General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

FINAL TECHNICAL REPOIT

SATELLITE SWITCHED FDIMA ADVANICED GOMMUNICATION TECHNOLOGY SATELLITE PROGRAM

December 1982

($\mathrm{NASA}-\mathrm{CH}-168034$)	SATELLITE SWITChed ejma	No3-15543
advanced Cummunicatiun tecinclugy Satellite		
paugham find fe	port, Nov. 1981-Dec. 1982	
(Motorola, Inc.)	$308 \mathrm{peEC} \mathrm{A} 14 / \mathrm{MF} \mathrm{A0} 1$	Uncias 02376

Contract Sponsor: NASA/LERC
Contract No. NAS3-22895

FINAL TECHNICAL REPORT

SATELLITE SWITCHED FDA ADVANCED COMMUNICATION TECHNOLOGY SATELLITE PROGRAM

December 1982

Motorola Dept. Approval:

L. Brown, Manager

Aerospace Payload Section

Motorola Project Approval: Cicul
S. Atwood

Technical Director

Motorola Project Approval:

G. H. Hinton Project Engineer

Contract Sponsor: NASA LERC Contract No. NAS3-22895

MOTOROLA INC.

Government Electronics Group
8201 E. McDowell Rd., P.O. Box 1417.
Scottsdale. Az 85252

[^0]
TABLE OF CONTENTS

Paragraph Page

1. INTRODUCTION 1-1
1.1 OVERVIEW OF REPORT 1-1
2. FINAL REPORT SUMMARY 2-1
2.1 SYSTEM SUMMARY 2-1
2.2 PROOF OF CONCEPT SUMMARY 2-35
3. PROGRAM GOALS 3-1
3.1 SYSTEM DESIGN GOALS 3-1
3.2 PROOF-OF-CONCEPT TECHNOLOGY DEVELOPMENT GOALS 3-3
4. SYSTEM ANALYSIS 4-1
4.1 SYSTEM DEFINITION AND REQUIREMENTS 4-1
4.2
LINK BUDGETS 4-11
4.3
FORWARD ERROR CONTROL 4-24
4.4 FREQUENCY PLAN 4-25
4.5
SATELLITE ROUTING 4.32
4.6
MODL'LATION SELECTION 4-38
4.7 TERMINAL AND SATELLITE ANTENNA DESIGN 4-43
4.8 SYSTEM CONTROL 4-47
4.9 SMALL TERMINAL USER INTERFACE 4-52
4.10 SIGNAL LEVEL VARIATIONS 4-53
4.11
SYSTEM ARCHITECTURE SUMMARY 4-58
5. SATELLITE DEFINITION 5-1
5.1 SMALI. TERMINAL ROUTER 5-3
5.2 TRANSPONDER SUBSYSTEM SIZE, WEIGHT, AND POWER :-18
5.3 PROOF OF CONCEPT ROUTER DEFINITION 5-41
6. NETWORK CONTROL STATION 6-1
6.1 NCS FUNCTIONAL REQUIREMENTS AND PERFORMANCE SUMMARY 6-1
6.2 NCS BLOCK DIAGRAM 6-3
6.3 SYSTEM MANAGEMENT CONCEPTS SUMMARY 6-4
6.4 ST こRDERWIRE CONCEPT SUMMARY 6-5
6.5 NCS HARDWARE DEFINITION. 6-8
6.6 NCS POWER DISSIPATION 6-9

TABLE OF CONTENTS (Cont)

Paragraph Page
7. SMALL TERMINALS 7-1
7.1 SMALL TERMINAL FUNCTIONS 7-1
8. ADVANCED: ECHNOLOGY PROJECTIONS 8-1
9. SS-FDMA TECHNICAL CONCLUSIONS 9-1
10. RECOMMENDATIONS 10-1
11. SUPPORT STUDIES (APPENDICES A THROUGH J) 11-1
APPENDIX A-HIGH POWER AMPLIFIERS A-1
APPENDIX B-ROUTER ANALOG SWITCH B-1
APPENDIX C-FREQUENCY SYNTHESIZER C-1
APPENDIX D-ROUTER SURFACE ACOUSTIC WAVE (SAW) FILTERS D-1
APPENDIX E-MODULATION ANALYSIS E-1
APPENDIX F-DEMODULATOR EVALUATION F-1
APPENDIX G-ERROR CORRECTION CODING/DECODING G-1
APPENDIX H—TRAFFIC MODELS H-1
APPENDIX I-TRAFFIC MODEL REFINEMENT 1-1
APPENDIX J—SIGNALLING INTERFACE J-1
SUBJECT INDEX S-1

LIST OF ILLUSTRATIONS

Figure Page
2.1-1 MAJOR SS-FDMA SUBSYSTEMS 2-4
2.1-2 SYSTEM BLOCK DIAGRAM 2-4
2.1-3 SATELLITE PAYLOAD BLOCK DIAGRAM 2-6
2.1-4 SATELLITE BLOCK DIAGRAM 2-6
2.1-5 TRAFFIC FREQUENCY PLAN 2-12
2.1-6 MAP SHOWING BEAM AND FREQUENCY AND ALLOCATION FOR TRAFFIC MODEL A 2-14
2.1-7 CHANNEL ARRANGEMENT 2-15
2.1-8 TRAFFIC MODEL B CITIES ANTENNA BEAM SPOTS 2-17
2.1-9 BEAM AND PATH FILTER MATRIX FOR A NINE BEAM, THREE ZONE ARRANGEMENT 2-18
2.1-10 ROUTER CONFIGURATION 2-20
2.1-11 SATELLITE ROUTER SIMPLIFIED BLOCK DIAGRAM 2-20
2.1-12 ROUTER LAYOUT 2-22
2.1-13 A SLICE THROUGH THE ROUTER 2-23
2.1-14 SYSTEM CONTROL CONCEPT 2-25
2.1-15 NCS FUNCTIONAL REQUIREMENTS 2-26
2.1-16 NCS BLOCK DIAGRAM 2-27
2.1-17 CHANNEL ARRANGEMENT 2-29
2.2-1 ROUTER CONFIGURATION 2-39
2.2.2 PCC SECTOR BLOCK DIAGRAM 2-41
2.2.3 POC SECTOR GAIN DISTRIBIITION 2-41
2.2-4 SECTOR POC/STE BLOCK DIAGRAM 2-44
2.2-5 POC ROUTER BLOCK DIAGRAM 2-45
2.2-6 POC ROUTER GAIN DISTRIBUTION 2-46
2.2-7 ROUTER POC/STE TOP LEVEL BLOCK DIAGRAM (PART 1) 2-48
2.2-8 ROUTER POC/STE TOP LEVEL BLOCK DIAGRAM (PART 2) 2-50
4.1-1 SS-FDMA SYSTEM BLOCK DIAGRAM 4-2
4.1-2 SATELLITE BLOCK DIAGRAM 4-4
4.1-3 MULTICHANNEL ST BLOCK DIAGRAM 4-6
4.1-4 NCS BLOCK DIAGRAM 4-8
4.2-1 SMALL TERNINAL RF POWER REQUIREMENTS 4-14
4.2-2 SATELLITE RF POWER REQUIREMENTS 4-16
4.2-3 RAIN FADE COMPENSATION SCENARIO 4-17
4.4-1 COMPOSITE FREQUENCY PLAN 4.26
4.4-2 BEAM ANL FREQUENCY ALLJCATION FOR TRAFFIC MODEL A 4-28
4.4-3 BEAM AND FREQUENCY ALLOCATION FOR TRAFFIC MODEL B 4-30
4.4-4 CHANNEL ARRANGEMENT. 4.31
4.4-5 ALTERNATE FREQUENCY PLAN FOR TRAFFIC MODEL A 4-32
4.5-1 BEAM AND PATH FILTER MATRIX FOR A NINE BEAM, THREE ZONE ARRANGEMENT. 4-35
4.5-2 GENERAL SWITCH CONFIGURATION FOR A. 4×3 BEAM DATA TRANSFER 4-35
4.5-3 NEED FOR SYNTHESIZER WITH SINGLE ELEMENTS SWITCHES $4-37$
4.5-4 RESULTS OF COLUMN INTERCHANGE 4-37
4.5-5 OVERLAP SWITCHING 4-38
4.6-1 FUNCTIONAL BLOCK DIAGRAM 4-40
4.6-2 CODING FOR VOICE LINK TRAFFIC 4-42
4.7-1 ANTENNA FEED DESIGN 4-43
4.7-2 BEAM ISOLATION CONTOURS 4-46
4.7-3 TRAFFIC MODEL A CITIES ANTENNA BEAM SPOTS 4-46
4.7-4 TRAFFIC MODEL B CITIES ANTENNA BEAM SPOTS 4-47
4.8-1 SYSTEM CONTROL CONCEPT 4-48
4.8-2 ACCESS PROTOCOL NCS-BASED 4-50
4.9-1 POTENTIAL CUSTOMER INTERFACES 4-52
4.10-1 SIGNAL LEVEL VARIATIONS. 4-54
5.0.1 SATELLITE PAYLOAD BLOCK DIAGRAM 5-2
5.0.2 SATELLITE BLOCK DIAGRAM. 5-3
5.1.1 GENERAL TRAFFIC MATRIX 5-5
5.1.2 ROUTER CONFIGURATION. 5-5
5.1.3 ROUTER OUTPUT SEGMENT 5-6
5.1.4 ROUTER INPUT SEGMENT 5-7
5.1.5 ROUTER BLOCK DIAGRAM 5-7
5.1-6 ROUTER SWITCHING RELIABILITY MODEL 5-10
5.1-7 ROUTER SWITCHING MODEL 5-10
5.1-8 ROUTER INTERFACE 5-12
5.1-9 A SLICE THROUGH THE ROUTER. 5-13
5.1-10 ROUTER LAYOUT 5-13
5.2-1 UPLINK SATELLITE RECEIVER CONFIGURATION DUAL TRUNK/ST BEAM (TRAFFIC MODELS A AND B) 5-19
5.2-2 UPLINK SATELLITE RECEIVER CONFIGURATION SINGLE TRUNK/ST BEAM (TRAFFIC MODELS A AND B) 5-20
5.2-3 UPLINK SATELLITE RECEIVER CONFIGURATION TYPICAL ST BEAM (TRAFFIC MODELS A AND B) 5-21
5.2-4 DOWNLINK SATELLITE TRANSMITTER CONFIGURATION TYPICAL DUAL TRUNK/ST BEAM (TRAFFIC MODELS A AND B). 5-22
5.2-5 DOWNLINK SATELLITE TRANSMITTER CONFIGURATION UNIQUE DUAL TRUNK/ST BEAM (TRAFFIC MODEL B - NEW YORK BEAM) 5-23
5.2-6 DOWNLINK SATELLITE TRANSMITTER CONFIGURATION TYPICAL SINGLE TRUNK/ GT BEAM (TRAFFIC MODELS A AND B) 5-24
5.2-7 DOWNLINK SATELLITE TRANSMITTER CONFIGURATION TYPICAL ST BEAM (TRAFFIC MODELS A AND B) 5-25
5.2-8 TRAFFIC MODEL A TRANSPONDER BLOCK DIAGRAM 5-26
5.2-9 TRAFFIC MODEL B TRANSPONDER BLOCK DIAGRAM 5-34
5.3-1 POC ROUTER BLOCK DIAGRAM 5-42
5.3-2 POC ROUTER GAIN DISTRIBUTION 5-43
5.3-3 POC ROUTER LAYOUT 5-46
5.3-4 PART OF ROUTER POC/STE TOP LEVEL BLOCK DIAGRAM 5-48
5.3-5 PART OF ROUTER POC/STE TOP LEVEL BLOCK DIAGRAM 5-48
5.3-5 MOTOROLA STE INPUT NETWORK MONITOR AND CONTROL 5-51
5.3-7 MOTOROLA STE OUTPUT NETWORK MONITOR AND CONTROL 5-51
5.3-8 MOTOROLA STE NOISE SOURCES 5-52
5.3-9 MOTOROLA STE UPLINK AND DOWNLINK SIMULATOR 5-52
6.1-1 NCS FUNCTIONAL REQUIREMENTS 6-2
6.2-1 NCS BLOCK DIAGRAM 6-3
7.1-1 SMALL TERMINAL FUNCTIONS 7-2
7.2-1 SINGLE CHANNEL ST STATION 7-2
7.3-1 MULTICHANNEL ST BLOCK DIAGRAM 7-3
7.8-1 ORDERWIRE SUBSYSTEM 7.8
7.9-1 TERRESTRIAL INTERFACE SUBSYSTEM DESCRIPTION 7.9
7.10-1 TRAFFIC TRANSMITTER AND RECEIVER SUBSYSTEM 7-10
7.12- ANTENNA PARAMETRIC ANALYSIS 7-12
7.13- HPA PARAMETER ANALYSIS 7.12
7.14-1 LNA PARAMETRIC ANALYSIS 7.13
7.15-1 COST CURVES 7.14
7.16-1 O-QPSK DEMODULATOR SERIAL IMPLEMENTATION 7.15
8.1-1 NO. UF FUNCT. POWER X SPEED VS YEAR. 8-2
8.3-1 1987 CMOS TECHNOLOGY PROJECTIONS 8-3

