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Chapter 1 

INTRODUCTION 

The  finite  element  method  is  one  of  the most significant  develop- 

ments  for  solving  problems  of  continuum  mechanics. It was  first 

applied  by  Turner et al.  [l I*  in 1956 for  the  analysis  of  complex 

aerospace  structures.  With  increasing  availability  of  digital 

conputers,  the  method  has  become  widespread  and  well  recognized  as 

applicable to a  variety  of  continuum  problems.  Applications of the 

method  to  thermal  problems  were  introduced in the  middle  of 1960's 

for  the  solution  of  steady-state  conduction  heat  transfer [ 2 ] .  

Thereafter,  extensions of the  method  were  made  to  both  transient  and 

nonlinear  analyses  where  nonlinearities  may  arise  from  temperature 

dependent  material  properties  and  nonlinear  boundary  conditions. 

Important  publications  of  finite  element  heat  transfer  analysis 

appear  in  references [3-121. With  these  developments  and  consider- 

able  effort  contributed  during  the  past  decade,  the  method  has 

gradually  increased in thermal  analysis  capability  and  become  a 

practical  technique  for  analyzing  realistic  thermal  problems. 

*The  numbers  in  brackets  indicate  references. 
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1.1 Current  Status  of  Thermal-Structural  Analysis 

Thermal  stresses  induced  by  aerodynamic  heating  on  advanced 

space  transportation  vehicles  are  an  important  concern  in  structural 

design.  Nonuniform  heating  may  have a significant  effect  on  the 

performance  of  the  structures  and  efficient  techniques  for  determining 

thermal  stresses  are  required.  Frequently,  the  thermal  analysis  of 

the  structure  is  performed  by  the  finite  difference  method. 

Production-type  finite  difference  programs  such  as  MITAS and SINDA 

have  demonstrated  excellent  capabilities  for  analyzing  complex 

structures [I31 . In  structural  analysis , however,  the  finite  element 

method  is  favorable  due  to  better  capabilities in modeling  complex 

structural  geometries  and  handling  various  types  of  boundary  condi- 

tions.  To  perform  coupled  thermal-structural  analysis  with  efficiency, 

a  computer  program  which  includes  both  thermal  and  structural  analysis 

codes  is  preferred,  and  a  single  numerical  method  is  desirable  to 

eliminate  the  tedious  and  perhaps  expensive  task  of  transferring 

data  between  different  analytical  models. 

Currently,  the  capabilities  and  efficiency  of  the  finite  element 

method i4 analyzing  typical  heat  transfer  problems  such  as  combined 

conduction-forced  convection  is  about  the  same  as  using  the  finite 

difference  method [14]. With  the  wide  acceptance  of  the  finite 

element  method  in  structures  and  its  rapid  growth in thermal  analysis, 

it  is  particularly  well-suited  for  coupled  thermal-structural 

analysis. A t  present,  several  finite  element  programs  which  include 

both  thermal  and  structural  analysis  capabilities  exist;  e.g. 

NASTRAN, ANSYS, ADINA and SPAR are  widely  used.  These  programs  use 
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a  common  data  base  for  transferring  temperatures  computed  from  a 

thermal  analysis  processor  to a structural  analysis  processor  for 

determining  displacements  and  stresses.  With  the  use  of  a  common 

finite  element  discretization,  a  significant  reduction  of  effort  in 

preparing  data  is  achieved  and  errors  that  may  occur  by  manually 

transferring  data  between  analyses  is  eliminated. 

1.,2 Needs  for  Improving  Finite  Element  Methodology 

Although  the  finite  element  method  offers  high  potential  for 

coupled  thermal-structural  analysis,  further  improvements  of  the 

method  are  needed.  Quite  often,  the  finite  element  thermal  model 

requires  a  finer  discretization  than  the  structural  model  to  compute 

the  temperature  distribution  accurately.  Detailed  temperature 

distributions  are  necessary  for  the  structural  analysis  to  predict 

thermal  stress  distributions  including  critical  stress  locations 

accurately.  Improvement  of  thermal  finite  elements  is,  therefore, 

required so that  a  common  discretization  between  the  two  analytical 

models  can  be  maintained. 

Another  need  for  improving  the  method  includes  a  capability  of 

the  thermal  analysis  to  produce  thermal  loads  required  for  the 

structural  analysis  directly.  At  present,  typical  thermal-structural 

finite  element  programs  only  transfer  nodal  temperatures  computed 

from  the  thermal  analysis  to  the  structural  analysis.  These  nodal 

temperatures  are  generally  inadequate  because  additional  information, 

such  as  element  temperature  distributions  and  temperature  gradients, 

may  be  required  to  compute  thermal  stress  distributions  correctly. 
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These  needs  are  important  in  improvement  of  finite  element 

coupled  thermal-structural  analysis  capability.  The  use  of  improved 

thermal  finite  elements  can  reduce  model  size  and  computational 

costs  especially for analysis of complex  aerospace  vehicle  structures. 

Improved  thermal  elements  will  also  have  a  direct  effect  in  increasing 

the  structural  analysis  accuracy  through  improving  the  accuracy.of 

thermal  loads. 

To meet  these  requirements  for  improved  thermal-structural 

analysis  and  to  demonstrate  benefits  that  can  be  achieved,  this 

dissertation  will  develop  an  approach  called  integrated  finite 

element  thermal-structural  analysis.  First,  basic  concepts  of  the 

integrated  finite  element  thermal-structural  formulation  are  intro- 

duced  in  Chapter 2 .  Finite  elements  which  provide  exact  solutions 

to  one-dimensional  linear  steady-state  thermal-structural  problems 

are  developed  in  Chapter 3 .  Chapter 4 demonstrates  the  use  of  these 

finite  elements  for  linear  transient  analysis.  Next,  in  Chapter 5 

a  generalized  approach  for  improved  finite  elements  is  established 

and  its  efficiency is demonstrated  through  thermal-structural 

analysis  with  radiation  heat  transfer.  Finally,  in  Chapter 6 

extension  of  the  approach  to  two  dimensions  is  made  with  a  new  two- 

dimensional  finite  element.  In  each  chapter,  benefits  of  utilizing 

the  improved  finite  elements  are  demonstrated  by'both  academic  and 

realistic  thermal-structural  problems. 

Throughout  the  development of the  improved  finite  elements, 

detailed  analytical  and  finite  element  formulations  are  presented. 

Such  details  are  provided  in  the  form  of  equations,  finite  element 

matrices  in  tables  and  computer  subroutines  in  appendices. 



Chapter 2 

AN INTEGRATED  THERMAL-STRUCTURAL  FINITE 
ELEMENT  FORMULATION 

2.1 Basic  Concepts 

Before  applying  the  finite  element  method  to  thermal-structural 

analysis, it is  appropriate  to  establish  basic  concepts  and  procedures 

of  the  method.  Briefly  described,  the  finite  element  method  is  a 

numerical  analysis  technique  for  obtaining  approximate  solutions  to 

problems  by  idealizing  the  continuum  model  as  a  finite  number  of 

discrete  regions  called  elements.  These  elements  are  connected  at 

points  called  nodes  where  normally  the  dependent  variables  such  as 
I 

temperature  and  displacements  are  determined.  Numerical  computations 

for  each  individual  element  generate  element  matrices  which  are  then 

assembled  to form a  set  of  linear  algebraic  equations ( fo r  

steady  state  problems) to represent  the  entire  problem.  These 

algebraic  equations  are  solved  simultaneously f o r  the  unknown 

dependent  variables.  Usually  the  more  elements  used,  the  greater 

the  accuracy  of  the  results.  Accuracy,  however,  can  be  affected  by 

factors  such  as  the  type  of  element  selected  to  represent  the  con- 

tinuum,  and  the  sophistication  of  element  interpolation  functions. 

5 
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2.2  Element  Interpolation  Functions 

The  first  step  after  replacing  the  continuum  model  by  a 

discrete  number  of  finite  elements  is  to  determine  a  functional 

relationship  between  the  dependent  variable  within  the  element  and 

the  nodal  variables.  The  function  that  represents  the  variation  of 

a  dependent  variable  is  called  the  interpolation  function. In thermal 

analysis,  the  element  temperature  T(x,y,z,t)  are  generally  expressed 

in the form 

where LNT(x,y,z)j denotes  a  row  matrix of.the element  temperature 

interpolation  functions,  and {T(t)) denotes  a  vector  of  nodal 

temperatures.  Similarly, in  a  structural  analysis,  the  element 

displacements, { 6 )  , are  expressed  as, 

where  [NS(x,y,z)]  denotes  a  matrix of structural  displacement  inter- 

polation  functions,  and {8(t) } denotes  a  vector  of  nodal 

displacements. 

Usually,  polynomials  are  selected  as  element  interpolation 

functions  and  the  degree  of  the  polynomial  chosen  depends  on  the 

number  of  nodes  assigned  to  the  element.  Regardless  of  the  algebraic 

form,  these  interpolation  functions  have  a  value  of  unity  at  the  node 

to  which  it  pertains  and  a  value  of  zero  at  other  nodes.  For  example, 

linear  temperature  variation  for  a  two-node  one-dimensional  rod 
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element  with  nodal  temperatures T1  and T2 at  x = O  (node 1) and 

x =L (node 2 ) ,  respectively,  can be  written  in  the  form 

T(x,t) L1  - y X 

By comparing  this  equation  with  the  general form of the  element 

temperature variation, Eq. (2.1), the  element  interpolation  functions 

are 

N1(x) = 1 - - L X and N2(x) = c X 

These  element  interpolation  functions,  therefore,  have  the  properties 

of  Ni = 1 at node  i and = 0 at  the  other  node. Ni 

2 . 3  Finite  Element Thermal  Analysis 

Once  the  type  of  elements  and  their  interpolation  functions have 

been  selected,  the  matrix  equations  expressing  the  properties of the 

individual  element  are  evaluated. In thermal  analysis,  the  method of 

weighted  residuals 1151 is  frequently  employed  starting  from  the 

governing  differential  equations.  For  condution  heat  transfer  in  a 

three-dimensional  anisotropic  solid R bounded  by surface I‘ 

(Fig. l), an energy  balance on a small element  is giver! by, 

where  qx’  qy, 9, are  components of the  heat flow rate  per unit’  area, 

Q is  the  internal  heat  generation  rate  per  unit  volume, P is the 
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Fig .  1. Three  dimensional  solution domain f o r   g e n e r a l  heat  conduction. 
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density,  and  c is the  specific  heat.  Using  Fourier's  Law,  the 

components of heat  flow  rate  for  an  anisotropic  medium  can  be  written 

in the  matrix  form. 

where is  the  symmetric  conductivity  tensor.  Figure 1 shows 

several  types  of  boundary  conditions  frequently  encountered  in  the 

analysis.  These  boundary  conditions  are (1) specified  surface 

temperatures, (2) surface  heating, (3)  surface  convection,  and 

( 4 )  surface  radiation: 

kij 

T = Ts on SI 

4 
qxnx + qyny + qznz = GET - aqr on S4 

S 

(2.5a) 

(2.5b) 

(2.5c) 

(2.5d) 

where T, is  the  specified  surface  temperature;  nx, ny, nZ are  the 

direction  cosines  of  the  outward normal to  the  surface, qs is  the 

surface  heating  rate  unit  area,  h  is  the  convection  coefficient, 

T, is  the  convective  medium  temperature, (J is  the  Stefan-Boltzmann 

constant, E is  the  surface  emissivity,  a is the  surface  absorp- 

tivity,  and .qr is  the  incident  radiant  heat  flow  rate  per  unit 

area. 
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To  apply  the  finite  element  technique,  the  domain S2 is  first 

discretized  into  a  number of elements.  For  an  element  with  r 

nodes,  the  element  temperature, Eq. (2.1), can  be  written  in  the 

f o m  

and  the  temperature  gradients  within  each  element  are 

(2.7a) 

(2.7b) 

These  element  temperature  gradients  can  be  written  in  the  matrix 

form, 

(2.7~) 

where 

matrix 

(2.7d) 

is  the  temperature-gradient  interpolation 
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- aN2 . . . . . . . - a Nr 
ay  ay 

- aN2 . . . . . . . - aNr 
az  az 

and,  therefore,  the  components  of  heat  flow  rate,  Eq. ( 2 . 4 ) ,  become 

(2.10) 

where [k] denotes  the  thermal  conductivity  matrix. 

In the  derzvation  of  the  element  equations,  the  method of 

weighted  residuals is applied  to  the  energy  equation,  Eq. (2.3), for 

each  individual  element (e). This  method  requires 

(2.11) 

i = 1,2 .... r 

After  the  integrations  are  performed  on  the  first  three  terms  by 

using  Gauss's  Theorem, a  surface  integral  of  the  heat  flow  across 

the  element  boundary, r(e), is introduced,  and  the  above  equations 

become 
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I I, .I 

(2.12) 

where q is  the  vector of conduction  heat  flux  across  the  element * 

boundary  and ?I is  a  unit  vector normal to  the  boundary. The 

boundary  conditions as shown in Eqs.  (2.5a  -2.5d) are  then  imposed, 

(2.13) 

By  substituting  the  vector of heat flow rate, Eq.  (2.10),  the  above 

element  equations  finally  result in the  matrix form, 

(2.14) 

where [Cl is  the  element  capacitance  matrix;  [Kc] , [ J.$] and 

[Kr]  are  element  conductance  matrices  corresponding  to  conduction, 

convection  and  radiation,  respectively.  These  matrices  are  expressed 

as  follows : 
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(2.15a) 

(2.15b) 

(2.154 

(2.15d) 

The  right-hand  side of the  discretized  equation  (2.14)  contains 

heat  load  vectors  due  to  specified  nodal  temperatures,  internal  heat 

generation,  specified  surface  heating,  surface  convection  and  surface 

radiation.  These  vectors  are  defined  by 

(2.16a) 

(2.16b) 

(2.16~) 

(2.16d) 

(2.16e) 

where q is  the  vector  of  conduction  heat  flux  across  boundary  that 

is  required to maintain  the  specified  nodal  temperatures. 

a 
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2 .4  Finite  Element  Structural  Analysis 

In  a  finite  element  structural  analysis,  element  matrices  may 

be  derived  by  the  method of weighted  residuals, or by a  variational 

method  such as the  principle of minimum  potential  energy [17-191. 

For simplicity  in  establishing  these  element  matrices  and  understand- 

ing  general  derivations,  the  last  approach  is  presented  herein. 

The  basic  idea  of  this  approach  is  to  derive  the  static  equilibrium 

equations and  then  include  dynamic  effects  through  the  use  of 

D'Alembert's  principle. 

Consider an elastic  body  in  a  three-dimensional  state  of  stress. 

The  internal  strain  energy  of  an  element (e) can  be  written  in  a 

form, 

,- 

(2.17) 

where  is  the  element  volume, { a }  denotes  a  vector  of  stress 

components; [E]  and LE,] denote  row  matrices  of  total  strain  and 

initial  strain  components,  respectively.  Using  the  stress-strain 

relations, 

where [Dl is  the  elasticity  matrix,  the  internal  strain  energy 

becomes 

(2.18) 



15 

or 

(2.19) 

For  each  element,  the  potential  energy  of  the  external  forces 

may  result  from  body  forces  and  boundary  surface  tractions.  The 

potential  energy  due  to  body  forces  can  be  written  in  a  form, 

(2.20) 

where { f 1  denotes  a  vector of body  force  components.  Similarly, 

the  potential  energy  due to surface  tractions  is, 

(2.21) 

where {g} denotes  a  vector of surface  traction  components,  and 

r (e) denotes  the  element  boundary.  The  total  element  potential 

energy 9 Te Y the  sum of the  internal  strain  energy  and  the  potential 

energy of the  external  forces is, 

(2 .22)  
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For a three-dimensional  finite  element with  r  nodes,  the 

displacement  field  can  be  expressed  as 

( 6 1  = 

where 

I r  
= [NS] ( 2 . 2 3 )  

u, v, w are  components  of  displacement  in  the  three  coordinate 

directions.  The  vector of strain  components  can  be  computed  from 

E 
X 

E 
Y 

E z 

yXY 

Y Y= 

yXZ 

7 

J 

( 2 . 2 4 )  

where [BS] is the  strain-displacement  interpolation  matrix.  By 

substituting  the  element  displacement  vector, Eq. ( 2 . 2 3 ) ,  and  the 

vector of strain  components, Eq. ( 2 . 2 4 )  into Eq. ( 2 . 2 2 ) ,  the  total 

element  potential  energy  is  expressed  in  terms of the  nodal  displace- 

ment  vector 0 as 
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The  principle  of  minimum  potential  energy  requires, 

which  yields  the  element  equilibrium  equations, 

where [K,] is  the  element  stiffness  matrix  defined by 

(2.25) 

(2.26) 

(2.27a) 

The  right  hand  side  of  the  equilibrium  equations  contains  force 

vectors  due to  concentrated  forces,  body  forces,  surface  tractions 

and  initial  strain,  respectively.  The  nodal  force  vectors  due to 

body  forces  and  surface  tractions  are 

(2.27b) 

(2.27~) 
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For  initial  strains  from  thermal  effects,  the  corresponding  nodal 

vector {FT) is  due  to  the  change  of  temperature  from  a  reference 

temperature  of  the  zero-stress  state  and  may  be  written as 

(2.27d) 

where {a) is  a  vector  of  thermal  expansion  coefficients, T is 

the  element  temperature  distribution,  and Tref is  the  reference 

temperature  for  zero  stress. 

For elastic  bodies  subjected  to  dynamic  loads,  the  effects of 

inertia  and  damping  forces  must  be  taken  into  account.  Using 

D'Alembert's  principle,  the  inertia  force  can  be  treated  as  a  body 

force  given  by 

If) = - p { i )  (2.28a) 

where p is  the  mass  per  unit  volume.  By  using  element  displacement 

variations,  Eq.  (2.23),  this  inertia  force  is  expressed  in  terms  of 

nodal  displacements as 

.. 
Cf) = - P [Ns] (2.28b) 

Similarly,  the  damping  force  which  is  usually  assumed  to  be  propor- 

tional  to  the  velocity  can  be  expressed  in  the  form, 

If) = - IJ [Ns] {XI (2.28~) 

where !J is a  damping  coefficient.  By  substituting  these  inertia 

and  damping  forces,  Eqs.  (2.28b -2.28~)~ into Eq. (2.27b),  the  equi- 

valent  nodal  body  forces  shown  in Eq. (2.27b)  become 



II - 

19 

(2.29) 

Finally,  by  using  the  static  equilibrium  equations,  Eq. (2.26), with 

the  above  equivalent  nodal  body  force,  the  basic  equations  of  struc- 

tural  dynamics  can be written  in  the  form, 

where [MI and I C s ]  are  the  element  mass  and  damping  matrices, 

respectively,  and  defined  by 

(2.31a) 

(2.31b) 

In  a  general  formulation of transient  thermal-stress  problem, 

the  heat  conduction  equation  (2.3)  contains  a  mechanical  coupling 

term  in  addition [16]. This  coupling  term  represents  the  mechanical 

energy  associated with deformation of the  continuum  and  in  some 

highly  specialized  problems  (see  Ref. 16) can  affect  the  temperature 

solution. In most of engineering  applications,  fortunately,  this  term 

is  insignificant  and  is  usually  disregarded  in  the  heat  conduction 

equation.  This  simplification  permits  transient  thermal  solutions 

and  dynamic  structural  responses  to  be  computed  independently. 

For  a  structural  analysis  where  the  inertia  and  damping  effects 

are  negligible,  the  static  structural  response,  Eq.  (2.26),  can  be 
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computed  at  selected  times  corresponding  to  the  transient  thermal 

solutions.  Such a  sequence  of  computations,  widely  used  in  thermal- 

structural  applications,  is  called  a  quasi-static  analysis.  Results 

of  temperatures  directly  enter  the  structural  analysis  through  the 

computation of the  thermal  nodal  force  vector,  Eq.  (2.27d).  Tempera- 

tures  also  have  an  indirect  effect on the  analysis  through  the 

structural  material  properties,  since  the  elasticity  matrix [Dl 

and  the  thermal  expansion  coefficient  vector {a) are,  in  general, 

temperature  dependent.  Temperature  dependent  properties  may  result 

in a  variation  of  the  structural  element  stiffness  matrix, Eq. (2.27a), 

throughout  the  transient  response. 

2 . 5  Integrated  Approach 

The  representation  of  the  element  temperature  distribution  in 

the  computation  of  structural  nodal  forces  is  an  important  step  in 

the  coupled  thermal-structural  finite  element  analysis. In typical 

production-type  finite  element  programs,  element  nodal  temperatures 

are  the only information  transferred  from  the  thermal  analysis  to 

the  structural  analysis.  This  general  procedure  is  shown  schemati- 

cally  in  Fig. 2(a)  and herein  is  called  the  conventional  finite 

element  approach.  Since  the  conventional  thermal  analysis  only 

provides  nodal  temperatures,  an  approximate  temperature  distribution 

is  assumed  in  the  structural  analysis  which  results  in a reduction 

in  accuracy of displacements  and  thermal  stresses. 

To  improve  the  capabilities  and  efficiency of the  finite 

element  method,  an  approach  called  integrated  thermal-structural 

analysis  is  developed  as  illustrated  by  Fig. 2(b). The  goals  of 
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Fig.  2 .  Conventional  versus  integrated  thermal and structural   analysis- .  
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the  integrated  approach  are  to: (1) provide  thermal  elements  which 

predict  detailed  temperature  variations  accurately, (2) maintain 

the  same  discretization  for  both  thermal  and  structural  models  with 

fully  compatible  thermal  and  structural  elements,  and ( 3 )  provide 

accurate  thermal  loads  to  the  structural  analysis  to  improve  the 

accuracy of displacements  and  stresses. 

These  goals  of  the  integrated  approach  require  developing  new 

thermal  finite  elements  that  can  provide  higher  accuracy  and  effi- 

ciency  than  conventional  finite  elements.  The  basic  restriction on 

these new thermal  elements is the  required  compatability  with  the 

structural  elements  to  preserve  a  common  discretization.  Detailed 

temperature  distributions  resulting  from  the  improved  thermal  finite 

elements  can  provide  accurate  thermal  loads  required  for  the 

structural  analysis by  rigorously  evaluating  the  thermal  load 

integral,  Eq.  (2.27d). 



Chapter 3 

EXACT  FINITE  ELEMENTS  FOR  ONE-DIMENSIONAL 
LINEAR  THFXMAL-STRUCTLZAL  PROBLEMS 

In  general,  polynomials  are  selected  as  element  interpolation 

functions  to  describe  variations  of  the  dependent  variable  within 

elements. In one-dimensional  analysis , the  simplest  polynomial  which 

provides  a  linear  variation  within  an  element  is of the  first  order, 

0 = c1 + C 2 X  

where 0 denotes  the  dependent  variable  such  as  temperature or 

displacement; C1 and  C2  denote  constants,  and x is  the  coor- 

dinate  of  a  point  within  the  element. A finite  element  with  two 

nodes  is  formulated  by  imposing  the  conditions  at  nodes, 

where L is  the  element  length; 01 and 0, are  nodal  values  at 

node 1 and 2, respectively.  The  dependent  variable,  therefore,  can 

be  written  in  terms of nodal  values  as 

or in  the  rnatrix  form, 

23 
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where L N J  is  the  row  matrix  of  element  interpolation  functions. 

