroutine

PURPOSE: Lists the distinct transfer operators and their

frequency on the module statistics file when the /HL control

switch is set to on.

USAGE:

1. 	Calling Sequence:

CALL PRTXFR

2. COMMON Blocks Used: LUNCOM, STECOM, XFRCOM

3. Subroutines Used: LOOKP, PAGER

4. Subroutines Called by: HALREP

5. External Data Sets Referenced:

LUN File Name 	 Operation(s)

6 FOR006.DAT Write

7 FOR007.DAT Write

3-73

ROUTINE: PRTYPE

TYPE: Subroutine

PURPOSE: Parses type specification statements and tests for

secondary keyword in the case of a typed FUNCTION statement.

USAGE:

1. 	Calling Sequence:

CALL PRTYPE (LDTPTR, ISCLAS, ISTYPE, ERROR)

FORTRAN Dimen-

Name I/O Type sion Description

LDTPTR I 1*2 - Painter to next location in

delimiter/token table

ISCLAS I/O 1*2 - Statement class

ISTYPE I/O 1*2 - Statement type

ERROR 0 L*2 - Fatal error flag

2. 	COMMON Blocks Used: DELCOM, IMPCOM, LDTCOM, MODCOM,

STECOM, 'TYPCOM

3. 	Subroutines Used: FLVARI, IHASH, KILLP, LOOKK, LOOKP,

LOOKS, NUMER, POKES, PRIMPL, PRSUBS, TESTK

4. 	Subroutines Called by: STATE

5. 	External Data Sets Referenced: None

3-74

ROUTINE: READER

TYPE: Subroutine

PURPOSE: Controls the building of the packed statement

string and accumulates statistics on total cards, comment

cards, and comment packets.

USAGE:

1. Calling Sequence:

CALL READER (INITR, EXEC1, ENDN, ENDS, ERROR)

FORTRAN Dimen-

Name 1/O Type sion Description

INITR I L*2 - Initial read flag, .TRUE.
for new file

EXECI I L*2 - Executable statement flag,
.TRUE. after first
executable statement

ENDN 0 L*2 - End of file flag for the
initial read

ENDS 0 L*2 - End of file flag

ERROR 0 L*2 - Fatal error flag

2. COMMON Blocks Used: CTICOM, INPCOM, INLCOM, LUNCOM

3. Subroutines Used: GLINE, HSCAN

4. Subroutines Called by: SAPMAIN

5. External Data Sets Referenced:

LUN File Name Operation(s)

6 FOR006.DAT Write

3-75

ROUTINE: REPHAL

TYPE: Subroutine

PURPOSE: Extracts and reports on data from the data base

when the /DB control switch is set on.

USAGE:

1. 	Calling Sequence:

CALL REPHAL (DSNAME, PROJN)

FORTRAN' Dimen-

Name I/O Type sion Description

DSNAME I L*l 70 Data base to be read

PROJ11 I L*l - Project identifier used to

select modules for inclusion

in report

2. COMMON Blocks Used: INFCOM, LUNCOM, MODCOM, PAGCOM

3. Subroutines Used: COEF, ESTIM, PAGER

4. Subroutines Called by: SAPMAIN

5. 	External Data Sets Referenced:

LUN File Name Operation(s)

6 FOR006.DAT Write

9 User supplied Open, read, close

8 FOR008.DAT Write

3-76

ROUTINE: SAPMAIN

TYPE: Main program

PURPOSE: Performs analysis of FORTRAN source code.

USAGE:

1. Calling Sequence: None

2. COMMON Blocks Used: LUNCOM, SWICOM

3. Subroutines Used: CINPUT, COLGLB, DEFINE, HALREP,

INITG, INITM, LOADK, MCMPLX, MDIRY, READER, REPHAL,

STATG, STATM, STDUMP, TYPE

4. Subroutines Called by: None

5. 	External Data Sets Referenced:

LUN File Name Operation(s)

2 FOR002.DAT Close

6 FOR006.DAT Write, close

5 Terminal Read, write

12 ALL.SAP Close

3-77

ROUTINE: 	 SKPCHR

TYPE: Function

PURPOSE: Locates the first nonoccurrence of a specified

character starting at the beginning of a character string.

USAGE:

1. 	Calling Sequence:

SKPCHR (CHAR, STRING, LENGTH)

FORTRAN 	 Dimen-

Name I/O Type sion Description

SKPCHR 0 1*2 = 0, 	CHAR is the only type of

character in STRING

0, value specifies first

byte location in STRING

that is hot CHAR

CHAR I L*I 	 Character to be skipped over

STRING I L*l LENGTH 	 Character string to be

searched

LENGTH I 1*2 	 Length of character string

2. COMMON Blocks Used: None

3. Subroutines Used: None

4. Subroutines Called by: INPUT

5. 	External Data Sets Referenced:

LUN File Name Operation(s)

5 Terminal 	 Write

3-78

ROUTINE: STATE

TYPE: Subroutine

PURPOSE: Statement processing executive module. All

statement processing is performed by the called processing

modules.

USAGE:

1. 	Calling Sequence:

CALL STATE (LDTPTR, ISCLAS, ISTYPE, IREPT, LREPT,

FORTRAN

Name I/O

LDTPTR I/O

ISCLAS I/O

ISTYPE I/O

IREPT I/O

LREPT I/O

ERROR 0

ERROR)

Dimen-

Type sion

1*2 	 ­

1*2 ­

1*2 ­

L*2 ­

L*2 	 ­

L*2

Description

Points to next location in

delimiter/token table

Statement class

Statement type

Repeat flag set .TRUE.,

after parsing a logical IF

statement

Logical flag set .TRUE. if

this statement is object of

a logical IF statement

Fatal error flag

2. COMMON Blocks Used: None

3. 	Subroutines Used: ERRMSG, PRASGN, PRCNTL, PRIO, PRSPEC,

PRSTRC, PRSUBS, PRTYPE

4. 	Subroutines Called by: TYPE

5. 	External Data Sets Referenced: None

3-79

ROUTINE: STATG

TYPE: Subroutine

PURPOSE: Computes and prints the global statistics when the

/GB control switch is set to on.

USAGE:

1. Calling Sequence:

CALL 	STATG

- 2. 	'COMMON Blocks Used: GLBCOM, KEYCOM, LUNCOM, MODCOM,

TYPCOM, WTSCOM

3. Subroutines Used: PAGER

4. Subroutines Called by: SAPMAIN

5. 	External Data Sets Referenced:

LUN File Name Operation(s)

8 FOR008.DAT 	 Write

3-80

ROUTINE: STATM

TYPE: Subroutine

PURPOSE: Computes and prints the.module statistics when the

/MO control switch is set to on.

USAGE:

1. 	 Calling Sequence:

CALL STATM (INLPAG)

FORTRAN Dimen-

Name I/O Type sion Description

INLPAG 	 0 1*2 Page number for module

summary produced

2. 	 COMMON Blocks Used: CTiCOM, CT2COM, CT3COM, CT4COM,

CT5COM, KEYCOM, LUNCOM, MODCOM, OPCOM, SWICOM, TYPCOM

3. 	 Subroutines Used: PAGER, TABLES

4. 	 Subroutines Called by: SAPMAIN

5. 	 External Data Sets Referenced:

LUN 	 File Name Operation(s)

7 FOR007.DAT Write

3-81

ROUTINE: STDUMP

TYPE: Subroutine

PURPOSE: Produces a formatted listing of the contents of

the symbol table.

USAGE:

1. 	Calling Sequence:

CALL STDUMP (LDUMP)

FOTRAN 	 Dimen-

Name I/O Type sion Description

LDUMP I 1*2 	 Logical unit on which to

list symbol table

2. COMMON Blocks Used: HSHCOM, STECOM, SYMCOM

3. Subroutines Used: IFASH, LOOKP, PAGER

4. Subroutines Called by: SAPMAIN

5. External Data Sets Referenced:

LUN 	 File Name Operation(s)

6 FOR006.DAT Write

3-82

ROUTINE: TABCCC

TYPE: Subroutine

PURPOSE: Checks the first six bytes of each source code

record for tabs, comment and continuation characters. If a

tab is found, the tab character is replaced with a blank.

When no tab is found, a tab is inserted in column 6 to

facilitate the statement parsing.

USAGE:

1. Calling Sequence:

CALL TABCCC (LCOMM, LCONT)

FORTRAN Dimen-

Name I/O Type sion Description

LCOMM 0 L*2 = .TRUE., 	if current record
is a comment line

LCONT 0 L*2 = .TRUE., 	if current re.cord
is a continuation
line

2. COMMON Blocks Used: INLCOM, LUNCOM

3; Subroutines Used: None

4. Subroutines Called by: GLINE

5. External Data Sets Referenced:

LUN File Name Operation(s)

6 FOR006.DAT Write

3-83

ROUTINE: TABLES

TYPE: Subroutine

PURPOSE: Extracts name and variable usage statistics from

the symbol table. The statistics are presented in the

module summary report.

USAGE:

1. 	Calling Sequence:

CALL TABLES (ERROr)

FORTRAN Dimen-

Name I/O Type sion Description

0 L*2 - Fatal error flagERROR

2. 	COMMON Blocks Used: CT2COM, CT5COM, HSHCOM, LBLCOM,

STECOM, SYMCOM

3. 	Subroutines Used: LOOKP

4. 	Subroutines Called by: STATM

5. 	External Data Sets Referenced: None

3-84

ROUTINE-: TESTK

TYPE: Subroutine

PURPOSE: Tests the leading keyword, rehashes any token

concatenated to the keyword, and advances the

delimiter/token table pointer.

USAGE:

1. 	Calling Sequence:

CALL TESTK (LDTPTR, ISCLAS, ISTYPE, IEXEC, ERROR)

FORTRAN Dimen-
Name I/0 Type sion

LDTPTR I/O 1*2 -

ISCLAS 0 1*2 -

ISTYPE 0 1*2 -

IEXEC 0 1*2 -

ERROR 0 L*2 -

Description

Delimiter/token table pointer

Statement class identified

for this statement

Statement type identified

for this 	statement

Executability flag for this

statement

Fatal error flag

2. 	COMMON Blocks Used: LDTCOM, STECOM, TYPCOM

3. 	Subroutines Used: IHASH, KILLP, LOOKK, LOOKP, LOOKS,

NUMER, POKES

4. 	Subroutines Called by: TYPE

5. 	External Data Sets Referenced: None

3-85

ROUTINE! TYPE

TYPE: Subroutine

PURPOSE: Executive control module for statement

classification.

USAGE:

1. 	Calling Sequence:

CALL TYPE (EXECI, ENDM, ERROR)

FORTRAN Dimen-

Name I/O Type sion Description

EXECI 0 L*2 - Set .TRUE. after first

executable statement has

been processed

ENDM 0 L*2 	 Set .TRUE. when an END

statement has been

encountered -at end of module

ERROR, 0 L*2 	 Fatal error flag

2. 	COMMON Blocks Used: CT3COM, CT4COM, DELCOM, LDTCOM,

MODCOM, TYPCOM

3. Subroutines Used: ASGNID, 	DSCAN, LABEL, STATE, TESTK

4. 	Subroutines Called by: SAPMAIN

5. 	External Data Sets Referenced: None

3-86

ROUTINE: UCPLXl

TYPE: Subroutine

PURPOSE: A dummy subroutine for which the user may substi­

tute a routine to calculate a complexity measure.

USAGE:

1. 	Calling Sequence:

CALL UCPLXl (USER1)

FORTRAN 	 Dimen-

Name I/0 Type sion Description

USER1. 0 R*4 	 User complexity

2. COMMON Blocks Used: WTSCOM

3. Subroutines Used: None

4. Subroutines Called by: MCMPLX

5. External Data Sets Referenced: None

3-87

ROUTINE: UCPLX2

TYPE: Subroutine

PURPOSE: A dummy subroutine for which the user may substi­

tute a routine to calculate a complexity measure.

USAGE:

1. 	Calling Sequence:

CALL UCPLX2 (USER2)

FORTRAN 	 Dimen-
Name I/O Type sion Description

USER2 0 R*4 - User complexity value

2. COMMON Blocks Used: WTSCOM

3. Subroutines Used: None

4. Subroutines Called by: MCMPLX

5. External Data Sets Referenced: None

3-88

ROUTINE: USRWTS

TYPE: Subroutine

PURPOSE: Reads the WEIGHTS.SAP file by default, or reads a

user-specified weights file if the /UW control switch is set

to on.

USAGE:

1. 	Calling Sequence:

CALL USRWTS (ERROR)

FORTRAN 	 Dimen-

Name I/O Type sion Description

ERROR 0 L*2 - Fatal error flag

2. 	COMMON Blocks Used: LUNCOM, SWICOM, WTSCOM

3. 	Subroutines Used: None

4. 	Subroutines Called by: INITG, LOADK

5. 	External Data Sets Referenced:

LUN File Name Operation(s)

3 	 WEIGHTS.SAP Open, read, close

or

User supplied

5 Terminal Read

6 FOR006.DAT Write

3-89

ROUTINE: WRTDB

TYPE: Subroutine

PURPOSE: Writes a record to the SAP data base file when the

/DB control switch is set to on.