LIST OF TABLES

Table Page
2.1-1 COMMUNICATIDN TRAFFIC MODELS 2-2
2.1-2 COMMUNICATION LINK SUMMARY 2-8
2.1-3 SATELIITE RF POWER REQUIREMENTS FOR ST TRAFFIC 2-9
2.1-4 TRANSPONDER SIZE, WEIGHT, AND POWER 2-10
2.1-5 TRUNKING AND ST FREQUENCY PLAN REQUIREMENTS 2-11
2.1-6 ST TRAFFIC-CITY AND FREQUENCY BAND ALLOCATION FOR TRAFFIC MODEL A UPLINK 2-13
2.1-7 ST TRAFFIC BEAM SPOT FREQUENCY ALLOCATION TRAFFIC MO:JEL B UPLINK 2-16
2.1-8 ROUTER $\mathrm{S}_{\mathbf{Z}}, \mathrm{W}_{\mathrm{T}}$, AND POWER ?.23
2.1-9 NCS PERFORMANCE SUMMARY 2-28
2.1-10 SMALL TERMINAL RF CHARACTERISTICS SUMMARY (BER 1×10^{-6}). 2-30
2.1-11 ST RECEIVE, TRANSMIT AND INTERFACE CHARACTERISTICS 2-30
2.1-12 ST ORDERWIRE CHARACTERISTICS 2-31
2.1-13 SYSTEM ARCHITECTURE SUMMARY (TRAFFIC MODEL A) 2.33
2.1-14 SYSTEM ARCHITECTURE SUMMARY (TRAFFIC MODEL B) 2-34
2.2-1 SAW FILTER DESIGN REQUIREMENTS 2-42
3.1-1 USER INTERFACE ASSUMPTIONS 3-3
4.1-1 TRANSMIT AND RECEIVE UHARACTERISTICS 4.7
4.2-1 LINK BUDGET REQU!PEMENTS AND ASSUMPTIONS 4-11
4.2-2 SMALL TERMINAL RF POWER REQUIREMENTS 4-12
4.2-3 RAIN WITH METHOD 2 COMPENSATION SCHEME 4-12
4.2-4 CLEAR AIR SATELLITE RF POWER REQUIREMENTS 4-13
4.2-5 RAIN WITH METHOD 2 COMPE:NSATION SCHEME 4-13
4.2-6 RAIN FALIE MARGINS 4-15
4.2-7 RAIN FADE COMPENSATION METHODS 4-18
4.2-8 SMALL TERMINAL RF POWER VS RAIN FADE COMPENSATION METHOD 4-19
4.2-9 SATELLITE RF POWER BY TERMINAL TYPE VS RAIN FADE COMPENSATICA METHOD 4-19
4.2-10 $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ IMPAIRMENTS 4-22
4.2-11 RF POWER REQUIREMENTS $4-22$
4.2-12 SATELLITE NEW YORK BEAM RF POWER REQUIREMENTS. 4-23
4.4-1 TRAFFIC-CITY AND FREQUENCY BAND ALLOCATION FOR TRAFFIC MODEL A UPLINK $4-27$
4.4-2 ST TiAAFFIC BEAM SPOT FREQUENCY ALLOGATION TRAFFIC MODEL B UPLINK 4.29
4.6-1 BANDLIMITED PERFORMANCE COMPARISON 4-40
4.6-2 CVSD MODEL RESULTS 4-42
4.7-1 ANTENNA CHARACTERISTICS FOR BASELINE SMALL TERMINALS 4.44
4.9-1 SS-FDMA INTERFACE 4-53
4.10-1 MESSAGE ROUTE GAIN VARIABILITY (UPLINK) 4-55
4.10-2 MESSAGE ROUTE GAIN VARIABILITY (ROUTER PROCESSOR) 4-56
4.10-3 MESSAGE ROUTE GAIN VARIABILITY (DOWNLINK) 456
4.10-4 SS-FDMA INTERCONNECTIONS 4.58
4.11-1 SYSTEM ARCHITECTURE SUMMARY (TRAFF!C MODEL , \boldsymbol{I}) 4-58
4.11-2 SYSTEM ARCHITECTURE SUMMARY (TRAFFIC MODEL B) 4-60
5.1.1 ROUTER CHARACTERISTICS 5-8
5.1.2 SATELLITE ST ROUTER ASSEMBLIES - TRAFFIC MODEL A 5-15
5.1.3 SATELLITE ST ROUTER ASSEMBLIES - TRAFFIC MODEL B 5-16
5.2-1 UPLINK SATELLITE RECEIVER COMPONENT COUNT FOR TRAFFIC MODEL A 5-27
5.2-2 DOWNLINK SATELLITE TRANSMITTER COMPONENT COUNT FOR A TRAFFIC MODEL A 5-28
5.2-3 NUMERICAL. TÁBLES TRAFFIC MODEL A COMPONENT COUNT DOWNLINK ST CHANNEL AGEC ASSEMBLY 5-28
5.2-4 TRANSPONDER SUBSYSTEM SIZE-WEIGHT POWER-TRAFFIC MODEL A 5-29
5.2-5 TRANSMITTING ASSEMBLY-TRAFFIC MODEL A 5-30
5.2-6 RECEIVING ASSEMBLY - TRAFFIC MODEL A 5-31
5.2.7 SATELLITE ST ROUTER ASSEMBLIES - TRAFFIC MODEL A 5-32
5.2-8 NUMERICAL TABLES TRAFFIC MODEL B COMPONEINT COUNT UPLINK SATELLITE Rt JEIVER 5-35
5.2-9 NUMERICAL TABLES TRAFFIC MODEL B COMPONENT COJUNT SATELLITE TR.ANSMITTER 5-36
5.2-10 NUMERICAL TABLES TP.AFFIC MODEL B COMPONENT COUNT AGC ASSEMBLY 5.36
5.2-11 TRANSPONDER SUR'JYSTEM SIZE-WEIGHT POWER-TRAFFIC MODEL B 5-37
5.2-12 TRANSMITTER ASSEMBLY - TRAFFIC MODEL B 5-38
5.2-13 RECEIVER ASSEMBLY - TRAFFIC MODEL B 5-39
5.2-14 SATELLITE ST ROUTER ASSEMBLIES — TRAFFIC MODEL B 5-40
5.3-1 ELECTRICAL CONFIGURATION RATIONALE 5-44
5.3-2 COMMERCIAL TEST EQUIPMENT 5.49
5.3-3 TEST DEFIMITION MATRIX SECTOR TESTING 5.53
5.3-4 TESTING DEFINITION MATRIX ROUTER TESTING. 5-54
6.5.1 ADDITIONAL HARDWARE REQUIRED BY TRUCKING STATION 6-8
6.6.! NCS POWER DISSIPATION 6.8
7.4-1 TERMINAL CAPABILITY 7-4
7.5-1 ST EQUIPMENT CHARACTERISTICS SUMMARY (BER 1×10^{-8}) 7.5
7.6-1 ST RECEIVE, TRANSMIT, AND INTERFACE CHARACTERISTICS 7.6
7.7-1 ST ORDERWIRE CHARACTERISTICS 7.7
7.15-1 COST IMPACT PARAMETERS 7-13
7.17.1 ST AC POWER REQUIREMENTS 7.16
7.17 .2 BREAKDOWN OF SUBASSEMBLIES 7.16
8.1-1 PROJECTIONS FOR BIPOLAR LOGIC 8-1
8.4-1 CMOS RADIATION HARDENING 8-4

ABSTRACT SATELLITE SWITCHED FDMA SYSTEM ANALYSIS FOR SMALL TERMINALS

This document is the final repori for the SS-FDMA Program performed by Moterola Inc., Government Electronics Group (GEG), for the National Association and Space Administration (NASA) Lewis Research Center (LORC) under NASA LeRC Contract No. NAS3-22s,95. The objective of the Satelite Switched Frequency Division Multiple Access syitem is to provide a detailed system architecture thet will support a point-to-point communication system for longha il voice, video and data traffic between small earth terminals at Ka-band frequencies at $30 / 20 \mathrm{CHz}$ located across the continental United States. Detalied system design is presented for the space segment, small terminal/runking segment at nctwork control zegment for dornestic Traffic Model A or B. each totaling $3.8 \mathrm{~Gb} / \mathrm{s}$ of emall terminal traffic and $6.2 \mathrm{~Gb} / \mathrm{s}$ of trunk trafic. The primary emphasis is directed to the small terminal traffic ($3.8 \mathrm{~Gb} / \mathrm{s}$), for the satelinte router portion of the system design, which is a composite of thousands of earth stations with cigital traffic ranging from a single $32 \mathrm{~Kb} / \mathrm{s}$ CVSD voice channel to thousands of channels containing voice, video and data with a data rate as high as $33 \mathrm{Mb} / \mathrm{s}$. The system design concept presented, effectively optimizes a unique frequency and channelization plan for both Traffic Models A and B with Ininimum reorganization of the Satellite Payload Transponder Subsystem Hardware Design. The unique zoning concept allows multiple beam anternas while maximizing muttiple carrier frequency reuse. Detailed hardware design estimates for an FDMA router (part of the satellite transponder subsystem) indicates a weight and dc power budget of $353 \mathrm{lbs}, 195$ watts for Traffic Model A and $498 \mathrm{lbs}, 244$ watts for Trafic Model Butilizing 1982 technology. A detalled hardware design implementation is presented which whun developed as a proof-of-concept model for the SS-FDMA router, will simulate and provide path performance and impairment data applicable to any satellite router organization.