The  type  of  finite  element  where  the  dependent  variable is assumed 

to  vary  linearly  between  the  two  element  nodes  is  often  used  in  one- 

dimensional  problems  and  is  called  a  conventional  finite  element 

herein.  With  the  linear  approximation, a large  number of elements 

are  required  to  represent a sharply  varying  dependent  variable.  In 

some  special  cases,  however,  conventional  finite  elements  can  provide 

exact  solutions  when  the  solutions  to  problems are in  the  form  of a 

linear  variation.  For  example, a linear  temperature  variation  is  the 

exact  solution  of  one-dimensional  steady-state  heat  conduction  in a 

slab;  therefore,  the  use  of  the  conventional  finite  element  leads  to 

an  exact  solution.  Further  observation [ Z O ]  has  shown  that,  under 

some  conditions,  exact  nodal  values  are  obtained  through  the  use of 

this  element  type.  Temperatures  for  steady-state  heat  conduction 

with  internal  heat  generation in a slab  and  deformations of a bar 

loaded  by  its own weight  are  examples of this  case.  In  the  past, 

the  capability  of  conventional  finite  elements  to  provide  exact 

solutions  has  been  regarded  as  a  property of the.particular equation 

being  solved  and  not  applicable  to  general  problems. 
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In this  chapter,  finite  elements  that  provide  exact  solutions 

to  one-dimensional  linear  steady-state  thermal-structural  problems 

are  given.  The  fundamental  approach  in  developing  exact  finite 

elements  is  based on the  use  of  exact  solutions  to  one-dimensional 

problems  governed  by  linear  ordinary  differential  equations. A 

general  formulation of the  exact  finite  element  is  first  derived  and 

applications  are  made to various  thermal-structural  problems. 

Benefits  of  utilizing  the  exact  finite  elements  are  demonstrated 

by  comparison  with  results  from  conventional  finite  elements  and 

exact  solutions. 

3.1 Exact  Element  Formulation 

In this  section,  a  general  derivation of exact  finite  elements 

is given.  Exact  finite  elements  for  various  thermal  and  structural 

problems  are  derived  and  described  in  detail  in  the  subsequent 

sections.  Consider  an  ordinary,  linear,  nonhomogeneous  differential 

equation, 

a n 

where  x 

variable , 

dn-l 
+ a - 

dxn n-1 n-1 
dX 

- @ +  

is  the  independent 

ai,  i=O,  n  are 

( 3 . 4 )  

variable, @(x) is  the  dependent 

constant  coefficients,  and r(x) is 

the  forcing  function. A general  solution  to  the  above  differential 

equation  has  the  form 

n 
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where Ci are  arbitrary  constants, fi(x) are  typical  functions  in 

the  homogeneous  solution  and g(x) is  a  particular  solution.  For 

example,  a  typical  one-dimensional  steady-state  thermal  analysis  is 

governed  by  second  order  differential  equation of the  form  of 

Eq. ( 3 . 4 )  and  has  a  general  solution 

By  comparing  this  general  solution  with  the  solution  in  the  form  of 

polynomials  used to describe  a  linear  variation  of  dependent  variable 

in  the  conventional  finite  element, Eq.  (3.1),  basic  differences 

between  these  two  solutions  are  noted: (1) the  function fi(x) in 

the  general  solution  to  a  given  differential  equation  can  be  forms 

other  than  the  polynomials,  and (2)  the general  solution  contains  a 

particular  solution g(x) which  is known in  general  and  depends  on 

forcing  function r(x) on the  right  hand  side  of  the  differential 

equation ( 3 . 4 )  . 

3 . 1 . 1  Exact  Element  Interpolation  Functions  and  Nodeless 
Parameters 

- "~ 

Once  a  general  solution  to  a  given  differential  is  obtained, 

exact  element  interpolation  functions  can  be  derived. For a  typical 

finite  element  with  n  degrees of freedom,  n  boundary  conditions 

are  required.  With  the  general  solution  shown  in  equation ( 3 . 5 ) ,  

the  required  boundary  conditions  are 

$(Xi) = $i i = l , 2  ,....., n ( 3 . 7 )  

where  x  is  the  nodal  coordinate  and is  the  element  nodal i 'i 
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unknown  at  node  i.  After  applying  the  boundary  conditions,  the 

exact  element  variation  of +(x) has  the  form, 

where Ni(x) is  the  element  interpolation  function  corresponding 

to  node  i. The  function G(x)  is a known function  associated with 

the  particular  solution. In genera1;this  function  can  be  expressed 

as  a  product  of  a  spatial  function No(x)  and a  scalar  term 9, 

which  contains  a 

surface  heating, 

and , therefore, 

physical  forcing  parameter  such  as  body  force, 

etc. ; 

the  exact  element @(x) variation  becomes, 

o r  in  the  matrix form 

n 
(3.8a) 

(3.8b) 

Note  that  the  element  interpolation  function Ni(xi) has  a  value 

of  unity  at  node  i  to  satisfy  the  boundary  conditions, Eq. (3.71, 

thus  the  spatial  function  N (x)  must  vanish  at  nodes.  Since  the 0 

I 
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term $o is  a known quantity  and  neither  relates  to  the  element 

nodal  coordinates  nor  is  identified  with  the  element  nodes,  it  is 

called  a  nodeless  parameter.  Likewise,  the  corresponding  spatial 

function NO(x) is  called  a  nodeless  interpolation  function. 

Comparison  between  element  variations  of  a  typical  nodeless  para- 

meter  finite  element, Eq. (3.8),  and  the conventional  linear  finite 

element, E q .  (3.3), is shown  in  Fig. 3 .  

3.1.2  Exact  Element  Matrices 

After  exact  element  interpolation  functions  are  obtained,  the 

corresponding  element  matrices  can  be  formulated.  For  the  governing 

ordinary  differential  equation,  Eq. ( 3 . 4 1 ,  typical  element  matrices 

can  be  derived  (see  section  2.2).and  element  equations  can  be  written 

in  the form, 

I KO2 ..... KOn 1 
I " "4  """""""_ 

I I 
K1O I ' K1l K12 

K20 I ' K21 
K22  K2n 

I ( 3 . 9 )  

where  Kij, i, j =O,  n  are  typical  terms  in  the  element  stiffness 

matrix;  Fi,  i =O,  n  are  typical  terms  in  the  element  load  vector, 

9i, i =1, n are  the  element  nodal  unknowns,  and $o  is  the  element 

nodeless  parameter.  Since  the  element  nodeless  parameter  is  known, 

the  above  element  equations  reduce  to 
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CONVENTIONAL 

NODELESS PARAMETER 

Fig. 3. Comparison of conventional  and nodeless parmeter 
elements. 

I 
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r . I \ 

F1 

F2 

' 
"$o 4 

K20 

K 
10 

F n Kno 
\ d i 4 

(3.10) 

3 . 2  Exact  Finite  Elements in Thermal  Problems 

In  one-dimensional  linear  steady-state  thermal  problems,  typical 

governing  differential  equations  can  be  derived  from a heat  balance 

on  a  small  segment  in  the  form, 

(3.11) 

where  T  denotes  the  temperature,  x  denotes  a  typical  one- 

dimensional  space  coordinate in Cartesian,  cylindrical  or  spherical 

coordinates;  a i = O ,  1,2 are  variable  coefficients,  and r(x) 

is  a  function  associated  with  a  heat  load  for  a  given  problem. A 

general  solution  to  the  above  differential  equation  has  the  form, 

i' 

where fl(x)  and f (x) are  linearly  independent  solutions of the 2 

homogeneous  equation, C1 and C2 are  constants of integration, 

and  g(x) is  a particular  solution.  Since  the  particular  solution 

g(x)  is known, the  above  general  solution  has  two  unknowns to be 

determined. A finite  element  with  two  nodes,  therefore,  can  be 

formulated  using  the  conditions, 



31 

where x i=l, 2 are  nodal  coordinates  and Ti, i =  1 , 2  are  the 

nodal  temperatures.  Imposing  these  conditiohs on the  general  solu- 

tion  yields  two  equations  for  evaluating C1 and C2, 

i' 

T(x2) = T2 = C f (x ) + C f (x ) + g(x2) 1 1 2  2 2 2  

or  in  matrix  form 

After C1 and C2 are  determined  and  substituted  into  the  general 

solution,  Eq.  (3.12),  the  exact  element  temperature  variation  can 

be  written  as 

or in the  matrix  form, 

(3.14b) 

where NO(x) is  the  nodeless  interpolation  function  and  To  is  the 
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nodeless  parameter; N1(x) and N2(x) are  element  interpolation 

functions  corresponding  to node 1 and 2 ,  respectively.  These  element 

interpolation  functions  including  the  nodeless  parameter  are known 

functions  defined  by 

I W 
(3.15a) 

(3.15b) 

(3.15~) 

where W = fl(xl)  f2(x2) - fl(x2)  f2(x1) . 

Using  the  exact  element  interpolation  functions  shown  in 

Eq. (3.14),  and  the  governing  differential  equation,  Eq.  (3.11), 

element  matrices  can  be  derived  through  the  use  of  the  method  of 

weighted  residuals; 

X 
P 2 

d dT  dT [z (a2 z) + al dx + aoT - r] N.  dx = 0 i=O,1,2  (3.16) 
1 

X 1 

Performing  an  integration  by  parts on the  first  term  and  substituting 

for  element  temperature  in tens of the  interpolation  functions, 

Eq. (3.14), yields  element  equations  in  the  form, 
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= {Qc) + {Q) (3.17) 

where  [Kc], [ & I ,  and  [Kh]  are  the  element  conductance  matri'ces 

associated with the  second,  the  first, and the  zero-order  derivative 

term on the  left  hand  side  of  the  governing  differential  equation 

(3.11), respectively;  {Qc}  is  the  element  vector  of  conduction 

heat  flux  across  element  boundary,  and  {Q) is the  element  load 

vector  from  the  heat  load r(x3 in the  governing  differential 

equation.  These  matrices  are  defined  as  follows: 

J 
X 1 

J 
x1 

a. I N }  LN] dx 

x1 

{ Qc3 

(3.18a) 

(3.18b) 

(3.1812) 

(3.18d) 
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X 

{Q) = r{N) dx (3.18e) 

Depending on the  complexity  of  element  interpolation  functions,  the 

element  matrices  may be evaluated  in  closed form or they  may  require 

numerical  integration.  However,  after  the  element  matrtces  are 

computed,  typical  element  equations  can  be  written in the  form, 

I KOO K1O 

K20 

5 1  

K21 

CQc} + P (3.19) 

Since  the  nodeless  parameter  is known, the  first  equation  is  uncoupled 

from  the  nodal  unknowns  in  the  second  and  third  equations.  Thus, 

the  exact  element  matrices  have  the  same  size  as of the  conventional 

linear  finite  element  and  element  equations  can  be  written  as 

[ - K20 111) . ( 3 . 2 0 )  

Note  that,  in  general,  the  above  conductance  matrix  is  an 

asymmetric  matrix.  This  asymmetry  is  caused  by  the  conductance 

matrix [ R  1 shown  in  Eq. ( 3 . 1 8 b )  associated  with  the  first-order 

derivative  in  the  governing  differential  equation, Eq. (3.11).  To 

obtain  a  symmetrical  conductance  matrix,  the  first-order  derivative 

V 
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is  eliminated  by  casting  the  governing  differential  equation in self- 

adjoint form, 

where 

Q(x) = 
a2 

R(x) = - rP 
a, 

(3.21) 

(3.22a) 

(3.22b) 

(3.22~) 
L 

Element  matrices  can  then  be  derived  using  the  method  of  weighted 

residuals  in  the  same  manner  as  previously  described.  In  this  case, 

element  equations  have  the  form, 

(3.23) 

where  the  conductance  matrices  and  heat  load  vectors  are  defined 

by 

(3.24a) 
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C 

Similarly,  element  equations f o r  the  two  nodal  unknowns  are 

K22 I - C + { - To 1 E,, 

(3.24b) 

(3.244 

(3.24d) 

where  gij,  i,j =0,1,2 is  the  summation  of  the  corresponding 

coefficients  in  the  conductance  matrices [Kc] and  [Ehl ; 

P (3.25) 

L dNi  dNj L - 
Kij = 5 - P x x  Q Ni N. dx 

J 
(3.26) 

X 1 x1 

i,j=O,1,2 

An additional  advantage  of  using  the  self-adjoint  differential 

equation  is  that  the  coefficients Kl0 and K,, shown  on  the  right 

hand  side of  Eq. (3.25)  are  identically  zero.  This  result  can  be 

- - 

proved by observing  that  the  element  interpolation  function Ni, 
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i =1,2 are  the  solution  of  the  homogeneous  differential  equation, 

Eq. (3.21), because  N. is a  linear  combination of the  homogeneous 

solutions fl(x)  and f (x)  as shown  in Eqs. (3.15a-b),  i.e. 
i 

2 

-[P*] d + Q N i = O  
dN 

dx i =1,2 

Multiplying  this  equation  by  the  nodeless  parameter  interpolation 

function  No  and  performing  integration  by  parts  on  the  first  term 

yields 

dNi 
P -  dx NO 

x2 X 
dNi  dN 2 

dx  dx c2 Ni No dx = 0 

X 1 x1 X 1 

Then  since  the  nodeless  interpolation  function No vanishes  at 

nodes, i.e.  at  the  coordinates  x1  and x2, the  above  equations 

yield 

KiO 
- = o  i =1,2 

and  the  elenent  equations,  Eq.  (3.25),  become 

After  element  nodal  temperatures  are  computed,  exact  temperatures 

within  an  element  can  be  obtained  using  the  exact  element  temperature 

variation,  Eq. ( 3 . 1 4 ) .  
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To  demonstrate  the  exact  finite  element  formulation  previously 

derived,  exact  finite  elements  for  eight  heat  transfer  cases in 

several  solids  of  different  shapes  and a  flow  passage  (Fig. 4 )  are 

presented. In the  first seven  cases,  heat  transfer  may  consist  of: 

(1) pure  conduction, (2) conduction  with  internal  heat  generation, 

( 3 )  conduction  with  surface  heating,  and ( 4 )  conduction  with  surface 

convection.  Case  eight  is a one-dimensional  flow  where  heat  transfer 

may  consist of fluid  conduction  and  mass  transport  convection  with 

surface  heating  or  surface  convection.  For  these  cases,  the  boundary 

conditions  considered  are: 

or 

or 

T = Constant 

- k - =  dT 
dx 4 

- k - = h(T -T,) dT 
dx 

(3.28a) 

(3.28b) 

(3.28~) 

where k is  the  material  thermal  conductivity, q is  the  specified 

surface  heating  rate  per  unit  area, h is  the  convection  coefficient, 

and T, is  the  convection  medium  temperature. In each  case,  the 

derivation  of  exact  finite  elements  for  appropriate  heat  transfer 

cases  are  given  for  clarity.  Governing  differential  equations  and 

the  corresponding  nodeless  parameters,  exact  element  interpolation 

functions,  and  element  matrices  for  all  cases  are  shown  in  Tables 1 

and 2 and  Appendices A and E. 

3.2.1  Rod  and  Slab 

A rod  element  with  arbitrary  cross-sectional  area A ,  circum- 

ferential  perimeter p and  length L as  shown  in  (Fig. 4 ,  Case 1) 
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Case 1, ROO Case 2, SLAB 

Case 3, HOLLOW CYLINDER  Case L, HOLLOW SPHERE 

Case 5, CYLINDRICAL  SHELL 

0 
I 

I 
Case 7, SPHERlCAL SHELL 

4 I h,T, 

Case 6, CONICAL S E L L  

Case 8, FLOW PASSAGE 

F i g .  4 .  Exact  finite  elements for one-dimensional  conduction 
and  convection  cases. 



Table 1 
c 
0 Governing  Self-Adjoint  Differential  Equatlons 

Heat Loads 

Case  Conduction  Convection  Convection  Source  Surf  ace 

1 b T  kA 
!If.! T, k.4 

9 
k 

4e 
kA 

2 9 
k 

" 

3 d dT 
- drrrdr1 " 

4 Q r2 k 
" 

" " 

5 
h "T kt 

h - 9 
kt Tm k 

9 
kt 

6 - ,,[%I d dT h - ST kt 
- h sTm 
kt 

A S  kt 

7 - -[cos- d s -3 dT 
ds  a  ds 

Q cosg k a  
3- coss kt a 

d dT * 
- XI 

l e P T  kA 
' l e  

kA Tw 8 

*Combined  conduction  and  mass  transport  convection  where  P = exp(-rhcx/kA). 
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Table 2 

Nodeless  Parameters  for  Thermal  Problems 

Case Convection 
(b) 

Source 
(C) 

Surface Flux 
( d )  

QLL 
2k 

4PLL 
2kA 1 

QL2 
2k 2 " 

Qb2 
4kw 

" 

" 

3 " 

P 
6k 

" 

QL2 
2k 

- G 2  
2kt 

n 

qb2 
4kw 

9bL 
Qa? 
4ktw 

kt 
qa2 
k 

" 

" 8 

where w = ln(b/a). 
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is  subjected  to  internal  heat  generation,  surface heating, and 

surface  convection.  Governing  differential  equations  for  each  heat 

transfer  case  in  self-adjoint f o m  are  shown  in  Table 1. For example, 

the  governing  differential  equation  for  the  case  of  conduction  with 

surface  convection is 

( 3 . 2 9 )  

where k is the  material  thermal  conductivity,  h  is  the  convection 

coefficient,  and Tm is  the  convective  medium  temperature. ,A general 

solution  to  the  above  differential  equation  is 

T(x) = C1  sinh mx + C cosh mx + Tm 2 

where m = dhp/kA, and C1 and  C2  are unknown constants.  Applying 

the  boundary  conditions  at  the  nodes, 

T(x=O) = T1  and  T(x=L) = T2 

the  two  unknown  constants  are  evaluated  and  the  above  solution 

becomes 

T(x) = (1 - sinh m(L-x) sinh mx 
sinh mL sinh mL, 1 T, 

sinh m(L-x) sinh mx 
+ ( sinh mL T1 + (sinh mL) T2 (3.30) 

This  exact  element  temperature  variation  can  be  written  in  the  form 

of  Eq. ( 3 . 1 4 )  where  the  element  interpoation  functions  and  the  node- 

less  parameter  are: 
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N0(x) = (1 - sinh m(L-x) sinh mx 
sinh nL sinh mL 

- 1; To - - Tm 

(3.31) 
sinh m(L-x) 

N1(X) = 
sinh mx 

sinh mL ' N2(X) = sinh mL 

As described  in  the  previous  section,  element  equations  for  a 

typical  self-adjoint  differential  equation  have  the  form  of  Eq.  (3.231, 

and  using  the  definitions  of  the  element  matrices  shown  in  Eq. 

the  element  matrices  for  this  problem  are: 

L 

L 
r 

J 
0 

where [ E  1 and [E,] are  conductance  matrices  corresponding 

conduction  and  convection,  respectively,  and { G I  is  the  load 

C 

(3.24) Y 

(3.32a) 

(3.32b) 

(3.32~) 

to 

vector 

due  to  surface  convection.  With  the  exact  interpolation  functions 

shownin  Eq.  (3.31),  the  above  element  matrices  can  be  evaluated  in 

closed form. Exact  nodal  temperatures  and  element  temperature  varia- 

tion  can  then  be  computed  using  Eqs.  (3.27)  and  (3.30),  respectively. 

For  the  cases  where  the  rod  is  subjected  to  an  internal  heat 

generation or specified  surface  heating,  exact  element  interpolation 

functions  and  element  matrices  can  be  derived  in  the  same  manner  as 
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described  above.  It  should  be  noted  that  only  the  conductance  matrix 

associated  with  conduction  and  heat  load  vectors  corresponding to 

internal  heat  generation or surface  heating  exist  in  the  two  cases. 

The  exact  conductance  matrix  and  heat  load  vectors  are  found  to  be 

identical to those  from  the  conventional  linear  element.  Therefore, 

exact  nodal  temperatures can also  be  obtained  through  the  use of 

the  conventional  linear  finite  element  in  such  cases.  However,  since 

the  linear  temperature  variation  is  not  an  exact  solution  to  these 

problems,  the  conventional  linear  finite  element  can  not  provide  the 

exact  temperature  distribution  within  the  element. 

The  derivation  of  exact  finite  elements  for  one-dimensional  heat 

transfer  in  a  slab  follows  the  derivation  for  the  exact  rod  element. 

A slab  with  thickness L subjected  to  an  internal  heat  generation 

(Fig. 4 ,  Case 2)  where  both  sides  of  slab  may  be  subjected  to  a 

specified  surface  heating  or  surface  convection. In Table 1, the 

governing  differential  equations  are  shown  only  for  the  case  of  pure 

conduction  and  conduction  with  internal  heat  generation  because  the 

effects  of  surface  heating  and  surface  convection  enter  the  problem 

through  the  boundary  conditions.  For  example,  a  governing  differen- 

tial  equation  describing  heat  conduction  in  a  slab with specified 

temperature  T1  at x = 0 (node 1) and  surface  convection  at  x = L 

(node 2) is 

d dT 
dx  dx [k ”] = 0 ” ( 3 . 3 3 )  

where k denotes  the  material  thermal  conductivity.  After  solving 

for  the  general  solution  to  the  governing  differential  equation  above 
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and  applying  nodal  temperatures as boundary  conditions  at x = 0 

and x = L, the  exact  element  temperature  variation  is  (see 

Appendix A) 

T(x) = (1 - y) T1 -k (x) T2 = LN1(X)  N2(x>j { ( 3 . 3 4 )  
X X 

With  the  corresponding  element  conductance  matrix  shown  in  Appendix B, 

exact  element  equations  for  this  problem  are 

since  at x = L (node 2)  the  boundary  condition is 

-k - dT  (x=L) 
dx = h(T2  -T,) 

where h is  the  convection  coefficient  and T, is  the  surrounding 

medium  temperature,  therefore,  the  above  element  equations  become 

r k  
l L  

k - +h L 

( 3 . 3 5 )  

the  exact nodal unknown T2 can  then  be  computed  and  the  exact 

element  tempterature  distribution  is  obtained  using  equation ( 3 . 3 4 ) .  

The  same  procedure  can  be  applied  for  the  case  when  the  slab  is 

subjected  to  surface  heating. In this  case,  the  boundary  condition 

is 
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where q denotes  the  specified  surface  heating.  When 

consists  several  layers  with  different  thermal  conduct 

exact  element  can  be  used  to  represent  each  layer. If 

the slab 

ivities,  an 

the  slab  is 

subjected  to  surface  heating  or  surface  convection in addition,  the 

above  procedure  applies  for  the  elements  located  at  the  outer 

surf  aces. 

3.2.2 Hollow Cylinder  and  Sphere 

A thermal  model  of  a  hollow  cylinder  with  radial  heat  conduction 

subjected  to  an  internal  heat  generation  is  shown  in  Fig. 4 ,  Case  3. 