USAGE:

1. 	Calling Sequence:

CALL WRTDB (DBFILE, ICTARG, ICTCBV, ICTCCL, ICTCOM,

ICTEXC, ICTEXT, ICTHIO, ICTIFF, ICTIO,

ICTSLN, IDECIS, IETAI, IETA2, LUNCIN,

LUNDB, MODNAM, NETAl, NETA2, PROJ)

FORTRAN
Name I/O Type

Dimen­
sion Description

DBFILE I L*I 70 SAP data base file name

ICTARG I 1*2 - Number of arguments passed
to module

ICTCBV I 1*2 - Number of variables in
COMMON blocks

ICTCCL I 1*2 - Number of comment lines

ICTCOM I 1*2 - Number of COMMON blocks in
module

ICTEXC I 1*2 - Number of executable
statements in module

ICTEXT I 1*2 - Number of external
references in module

ICTHIO I 1*2 - Sum of count of argument
variables (including ENTRY
arguments) and count of
referenced COMMON variables

ICTIFF I 1*2 - Number of IF and
statements

.IF

ICTIO I 1*2 - Number of input/output
statements

ICTSLN I 1*2 - Number of source lines

IDECIS I 1*2 - Number of decisions

IETAl I 1*2 - Number of unique operators

3-90

FORTRAN Dimen-

Name I/O Type sion Description

IETA2 I 1*2 Number of unique operands

LUNCIN I 1*2 Command input LUN

LUNDB I 1*2 - SAP data base LUN

MODNAM I L* 8 Module name

NETAl I 1*2 - Total number of operators

NETA2 I 1*2 Total number of operands

PROJ I L*1 Project character descriptor

2. COMMON Blocks Used: None

3. Subroutines Used: None

4. Subroutines Called by: MCMPLX

5. External Data Sets Referenced:

LUN File Name Operation(s)

5 Terminal Write

9 User supplied Open, read, write, close

3-91

ROUTINE: WRTSEL

TYPE: Subroutine

PURPOSE: Writes a record to ALL.SAP when-the /SL control

switch is set to on.

USAGE:

1. 	Calling Sequence:

CALL WRTSEL (ICTARG, ICTCBV, ICTCCL, ICTCOM,

ICTEXC, ICTHIO, ICTIFF, ICTIO, ICTSLN,

IDECIS, IETAl, IETA2, LUNCIN, LUNSEL,

MODNAM, NETAl, NETA2, PREFIX, PROJNM,

ICTCBU, ICTDOS, ICTFNR, ICTSTR, KARGAC,

KASGN, KCALL, KFMT)

FORTRAN Dimen-
Name I/O Type sion Description

ICTARG I 1*2 - Number of arguments in module

ICTCBV I 1*2 - Number of COMMON block
variables

ICTCCL I 1*2 - Number of comment lines

ICTCOM I 1*2 - Number of COMMON blocks

ICTEXC I 1*2 - Number of executable
statements

ICTHIO I 1*2 - Sum of count of argument
variables (including ENTRY
arguments) and count of
referenced COMMON variables)

ICTIFF I 1*2 - Number of IF and .IF
statements

ICTIO I 1*2 - Number of input/output
statements

ICTSLN I 1*2 - Number of source lines

IDECIS I 1*2 - Number of decisions

IETAl I 1*2 - Number of unique operators

IETA2 I 1*2 - Number of unique operands

LUNCIN I 1*2 - Command input LUN

LUNSEL I 1*2 - Data base LUN

3-92

FORTRAN Dimen-

Name I/O Type sion Description

MODNAM I L*l 8 Module name

NETA I 1*2 - Total number of operators

NETA2 I 1*2 Total number of operands

PREFIX I L*2 - Prefix descriptor

PROJNM I L*i 8 Project name descriptor

ICTCBU I 1*2 - Number of COMMON block
variables used

ICTDOS I 1*2 - Number of DO and DOWHILE
statements

ICTFNR I 1*2 - Number of function references

ICTSTR I 1*2 - Number of structure

statements.

KARGAC I 1*2 - Total number of variables
passed to external references

KASGN I 1*2 - Number of assignment
statements

KCALL I 1*2 - Number of CALL statements

KFMT I 1*2 - Number of FORMAT statements

2. COMMON Blocks Used: None

3. Subroutines Used: None

4. Subroutines Called by: MCMPLX

5. External Data Sets Referenced:

LUN File Name Operation(s)

12 ALL.SAP Write

3-93

SECTION 4 - SAP COMMON BLOCK INFORMATION

Some of the variables used by SAP for communication between

modules appear in labeled COMMON blocks. All COMMON blocks

are initialized by an associated BLOCK DATA routine except

COMMON /INFCOM/. Table 4-1 contains a list of the BLOCK

DATA routine file names and the associated COMMON block.

Detailed descriptions of the COMMON block variables used by

SAP are presented on the following pages arranged alphabet­

ically by COMMON block name. The variables in each descrip­

tion are listed in the order in which they are stored. The

number (if any) enclosed within parenthesis following the

variable definition is the value assigned to the variable in

the BLOCK DATA routine.

4-1

Table 4-1. SAP BLOCK DATA File Names

BLOCK DATA

File Name

CT1BLKoFPP

CT2BLK.FPP

CT3BLK.FPP

CT4BLK.FPP

CT5BLK.FPP

DELBLK.FPP

DLIBLK.FPP

GLBBLK.FPP

HSHBLK.FPP

IMPBLK.FPP

(NONE)

INLBLK.FPP

INPBLK.FPP

KEYBLK.FPP

LBLBLK.FPP

LDTBLK.FPP

LUNBLK.FPP

MODBLK.FPP

OPBLK.FPP

PAGBLK.FPP

SELBLK.FPP

STEBLK.FPP

SWIBLK.FPP

SYMBLK.FPP

TYPBLK.FPP

WTSBLK.FPP

XFRBLK.FPP

COMMON Block

Name

CT1COM

CT2COM

CT3COM

CT4COM

CT5COM

DELCOM

DLICOM

GLBCOM

HSHCOM

IMPCOM

INFCOM

INLCOM

INPCOM

KEYCOM

LBLCOM

LDTCOM

LUNCOM

MODCOM

OPCOM

PAGCOM

SELCOM

STECOM

SWICOM

SYMCOM

TYPCOM

WTSCOM

XFRCOM

4-2

COMMON BLOCK: /CTlCOM/

PURPOSE: Contains the module statistics describing module

comments.

Dimen-
Variable sion Type

MAXCT1 1*2

AVESCD R*4

AVESCM R*4

ICTSLN 1*2

ICTSCD 1*2

ICTCCL 1*2

ICTMLC 1*2

ICTNCD 1*2

ICTPRO 1*2

ICTSCM 1*2

ICTSXP 1*2

ICTMCM 1*2

ICTNCM 1*2

ICTSBC 1*2

NSINCE 1*2

Definition

Number of 1*2 words to follow (16)

Average number of lines of code

between comments

Average number of lines per

nonprolog comment packets

Sum of all source lines

Sum of all coded source lines

Sum of all comment card lines

(ICTSLN - ICTSCD)

Maximum number of lines in code

packet

Number of code packets

Length of prolog

Sum of all embedded (nonprolog)

comments

Sum of comments following a

(DEC computers)

Maximum size of embedded comment

packet

Number of embedded comment packets

Sum of all blank comment lines

Number of-lines since last comment

4-3

COMMON BLOCK: /CT2COM/

PURPOSE: Contains the module statistics describing external

communications, variable names, and array dimensions.

Dimen-
Variable sion Type

MAXCT2 1*2

IDUMC2 1*2

AVECHR R*4

AVED'IM R*4

ICTCHR 1*2

MAXCHR 1*2

ICTVAR 1*2

ICTFUN 1*2

ICTFNR 1*2

ICTCON 1*2

ICTSUB 1*2

ICTENT 1*2

ICTCOM 1*2

ICTCBV 1*2

ICTCBU 1*2

ICTNAM 1*2

ICTEXT 1*2

ICTEXR 1*2

ICTASF 1*2

ICTASR 1*2

Definition

Number of 1*2 words to follow (25)

Dummy alignment variable

Average number of characters per

variable name

Average number of dimensions in

an array

Total number of characters it

variable names

Length of longest variable name

Number of variables in module

Number of functions referenced in

module

Number of function references in

module

Number of constants in module

Number of subroutine names

referenced in module

Number of entry point names in

module

Number of COMMON block names in

module

Number of variables in COMMON

blocks

Number of COMMON block variables

used

Number of NAMELIST names in module

Number of external variables in

module

Number of references to

externally defined names

Number of arithmetic statement

function (ASF) names in module

Number of references to ASFs

4-4

Dimen-
Variable sion Type Definition

ICTREF 1*2 Number of.variables referenced in
module

ICTEQV 1*2 Number of variables appearing in
EQUIVALENCEs

ICTDIM 1*2 Total number of dimensions of
arrays in module

MAXDIM 1*2 Maximum number of dimensions-in
an array

ICTDMV 1*2 Number of dimensioned variables
in module

4-5

COMMON BLOCK: /CT3COM/

PURPOSE: Contains the module statistics describing state­

ment breakdown by class and in terms of executable and

nonexecutable statements.

Dimen-
Variable sion

MAXCT3

IDUMC3

PCTEXC

PCTNEX

PCTSTC 13

ICTEXC

ICTNEX

ICTSTC 13

Type

1*2

1*2

R*4

R*4

R*4

1*2

1*2

1*2

Definition

Number of 1*2 words to follow (45)

Dummy for boundary alignment

Percent executable statements

Percent nonexecutable statements

Percent statements in each class

type

Number of executable statements

Number of nonexecutable statements

Number of statements in each

class type

4-6

COMMON BLOCK: /CT4COM/

PURPOSE: Contains individual statement type counters per­

tinent to the keywords file. The statements are ordered as

in the KEYWORDS.SAP data file.

Dimen-

Variable sion Type Definition

MAXCT4 1*2 Number of 1*2 variables in COMMON

block (65)

IDUMC4 1*2 Boundary alignment space variable

ICTSTT 65 1*2 Array containing counts of
statement types, array ordered as
in KEYWORDS.SAP

4-7

COMMON BLOCK: /CT5COM/

PURPOSE: This COMMON contains the module statistics

describing control statements and complexities for

subscripted variables.

Dimen-

Variable sion Type

MAXCT5 1*2

IDUMC5 1*2

AVECAL R*4

AVEEPA R*4

AVEFNN R*4

AVEVRI R*4

AVEOPR R*4

AVEDON R*4

AVEDOL R*4

AVESSC R*4

ICTIFL 1*2

ICTIFA 1*2

ICTIFG 1*2

ICTGUN 1*2

ICTGAS 1*2

ICTGCM 1*2

ICTGCP 1*2

ICTGLB 1*2

ICTERR 1*2

ICTEND 1*2

ICTRNN 1*2

Definition

Number of 1*2 variables in COMMON

block (50)

Boundary alignment space variable

Average number of arguments in

CALL statements

Average number of arguments in

entry point

Average number of functions/ASF

in assignments

Average number of variables in

assignments

Average number of operators in

assignments

Average level of nesting in DO

loops

Average length of DO loops

Average single statement

complexity

Number of logical IFs

Number of arithmetic IFs

Number of GO TOs that are objects

of IFs

Number of unconditional GO TOs

Number of assigned GO TOs

Number of computed GO TOs

(not used)

Number of labels used as targets

of GO TOs

=
Number of ERR

Number of END=

Number of normal RETURNs

4-8

Dimen-
Variable sion Type

ICTRNI 1*2

ICTCAL 1*2

MAXCAL 1*2

ICTAMP 1*2

ICTEPA 1*2

MAXEPA 1*2

ICTFNN 1*2

MAXFNN 1*2

ICTVRI 1*2

MAXVRI 1*2

ICTOPR 1*2

MAXOPR 1*2

ICTARG 1*2

ICTDWT I*-2

ICTUPT 1*2

ICTDON 1*2

MAXDON 1*2

ICTDOL 1*2

MAXDOL 1*2

ICTSSV 1*2

Definition

Number of RETURN Is

Number of arguments in all CALL

statements

Maximum number of arguments in

any CALL statement

Number of ampersands in CALL

statements

Number of arguments in all entry

points

-Maximum number of arguments in

any entry point

Number of functions, ASF in any

assignments

Maximum number of functions, ASF

in any assignment

Number of variables in all

assignments

Maximum number of variables in

any assignment

Number of operators in all

assignments

Maximum number of operators in

any assignment

Number of arguments in module

calling sequence

Number of unconditional downward

transfers

Number of unconditional upward

transfers

Number of levels of nesting of DO

loops

Maximum level of nesting

Number of statements in all DO

loops

Maximum number of statements in

any DO loop

Number of references to

subscripted variables

4-9

Dimen-
Variable sion

ICTSSC

MAXSSC

ICTTBR

ICTIFB

ICTEIF

IFLEV

MIFLEV

Type

1*2

1*2

1*2

1*2

1*2

1*2

1*2

Definition

Total subscript complexity

Maximum subscript complexity

Total number of branches

IF block counter

ELSE IF counter

Level of IF block

Maximum level of IF blocks

4-10

COMMON BLOCK: /DELCOM/

PURPOSE: Contains the integer codes for the delimiters con­

tained in the IDELIM array in COMMON /DLICOM/.