8ECTION 1

1. INTROUUCTION

This report summarizes the important as ject, Imitations and conclusion drawn from an indepth Motorola study into an SS-FDMA System Design concept for small terminal traflic as specified in NASA's Trafic Modols A and B. Each of the three major segments of the system architecture are discussed in detail with supporting block diagram, interface requirements and detailed parametric analysis.

The objective of the Satellite Switched FDMA System is to provide long-haul communication voice, data, and video between ir dividual small terminal users, primarly corporations and institutions. The system implementation will utilize 4 Switched Satellite operating in a Frequer cy-Division, Multiple-Access (SS-FDMA) mode at Kaband with digital data communications between hivividual users via trunking and small earth station torminals.

A primary objective of the SS-FDMA development program is to identify and develop the critical technologies required to support detailed design and fabrication of the satellite small terminal router subsystem. To support this obiective, a Proof-Of-Concept (POC) model of the satellite small terminal router will be designed, fabricated, and tested.

The technological building biocks will be designed, fabricatev, assembled and tester in a limited POX, which represents the typical topology of an SS-FDMA Sector/Router portion of the Satellite Transponder Subsystem.

This presentation also describes Motorola's recommendation for the acivanced technology cavelopment necessary for a POC evaluation of the technological readiness in either a sector or router configuration for an SSFDMA concept. Critical technologies are defined with an assessment of key technologies.

1.1 Overviev, of Report

Section 2 presents the technical summary oi the system design and proof-of-concept model hardware definition. Section 3 highlighis the study goals for both the system design phase and hardware development phase. Key technologies are identified along with the rationale for the evaluation of technological building blocks.

Section 4 presents the detailed system analysis which evaluates performance criteria related to link budgets error control - frequency plan - satellite routing - modulation schemes - antenna limitations - system control and the small terminal user interface witit the terrestrial network.

Section 5 describes in detail the satelite segment, in carticular, the Satellite Router Transponder Subsystem size, weight. power estimates are presented which have evolved from a detailed hardware definition of the limited proof-of-concept router model.

Section 6 addresses the Network Control Station (NCS) and evaluates the minimum requiremenis for user station control - us3r and satellite communication path orderwire scenerios and data-bit requirements for path set-up. Rainfade detection, link margin and power boost correction is addressert extensively.

Section 7 proposes a small terminal user interface design to the terrestrial networks. Small terminals for all station sizes, as outtined in Traffic Models A and B, are addressed with specricic interest dedicated to high cost drivers such as antennas and LNR's.

Section 8 projects advanced technology for a 1987 prototype design. The emphasis is on the overall reduction of size, weight, power estimates.

Section 9 summarizes the importart conclusions drawn from the system analysis. Replacing the $64 \mathrm{~Kb} / \mathrm{s}$ voice link with $32 \mathrm{~Kb} /$ s Continued Voice Slope Delta (CVSD) voice link is both efficient and effective. Section 10 makes recommendations for additional areas of study and analysis.

Section 11 contains Appendices I through J. These Appendices support the main section of this final report with the detailed analysis covering investigation into high pow r amplifiers, high frequency switch technology, low phase noise frequency synthesis. offset QPSK modulation/demodulation techniques and analysis, coding/decoding formats, Traffic Models A and B evaluation for pertinent temporal characteristics and change due to time and population migration, and lastly, the signaling interface requirements with the terrestrial networks.

SECTION 2

2. FINAL REPORT SUMmAARY

2.1 Syatem Summary

In overview, the ACST SS-FDMA technology comprises:

- Satellite switched communication system for small terminal (ST) traffic in 1990's.
- 30 GHz uplinks
- 20 GHz downlinks
- 2.5 GHz bandwidth
- Multiple beam antennas for multiple carrier frequency reuse
- Frequency division multiple access (FDMA) for ST traffic
- Up to 10,000 small terminals (ST)
- single channel to 100 's of channels
- fully mixed voice, data, and video channels
- Traffic - $10 \mathrm{~Gb} / \mathrm{s}$ total with $\mathbf{3} \mathbf{~ G b} / \mathrm{s}$ ST routed traffic
- 70,000 individually routed voice channels
- 7,000 data channels
- 5.000 video channels
- Demand access - reservation protocol
- User availability 0.999 objective

The satellite switched frequency div.sion multiple access system (SS-FDMA) for small terminals (ST) provides a cost effective service among thousands of small ground communication users scattered throughout the Continental United States (CONUS). The smallest user terminal is one with 14 voice equivalent channels (Traffic Model A) or even a single voice channel (Traffic Model B). The satellite provides a routing capacity of $3 \mathrm{~Gb} / \mathrm{s}$ between these many ground stations.

The source satelite also supports a major TDMA trunking capacity between major terminals located within 20 or so large metropolitan areas. A trequency plan is used which includes this capacity as well. The SS-FDM:A system architecture described hereafter is concemed primarily with the deuelopment of a cost effective system design for small stations using SS-FDMA.

To achieve low satellite size, weight, and power and low small terminal cost, extensive advanced technology is required.

2.1.1 COMMUNICATION TRAFFIC MODELS

An SS-FDMA system is to be developed for two possible traffic models. Model A is similar to that used to develop the Baseband Processed TDMA system architecture. Model B is a likely traffic model for an FDMA approach for ST traffic handiling.

The total satellite throughput is $10 \mathrm{~Gb} / \mathrm{s}$. Unike the TDMA approach in the FDMA system, all small terminal traffic must use the ST frequency band, regardless of origin or destination. The total traffic is the same for both msiets. The traffic is a mix of voice, data, and video and in this system shall use a single channel per carrier modulation, i.e., each message is routed by its carrier frequency (see Table 2.1-1).

Table 2.1-1. Communication Traffic Models

| - System Capacity $10 \mathrm{~Gb} / \mathrm{s}$ |
| :--- | ---: | ---: |
| $-6.2 \mathrm{~Gb} / \mathrm{s}$ Trunk - Trunk |
| $-0.8 \mathrm{~Gb} / \mathrm{s}$ Trunk - ST |
| $-0.8 \mathrm{~Gb} / \mathrm{s} \mathrm{ST} \mathrm{-} \mathrm{Trunk}$ |
| $-2.2 \mathrm{~Gb} / \mathrm{s} \mathrm{ST} \mathrm{-} \mathrm{ST}$ |

Because of its increased efficiency and flexibility 32 kbps Continuously Variable Slope Delta (CVSD) modulation was chosen for all voice links. As a result the throughput in terms of channels is the same as the $3.8 \mathrm{~Gb} / \mathrm{s}$ in the SOW traffic model but the bandwidth occupancy is reduced to about $3 \mathrm{~Gb} / \mathrm{s}$.

2.1.2 SS-FDMA SYSTEM CHARACTERISTICS

The SS-FDMA ST routing system must co-exist with a TDMA trunking system. They share the same 2.5 GHz
carrier bandwidth and multibeam antennas and might share LNAs and PAs. Cross-strapping of ST traffic is done in a ST traffic addition to trunking terminals.

The ST routing system uses frequency division multiple access (FDMA) exclusively. Each message channel is in a single carrier with multiple carriers in each antenna beam. Multiple beam antennas are used to enhance carrier reuse throughout the country. Channels may accommodate data rates at $32 \mathrm{~kb} / \mathrm{s}$ (recommended for all voice messages), $56 \mathrm{~kb} / \mathrm{s}$ medium rate data and stop video channels, $1500 \mathrm{~kb} / \mathrm{s}$ high rate data and low rate video, and $6300 \mathrm{~kb} / \mathrm{s}$ video links. All traffic has a digital format, however the Router will pass linear modulation of equal or lesser bandwidths.

2.1.3 SATELLITE COMMUNICATIONS PAYLOAD CHARACTERISTICS

All channels use offiset QPSK. The design has a probability of eiror on any channel of 10^{-6} or less with a channel availability of 0.999 . An alternative that requires less satellite power has an availability of 0.995 for the same BER.

Significarity rain fade occurs on both the 30 GHz uplink and 20 GHz downlink, approximately 15 dB on the former and 6 dB on the latter for an availability of 0.999 . The uplink is protected by 15 dB power boost at transmitting stations. Downlink protection uses convolutional coding on the affected links.

All satellite routing control is done by a Network Control Station (NCS). An integral satellite control link is part of the SS-FDMA system. In addition an integral orderwire system is provided between the NCS and each small terminal. The number of carriers for traffic Model \mathbf{A} is $\mathbf{4 1}$, and for traffic Model \mathbf{B} is $\mathbf{7 2}$. The data rate for traffic Model \mathbf{A} is $2.5 \mathrm{Mb} / \mathrm{s}$, and $1.9 \mathrm{Mb} / \mathrm{s}$ for traffic Model B.

2.1.4 MANOR SS-FDMA SUBSYSTEMS

The principal subsystems of the SS-FDMA systems are shown in Figure 2.1-1. These are the satellite communication payload with particular emphasis on the ST Roc'ter, the many single and multiple channel user ST terminals, and the Network Control Station (NCS).

Although this system design does not include trunking terminals, nevertheless, the ST communication system must co-exist with the trunking communication system. It must share the same satellite and all trunking - ST cross-traffic inter-connection occurs in trunking terminals. Likewise, the NCS shares a major trunk station faciity.

Each of these subsystems are described in the following section. The trunking subsystem is described only as it intertwines with the ST subsystem.

2.1.5 SYSTEM BLOCK DIAGRAM

Shown in Figure 2.1-2 is a simplified block diagram for the SS-FDMA system. Included are:

- trunk terminals,
- small terminals,
- the FDMA satellite, r d
- a network control station (NCS).

Figure 2.1-1. Major SS-FDMA Subsystems

Figure 2.1-2. System Block Diagram

Entry into the system is accomplished by requests to the NCS. The NCS acts as the master terminal in:

- making channel frequency assignments,
- setting frequency and timing references,
- designating channels to be encoded for improving link margins,
- controlling satellite power output for each beam,
- commanding the satellite router switch and IF switch.
- setting system configurations, and
- system monitoring.

Small terminals very in size with composite data rates from $0.88 \mathrm{Mb} / \mathrm{s}$ (G terminal) to $33.84 \mathrm{Mb} / \mathrm{s}$ (E terminals). Traffic channels include voice, data, and video with a satellite throughput rate up to $3 \mathrm{~Gb} / \mathrm{s}$. In addition to ST traffic, the satellite must also accommodate trunk terminal traffic. The portions of this traffic designated for ST stations will be assigned to the ST band and pass though the router. That fraction of the tunking traffic designated for other trunk stations will be directly routed through an IF switch. 1.5 GHz of bandwidth is allocated for trunk traffic and 1.0 GHz for ST traffic. The ST traffic will be broken into roughly threes bands handling 40 beams for Traffic Model A and 71 beams for Traffic Model B in which the satellite will handle routing of all traffic to its proper destination. In the section which follows, the basic architecture of the $30 / 20 \mathrm{GHz}$ SS-FDMA system will be discussed.