Specified  heating  or  surface  convection  are  considered  through  the 

boundary  conditions  at  the  inner  and  outer  surfaces of radii a and 

b, respectively.  Governing  differential  equations  corresponding  to 

each  heat  transfer  case  are  provided  in  Table 1. For  example,  the 

governing  differential  equation  for  the  case  of  pure  conduction  is 

d dT 
dr k -  [ r z ]  = 0 (3.36) 

where k is  the  material  thermal  conductivity,  and  r is the  radial 

coordinate. A general  solution  to  the  above  differential  equation  is 

T(r) = C + C2 In r 1 

Nodal  temperatures  are  imposed on the  element  boundary  conditions, 

T(r =a) = TI  and T(r =b) = T2 



47 

and  the  exact  element  variation  is  obtained  as  (see  Appendix A), 

In(r/a> 
W 1 (3.37) 

where w = ln(b/a). Note  that  the  exact  element  variation  for  this 

case is completely  different  from  the  linear  element  variation,  there- 

fore, the  conventional  linear  finite  element  can  not  provide  exact 

element  or  nodal  temperatures.  Applying  the  method  of  weighted 

residuals  to  the  governing  differential  equation,  element  equations 

are 

b 

J a 

(3.38a) 

(3.38b) 

(3.38~) 

Using  the  exact  element  interpolation  functions  shown  in  Eq.  (3.37), 

element  equations  for  this  case  are 

(3.39) 
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When  the  cylinder  is  subjected  to  surface  heating  or  surface 

convection,  the  same  procedure  previously  described  for  the  slab 

can  be  used.  For  example,  in  case  of  convection  heat  transfer on 

the  outer  surface,  the  boundary  condition  is 

r = b; -k - dT - - h(T2 - T,) 
dr 

where h is  the  convection  coefficient  and T, is  the  surrounding 

medium  temperature.  Thus,  the  element  equations, Eq. ( 3 . 3 9 ) ,  become 

Exact  finite  elements  can  be  formulated  for  conduction  heat 

transfer in the  radial  direction of a  hollow  sphere  with  internal 

heat  generation. A thermal  model of a  hollow  sphere  with  inner  and 

outer  surface  radii  a  and b y  respectively,  is  illustrated  in 

Fig. 4 ,  Case 4 .  The  hollow  sphere  may  be  subjected  to  surface 

heating  or  surface  convection on both  inner  and  outer  surfaces. 

For  heat  conduction  with  internal  heat  generation,  the  governing 

differential  equation  is  (see  Table 1) 

- k - [r2 E] = Qr d 2 
dr (3.41) 

where k is  the  material  thermal  conductivity,  Q  is  the  heat 

generation  rate  per  unit  volume,  and  r  is  the  independent  variable 

representing  the  radial  coordinate. A general  solution to this 

differential  equation is 
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c1 T(r) = 7 + C2 - Qr2 6k 

Due  to  the  presence of the  particular  solution  in  the  above  general 

solution,  a  nodeless  parameter  exists,  and  the  exact  element 

variation  is  written in the  form 

where  the  element  interpolation  functions  including  the  nodeless 

parameter  are : 

No(r) = -(r-a)  (b-r)  (r+a+b) ; 1 -2 
r TO - 6k 

. b (r-a) 
N2(r) = r(b-a) (3.42b) 

Element  matrices  can  be  derived  using  the  method of weighted  residuals 

and  element  equations  are  resulted  in  the  form 

where  these  element  matrices  are  defined  by: 

b 

{a,} = k r2 dT N i dr bl a 

(3.43a) 

(3.43b) 

(3.43c) 
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= ( Q { N j  r2 dr 
a 

( 3 . 4 3 d )  

If  surface  heating  and  surface  convection  are  applied on the  inner 

and  outer  surface,  the  same  procedure  described f o r  the  cylinder  is 

required. 

3.2.3 Thin  Shells 

Three  thermal  models  of  thin  shells of revolution  with  cylin- 

drical,  conical  and  spherical  shapes  are  presented  (see  Fig. 4 ) .  

These  shells  may  be  subjected to thermal  loads  such  as  surface 

heating,  surface  convection,  and  internal  heat  generation  as  shown 

in  Fig. 4 ,  Cases 5-7. In Case 5, a  cylindrical  shell of  radius a, 

thickness t and  meridional  coordinate s is  considered.  Governing 

differential  equations  corresponding  to  different  thermal  loads  are 

shown  in  Table 1. These  governing  differential  equations  are  in  the 

same  form  as  for  the  rod  element  (Case 1). Therefore,  the  exact 

rod element  interpolation  functions  and  element  matrices  previously 

derived  can  be  modified  and  used  for  the  exact  cylindrical  shell 

element. 

A truncated  conical  shell  element  with  thickness t is  shown 

in  Fig. 4 ,  Case 6. Governing  differential  equations  corresponding to 

internal  heat  generation  and  surface  heating  are  given  in  Table 1. 

These  differential  equations  are  in  the  same form as  for  the  hollow 

cylinder  (Case 3)  with  surface  heating,  and  therefore,  element 

interpolation  functions  and  element  matrices  are  similars.  For 

the  case of the  shell  subjected to surface  convection,  a  form  of 
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nonhomogeneous  modified  Bessel's  differential  equation  results, 

- d2T +"" 1 dT h  h 

ds 2 s ds kt kt 
T = - -  ( 3 . 4 4 )  

A general  solution  to  the  above  differential  equation  includes 

modified  Bessel  functions  of  the  first  and  second  kind  of  order  zero. 

A  nodeless  parameter  also  exists  in  this  case  due  -to  the  nonhomo- 

geneous  differential  equation.  Applying  nodal  temperatures  as  the 

boundary  conditions  at s = a and s = b, exact  element  interpola- 

tion  functions  are  obtained  as  shown  in  Appendix A. 

Fig. 4 ,  Case 7 shows  a  truncated  spherical shell with  radius 

a and  thickness t. The  spherical  shell  may  be  subjected  to 

internal  heat  generation  or  surface  heating.  Governing  differential 

equations  corresponding to these  thermal  loads  are  in  the  form  of 

Legendre's  differential  equation of order  zero.  For  example,  the 

governing  differential  equation  for  the  case  of  uniform  surface 

heating q is 

( 3 . 4 5 )  

where rl = s i n  (s/a). A  general  solution  to  the  above  differential 

equation  is 

( 3 . 4 6 )  

where C1 and  C2  are  unknown  constants. By imposing  nodal 

temperatures  as  element  boundary  conditions  at s = 0 and s = L, 
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exact  element  interpolation  functions  are  obtained  as  shown in 

Appendix  A. 

Due to  the  complexity  of  the  exact  element  interpolation  func- 

tions  that  arise  from  the  truncated  conical  shell  with  surface 

convection  and  the  truncated  spherical  shell,  the  corresponding 

element  matrices  in  closed  form  are not provided.  The  element 

matrices, if desired,  can  be  obtained  using  the  element  matrix 

formulation  shown  in  Equations  (3.14a-d)  and  performing  the  integra- 

tions  numerically. 

3 . 2 . 4  Flow  Passage 

A thermal  model  of  fluid flow in a  passage  with  conduction  and 

mas.s  transport  convection  is  illustrated  in  Fig. 4 ,  Case 8. The 

fluid  may  be  heated  by  surface heating,  or  surface  convection. 

Governing  differential  equations  corresponding  to  these  heat  transfer 

cases  are  given  in  Table 1. For  simplicity,  consider  the  case  without 

heat  loads  where  the  governing  homogeneous  differential  equation  is 

given  by 

. 
- -  d dT  dT 
dx [kA;i;;] + i c = = O  (3.47) 

where k is the  fluid  thermal  conductivity, A is  the  flow  cross- 

sectional  area, iI is  the  fluid  mass  flow  rate,  and  c  is  the  fluid 

specific  heat. A general  solution  to  this  differential  equation  is 

T(x) = C1 + C2 exp  (2ax) 

where C1 and  C2  are  arbitrary  constants  and a = ic/Z1kA. An 

exact  finite  element  with  length L and  nodal  temperatures T1 and 
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T2 at  x = 0 and x = L, respectively,  can  be  formulated.  The 

exact  element  temperature  variation  is 

T(x) = 11 - l - e  

l - e  

2ax 

2aL 
l - e  

l - e  

2ax 

2aL (3.48a) 

As previously  described,  the  appearance of the  first-order  derivative 

term  in  the  governing  differential  equation  results  in  an  unsymmetrical 

conductance  matrix  (see  Eq.  (3.18b)). In this  case,  the  corresponding 

element  conductance  matrices  are 

[ -1 -11 (3.48b) 

(3.48c) 

where  [K ] and  [K ] denote  conductance  matrices  representing 

fluid  conduction  and mass transport  fluid  convection,  respectively. 

It  has  been shown that  if  the  conventional  finite  element  with 

an  optinum  upwind  weighting  function  is  used,  exact  temperatures  at 

nodes  can  also  be  obtained  [211.  With  upwind  weighting  functions 

the  element  temperature  variation  is  expressed as, 

C V 

r 1  

(3.49a) 

where F(x) is  the  optimum  upwind  weighting  function  defined  by 
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1 
CiL 

2 
F(x) = [coth  (2~iL) - -1 [3(3 - r, ) ]  X X 

L 

With  these  element  interpolation  functions,  element  conductance 

matrices  corresponding  to  the  fluid  conduction  and  mass  transport 

convection  are 

[K 1 
upwind 

kA 
L 
- -I 1 

(3.49b) 

-1 

upwind 2 2 (coth  (aL) - L, aL [ -: (3.4912) 

It can  be  shown  that  the  combination of these  element  conductance 

matrices  are  identical  to  those  obtained  from  the  exact  finite 

element,  Eqs.  (3.48b-c). Therefore,  the  conventional  finite  element 

with  the  optimum  upwind  weighting  function  provide  exact  nodal 

temperatures.  However,  since  the  upwind  element  temperature  varia- 

tion  differs  from  the  exact  element  temperature  variation  shown  in 

Eq.  (3.48a),  the  finite  elernent with the  optimum  upwind  weighting 

function  does  not  provide  the  exact  temperature  variation  within  an 

element. 

3.3  Exact  Finite  Elements  in  Thermal-Structural  Problems 

With  the  general  exact  finite  element  formulation  described 

in  section  3.1,  exact  structural  finite  elements  can  be  developed 

for  problems  governed by ordinary  differential  equations.  For 

exanple,  exact  finite  elements  for a rod loaded  by  its  own  weight 
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or  a  beam  with 

the  purpose  of 

a  distributed  load  can  be  formulated.  However,  for 

demonstrating  benefits on exact  finite  elements  in 

coupled  thermal-structural  problems,  exact  structural  finite  elements 

subjected  to  thermal  loads  are  considered  herein. 

3.3.1 Truss 

Typical  thermal  and  structural  models  for  truss  elements  are 

shown in  Fig. 5. For  a  steady-state  analysis,  exact  thermal  finite 

elements  for  internal  heat  generation,  surface  convection  and 

specified  surface  heating  are  presented  in  section 3 . 2 .  In this 

section  the  exact  element  temperatures  are  used  in  the  development 

of  truss  elements  for  computations  of  displacements  and  thermal 

stresses. 

For a  truss  element  subjected to a  temperature  change,  thermal 

strain  is  introduced  in  the  stress-strain  relation; 

(3.50) 

where is  the  axial  stress, E is  the  modulus  of  elasticity, 

u is  the  axial  displacement  which  varies  with  the  axial  coordinate 

x, a is  the  coefficient  of  thermal  expansion, T(x) is  the 

temperature,  and Tref is  the  reference  temperature  for  zero  stress. 

The  rod  equilibrium  equation  with  an  assumption of negligible  body 

force  is 

ux 

" daX 
dx - 0  ( 3 . 5 1 )  

which  when  combined  with  the  stress-strain  relation, Eq. (3.501, and 
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multiplied  through  by  the  truss  cross-sectional  area A ,  yields 

the  governing  differential  equation, 

d u  2 dT 

dx 2 dx EA - = aEA - (3.52) 

Since  the  temperature T is known from  the  thermal  analysis,  a 

general  solution  to  the  above  differential  equation  can  be  obtained. 

An exact  finite  element  can  be  formulated  by  applying  the  nodal 

displacements  u1  and  u2  as  the  boundary  conditions  at  x = 0 

and x = L, respectively. In this  case,  the  exact  element  displace- 

ment  variation  is 

X 

u(x) = (a J T dx - a 2 f T dx) + (1 - 2) u1 + u2 X 
L L 

0 0 

(3.53) 

or  in  the  matrix form 

where N (x) is  the  element  nodeless  interpolation  function; 

Ni, i =1,2 are  typical  element  interpolation  functions,  uo  is 
0 

the  nodeless  parameter,  and u i=1,2 are  the  element  nodal i' 
displacements.  The  element  interpolation  functions  are 

X L 
T dx - a - T d x  L 

0 3 

(3.54b) 
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N1(x) = 1 - - L N2(x) = - L 
X  X (3.54c) 

where,  for  convenience,  the  nodeless  parameter  uo  is  taken  as  unity 

in  this  case.  Note  that  the  element  nodeless  interpolation  function, 

NO(x), vanishes  at  nodes  and  depends on the  integrals  of  element 

temperature  variation  obtained  from  the  thermal  analysis. 

To derive  exact  element  matrices,  the  method  of  weighted  resid- 

uals  is  applied  to  the  equilibrium  equation  (3.51).  After  performing 

an  integration  by  parts  and  using  the  stress-strain  relation, 

Eq.  (3.50),  element  equations  and  elenent  matrices  are  obtained. 

These  element  equations  are  in  the  same  form  as  those  obtained  from 

the  variational  principle  described  in  section  2.3  and  can  be 

expressed  as 

where [Ks]  is  the  structural  element  stiffness  matrix,  {u)  is 

the  vector  of  nodal  displacements,  and {F,} is  the  equivalent 

nodal  thermal  load  vector.  The  element  matrices  are  defined  by  (see 

Eqs.  (2.27a)  and  (2.27d)) 

dN 

(3.56a) 

(3.56b) 
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Using  the  exact  displacement  interpolation  functions,  Eq.  (3.54a), 

the  element  stiffness  matrix  above  is  a  three  by  three  matrix  which 

contains  coefficients  Kij , i, j = O ,  1,2. Since  the  governing 

differential  equation,  Eq.  (3.52),  can  be  cast  in  the  self-adjoint 

form  (see  section 3 . 2 ) ,  this  element  stiffness  matrix  is  symmetric 

and Koiy i=1,2 are  zero.  Both  the  element  stiffness  matrix  and 

the  equivalent  nodal  thermal  load  vector  can  be  evaluated  in  closed 

form  as, 

where 

- I  1 

(3.57a) 

(3.57b) 

(3.57c) 

Once  exact  nodal  displacements  are  determined,  exact  displacement 

variation  within  an  element  can  be  computed  from  Eq. (3.53). Exact 

element  stress  can  also  be  obtained  by  substituting  element  displace- 

ment  variation,  Eq.  (3.53),  into  the  stress-strain  relation, 

Eq.  (3.50).  In  this case,  the  exact  element  stress  in teps of 

nodal  displacements  is 
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L 

(3.58) 

Using  the  exact  element  temperature  variations  obtained  from  the 

thermal  analysis  (cases  la-ld),  both  element  nodeless  interpolation 

functions NO(x), Eq.  (3.54b),  and  the  equivalent  nodal  thermal  load 

FT, Eq.  (3.57~)~ can  be  evaluated  in  closed  form  as  shown  in  Table 

3  and  Appendix By respectively. 

3 .'3.2 Hollow Cylinder 

For  a  hollow  cylinder  where  the  temperature T varies  only  in 

the  radial  direction  (Fig. 6), the  only  non-zero  displacement  is 

u(r)  and all  shearing  stresses  are  zero.  The  radial  stress u 

and  circumferential  stress 0% satisfy  the  equilibrium  equation  [22] 

r 

d'r u r - ug 
dr  r 
- + = o  (3.59) 

The  stress-strain  relations  are 

E = - 1 [ U  - v (ue + a,)] + a(T - Tref) r E r .  (3.60a) 

(3.60~) 

where v is  Poisson's  ratio; E ~ ,  E8 and c Z  are  the  radial, 

circumferential  and  longitudinal  strain,  respectively. 
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Table  3 

Truss Element  Displacement  Interpolation Functions, Ns (X) * 

Case N, (X) 

a(T2-T11L aTOL 
(X -X) + - (-X + 3x2 - 2x ) 3 

2 G 

T2-T1 cosh  mL + TO(cosh mL-1) 
m sinh mL 

ai [(cosh mLX  -1) 

a(T2-T1)L 

2 ( X  -X) 2 

( X2-X) 

T -T 
+- (sinh mLX - X sinh  mL) 1 

m 

aTOL 

6 
+ - (-X + 3x2 - 2x ) 3 

aTOL 

6 
+ - (-X + 3x2 - 2x ) 3 

I 
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For  the  case  of  a  thin  hollow  cylinder,  the  assumption  of  plane 

stress (a, = 0 )  is  used.  Substituting  the  stress-strain  relations, 

Eqs.  (3.60a-b),  into  the  equilibrium  Eq.  (3.59)  and  using  the  strain- 

displacement  relations. 

E = -  du 
r  dr and U 

E B  = - r (3.61) 

where u denotes  the  radial  displacement,  the  governing  differential 

equation  for  the  case  of  plane  stress  is 

A general  solution  to  this'differential  equation  is  given  by 

r 

u(r) = ( 1 + v )  (T - Tref)  r  dr + C1 r + - r 
c2 

0 

(3.62) 

(3.63) 

Since  the  radial  temperature  variation T is  known  from  the 

thermal  analysis  (see  section  3.2.2),  the  exact  axisymmetric  element 

displacement  variation  can  be  derived  by  applying  the  nodal  displace- 

ments u1 and  u2  as  the  boundary  conditions  at  r = a  and r = b, 

respectively.  The  exact  element  displacement  variation is 

r 

- (1 + v )  - a (r2 - a2)  (T - Tref)  r  dr 
(b2 - a2) 

a 
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2  2 
+ [a(b - r ) ] u  + [ -  b  (r2 - a2) I 

I: (b2 - a2) r  (b2 - a21  u2 ( 3 . 6 4 )  

or  in  the  matrix  form 

u(r) = LNO(r)  N1(r)  N2(r)J [ -p = P s J  {u) (3.65a) 

where No(r) is  the  element  nodeless  interpolation  function; Niy 

i =1,2, are  typical  element  interpolation  functions,  uo  is  the 

nodeless  parameter,  and  u i =1,2 are  the  element  nodal  displace- 

ments.  The  element  interpolation  functions  are 
i’ 

No(r) = (1 + u) a (T - Tref)  r  dr r i 
J a 

3 b (r - a2) (3.65~) 
(b2 - a2) ‘3 (b2  a2) 

2 
Nl(r) = [ -  a (b2 - r-) ] and  N2(r) = 

Like  for  the  exact  truss  element,  the  nodeless  parameter  uo  is 

taken  as  unity,  and  the  element  nodeless  parameter N (r)  vanishes 

at  nodes.  Element  matrices  can  be  derived by following  the  same 

procedure  described  for  the  truss  element.  In  this  case,  the  elelnent 

stiffness  matrix  and  the  equivalent  nodal  thermal  load  vector  are 

0 
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b 

a 

where [B,] is  the  strain-displacement  matrix  obtained  from 

Eq. (3.61) , 

E r 

- - 

[Dl is  the  elasticity  matrix  (plane  stress), 

[ D l  = 
E 

1 - v  2 [: :] 
and {a) is  the  vector  of  coefficients  of  thermal  expansion, 

{a) = a[ I} 

65 

(3.66a) 

(3.66b) 

(3.67a) 

(3.67b) 

(3.67~) 

Using  the  exact  element  interpolation  functions, Eq. (3.65), 

the  element  stiffness  matrix  and  equivalent  nodal  load  vectors 

corresponding  to  the  heat  transfer  cases  (see  section  3.2.2)  can  be 

derived  in  closed  form.  Due to complexity  of  the  element  interpolation 
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functions,  a  computer-based  symbolic  manipulation  language MACSYMA 

was  used  to  perform  the  algebra  and  calculus  required  for  these 

element  matrix  derivations.  Results  of  these  element  matrices  and 

exact  element  interpolation  functions  are  shown  in  Appendix B and 

Table 4 ,  respectively. 

Once  nodal  displacements  are  computed,  exact  thermal  stresses 

in  both  radial  and  circumferential  directions  can  be  determined. 

Using  the  stress-strain  relations,  Eq.  (3.601,  and  the  strain- 

displacement  equations  in  the  form of Eq. (3.67a),  the  element 

stresses  can  be  written  in  terms of nodal  displacements as 

For  the  plane  strain  case ( E ~  = O), all  equations formulated 

for  the  case  of  plane  stress  above  may  be  used  by  replacing 

E.(1-w2)  for E, w/(l-w) for u, and (l+w)a for a. In  addi- 

tion,  the  longitudinal  stress  exists  in  this  case  and  can  be  computed 

froin  the  last  equation  of  the  stress-strain  relations, Eq. (3.60~)~ 

3.4  Applications 

To demonstrate  the  capabilities  of  the  exact  thermal  and 

structural  finite  elements  developed  in  sections  3.2  -3.3,  the  finite 

element  thermal  analysis  program TAP2 1231  and  the  finite  structual 
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Table 4 

Axisymmetric  Element  Displacement  Interpolation  Functions 

2 2 b (b -r )a w 2 2 2  

b (b -a 1 
No(r) = iz) 1 (T1 + 7 a f l 0 )  [r  ln(r) - 2 2  1 

2 2  

2 2  N l ( r )  = a(b -r ) 

r(b -a ) 

2 2  b ( r  -a ) 

r(b  -a ) 
N2(r) = 
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analysis  program  STAP [ 2 4 ]  are  used.  Elements  discussed  in  this 

. chapter  were  added  to  these  programs.  Conventional  finite  elements  are 

also  available  in  these  programs, so comparisons  between  exact  finite 

elements  and  conventional  finite  elements  could  be  made. 

3 . 4 . 1  Coffee  Spoon  Problem 

The  exact  rod  element  for  conduction  and  convection  described 

in  section 3 . 2 . 1  is  used  for  one-dimensional  heat  transfer  in  a 

coffee  spoon 125 1 , Fig. 7 .  The  lower-half  of  the  spoon  submerged  in 

coffee  is  convectively  heated  by  the  coffee  at 339 K, and-the upper- 

half  is  convectively  cooled  by  the  atmosphere  at  a  temperature  of 

283 K. The  ends  of  the onedimensional spoon  model  are  assumed  to 

have  negligible  heat  transfer. 

Three  finite  element  models  are  used  to  represent  the  spoon: 

(1) two  exact  finite  elements, ( 2 )  two  linear  conventional  finite 

elements,  and ( 3 )  ten  linear  conventional  finite  elements.  Tempera- 

ture  variations  computed by these  three  finite  element  models  are 

compared  in  Fig. 7 .  The  figure  shows  that  two  conventional  finite 

elements  predict  nodal  temperatures  with  fair  accuracy  but  are  unable 

to  provide  details of the  nonuniform  temperature  distribution  includ- 

ing  the  zero  temperature  gradients  at  both  ends  of  the  spoon.  The 

temperature  variation  obtained  from  ten  conventional  finite  elements 

is  in  excellent  agreement  with  the  result  from  two  exact  finite 

elements.  It  should  be  noted,  however,  that  an  approximate  solution 

results  from  the  use  of  conventional  finite  elements  since  the  exact 

solution to  the  problem  is  in  terms  of  hyperbolic  functions,  which 

were  used  in  the  exact  element  interpolation  function  (Appendix A ,  

Case  lb) . 
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Fig. 7. Conventional and exact finite eiement solutions 
for  coffee spoon kith conduction and convection. 
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3.4.2 Thermal  Stresses  in  Hypersonic  Wing 

A 136 member  truss  model  of  a  hypersonic  wing E261 , Fig. 8, was 

chosen  to  illustrate  the  use  of  exact  truss  finite  elements.  The  wing 

is  assumed  to  have  varying  convective  heat  along  the  leading  edge,  top 

and  bottom  surfaces  and  is  convectively  cooled  internally.  Tempera- 

tures  along  the  wing  root  are  specified.  Two  finite  element  thermal 

models  are  used  to  represent  the  wing  truss.  The  first  model 

consists  of 136 exact  condution-convection  rod  elements  (see 

section 3.2.1) with  one  element  per  truss  member.  The  second  model 

is  identical  to  the  first  model, but linear  conventional  finite 

elements  are  used.  Fig. 9 shows  a  comparison  of  temperature  distri- 

butions  along  the  bottom  members  of  the  center  rib  of  the  wing  truss. 