Dimen-
Variable sion

IYCCAT

IYEXPO

IYMULT

IYDIVI

IYADDX

IYMINU

IYEQUA

IYOPAR

IYCPAR

IYCOMA

IYAPOS

IYAMPR

IYCOLN

IYQUOT

IYLEFT

IYRIGH

IYTAB

IYNULL

IYNEXX

IYLTXX

IYLEXX

IYEQXX

IYGEXX

IYGTXX

IYANDX

IYORXX

IYXORX

IYEQVX

Type

1*2

1*2

1*2

1*2.

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

Definition

Integer code for //

Integer code for **

Integer code for *

Integer code for /
Integer code for +

Integer code for -

Integer code for =

Integer code for

Integer code for

Integer code for

Integer code for

Integer code for &

Integer code for

Integer code for

Integer code for <

Integer code for >

Integer code for Tab

Zero

Integer code for .NE.

Integer code for .LT.

Integer code for .LE.

Integer code for .EQ.

Integer code for .GE.

Integer code for .GT.

Integer code for .AND.

Integer code for .OR.

Integer code for .XOR.

Integer code for .EQV.

4-11

lmen-

Variable sion Type Definition

IYNOTX 1*2 Integer code for .NOT.

IYNEQV 1*2 Integer code for .NEQV.

4-12

COMMON BLOCK: /DLICOM/

PURPOSE: Contains the character representation.of valid

delimiters and their lengths.

Dimen-

Variable sion T Definition

NDELIM, 1*2 Number of delimiters (30)

LDELIM 30 1*2 Array of delimiter lengths

IDELIM 6,30 L*l Array of delimiters

4-13

COMMON BLOCK: /GLBCOM/

PURPOSE: Contains the accumulated global statistics for the

input file.

Dimen-

Variable sion

MAXGLB

MAXSTC

MAXSTT

IDUMG

AVEGBL 100

IGTSTC 13

IGTSTT 65

MAXGBL 00

NUMGBL 100

IEXGBL 100

Type

1*2

1*2

1*2

1*2

R*4

1*2

1*2

1*2

1*2

1*2

Definition

Size of global counter array (100)

Size of statement class array (13)

Size of statement type arrays (65)

Dummy alignment variable

Global averages array

Global statement class counters

Global statement type counters

Global maxima array

Global counter arrays

Global counters for auxiliary

counts

4-14

COMMON BLOCK: /HSHCOM/

PURPOSE: This COMMON contains the pointers to the symbol

table entries for the hashed input character string. The

hash is computed by the square sum central bit algorithm.

Dimen-

Variable sion Type Definition

NHASH 1*2 Size of hash table (1024)

LHMASK 1*2 Mask for hash bits (17778)

LHSHFT 1*2 Number of bits to shift hash key
(0)

IHTBLE 1024 1*2 Table of pointers to symbol table
entries

4-15

COMMON BLOCK: /IMPCOM/

PURPOSE: Contains codes used to type variables typed by

default or by an IMPLICIT statement.

Dimen-
Variable sion Type

IVASC 26 BYTE

IVTYP 26 1*2

IVBYTE 1*2

IVLOG 1*2

IVLOGI 1*2

IVLOG2 1*2

IVLOG4 1*2

IVINT 1*2

IVINT2 1*2

IVINT4 1*2

IVREA 1*2

IVREA4 1*2

IVREA8 1*2

IVRE16 1*2

IVCPX 1*2

IVCPX8 1*2

IVCP16 1*2

IVDBP 1*2

Definition

ASCII representation of letters A

through Z

Assigned data type for letters A

through Z

Type number for variable type BYTE

Type number for variable type

LOGICAL

Type number for variable type

LOGICAL*1

Type number for variable type

LOGICAL*2

Type number for variable type

LOGICAL*4

Type number for variable type

INTEGER

Type number for variable type

INTEGER*2

Type number for variable type

INTEGER*4

Type number for variable type REAL

Type number for variable type

REAL*4

Type number for variable type

REAL*8

Type number for variable type

REAL*16

Type number for variable type

COMPLEX

Type number for variable type

COMPLEX*8

Type number for variable type

COMPLEX*16

Type number for variable type

DOUBLE PRECISION

4-16

Dimen-
Variable sion Type

IVDBC 1*2

IVCHAR 1*2

MASKNU 1*2

MASKCH 1*2

Definition

Type number for variable type

DOUBLE COMPLEX

Type number for variable type

CHARACTER

Type mask for numeric type

variable (8)

Type mask for character type

variable (16)

4-17

COMMON BLOCK: /INFCOM/,

PURPOSE: Contains the user's command line.

Dimen-

Variable sion Type Definition

INF 1*2 Length of INFORM array

INFORM 80 L*l Command line array

4-18

COMMON BLOCK: /INLCOM/

PURPOSE: Contains the two-line rotating input buffer used

by SAP while processing the source code input.

Dimen-

Variable sion Type Definition

MAXINL 1*2 Size of INLINE array (100)

LASINL 1*2 Last valid character in INLINE (0)

INLPTR 1*2 Current line pointer

INLDUM 1*2 Dummy alignment variable

INLINE 100,2 L*1 Rotating input line buffer

4-19

COMMON BLOCK: /INPCOM/

PURPOSE: Contains all the characters in one input source

statement. INPUT has the capability to hold up to 19 con­

tinuation cards.

Dimen-
Variable sion Type Definition

MAXINP 1*2 Size of INPUT character array

(1440)

LASINP 1*2 Location of last character in
INPUT (0)

INPUT 1440 L*l Input source statement array

4-20

COMMON BLOCK: /KEYCOM/

PURPOSE: Contains information read from the KEYWORDS.SAP

file.

Dimen-
Variable sion Type Definition

MAXKEY 1*2 Size of keywords array (.5)

LASKEY 1*2 Last entry in keywords table (0)

CLASS 65 1*2 Statement class of keyword

EXEC 65 L*2 Statement executability flag:
= .TRUE., executable
= .FALSE., nonexecutable

LKEY 65 1*2 Keyword length array

KEY 16,65 L*I Keyword array

4-21

COMMON BLOCK: /LBLCOM/

PURPOSE: Contains pointers to a label list array for GO TO

statements and DO loop targets

Dimen-
Variable sion

MAXLBL

NEXLBL

.MAXSTK

ISTKPT

LELIST 256

LABLOC 256

GOTARG 256

LBLSTK 20

DOSTAN 20

Type

1*2

1*2

1*2

1*2

1*4

1*2

L*l

1*4

1*2

Definition

Size of LBLIST, LABLOC, and

GOTARG arrays (256)

Pointer to next free location in

label list (1)

Maximum stack depth (size of

LBLSTK) (20)

Pointer to current top of stack

(0)

List of all non-FORMAT labels, in

module

List of corresponding statement

numbers of labeled statements-

Set .TRUE. if label is targetof

a GO TO

Push down stack for DO loop

targets

Corresponding stack of statement

numbers of DO statements

4-22

COMMON BLOCK: /LDTCOM/

PURPOSE: Contains the list of pointers to the delimiters

and tokens making up the current statement.

Dimen-

Variable sion Type Definition

MAXLDT

LASLDT

1*2

1*2

Size of LISTDT array (255)

Location of last entry in LISTDT
array

LISTDT 256 1*2 List of delimiter and token
pointers

4-23

COMMON BLOCK: /LUNCOM/

PURPOSE: Contains the logical unit assignments for SAP.

Dimen-
Variable sion

LUNKEY

LUNSOR

LUNWTS

LUNOUT

LUNCIN

LUNLST

LUNMSS

LUNGSS

LUNDB

LUNDIR

LUNSCl

LUNSEL

Type

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

Definition

LUN of keyword file (1)

LUN of source input file (2)

LUN of weights file (3)

Not used

LUN of command input unit (5)

LUN of listings and error message

file (6)

LUN of module statistics summary

file (7)

LUN of global statistics summary

file (8)

LUN of data base (9)

LUN of indirect file input (10)

LUN of INCLUDE file (11)

LUN of intermediate Halstead file

(12)

4-24

COMMON BLOCK: /MODCOM/

PURPOSE: Contains the current module type, name, statement

count, and SAP error and warning counts.

Dimen-
Variable sion Type

MODTYP 1*2

MODNAM L*l

ISN 1*2

NERR 1*2

NWARN 1*2

Definition

Module type:

= 1, main program (default)
= 2, subroutine
= 3, function
= 4, block data

Module name (8 characters

maximum), (default name = MAIN)

Current statement number

Number of SAP errors in current

module

Number of SAP warnings in current

module

4-25

COMMON BLOCK: /OPCOM/

PURPOSE: Contains the counts for the operators and operands.

Dimen-
Variable sion

SUB 50

NSUB 50

MXSUB

NDLM 30

KLOGIF

KARTIF

KSTIF

KELSIF

KELSE

KDO

KDOWH

KASGN2

KEOS

IETAl

IETA2

NETAI

NETA2

IDECIS

NKEYWD

AKEYWD 9

Type

R*8

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

R*8

Definition

List of subroutines, entry

points, and functions found so far

Use count of each subroutine/

entry/function found

Maximum number of different

subroutine/entry/functions

allowed (50)

Use count of each delimiter oper­
ator

Number of logical IF statements

Number of arithmetic IF statements

Number of structured IF statements

Number of ELSE IF statements

Number of ELSE statements

Number of DO statements

Number of DOWHILE statements

Number of ASSIGN TO statements

Number of end-of-statement (EOS)

Number of unique operators (+, -,
', /, .EQ., .GE., etc.)

Number of unique operands (e.g.,

variable, constant)

Total number of operators

Total-number of operands

Number of decisions (IF, .IF.,

DO, DOWHILE, etc.)

Number of keyword operators (9)

Labels for keyword operator report

4-26

COMMON BLOCK: /PAGCOM/

PURPOSE: Contains the page count and line counts for each

logical unit written by SAP.

Dimen-

Variable sion Type Definition

HEAD

LPAGE

LINCNT

MAXLIN

5,12

12

12

12

R*8

1*2

1*2

1*2

Page header

Page number (12*0)

Current line counter

Maximum lines per pag
logical unit (12*59)

(12*9999)

e per

4-27

COMMON BLOCK: /SELCOM/

PURPOSE: Contains the project name and prefix code for the

sequential output file (ALL.SAP).

Dimen-

Variable sion Type Definition

PROJNM 8 L*l Project name

PREFIX L*2 Prefix code of two characters

4-28

COMMON BLOCK: /STECOM/

PURPOSE: Contains the current token block from the symbol

table.

Dimen-
Variable sion

MAXTOK

NEXT

LAST

NACTIV

ICLASS

ITYPE

IUSED

LTOKE

TOKEN 32

Type

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

L*l

Definition

Maximum size of token block in

words (23)

= (Maximum Token Length + 1)/2 + 7

Pointer to next block with same

key

Pointer to previous block with

same key -

Activity counter for Halstead
operands

Token class (variable, constant,

etc.)

Token type (subclass)

Symbol utilization count

Length of token

Token

4-29

COMMON BLOCK: /SWICOM/

PURPOSE: Contains the switch variables corresponding to SAP

control switches.

Dimen-

Variable sion

NSWIT

LSWIT 2,20

ISWLI

ISWGB

ISWMO

ISWDU

ISWUW

ISWEC,

ISWCO

ISWSC

ISWST

ISWCS

ISWAS

ISWSP

ISWCA

ISWHL

ISWDB

ISWXP

ISWSL

ISWXX 3

-Type

1*2

L*l

L*2

L*2

L*2

L*2

L*2

L*2

L*2

L*2

L*2

L*2

L*2

L*2

L*2

L*2

L*2

L*2

L*2

L*2

Definition

Number of switches defined

Array of two-character control

switches

Output listing switch (F)

Output global statistics switch

(T)

Output module statistics switch

(T)

Output diagnostic symbol table

dump switch (F)

Accept user weights switch (F)

Output external communication

statistics switch (F)

Output commenting statistics

switch (F)

Output statement class statistics

switch (F)

Output statement type statistics

switch (F)

Output control statement

statistics switch (F)

Output assignment statement

statistics switch (F)

Output specification statement

statistics switch (F)

Output complexity analysis switch

(F)

Print Halstead measures switch (F)

Write to Halstead data base

switch (F)

Expand INCLUDEs statements switch

(F)

Write to sequential output file

switch (F)

Spares

4-30

COMMON BLOCK: /SYMCOM/

PURPOSE: Contains the symbol table values and pointers.

Dimen-

Variable sion Type Definition

MAXSYM 1*2 Size of symbol table (60-00)

NEXSYM 1*2 Next unused symbol table: location
(1)

IOURFL 1*2 Not used

ISYDUM 1*2 Not used

ISYMBL 6000 L*I Symbol table

4-31

COMMON BLOCK: /TYPCOM/

PURPOSE: Contains pointers to each statement type recog­

nized by SAP.