2.1.6 SS-FDMA SATELLITE PAYLOAD

There are six basic functional parts to the satellite communication payload:

- Multibeam narrow beam receiving antennas
- Low Noise Receivers at 30 GHz
- IF Switch for TDMA trunk signal routing
- Upconverters to 20 GHz and 20 GHz Power Amplifiers
- Multibeam transmitting antenrias, and the
- FDMA ST Router

Although this program is not concerned with the trunking system, nevertheless the SS-FDMA ST system is inextricably interwoven with the trunking subsystem. Figure 2.1-3 makes clear the points of contact.

2.1.7 SATELLITE BLOCK DIAGRAM

The satellite block diagram, as shown in Figure 2.1-4, contains six main subsystems relating to the FDMA communication link. These are the antenna subsystems, low noise receivers (LNR), IF switch, the ST router, and the power amplifier subsystem. With the exception of the router, these subsystems have all been studied by other contractors and the developed FDMA architecture has used the published characteristics of these studies, where applicable.
Essentially, the FDMA satellite acts as a switchboard to control source to destination traffic. The 30 GHz input is received by the antenna subsystem which contains approximately 40 beam antennas (Traffic Model A). The traffic from trunking terminals, which is destined for another trunking terminal, is allocated a 1.5 GHz bandwidth

Figure 2.1-3. Satellite Payload Block Diagram

Figure 2.1-4. Satellite Block Diagram
and this TDM traffic is destination-controlled through the IF switch. All other traffic, which is ST related, is contained in a 1.0 GHz bandwidth and is destination-controlled through the router. Switch configuration, along with synthesizer settings and power output control, are derived from the NCS receiver within the router.
The router contains approximately 1600 SAW filters with 3200 switching crosspoints. The input and output IF frequencies to the router have tentatively been selected as $4.5-5.6 \mathrm{GHz}$ and $2.65-3.35 \mathrm{GHz}$ respectively. With a maximum $3 \mathrm{~Gb} / \mathrm{s}$ throughput, the required RF output power for communicating the ST traffic is 357 watts for Traffic Model A and 465 watts for Traffic Model B. This assumes an effective satellite antenna gain of 45.4 dB .
Power amplifiers are all quasi-linear for the ST FDMA traffic and will operate saturated for the trunking TDM traffic. Details of the FDMA architecture, and in particular the router, are discussed in the following sections.

2.1.8 MODULATION, CODING, RAIN FADE COMPENSATION

Offset or staggered quadriphase shift keying (O-QPSK) has been selected for all charnels in the SS-FDMA system.

All voice channels use $32 \mathrm{~kb} / \mathrm{s}$ continuously variable slope delta modulation to increase power and bandwidth efficiency. Data on the voice channels shall use CVSD for rates up to 4800 bps . Higher rates to 9600 bps shall use the $56 \mathrm{~kb} / \mathrm{s}$ capability of the ST.

Forward error correction coding uses convolutional $R=1 / 2, K=5, Q=4$ with the maximum liklehood decoder being developed for the Bassband Processor. This provides 3.6 dB of error correction improvement at a BER of 10^{-6}. With adjustments in the transmitting terminals this is adequate to protect for the 6 dB downlink rain fade. Some controlled satellite reserve is desirable.

Rain fade compensation basically uses 15 dB ST power boost to combat uplink rain fading and FEC to combat the downlink facing. The rate $1 / 2$ coding reduces the signal power density by 3 dB . This, in turn, results in a higher signal power to intermodulation power density at the cutput of the satellite TWT. This improvment plus the 3.6 dB coding gain exceeds the downlink 6.0 dB rain fade loss.

2.1.9 COMMUNICATION LINK SUMMARY

Table 2.1-2 summarizes the communication link assumptions. The bit error rate for the SS-FDMA system is specified at 10^{-6} for the Traffic Channel. The corresponding signal to noise ratio is 10.6 dB . The Orderwire Control Link and Satellite Control Link are both specified at an error rate of 10^{-8}. The uplink and downlink impairments are the combination of the following losses:

Adjacent channel interference: Co-channel interference
Intermodulation distortion products: Filter distortion
Phase noise: Other hardware imperfections
The $1 / 2$ rate coding with constraint length 5 and 2 bits soft decision is assumed in the system which results in coding gain of 3.6 dB .

The 7.6 dB satellite antenna impairment assumed in the system is the combination of the following losses:
Beam to beam variation: $1 \mathrm{~dB} \quad$ Area coverage: 3 dB
Pointing error (beam edge): 1.3 dB
Diplexing loss: $2.0 \mathrm{~dB} \quad$ Polarization loss -0.3 dB
Table 2.1-2. Communication Link Summary

Parameters	Unit	E-Type Termil	F-Type Termn	G-Type Termnl	Note
Uplink Path Loss	dB	213.5 ± 0.4	213.5 ± 0.4	213.5 ± 0.4	
Downlink Path Loss	dB	210 ± 0.4	210 ± 0.4	210 ± 0.4	
Terminal Bit Rate	MB/S	26.16	3.812	0.496	32 kbps
					Voice
Ideal Satellite Antenna Gain	$d B$	53	53	53	
Satellite Antenna System	$d B$	7.6	7.6	7.6	
Impairment					
Satellite Receiver Noise Figure	$d \mathrm{~B}$	5	5	5	
ST Antenna Size	METER	6	5	4	
ST Antenna Gain	dB				
30 GHz		61.8	60.3	58.3	Efficiency
					43\%
20 GHz		59.2	57.6	55.7	Efficiency
					53\%
Uplink/Downlink Impairment	$d \mathrm{~B}$	3.7/4.8	3.7/4.8	3.7/4.8	
ST Receiver Noise Figure	dB	7.5	6	4	
Coding Gain	dB	3.6	3.6	3.6	

2.1.10 SATELLITE RF POWER REQUIREMENTS FOR ST TRAFFIC

Table 2.1-3 contains the satellite RF power requirements for small terminal traffic. The satellite RF power can be determined from the following downlink budget equation:

$$
S T P=\left(\frac{E_{\mathrm{b}}}{N_{o}}\right)_{\text {down }}-G_{T}+K T_{\mathrm{R}}+L_{d}+L_{\mathrm{od}}+L_{p}+L_{C}-G_{\mathrm{R}}+R_{\mathrm{D}}
$$

where
STP - Satellite RF power in dBm
$\left(\frac{\mathrm{E}_{\mathrm{b}}}{\mathrm{N}_{\mathrm{o}}}\right)_{\mathrm{down}}$ - Downlink signal to noise ratio in dB
G_{T} - Satellite antenna gain in dB
$K T_{R}$ - ST receiver noise power density in $\mathrm{dBm} / \mathrm{Hz}$
L_{d} - Path loss in $d B$
L_{d} - Rain loss in $d B$
L_{ρ} - Pointing loss in $d B$
L_{c} - Receiver line loss in $d B$
G_{R} - ST receiver antenna gain in dB
R_{b} - Data rate
The RF power listed will satisfy any rain fade condition that may exist on the uplink, downlink, or both links simultaneously.

Table 2.1-3. Satellite RF Power Requirements for ST Traffic

Terminal	E-Type		F-Type		G-Type		40 Beams	
Power								
Traftic Model	(dBm)	(Watt)	(dBm)	(Watt)	(dBm)	(Watt)	(dBm)	(Watt)
A	35.0	3.16	26.6	0.46	17.8	0.06	55.52	356.49

2.1.11 TRANSPONDER SIZE, WEIGHT, AND POWER

Table 2.1-4 is a summary of each of the five SS-FDMA satellite transponder subsystems. The antenna subsystem is the single largest subsystem within the satellite, due primarily to the large reflectors and supporting structure. The antenna estimates are based on data published by Ford Aerospace and GE.

The IF trunking switch is the smallest subsystem in terms of size, weight, and power. The estimate is taken from existing published industry data.
The transmitter subsystem is the heaviest and the largest power consumer of all the subsystems. The weight and the power are a result of the many TWT's and the high voltage powe; supplies needed to drive the TWT's. This high power dissipation will necessitate extensive external cooling to keep the operating temperature within reasonable limits.

Table 2.1-4. Transponder Size, Weight, and Power

Assembly	Weight (ib)		Power (Watt)		Size (Ft^{3})	
	A	B	A	B	A	B
Antenna Section	250	350	-	-	300	301
Receiver Section	84	133	99	164	1.2	2
If Switch (Trunking)	25	25	8	8	0.4	0.4
ST Router	353	498	195	244	9.2	12.6
Transmitter Section	1.944	2.966	4.902	5.528	24.7	37.7
Total	2,656	3.972	5,204	5,944	335.5	3537

2.1.12 TRUNKING AND ST FREQUENCY PLAN REQUIREMENTS

Traffic consists of both trunk and ST traffic as shown in Table 2.1-5. Any trunk traffic which is destined for a ST terminal is assigned a frequency allocation in the ST Band. This also pertains to the ST to trunk traffic and results in a maximum total ST traffic of $3 \mathrm{~Gb} / \mathrm{s}$. All trunk-to-trunk traffic is switched in the satellite via an IF switch in which the trunk traffic is generated from approximately 18 terminals. Frequency organization for the trunk traffic is the same as in the TDMA $30 / 20 \mathrm{GHz}$ Communication System. Since this FDM/TDMA design is presently fixed, the following discussions pertain only to the ST traffic. The frequency plans do not assume any isolation through polarization diversity. Frequency reuse is maximized while avoiding spot-to-spot intererence degradation. The use of the trunking band for ST traffic is not considered at this time.

Table 2.1-5. Trunking and ST Frequency Plan Requirements

TRUNKING
Trunk Charinel Bandwidth $=1.5 \mathrm{GHz}$ (Three Bands)
Trunk Traffic Burst Rate $=550 \mathrm{Mbps}$
TDMA Transmission as per $30 / 20 \mathrm{GHz}$ TDMA Communication System
Number of Beams with Trunk Traffic $=18$
Peak Hour Tratfic $=6053 \mathrm{Mbps}$
23×23 IF Switch for Routing
SMALL TERMINAL
ST Bandwidth Allocation $=1.0 \mathrm{GHz}$
Includes T/ST, ST/ST and ST/T Traffic
Traffic Model A; 45 Cities, 40 beams, 3 Grps Throughput
Traffic Model B; 227 Cities, 71 Beams, 3 Gbps Throughput
GENERAL REQUIR:iEMENTS
Polarization Diversity not Required
Frequency Plan to Avoid Spot-To-Spot Interference

2.1.13 ST TRAFFIC-CITY AND FREQUENCY BANJ ALLOCATION FOR TRAFFIC MODEL A

Figure 2.1-5 shows a composite frequency plan for small terminal and trunk traffic. Some beams require two trunking channels. In this case bands A and C are used. In all other cases the beams use one trunk channel only. Likewise, only one small terminal band is used in any single beam, and small terminal band three is never used on the same beam as trunk channel C . Observing these rules helps to minimize co-channel and adjoint channel interference. The trunking band is nominally 1.5 GHz wide with each channet capable of $550 \mathrm{Mb} / \mathrm{s}$ serial MSK traffic as was recommended in the Baseband Processor program. The three sriall terminal bands are unequal in width but are each nominally 300 MHz wide. The total is about 1 GHz .

Figure 2.1.5. Traffic Friquiency Plan

2.1.14 ST TRAFFIC-CITY AND FREQUENCY BAND ALLOCATION FOR TRAFFIC MODEL A UPLINK

As shown in Table 2.1-6 the ST band has been subdivided into three frequency bands in which the total bandwidth allocated for ST traffic is 833 MHz . The arrangement of cities in a given frequency band is not unique. and any number of arrangements are possible. The key consideration which led to the distribution shown is maintaining cities in close geographical proximity (250 miles separation) in separate frequency bands.