Results  show  that  the  exact  finite  element  nodel  provides  a  realistic 

temperature  distribution  which  is  characterized  by  higher  temperatures 

near  the  center  of  each  truss  member  and  lower  temperatures  at  the 

nodes.  The.  conventional  finite  element  model  underestimates  the 

actual  temperatures  and  is  not  capable of capturing  the  highly 

nonlinear  temperature  distribution  along  the  rib.  Therefore,  further 

mesh  refinement of the  conventional  finite  element  model  is  needed 

if a  realistic  temperature  distribution  is to be  predicted. 

For  the  structural  analysis,  both  models  enploy  the  same 

discretization  as  in  the  thermal  analysis.  The  structural  boundary 

conditions  consist  of  constraining  the  nodes  along  the  wind  root. 

Truss  member  temperatures  obtained  from  the  exact  finite  element 

thermal  model  are  directly  transferred  to  the  exact  finite  element 

structural  modeL  for  computations  of  displacements  and  thermal 

stresses  (see  section 3 . 3 . 1 ) .  Likewise,  displacements  and  thermal 
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Fig. 8. Thermal structural  truss model of a hypersonic wing. 
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Fig. 9. Comparison of temperature and stress distributions 
in wing truss,  z=O. 
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stresses  computed  from  the  conventional  finite  element  structural 

model  are  based  upon  linear  member  temperatures  obtained  from  the 

conventional  finite  element  thermal  model.  Comparison  of  the  thermal 

stress  distributions  for  the  two  analyses  are  made  as  shown  in 

Fig. 9. The  figure  shows  that  conventional  finite  elements  under- 

estimate  member  stresses  with  a  relatively  large  error.  This  error 

is  caused  by  the  use  of  the  inaccurate  temperature  distribution 

from  the  conventional  finite  element  thermal  model.  Comparative 

temperature  and  stress  distributions  of  other  wing  sections  (not 

shown)  have  similar  trends.  The  results  clearly  demonstrate  that 

improved  thermal-structural  solutions  can  be  obtained  through  the 

use  of  exact  finite  elements. 



Chapter 4 

MODIFICATION  OF  EXACT  FINITE  ELEMENT  FORMTLATION  FOR 
ONE-DIIENSIONAL LINEAR TRANSIENT  PROBLEMS 

In  the  preceding  chapter,  exact  thermal  finite  elements  for  one- 

dimensional  steady-state  heat  transfer  problems  were  presented. 

Steady-state  element  temperature  interpolation  functions  were 

formulated  in  closed  form  based  upon  solving  ordinary  differential 

equations.  In  transient  analysis,  exact  element  temperature  inter- 

polation  functions  cannot  be  obtained  in  closed  form  since  general 

solutions  to  typical  transient  problems  are  infinite  series.  However, 

by  nodifying  the  steady-state  element  temperature  interpolation 

functions  for  the  transient  analysis,  improved  transient  temperature 

solutions  can  be  obtained  as  described  in  this  chapter. 

In  steady-state  analysis,  finite  element  ternperature  distribu- 

tions  are  a  function  of  only  the  spatial  coordinate,  but  for  transient 

analysis,  the  element  temperature  distribution  are  a  function  of  both 

space  and  time.  For  example,  a  one-dimensional  transient  heat  conduc- 

tion  is  governed  by  the  partial  differential  equation, 

2 
U- - ~ c A -  a T -  aT 

ax 2 at (4.1) 

where k is  the  material  thermal  conductivity, p is  the  density, 

c is  the  specific  heat,  A  is  the  conduction  area,  and  T  is  the 
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temperature  which  varies  with  the  spatial  coordinate  x  and  time t. 

A two-node  linear  conventional  finite  element  may  be  used  in  the 

analysis  where  the  element  temperature  variation  T  is  expressed 

in  the  form  (Fig.  10(a)) 

T(x,t) 11 - I, y J x x  

where Ni(x), i=1,2 are  the  element  interpolation  functions  which 

are  a  function  of  the  spatial  coordinate x; L is  the  element  length, 

and  Ti(t), i =1,2 are  the  time-dependent  nodal  temperatures. 

With  the  heat  equation  shown  in  Eq.  (4.1),  the  corresponding 

element  equations  and  element  matrices  can  be  derived  as  described 

in  section  2.3.  Typical  element  equations  have  the  form 

where  ET)  and  ET)  denote  vectors of nodal  temperatures  and  the 

time  rate of change of nodal  temperatures,  respectively.  The  matrix 

[K] and  the  vector {Q) represent  the  conductance  matrix  and  the  heat 

load  vector,  respectively,  and  have  the  same  meaning  as  previously 

described  for  the  steady-state  analysis  in  the  preceding  chapter. 

The  additional  matrix [ C ]  is  called  the  capacitance  matrix  and  defined 

by (see  Eq.  (2.15a)) 
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Fig. 10. One-dimensional  element interpolation functions. 
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For  the  linear  interpolation  functions  shown  in  Eq. ( 4 . 2 ) ,  the 

capacitance  matrix  can  be  evaluated  as 

r 2  
[CI = “g- PcAL I ( 4 . 5 )  

This  form  of  the  capacitance  matrix,  Eq. (4.51, is  called  a  consistent 

capacitance  matrix  because  its  definition  is  consistent  with  the 

matrix  formulation,  Eq. ( 4 . 4 ) .  Quite  often.,  the  above  capacitance 

matrTx  is  approximated  by  lumping  the  off-diagonal  terms  with  the 

diagonal  terms  to  give, 

[ C ]  = - P 
2 [: :] 

and is called  a  lumped  capacitance  matrix.  It  should  be  noted  that 

degradation of the  solution  accuracy  may  result  from  the  use  of  the 

lumped  capacitance  matrix  compared  with  the  consistent  capacitance 

matrix.  However,  computational  advantages  (e.g.  explicit  time 

integration  algorithms)  may  be  achieved  using  the  lumped  capacitance 

matrix  whereas  the loss of  solution  accuracy  may  be  insignificant 

[ S I .  

4 . 1  The  Nodeless  Variable 

In the  preceding  chapter,  exact  finite  elements  for  steady- 

state  analysis  are  formulated  based  upon  solving  ordinary  differential 

equations.  Exact  element  temperature  variations  after  imposing  nodal 

temperatures  as  boundary  conditions  are  written  in  the  form, 
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T(x) = No (x) To + N1(x)  T1 + N2 (x) T2  . ( 4 . 7 )  

where  Ni,  i =1,2 are  element  interpolation  functions;  Ti, i=1,2 

are  unknown  nodal  temperatures, NO(x) is  the  element  nodeless 

interpolation  function,  and To is  a  known  nodeless  parameter. 

For  transient  thermal  problems,  it is not  possible  to  formulate 

exact  element  interpolation  functions in closed  form  because  general 

solutions  to tpical transient  problems  are  infinite  series.  However, 

since  the  transient  response  may  approach  exact  steady-state  solutions 

as  time  becomes  large,  the  use  of  the  exact  steady-state  element 

temperature  variation  in  the  form  of  Eq. ( 4 . 7 )  may  provide  better 

accuracy of solutions  than  those  obtained  from  the  linear  conventional 

element,  Eq. ( 4 . 2 ) .  

To use  the  steady-state  element  temperature  variation  for 

transient  analysis,  Eq. ( 4 . 7 )  is  written  in  the form, 

where  the  unknown  nodal  temperatures T1 and T2  become  a  function 

of time t. Since  the  nodeless  parameter To is  known  and  independent 

of  time,  the  product  of  the  nodeless  interpolation  function  and  the 

nodeless  parameter, NO(x) To, retains  the  same  shape  throughout 

the  transient  response.  Characteristics  of  the  element  temperature 

variation  expressed by Eq. ( 4 . 8 )  during  the  response  are  illustrated 

in  Fig. 10(b). 

Equation ( 4 . 8 )  may  not he a  good  representation  for  a  transient 

thermal  response  as will be  shown by the  following  argunent. A s  

described  in  section 3.1.1, the  nodeless  parameter  To  is  a  scalar 
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quantity  which  contains  a  physical  parameter  associated  with  a  given 

heat  load.  For  example,  the  nodeless  parameter  for  a  slab  subjected 

to  a  uniform  internal  heat  generation  rate Q, is  given  by  (see 

Table 2) 

Q1L2 

2k 
To = - 

where k is  the  material  thermal  conductivity  and L is  the 

element  length.  If  a  slab  is  modeled  by  an  exact  finite  element, 

the  element  temperature  variation  is given’by (see  Appendix A ,  

Case  2) 

where T1 and T2  are  the  element  nodal  temperatures.  If  both 

surfaces  of  the  slab  have  a  specified  temperature Ts in  addition, 

the  above  equation  becomes 

T(x,t=O) = - L 
X (1 - y) x - ‘I1L + (1 - 5)  Ts + (:) Ts 

2k  L 
( 4 . 9 )  

For  the  case  where  the  internal  heat  generation  is  raised  instan- 

taneously  from  Q  to  Q2,  the  transient  temperature  variation 

within  the  slab  should  gradually  increase  and  reaches  the  new  steady- 

state  temperature  variation 

1 

2 

T (x, t-w) = (1 - -) x - Q2L + (1 - 7) Ts + (z) Ts x X 
L L 21c 

(4.10) 
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where  the  new  nodeless  parameter is 

Q2L2 

2k 
To = - 

Since  the  nodal  temperatures  at  both  sides of the  slab  are  fixed, 

the  above  two  temperature  variations, Eqs. (4.9 -4.10),  suggest  that 

the  nodeless  parameter  To  should  vary  with  time so the  element 

temperature  can  change  gradually  during  the  transient  response.  This 

argument  leads  to  a  modification of the  element  temperature  variation 

employed  in  the  steady-state  analysis,  Eq.  (4.8),  to  the  form 

where  the  nodeless  parameter  becomes an  additional  time-dependent 

element  unknown  and  is  called  a  nodeless  variable. A typical  element 

temperature  variation  with  the  nodeless  variable  T (t) is  illus- 

trated  in  Fig.  lO(c). 

0 

4.2  Element  Equations  and  Matrices 

In this  section,  element  equations  and  matrices  for  both  the 

nodeless  parameter  approach  and  nodeless  variable  approach  are 

presented.  In  the  nodeless  parameter  approach,  the  element  tempera- 

ture  variation  shown  in  Eq.  (4.8)  can  be  written  in  the  matrix form 

lTo I 
(4.12) 
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Using  the  definition  of  the  element  capacitance  matrix  shown  in 

Eq. ( 4 . 4 ) ,  the  capacitance  matrix  for  the  given  element  interpolation 

functions  can  be  derived.  Element  equations,  Eq. ( 4 . 3 ) ,  can  then  be 

written  explicitly  as 

I coo 

c o l  

c02 

c o l  

5 1  

5 2  

KOO 

0 

0 

0 

K1l 

K12 

0 

(4 .13 )  

where  Cijy  i,j =0 ,1 ,2  are  typical  terms  in  the  capacitance  matrix; 

Kij  and  Qi,  i,j =0,1 ,2  are  typical  terms  in  the  element  stiffness 

matrix  and  the  heat  load  vector  previously  described  in  the  steady- 

state  analysis.  Since  the  nodeless  parameter To is  constant,  its 

time-derivative aT /at  is  zero.  Therefore,  the  first  equation 

which  involves  the  nodeless  parameter  is  uncoupled  from  the  nodal 

unknowns in  the  second  and  third  equations.  Hence,  the  above  equa- 

0 

tions  reduce  to 

LC12 c22  { ::}+ 
(4 .14 )  

Note  that  these  equations  contain  two  basic  element  nodal  unknowns 

as  for  the  linear  conventional  finite  element.  Once  the  nodal 

temperatures  at  a  typical  time  are  computed,  element  temperature 

variation  can  be  obtained  using  Eq. ( 4 . 1 2 ) .  

In  the  nodeless  variable  approach,  the  element  temperature  varia- 

tion  shown  in  Eq. ( 4 . 1 1 )  can  be  written  in  the  matrix form 
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. .. . 

(4 .15 )  

where  T (t) denotes  the  element  nodeless  variable  which  is  a  func- 

tion  of  time  as  the  unknown  nodal  temperatures Tl(t)  and  T2(t). 

Since  the  element  interpolation  functions  are  identical  to  those 

0 

used  in  the  nodeless  parameter  approach,  the  elenent  matrices  are 

also  identical.  Element  equations  obtained  using  this  approach  have 

the  form 

coo c o l  CO2] 1 % 
c o l  5 1  5 2  +l 

c02 c12 c221  +2 +I  K 0 
00 

O K1l K12 O l  

O K12 “221 

(4.16) 

Because  the  nodeless  variable  is  unknown,  the  equations  are  coupled 

through  the  capacitance  matrix  due  to  the  presence  of . Thus 

typical  element  equations  obtained  from  the  nodeless  variable  approach 

contain  three  unknowns,  i.e.  one  more  unknown  than  the  nodeless 

parameter  apporach or the  linear  conventional  finite  element. 

+O 

An advantage  of  the  nodeless  parameter  and  nodeless  variable 

approaches  is  that  both  can  provide  an  exact  steady-state  solution 

at  the  initial  condition for the  transient  response. A s  time  becomes 

large  and  new  steady-state  thermal  equilibrium  is  reached,  the  exact 

temperature  distribution  may  be  predicted  by  both  approaches. It 

should  be  noted  that  with  the  use  of  the  nodeless  variable  approach 

the  temperature  variation  within  the  nodeless  variable  element  can 
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vary  with  time  even  though  the  element  nodal  temperatures  are  fixed. 

This  feature  is  characterized  by  the  term N (x) T (t) shown  in 

Eq. (4.11) and  is  different  from  the  linear  conventional  finite 

element  where  the  element  temperature  distribution  is  completely 

controlled  by  nodal  temperatures. 

0 0 

4.2.1  Rod  Element 

The rod element  with  heat  conduction  combined  with  surface 

convection,  internal  heat  generation,  or  surface  heating  previously 

considered  in  Fig. 4, Cases  la-d  is  extended  for  transient  analysis. 

For  each  heat  transfer  case,  the  governing  differential  equation  for 

the  temperature  distribution  T(x,t)  can  be  derived  using  an  energy 

halance  on  a small segment  of  the  rod.  These  governing  differential 

equations  are: 

aT a 2T p~A--!d- = o  at ax L 

aT 2 
pc.4 - - kA 7 a + hpT = hpT, 

at ax 

aT  a2T 
at PcA- - kA7 = QA 

ax 

(4.17a) 

(4.17b) 

(4.17~) 

(4.17d) 

where  A  is  the  element  cross-section  area,  h  is  the  convection 

coefficient, p is the  cross-section  perimeter, T, is  the  surround- 

ing  medium  temperature,  and q is the  specified  surface  heating  rate 
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per  unit  area.  As  one  example,  conduction  with  internal  heat  genera- 

tion  where  the  exact  steady-state  element  temperature  variation  is 

(see  Appendix A ,  Case l(b)) 

T(x,t) = (1 - 2) To + (1 - -) T1 + (c) T2 

= lNO(X)  N1(x) N2 (X)] [ i!} 
X X X 

L 

where  To  is  the  nodeless  parameter  given  by  (see  Table 2)  

-E  2 
TO - 2k 

(4.18a) 

(4.18b) 

Us.ing  the  exact  element  interpolation  functions  shown in Eq. (4.18~~) 

above,  the  capacitance  matrix  is  derived  using  Eq. (4.4.). The 

conductance  matrix  and  heat  load  vector  are  derived  using  Eqs.  (2.15b) 

and  (2.16b),  respectively.  Therefore,  the  element  equations  are 

In  the  nodeless  parameter  approach,  the  nodeless  parameter *O 
is constant  and  the  above  element  equations  reduce  to 



a5 

P CAL 

1 

-1 

(4.20) 

with  two  unknown  nodal  temperatures Tl(t) and  T2(t).  It  should 

be  noted  that  the  element  equations  obtained  from  using  the  nodeless 

parameter  approach  shown in Eq.  (4.20)  above  are  identical  to  those 

obtained  from  the  linear  conventional  finite  element  for  this  heat 

transfer  case.  Thus,  results  of  nodal  temperatures  during  the 

transient  response  are  also  identical.  However,  results of element 

tenperatures  are  different  due  to  the  difference  of  their  element 

interpolation  functions,  Eqs.  (4.2)  and (4.18b). As the  transient 

response  reaches  the  steady-state,  the  nodeless  parameter  approach 

provides  exact  solution  for  both  nodal  temperatures  and  element 

temperature  variations  where  only  exact  nodal  temperatures  are 

obtained  through  the  use  of  the  linear  conventional  finite  element. 

In  the  nodeless  variable  apporach,  the  element  equations  with 

two unknowns of nodal  temperatures  and  an  unknown of nodeless 

variable  shown  in  Eq. (4.19) must  be  solved  simultaneously. It can 

be  seen  from  these  equations  that  as  the  steady-state  thermal 

equilibrium  is  reached,  the  rate  of  change  of  nodal  temperatures 

and  the  nodeless  variable  vanish.  Then  the  first  equation  yields 

which  is  identical  to  the  nodeless  parameter  shown  in  Eq. (4.18b). 

This  neans  the  nodeless  variable  varies  during  the  transient  response 
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and  provides  the  value  required  for  computation  of  the  exact 

temperature  variation  when  thermal  equilibrium  is  reached. 

For  other  heat  transfer  cases  such  as  conduction  with  surface 

convection  or  surface  heating,  the  same  procedure is applied. 

Element  matrices  corresponding,to  each  heat  transfer  case  in  the  form 

of  Eq. ( 4 . 1 6 )  are  given  in  Appendix C.. Capabilities  of  the  nodeless 

parameter  and  the  nodeless  variable  finite  elements  for  transient 

analysis  are  evaluated  by  comparisons  with  an  exact  transient 

conduction-convection  solution  and  the  linear  conventional  finite 

element  in  the  first  example  at  the  end  of  the  chapter. 

4 . 2 . 2  Axisymmetric  Element 

Similar  to  the  rod  element,  the  axisymmetric  element  previously 

described  in  the  steady-state  heat  transfer  (Fig. 4, Case 3)  is 

extended  for  the  transient  analysis.  Radial  heat  conduction  is 

combined  with  internal  heat  generation  and  specified  surface  heating 

or  surface  convection  on  the  inner  or  outer  cylinder  surfaces  are 

considered  through  the  boundary  conditions.  The  governing  differ- 

ential  equations  for  the  cases  of  pure  conduction  and  conduction 

combined  with  internal  heat  generation  are 

a T  a (r aT  = Q pcat-rar 

(4.21a) 

(4.21b) 

respectively,  where  r  denotes  the  radial  coordinate. 

Element  equations  can  be  derived  by  the  method  of  weighted 

residuals  applied  to  the  governing  differential  equations. 
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Typical  element  equations  are  in  the  form  of  equation (4.16). The 

element  conductance  matrix  and  heat  load  vector  are  identical  to  those 

obtained  in  the  steady-state  analysis  shown  in Eqs. (3.3Bb)  and 

(3.38~)~ respectively.  The  element  capacitance  matrix  associated  with 

the  rate  of  change  of  nodal  temperatures  has  the  form 

(4.22) 

For the  element  interpolation  functions  associated  with  the  heat 

transfer  cases  shown in  Appendix  A,  the  corresponding  capacitance 

matrix  can  be  evaluated  in  closed  form.  Capacitance  matrices  in 

the  form  of Eq. (4.16) are  given  in  Appendix  C. 

4.3  Applications 

4.3.1  Transient  Heat  Conduction  in  a  Rod  with  Surface  Convection 

A  rod  with  length L subjected  to  surface  convection  and 

specified  end  temperatures  is  shown in Fig.  ll(a>.  Initially  the 

rod  is  convectively  cooled  by  a  surrounding  temperature  at 255 K 

and,  at  time t = O+, the  surrounding  temperature is raiseh 

instantaneously  to  589 K. Transient  temperature  distributions  along 

the  rod  are  computed  using: (1) the  exact  solution  [271 , (2)  two 

linear  conventional  finite  elements, (3)  two  nodeless  parameter 

finite  elements,  and (4) two  nodeless  variable  finite  elements.  In 

each  finite  element  model,  the  element  lengths  are  taken  to  be  equal 

( L / 2 )  with  an  unknown  of  nodal  temperature  at  the  center  of  the  rod. 

Comparisons of the  temperature  variations  obtained  from  these  three 
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(a) Rod heated by surface convection. 

Fig. 11. Conventional and nodeless  variable finite  element 
solutions for a rod Kith  surface convection. 



finite  element  models  and  the  exact  solution  for t = 0 ,  0.01 and 

0.3 s. are  made as shown  in  Fig.  ll(b-d). 

At  time t = 0 while  the  rod  is  in  thermal  equilibrium,  two 

nodeless  variable  finite  elements  provide  the  exact  steady-state 

temperature  distribution.  Two  conventional  finite  elements  are 

unable  to  provide  details  of  the  nonuniform  temperature  distribution 

due  to  the  assurnption of linear  temperature  distribution  within  the 

'element.  At  time t = 0.01s. (Fig.  ll(c))  after  the  rod  has  been 

convectively  heated,  the  differences  in  the  transient  response 

predicted  by  three  finite  element  models  are  shown  clearly. Two 

linear  conventional  finite  elements  predict  the  unknown  nodal 

temperature  at  the  center  of  the  rod  with  fair  accuracy  but  the 

element  temperature  distributions  are  overestimated  from  the  actual 

temperature  distribution  with  a  relatively  high  error.  Two  nodeless 

parameter  finite  elements  yield  the  unknown  nodal  temperature  with 

the  same  accuracy  as  of  two  linear  conventional  finite  elements  but 

predict  extremely  poor  element  temperature  distributions.  Two  nodeless 

variable  finite  elements  provide  the  best  approximation  of  the 

unknown  nodal  temperature  with  excellent  temperature  distributions 

within  the  elements. As the  rod  temperatures  approach  a  new  steady- 

state  solution  at  time t = 0.3 s. (Fig.  ll(d)),  two linear 

conventional  finite  elements  yield  a  fair  approximation  of  the 

unknown  nodal  temperature  but  crudely  approximate  the  temperature 

distribution.  Both  the  nodeless  parameter  finite  elements  and  the 

nodeless  variable  finite  elements  provide  excellent  prediction  of 

the  unknown  nodal  temperature  and  details of the  nonuniform  tempera- 

ture  distribution. 
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(b) Comparative  temperature  distributions at t = O  s. 