Dimen-

Variable sion

IZASFD

IZASSI

IZACCE

IZASGN

IZBACK

IZBLOC

IZBYTE

IZCALL

IZCHAR

IZCLOS

IZCOMM

IZCOMP

IZCONT

IZDATA

IZDECO

IZDEFI

IZDELE

IZDIME

IZDOUC

IZDOUB

IZDOWH

IZDOXX

IZELSI

IZELSE

IZENCO

IZENDD

IZENDF

IZENDI

Type

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

Definition

Arithmetic Statement Function

Definition

Assignment Statement

ACCEPT

ASSIGN

BACKSPACE

BLOCKDATA

BYTE

CALL

CHARACTER

CLOSE

COMMON

COMPLEX

CONTINUE

DATA

DECODE

DEFINEFILE

DELETE

DIMENSION

DOUBLECOMPLEX

DOUBLEPRECISION

DOWHILE

DO

ELSEIF

ELSE

ENCODE

ENDDO

ENDFILE

ENDIF

4-32

Dimen-
Variable sion

IZENDX

IZENTR

IZEQUI

IZEXTR

IZFIND

IZFORM

IZFUNC

IZGOTO

IZSTIF

IZIFXX

IZIMPL

IZINCL

IZINQU

IZINTE

IZINTR

IZLOGI

IZNAME

IZOPEN

IZPARA

IZPAUS

IZPRIN

IZPROG

IZREAD

IZREAL

IZRETU

IZREWI

IZREWR

IZSAVE

IZSTOP

IZSUBR

IZTHEN

Type

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

I*2'

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

1*2

END

ENTRY

EQUIVALENCE

EXTERNAL

FIND

FORMAT

FUNCTION

GOTO

.IF

IF

IMPLICIT

INCLUDE

INQUIRE

INTEGER

INTRINSIC

LOGICAL

NAMELIST

OPEN

PARAMETER

PAUSE

PRINT

PROGRAM

READ

REAL

RETURN

REWIND

REWRITE

SAVE

STOP

SUBROUTINE

THEN

Definition

4-33

Dimen-
Variable sion Type Definition

IZTYPE 1*2 TYPE

IZWRIT 1*2 WRITE

IZBADK 1*2 undecoded

IZUNLO 1*2 UNLOCK

IZVIRT 1*2 VIRTUAL,

4-34

COMMON BLOCK: /WTSCOM/

PURPOSE: Contains the statistical weights used to compute

the SEL complexity.

Dimen-
Variable sion

MAXWTS

IZWTS

TOTLWT

WEIGHT 256

Type

1*2

1*2

R*4

R*4

Definition

Number of elements in weight

array (256)

Boundary alignment variable

Computed module weight

Weighting factors for SEL

complexity computation

4-35

COMMON BLOCK: /XFRCOM/

PURPOSE:. Contains the information on module transfer

operator analyses.

Dimen-

Variable sion Type Definition

LUGOTO 1*2 Pointer to header node of uncondi­
tional GO TO list

LCGOTO 1*2 Pointer to
GO TO list

header node of computed

LAGOTO 1*2 Pointer to
GO TO list

header node of assigned

LERR 1*2 Pointer to
list

header node of ERR,=

LEND 1*2 Pointer to header node of END
list

=

LPROC 1*2 Pointer to header node of proce­
dure alternate return list

LXFR 512 1*2 Cells of transfer list

NAVAIL 1*2 Pointer to next available cell

NPOT

KPOT

LNULL

1*2

1*2

1*2

Pointer to first cell of
'potential' node

Pointer to 'length' cell of
potential node

Value used for end-of-list (0)

MAXXFR 1*2 Total length of transfer list
(512)

4-36

SECTION 5 - SAP FILE STRUCTURE

Table 5-1 contains a list of the files used in the SAP sys­

tem. Files named KEYWORDS.SAP and WEIGHTS.SAP are found in

the directories (VAX) DBBI:[TOOLS] and (PDP) DB1:[213,2].

All other files are located within the user's directory.

Listings of either the default or sample files are presented

in the SAP user's guide (Reference 9) for the keywords,

weights, module statistics, global statistics, data base,

and sequential output files.

Figure 5-1 shows the relationship between the SAP software

and the SAP data files. Each data flow path to a file is

labeled with the logical unit name and number. A data flow

path which is dependent upon a particular SAP control switch

setting (/XX or /-XX) is indicated. Most of the files and

processes shown are also labeled with the name of the sub­

routine (Section 3) that is primarily responsible for the

process or file.

Detailed descriptions of each file used by SAP are presented

on the following pages. The descriptions are arranged by

logical unit number in ascending order (as presented in

Table 5-1).

5-1

Table 5-1. SAP File Names and Usages

Logical

Unit

Variable

LUNINN

LUNINN

LUNINN

LUNINN

LUNKEY

LUNSOR

LUNWTS

LUNOUT

LUNCIN

LUNLST

LUNMSS

LUNGSS

LUNDB

LUNDIR

LUNSCI

LUNSEL

LUN

1

2

3

4

1

2

3

4

5

6

7

8

9

10

11

12

I/O

I

I

I

I

I

I

I

I

0

0

0

I/O

I

I/O

0

File

Name

FORO01.DAT

FOR002.DAT

FOR003.DAT

FOR004.DAT

KEYWORDS.SAP

FOR002.DAT

WEIGHTS.SAP-

or

User supplied

Not used

FOR005.DAT

FOR006.DAT

FOR007.DAT

FOR008.DAT

User supplied

User supplied

FOR011.DAT

ALL.SAP

Use

Source input contain­
ing INCLUDEs

Included source

(level one)

Included source

(level two)

Included source

(level three)

Keywords file

Source input file

Weights file

User terminal

Error message and

source listing file

Module statistics file

Global statistics file

Data base file

Indirect file

Scratch file

Sequential file

5-2

UXIUNNAL PAGE FS
OF POOR QUALITY

LOADK USRWTS

READER

KEYORD WEWRTSES

Figure LU1. SA DA Flo D UiSagr

INNUDPUTM

SOURCE

PRINTER

TERINuAe 5-Ni. (5) Aa Flow Diagram2 AL

SCo , 54u

FILE (Logical Unit): FOR001.DAT, FOR002.DAT, FOR003.DAT,

FOR004.DAT (LUNINN)

DEVICE/DIRECTORY: User's default

PURPOSE: Internal scratch files to expand INCLUDE state­

ments when the /XP switch is set to on. When an INCLUDE is

read, the included file is opened, read, and written to unit

FOR011.DAT. The INCLUDE files can be nested to a depth of

three INCLUDE statements.

-FILE OPERATION BY SUBROUTINE:

Open INCLUD

Close INCLUD

Read INCLUD

FILE LAYOUT:

1. Format: Formatted, variable length

2. Access: Sequential

5-4

FILE (Logical Unit): KEYWORDS.SAP (LUNKEY)

DEVICE/DIRECTORY: 	 VAX-11/780 DBBl:[TOOLS]

PDP-L1/70 DBl: [213,1]

PURPOSE: Allows flexibility in classifying statements and

in marking statements executable or nonexecutable.

FILE OPERATION BY SUBROUTINE:

Open LOADK

Read LOADK

Close LOADK

FILE LAYOUT:

1. Format: Formatted; fixed length

2. Access: Sequential

3. Record Length: 32 bytes

4. Record Description:

Format 	 Byte

Code Position Contents

L3 1-3 Statement executability flag

13 4-6 Obsolete

13 7-9 Obsolete

13 10-12 Statement class

13 13-15 Number of characters in the keyword

iX 16 Blank

16A1 17-32 Keyword

5-5

FILE (Logical Unit): FOR002.DAT (LUNSOR)

DEVICE/DIRECTORY: User's default

PURPOSE: The source code that is to be processed by SAP is

read from this unit. If the /XP switch is set to on to ex­

pand INCLUDEs, the input source is read from this file and

the expanded source is written to a scratch file and then

read. (See the description of file FOR011.DAT.)

FILE OPERATION BY SUBROUTINE:

Open CINPUT

Read GLINE

Close SAPMAIN

FILE LAYOUT:

1. Format: Formatted, variable length

2. Access: Sequential

5-6

FILE (Logical Unit): WEIGHTS.SAP (LUNWTS)

DEVICE/DIRECTORY: VAX-Il/780 DBB1:[TOOLS]

PDP-I/70 DBI:[213,2]

PURPOSE: Contains a weight or weights to be applied to a

particular statistic or range of statistics. If the user

specifies a weights file with the /UW switch, that-weights

file must match the file layout given below.

FILE OPERATION BY SUBROUTINE:

Open USRWTS

Read USRWTS

Close USRWTS

NOTE: These operations apply to both the default and

user specified weights files.

FILE LAYOUT:

1. Format: Formatted; fixed length

2. Access: Sequential

3. Record Length: 16 bytes

4. Record Description:

Format Byte

Code Position Contents

15 	 1-5 Lower limit of module statistic number

range

15 6-10 Upper limit of module statistic number

range

F6.1 11-16 Statistical weight assigned to all

statistics in the specified range

5-7

FILE (Logical Unit): FOR005.DAT (LUNCIN)

DEVICE/DIRECTORY: User's default

PURPOSE: Assigned to the user input device. The user's

commands are read from this unit.

FILE OPERATION BY SUBROUTINE:

Read INPUT

FILE LAYOUT:

1. Format: Formatted, variable length

2. Access: Sequential

5-8

FILE (Logical Unit): FOR006.DAT (LUNLST)

DEVICE/DIRECTORY: User's default

PURPOSE: Displays any error messages encountered during SAP

processing. If the /LI switch is set to on, the source code

processed by SAP is listed on this unit.

FILE OPERATION BY SUBROUTINE:

The following operation is performed only when the /LI

switch is set to on:

Write GLINE

Almost all SAP routines contain code to write error or

warning messages to this file. The following operation is

performed before SAP is terminated:

Close SAPMAIN

FILE LAYOUT:

1. Format: Formatted, variable length

2. Access: Sequential

5-9

FILE (Logical Unit): FOR007.DAT (LUNMSS)

DEVICE/DIRECTORY: User's default

PURPOSE: Module statistics are written to this unit. The

statistics are added to this unit as each module is proc­

essed. The operator/operand summary is written to this file

when the /HL switch is set to on.

FILE OPERATION BY SUBROUTINE:

Write PRTHAL, HALREP, STATG, PRTXFR

FILE LAYOUT:

1. Format: Formatted, variable length

2. Access: Sequential

5-10

FILE (Logical Unit): FOR008.DAT (LUNGSS)

DEVICE/DIRECTORY: User's default

PURPOSE: Module directory, global summary, and project

summary are written to this file.

FILE OPERATION BY SUBROUTINE:

Write COEF, STATG, MDIRY, REPHAL

FILE LAYOUT:

1. Format: Formatted, variable length

2. Access: Sequential

5-11

FILE (Logical Unit): 'SAPData base (LUNDB)

DEVICE/DIRECTORY: User's default

PURPOSE: Stores statistical data, when the /DB switch is

set to on. The statistics are gathered for each module

processed while the /DB switch is on. The correlation

summary is produced from the contents of this file.

FILE OPERATION BY SUBROUTINE:

Open DEFINE, WRTDB

Read,,WRTDB

Write DEFINE, WRTDB

Close DEFINE WRTDB

FILE LAYOUT:

1. Format: Formatted, fixed length

2. Access: Direct

3. Record Length: 80 bytes

4. Record Description: (2 records per module)

Header

Record

Format Byte

Code Position Contents

Ix 1 Blank

14 2-5 Maximum records allowed in this file

6-80 Blank filled

First

Record

Format Byte

Code Position Contents

IX 1 Blank

Al 2 Project Identifier

8A1 3-10 Module name

11-80 Blank-filled

5-12

Format

Code

iX

13

13

13

12

14

12

12

14

13

13

14

14

13

13

13

Second

Record

Byte

Position

1

2-4

5-7

8-10

11-12

13-16

17-18

19-20

21-24

25-27

28-30

31-34

35-38

39-41

42-44

45-47

48-80

Contents

Blank

Number of arguments passed to the module

Number of variables in COMMON blocks

Number of comment lines

Number of COMMON blocks

Number of executable statements

Number of external references

(subroutines and functions)

Number of I/O statements

Number of source lines

Number of unique operators

Number of unique operands

Total number of operators

Total number of operands

Total number of (IF and .IF) statements

Total number of decisions

Sum of count of argument variables

(including ENTRY arguments) and count of

referenced COMMON variables

Blank-filled

5-13

FILE (Logical Unit): FOR01O.DAT (LUNDIR)

DEVICE/DIRECTORY: User's default

PURPOSE: Gives the user the capability to use an indirect

command file as input to SAP.

FILE OPERATION BY SUBROUTINE:

Open INPUT

Read INPUT

Close INPUT

FILE LAYOUT:

1. Format: Formatted, variable length

2. Access: Sequential

5-14

FILE (LOGICAL UNIT): FOR011.DAT (LUNSCI)

DEVICE/DIRECTORY: User's default

PURPOSE: The expanded source code is written to this unit

when the /XP switch is set to on. The logical unit variable

is then redefined as LUNSOR for SAP processing ,of the

current file. The expanded source code is deleted after

processing is complete.