Without regard to the router design the required total bandwidth would be 496 MHz (vs the 833 MHz shown in Table 4.4-1) and each of the cities would require less bandwidth (i.e., New York would be 207 MHz instead of 310 MHz). City numbers shown are that city's position in terms of input/output traffic. For example, New York is the heaviest traffic city. and Hartford is number 33. It should be noted that even though cities are in the same zone they need not overlap in frequency allocation. For example, Kansas City and St. Louis are in the same frequency band and are less than 300 miles apa:i. However. with the frequency bands of these cities adjacent to ne another, they still won't exceed the bandwidth of Frequency Band 2 (i.e.. $137+147$-307).

Table 2.1-6 ST Traffic-City and Frequency Band Allocation for Traffic Model A Uplink

Frequercy Band 1			Frequency Band 2			Frequency Band 3		
City No.	City	$\begin{gathered} \mathrm{BW} \\ (\mathrm{MHz}) \end{gathered}$	City No.	Cily	$\begin{gathered} \mathrm{BW} \\ (\mathrm{MHZ}) \end{gathered}$	City No.	City	$\begin{gathered} \mathrm{BW} \\ (\mathrm{MHz}) \end{gathered}$
1	New York	310	7/16	Wash DC/Phila	307	19/33	Boston/Harterd	183
?	Los Angeles	2:5	3	Chicago	284	11	Tampa	216
15/32	Det/Cleveland	24.	6	Greensboro	238	14	Salt Lake City	203
18/20	Buffalo/Roch	266	21/31	Columbus/Cinn	196	17	Dallas	170
4	Milwaukee	263	9	San Diego	255	24	Lansing	165
5	Indianapolis	255	12	Houston	177	25	Harrisburg	162
8	San Francisco	189	13	Portiand	209	29	Atlanta	142
10	Phoenix	244	22	Minn:St Paul	155	42	Louisville	126
26	New Orieans	158	23	Miami	151			
30	Denver	140	27	St Louis	147			
35	Seattle	135	28	Pittsburgh	145			
36	Norfolk	134	34	Kansas City	137			
41	San Antonio	127	37	Syracuse	132			
43	Memphis	125	38	Oklahoma City	131			
44	Omaha	124	39	Nashville	129			
45	jacksonville	122	40	Fresno	128			
	16 Beams			16 Beams			8 Bearns	
	q'dBW $=310$			eq'd BW = 307			$q^{\prime} \mathrm{dBW}^{8}=216.1$	
Totai Uplink Eandwidth - 833 MHz Total Downlirik Bandwidth $=496 \mathrm{MHz}$								

2.1.15 BEAM AND FREQUENCY BAND ALLOCATION FOR TRAFFIC MODEL A

Figure 2.1-6 shows a graphical representation of the same data tabulated in a previous section (see ST Traffic City and Frequency Band Allocation for Traffic Model A). Even though the 3 dB bandwidths are shown as circles instead of ellireses, the presentation provides a clear picture of frequency band and city assignments.

The numbers shown accompanying the beam spois aie that particular citys position in ierms of input/output tratfic (i.e. Fresno is number 40 in terms of traffic volume). Two numbers within a crcle indicate two cities in one spot. For example. 19/33 refers to Boston/Hartiord.

Figure 2.1-6. Map Showing Beam and Frequency and Allocation for Traffic Model A

2.1.16 CHANNEL ARRANGEMLiv \boldsymbol{r}

The channel arrangement strwn in Figure 2.1-7 is designed to simplify the satellite router while still insuring sufficient traffic flexibility. Although this will he discussed in more detail in the section titled "Satellite Routing," some comments are worth noting here.

The numbers shown in each rectangle, $m-n$, represents traffic from source city " m " to destination city " n ". In all cases, the destination location, n, is made up of contiguous channel slots. That is, the end of slot 1-1 is even with the beginning of 7/16-1 and the end of 7/16-1 coincides with the beginning of 2-1 and so on. Thus, the traffic to any beam spot does not overlap in the frequency domain with any other traffic to that same destination. This has some definite router switching advantages. Source traffic is arranged in order of descending traffic. That is, the traffic from city number 1 is the heaviest while that from $7 / 16$ is second in volume followed by that from city number 2 , and so forth.
Arrangements in other than descending (or ascending) traffic volume will result in a greater required total bandwidth. The above channelization is depicted as if total frequency reuse were possible. In reality, the source transmissions must conform to the overall frequency allocations plan and offset shifts are required as shown.

Figure 2.1-7. Channel Arrangement

2.1.17 ST TRAFFIC BEAM SPOT FREQUENCY ALLOCATION TRAFFIC MODEL B

As shown in Table 2.1-7, the ST band has been subdivided into three frequency bands in which the total bandwidth allocated for ST traffic is 1179 HMz . The arrangement of cities in a given frequency band is not unique, and any number of arrangements are possible. The key consideration whish led to the distribution shown in maintaining cities in close geographical proximity (250 miles separation) is separate frequency bands.

The beam spot numbers are those shown on the map for Traffic Mcdel B. For the case where multiple spots are indicated these are combined before processing in the router. This will not increase the total bandwidth needed but will increase the necessary satellite transmit power (approximately 1 dB for the arrangement shown).

Without regard to the router design the required total bandwidth would be 609 MHz (vs the 1179 MHz shown in Table 4.4-2) and each of the cities would require less bandwidth. (i.e., New York area would be 280 MHz instead of 316 MHz .)

Table 2.1-7 ST Traffic Geam Spot Frequency Allocation Traffic Model B Uplink

2.1.18 TRAFFIC MODEL B CITIES ANTENNA BEAM SPOTS

There are 277 metropolitan areas encompassed within seventy-one 0.3° half-power beamwidth spots in Traffic Mooel B (see Figure 2.1-8). A large number of these spots will be combined onboard the satellite in order to reduce the size and complexity of the ST routing switch.

ORIGINAL PAGE IG OF POOR QUALITY

Figure 2.1-8. Traffic Model B Cities Antenna Beam Spots

2.1.19 BEAM AND PATH FILTER MATRIX FOR A NINE BEAM, THREE ZONE ARRANGEMENT

As an illustration of the concepts employed, consider a nine beam system as depicted in the matrix in Figure 2.1-9. With nine beams in which all beams can transfer traffic from any beam to any other beam (including to itself) there must be 81 (9^{2}) filters if path independence is to be preserved.

For the nine beam configuration, assume that there are three separate zones. Assume still further that the respective three zones contain three beams, four beams, and two beams. The number of beams assigned a zone is dependent on several factors including geographic site location, traffic volume, switching complexity and frequency allocations. With nine beams and zones of three beams, four beams, and two beams, the sections within the matrix are as shown.

The numbers within the matrix represent the nominal path filter nomenclature. That is, for the traffic originating at beam seven with an intended destination to beam nine, the path filter is designated as seven-nine. The bandwidth for this filter is designed to handle the nominal prescribed traffic. As these traffic demands change, the path filter assignments within a section are changed via the router switch. The section shown in bold outline will be used to illustrate basic router switching principles.

Figure 2.1-9. Beam and Path Filter Matrix for a Nine Beam, Three Zone Arrangement

2.1.20 ROUTER SWITCH COMPLEXITY

A comparison of the impact of element versus row-column switching and the impact of zonal organization may be summarized as follows:

- Proportional to number of crosspoints using 9 beam example previously shown

1. Total interchange: no zoning

Number Crosspoints $=\left(81^{2}\right)(2)=13122$
Relative Power Required $=0 \mathrm{~dB}$ (Reference)
2. Zoning: element interchange within a section

Number Crosspoints $=1682$
Relative Power Required $=-8.9 \mathrm{~dB}$
3. Zoning: row and column interchange within a section

Number of Crosspoints $=174$
Relative Power Required $=--18.8 \mathrm{~dB}$

- Chosen method for operational systems

1. Zoning with row switching within a section
2. Column switching between sections

The relative power is based upon a unit value for no zoning and element switching. The other assumes equal power per switch point.

The selected method for both A and B systems uses five (5) or six (6) zones respectively. Row switching is used within a section. However, column switching is over all sections.

In the present frequency plan that exists internal to the router, there is a potential frequency conflict using sector column switching. The conflict does not ex it with full column switching. Therefore, the latter was selected at this time. The problem is not fundamental. Also the solution does not significantly alter the r outer size, weight, and power.

2.1.21 ROUTER CONFIGURATION

A three dimensional pictorial view of the router is shown in Figure 2.1-10. This illustrates the traffic flow. Incoming traffic from a beam in Zone 1 is routed by frequency and distributed by a $1: 5$ power spliter. Each of these outputs is applied to one of five sectors (with five zones there are five squared sectors). In the lower left hand corner is shown a blowup of one such sector. The inputs from the eight beams in one zone are applied to one 8×8 row switch then further separ.ted in a 1:8 power divider. Individual paths are then filtered in a bank of 64 surface acoustic wave (SAW) filters. The outputs are recombined in an 8:1 power summer. Data then rotates 90° between power division and power summation. The sector output is summer in the $5: 1$ beam summers with outputs of the other five sectors that contribute to that beam. Not shown is the final column switch that can interchange the column of paths that apply to any one beam.

This diagram best illustrates the horizontal-to-vertical rotation that goes on within the router structure. This rotation, coupled with the switching, is what allows the interchange of path characteristics in an economical manner.

2.1.22 SATELLITE ROUTER SIMPLIFIED BLOCK DIAGRAM

A segment of the router is shown in Figure 2.1-11 in which the primary emphasis is in presenting the switching and path filter arrangements. For any input beam, the first power splitter breaks the input signal into one output for each zone. With five zones, there are thus five outputs required. The row switch which follows the power splitter has one input for each beam in a section. That is, the inputs for any given switch is the eight common row element beams in that section.

The output of the row switch is then split into outputs for each of the beam destinations in that section. There are then 64 filters associated with each row switch (8 inputs $\times 8$ destinations per input). The eight summers following the path filters sum all beams within that section which have a common destination. With eight such destinations there are then eight summers. These eight outputs are then followed by the beam combiner which sums all inputs destined for a particular beam from this section plus those from all other sections. This is then followed'رy the destination or column switch which has in its input the total traffic intended for ali beams in a zone. These outputs are then converted to the proper router IF output frequency. In addition, the router contains a control processor which directs the switch configuration. Commands for this switching operation are generated in the NCS along with a system clock reference. All frequencies for tise router are obtained from an internal frequency synthesizer.