Fig. 11. Conventional and nodeless  variable  finite  element 
solutions  for  a rod with  surface convection. 
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Fig .  il. Conventional and Kodeless  variable  finite  element 
solutions  for  a  rod  with  surface  convection. 
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(d)  Comparative  temperature  distributions at t =.30 s. 

Fig. 11. Conventional and nodeless  variable  finite element 
solutions for a rod with  surface convection. 
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Even  though  the  nodeless  parameter  approach  employed  in  this 

problem  yields  excellent  representation  of  the  tenperature  distribu- 

tions  at  the  beginning (t = 0 s . )  and  near  the  end (t = 3 . 0  s . )  

of  the  response,  the  approach  is  unable  to  provide  reasonable  element 

temperature  distributions  during  the  response. As shown in Fig.  U(c) 

at  time t = 0.01 s., temperatures  obtained  from  the  nodeless 

parameter  finite  elenents  are  characterized  by  bumps  within  the 

elements.  These  unacceptable  results  are  caused  by  using  the  steady- 

state  element  temperature  distribution  with  the  constant  nodeless 

parameter  for  the  transient  analysis.  Therefore,  the  nodeless 

parameter  approach  should  not  be  employed  for  transient  response 

predictions.  Instead,  the  nodeless  variable  approach  should  be  used 

since  it  gives  accuracy  superior  to  the  linear  conventional  finite 

element  throughout  the  response  and  predicts  exact  steady-state 

solutions. 

4 . 3 . 2  Transient  Thermal  Stresses  in  a  Rod  with  Internal  Heat 
Generation 

To  further  illustrate  the  use of the  nodeless  variable  approach 

for  one-dimensional  transient  problems  and  demonstrate  additional 

benefits  that  can  be  achieved,  an  analysis  of  transient  thermal 

stresses  in  a  rod  with  internal  heat  generation  is  presented. 

A  rod  with  constant  cross-sectional  area A and  length L 

encased  between  fixed  walls is shown  in  Fig. 12(a).  Both ends  of 

the  rod  have  the  specified  temperatures  at 311 K and 533 K at 

x = 0 and  x = L, respectively.  Initially,  the  rod  is  subjected 

to  a  uniform  internal  heat  generation  rate Q = 358 kW/m3 and  is 

in  the  thermal  equilibrium.  At  time t = O+, the  internal  heat 
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Fig. 12. Conventional and nodeless  variable  finite 
element  soiutions  for  a  fixed end rod  with 
internal heat  generation. 
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generation  rate  increases  abruptly  to  1073  kW/m3  and  remains 

constant  thereafter.  The  rod  is  modeled  using: (1) 20  linear 

conventional  finite  elements, (2 )  two  linear  conventional  finite 

elements,  and  (3)  two  nodeless  variable  finite  elements.  Comparative 

temperature  distributions  at  time t = 0, 0.1 and 1.0 hr.  are 

shown  in  Fig. 12(b). The  figure  shows  that  two  nodeless  variable 

finite  elements  have  the  same  capability  in  predicting  transient 

temperatures  as  20  linear  conventional  finite  elements.  Two  linear 

conventional  finite  elements  underestimate  the  temperature  distribu- 

tions  with  relatively  large  error  throughout  the  transient  response. 

In the  structural  analysis,  three  structural  finite  element 

nodels  with  the  same  discretizations  as  for  the  thermal  finite 

element  models  are  employed.  Element  temperatures  obtained  from 

the  thermal  finite  element  model  are  transferred  directly  to  the 

structural  finite  element  model  for  computation  of  displacements 

and  stresses.  For  the  quasi-static  analysis,  the  structural  response 

are  computed  at  times  corresponding  to  the  transient  thermal  solu- 

tions  obtained  previously.  At  each  time,  the  equivalent  nodal 

thermal  forces  are  computed  using  Eq.  (3.57)  and  the  element  nodal 

displacements  are  computed  from  Eq.  (3.55).  Once  the  element  nodal 

displacements  are  obtained,  element  displacement  distributions  and 

element  thermal  stresses  are  computed  from  Eqs.  (3.53)  and  (3.58), 

respectively. 

Displacement  distributions  obtained  from  the  three  structural 

finite  element  models  are  shown  in  Fig. 12(c). The  figure  shows 

that  two  linear  conventional  finite  elements  are  inadequate to 

represent  the  details  of  nonuniform  displacement  distributions. 
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Similar  to  the  thermal  analysis,  displacement  distributions  obtained 

from  two  nodeless  variable  finite  elements  and 20 linear  conventional 

finite  elements  are  in  excellent  agreement  throughout  the  transient 

response.  Comparative  thermal  stresses  obtained  from  these  finite 

elernent  models  at  the  times  mentioned  above  are  given  in  Table 5 .  

Thermal  stresses  conputed  from  two  nodeless  variable  finite  elements 

and 20 linear  conventional  finite  elements  are  equal  since  temperature 

variations  of  these  two  finite  element  models  coincided.  Two  linear 

conventional  finite  elements  underestimate  the  thermal  stresses  and 

the  error  increases  with  tine  with  a  aaximum  of 10% at t = 1.0 hr. 

These  two  examples  clearly  demonstrate  benefits  of  using  the 

nodeless  variable  approach  in  one-dimensional  transient  thermal- 

structural  problems.  Further  applications  of  the  nodeless  variable 

approach  can  be  found  in  Ref. [23]. The  use  of  the  nodeless  variable 

for improving  temperature  solutions  in  the  transient  thermal 

analysis  directly  improves  accuracy  of  displacement  and  stress 

distributions  in  the  structural  analysis.  The  advantages  of  the 

nodeless  variable  approach  for  linear  transient  thermal-structural 

problems  have  been  demonstrated  in  this  chapter.  The  approach  will 

be  extended  to  nonlinear  steady-state  and  transient  thermal-structural 

analysis  which  includes  radiation  heat  transfer  in  the  next  chapter. 
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Table 5 

Comparative  Thermal  Stresses  for a Rod with 
Internal  Heat  Generation 

Stress,  MPa 

20 Conv. Elements 
~ 

Time, t 2 Conventional 2 Nodeless  Variable 
Hr . Elements  Elements % D i f f  . 

0 

0.1 

1.0 

-507 

-598 

-652 

-531 

-640 

-724 

4.5% 

6 .5% 

10.0% 



Chapter 5 

ONE-DIMENSIONAL THERMAL-STRUCTURAL FINITE ELEMENT ANALYSIS 
WITH  RADIATION  HEAT  TRANSFER 

Due  to  their  relatively  low  weight,  high  stiffness  and  ease of 

fabrication,  trusses  have  high  potential  for  use  in  space  structures 

for  solar  collectors,  antenna  and  space  stations.  Thermal  analysis 

of  these  structures  includes  conduction  heat  transfer  combined  with 

significant  radiation  heat  transfer.  Radiation  heat  transfer  intro- 

duces  a  strong  nonlinearity  in  the  energy  equation  being  solved. 

Furthermore,  a  time  dependent  solution  procedure  is  required  for  the 

analysis  due  to  the  changing  orientation  of  the  structure  during  the 

orbit. 

In  this  chapter,  finite  element  solution  procedures  for  one- 

dimensional  transient  thermal  analysis  with  radiation  heat  transfer 

are  presented.  Three  finite  element  types  are  formulated: (1) an 

isothermal  element, ( 2 )  a  linear  conventional  element,  and ( 3 )  a 

nodeless  variable  element.  Accuracy  and  efficiency  of  the  finite 

elements  are  evaluated  using  two  thermal-structural  examples  at  the 

end of the  chapter. 

5.1. Solution  Procedures  for  OneLdimensional  Transient  Thermal 
Analysis  with  Radiation  Heat  Transfer 

In  this  section,  transient  thermal  analysis  for  a  one- 

dimensional  finite  element  with  radiation  heat  transfer  is  presented. 

100 
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The  radiation  surface  is  assumed  to  be  diffuse,  gray  and  opaque 

which  means  the  emitted  radiation  energy  is  uniformly  distributed, 

independent  of  wave  length  and  the  material  does  not  transmit 

radiation.  For  convenience  all  material  thermal  properties  are 

assumed  constant. 

For  one-dimensional  transient  heat  conduction  in  a  rod  with 

surface  radiation,  the  governing  differential  equation  for  the 

temperature  distribution  T(x,t)  can  be  derived  using an energy 

balance  on  a small segment.  With  the  assumptions  mentioned  above, 

the  governing  differential  equation  is 

aT 
at ax 

2 
PcA - - kA 5 + E ups T4 = a pq 

where p is  the  density,  c  is  the  specific  heat, A is  the  rod 

cross-sectional  area, k is  the  material  thermal  conductivity, 

0 is  the  Stefan-Boltzmann  constant, E is  the  surface  emissivity, 

a  is  the  surface  absorptivity, qr is  the  incident  surface  heating 

rate  from  distance  directional  sources  per  unit  area, ps and 

are  the  cross-sectional  perimeters  for  surface  emitted  energy  and 

incident  energy,  respectively. 

pq 

Finite  element  equations  corresponding  to  the  governing  differ- 

ential  equation ( 5 . 1 )  can  be  derived  using  the  method  of  weighted 

residuals  as  described  in  section 2 . 3 .  For  this  case,  typical 

element  equations  have  the  form 

where  LC]  is  the  element  capacitance  matrix;  [Kc]  and [K,] are 
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the  element  conductance  matrices  corresponding  to  conduction  and 

radiation,  respectively,  {Qc)  is  the  element  vector  of  conduction 

heat  flux  across  element  boundary,  and  {Qr}  is  the  element  heat 

load  vector  due  to  incident  radiation.  These  matrices  are  expressed 

in  the  form  of  integrals  over  the  element  length L as  follows: 

L 

0 

L 
F 

{Qr 1 = \ apq qr INT}  dx 
0 

(5.3a) 

(5.3b) 

(5.3c) 

(5.4a) 

(5.4b) 

where LN ] denotes  the  element  temperature  interpolation  functions. T 
A s  shown  in  equation (5.3~)~ the  Conductance  radiation  matrix 

contains  the  element  temperature  within  the  integral.  The  element 

equations,  Eq. (5.2), thus  constitute  a  nonlinear set of equations. 

Since  the  time  rate  of  change  of  the  temperature  vector { T I  also 
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appears  in  the  element  equations,  a  transient  nonlinear  solution 

procedure  is  required  for  the  analysis. 

Typical  techniques  for  transient  nonlinear  solutions  combine 

a  linear  transient  solution  method  and  a  steady-state  nonlinear 

solution  method.  The  solution  technique  here  uses  a  time-marching 

scheme  where  temperatures  are  computed  at  the  middle  of  the  time 

step,  the  Crank-Nicolson  algorithm.  At  each  time  step,  Newton-Raphson 

iteration is used  to  correct  for  nonlinearities.  Further  details  of 

these  methods  including  other  solution  algorithms  can  be  found  in 

the  finite  element  text,  Ref. [IS]. 

Starting  from  the  element  equations, Eq. ( 5 . 2 ) ,  the  time- 

marching  scheme is first  applied  by  approximating  the  time  rate  of 

change  of  nodal  temperatures  as 

where A t  is  the  time  interval  between  the  time  step n and n+l 

such  that tn+l - tn + At; {T In and {T in+l are  the  vectors of 

nodal  temperatures  at  the  time  step n and n+l, respectively. 

Since  the  Crank-Nicolson  algorithm  computes  temperature  solutions  at 

the  middle  of  tine  steps,  nodal  temperatures  at  the  middle  of  the 

step  are  approximated by 

- 

where  IT)  denotes  the  vector  of  nodal  temperatures  at  the  middle 

of  the  step.  From  this  equation,  the  vector of nodal  temperatures 

at  the  step n+l is 
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{T}n+l = 2{T} - {T), (5.7) 

By  combining Eqs. (5.5) and (5.7), the  time  rate of change of the 

nodal  temperature  vector  shown  in Eq. (5.5) can  be  expressed  in 

terms of nodal  temperatures  at  the  middle  of  the  step  and  step  n 

as 

Substituting Eq. (5.8) into Eq. ( 5 . 2 ) ,  the  element  equations  become, 

(5.9) 

In Eq. (5 .9 ) ,  the  vector of nodal  temperatures  {TI  that 

appears  on  the  right-hand  side  is  known from the  previous  step. 

Since  the  unknown  nodal  temperatures  contained  in  the  vector  {TI 

are  computed  at  the  middle of time  step,  the  heat  load  vectors  must 

be  evaluated  at  the  same  time.  Once  the  unknown  nodal  temperature 

vector  {TI  is  obtained,  the  nodal  temperature  vector  {TIn+l  at 

the  step  n+l  can  be  computed  from  Eq. ( 5 . 7 ) .  

n 

The  element  equations  obtained  by  applying  the  Crank-Nicolson 

algorithm  shown  in Eq. (5.9) are  in  the form of  nonlinear  algebraic 

equations 

(5.10) 

where 

(5.  lla) 
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and 

(5. llb) 

For  any  temperature  vector  {TI  that  is  not  an  exact  solution  to 

equations shown in Eq. (5.10) above,  an  unbalanced  nodal  heat  loads 

exist  which  can be written  in  the  form  of  a  vector E $ )  as 

or  in  tensor  notations, 

(5.12b) 

To  develop  the  Newton-Raphson  method  a  Taylor  series  expansion  with 

the  first  order-derivative  accuracy  is  written  as 

(5.13) 

A set  of  algebraic  equations  is  obtained  in  the  form 

[Jim = {Rim (5.14) 

where  the  superscript  m  denotes  the  mth  iteration.  The  matrices 

[Jim and {Rim are  the  Jacobian  matrix  and  the  residual  load  vector, 

respectively,  defined  by 

= -  
Jij aT 

j 
(5.15a) 
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Ri - - Qi - (5.15b) 

At  each  iteration,  the  vector of nodal  temperature  increments 

is  computed  using  Eq. (5.14) and  a  new  temperature  vector 

is obtained  from 

{TIm+' = {T}m +  AT}^+' (5.16) 

The  iteration  process  is  terminated  when  a  convergence  criteria 

(such  as  the  maximum  nodal  temperature  increment  is  less  than  a 

specified  value) is met.  For  steady-state  analysis,  the  equations 

shown  in  Eq. (5 .2)  do  not  contain  the  time  rate  of  change  of  nodal 

temperatures,  and  only  the  Newton-Raphson  iteration  is  required. 

5 . 2  Element  Formulations 

In  this  section,  three  one-dimensional  finite  elements  with 

surface  radiation  are  formulated.  Crank-Nicolson  and  Newton-Raphson 

methods  described  in  the  preceding  section  are  employed  for  the 

transient  and  nonlinear  solutions,  respectively. 

5.2.1 Isothermal  Element 

The  isotheraal  element  is  a  simple  finite  element  suitable  for 

problems with negligible  conduction  heat  transfer. A uniform 

temperature  variation  is  assumed  along  the  element  that  varies  only 

with  time  (Fig. 13(a)). This  element  is  different  from  the  finite 

elements  mentioned  in  the  previous  chapters  since  element  temperature 

is  the  only  unknown  for  the  isothermal  element.  Since  the  element 
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neglects  heat  conduction,  the  governing  differential  equation  shown 

in  Eq.  (5.1)  becomes 

p c A  - + E ups T4 = a pq pr dT 
dt (5.17) 

where  T  denotes  the  element  temperature  which  is  a  function  only 

of  time t. 

The  Crank-Nicolson  algorithm  is  applied  to  the  above  differential 

equation  by  first  w-riting  the  rate  of  change  of  the  element  tempera- 

ture  in  the  form  of  Eq. (5.8), 

where  T  denotes  the  element  temperature  at  the  middle  of  the  step. 

Substituting  this  equation  into  Eq.  (5.17)  yields  a  nonlinear 

algebraic  equation in the  form 

2 
At (-- PCA + E u p  T ) T = a pq qr ~ C A  T (5.18) 3 2 

S n 

After  the  element  temperature T at  the  middle  of  the  step shown in 

the  above  equation  is  obtained,  the  element  temperature  at  the  end 

of  the  step is computed  from 

(5.19) 

Next,  the  nonlinear  algebraic  equation shohn in  Eq.  (5.18)  is 

solved  by  applying  the  Newton-Raphson  method.  In  this  case,  the 

unbalanced  element  heat  load  is  given by (see  Eq.  (5.12)), 
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(5.20) 

Using  Taylor  series  approximation,  an  algebraic  equation  is  obtained 

in  the  form 

(5.21) 

where  Jm  and  Rm  are  the  Jacobian  and  the  residual  load  at  the 

mth iteration  defined  by 

Jm = = pcA + 4 cups  T3 aT A t  (5.22a) 

Rm = -$ = - pcA  (Tn - T) - E U  ps T4 2 
At 

(5.22b) 

+ a  Pq  Pr 

At  each  iteration,  the  element  temperature  increment  AT  is  computed 

from  Eq.  (5.21)  and  a new element  temperature  is  obtained  from 

(5.23) 

After  the  convergence  criterion  is  met,  the  element  temperature 

shown  in  Eq.  (5.23)  is  used  in Eq. (5.19)  to  compute  the  element 

temperature  at  the  end of the  step.  The  use  of  the  isothermal  element 

does  not  require  a  set of simultaneous  equations  due  to  the  assump- 

tion of negligible  heat  conduction  as  previously  mentioned.  The 

transient  response  of  each  element,  therefore,  can  be  computed 

separately. 
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The  isothermal  element is useful  for.modeling  truss  members 

where  heat  conduction  is  negligible  in  comparison  with  the  incident 

heating  and  emitted  radiation.  Applications of the  isothermal 

element  for  transient  analysis  of  truss-type  structures  with  surface 

radiation  can  be  found  in  Refs.  [29,30]. 

5.2.2  Conventional  Element 

For  the  conventional  element,  a  linear  temperature  variation 

is  assumed  between  the  two  element  nodes  (Fig. 13(b)), 

where  the  unknown  nodal  temperatures Tl(t)  and T2(t) are  a 

function  of  time t. With  the  conduction-radiation  differential 

equation  shown  in E q .  (5.1), element  equations  can  be  derived  as 

shown  in Eq. (5.2). The  vector  of  unbalance  nodal  heat  loads  shown 

in  Eq.  (5.12a)  is  written  explicitly  in  the  form 

or 

(5.25) 



For  convenience  nodal  heat  load  vectors  corresponding  to  each  term 

on the  right-hand  side  of  the  above  equation  are  introduced  to  yield 

( 5 . 2 6 )  

The  Jacobian  matrices  and  the  residual  heat  load  vector  can now be 

formulated  by  using  the  definitions  (see  Eq. ( 5 . 1 5 ) )  

For  example,  the  first  term on the  right-hand  side  of  Eq. ( 5 . 2 6 )  is 

the  heat  load  vector  associated  with  the  capacitance  matrix, 

With  the  linear  element  interpolation  functions  shown  in Eq. ( 5 . 2 4 ) ,  

this  term  can  be  evaluated i n  closed  form  as 

2 
At W C c 3  = - 

6 3  

Using  the  definition  of  Jacobian Jij = a$,/aT i,j = 1 , 2 ,  the 
j y  

corresponding  Jacobian  matrix  is 
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(5 .27 )  

Similarly,  the  Jacobian  matrix  associated  with  the  conductance  conduc- 

tion  matrix  is  obtained  in  the form 

( 5 . 2 8 )  

The  third  term  on  the  right-hand  side of Eq. ( 5 . 2 6 )  is  the  heat  load 

vector  associated  with  the  radiation  matrix, 

or 

= i  E (3 ps T  Ni  dx 4 
'i 

0 

Therefore,  the  corresponding  Jacobian  is 

L 
E U  ps T  3 Ni N. dx 

J 
0 

or 

(5 .29 )  
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With  the  linear  element  interpolation  functions  shown in Eq. (5.24), 

this  Jacobian  matrix  can  be  evaluated  in  closed  form  as 

(5.30) 

It can  be  seen  that  the  Jacobian  matrix  associated  with  the 

radiation  conductance  matrix  is  strongly  nonlinear  since  the  unknown 

nodal  temperatures  contribute  to  all  terms  in  the  matrix.  The  matrix 

is  sometimes [31] approximated  by  lumping  these  terms  together 

similar  to  the  lumped  capacitance  matrix  given  in Eq. (4.6). The 

lumped  Jacobian  matrix  results  in  a  much  simpler  form  with  zero  off- 

diagonal  terms, 

lo 
(5.31) 

From Eqs. (5.15)  and  (5.26),  the  total  residual  load  vector 

is 

(5.32) 

For  example,  the  residual  load  vector  associated  with  the  radiation 

conductance  matrix  is 
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Using  the  linear  element  interpolation  functions  shown  in  Eq.  (5.24), 

this  residual  load  vector  can  be  evaluated  in  closed  form, 

5T1 4 + 4T1T2 3 + 3T1T2 2 2  + 2T1T2 3 + T2 
1 

(5.33) 
T; + 2T:T2 + 3T;T; + 4T1Tg + 5Tl 

After  all  Jacobian  matrices  and  residual  heat  load  vectors  are 

computed,  a  final  set  of  algebraic  equations  is  obtained  in  the  form 

[J]" = {R)"  (5.34a) 

where  the  superscript m denotes  the  mth  iteration  and, 

The  solution  of  the  temperature  vector  at  successive  times  proceeds 

as  previously  discussed  for  the  isothermal  element. 

As  shown  in  Eq.  (5.34a),  the  transient  and  nonlinear  solution 

procedures  lead  to  a  set  of  algebraic  equations.  The  Jacobian 

matrices  and  the  residual  heat  load  vectors  shown  in  Eqs.  (5.34b-c) 

are  thus  necessary  for  the  analysis.  With  the  linear  element  inter- 

polation  functions  shown  in  Eq.  (5.24),  these  matrices  can  be 
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evaluated  in  closed  form  and  are  given  as  computer  subroutines  in 

Appendix D. 

5.2.3  Nodeless  Variable  Element 

In  the  preceding  chapter,  the  nodeless  variable  approach  was 

introduced  for  improvement  of  temperature  solutions  in  one-dimensional 

linear  transient  analysis.  The  basic  idea  of  the  approach  is  the  use 

of  the  steady-state  element  temperature  interpolation  function  derived 

from  the  solution  of  a  given  ordinary  differential  equation. An 

element  nodeless  variable is employed so that  exact  steady-state 

solutions  are  obtained  at  the  beginning  and  at  the  end of the 

transient  with  realistic  temperature  distributions  prediced  throughout 

the  response.  For  one-dimensional  conduction-radiation  heat  transfer, 

it  is  not  possible  to  obtain  a  closed  form  solution  to  the  governing 

differential  equation, Eq. (5.1). However,  the  nodeless  variable 

approach  is  still  useful  for  the  analysis to provide  improved 

temperature  solutions  for  the  thermal  element  while  maintaining  the 

same  discretization  as  the  two  node  structural  element.  The  element 

temperature  distribution  with  a  nodeless  variable  is  written  in  the 

form, 
r- 

where  NO(x)  is  the  nodeless  variable  interpolation  function, 

Ni(x), i=1,2 are  typical  element  interpolation  functions;  To(t) 

is the  nodeless  variable,  and  T.(t),  i =1,2 are  the  nodal  tempera- 
1 

tures. 
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As mentioned  earlier,  the  nodeless  variable  interpolation  func- 

tion No must  vanish  at  nodes  in  order  to  preserve  continuity  of 

temperature  between  elements.  There  are  wide  choices  for  selecting 

the  nodeless  variable  interpolation  function  to  meet  this  requirement. 