FILE OPERATION BY SUBROUTINE:

Open INCLUD

Write INCLUD

Close INCLUD

FILE LAYOUT:

1. Format: Formatted, variable length

2. Access: Sequential

5-15

FILE (Logical Unit): ALL.SAP (LUNSEL)

DEVICE/DIRECTORY: User's default

PURPOSE: Stores statistical data to be used by other

analysis programs. When the /SL switch is set to on, the

file is either created or extended. One record for each

module is written to this file while the /SL switch is on.

FILE OPERATION BY SUBROUTINE:

Open DEFSEL, WRTSEL

Write WRTSEL

Close SAPMAIN

FILE LAYOUT:

1. Format: Formatted, fixed length

2. Access: Sequential

3. Record Length: 78 bytes

4. Record Description:

Format Byte

Code Position Contents

8A1 1-8 Project name

A2 9-10 Project prefix characters

6A1 11-16 Module name

13 17-19 Number of arguments passed to module

13 20-22 Number of comment lines in module

14 23-26 Number of executable statements in module

12 27-28 Number of I/O statements in module

14 29-32 Number of source lines in module

13 33-35 Number of unique operators in module

13 36-38 Number of unique operands in module

14 39-42 Total number of operators in module

14 43-46 Total number of operands in module

13 47-49 Total number of (IF and .IF) statements

in module

13 50-52 Total number of decisions in module

5-16

Format Byte
Code Position

13 53-55

13 56-58

12 59-60

13 61-63

13 64-66

13 67-69

13 70-72

13 73-75

13 76-78

Contents

Sum of count of argument variables

(including ENTRY arguments) and count of

referenced COMMON variables

Number of common block variables used in

module

Total number of DO & DOWHILE statements

in module

Number of function references in module

Number of structured statements in module

Number of variables passed to external

references in module

Number of assignment statements in module

Number of CALL statements in module

Number of FORMAT statements in module

5-17

SECTION 6 - SYSTEM GENERATION

The SAP system can be generated from the source code by exe­

cuting a few commands. The system generation procedure for

the PDP-ll/70 is described in Section 6.1, and for the

VAX-11/780 in Section 6.2.

6.1 PDP-11/70 SYSTEM GENERATION

To generate the SAP system for the PDP-ll/70, only three

command procedures need to be executed: GENFPPSAP.CMD,

GENSAP.CMD, and SAP.CMD. Figure 6-1 is a listing of the

GENFPPSAP.CMD command procedure used to preprocess the

structured SAP source code. The OD: preceding each routine

name tells the FPP task image where each source code file is

located. An assignment, (for example: > ASN OD=DBO:),

before executing the GENFPPSAP.CMD is necessary. Two files,

LOADK.FPP and USRWTS.FPP, may need to be edited to change

the disk (DBl) and UIC ([213,3]) to reflect the disk and UIC

in which the keywords and weights files reside. Figure 6-2

is a listing of the GENSAP.CMD command procedure, which com­

piles the SAP preprocessed source code. Figure 6-3 is a

listing of the SAP.CMD command procedure that generates the

SAP task image. Figure 6-4 is a listing of the SAP overlay

used by the SAP.CMD task build command procedure. The

PDP-11/70 SAP system is generated by executing the following

commands in the sequence shown:

> @GENFPPSAP

> @GENSAP

> @SAP

6.2 VAX-11/780 SYSTEM GENERATION

To generate the SAP system for the VAX-II/780, only two

command procedures are executed: GENFPPSAP.COM and

GENSAP.COM. Figure 6-5 is a listing of the GENFPPSAP.COM

command procedure. This command procedure preprocesses the

6-1

http:GENFPPSAP.COM
http:GENSAP.COM
http:GENFPPSAP.COM

structured SAP source code. Before executing this command

procedure, two routines, LOADK.FPP and USRWTS.FPP, may nee

to be edited and the disk (DBBl:) and UIC [TOOLS] assign­

ments changed to reflect the disk and UIC containing the

keywords and weights files. Figure 6-6 is a listing of th

GENSAP.COM command procedure. This command procedure com­

piles the source code, generates an object module library

the SAP system, and generates the SAP executable task

image. The VAX-11/780 SAP system is generated by executin

the following commands in the sequence shown:

$ @GENFPPSAP

$ @GENSAP

6-2

http:GENSAP.COM

I 15-JUN-62 GEtFPPSAP.ClD PAGE

*GENFPPSfAP

THIS COHM1AHD PROCEDURE WILL PREPIenCESS
THE SAP FORTRAN ROUTINES

THERE WILL 0E TIJO DATA SETS GENERATED PER ROUTINE

A *.FLS (LISTING) AN A *.FTH (FORTRAN)

NOTE: BEFORE EXECUIl IG THIS COMMAIID PROCEDURE
THE USER SHOULD EDI ROUTINE LOADK.FPP AND CHANGE

THE EUICJ ON THE OPEN STATEMENT FOR THE KEYIORDS.SAP FILE

NiD UIN THE IJEIGHTS.SAP FILE IN ROUTINE USRI-JTS.FPP

FPP OD:ADDPUT
FPP OD:ASGNID
FPP OD:C INPUT
FPP OD: CH FXFR
FPP OD:COEF
FPP OD:COLGLO
FPP OD:COI1PAR
FPP OD:COIPIJT
FPP OD:CT1BLK
FPP OD:CT2OLK
FPP OD:CTSBLK
FPP OD: CT4BLK
FPP OD:CT5BLl­
Fl-P OD: DEF IIIE
FPP OD:DEFSEL
FPP OD:DELBLK
FPP OD:DLIBLK
FPP OD:DSCfAN"
FPP OP:ERAPOT
FPP OD:ERI'ISG
FPP OI': ESTIM
FPP OD:F Ii'IIT
FPP np:FL'/API
FPP OD: FHCtA-E
FPP OD:GARCOL
FPP OD:FLBBLK
FPP fD:GLItiE
FPP OD:HALREP
FPP OD:HOPRIi
FPP OD:HOPTR1
FPP OD:HOPTRZ
FPP OD:HPRHlOS
FPP O":HPRI
FPP OD:liPR2
FPP OD:HPR3
FPP OD:HSCAN
FPP OD:HSHBLK
FPP OD:IHASH
FPP OD: IliPBL1
FPP OD:INCLUD
FPP OD:IHITG

FPP OD: INITM

Figure 6-1. SAP PDP-11/70 Preprocessing Command Procedure
(1 of 3)

6-3

2

OR1~T~LPAGE IS

ofpoOR QUALi"r

15-JUH-82 GEIIFPPSAP.CMD PAGE

FPP OD:IHITH

FPP OD: IHLBLK

FPP 0O): IHPR1L1I

FPP UD:IHPUT

FP OD: IITGR4

FPP OD :KEYRLI(

FPP OD:KILLP

FPP OD:LABEI

FFP OD:LBLST

FP OD:LBLBLK

F''P OD:LDTBLK

FPP OD:LHKPOT

FP OD:L '

FPP OD:LOCCHR

FP OD:LOOI<Ap

FPP UD:LOOKND

FPP OD:LOOKK

FPP D:LOOKH

FPP OD:LOOKS

FPP OD:LLIMBLK

FPP OD:tl-tPLX

FPP OP:D IRY

FPP OD:MODBLI

FPP 0D:NEIPOT

FPP OD:HUMER

FPP OD:OPBLK

FPP OD:GPERAT

FPP OD:PAGBIK

FFP OD:PAGER

FPP OD:POKEP

FPP OD:POKES

FPP OD:PRASGH

FPP OD:PRASS

FPP OD:PRCRLL

FPP OD:PPCIITL

FPP OD:PRDOS

VPP OD:PRfGTO

FPP OD:PRIFS

FPP OD:PRIIIPL

FPP Ot:PRIO

FPP OD:PPRET

FPP OD:PRSPEC

FPP OD:PRSThC

FPP OD:PRSUBS

FPP VD:PRTHAI_

FPP UD:PRTOIIE

FPP OD:PRTXFR

FPP OD:PRTYPE

FPP OD:REDER

FPP OD:REPHAL

FPP OD:SAPMAIN

FPP OD:SELBLK

FPP OD:SKPCHR

FPP OD:STATE

FPP OD:STRTG

Figure 6-1. SAP PDP-11/70 Preprocessing Command Procedure

(2 of 3)

6-4

ORIGINAL PAGE W3

OF POOR QUAITY

PAGE 3
GEHRPPSAP.CD
15-JUFI-82

FPP OD:STATtI1

FPP OD:STDUiIP

FPP OD:STEBLK

FPP OD:SUJILI<

FPP OD:b)riBLI

FPP OD:TABCCC

FPP nD:TAOLES

FPP OD:TESTK

FPP OD:ThPBLK

FPP OD:IYPE

FPP OD:UCPLXI

FPP OD:UCPL2

FPP OD:USRIJTS

FPP OD:LRTDB

FPP OD:URTSEL

FPP OD:IJTSSLI<

FPP OD:XFRBLK

Figure 6-1. SAP PDP-11/70 Preprocessing Command Procedure

(3 of 3)

6-5

http:GEHRPPSAP.CD

ORIGINAL PAGE ig

OF POOR QUALITY

15-JUH-82 GE1ISPP.CMD 	 PAGE

OGEHSiP

THIS COMMAIID PROCEDUPE WILL COMPILE

THE PPEPROCESSED STRUCTURED CODE FOR

THE SAP.EXE LOAD MODULE

FOR PIDPOTlDDPOT=ADDPOT

FOR ASGH ID.flSGH ID=ASGH ID

FOR CIHPUT.C IHPUT=CINPUT

FOR CHTXFR,CHTXFR=CHTXFR

FOR ['OFF COEF =CJEF

FOR COLGLB.COLGLR=COLGLB

FOP COIIPAR. COIPAP=COMPR

FOR COI IPJT, COVPI.JT=COMPIJT

FOR CT1BLK,CTTBLIK=CT1BLK

FOR CT2BLK,CT2BLK=CT2BLK

FOR CT3BLK,CT-flLK=CT-RLIK

FOP CT4BLK. CT4BLI(=CT4OLK

FOR CT5BLK.CThBLK=CT5RLK

FOR DEF IHE. DEF IIlE=DEF THE
FOR DEFSEL, DEFSEL=DEFSEL

FOR DI-L3LK.DELBLK=DELRLK

FOR DLIRLK. DLIBLK=DLIRLK

FOR DSCfl .DSCAl =DSCQtI

rOR ERAPOT.ERPPOT=ERI"OT

FOR ERRHSG. ERRH1SG=ERRSG
FOR ESTII ..ESTIM =ESTIM

FOR FIHDII .FIIIDIT=FIHDIT

FOk FLVPRI .FLI'PRI-FLVPRI

FOR FIIIIAIE.FHHAMHE=FHAME

FOR GAPCOL,GARCOL=GARCOL

FOR GLBLI"-GLBBLK=GLBBLI'

FOR GLIHE GLIHE =GLIHE
FOR HALREP,HALREP=HPLREP

FOR IOPRH .HOPRII =HOPRH

FOR HOPIR.1 HOPTRI=HOPTRt

FOR HOPTR3.HOPTR3=HOPTRS

FOR HPRI .IIPRI =HPPI

FOR HPR2 ,HPR2 =IIPR2

FOR HPP3 .HPR3 =HPP3

FOR IIPRIDSHPRHDS=HPRHDS

FnR HSCAM .HSCAiM =HSCAM
FOR HSIIBLKHSHBLK=HSHBLK

FOR IHfSH .IHASH =IHASH

FOR IrIPBLK. IHPBLK=IMPBLK

FOR IHCLUD. IHCLUD=IHCLUD

FOR IHITG .IHITG =INITG

FOP IIITM .111ITM =IHITII

FOR IMITH .INITtH =IlITH

FOP INLBLK, ItILBLK--IIILBLK

FOR ItIPOLK. IMPBLK=IHPBLK

FOr INPUT .ItPUl =IflPUT

FOR INTGR4.IHTGR4-INTGR4

FOR KEYBLK.IKEYBLK=KFYRLK

Figure 6-2. 	 SAP PDP-11/70 FORTRAN Compilation Command

Procedure (1 of 3)

6-6

ORIGIA,.JNAPA"
OF P66R Q0AT

15-JUN-82 GEMSAP.CMD 	 PAGE 2

FOR KILLP .KILLP =KILLP

FOR LABEL .LADEL =LABEL

FOR LABLST,LABLST=LABLST

FOR LELOLK,LRLRLK =LRLBLK

FOR LDTBLK. LDTBLK =LDTBLI'