Figure 2.1-10. Router Configuration

Figure 2.1-11. Satellite Router Simplified Block Diagram

2.1.23 ROUTER FUNCTIONAL REQUIREMENTS

Functional requirements of the router are listed below for Traffic Model A and B:

- Traffic input: Multiple beam FDMA
- Total ST channel quantities available for Traffic Model A and B

Channel \rightarrow	$6.3 \mathrm{Mb} / \mathrm{s}$	$1.5 \mathrm{Mb} / \mathrm{s}$	$56 \mathrm{~kb} / \mathrm{s}$	$32 \mathrm{~kb} / \mathrm{s}$	Total Channels
Traffic Model A	80	860	8148	59,088	68,176
Traffic Model B	200	800	7400	48,600	57,000

- Throughput
up to 50% of available channels
- Beam to beam routing thorugh flexible switching
- Traffic variations
high volume beams (approximately 18 beams) $= \pm 30 \%$
other beams $= \pm 50 \%$
- Blocking probability $<0.1 \%$
- Linear input to output transier (no limiting)
- Maximum input bandwidth $=1.5 \mathrm{GHz}$
- Input/output impedance: 50 ohms, VSWR $<1.2: 1$
- Minimum weight and power

In both cases the router throughout is based on a $32 \mathrm{~Kb} / \mathrm{s}$ voice traffic rate. Traffic from any input beam will be capable of routing to all other beam locations. In the case of Traffic Model A there are 45 cities in which 5 of the beams are combined to give a resulting 40 inputs to the router. Traffic Model B has 277 cities and approximately 71 beams. Traffic from these beams are combined. The router requirements do not change materially for Traffic Model B as compared to Traffic Model A. In addition to the requirements regarding traffic control, the router must also be responsive to the NCS control signals inputs and must address the selected frequency plan.

The total small terminal channels available is the sum of all the ST station capacities. Using $65 \mathrm{~Kb} / \mathrm{s}$ voice the corresponding total available traffic would be about $6 \mathrm{~Gb} / \mathrm{s}$ for both models. At 50% of available channel use at peak loading this is $3 \mathrm{~Gb} / \mathrm{s}$ to which must be added the $800 \mathrm{Mb} / \mathrm{s}$ trunk to ST traffic.

2.1.24 ROUTER LAYOUT

The layout of the router is essentially an array of individual module stacks mounted on a common baseplate (see Figure 2.1-12). The module stacks have been arranged to minimize the lengths of the interconnecting cables. Referring to Figure 2.1-12, and assuming that rows are from left to rizht and columns from bottom to top, the input signals to the router from the receiver subsystem are located ir each of the IF assembly module stacks on the far left. The outputs from the stacks are distributed to eacil of the five 8 way divider module stacks located directly to the right in the same row. The output from this stack and each of the other four module stacks in the same column must be rnuted up to the five way combiner stack located at the top of the drawing. The output from this stack is then routed to the Downlink Translator stack in the same column and the output from this stack, located at the top of the stack, then becomes the input to the transmitter subsystem.

2.1.25 A SLICE THROUGH THE ROUTER

Shown in Figure 2.1-13 is one slice through the Router. A modular approach is used in packaging the router as this has proven to be the most rugged and reliable method of packaging large spaceborne electronic equipment. This packaging scheme will minimize both the size of the router and the number of interconnecting cables needed within the router. Semi-rigid cables must be used on the input to the IF assembly and on the outputs of the Downlink Translator/Amplifier modules. Flexible coaxial cables may be used for all other RF interconnections between the assemblies shown.

Fiqure 2.1-12. Router Layout

Figure 2.1-13. A Slice Through the Router

2.1.26 ST ROUTER SIZE, WEIGHT, AND POWER SUMMARY

Table 2.1-8 is a summary of the overall size, weight, and power of the ST Router for both Traffic Model A and Traffic Model B. The router for Traffic Model B is the larger of the two because there are more beams associated with Traffic Model B.

Table 2.1-8. Router S_{Z}, W_{T}, and Power

	Weight (Ib)	Power (watt)	Size $\left(\mathrm{ft}^{3}\right)$
ST Router-Traffic Model A	353	195	9.2
ST Router-Traffic Model B	498	244	12.6

Traffic Model A-40 Beams-25 Sectors
Traffic Model B-71 Beams-36 Sectors

2.1.27 ROUTER RELIABILITY SUMMARY

The initial reliability study performed on the FDM was limited to the Router Switching Network.
The probability of success for 67.6% throughput of the Router Switching has been calculated to be 0.9667 for a 10 year mission.

Studies indicate that in addition to the redundant $8 \times 8 \mathrm{~s}$ vitch, additional redundancies will be required for those elements which are common to each of the beam switching paths. These elements include oscillators, synthesizers, power supplies, and switch controls.

The 8×8 switches intended for use in the FDM Router Switching will be a modification to switches developed on the Baseband Processor program.

2.1.28 SYSTEM CONTROL CONCEPT

As shown in Figure 2.1-14, the system control consists of the following four control links:

- Access Control Link

The user initiates his call request through the access control link by using the ordinary telephone signalling information.

- Orderwire Control Link

It conveys request and status messages between ground stations and the network control station through the satellite and provides the following functions:

- Communication frequencies assignment
- Terminal coding and/or power adaptation control
- Time and frequency standards for ST stations
- Diagnosis and monitoring of ST stations
- Satellite Control Link

It conveys command, control, and supervision messages between the satellite and the network control station and provides the following functions:

- Satellite path rearrangement
- Satellite radiated power controi
- TT\&C
- Time and frequency standard for the satellite
- Traffic Link

Once a traffic link is established, all user's messages are transmitted through the traffic link.
2.1.29 NCS FUNCTIONAL REQUIFEMENTS

As shown in Figure 2.1-15. the NCS functional tequirements are divided into four functional areas:

- System Management
- Satellite Control
- Orderwire
- NCS Computer

ORIGINAL PAGE IS
 OF POOR QUALITY

The NCS computer is the focal point for the three remaining functions. The NCS computer coordinates the interchange of data. As examples:

- System operation (a System Management function) is the function that establishes the traffic paths between the small terminals. System operation function relies on the signalling and supervision information provided by the Orderwire function.
- Maintenance function provides beam status and network fault diagnosis. The NCS computer must input data from:
- Satellite control function (TT\&C), and
- The orderwire (small terminal status)

Figure 2.1-14. System Control Concept

2.1.30 NCS BLOCK DIAGRAM

A simplified block diagram of the Network Control Station is shown in Figure 2.1-16. The baseline orderwire architecture incorporates 40 unique frequencies (one frequency per beam) for transmission and reception. Satellite control will be effected over a dedicated channel to the satellite.

The channels (transmitters and receivers) will include convolutional encoding/decoding to maintain BER $\leqslant 1 \times$ 10^{8}.

A time/frequency reference will be used $3^{\prime \prime}$: the station clock. The time/frequency reference shall be transm:: ted over the orderwire channels to ensure that all stations operating within the system are time referenced to the NCS.

The NCS will provide processors for system operation and maintenance functions; telemetry, tracking, control of the satellite; billing and system reconfigurations; and ST adaptive control. The four processors will be slaved to a station computer. The station computer coordinates and controls all NCS functions. A space diversity switch is included to route communication to/from a remote trunking station RF subsystem (HPA, LNA, ANTENNA, and UP/DOWN CONVERTERS). Space diversity is used in combatting severe weather conditions at the primary trunking station site.

Figure 2.1-15. NCS Functional Requirements

Figure 2.1-16. NCS Block Diagram

2.1.31 NCS PERFORMANCE SUMMARY

The NCS is part of a trunking station. Common circuitry of the NCS and trunking station includes the LNA, HPA, and Antenna. Since the trunking station is preserily undefined, the transmit characteristics and receive characteristics of the NCS are presented in Table 2.1-9 are in terms of EIRP and G/T. The transmit and receive characteristics are the combined requirements of the Orde wire and Satellite Control links. Traffic Model A requiures 40 channels of orderwire and Traffic Model B requires 71 channels of orderwire. At least one additional channel will be used for Satellite Control

The bandwidths assume FEC and includes the orderwire bandwidth and the 0.5 MHz dedicated to Satellite Control. The EIRP requirements are based on the satellite's receiver performance and the link mergir. previously defiried for the traffic uplink at 30 GHz . The specified no rain EIRP will provide a BER $=1 \times 10^{8}$ for the NCS transmit link.

The specified G / T requirements will provide a BER -1×10^{8} for the NCS receive link
The specified frequency stability is a baseline performance specification based on practical cost and technology.

Table 2.1-9. NCS Performance Summary

TRANSMIT CHARACTERISTICS	
Tratic Model A	Tratic Model B
BW - 5 MHz (Composite)	4.3 MHz (Composite)
Bit Rate - 2.5 Mbps (Composite)	2.15 Mbks (Composite)
Channels Required - 41	72
No Rain, EIRP - 86.5 dBm	85.8 dBm
RECEIVE CHARACTERISTICS	
Traffic Model A	Traflic Model B
BW - 5.0 VHz (Composite)	4.3 MHz (Composite)
Bit Rate - 25 Mbps (Composite)	215 Mbps (Composite)
Channels Required . 41	72
G T. 285 dB "K (Based on satellite EIRP density of $0.2 \mathrm{dBm} / \mathrm{bit}$)	
Frequency Stability Better Than - 1 - 0 *	
BER - 1 10 ${ }^{\text {a }}$	
Forward Error Correction Encoding	
Constrant Length - 5	
Rate 12	
Bit Decision - 2 Bit Soft Decision	

$213:$ MLLTICHANNELST BIOCK DIAGRAM

The mult- hannel ST as shown in Figure 2117 is characteristic of the E. F. and G class terminals in Traffic Model A and the E.F. G. H. and I temmals of Traffic Model B

The muti-channel small temmat is comprised of the same subsystems as the single channel small terminal. The IIU, trafic thansmiters and traffic recemers will increase on a one for one basis as the channel capacity increases

The TIU capacity may be increased by adding a module to the I!U subsystem main frame for each channel added. Complete subsysiems (traffic recevers anci thaftic transmitters) must be added for each additional channel added The orderwre subsystem will not change since all channels are controlled trom a single bus structure

Additonal HPA: different antema sizes and antema positioning control must be added as channel capacity moreases (moreased EIRP mequrements). If necessary. the Ka-band outputs may be summed spatially in a Cassegram feed stmeture at the atomat

Figure 2.1-17. Channel Arrangement
The high rate user interface is a direct hardwired interface over dedicated lines. The high rate data is inputted/outputted by the TIU. The TIU contains I/O bus circuitry and reclocking circuitry. The signalling and supervision signals are provided by a companion low rate traffic circuit.

2.1.33 SMALL TERMINAL RF CHARACTERISTICS SUMMARY (BER 1×10^{-6})

The antenna size, HPA power, and LNA noise temperature for the Traffic Model A stations, shown in Table 2.1-10, were determined through parametric analysis. The parametric analysis is presented in sections 7.12, 7.13, 7.14, and 7.15. Parametric analysis was not performed on Traffic Model B stations. The equipment characteristics for Traffic Model B stations are based on Traffic Model A stations of comparable capacities.
The HPA saturated power sizes the maximum power capability required. Normal operation (rain fade and clear conditions) will be backed off from the saturated power. The powers listed are intended only to show the range of power required for each class of station.

The LNA noise temperature listed includes the noise temperature of the antenna due to rain ($290^{\circ} \mathrm{K}$). Delta PSK modulation will be used on the traffic channels. The FEC characteristics as isted will provide the required signal to noise ratio (downlink rain fade) to achieve the required BER when the duwnlink is experiencing rain fade.

The LNA low noise temperature characteristics for the smaller classes of stations is a paradox: The better LNA's when operated with a smaller antenna results in mininium station costs.