The  simplest  function  is in the  form of polynomials  with  one  order 

higher  than  the  linear  element  interpolation  functions  used  in  the 

conventional  finite  element, 

NO(x) = - (1 - f )  L 
X (5.36a) 

N1(x) = 1 - - X L (5.36b) 

N2(x) = 
X (5.3612) 

With  these  element  interpolation  functions,  the  element  temperature 

distribution,  Eq.  (5.351,  results  in  a  parabolic  distribution  over 

the  element  length  as  illustrated in Fig.  13(c). 

The  use of the  nodeless  variable  element  for  transient  heat 

conduction  with  surface  radiation  follows  the  same  procedure 

described  for  the  linear  conventional  element.  Typical  elenent 

equations  derived  from  the  method of weighted  residuals  shown  in 

Eq. ( 5 . 2 )  contain  three  unknowns.  These  element  unknowns  are  the 

nodeless  variable To and  two  nodal  temperatures T1 and  T2. 

For  transient  solutions,  the  Crank-Nicolson  algorithm  is  applied, 

and  a  set of nonlinear  algebraic  equations  is  obtained.  Next  the 

Newton-Raphson  method  is  used  and  a  new form of  simultaneous 

Eq.  (5.34a)  is  obtained  where  the  Jacobian  matrices  and  the  residual 



11 7 

load  vectors  are  defined  by  Eqs.  (3.54b-c),  respectively.  For  example, 

the  Jacobian  zuatrix  contributed  from  the  radiation  conductance  matrix 

has  the form 

Using  the  element  nodeless  variable  temperature  distribution  and 

their  element  interpolation  functions  shown  in  Eqs.  (5.35)  and  (5.36), 

respectively,  this  Jacobian  matrix  is  written  explicitly  as, 

Due  to  the  complexity  of  the  Jacobian  matrix  as  shown  above  and 

other  matrices  that  appear  in  Eq.  (5.34) , the  computer-based  symbolic 

manipulation  language MACSYMA [32] was  used  to  evaluate  the  matrices 

in  closed  form.  Results of the  Jacobian  matrices  and  the  residual 

load  vectors  are  provided  in  the form of  computer  subroutines  in 

Appendix D. 

After  the  Jacobian  matrices  and  the  residual  load  vectors  are 

computed,  typical  element  equations  shown  in  Eq.  (5.34a)  can  be 

written  in  the  form, 

I JIO J20 

Jol 

Jll 

J21 

m m+l 

(5.37) 
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These  element  equations  contain  unknowns  in  the  increments  of  the 

nodelss  variable  and  the  nodal  temperatures,  i.e.  one  more  unknown 

than  those  obtained  from  the  linear  conventional  element.  Once  these 

unknowns  are  obtained,  new  values  of  the  nodal  temperatures  and  the 

nodeless  variable  are  computed  using  Eq. (5.16). After  the  iteration 

process  is  terminated,  the  nodal  temperatures  and  the  nodeless 

variable  at  the  end of time  step  are  computed  from Eq. ( 5 . 7 ) .  

Finally,  the  temperature  distribution  within  the  element  is  computed 

by using  the  element  nodeless  variable  interpolation  functions  shown 

in  Eq. (5.35). 

It should  be  noted that the  nodeless  variable  interpolation 

functions, Eq. (5.36), introduced  in  this  section  are  applicable 

when  other  heat  transfer  modes  (such  as  surface  convection)  are 

included itr the  analysis.  The  element  temperature  distribution  in 

the  parabolic  form  can  provide  a  more  realistic  temperature  distribu- 

tion  than  the  linear  conventional  element.  This  type  of  the  nodeless 

variable  interpolation  functions  suggests  that  the  nodeless  variable 

approach  can  be  generalized  to  other  finite  element  types.  To 

investigate  this  possibility,  a  two-dimensional  nodeless  variable 

thermal  element  is  developed  in  the  next  chapter. 

5.3 Applications 

The  effectiveness  of  the  nodeless  variabie  finite  element 

described  in  this  chapter  is  demonstrated  for  two  examples of conduc- 

tion  and  radiation  heat  transfer.  The  linear  conventional  finite 

element  described  in  section 5 . 2 . 2  is  used  in  these  two  examples  for 

comparison of solution  accuracy.  Temperatures  computed  from  the 
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nodeless  variable  and  linear  conventional  finite  elements  are  used 

in  the  structural  analysis  for  computation of displacements  and 

thermal  stresses. 

5.3.1 Thermal  Stress  in  a  Rod  with  Surface  Radiation 

A rod  with  constant  cross-section  area A and  length L 

encased  between  fixed  walls  is  shown in Fig. 14(a). The  rod  has 

specified  end  temperatures  at 311 K and 533 R at x = c) and 

x = L, respectively,  and is cooled  along  the  surface  by  radiation 

to zero  medium  temperature.  The  rod  is  modeled  using (1) 20 conven- 

tional  elements  with  consistent  Jacobian  matrices  (see Eq. 5.30)) ,  

( 2 )  two  conventional  elements  with  consistent  Jacobian  matrices, 

( 3 )  two.  conventional  elements  with  lumped  Jacobian  matrices  (see 

Eq. (5 .31)) ,  and (4) two  nodeless  variable  elements.  The  terms 

consistent  and  lumped  refer  to  the  formulation  of  the  Jacobian  matrix 

contributed  by  the  radiation  conductance  matrix  described  in  section 

5.2.2. 

Temperature  distributions  computed  from  these  four  finite 

element  models  are  compared  as  shown  in  Fig. 14(b). The  figure  shows 

that  two  nodeless  variable  elements  have  the  same  capability  in 

predicting  the  unknown  nodal  temperature  (at x/L = 0.5) and  element 

temperature  distributions  as 20 conventional  finite  elements.  Two 

conventional  finite  elements  with  consistent  formulation  underesti- 

mate  the  unknown  nodal  temperature  and  crudely  approximate  temperature 

distribution.  Two  conventional  finite  elements  with  lumped  formula- 

tion  overestimate  both  the  unknown  nodal  temperature  and  element 

temperature  distributions  with  relatively  large  error. 
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T = 311 K 

RAD I AT1 NG HEAT 

b) ROD WITH SURFACE RADIATION 

Fig. 14. Conventional and nodeless  variable  finite 
element  solutions f o r  a  fixed end  rod 
radiating to space. 
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solutions  for a fixed  rod  radiating  to space. 
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In  the  structural  analysis,  four  structural  elements  with  the 

same  discretizations  as  for  the  thermal  models  are  employed.  Element 

temperatures  obtained  from  the  thermal  model  are  transferred  directly 

to  the  structural  finite  element  model  for  computation  of  displace- 

ments  and  stresses.  The  conventional  structural  finite  elements 

employ  linear  element displacement.distributions as  used  in  typical 

finite  element  programs.  The  structural  finite  element  for  the 

nodeless  variable  thermal  element  uses  the  exact  displacement 

distribution,  Eq. ( 3 . 5 3 1 ,  derived  based  upon  the  parabolic  element 

t'emperature  distribution  shown  in Eq. ( 5 . 3 5 ) .  Displacement  distribu- 

tions  obtained  from  these  structural  finite  element  models  are 

compared  as  shown  in  Fig. 14(c). The  figure  shows  that  two  conven- 

tional  finite  elements  are  inadequate  to  represent  the  nonuniform  of 

displacement  distribution.  In  addition,  two  conventional  finite 

elements  with  consistent  and  lumped  formulations  overestimate  the 

thermal  stress  (not  shown)  by 1 2  and 23 percent,  respectively. 

Displacement  distributions  obtained  from two nodeless  variable 

finite  elements  and 20 conventional  finite  elements  are  in  excellent 

agreement  where  the  difference  in  the  thermal  stresses  is  negligible 

(less  than 0.05 percent),. 

5 . 3 . 2  Thermal  Analysis  and  Structural  Response  of  a  Space 
Truss  Module 

A three  member  orbiting  truss  module  shown  in  Fig. 15(a)  is 

used to demonstrate  the  efficiency  of  the  nodeless  variable  finite 

element. A typical  truss  member  receives  incident  heating  which  is 

a  combination  of: (1) solar  heating, ( 2 )  earth  emitting  heating, 

and ( 3 )  earth  reflected  solar  heating.  With  the  open-truss  type 
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element solutions for a fixed end rod 
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(a) Orbiting  truss  space structure. 

Fig.  15. Thermal  analysis and structural  response of a  space  truss module. 
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structure  as  shown  in  the  figure,  member  to  member  radiation  exchanges 

are  re2atively  small  and  are  neglected. A geosynchronous  orbit 

(period  of  24  hr.) is  employed  where  solar  heating  is  large  compared 

to the  earth  emitted  heating.  During  the  orbit,  incident  heating 

normal  to  a  typical  truss  member  varies  continuously  due  to  the 

changing  orientation  of  the  member. As the  orbiting  truss  enters 

and  leaves  the  earth's  shadow,  the  incident  heating  changes  rapidly. 

Member  temperatures  and  structural  deformations  thus  depend  strongly 

on  the  time-dependent  incident  heating. 

To  demonstrate  the  use  of  the  conventional  and  the  nodeless 

variable  finite  elements  formulated  in  the  preceding  section,  the 

truss  module  with  properties  of  aluminum  is  considered.  Four  finite 

element  models  are  employed  where  each  truss  member  is  represented 

by: (1) 10 conventional  elements  with  consistent  formulation, (2) one 

conventional  element  with  consistent  fornulation, ( 3 )  one  conventional 

element  with  lumped  formulation,  and ( 4 )  one  nodeless  variable 

element.  Temperature  distributions  computed  from  these  four  finite 

element  models  at  a  typical  orbital  position  are shown in  Fig.  15(b). 

The  figure  shows  that  the  nodeless  variable  finite  element  model 

provides  excellent  prediction  of  the  nodal  temperatures  and  very 

good  element  temperature  distributions  compared  to  the  refined 

conventional  finite  element  model.  The  conventional  finite  elements 

with  consistent  formulation  tend  to  average  the  nonuniform  tempera- 

ture  distributions  and  thus  cannot  provide  accurate  nodal  temperatures. 

The  conventional  finite  elements  with  lumped  formulation  predict 

nodal  temperatures  very  well  but  yield  large  errors  for  member 

interior  temperatures.  Comparative  temperature  distributions of 
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finite  element  models  at  other  orbital  positions  also  show  a  similar 

trend;  the  nodeless  variable  finite  elements  predict  nodal  tempera- 

tures  and  member  temperature  distributions  very  accurately  compared 

to  the  refined  conventional  finite  elements. 

Temperature  obtained  from  the  four  thermal  finite  element  models 

for  a  complete  orbit  are  transferred  to  the  structural  finite  element 

models  for  computation of displacement  histories.  The  quasi-static 

analysis  described  in  section 2.4  is  employed  for  the  computation 

of  the  unknown  nodal  displacements.  Fig.  15(c)  shows  a  comparison 

of  typical  member  elongation  histories  computed from.the finite 

element  models  during  the  orbit.  Since  the  temperature  distributions 

obtained  from  the  nodeless  variable  finite  element  model  and  the 

refined  conventional  finite  element  model  are  in  very  good  agreement, 

member  elongation  histories  predicted  by  these  two  finite  element 

models  almost  coincide  (maximum  difference  of 1 percent).  Conven- 

tional  finite  element  models  with  consistent  and  lumped  formulations 

yield  errors  for  member  elongation  up to 29 and 44 percent, 

respectively.  Such  large  errors  result  from  the  incapability  of  the 

conventional  finite  element  to  provide  realistic  member  temperature 

distributions.  Since  the  conventional  finite  element  with  consistent 

formulation  trends  to  average  the  member  temperature as previously 

mentioned,  accuracy of the  member  elongation  history  obtained  is  thus 

higher  than  the  conventional  finite  element  with  lumped  formulation. 

These  two  examples  clearly  demonstrate  the  benefits  of  using 

the  nodeless  variable  finite  elements  in  one-dimensional  radiation- 

conduction  problems  that  are  characterized  by  nonuniform  temperature 

distributions.  The  elements  predict  member  temperatures  accurately 
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and  are  compatible  with two-node  structural  elements  to  permit  an 

integrated  thermal-structural  analysis.  Additional  applications of 

the  nodeless  variable  finite  element  for  one-dimensional  thermal 

problems  with  conduction  and  radiation  heat  transfer  appear  in 

Ref. [ 3 3 l .  



Chapter 6 

TGiO-DIT?ENSIONAL  NODELESS VARIULE FINITE  ELEPENTS 

In  the  two  preceding  chapters  the  nodeless  variable  approach 

was  applied  to  one-dimensional  linear  thermal-structural  analysis 

and  to  nonlinear  radiation  heat  transfer.  The  unique  feature  of  the 

approach  is  the  use  of  an  additional  nodeless  variable  for  a  thermal 

finite  element.  Improvement  of  solution  accuracy is achieved  while 

the  same  discretization  is  employed  for  both  thermal  and  structural 

finite  element  models. 

In this  chapter  the  approach  is  extended  for  development  of 

two-dimensional  nodeless  variable  finite  elements.  Restrictions  for 

developing  these  finite  elements  are  first  discussed.  Two  nodeless 

variable  finite  elements  and  their  interpolation  functions  are 

presented.  Then  the  use of the  nodeless  finite  elements  for  linear 

thermal-structural  analysis  is  described.  Efficiency  of  the  nodeless 

variable  finite  elements  is  evaluated  by  comparison  with  the 

conventional  bilinear  four-node  finite  element  and  exact  solutions 

in  examples  at  the  end  of  the  chapter. 

For  simplicity  in  understanding  characteristics  of  the  two- 

dimensional  nodeless  variable  finite  elements,  a  brief  description 

of a  conventional  bilinear  four-node  thermal  finite  element  is 

first  given.  The  element  temperature  distribution  for a bilinear 

four-node  element  is  expressed  in  the  form, 

130 
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T = LX, N2 N3 

where  Ni, i =1,4 are  the  element  interpolation  functions  which 

are  a  function  of  spatial  coordinates  in  two-dimensions,  and  Ti, 

€ =1,4 are  the  time  dependent  nodal  temperatures. 

Fig.  16(a)  shows  a  conventional  four-node  element  with  a  general 

quadrilateral  shape. As described  in  section  2.3,  typical  finite 

element  matrices  are  in  the  form  of  integrals  over  the  element 

volume  or  along  the  element  boundary.  Such  element  matrices  for 

a  quadrilateral  shape  are  difficult  to  evaluate.  To  simplify  the 

element  integrations,  the  quadrilateral  element  in  the  Cartesian 

coordinate  system  (x,y) is transformed  to  a  natural  coordinate 

system (S,n) as shown  in  Fig. 16(b). The  two  coordinate  systems 

are  related  by 

4 

(6.2a) 

(6.2b) 

where  Ni, i =1,4 are  the  element  shape  functions  defined  by, 

(6.3a) 
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or  in  compact  form, 

i =1,4 (6.3b) 

where Si and ni,  i =1,4 are  the  nodal  coordinates  in  the  natural 

coordinate  system.  For  example, c1 = Ill = -1, 5, = 1, Il, = -1, 

etc. 

When  the  shape  functions shown  in  Eq. ( 6 . 3 )  are  used  as Ni 
the  element  temperature  interpolation  functions  in  Eq.  (6.1),  this 

conventional  element  is  called  an  isoparametric  quadrilateral  element 

because  the  same  interpolation  functions  are  used  to  interpolate 

temperature  and  spatial  coordinates. 

Note  that  an  element  temperature  interpolation  function  shown 

in  Eq.  (6.3)  has  a  value of unity  at  the  node  to  which  it  pertains 

and  a  value  of  zero  at  the  other  nodes.  Along  the  element  edge 

(5 = +1, TI = kl), these  element  interpolation  functions  are  linear. 

Therefore,  the  temperature  distribution  along  a  typical  element 

edge  varies  linearly  where  the  magnitude  depends  on  the  temperatures 

of the  two  corner  nodes  located  at  that  edge.  When  elements  are 

connected,  the  conventional  quadrilateral  element  preserves 

continuity  of  temperature  along  the  element  interfaces.  The  conti- 

nuity  of  the  element  interface  temperatures  is  a  basic  requirement 

to  assure  convergence  of  the  temperature  solution  as  element  size 

decreases.  This  continuity  requirement  must  be  met  when  a  new 

thermal  finite  element  is  constructed.  Further  details  of  require- 

ments  for  a  typical  finite  element  to  meet  convergence  criteria  can 

be  found  in  Ref. [15]. 
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6.1 Two-Dimensional  Nodeless  Variable  Thermal 
Finite  Elements 

In  several  thermal-structural  applications,  a  more  detailed 

finite  element  thermal  model  is  required  than  the  finite  element 

structural  model.  To  maintain  the  same  discretization  for  thermal 

and  structural  models,  new  thermal  finite  elements  are  required.  In 

this  section,  two  type of two-dimensional  nodeless  variable  thermal 

finite  elements  for  improved  temperature  solutions  are  presented. 

These  elements  predict  more  realistic  temperature  distributions  than 

the  conventional  finite  element  previously  described.  The  basic 

objectives  for  developing  the  new  finite  elements  are: (1) the 

elements  should  provide  a  nonlinear  temperature  distribution  but 

maintain  four  element  nodes  to  be congruent.with the  four  node 

structural  element,  and (2) compatibility  of  temperature  along 

element  interfaces  must  be  preserved.  The  nodeless  variable  concept 

previously  described  for  one-dimensional  element  is  extended  to 

two-dimensions to meet  these  objectives. 

6.1.1 "Bubble"  Nodeless  Variable 

One  approach [34] for  constructing  nodeless  variable  finite 

elements  is  to  add  a  "bubble"  function  which  vanishes  along  the 

element  boundaries.  The  element  temperature  distribution  is  written 

in  the  form, 

T = LNl N 
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where No is  the  nodeless  interpolation  (bubble)  function  defined 

by 

and To  is  the  nodeless  variable. 

Along  the  element  boundary ( E  = 21, rl = kl),  the  bubble 

function, Eq. (6.5), is  identically  zero.  Therefore,  the  element 

boundary  temperature  reduces  to  a  linear  variation  as  for  the 

conventional  finite  element  and  continuity  of  temperature  along 

element  interfaces  is  preserved.  Within  the  bubble  nodeless  variable 

element,  the  temperature  distribution  is  a  combination  of  the 

conventional  element  temperature  distribution  and  a  bubble  function 

where  its  magnitude  is  measured  by  the  nodeless  varaible . The 

combination  thus  permits  a  quadratic  temperature  distribution  over 

the  element. 

TO 

It  should  be  noted  that  even  though  the  bubble  nodeless 

variable  finite  element  can  provide  a  quadratic  temperature  distribu- 

tion  within  the  element,  the  temperature  along  the  element  boundary 

is linear.  To  achieve  further  improvement  of  the  temperature solu- 

tion,  the  temperature  distribution  should  vary  nonlinearly  along  the 

element  boundary.  With  the  idea of the  bubble  function,  a  nodeless 

variable  finite  element  with  this  behavior  can  be  constructed.  This 

type  of  nodeless  variable  finite  element  is  presented  in  the  next 

section. 
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6.1.2  Boundary  Nodeless  Variable 

In order  to  establish  a  nonlinear  temperature  distribution  along 

the  four  element  edges  as  well  as  within  the  element  interior,  the 

following  four  nodeless  variable  interpolation  functions  (see  Fig. 1 7 )  

are  employed 

(6.6a) 

(6.6b) 

(6.612) 

(6.6d) 

where  each  interpolation  function  varies  quadratically  along  one 

edge  and  vanishes on the  other  edges.  For  example,  the  nodeless 

variable  interpolation  function N5 varies  as 1 - C2 along  the 

edge rl = -1 and  is  identically  zero  on  the  other  three  edges. 

As mentioned  earlier,  continuity of the  temperature  along  the 

element  interfaces  must  be  assured  for  convergence of the  solution. 

This  restriction  can  be  met  by  providing  a  nodeless  variable  for 

each  element  edge.  With  a  nodeless  variable  for  each  element  edge, 

element  interpolation  functions  for  a  quadrilateral  element  can  be 

written  in  the  form, 

T = IN1 N2 N3 NJ T2 

=3 

Tlr 
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Fig. 17. Nodeless  variable  interpolation functions  for 
two-dimensional quadrilateral  finite element. 
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where  Ti,  i =1,4 and  i = 5 , 8  are  the  nodal  temperatures  and  the 

nodeless  variables,  respectively.  Element  interpolation  functions 

Ni, i=1,4 are  the  same as for  the  conventional  bilinear  four  node 

element  given  in Eq. ( 6 . 3 ) ,  and  Ni, i = 5 , 8  are  the  nodeless  variable 

interpolation  functions  given  in Eq. (6.6). 

The  combination  of  the  conventional  and  nodeless  variable  inter- 

polation  functions,  Eq. ( 6 . 7 ) ,  provides  a  quadratic  temperature 

distribution  over  the  element  but  with  only  four  element  nodes. 

Interelement  compatibility is preserved  since  adjacent  elements  have 

a  common  nodeless  variable  on  adjoining  edges.  The  magnitude  of  the 

nonlinear  variation on an  element  edge  is  measured  by  the  correspond- 

ing  nodeless  variable.  Temperature  distributions  for  the  conventional 

bilinear  element  and  the  nodeless  variable  element  are  compared  in 

Fig. 18. 

6.2 Nodeless  Variable  Finite  Element  Formulation 
for  Thermal-Structural  Analysis 

In  this  section,  the  thermal  finite  element  formulation  for  two- 

dimensional  linear  transient  analysis  is  described.  The  formulation 

is  valid  for  both  the  conventional  element  and  the  nodeless  variable 

element. A four  node  structural  element  which  will  be  used  in 

junction  with  the  thermal  element  for  computation  of  thermal  stresses 

is  also  presented. 

6.2.1 Linear  Thermal  Analysis 

In  two-dimensional  transient  heat  conduction,  the  governing 

differential  equation  for  the  temperature  distribution  T(x,y,t) 

may  be  expressed  in  the  form of 
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Fig. 18. Two-dimensional  element  interpolation 
functions. 
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- (k -) + -  (k "> + Q = PC- a aT a aT aT 
ax X ax ay y ay at 

where kx and k are  the  thermal  conductivities  in  x  and  y 

directions,  respectively, Q is the  internal  heat  generation  rate 

per  unit  volume, p is  the  density,  and  c  is  the  specific  heat. 

Y 

To  derive  the  element  equations  and  element  matrices,  the  method 

of weighted  residuals  (see  section  2.3)  is  applied  to  the  governing 

differential  equation (6.8). With  the  boundary  conditions  of 

specified  temperatures,  surface  heating  and  surface  convection  as 

shown in  Eqs.  (2.5a-c),  typical.  element  equations  have  the  form 

where [Cl  is  the  element  capacitance  matrix;  [Kc]  and  are 

element  conductance  matrices  corresponding  to  conduction  and  convec- 

tion,  respectively.  These  matrices  are  expressed  in  the  form  of 

integrals  over  the  surface  area A of  an  element  with  the  thickness 

t as follows : 

( 6 .  loa) 

(6.  lob) 

(6.10~) 

where  [BT]  denotes  the  temperature  gradient  interpolation  matrix, 

and  h  is  the  convection  coefficient.  The  right-hand  side  of  the 
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discretized  equation ( 6 . 9 )  contains  heat  load  vectors  due  to 

specified  nodal  temperatures,  internal  heat  generation,  surface 

heating,  and  surface  convection.  These  vectors  are  defined by 

{QQ} = t J Q{NT} dx dy 
A 

{Qq} = 1 q{NT}  dx  dy 
A 

(6. lla) 

( G  . llb) 

(6. llc) 

(6.11d) 

where q is  the  vector  of  conduction  heat  flux  across  boundary 

that  is  required  to  maintain  the  specified  nodal  temperatures, q is 

the  surface  heating  rate  per  unit  area,  and Tm is  the  convective 

medium  temperature. 