FOR LHKPOT, LHKPT=LHKPOT

FOR LOADK ,LOADK =LOADK

FOR LOrCHR,LOCCHIR=LOCCHR

FOR LOOKAHLOOKPH=LOOKflH

FOR LOOKID. LOOKND=LOOKID
FOR LOOKK ,LOOKK 	 =LOOKK
FOR LOOKP LOOKP 	=LOOKP

FOR LOOKS .LOOKS 	=LOOKS

FnR LUMBLK.LUNBLK=LUNBLK

FOR MCIHPLX. MCrIPLX=Mcr1PLX

FOR tIDIRY JIDIRY =HDIRY

FOR tIODBLK. IODBLK=IODBLK

FOR HEIlPOT. HEUPOT=HE.POT
FOR HLMER .IIUHIER 	 =HUIlER
FOR OPBLK .OPBLK 	=OPBLK

FOR OPERAT.OPLRAT=OPERAT
FOR PAGBLK. PAGBLK=PAGBLK
FOR PAGER .PAGER =PAGER

FOR ,POKEP .POKEP =POKEP

FOR POKES POKES =POKES

FOR PRASGF. PRASGH=PRA'SGII
FOR PRASS .PRASS 	=PRASS

FOR PRCALL.PRCALL=PRCALL

FOR PRCIITL. PRCtITL=PRCNTL
POP PRDOS .PRDOS 	=PRDOS
FOR PRGOTO
-PRGOTO=PRGOTO

FOR PRIFS .PRIF; 	 =PRIFS
FOP PRPIIIPL-PR-IPL=R IMPL

FOR PRIO .PRIO =PRiO

FOR PRRET PRRET =PRRET

FOR PRSPEC.PRSPEC=PPSPEC

FOR PRSTRC.PRqTRC=PRSTRC

FOR PRSUBS.PRSUDS=PRSUBS

FOR PRTHAL.PRTHAL=PRTHAL

FOR PRTOKEPRTOKE=PRTOI(E
FOR PRTXFR. PRT>XFR=PRT>XFR

FOR PRTYPEPRTYPE=PRTYPE

FOR READER.READER=READER

FOR PEPHAL. REPHAL=REPHAL
FOR SAPHA IH.5APHIH=SPMAn1H
FUR SELRLK. SELBLI(=SELBLI(

FOR SKPCHR. SKPCHR=SKPCHR

FOR STATE .STATE =STATE

FOR STATG .STATG =STATG

FOR STBTM .STATVI =STATII

FOR STDi'JIP. STDU1IP=STDUiIP

FOR STEOLK, STEBILK=STEELK

FOR SIIBLK. SUIBLK=S.IBLK

FOR S'IBLK. SYI'IBLK=SYHELK
FOR TABCCC. TA8CCC=TABCCC

Figure 6-2. 	 SAP PDP-l1/70 FORTRAN Compilation Command

Procedure (2 of 3)

6-7

ORIGINAL PAGE 1"

OF,pOOR QUALITY

15-JUH-82 GEIISAiP. CGD 	 PAGE

FOR T'BLES.TABLES=TAOLES

FOR TESTK .TESIK =TESTK
FOR T'YPBLK. TyPBLK=TYPBLK
FOR TYPE .TYPE =TYPE

FOR UGPLX1.UCPL)I=UCPLXI

FOR UCPLX2, uCPLX2=UcrL:-2
FOR USRbTS, USRWTS=U'SRIITS

FOR JRTB .I.RTDB -tJRTDB

FOR URTSEL. bIRTSEL=IlPTSEL

FOR IJTSBLK, I-ITSBLK =WTSRLK
FOR X'FRBLK. XFRBLK=XFRBLK

Figure 6-2. 	 SAP PDP-11/70 FORTRAN Compilation Command

Procedure (3 of 3)

6-8

3

dlI@tNAL PAGE49,
OF 'a".QYL

15-JUN-82 SAP.CMD PAGE I

COMMAIID FILE TO BUILD 5flP TASK

SAP.SAP;SH-SP =SAP/iP

ACTF IL=6

UNITS=12
ASG=1 1:5:6

ASG=SY: 1:2:3:4:7:8

//

Figure 6-3. SAP PDP-11/70 Task Building Command Procedure

6-9

-ORIG)NAL.,?AE
OF T.O'OR QUALITY

15-JUN-82 SAP.ODL PAGE

SAP (V2) OVERLAY

NOTE: READER AND CLIME CANNOT BE OVERLAID

.ROOT ROOT-*f (AI.AA2.A3.A4,ARA5,AAG.AA?)
ROOT: FCTR SAPHRAIN-COMPAR-IHASH-LOOKP-ERAPOT-ADDPOT-READER-RI
RI: iFCTR PfGER-POIEP-IOOKAH-LOOKND-GL INE-HSCAH-TABCCC-ESTIII-R3
R3: .FCTR CTI8LK-CT2BLK-CT3BLK-CT4BLK-R4

R4: FCTR CT5BLK-DELBLK-DL IBLK-GLBBLK-R5

R5: FCTR HSHBLK- INLBLK-INPBLK-KEYBLK-RG

RG: .FCTR LBLRLK-LDTBLK-LUIILK-IODBLK-R7

R?: .FCTR OPBLK-PAGBLK-STEBLK-SWIBLK-R8

R8: FCTR SYIBLK-TYPBLK-UTSBLK- ItMPBLK-XFRBLK-SELBLK

A I: FCTR LOADK-C INPUT- (II4CLUD-USRtJTS-LOCCHR- INPUT-Al

Al: FCTR SKPCHR-rNNAME-DEFSEL-DEF IHE-F IND IT)

AA2: INITG- III ITM- IN ITH-NEWJPOT-LNKPOT-FCTP

AA3: .FCTR DSCAII-GARCOL-HOPRI-HOPTRI-BI

BI: .FCTR HOPTR3-INTGR4-KILLP-LABEL-B2

82: oFCTR LABLST-LOOKK-LOOKS-MUNER-ERRMSG-83

83: .FCTR POKES-ASGHID-STATE-TYPE-B4
04: .FCTR OPERRT-PRTOKE-TESTK-(CC I,CC2)

CCI: .FCTR PRASGH-PRCHTL-PRIO-PRSTRC-C2
C2: .FCTR (PRGOTOPRRETPRIFS.PRDOSPRASS,PRCALL)

CC2: .FCTR FLVARI-PRSPEC-PRSUBS-PRTYPE-PR ItMPL

A4: .FCTR STA II-TABLES-STLIIP

AA5: .FCTR MCIPLX-CIITXFR-UCPLX1-UCPLX2-A4

*4: HPRPIDS-HPRi-HPR2-HPR3-COMPJT-A5
FCTR

A5: .FCTR (PRTHAL-6JRTDB-IJRTSEL)

*AG: COLGLB-STRTG-HLREP-NDIRY-PRTXFR
FCTR

AA7: .FCTR REPHAL-(COEF)

.END

Figure 6-4. SAP PDP-11/70 Overlay Description

6-10

http:AI.AA2.A3.A4,ARA5,AAG.AA

OF POOR QUALITY

6-MAY-R2 GENFPPSAP.CnM PAGE

S ST VERFY

S @
eGENFPPSAP
$.
$! THIS CnMmAND P 0OCEDURE WILL PREPROCESS
S ! THE SAP FORTRAM fOUTTNES
S!
S 1 THERR WILL BE TWO DATA SETS (ENERATED PER ROUTINr
S I A *.FLS (LISTING) AN A *.FTN CVORTRAN)
Si
$ 1 NOTE: BEFORE EXECUTING THIS COMMAND PROCEDURF
S ! THE t1S!R SHOULD EDT RONTINE LOADK.FPP AND CHANGE DISK AND
$! UIC ON THE OPEN STATEMENT FOR THE KEYWORDS.SAP FILE
$ I AND ON THE WEICHTS.SAP FILE IN ROUTINE USRWTS.FPP
$!

S RITN FPP

ADPOT

ASGfIO
CTNPUT

C4,TXFR

CnEF

COLGL8

CnMPAR

COMPWT

CT2gLK

CT3RLK

CT4BLK

CT5BLK

DEFINE

DEF-SEL
DELgLK

DLIRLK

DSCAN

EPAPOT

EPRMSG
ESTIM

FTNDIT

FLVARZ
FMNAMF

GARCOL

Gt,8;LK

GLI'NE
HALREP

HOPTRI

HOPTR3

HPRNOS

HPR1

HPR2

Figure 6-5. SAP VAX-11/780 Preprocessing Command Procedure
(1 cf 3)

6-11

ORIGINAL PAGE 13

OF POOR QUALITY

2
PAGE
GENFPPSAP.CM
S-'IAV-82

HPR3

HAC AMHSHnLK
IRASH
IMPRLK

I CLUD

INITG

IR1IVI

.,K Yn,4

,-X'PSLK

*1fl7GR4

*.KFY!;LK
ILBLK

LASPL

LABVS8T

LDT8LK

WIyKPOT

LMAnK

LnCCHR

LnOKA14

LnOKK

LOKK

LnoxS

LtTNPLK,

MCMPLX

MnIPy

EWPOT

NItFR
0PBLK

OPERAT

PAGRLK

PAGER

pnK:p

PR A GC

PRASS

P.RC ALL

PRCnTI

ppDnS

PPGtITn

PRIFS

PqIMPL

PPRET

PRSCEC

SAP VAX-11/780 Preprocessing Command Procedure
Figure 6-5.

(2 of 3)

6-12

http:GENFPPSAP.CM

URIGINAL PAGE 1S
OF POOR QUALWIT

6-MAY-92
 GENWPPSAPCOM
 PACE 3

PRSTr

PPSTTBS

PRTfKF

PRTXFR

PRTYPE

RF:PHAL

SAPMAIN

SKPCHR

STATE

S'PAT G

STAPM

STDOIlM P
STEALJK

SWIMLK

-SYMI3LK

-TABCCC

TABLtES

TYPELK

TYPE

UCPLXI

UCPLX2

USRWTS

WRTflB

wRT SET

Figure 6-5. 	 SAP VAX-11/780 Preprocessing Coimmand Procedure

(3 of 3)

6-13

2 I

PAGE 13OgiGWNAL
OF pOOR QUAlVA'

GENSAP.COM PAGE

S SET VERIFY

$1

S @GENSAP

SI

$ THIS CnMMAND PROCEDURE WILtL COMPILE AND LINK

$ I THT SAP.FXE LOAD MODULE

$ FOR/NOI4 ADfPOT.FTN

$ FrR/N014 ASCNTDFTN

$ FOR/NO04 CINPUT.FTN

s FR/N0i4 CNTXFR.FTN

$ FMR/NnI4 COEF.FTN

$ FOR/NOZ4"COLGLB.FTN

S FfR/NOI4 COMPAR.FTN

$ FOR/NI4 COMPWT.FTN

$ FOR/NnI4 CTIBLK.FTN

$ FfR/Nnl4 CT2BLK.FTN

.$ FOR/NnI4 CT3BTKFTHN

8 FOR/N014 CT4BLK.FTN

$ FOR/NM14 CTSBLKFTN

'SrOR/NOI4 tEWINE.FTN

$ FOR/NMI4 fEFSEL.FTN

S FfR/NOI4 fELBLK,FTN

$ FOR/NnI4 DLTBLKFTN

FOR/NI4 DSCAPSFTN

$ FOR/NM14 ERAPOT.FTN

S FfR/Nfl4 ERRMSG.FTN

$ FfR/NO14 ESTIMFT

$ FlR/NOI4 FINDITFTN

S FMR/Nn14 FNNAME.FTN

$ FnR/NfI4 LVARI.FTN

$ FOR/NO14 GARCL.FTN

S FOR/NI4 GLBRLK.FTN

$ FOR/NOI 4 GLINR,FTN

$ FOR/NI4 HATRP.FTN

$ FOR/NI4 HOPRNWTN

$ F'R/NfI4 HOPTRI.FTN

$ FfR/NO14 HOPTR3,FTN

$ FMR/N014 HPRNnSFTN

$ FnR/NfIZ-1PRI.FTN

S FnR/N014 HPR2.FN

$ FOR/NnI4 RPP3.FTN

S FfR/NnI4 ISCAN.VTN

S FOR/NnI4 RSTBLK.FTN

S FOR/NnI4 IHASH.PTU

$ FrR/NOI4 TMPBLK,FTN

$ FOR/NO14 TNCLUD,FTN

$ FfR/NO4 INTTC,.FTN

$ rOR/NnI4 XNITMOWTT

$ FfR/NOI4 INTTNFTN

Figure 6-6. SAP VAX-11/780 FORTRAN Compilation and Linking

Command Procedure (1 of 3)

6-14

http:GENSAP.COM

ORIGINAL PAGE ig

OF POOR QUALITY

6-MAY-q2 GFNSAP.COM PAGE
 2

$ F'R/NnI4 TMYbI,K.FTN

$ FOR/Nfl TNPBtKFTN

$ FfR/NlI4 XNPUT.rTn

S FOR/Nl4 TNTGR4.FTJ

S FOR/NnI4 KEYBLK.FTN

S FnR/Nfl4 KILLP.FTN

S FflR/NOIA LAeEL.FTN

$ FrR/Nr14 .AaLST.FTN

$ Fr)R/NrI4 L13rBT,K.FTN

$ FnR/NO14 LDTBLK.FN

S FOR/NnI4 LNKPOT.FTN

$ FnR/N014 OADK.PTN

$ FnR/Nn04 LOCCHR.FTN

s FnR/Nn4 LnKAH.FTN

S FnR/NOIA LOnKKSPT"

$ FfR/NOId LOOKND.FTN

$ FOR/NOI LOPKP.WTM

S FnR/Mri4 TOfKS.WTI

S FOR/NnI4 LUNBLK.FTN

$ FmR/NI4 MCMPLX.FTN

$ FOR/WOIA MDIRY.VT"