Table 2.1-10. Small Terminal RF Characteristics Summarv (BER 1×10^{-6})

	Traffic Model A			Traffic Model B					
Equipment	E	F	G	E	F	G	H	I	J
Antenna Diameter (M)	6	5	4	6	5	4	4	4	4
HPA (Saturated Power)	200 W	50 W	10 W	100 W	25 W	10 W	5 W	5 W	1 W
Rain Fade	$\approx 75 \mathrm{~W}$	$\approx 15 \mathrm{~W}$	$=3 \mathrm{~W}$	$\approx 25 \mathrm{~W}$	$\approx 7 \mathrm{~W}$	$\approx 2 \mathrm{~W}$	$\approx 1.5 \mathrm{~W}$	$\approx 1 \mathrm{~W}$	$\approx 200 \mathrm{~mW}$
Clear (No Rain)	$\approx 3 \mathrm{~W}$	$\approx 0.5 \mathrm{~W}$	$\approx 0.1 \mathrm{~W}$	$\approx 0.7 \mathrm{~W}$	$\approx 0.2 \mathrm{~W}$	$\approx 75 \mathrm{~mW}$	$\approx 56 \mathrm{~mW}$	$\approx 30 \mathrm{~mW}$	$\approx 5 \mathrm{~mW}$
LNA (Max. Noise									
Temperature in ${ }^{\circ} \mathrm{K}$)	1621	1148	724	1621	1148	724	724	724	724

Modem: - O-QPSK
FEC CODEC - Rate 1/2, Constraint Length 5, 2 Bit Soft Decision

2.1.34 ST RECEIVE, TRANSMIT AND INTERFACE CHARACTERISTICS

EIRP and G / T requirements shown in Table 2.1-11 were determined by link budgets giving a total system $E B / N O>10.6 \mathrm{~dB}\left(B E R \leqslant 10^{-6}\right.$) when maximum rain fade occurs on the uplink and downlink.

The user interface functional requirements are based on the most common type of signalling anticipated in the 1987 time frame. As a baseline assumption, potential subscribers with unique interface requirements will provide the necessary interfacing equipment which will make their user interface compatible with the ST TIU. Commercial equipment is readily available to satisfy many unique interface requirements.

Table 2.1-11. ST Receive, Transmit and Interface Characteristics

2.1.35 ST ORDERWIRE CHARACTERISTIC:

Table 2.1-12 is a summary of the sinall terminal orderwire characteristics. The orderwire communication link between the NCS and ST should perform at better than the specified traffic BER $\left(1 \times 10^{6}\right)$. As a baseline, the OW BER is established at 1×10^{-8}. T: 3 orderwire communication link shares the ST traffic link's HPA and LNA. To achieve the required OW BER, FEC will be implemented on a permanent basis.

Capacity for call initiation/termination is based on the worst case beam capacity (New York). Per protocol, each call will require 3 separate sers ST $\leftrightarrow N C S$ data transfers. Each ST transmit requires 300 bits. Each ST receive requires 600 bits. As a minimum, $1: 8$ slots per second must be available (5 msec slot duration). The ST transmitted data in each slot must contein 300 bits.

The transmit data rate is:

$$
\frac{300 \mathrm{BITS}}{5 \mathrm{msec}}=60 \mathrm{~kb} / \mathrm{s}
$$

The receive data rate is:

$$
\frac{600 \mathrm{BITS}}{5 \mathrm{msec}}=120 \mathrm{db} / \mathrm{s}
$$

The bandwidth requirements include rate $1 / 2$ encoding for FEC.
The capacity for the (Traffic Model B) I and J stations was increased by dedicating more time slots to those stations. Increasing the available time slots reduces the access time to effect a call.

Table 2.1-12. ST Orderwire Characteristics

		odel	ation			affic Mo	B Sta		
	E	F	G	E	F	G	H	1	J
Capacity	5	1.2	0.25	0.6	0.183	0.117	0.117	0.083	0.167
Required (Cails/ second,									
Capability	5	1.2	0.25	0.6	0.183	0.117	0.117	0.25	0.2
(Calls/second)									
$B E R \leqslant 108$									
FEC									
RATE - $1 / 2$									
CONSTRAINT LENGTH - 5									
QUANTIZATION - 2 BIT SOFT DECISION									

Table 2.1-12. ST Orderwire Characteristics (Cont)

```
Data Rate
    Transmit - 300 bits per 5.0 msec slot (60 kbps burst rate)
    Receive - 600 bits per 5.0 msec slot (120 kbps continuous)
RF Bandwidth
    Transmit - 120 kHz (includes rate 1/2 encoding)
    Receive - 240 kHz (includes rate 1/2 encoding)
```


2.1.36 SYSTEM ARCHITECTURE SUMMARY (TRAFFIC MODEL A)

Characteristics summarized in Table 2.1-23 are based on either Statement of Work (S.O.W) requirements or response thereto as discussed in the previous sections. The letters shown, in conjunction with the antenna size, transmit power, and traffic rate, are the particular stations defined in th. 3 S.O.W. The data modulation selected is O-QPSK although there is not a great deal to choose between it and MSK.

Link improvement will be realized through convolutional encoding and power boost. Uplink rain fades are handled through power boost and downlink through coding and power boost. This, along with frequency and time reference, will be controlled by the NCS as will assignment of path filters in the satellite router. The basic frequency plan has been organized to effect a simpler router design at the expense of bandwidth efficiency.

The frequency plan for the ST traffic will contain three bands which are divided into five zones with eight sections per zone. This will result in all switches in the satellite router being 8×8. Required satellite RF transmit power for the ST traffic will be less than 400 watts.

Table 2.1-13. System Architecture Summary (Traffic Model A)

ST STATION TYPE	E	F	G
Antenna Diameter	6	5	4
Transmitter Power (Clear Air)	2	0.4	0.08
Transmitter Saturated Power Req'd	200	50	10
Signal			
Modulation	O-QP		
BER, Availability	10^{-6},		
Uplink Rain Fade Power Boost	15 dB		
Downlink FEC Fain Protection	3.6 dB	1/2,	5, Q = 4
Frequency	30 GH	ink;	Hz downlink
ST Allocated MF Bandwidth	1.0 GH		
System Control and Monitor	NCS		
Orderwire Data Rate	2.28 N		
Number of Channels	41		
Access Time	<4 S		
Orderwire BER	10^{-8}		
Satellite Transponder			
Trunking Capacity	6.2 Gb		
ST-ST and ST-Trunk Capacity	3 Gbp		
Number of Antenna Beams	40		
Number of LNR's	40		
Number of HPA's	61		
Size, Weight. Power	336 cu	656	5204 watts
Satellite RF Power Out	357 w		
FDMA Router			
Capacity	70,000	nnels	
Number of Filter Paths	1600		
Switch Cross Points	1920		
Switch size	3 $\times 8$		
Size. Weight, Power	9.2 cu	53 lbs	5 watts

2.1.37 SYSTEM ARCHITECTURE SUMMARY (TRAFFIC MODEL B)

Table 2.1-14 provides the architectural sumrnary for Traffic Model B. The significant differences are the station capacities which range from a single voice channel up to a 36 channel voice, data, and video station. The
total throughput is as before. The number of antenna beams has been increased to 71 although the number of router paths has increased only to 48.

Table 2.1-14. System Architecture Summary (Traffic Model B)

ST STATION TYPE	E	F	G	H	1	J
Antenna Diameter	6	5	4	4	4	4
Transmitter Power (Clear Air)	0.7	0.2	0.075	0.050	0.03	0.005
Transmitter Saturated Power Req'd	100	25	10	5	5	1
Signal						
Modulation	O-QPSK					
BER, Availability	$10^{-6}, 0.999$					
Uplink Rain Fade Power Boost	15 dB					
Downlink FEC Rain Protection	$3.6 \mathrm{~dB}(\mathrm{R}=1 / 2, \mathrm{~K}=5, \mathrm{Q}=4$ convolutional code)					
Frequency	30 GHz uplink; 20 GHz downlink					
ST Allocated RF Bandwidth	1.0 GHz					
System Control and Monitor	NCS based					
Orderwire Data Rate	1.9 Mbps					
Number of Chanrels	71					
Access Time	$<5 \mathrm{sec}$					
Orderwire BER	10^{-8}					
Satellite Transponder						
Trunking Capacity	6.2 Gbps					
ST-ST and ST-Trunk Capacity	3 Gbps					
Number of Antenna Beams	71					
Number of LNR's	71					
Number of HPA's	93					
Size. Weight, Power	$354 \mathrm{cu} \mathrm{ft} 3972 \mathrm{lbs},$,5944 watts					
Satellite RF Power Out	465 watts					
FDMA Router						
Capacity	57,000 channels					
Number of Filter Paths	2304					
Switch Cross Points	2688					
Switch size	8×8					
Size, Weight, Power	$12.6 \mathrm{cu} \mathrm{ft} 498 \mathrm{lbs},$,244 watts					

2.2 Proof of Concept Summary

In overview, the ACST SS-FDMA Proof of Concept (POC) design comprises:

- POC

Sector

LSI 8×8 switch
Multiple unidirectional SAW filters
Router-Sector Development Plus
C-band synthesizer
Packaging
- POC CAPABILITY

	Sector	Router
Uplink Frequency	$78.9-400.0 \mathrm{MHz}$	$4.6-4.5 \mathrm{GHz}$
Downlink Frequency	$78.9-400.0 \mathrm{MHz}$	$2.3-3.5 \mathrm{GHz}$
Bandwidth	140.0 MHz	140.0 MHz
\quad Number of Simulated Beams	8	8

Uplink/Downlink

- POC BRASSBOARD PHYSICAL

Baseplate area
$\frac{\text { Sector }}{31<47 \text { inches }}$
Router
37×47 inches

The POC Development recommendation proposed consists of two types of programs: POC Sector or POC Router. The POC Sector essentially develops critical technology of linear LSI 8×8 switches and unidirectional SAW filters which are necessary building blocks for any router organization. The POC Router program develops (in addition to tive sector technology) secondary technolcgies of synthesizer and mechanical packaging. In addition, the Router program allows path evaluation at C-band uplink/downlink frequencies where the Sector program operates at much lower frequencies.

2.2.1 POC DEVELOPMENT GOALS

The proof of concept development goals are:

- Develop key technological building blocks necessary for a router organization
- Fabricate a limited proof-of-concept model, utilizing the technology building blocks, to assess and evaluate the technology readiness.
- Develop the necessary deliverable special test equipment to support testing
- Evaluate performance impairment mechanisms, applicable to any typical router, by path evaluation.

The POC goals for this recommendation are primarily directed towards advancing key technology necessary for a Router organization. This was the conclusion drawn from the Task I Final Report on the System Architecture Baseline.

To facilitate the test and evaluation of key technologies, a limited brassboard will be fabricated (along with any deliverable special test equipment), and evaluated for the technological readiness of the critical building blocks for a Full Flight Router Payload.

2.2.2 KEY TECHNOLOGY IDENTIFICATION

The following areas of key technology are identified:
LSI 8 : 3 ANALOG SWITCH

- Key Component in Any Router Organization
- Princinal Problems
- Frequency Response
- Path Isolation
- Input Power

HIGH FREQUENCY SYNTHESIZER

- Key Router and Payload Assembly
- Principal Problems
- Low Power
- Low EMI susceptibility
- Low phase noise
- Flexibility of tuning range

MULTIPLE SAW FILTER IMPLEMENTATION

- Essential for Any Path Definition
- Principal Problems
- 20:1 trequency response range
- Efficient packaging requirement

THREE DIMENSIONAL SECTOR FORM FIT CC,VSTRUCTION

- Key to Practical Router Implementation to Reduce High Numbrr of Interconnects
- Principal Problems
- Accessibility
- Heat transfer
- Structural integrity
- Stress relief
- Fabrication tolerance allowance

Task I, System Design, identified four major areas of critical technology that require advanced development for inclusion into a flight type router assembly. Each of the four are listed above with their respective rationale for technology advancement and the key problem areas to be addressed.