-. 

s1 

As mentioned  earlier,  a  typical  quadrilateral  element  in 

Cartesian  coordinates  (x,y>  is  transformed to the  natural  coordi- 

nates (5,q) to  perform  the  element  matrix  integration.  In 

computation  of  the  conduction  conductance  matrix  (Eq. (6.10b)), fo r  

example,  the  chain  rule  is  first  applied  to  relate  the  temperature 

gradients  in  both  coordinate  systems, I;} aT 

(6.12) 

I 
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Using  the  coordinate  trasnformation  shown in Eq. ( 6 . 2 ) ,  the  above 

relations  become 

or 

1;1 aT 

= [J]-' 

where [J] is  the  Jacobian  matrix  defined  by 

4 3Ni 4 3Ni 
c -  X z -  ag i a t  Yi i=l  i=l 

[ J l  = 

Substituting  the  element  temperature, Eq. (6.1) or (6.7), into  the 

(6.13) 

(6.14) 

right-hand  side  of Eq. (6.13) yields 

ar - "i aY 

T r 

(6.15) 

where  r  is  the  number  of  the  element  unknowns;  r = 4 and 8 for 

the  conventional  bilinear  element  and  the  nodeless  variable 

"_ -. . .. .. . . ,  , .. , 
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element,  respectively.  The  temperature  gradient  interpolation  matrix 

in  the  above  equation  is  given  by 

aN1 aN2 aN 

a n  arl an 
- - .......I: 

- 

(6.16) 

Using  dx  dy = [ JI dC drl where I JI is  the  determinant of [ J] , 

the  conduction  conductance  matrix  terms  of  the  natural  coordinates 

is 

Next,  the  coefficients  in  the  conductio-n  conductance  matrix 

are  computed  by  nunerical  integration;  the  Lagendre-Gauss  method 

is  used  where  the  above  conduction  conductance  matrix  is  written  in 

the form, 

where  Wi, W denote  Gauss  weight  factors,  Si, rl denote  gauss 
j j 

integration  points  and  NG  is  the  number of Gauss  points  in  each 
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coordinate  direction.  Gauss  weight  factors  qnd  Gauss  integration 

point  coordinates  can  be  found  in  Ref.  [15]. 

Other  element  matrices shown in Eqs. (6.10  -6.11) can  be 

formulated  in  the  same  manner.  For  example,  the  conductance 

matrix  and  the  heat  load  vector  associated  with  surface  convection 

are  expressed as 

(6.19b) 

In  performing  the  numerical  integration,  the  accuracy  of  the 

matrices  depends  on  the  number of Gauss  points  used.  In  general, 

the  use  of n Gauss  points  provides  exact  integration  when  the 

integrand  contains  polynomials  of  order  up to 2n -1. For the 

conventional  bilinear  finite  element,  two  Gauss  points  (NG = 2) 

in  each  coordinate  direction  are  normally  used.  Since  the  nodeless 

temperature  interpolation  functions  contain  higher  order  of 

polynomials  than  those  for  the  conventional  bilinear  element, 

more  Gauss  points  should  be  used.  For  the  linear  thermal  analysis 

presented  herein,  three  Gauss  points  in  each  coordinate  direction 
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was  found  by  numerical  tests  to  be  appropriate  for  accurate  node- 

less  variable  element  matrices. 

After  element  matrices  are  computed,  typical  element  equations 

can  be  written  in  the  form 

(6 .20 )  

The  conventional  bilinear  element  has  four  nodal  temperatures  as 

the  unknowns,  thus  the  above  element  equations  contain  four 

unknowns.  The  nodeless  variable  element  has  four  nodal  tempera- 

tures  and  four  nodeless  variables  as  the  element  unknowns,  therefore, 

the  element  equations  contain  eight  unknowns.  In  transient 

analysis,  these  eight  equations  must  be  solved  simultaneously 

similar  to  the  one-dimensional  nodeless  variable  described  in  the 

preceding  chapter. In steady-state  analysis,  the  four  nodeless 

variable  unknowns  can  be  eliminated  from  the  element  equations 

using  the  matrix  condensation  technique [ 3 5 ] .  The  final nmber 

of element  equations  thus  reduces to be  the  same  as  of  the  conven- 

tional  bilinear  element. 

6 . 2 . 2  Structural  Element 

In this  section,  the  congruent  structural  element  is  briefly 

described.  The  element  contains  four  nodes  and  permits  the  same 

discretization  with  the  conventional  and  nodeless  variable  thermal 

elements  described  in  the  preceding  sections.  The  element  stiff- 

ness  matrix is the  same  as  used  in  conventional  four  node  structural 

elements.  However,  the  improved  element  temperature  distributions, 
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Eq. ( 6 . 7 ) ,  are  incorporately  consistently  in  the  thermal  force 

vector  computation  to  yield  an  integrated  thermal  structural 

element. 

The  structural  element  at  each  node  has  two  in-plane  displace- 

ment  unknowns  u  and  v  which  may  vary  with  the  element  local 

coordinates x, y and  time t. Element  displacement  distributions 

are  assumed  in  the  form  (see  Eq.  (2.23)), 

O N2 

N1 O 

O N3 

N2 O 

O N 4  

N3 O 

f . 
v1 

N4 O I s  u3 : i ;  
V 3 

u4 

v4 
\ / 

where  Ni, i=1,4 are  the  element  displacement  interpolation 

functions  which  have  the  same  form  as  for  the  conventional  finite 

element  temperature  interpolation  functions  shown  in Eq. (6.3). 

For  the  quasi-static  analysis,  typical  element  equations  shown 

in  Eq.  (2.26)  reduce to 

[ K s l  CF) = {FT) 

where [Ks] is  the  element  stiffness  matrix,  and CFT} is  the 

(6.22) 
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equivalent  nodal  thermal  load  vector'.  These  matrices  are  expressed 

in the  form of integrals  over  the  element  volume V as 

(6.23a) 

{FT} = I [BsIT [Dl {a)(T(x,y,t) - Tref)  dV  (6.23b) 
V 

where [Bs] is the  strain-displacement  interpolation  matrix  obtained 

from  the  strain-displacement  relations, 

? = [Bsl 

[Dl is  the  elasticity  matrix  defined by (plane  stress) , 

E 
1-v 

= -  2 

1 

V 

0 1-V 
~ :I 2 

(6.24) 

(6 .25)  

where v is  Poisson's  ratio.  The  vector {a) contains  the  thermal 

expansion  coefficients  given by (plane  stress) 

(6.26) 
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T(x,y,t)  is  the  element  temperature  computed  using  the  conventional 

or  the  nodeless  variable  thermal  element  and  Tref  is  the  reference 

temperature  for  zero  stress.  The  elasticity  matrix [Dl and  the 

vector  of  thermal  expansion  coefficients  shown  in  the  above  equations 

can  be  used  for  plane  strain  by  replacing E/(l-v ) for  E, v(1-v) 

for v, and  (l+v)a  for a. 

2 

Similar  to  the  quadrilateral  thermal  element,  numerical  integra- 

tion  is  required  for  computing  the  element  matrices.  Using  the 

Lagendre-Gauss  method,  the  element  stiffness  matrix  and  the  equivalent 

thermal  load  vector  shown  in  Eqs.  (6.23a-b)  are  written  in  the  form, 

NG  NG m 

NG NG m 

(6.27) 

where  T(Si,rlj) is  the  temperature  at  the  element  Gauss  integration 

point si and q j  . 
Unlike  the  thermal  finite  element  previously  described,  the  nodal 

displacement  unknowns  of  the  structural  element  are  the  vector 

quantities.  Transformation  of  the  element  matrices  from  the  local 

coordinates  (x,y)  to  the  global  coordinates (X,Y,Z) is  required. 

In three-dimensions,  the  elenent  stiffness  matrix  becomes  a  12  by  12 

matrix  and  similarly  with  the  nodal  force  vector.  Thus  the  element 

equations  contain  a  total of 12 equations  with  12  nodal  displacement 

unkonwns in the  global  coordinates.  After  the  global  element  matrices 

are  assembled  and  the  nodal  displacements  are  computed,  element  nodal 
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displacements  in  the  local  coordinates  can  be  obtained.  Then  the 

element  stresses  can  be  computed  from 

6 . 3  Applications 

To  illustrate  the  performance  of  the  two-dimensional  nodeless 

finite  element  presented  in  section 6.1.2, two  examples  are  analyzed: 

(1) a  rectangular  plate  with  surface  convection,  and ( 2 )  a  simplified 

wing  section  with  aerodynamic  heating.  In  each  example,  benefits 

of  the  nodeless  variable  finite  element  are  demonstrated  by  comparison 

with  results  from  conventional  finite  element  and  analytical  solutions. 

6.3.1  Steady-State  Heat  Conduction  in  a  Plate  with  Surface 
Convection 

A rectangular  plate  (Fig. 19(a))  has a  specified  temperature 

To along  the  boundaries.  The  plate  is  cooled  by  surface  convection 

to a  zero  medium  temperature, T, = 0. Using  symmetry,  a  quarter  of 

the  plate  is  first  nodeled  by: (1) one  conventional  element,  and 

(2)  one  nodeless  variable  element. 

Fig. 19(b) shows-the comparative  temperature  distributions  at 

y = b/2 for  an  analytical  solution [ 2 7 ] ,  the  conventional  element 

and  the  nodeless  variable  element  solutions.  For  these  models,  the 

conventional  element  gives  a  relatively  high  error  compared  to  the 

nodeless  variable  element.  The  largest  error  for  both  finite  element 

models  occurs  at  the  center  of  the  plate  (16%  and  3%  for  the 
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Pig. 19. Conventional and nodeless  variable  finite 
element solutions f o r  a plate  with  surface 
convection. 
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Fig.  19. Conventional and nodeless  variable  finite elernent 
solutions  for a plate with  surface  convection. 
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conventional  element  and  the  nodeless  variable  element,  respectively). 

At  the  center  of  the  plate,  both  elements  show  a  discontinuity  of 

conduction  heat  flux  indicating  a  need  for  mesh  refinement.  Next, 

the  plate  is  modeled  by  using  four  finite  elements  shown  by  the  dotted 

lines in Fig. 19(a); comparative  temperature  distributions  are  shown 

in  Fig. 19(c). Four  conventional  elements  provide  a  fair  estimate 

of the  temperature  variation,  but  four  nodeless  variable  elements 

yield  excellent  predictions  for  both  nodal  and  element  temperatures. 

Comparisons of tenperatures  at  other  sections  of  the  plate  (not  shown) 

demonstrate  that  four  nodeless  variable  elements  provide  excellent 

agreement  with  the  analytical  solution  for  the  entire  plate. 

6.3.2  Simplified  Wing  Section  with  Aerodynamic  Heating 

To  demonstrate  the  usefulness  of  the  two-dimensional  nodeless 

variable  elements  in  aerospace  thermal-structural  analysis,  a  simpli- 

fied  wing  section  is  analyzed  (Fig. 20(a)). Top  and  bottom  skins 

of  the  wing  section  are  connected  by  three  corrugated  spars  and  are 

subjected  to  syrmnetrical,  nonuniform  tine-dependent  aerodynamic 

heating. 

Three  finite  element  models  are  employed  to  co3puted  temperatures. 

For  a  unit  depth  in  the  spanwise  direction,  the  first  model  consists 

of seven  conventional  elements;  two  elements  each  for  the  top  and 

bottom  skins  and  one  element  for  each  spar.  The  second  model  is 

identical  to  the  first  model  except  nodeless  variable  elements  are 

used.  The  third  model  uses  a  refined  mesh  (not  shown)  with  35  conven- 

tional  elements. 
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( a )  SIMPLIFIED WING SECTION WITH AERODYNAMIC HEATING 

Fig. 19. Conventional and nodeless  variable  finite  element 
solutions  for  a  simplified  wing  section  with 
aerodynamic  heating. 
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Comparative  skin  temperature  distributions  at t = 150 s .  are 

shown  in  Fig. 20(b);  the number  of  elements  cited  is  for  the  skin 

only.  The  nodeless  variable  finite  element  model  predicts  a  realistic 

temperature  distribution  and  gives  very  good  agreement  with  the 

result  from  the  refined  conventional  finite  element  model.  The  crude 

conventional  finite  element  nodel  underestimates  the  average  skin 

temperature  and  is  unable  to  provide  details  of  the  nonuniform 

temperature  distribution. 

In  computation  of  the  skin  thermal  stress,  classical  beam 

theory [16] is  employed  for  comparison  with  two  finite  element  stress 

analyses.  Detailed  temperature  distributions  from  the  refined 

conventional  finite  element  thermal  model  are  used to compute  the 

stress 0 from  beam  theory. Teqerature distributions  from  the 

crude  conventional  thermal  finite  element  model  and  the  nodeless 

variable  thernal  finite  element  model  are  transferred  to  a  structural 

finite  element  model  with  the  same  discretization  for  the  stress 

computations.  Comparative  stress  distributions  at t = 150 s .  are 

presented  in  Fig. 20(c). The  advantage  of  using  the  improved 

temperature  distributions  from  the  nodeless  variable  finite  element 

model  in  computing  stresses  is  clearly  demonstrated.  These  stress 

distributions  are  in  excellent  agreement  with  the  result  from  beam 

theory  with  both  the  critical  stress  and  its  location  accurately 

predicted.  Using  the  temperature  distribution  from  the  crude 

conventional  finite  element  model  yields  significant  errors  in  the 

stress  distribution  and  is  unaccetable  for  this  problem. 

X 

These  two  examples  clearly  demonstrate  the  benefits  of  the 

two-dimensional  nodeless  variable  finite  element  that  can  be  obtained 
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for  thermal-structural  analysis. Additional  applications,  a  summary 

of the nodeless  variable  approach  and  the  thermal-structural  finite 

element  formulation  presented  in  this  chapter  appear  in Ref. [361. 



Chapter 7 

CONCLUDING REMARKS 

A n  integrated  approach  for  improved  thermal-structural  finite 

element  analysis  is  presented.  The  approach  was  motivated  by  aero- 

space  applications  to  improve  thermal-structural  finite  element 

analysis  capabilities. A n  important  goal  is  to  eliminate  the 

incompatibility  between  thermal-structural  analyses  where  a  more 

detailed  finite  element  model  is  required  for  the  thermal  analysis 

than  for  the  structural  analysis.  The  integrated  approach  is 

characterized  by: (1) thermal  and  structural  finite  elements 

formulated  with  common  geometric  discretization  for  full  compatibility 

during  the  coupling  of  the  analyses, (2 )  accurate  nodal  and  element 

temperatures  provided  by  improved  thermal  finite  elements,  and ( 3 )  

accurate  thermal  loads  for  the  structural  finite  element  analysis to 

further  improve  accuracy  of  the  structural  response. 

Basic  concepts  and  procedures of the  integrated  thermal-structural 

finite  element  analysis  are  described.  New  thermal  finite  elements 

for  improved  thermal  analysis  accuracy  are  developed.  Thermal  finite 

elements  which  yield  exact  nodal  and  element  temperatures  for  one- 

dimensional  linear  steady-state  heat  transfer  problems  are  presented. 

These  thermal  finite  elements  are  formulated  based  upon  using  closed- 

form  solutions  of  the  governing  differential  equations.  For  general- 

heat  transfer  problems  where  closed-form  solutions  are  not  available, 

15 9 
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improved  thermal  finite  elements  are  developed  by  employing  the 

nodeless  variable  formulation.  The  nodeless  variable  finite  element 

uses  extra  unknowns  as  element  variables  to  permit  higher  order 

element  temperature  interpolation  functions.  Detailed  element 

temperature  distributions  are  obtained  without  using  additional 

element  nodes  while  a  common  discretization  with  lower  order  congruent 

structural  finite  elements  are  maintained. 

Nodeless  variable  finite  elements  are  formulated  for  the 

following  heat  transfer  cases: (1) one-dimensional  linear  transient 

analysis, (2)  one-dimensional  nonlinear  transient  analysis  with 

radiation,  and ( 3 )  two-dimensional  linear  transient  analysis. 

General  formulations  of  the  nodeless  variable  finite  elements  for 

each  heat  transfer  case  are  described  in  detail.  For  comparison, 

conventional  finite  elements  customarily  used  in  typical  finite 

element  programs  are  also  presented.  Results of temperatures  obtained 

from  the  thermal  analysis  are  transferred  directly  to  the  structural 

analysis  to  compute  displacements  and  stresses. 

To  demonstrate  the  capabilities  and  efficiency of the  integrated 

finite  element  approach,  several  examples  in  academic  and  more 

realistic  problems  are  employed.  The  accuracy  of  the  approach  is 

evaluated  by  comparisons  with  analytical  solutions  and  conventional 

thermal-structural  analyses.  Results  indicate  that  the  integrated 

finite  element  approach  provides  a  significant  improvement  in  the 

accuracy  and  efficiency  of  thermal-structural  analysis  and  offers 

potential  for  applications  to  other  coupled  problems. 
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APPENDIX A 

EXACT  FINITE  ELEMENT  INTERPOLATION  FUNCTIONS 

Exact  element  interpolation  functions  in  the  form  of  equation 

( 3 . 1 4 )  for  the  thermal  finite  element  Cases 1-8 (Figure 4 and  Table 1, 

pp. 39 and 4 0 )  are  presented.  Nodeless  parameters  are  shown  in 

Table 2 (p. 4 1 ) .  The  lower  case  letters  in  parentheses  denote  heat 

load  cases  defined  in  Table 1. General  solutions  to  the  differential 

equations  for  Cases G and 7 appear  in  reference [ 3 7 ] .  

Rod  (Case 1) 

N1 - 1" - X 
L N2 = - L 

X 

N1 - 
- sinh m ( L - x )  sinh mx 

sinh mL N2 sinh mx 
- - 

No = 1 - N1 - N2 

where m = JhpIkA. 

Slab  (Case 2 )  

N1 = 1 - -  L 
X N2 = - L 

X 
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Hollow Cylinder  (Case 3) 

r a 2 b  r 2 
No = In(;) + 7 ln (7)  - - 

b b2 

where w = In(;) . b 

Hollow Sphere  (Case 4 )  

= a (b-r) 
N1 r (b-a) 

- b (r-a) 
N2 r(b-a) 

- 

1 
r No = -(r-a) (b-r)  (r+a+b) 

Cylindrical She l l  (Case 5) 

N1 - 1 - -  L 
- S 

N2 - L 
" 

S 

sinh m(L-s) - sinh ms 
sinh d N2  sinh IIIL N1 = - 

No = 1 - N1 - N2 

where m = . 



16 7 

Conical  Shell  (Case 6 )  

1 b  N1 = - In(;) N2 = ; In(--) 1 s  
W 

2 a  2 b s  2 Ng = In (2) + - In(-) - - b2 s b2 

No = 1 - N1 - N2 

where  w = In(--), m = /E; Io and KO are  modified  Bessel 

functions of the  first  and  second  kind of order  zero,  respectively. 

b 

Spherical  Shell  (Case 7 )  

No = In [cos(s/a)] - N2 In [cos(L/a)] 
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Flow Passage (Case 8) 

1 - e  

1 - e  

2ax 
N 1 = l -  2aL 

No - - N2 L 
X 

1 - e  

1 - e  

2ax 

2aL N2 - - 

ax sinh O(L-x)  a(x-L) sinh Bx 
sinh BL N~ = e sin11 BL N2 = e 

No = 1 - N1 - N2 
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APPENDIX B 

FINITE  ELEMENT  MATRICES  FOR  ONE-DIMENSIONAL 
LINEAR  STEADY-STATE  PROBLEMS 

Exact  finite  element  matrices  for  the  thermal  and  structural 

finite  elements  described  in  Chapter  3  are  presented.  Thermal 

conductance  matrices  and  heat  load  vectors  are  given  in  the  form  of 

equation  (3.27)  for  Cases 1-6 and  equation  (3.17)  for  Case 8 

(Figure 4 and  Table 1, pp.  39  and 4 0 ) .  These  finite  $lement 

matrices  are  derived  using  the  exact  element  interpolation  functions 

shown  in  Appendix A. Similarly,  structural  stiffness  matrices  and 

equivalent  nodal  forces  due  to  thermal  loads  are  derived  using  the 

element  displacement  interpolation  functions  shown  in  Tables  3  and 

4 (pp. 61 and 6 7 ) .  The  lower  case  letters  in  parentheses  denote 

heat  load  cases  defined  in  Table 1. 
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THERMAL FINITE  ELEFENT  MATRICES 

Rod (Case 1) 

Conductance Matrices: 

K1, = K22 = kA/L 
- - 

K1l = K22 
- - 

= (hp cosh mL)/(m sinh EL) 

- 
K12 = - hp/(m sinh mL) 

Heat Load Vectors: 

where  m = . 

Slab (Case 2) 

Conductance  Matrices: 

K1, = KZ2 = k/L 
- - 
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Heat  Load  Vector 

- 
Q, = 6, = QL/2 

Hollow Cylinder  (Case 3) 

Conductance  Matrices 

Kll = K22 = k/w 
- - 

Heat  Load  Vector 

- 
Ql = Q ( -  a  /2 + (b - a  ) /  4w) 2 2 2  

- 
Q2 = Q (b / 2  - (b - a ) / 4w) 

2 2 2  

where w = In  (b/a) 

Hollow Sphere  (Case 4) 

Conductance  Matrices 

K1l = K22 
- - 

= kab/  (b-a) 

Heat  Load  Vector 



172 

- 
‘22 = Qb  (a3 + 2b3 - 3ab ) / (6 (b-a)) 2 

Cylindrical  Shell (Case 5) 

Conductance  Matrices 

- 
Kll - - K22 = k/L 

- 

K1l = K22 
- - 

= (h cosh mL) / (mt sinh mL) 

- 
K12 = - h/(mt sinh mL) 

Heat  Load  Vectors 

- 
Q, = ‘2, = qL/2t 

Q, = Q2 = hT, (cosh mL - 1) / (mt sinh mL) 

inere  m = . 