S FnR/NfI4 MOSBLK.FTN

$ FOR/NOI4 NEWPOT.FTN

S FfR/Nfl4 NUMER.FT

S FOR/NOIA OPRLK.TM

$ FnR/NnI4 PFRAT.FTN

$ FOR/NI4 PA(8LK,FTN

S FnR/NnI4 PA(ER.PTN

S FnR/NfI4 POKEP.FTN

$ FnR/NnI4 POKES.FTM

S FfR/NMI4 PRASCN.FTN

$ FOR/NnI4 PRASS.FTN

$ FnR/NnIA PRCALLFmN

$ FnR/NO14 PRCNTL.FTN

$ FOR/NI4 PROOS.WTM

$ FnR/NnfI PRGOTO.FrN

s FnR/ip4I PRIFS.VTN

S FPR/N014 PRTMPL.rFT

s FOR/NI4 PRIO.F-M

S FOR/NnI& PRRET.FTM

s FOR/NO14 PRSPRC.F N

s FnR/NfI4 PRSTRC.FTN

$ FOR/NPId PRSUwS.FTN

$ FOR/NnI4 PRTHA..FTN

S FnR/NOXA PRTOKE.FTN

$ FlR/NlIA PRTXFR.FTN

$ F'R/NnI4 PRTYPE.FTN

$ FnR/N014 READER.FTN

S FnR/!ilI4 REOHA.FTN

S FOR/NOIA SAPMAIJMT. F

Figure 6-6. SAP VAX-11/780 FORTRAN Compilation and Linking

Command Procedure (2 of 3)

6-15

http:OPRLK.TM
http:NUMER.FT
http:MDIRY.VT
http:LDTBLK.FN
http:GFNSAP.COM

ORIGINAL PAGE IS

OF POOR QUALITY

3
4-MAY-92 	 GFNSAP.COM PAGE

S FnR/NnI4 SELBTJK.FN

S FOR/NnI4 SKPCHR.FTN

$ FOR/NOI4 STATE.WTM

S FnR/Nn!4 STATG.FTN

S FOR/NOI4 STATM.FTN

$ FOR/NOI4 STDUAP.FTN

$ FOR/NO14 STERLK.FrN

$ FOR/Nn14 SWTBIK.FTN

$ FOR/N014 SYMBLK.FTN

S FOR/NO14 TAPCCC.FTN

$ FfR/Nl4 TABLES.FTN

-S FOR/rNi4 TESTK.FTl

$ FOR/NOI4 TY'BI.K.FrN

$ FOR/NI4 TYE.FrN

S FOR/N0I4 UCPLXI.FTN

s FOR/N0IA UCPLX2.FN

$ FOR/Nl14 USRWTS.FTN

.s FR/Nfl14 !dRrDRD.TN

s FnR/hiI4 WRTSEL.FTN

$ FOR/NlI4 WTSBLK.FVN

S FOR/NO14 XFRBTK.FTN

s

$1

$ I GENERATE THE LOAn MODULE

$1

S LTBRARY/CREATF SAP

s LSRARY/INSFRT SAP ADDPnTASGNIDCINPUTCTXFRCOEFCOLGLB,COMPAR

S LTBPARY/INSERT SAP COMPwT,CIRLK,CT2BLKCT3RLKCT4BLK,CT5RLK,DEfINE

S LIBRARY/INSTRT SAP nEWSELDELPLKDLTBLKDSCAN,ERAPOT,ERRMSG,EST!M

S LIBRARY/INSERT SAP FINDIT,FLVARI,FNNAME,GARCOL,GLPBLKGLINE,HALREP

$ LIBRARY/INSERT SAP HOPRN,JOPTR1,HfPTR3,HPRNDS,HPRI,RPR2,HPR3,HSCAN

$ LIBRARY/INSRT SAP tSHBtK,IASH,IMPBLKTNCLIIDNINITGINITM,IMITN

S LTBRAPY/INSFRT SAP INLBLK,INPPLK,TNPUT,INTGR4,KEYPLK,ILLP,LABEL

$ LTBPARY/INSERT SAP LARLST,LRLBLK,LDTBLK,LNKPOTLOADK,LOCCHRLOKAH

$ LTBRAPY/INSERT SAP LOfKKLOOKMD,LOOKP,LOOKS,LItHLK,MCMPLX.

M DIRY

$ LTBRARY/INSERT SAP MODBLK,NEWPOT,MUMER,OPBLK,OPERAT,PAGBLK,PAGER

s LIBRARY/INSERT SAP POKEP,POKES,PRASGN,PASS,PRCALLPRCNTLPRDOS

S LIBRARY/INSERT SAP PRCOTO,PRIFS,PIMPL,PRODPRRETPRSPEC,PRSTPC

S LIBRARY/IUSERT SAP PRSURS,pPTHALPRTOXEPRTXFPDREADER,REPRAL

$ LIBPARPY/INSERT SAP SAPMAIN,SKPCHR,STATE,STATG,STAM,SDIIMP

S LIBRARY/INSERT SAP ST78LK,SWIRLK,SYMBLK,TABCCC,TASLS,TESTK,TYPALK

S LIBRARY/INSERT SAP TYPE,UCPLXI,1CPLX2,USRWTSWRTDP,WRTSEL

$ LTBRARY/INSERT SAP WTSBLK,XFRLK,SE.BLK

s !

$ LINK/EXC=SAP SAPMAINSAP/LTBPARY/IlCtUDE=(CT18LK,c

CT2eLK,CT3BLK,CT4LK,CT5TK,DELLK,DLTBTJK,GLBR,PSPGtLK,­
IMPRLK,INLBTK,INPALK,KEYBLK,LRLALK,LDTBLK,Lt1NPLK,uODBLK,

OPBI,K,pAGRLK,SELSLK,STERLK,SWTBLK,SYM; LK,TYPBLK,WTSSLKXFRBLK)

$1

s!

Figure 6-6. 	 SAP VAX/11/780 FORTRAN Compilation and Linking

Command Procedure (3 of 3)

6-16

http:dRrDRD.TN
http:UCPLX2.FN
http:SELBTJK.FN
http:GFNSAP.COM

SECTION 7 - MOVING SAP TO ANOTHER COMPUTER

The entire SAP system is available on distribution tapes

created for either the PDP-1l/70 or VAX-ll/780 computers.

Programmers installing SAP on these computers are referred

to the first file on the distribution tape, the installation

guide, for an explanation of the tape contents and instruc­

tions for generating the executable program.

The following discussion is directed to programmers who wish

to install SAP on a machine other than the DEC PDP-I1/70 or

the DEC VAX-ll/780.

Moving SAP to another model of a DEC computer that has a

FORTRAN compiler available is a straight-forward operation.

The system generation procedures described in Section 6 will

require major modification only if the operating system is

not RSX-11M for a PDP-11 model or VMS for a VAX-11 model.

When planning the installation of SAP on a non-DEC computer,

three areas should be considered: reading the distribution

tape, compatability of SAP data structures with the target

computer's word size, and the language extensions used in

the SAP source code. These areas are discussed in the

following sections.

7.1 THE SAP DISTRIBUTION TAPES

The SAP distribution tape is available for either the

PDP-11/70 or the VAX-ll/780. Each tape consists of text

files that include an installation guide, command procedures

to compile and link the source code (on the respective com­

puter), source code, and required data files. There are no

binary files on these tapes.

The SAP distribution tape is a 9-track, 1600 bit-per-inch,

ASCII, unlabeled tape. The tape is writtenby the DEC FLX

utility (Reference 12).

7-1

The distribution tape also contains either the PDP-ll/70 or

VAX-ll/780 distribution tape files for the structured

FORTRAN preprocessor (SFORT) (References 8 and 13) since SAP

is written in structured FORTRAN. This document does not,

however, discuss SFORT, except to note that the discussion

in Sections 7.2 and 7.3 also applies to that program.

7.2 SAP DEPENDENCE UPON COMPUTER WORD SIZE

SAP is written with an implicit assumption of running on a

computer with a 16-bit integer word size and addressability

to the (8-bit) byte level.

Most mathematical calculations performed by SAP use either

16-bit integers or 32-bit floating point variables. In some

instances, integer variables have been declared to be

32 bits in length because their value frequently exceeds

32767.

Character manipulation within SAP is performed with

LOGICAL*l (or BYTE) variables, each-of which contains one

character. The structure of the SAP software that examines

source code is based upon the ability to manipulate a single

character at a time. Integer variables are equivalenced to

LOGICAL*l or BYTE arrays containing character data to permit

efficient transfer of this data as a block; however, no

character manipulation or mathematical calculations are

performed with these integers.

Reference 3, Appendix A, presents a description of the in­

ternal representation of integer, floating point, and byte

data types on the PDP computers. Reference 5, Appendix A,

presents similar information for the VAX computers. It

should be noted that both computers require 16-bit and

32-bit variables to be aligned with 16-bit word addresses.

Other computers may have more stringent requirements for

variables appearing in COMMON or EQUIVALENCE statements.

7-2

7.3 ENVIRONMENTAL CONSIDERATIONS

The environment in which SAP operates has features that may

not be available at other installations. This section

discusses the features most likely to be unavailable.

SAP references four routines supplied by DEC as support for

FORTRAN systems. These routines are shown in Table 7.1;

along with references to the appropriate documentation.

DEC file naming conventions are discussed in References 3

and 5. In some instances in SAP, the file name extension of

'.DAT' is appended to the file name if an extension is not

supplied by the user.

The symbol table used by SAP (Section 2.2.1) contains­

variables in which individual bits are set and read.

Setting and reading these bits is accomplished with the

nonstandard use of the logical operators .OR. and .AND.,

respectively.

Other nonstandard FORTRAN usage is presented in Table 7.2.

An explanation of the SFORT constructs (.IF-ELSE-ENDIF and

DOWHILE-ENDDO) is given in Reference 8.

The PDP-11/70 version of SAP is overlayed to execute within

65K bytes of memory. The PDP task builder manual (Refer­

ence 14) and the SAP overlay description (Figure 6-4) can be

used as a starting point in designing an overlay for other

installations with memory restrictions.

7-3

Table 7-1. System Routines Used by SAP

System Routine Reference 3 (PDP) Reference 4 (VAX)

ERRSET Section D.6 *

ISHFT Section 4.1 Section C.3

DATE Section D.4 Section C.4.1

TIME Section D.16 Section C.4.6

*The VAX implementation of ERRSET is discussed in Refer­

ence 5, Section D.3.3

7-4

Table 7-2. Language Extensions Used in SAP

Language Extension

ENCODE Statement

DECODE Statement

INCLUDE Statement

D-Lines Debug

Feature

OPEN Statement

Keywords

TYPE

RECORDSIZE

MAXREC

NAME

READONLY

Direct Access

Record Number

Specifier

Octal Constants

FORMAT Edit

Descriptors

Q

$

<n>

Type Specifications

BYTE

LOGICAL*l

LOGICAL*2

INTEGER*2

INTEGER*4

REAL*4

REAL*8

Reference 2 (PDP)

Section 7.6

Section 7.6

Section 1.5

Section 1.3.3.2

Section 9.1.20

Section 9.1.17

Section 9.1.12

Section 9.1.13

Section 9.1.16

Section 7.4

Section 2.3.1

Section 8.1.12

Section 8.1.13

Section 8.2

Section 2.2

Reference 4 (VAX)

Section A.l

Section A.1

Section 1.5

Section 1.3.3.2

Section 9.1.25

Section 9.1.21

Section 9.1.15

Section 9.1.16

Section 9.1.19

Section 7.2.1.4

Section 2.3.7

Section 8.1.20

Section 8.1.21

Section 8.1.26

Section 2.2

7-5

REFERENCES

1. 	American National Standards Institute, ANSI X3.9-1978,

American National Standard Programming Language

FORTRAN, April 1978

2. 	Digital Equipment Corporation, AA-1855D-TC, PDP-11

FORTRAN Language Reference Manual, December =-7­

3. 	 --, AA-1884C-TC, FORTRAN IV-PLUS User's Guide, December

1979

4. 	 --, AA-D034B-TE, VAX-Il FORTRAN Language Reference

Manual, April 1980

5. 	--, AA-D035B-TE, VAX-I FORTRAN User's Guide, April 1980

6. 	 International Business Machines Corporation, SC28-6852,

IBM OS FORTRAN IV (H Extended) Compiler Programmer's

Guide, November 1974

7. 	 -- GC28-6515, IBM System /360 and System /370 FORTRAN

IV Language, May 1974

8. 	Software Engineering Laboratory, SEL-77-003, Structured

FORTRAN Preprocessor (SFORT), B. Chu, D. S. Wilson, and

R. Beard, September 1977

9. 	 --, SEL-78-102, FORTRAN Static Source Code Analyzer

Program (SAP) User's Guide (Revision 1), W. J. Decker

and W. A. Taylor, September 1982

10. 	 -- , SEL-78-001, FORTRAN Static Source Code Analyzer

(SAP) Design and Module Descriptions, E. M. O'Neill,

S. R. Waligora, and C. E. Goorevich, January 1978

11. 	 M. Halstead, Elements of Software Science. New York:

Elsevier Publishing Co., 1977

12. 	 Digital Equipment Corporation, AA-5567B-TC, RSX-11

Utilities Procedures Manual, December 1977

13. 	 Software Engineering Laboratory, SEL-78-004, Structured

FORTRAN Preprocessor (SFORT) PDP-11/70 User's Guide,

D. S. Wilson, B. Chu, and G. Page, September 1978

14. 	 Digital Equipment Corporation, AA-H266A-TC,

RSX-IIM/M-PLUS Task Builder Manual, June 1979

R-1

BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in

this bibliography are organized into two groups. The first

group is composed of documents issued by the Software Engi­

neering Laboratory (SEL) during its research and development

activities. The second group includes materials that were

published elsewhere but pertain to SEL activities.