Conical  Shell  (Case 6) 

Conductance  Matrices 

Ell = K22 = k/w 
- 



Heat  Load  Vectors 

= Q(-a /2 + (b  -a  )/4w) 2 2 2  

- 
Q, = Q(b /2 - (b -a )/4w) 2 2 2  

- 
Q, = q(-a /2t + (b  -a  )/4wt) 2 2 2  

- 2 
Q, = a(b /2t - (b -a  )/4wt) 2 2  

where w = ln(b/a) 

Flow  Passage  (Case 8 )  

Conductance  Matrices 

Kc = K = kaa(eZaL + l)/(e -1) 2aL 
1 1  c2 2 

= k A ( - ( B  EH/2aG - (BF/ZG)) Kc = 2 2 
12 Kc2 1 
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Heat Load Vectors  

where a = 

F =  

Q, = qp(- l  +e2aL - 2 a ~  e /2a(1 -e 2 aL 2aL 

Q2 = hpT-(O(H-E-F) +aG) / G(f3 - a  ) 
2 2  

&c/2kAy B = m, m = E = s i n h  aL , 

cosh aL G = s i n h  BL H = cosh BL . 
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STRUCTURAL FINITE  ELEMENT MATRICES 

Truss Element (Case 1) 

Stiffness  Matrices 

Kll = K22 - - AE/L 

K12 = K22 - - - AWL 

Force Vectors 

F = - F2 = - aEA(To/6 + (T1+T2)/2) 1 

F1 = - F2 = - aEA(CITO + C2(T1+T2)) 

where  C1 = 1 - (2 (cosh mL - 1) /mL  sinh mL) 

C2 = (cosh mL - 1) /mL sinh mL 

Axismetric Element  (Case 3 .  Plane Stress) 

Stiffness Hatrices 

KI1 = E((b + a  ) - w(b2- a ))/(l-w ) ( b  -a ) 2 2  2 2 2 2  

= E((b2 - a  2 ) + w(b2 -a2))/(l - w  2 )(b2 -a2) K22 

KI2 = E(-2ab)/(l - w )(b - a  ) 2 2 2  
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F o r c e   V e c t o r s  

- a E a P / 2 w ( l   - v ) ( b  - a  ) 
2 2  

F1 - - 

F2 = bEaP/2w(l - v )  (b - a  ) 2 2  

where P = ( - 2 a  w + b2 - a ) (T1 f a w To/ b 2 2 2 2 

- (b4 - a ) w2 To / b2 - 2(b2 - a ) wTref 4 2 
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APPENDIX C 

FINITE  ELEMENT  MATRICES  FOX  ONE-DIMENSIONAL 
LINEAR TRANSIENT  PROBLEMS 

Finite  element  capacitance  matrices  for  the  thermal  rod  and 

axisymmetric  elements  described  in  Chapter 4 are  presented.  The 

conductance  matrix  coefficients and  heat  load  vector KOO ’ 
components are  presented;  the  coefficients  Kij  and  Qi, 

i,j = 1,2 appear  in  Appendix B, Cases 1 and 3 .  The  lower  case 
QO 

letters  in  the  parentheses  denote  heat  load  cases  defined  in  Table 1. 



Rod Element 

Capacitance  Hatrices 

Coo = pcAL/30 

COl = co2 = pcAL/12 

Cll = cz2 = PCAL/3 

C12 = pcAL16 

Coo = pcA(((cosh mL - l)/sinh  mL)(L/sinh mL - 3/m) + L) 

- 
col - CO2 = pcA((1 - cosh mL)(mL - sinh mL)/2m sinh d) 2 

Cll - - C22 = pcA((sinh mL cosh mL - mL)/2m sinh mL) 2 

C12 = ocA((mL cosh mL - sinh mL)/2m sinh mL) 2 

Conductance  Matrices 

KO, = kA/3L 

Roo = (hp/m)(mL - 2(cosh mL - l)/sinh m ~ )  

Heat  Load Vectors 

Q, = QAL/6 

Q, = qpL/6 
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Q, = hpT, (L - 2(cosh mL - l)/m sinh mL) ( b )  

where m = 

Axisymmetric  Element 

Capacitance  Matrices 

= pc(b -a )(4w  (a + a2b2 + b ) + 9w(a -b ) 2 2   2 4  4 4 4  
coo 

+ 6(a 2 -b 2 2  ) )/24b4 

Col = - Pc(4a4w2 + w(7a  +3b ) (a -b ) + 4(a -b ) )/16wb 2  2 2 2  2 2 2  2 

Cl2 = Pc(a  -b + w(a -b ))/4~ 
2 2   2 2  2 

C22 = pc(b  (1-2~+2w ) - a ) /4w 2 2  2  2 

Conductance  Matrices 

KO, = kw(w(l-(a/b) 1 - (l-(a/b)2)2) 4 

Heat  Load  Vector 

Q, = (Qb  /4)(w(l-a /b  1 - (1-a  /b 1 ) 2 4 4  2 2 2  
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APPENDIX  D 

FINITE  ELEMENT  MATRICES  FOR  ONE-DIMENSIONAL  NONLINEAR 
TRANSIENT  ANALYSIS  WITH  RADIATION  HEAT  TRANSFER 

Jacobian  matrices and residual heat load vectors for the 

conventional  finite element and the nodeless  variable  finite 

element  described in Chapter 5 are presented. These element 

matrices  which  appear in Eq. ( 5 . 3 4 )  are given in the form of computer 

subroutines. The  subroutines are written in  FORTRAN  IV  where  the 

definitions of variables used are provided. 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

V A R I A B L E S   U S E D  I N  THE  FOLLOWING  SUBROUTINES  ARE  DEFINED 

A S  F O L L O U S l  

TK 
RHO 
CP 
AREA 
X 1  
PS 

E M I S  
A B S O R P  
STEFAN 
QDOT 
TM(  1 
T N (  1 
D E L T A  
I C O N S  

p a  

H A T E R I A L   T H E R M A L   C O N D U C T I V I T Y  
D E N S I T Y  
S P E C I F I C   H E A T  
ROD  CROSS-SECTIONAL  AREA 
ELEMENT  LENGTH 
CROSS-SECTIONAL  PERIMETER  FOR  EMITTED  ENERGY 
C R O S S - S E C T I O N A L   P E R I P E T E R   F O R   I N C I D E N T   E N E R G Y  
S U R F A C E   E M I S S I V I T Y  
S U R F A C E   A B S O R P T I V I T Y  
STEFAN-BOLTZMANN  CONSTANT 
I N C I D E N T   H E A T I N G   R A T E  PER U N I T  AREA 
ELEMENT  NODAL  TEMPERATURES  AT  THE M I T E R A T I O N  
ELEMENT  NODAC  TERPERATURES  AT  THE N T I M E   S T E P  
T I M E   I N C R E M E N T   U S E D  I N  CRANK-NICOLSON  ALGORITHf l  
.ECI~I CONSISTENT FORHULATION 
eNE.1   LUMPED  FORMULATION 

All J A C O B I A N   f l A T R I C E S  ARE REPRESENTED B Y  V A R T A B L E S   B E G I N   W I T H  
A J - - - ( - # -  1 E e G e   A J R A D   P E P R E S E N T S   J A C O B I A N   P A T R I X   C O N T R I B U T E D  
F R O H   C O N D U C T A N C E   R A D I A T I O N   f l A T R I X e  

A L L   R E S I D U A L   L O A D   V E C T O R S   A R E   R E P R E S E N T E D   B Y   V A R I A B L E S   B E G I N  
W I T H  R,,,(,) EeG.   RRAD  REPRESENTS  RESIDUAL  HEAT  LOAD VEC.TOR 
FROM  CONDUCTANCE R A D I A T I O N   H A T R I X e  



C 
C 
C 

* * * * * * * * * * * * * * * * * ? * * * * * * * * * * * * * *  

S U B R O U T I N E  J R C O N D ( T K I A R E A ~ X L ~ T P B A J C O N D ~ R C O N D )  

S E T  U P   J A C O B I A N   C O N D U C T I O N   M A T R I X  AND CONDUCTION 
R E S I D U A L   L O A D   V E C T O R  FOR C O N V E N T I O N A L  R O D  ELEMENT 

D I M E N S I O N  A J C O N D ( 2 , 2 ) r R C O N D ( 2 ) , T H ( 2 I  
C 

X X  = T K * A P E A / Y L  
A J C O N D ( 1 , l )  X X  
AJCOND(1 ,Z )  - X X  
A J C O N D ( 2 , l )  - X X  
AJCOND(2 ,E)  X X  

C 

C 
RETURN 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

S U B R O U T I N E  J R R A D I E M I S I S T E F A N , P S , X L , T ~ ~ , I C O N S , ~ J R A D , R R A D )  

S E T   U P   R A D I A T I O N   J A C O B I A N   H A T P I X   A N D   R A D I A T I O N   R E S I D U A 1  
LOAD  VECTOR F O P  C O N V E N T I O N A L  R O D  ELEMENT 

C 
I F I I C O N S o N E o l )  GO T O  10 
X X  E M I S * S T E F A N * P S * X L / 1 5 o  
T 1  T M ( 1 )  



T 2  = T M ( 2 )  
T 1 S  = T l * T l  
T 2 S  = T 2 * T 2  
T 1 C  = T l S * T l  
T 2 C  = T 2 S * T 2  

T l S T 2  = T l S * T 2  
T l T Z S  = T 1 * 1 2 S  

C 

A J R A D ( 1 , l )  X X * ( l O o * T l C  ?- 6 o * T l S T 2  ? 3 * * T l T 2 S  ? T 2 C  1 
AJRAD(1 ,E)  X X * (  2 0 * T l C  + 3 o * - T l S T 2  + 3 r * T l T 2 S  + 2 0 * f 2 C )  
A J R A D ( Z , l )  A J R A D ( 1 , E )  
A J R A D ( Z r 2 )  I) X X * (  T I C  + 3 o * T l S T 2  + 6 e t T l T E S  + 1 0 0 * T 2 C )  

C 
T 1 F  = T l C * T 1  
T 2 F  = T 2 C * T 2  

T l C T 2  T l C * T 2  
T l S T Z S =   T l S * T 2 S  
T l T Z C  T l * T 2 C  
YY - x x / 2 .  
R R A D ( 1 )  Y Y * ( 5 o * T l F  + 4 e * T l C T 2  + 3 o * T l S T 2 S  + 2 * * T l T 2 C  + T 2 F  1 
R R A D ( 2 )   Y Y * (   T 1 F   + . 2 o * T l C T 2  + 3 e * T l S T Z S  + 4 o * T l T L C  + 5 e * T Z F )  

C 

C 

C 
RETURN 

10 CONTINUF 
X X  2 e * E H I S * S T E F 4 N * P S * X L  
A J R A D ( l r 1 )   X X * ( T M ( l ) * * 3 o )  
A J R A O ( 1 , Z )  0 0  
L J R A D ( 2 , l )  0 0  
A J R A D ( 2 , Z )   X X * ( T H ( 2 ) * * 3 o )  

Y Y  = - X X / 4 0  
R R A D ( 1 )   Y Y * ( T t l ( l ) * * 4 * )  
R R A D ( 2 )   Y Y * ( T H ( 2 ) * * 4 r )  

C 

C 



PETURN 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

S U B R O U T I N E  R O D O T ( Q D O T , A B S O P P , P O ~ X L ~ R O )  

SET UP I N C I D E N T   R E S I D U A L   L O A D   V E C T O R   F O R  
C O N V E N T I O N A L  ROD ELEMENT 

D I H E N S I O N  R O ( 2 )  
C 

X X  Q D O T * A B S O P P * P O * X L I Z .  
R o t 1 1  X X  
RQ(2) = X X  

C 
RETURN 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

S U B R O U T I N E  J R C A P ( R H O , C P , A R E A r X L , D E L T I , T n , T N , I C O N S I A J C A P ~ R C A P )  

S E T   U P   C A P A C I T A N C E   J A C O B I A N   M A T R I X   A N D   C A P A C I T A N C E   R E S I D U A L  
LOAD  VECTOR F O R  CONVENTIONAC  ROD  ELEMENT 

D I M E N S I O N  A J C A P ( 2 r Z ) , R C A P ( Z ) r T n O , T N ( 2 )  
C 

I F ( I C O N S o N E o 1 )  GO TO 10 
X X  R M O * C P * A R E A * X L / ( 3 . * O E L T A )  
A J C A P ( 1 , l )  2 0 * X X  
A J C A P ( l r 2 )  x x  



A J C A P ( 2 r l )  A J C A P ( 1 , E )  
A J C A P ( Z p 2 )  .I A J C A P 1 1 , l )  

C 
R C A P ( 1 )   X X * ( E o * T N ( l )  - Z o * T H ( l )  + T N ( 2 1  - T F ( 2 1  1 
R C A P ( 2 )  = X X * (  T N ( 1 )  - T ) r ( l )  + 2 o * T N ( 2 )  - 2 . * T F ( 2 ) )  

R E T U R N  
C 

C 
10 C O N T I N U F  

Y Y  = R H O * C P * A R E A * X L I D E L T A  
A J C A P I 1 , l )   Y Y  
A J C A P ( L I Z )  00 
A J C A P ( 2 , l )  * 00 
A J C A P ( 2 p 2 )   Y Y  

R C A P ( 1 )   Y Y * ( T N ( l ) - T M ( l ) )  
R C A P ( 2 )  = Y Y * ( T N ( t ) - T H ( 2 1 )  

R E T U R N  
END 

C 

C 

C 
C 
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 
C 

C 
C S E T   U P   J A C O B I A N   C O N D U C T I O N   H A T R I X  A N D   C O N D U C T I O N  
C R E S I D U A L   L O A D   V E C T O R  F O R  N O D E L E S S   V A R I A B L E  RnD E L E H E N T  
C 

C 

S U B R O U T I N F  I J R C O N D ( T K I I R E A I X L , T M ~ A ~ J C O N D I R C O N D I  

D I H E N S I O N  A J C O N D ( 3 , 3 ) , P C O N D ( 3 ) , T n ( 3 )  

X X  = T l t * A R E A / X L  
A J C O N D ( l p 1 1  X X  
B J C O N D ( 1 , Z )  - X X  
A J C O N D ( l t 3 )  . 0. 



C 

C 
RETURN 
END.  

S U B P O U T I N E  I J R R A D ( E f l I S , S T E F A N , P S , X L , T n r A J P A D , R R A D R A D )  

S E T  UP R A D I A T I O N   J A C O B I A N   M A T R I X   A N D   R A D I A T I O N   R E S I D U A L  
LOAD  VECTOR F O P  N O D E L E S S   V A R I A B L E   P O D   E L E M E N T  

D I M E N S I O N  A J R A D ( 3 , 3 ) , R P A D ( 3 ) , T M ( 3 )  
C 

X X  E M I S * S T E F A N * P S * X L / b 3 0 .  
T 1  = T M t l )  
T 2  = T M ( 2 )  
TO = T M ( 3 )  
T L S  T l * T l  
T 2 S  - T 2 * T 2  
TOS TO*TO 
T I C  * T l S * T l  
T 2 C  - T 2 S * T 2  
TOC - TOS*'TO 

C 



T O T 1  = T O * T 1  
T O T l S  = T O * T l S  
T O S T l  T O S * T l  
AJRAD( I ,~ )  X x * f 4 2 . * T 2 C  t ( 1 2 6 , * T l  + 5 4 . * 1 0 ) * 1 2 S  

1 t / 2 5 2 . * T l S  + 1 4 4 o * T O T 1  + 2 7 r * T O S ) * T 2  
1 t 4 2 0 o * T l C  t l e O o * T O T l S  + 4 5 r * T O S T 1  
1 t 5.*TOC 1 

A J R A D ( l p 2 )   X X * ( B 4 . * T 2 C  + ( 1 2 6 o * T 1  + 7 2 * * T O ) * T 2 S  
1 t ( 1 2 6 o * T l S  t 1 0 6 r * T O T 1  + 2 7 o * T O S I * T 2  
1 t 8 4 o * T l C  t 7 2 o * T O T l S  + 2 7 e * T O S T 1  
1 t 4,*TOC 1 

A J R A D ( 1 , 3 )   X X * ( 2 4 o * T 2 C  + ( 5 4 * * T 1  + 2 7 0 * f O ) * T 2 S  
1 t ( 7 2 o * T l S  t 5 4 o * T O T L  + 1 2 r * T O S ) * T 2  
1 t 6 0 o * T l C  t 4 5 o * T O T l S  + 1 5 o * T O S T 1  
1 t 2,*TOC 1 

A J R A D ( 2 r l )   A J R A D ( 1 , 2 )  
A J R A D ( 2 0 2 )   X X * ( 4 2 0 o * T 2 C  + ( 2 5 2 . * T l  + 1 8 0 o * f O ) * T 2 S  

1 t ( 1 2 6 0 * T l S  t 1 4 4 o * T O T 1  + 4 5 o * T O S ) * T 2  
1 t 4 2 * * T l C  t 5 4 . * T O T l S  + Z ’ I o * T O S T l  
1 + 5 o * T O C  1 

A J R A D ( 2 , 3 )   X X * ( b O . * T 2 C  + ( 7 2 o * T 1  + 4 5 * * T O ) * T 2 S  
1 t ( 5 4 . * T l S  t 5 4 o * T O T 1  + 1 5 o * T O S ) * T 2  
1 t 2 4 . * T l C  t 2 7 o * T O T l S  + 1 2 o * T O S T l  
1 t 2.*TOC 1 

A J R A D ( 3 r l )  A J R A D ( 1 , 3 )  
A J R A D ( 3 , 2 )  A J R A D ( 2 , 3 )  
A J R A D ( 3 p 3 )   X X * ( 1 5 o * T 2 C  + ( 2 7 o * T 1  + l S * * T O ) * T Z S  

1 t f 2 7 o * T l S  t 2 4 o * T O T 1  + 6 r * T O S ) * T 2  
1 t 1 5 m * T l C  t 1 5 o * T O T l S  + 6 o * T O S T 1  
1 t l O o * T O C / l l o  1 

C 
T l F  = T l C * T l  
T 2 F  = T 2 C * T 2  
TOF = TOC * T O  
T O T l C  = T O * T l C  
T O S T l S  = T O S * T l S  



C 
T O C T l  = T O C * T l  

Y Y  = - x x / 2 .  
R R A D ( 1 )   Y Y * ( 4 2 o * T 2 F  ? ( 8 4 o * T 1  + 4 8 o * T O ) * T 2 C  

1 t ( 1 2 6 o * T l S  t 1 0 8 o * T O T l  + 2 ? o * T O S ) * T Z S  
1 t ( 1 6 8 o * T l C  t 1 4 4 o * T O T l S  + 5 4 o * T O S T l  + 8 0 * T O C ) * T 2  
1 t 2 1 0 0 * T l F  t 1 2 0 0 * T O T L C  ? 4 5 o * T O S T l S  + 1 0 o * T O C T l  + TOF ) 

R R A D ( 2 )  (I Y Y * ( 2 1 0 o * T 2 F  + ( 1 6 8 o * T l  t 1 2 O o * T O ) * T 2 C  
1 + ( 1 2 6 o * T l S  + 1 4 4 o * T O T 1  + 4 3 o * T O S ) * T Z S  
1 + ( 8 4 o * T l C  t 1 0 8 o * T O T l S  + 5 4 o * T O S T 1  + 1 0 0 * T O C ) * T 2  
1 t 4 2 o * T l F  + 4 8 o * T O T 1 C  + 2 7 o + T O S T l S  + 8 r * T O C T 1  + T O F  1 

R R A D ( 3 )   Y Y * ( 3 0 o * T 2 F  + f 4 8 , * T 1  + 3 0 . * T O ) * T Z C  
1 + ( 5 4 o * T l S  + 5 4 o * T O T 1  + 1 5 o * T O S ) * T Z S  
1 + ( 4 8 o * T 1 C  + 5 4 o * T O T l S  + 2 4 0 * T O S T 1  + 4 o * T O C ) * T 2  
1 t 3 0 o * T l F  + 3 0 . * T O T l C  + l S o * T O S T l S  + 4 o * T O C T 1  + 5 o * T O F / l l o )  

C 
R E T U R N  
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

S E T  U P   I N C I D E N T   R E S I D U A L   L O A 0   V E C T O R   F O R  
N O D E L E S S   V A R I A B L E   R O D   E L E M E N T  

D I M E N S I O N  R O ( 3 )  
C 

C 
R E T U R N  



END 
C 
C 
C 
C 
C 

S U R R O U T I N E  I J R C A P ( R H O , C P r A R E A , X L I D E L T A , f n , T N ~ A J C A P , R C A P )  

S E T  UP C A P A C I T A N C E   J A C O B I A N   M A T R I X   A N D ' C A P A C I T A N C E   R E S I D U A L  
L O A D   V E C T O R   F O R   N O D E L E S S   V A R I A B L E   R O D   E L E H E N T  

C 
X X  2 , * R H O * C P * A R E A * X l / D E L T A  
A J C A P ( 1 , l )  I X X / 3 0  
A J C A P ( l r 2 )  X X / 6 0  
A J C A P ( l p 3 )  X X / 1 2 0  
A J C A P ( 2 , l )   A J C A P ( 1 , Z )  
A J C l r P 1 2 ~ 2 1  I A J C A P ( l r 1 )  
A J C A P ( 2 r 3 )  A J C A P ( l r 3 )  
A J C A P ( 3 r l )  I A J C A P ( 1 , 3 )  
A J C A P ( 3 p Z )  I A J C A P ( 2 r 3 )  
A J C A P ( 3 , 3 )  * X X / 3 0 .  

C 

C 

C 
C 
C 

R E T U R N  
E N D  



1. Report No. 3. Recipient's Catalog No. 2. Government Accession No. 
NASA  CR-3635 

4. Title and  Subtitle 5. Report Date 

IMPROVED  FINITE  ELEMENT  METHODOLOGY  FOR  INTEGRATED 
6. Performing Organization Code THERMAL  STRUCTURAL  ANALYSIS 
November  1982 

~ 

7. Author(s1 8. Performing Organization Report  No. 
~ ." 

Pramote  Dechaumphai  and  Earl A. Thornton , 10. Work Unit  No. 
9. Performing Organization Name  and Address 

Old  Dominion  University  Research  Foundation I P.O. Box 6369 I 11. Contract or  Grant No. 

Norfolk,  Virginia  23508  NSG-1321 
13.  Type  of Report  and Period Covered 

12. Sponsoring Agency Name and Address Contractor  Report 

National  Aeronautics  and  Space  Administration 
Washington,  DC  20546 

15. Supplementary Notes 
- 

Langley  Technical  Monitor:  Allan  R.  Wieting 
Progress  Report 

16. Abstract 
~ .. ~ 

An integrated  thermal-structural  finite  element  approach  for  efficient  coupling 
of  thermal  and  structural  analyses  is  presented.  New  thermal  finite  elements  which 
yield  exact  nodal  and  element  temperature  for  one-dimensional  linear  steady-state 
heat  transfer  problems  are  developed. A nodeless  variable  formulation  is  used  to 
establish  improved  thermal  finite  elements  for  one-dimensional  nonlinear  transient 
and  .two-dimensional  linear  transient  heat  transfer  problems.  The  thermal  finite 
elements  provide  detailed  temperature  distributions  without  using  additional  element 
nodes  and  permit  a  common  discretization  with  lower-order  congruent  structural  finite 
elements.  The  accuracy  of  the  integrated  approach  is  evaluated  by  comparisons  with 
analytical  solutions  and  conventional  finite  element  thermal-structural  analyses  for 
a  number  of  academic  and  more  realistic  problems.  Results  indicate  that  the  approach 
provides  a  significant  improvement  in  the  accuracy  and  efficiency  of  thermal-stress 
analysis  for  structures  with  complex  temperature  distributions. 

17.  Key Words  (Suggested by  Author(s))  18. Distribution  Statement 
. " . 

Thermal  stress;  finite  elements;  Unclassified-Unlimited 
heat  conduction 

Subject  Category 34 

19. Security Classif. (of this report)  20. Security Classif. (of this p a g e )  21. No.  of Pages 22. Rice 

Unclassified  Unclassified 194 A0 9 

For sale by the  National  Technical  Information  Service,  Springfield,  Virginla 22161 
NASA-Langley, 198: 