SEL-Oriainated Documents

Software Engineering Laboratory, SEL-76-001, Proceedings

From the First Summer Software Engineering Workshop,

August 1976

SEL-77-001, The Software Engineering Laboratory,

V. R. Basili, M. V. Zelkowitz, F. E. McGarry, et al., May

1977

SEL-77-002, Proceedings From the Second Summer Software

Engineering Workshop, September 1977

SEL-77-003, Structured FORTRAN Preprocessor (SFORT), B. Chu,

D. S. Wilson, and R. Beard, September 1977

SEL-77-004, GSFC NAVPAK Design Specifications Languages

Study, P. A. Scheffer and C. E. velez, October 1977

SEL-78-001, FORTRAN Static Source Code Analyzer (SAP)

Design and Module Descriptions, E. M. O'Neill,

S. R. Waligora, and C. E. Goorevich, January 1978

SEL-78-002, FORTRAN Static Source Code Analyzer (SAP)

User's Guide, E. M. O'Neill, S. R. Waligora, and

C. E. Goorevich, February 1978

SEL-78-102, FORTRAN Static Source Code Analyzer Program

(SAP) User's Guide (Revision 1), W. J. Decker and

W. A. Taylor, May 1982 (preliminary)

SEL-78-003, Evaluation of Draper NAVPAK Software Design,

K. Tasaki and F. E. McGarry, June 1978

This document superseded by revised document.

B-1

SEL-78-004, Structured.FORTRANPreprocessor (SFORT)

PDP-ll/70 User's Guide, D. S. Wilson, B. Chu, and G. Page,

September 1978

SEL-78-005, Proceedings From the Third Summer Software Engi

neering Workshop, September 1978

SEL-78-006, GSFC Software Engineering Research Requirements

Analysis Study, P. A. Scheffer, November 1978

SEL-78-007, Apvlicability of the Rayleigh Curve to the SEL

Environment, T. E. Mapp, December 1978

SEL-79-001, SIMPL-D Data Base Reference Manual,

M. V. Zelkowitz, July 1979

SEL-79-002, The Software Engineering Laboratory: Rela­
tionship Equations, K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module Repository (CSMR) System

Description and User's Guide, C. E. Goorevich,

S. R. Waligora, and A. L. Green, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon

Program Design Language (PDL) in the Goddard Space Flight

Center (GSFC) Code 580 Software Design Environment,

C. E. Goorevich, A. L. Green, and F. E. McGarry, September

1979

SEL-79-005, Proceedings From the Fourth Summer Software

Engineering Workshon, November 1979

SEL-80-001, Functional Requirements/Specifications for

Code 580 Configuration Analysis Tool (CAT), F. K. Banks,

C. E. Goorevich, and A. L. Green, February 1980

SEL-80-002, Multi-Level Expression Design Language-

Requirement Level (MEDL-R) System Evaluation, W. J. Decker,

C. E. Goorevich, and A. L. Green, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground Support

Software System (MMS/GSSS) State-of-the-Art Computer

Systems/Compatibility Study, T. Welden, M. McClellan,

P. Liebertz, et al., May 1980

SEL-80-004, System Description and User's Guide for Code 58C

Configuration Analysis Tool (CAT), F. K. Banks,

W. J. Decker, J. G. Garrahan, e al., October 1980

SEL-80-005, A Study of the Musa Reliability Model,

A. M. Miller, November 1980

B-2

SEL-80- 006, Proceedings From the Fifth Annual Software

Engineering Workshop, November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estimation

Models for Software Systems, J. F. Cook and F. E. McGarry,

December 1980

SEL-81-001, Guide to Data Collection, V. E. Church,

D. N. Card, F. E. McGarry, et al., September 19815

SEL-81-002, Software Engineering Laboratory (SEL) Data Base

Organization and User's Guide, D. C. Wyckoff, G. Page,

F. E. McGarry, et al., September 1981

SEL-81-003, Software Engineering Laboratory (SEL) Data Base

Maintenance System (DBAM) User's Guide and System De­
scription, D. N. Card, D. C. Wyckoff, G. Page, et al.,

September 1981

SEL-81-004, The Software Engineering Laboratory,

D. N. Card, F. E. McGarry, G. Page, et a.,-September 1981

SEL-81-104, The Software Engineering Laboratory, D. N. Card,

F. E. McGarry, G. Page, et al., February 1982

SEL-81-005, Standard Approach to Software Development,

V. E. Church, F. E. McGarry, G. Page, et al., September 1981

SEL-81-105, Recommended Approach to Software Development,

S. Eslinger, F. E. McGarry, V. E. Church, et al., May 1982

SEL-81-006, Software Engineering Laboratory (SEL) Document

Library (DOCLIB) System Description and User's Guide,

W. Taylor and W. J. Decker, December 1981

SEL-81-007, Software Engineering Laboratory (SEL) Com­
pendium of Tools, W. J. Decker, E. J. Smith, A. L. Green,

et al., February 1981

SEL-81-107, Software Engineering Laboratory (SEL) Compendium

of Tools, W. J. Decker, E. J. Smith, W. A. Taylor, et al.,

February 1982

SEL-81-008, Cost and Reliability Estimation Models (CAREM)

User's Guide, J. F. Cook and E. Edwards, February 1981

7This document superseded by revised document.

B-3

SEL-81-009, Software Engineering Laboratory Programmer

Workbench Phase 1 Evaluation, W. J. Decker, A. L. Green, and

F. E. McGarry, March 1981

SEL-81-010, Performance and Evaluation of an Independent

Software Verification and Integration Process, G. Page and

F. E. McGarry, May 1981

SEL-S1-0i, Evaluating Software Development by Analysis of

Change Data, D. M. Weiss, November 1981

SEL-81-012, The Ravleigh Curve As a Model for Effort

Distribution Over the Life of Medium Scale Software Systems,

G. 0. Picasso, December 1981 (also published as University

of Maryland Technical Report TR-1186, July 1982)

SEL-81-013, Proceedings From the Sixth Annual Software Engi­
neering Workshop, December 1981

SEL-81-014, Automated Collection of Software Engineering

Data in the Software Engineering Laboratory (SEL),

A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-82-001, Evaluation and Application of Software Develon­
ment Measures, D. N. Card, G. Page, and F. E. McGarry, July

1982

SEL-82-002, FORTRAN Static Source Code Analyzer Program

(SAP) System Description, W. Taylor and W. Decker, August

1982

SEL-82-0O3, Software Engineering Laboratory (SEL) Data Base

Reporting Software User's Guide and System Description,

P. Lo and S. Eslinger, September 1982

SEL-82-004, Collected Software Engineering Papers:

Volume 1, July 1982

SEL-Related Literature

Anderson, L., "SEL Library Software User's Guide," Computer

Sciences-Technicolor Associates, Technical Memorandum, June

1980

Bailey, J. W.,
and V. R. Basili, "A Meta-Model for Soft­
ware Development Resource Expenditures," Proceedinas of

the Fifth International Conference on Software Engineering.

New York: Computer Societies Press, 1981

B-4

Banks, F. K., "Configuration Analysis Too! (CAT) Design,"

Computer Sciences Corporation, Technical Memorandum, March

1980

Basili, V. R., "The Software Engineering Laboratory:

Objectives," Proceedings of the Fifteenth Annual Confer­
ence on Computer Personnel Research, August 1977

T SZ

'Basili,V. R., "Models and Metrics for Softwareanagement

and Engineering, ASME Advances in Computer Technology,

January 1980, vol. 1

Basili, V. R., "SEL Relationships for Programming Measure­
ment and Estimation," University of Maryland, Technical

Memorandum, October 1980

Basili, V. R., Tutorial on Models and Metrics for Software

Management and Engineering. New York: Computer Societies

Press, 1980 (also designated SEL-80-008)

ttBasili, V. R., and J. Beane, "Can the Parr Curve Help with

Manpower Distribution and Resource Estimation Problems?",

-Journal of Systems and Software, February 1981, vol. 2,

no. 1

tBasili, V. R., and K. Freburger, "Programming Measurement

and Estimation in the Software Engineering Laboratory,"

Journal of Systems and Software, February 1981, vol. 2,

no. 1

ttBasili, V. R., and T. Phillips, "Evaluating and Comparing

Software Metrics in the Software Engineering Laboratory,"

Proceedings of the ACM SIGMETRICS Symposium/Workshop:

Quality Metrics, March 1981

Basili, V. R., and T. Phillips, "Validating Metrics on Proj­
ect Data," University of Maryland, Technical Memorandum,

December 1981

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas­
ures for Software Development," Proceedings of the Workshop

on Quantitative Software Models for Reliability, Complexity

and Cost, October 1979

This article also appears in SELrB2-004, Collected Software

Engineering Papers: Volume 1, July 1982

B-5

Basili, V. R., and M. V. Zelkowitz, "Designing a Software

Measurement Experiment," Proceedings of the Software Life

Cycle Management Workshop, September 1977

tt

Basili, V. R., and M. V. Zelkowitz, "Operation of the Sofi

ware Engineering Laboratory," Proceedings of the Second

Software Life Cycle Management Workshop, August 1978

ttBasili, V. R., and M. V. Zelkowitz, "Measuring Software

Development Characteristics in the Local Environment,"

Computers and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale

Software Development,"'Proceedings'of the Third Interna­
tional Conference on Software Engineering. New York:

Computer Societies Press, 1978

Card, D. N., "Early Estimation of Resource Expenditures and

Program Size," Computer Sciences Corporation, Technical

Memorandum, June 1982

ttChen, E., and M. V. Zelkowitz, "Use of Cluster Analysis t<

Evaluate Software Engineering Methodologies," Proceedinas

of the Fifth International Conference on Software Engineer­
igo New York: Computer Societies Press, 1981

Church, V. E., "User's Guides for SEL PDP-11/70 Programs,"

Computer Sciences Corporation, Technical Memorandum, March

1980

Freburger, K., "A Model of the Software Life Cycle" (paper

prepared for the University of Maryland, December 1978)

Higher Order Software, Inc., TR-9, A Demonstration of AXES

for NAVPAK, M. Hamilton and S. Zeldin, September 1977 (also

designated SEL-77-005)

Hislop, G., "Some Tests of Halstead Measures" (paper pre­
pared for the University of Maryland, December 1978)

TtThis article also appears in SEL-82-004, Collected Softwar

Engineering Papers: Volume 1, July 1982

Lange, S. F., "A Child's Garden-of Complexity Measures"

(paper prepared for the University of Maryland, December

1978)

B-S

1980

Miller, A. M., "A Survey of Several Reliability Models"

(paper prepared for the University of Maryland, December

1978)

National Aeronautics and Space Administration (NASA), NASA

Software Research Technology Workshop (proceedings), March

Page, G., "Software Engineering Course Evaluation," Computer

Sciences Corporation, Technical Memorandum, December 1977

Parr, F., and D. Weiss, "Concepts Used in the Change Report

Form," NASA, Goddard Space Flight Center, Technical Memoran­
dum, May 1978

Perricone, B. T., "Relationships Between Computer Software

and Associated Errors: Empirical Investigation" (paper pre­
pared for the University of Maryland, December 1981)

Reiter, R. W., "The Nature, Organization, Measurement, and

Management of Software Complexity" (paper prepared for the

University of Maryland, December 1976)

Scheffer, P. A., and C. E. Velez, "GSFC NAVPAK Design Higher

Order Languages Study: Addendum," Martin Marietta Corpora­
tion, Technical Memorandum, September 1977

Turner, C., G. Caron, and G. Brement, "NASA/SEL Data Compen­
dium," Data and Analysis Center for Software, Special Publi­
cation, April 1981

Turner, C., and G. Caron, "A Comparison of RADC and NASA/SEL

Software Development Data," Data and Analysis Center for

Software, Special Publication, May 1981

Weiss, D. M., "Error and Change Analysis," Naval Research

Laboratory, Technical Memorandum, December 1977

Williamson, I. m., "Resource Model Testing and Information,"

Naval Research Laboratory, Technical Memorandum, July 1979

ttZelkowitz, M. V., "Resource Estimation for Medium Scale

Software Projects;" Proceedings of the Twelfth Conference on

the Interface of Statistics and Computer Science. New York:

Computer Societies Press, 1979

TTThis article also appears in SEL-82-004, Collected Software

Engineering Pacers: Volume 1, July 1982

B-7

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of

a Software Measurement Facility," Proceedings of the Soft­
ware Life Cycle Management Workshop, September 1977

3-8