2.2.3 TECHNOLOGY DEVELOPMENT

The technology io be developed involves both design and processes:

- LSI 8×8 Analog Switch

LSI development using existing GB6 cell array

- Multiple SAW Filters Single substrate development
- High Frequency Synthesizer

> Breadboard development for later LSI implementation

- Three Dimensional Construction

Dynamic test model subjected to environmental test
The existing GB6 cell array used on the baseband processor (SS-TDMA) will be redesigned for linear operation with a form, fit, and functional LSI chip.

The SAW filters involve multifilter design and fabrication on a single substrate. Major problems associated with this technology are the use of either Quartz or Lithium Niobate for the wide 20:1 frequency response, insertion loss, and RF isolation.

The synthesizer will be designed and breadboarded to demonstrate the feasibility of a highly stable, low phase noise, and flexible synthesizer at C-band.

The reduction of thousands of interconnects requires a separate study to evaluate the three dimensional approach to facilitate form and fit.

2.2.4 TECHNOI JGY EVALUATION

The test and evaluation of this technology will be conducted on a limited proof-r concept model as follows:

- 8×8 Switch - by functional test and POC sector test
- SAW Filters - by functional test and POC sector test
- Synthesizer - by functional test and POC router test
- Three Dimensional Concept - DTM environmental test
- Brassboard Sector POC
- Includes first two items technology building blocks
- Path evaluation of transfer function, isolation, and gain stability
- Input/output frequencies at 8×8 switch IF frequency (approximately $100-400 \mathrm{MHz}$)
- Brassboard Router POC
- Includes first three items technology building blocks
- Part evaluation from beam input-to-beam output at the LNA and transmit IF frequencies of approximately $3-5 \mathrm{GHz}$.

No brassboard sector POC represents a very limited program, where the brassboard Router POC represents an enlarged program to fully demonstrate the path performance characteristics and additional technology that would be applice.ble for a flight type router.

2.2.5 ROUTER CONFIGURATION

A three dimensional pictorial view of the Router is shown in Figure 2.2-1. This illustrates the traffic flow. Incoming traffic from a beam in Zone 1 is routed by frequency and distributed by a $1: 5$ power splitter. Each of these outputs is applied to one of five sectors (with five zones there are five squared sectors). In the lower left hand comer is shown a blowup of one such sector. The inputs from the eight beams in one zone are applied to one 8×8 row switch then further separated in a 1:8 power divider. Individual paths are then filtered in a bank of 64 surface acoustic wave (SAW) filters. The outputs are recombined in an $8: 1$ power summer. Data then rotates 90° between power division and power summation. The sector output is summed in the $5: 1$ beam summers with outputs of the other five sectors that contribute to that beam. Not shown is the final column switch that can interchange the column of paths that apply to any one beam.

This diagram best illustrates the horizontal-to-vertical to horizontal-to-vertical rotation that goes on within the Router structure. This rotation, coupled with the switching is what allows the interchange of path characteristics in an economical manner.

2.2.6 POC SECTOR DESCRIPTIONS

The POC Sector Brassboard includes four major assemblies which include 18 subassemblies:

- Row Switch Assembly
- SAW Filter Assembly
- Column Combiner Assembly
- Column Switch Assembly

The LSI 8×8 switch and ur:idirectional SAW filters are the main technology building blocks at the Sector level.
The testing philosophy essentially ailows evaluation of a path through the Sector with respect to sigal-to-noise degradation, gain variation, and AM-PM conversation.

Figure 2.2-1. Router Configuration

2.2.7 POC SECTOR BRASSBOARD PERFORMANCE RECUJIREMENTS

The FOC sector brassboard performance requirements are:

- POC Capability - 140 MHz
- Switching Arrangement - Limited element pairs within a section
- Switch Control - HPIB BUS via STE
- Input Frequency - UHF: $(100-400) \mathrm{MHz}$
- Output Frequency - UHF: $(100-400) \mathrm{MHz}$
- Number of Simulated uplink beams - eight
- Number of Simulated downlink beams - eight
- Electrical Performance (gain, additive noise, IM generation) - virtual electrical duplication of end item section to bre used in flight equipment.

The POC Sector Brassboard is intended to duplicate (in a be assboard configuration) the electrical performance of one section of the FDMA router as defined in paragrapin 4.1.2́.

The sector capacity of 140 MHz represents a portion (approximately 50 percent) of the larger traffic beams existing in Trattic Models A and B .

The 140 MHz capacity will be achieved with one-half of a normal sector s filter complement (32 versus 64).
Since the filter complement is reduced. switching arrangements will be limited at the sector level. The electrical performanre of the POC will be modeled as nearly to the end-tem flight sec^{\prime}, r as practical. The number of inputs. outputs. ana associated frequency ranges will be compatible with the switch capabilities.

2.2.8 POC SECTOR BLOCK DIAGRAM

The POC Sector (see Figure 2.2-2) will be suubdivided into 18 modules:

Nomenclature	Qty.
	1
Filter Module	8
Column Combiner Module	8
Column Switci; Module	1

The attenuators at the input to the filter modules are used to stimulate the difference in power reduction between a $1: 4$ divider and $1: 8$ divider. The attenuators at the output of the column combiner modules are used to simulate the difference in power reduction between a $4: 1$ combiner and a $8: 1$ combiner. The attenuator imbedred in the column switch module simulates the $5: 1$ combiner required in the router.

2.2.9 POC SECTOR GAIN DISTRIBUTION

The gain distribution diagram as presented in Figure 2.2-3 is a single path and is representative of ariy possible gain path through the sector. Since the insertion loss of SAW filters vary with bandvidth, the maximum anticipated SAW filter insertion loss was used. Less lossy SAW filters will require an attenuator to keep the riominal path gain constant.

The input signal noise ratio of 18 dB is degraded to 17.8 dB by the sector's inte; nal thermal noise. Worst case intermodulation products are procuced by the row switch. The output intermodulation products ars 15.5 dB below the output noise and as a result are inconsequential. The sector's additive noise is insignificant.

2.2.10 LSI 8×8 SWITCH REQUIREMENTS

The LSI 8×8 switch requirements are (Redesign existing GB6 (BBP) digital 8×8 switch):

- Linear Operation
- Decode and Address - external
- Latching - on switch chip
- Isolation - . 40 dB
- Crosstalk - . 50 dB
- Bandwidth - .300 MHz
- Power Management - internal by latch closure
- Intermodulat:on - . 42 dBc (three tone)
- Interconnection - twc layer metal
- Thermal control - heat sink equipped ceramic package

Consideration of the above items is essential in the design of the crossbar switch, and trade-offs must be made amc, 7 trem as several are in direct conflict with otheis.

The present plan is to perform the decoding and addressing external to the switch but to latch the information at the swich stte This permits the latch to also perform the power management function. greatly reducing the thermal load

Figure 2.2-2. POC Sector Block Diagram

Figure 2 2.3 POC Sector Gain Distibution

The off switch isolation and the cross talk levels of -42 and -50 dB are goals at this time, but the three-tone intermodulation level of - 42 dB is a computed value.

2.2.11 SAW F!!TER DESIGN

The surface acoustic wave filters have a major impact upon the size and weight of the router. They also indirectly impact the power consumption as the filter insertion loss must be recovered with additional signal gain.

The surface acoustic wave filters for the POC are to demonstrate that the required electrical requirements (see Table 2.2-1) can be reproducibly achieved with tolerable insertion loss over the required frequency range. POC filters a, e to demonstrate both minimum and maximum bandwidths at the frequency extremes.

Table 2.2-1 SAW Filter Design Requirements

Frequency	Bandwidth
78.9 MHz	$1 \mathrm{MHz}(1 \%)$
78.9 MHz	$2 \mathrm{MHz}(2 \%)$
400.0 MHz	$2 \mathrm{MHz}(0.5 \%)$
400.0 MHz	$16 \mathrm{MHz}(4 \%)$
Remaining frequencies/bandwidths - TBD	
Technology - Unidirectional versus Bidirectional	
Materials - Quartz and Lithium Niobate	
Flatness - 1.0 dB	
Ripple - 1.0 dB	
Phase Linearity - 6 deg	
Insertion Loss - 15 dB	
Packaging - Sealed Metal Case	

2.2.12 POC SECTOR BK』SSBOARD MECHANICHL DEFINITION

The POC Sector Brasstoard is comprised of 18 individual moduies mounted on a single structural baseplate. The modules will be laid flat to provide easy access for adjustments testing, or rework. The overall baseplate area will be 31 inches by 37 inches.

Eacn module will be fabricated from aluminum, and module covers will be provided to eliminate RF leakage. SMA connectors will be used for all RF connections. and multipin connectors will be used for the DC connections. Additional connectors will be provided for test points. Flexible coaxial cables will be used for all RF interconnections between modules.

No environmental testing is planned for the POC model.

2.2.13 SFCTOR POC/STE BLOCK DIAGRAM

The basic test mode is semiautomated. The HP 9825 calculator, shown in figure 2.2-4, controls the commercial test equipment used as stimulus and measurement oievices. Motorola designed special test equipment includes:

- Input Network Monitor and Control
- Output Network Monitor and Control
- Row Switch Interface
- Column Switch Interface

All the STE is commanded by the HP 9825 calculator via an HP 6940B multiprogrammer. The multiprogrammer provides switch closures to control:

- Coaxial Relays
- Switch Arrangemeni

Software measurement tests include (but are not limited to)

- Additive Phase Noise Measurements
- Gain Measurements
- Signal Noise Ratio Measurements
- Intermodulation Distortion Measurements

2.2.14. POC ROUTER DESCRIPTION

The POC Router Brassboard includes the POC Sector Brassboard, C-band Upconverters, C-band Downconverters, and C-band Synthesizers. The POC Router Brassboard is an extension of the POC Sector Brassboard to the C-band input and output frequency range.

This section identifies and describes the POC Router Brassboard building blocks with a description of the necessary special test equipment (STE) for evaluation of the POC.

2.2.15 POC ROUTER BRASSBOARD PERFORMANCE REQUIREMENTS

The POC router brassboard performance requests are:

- POC capability - 40 MHz
- Switching arrangement - limited element pairs within a section
- Synthesizer control - HPIB BUS via STE
- Switch Control - HPIB BUS via STE
- Input frequency - C-Band (4.6-5.5) GHz
- Output frequency - C-Band (2.5-3.5) GHz
- Number of simulated uplink beams - one
- Number of simulated downlink beams - eight
- Electrical performance (gain. additive noise, IM generation) virtual duplication of end item section to be used in flight experiment.

Figure 2.2-4. Sector POC/STE Block Diagram

The POC Sector Brassboard is intended to d''licate (within economic reason) the electrical performance of an FDMA router as defined in Section 5, Task I, Communication System Design Final Report, June 25, 1982.
The sector capacity of 140 NHz represents a portion (approximately 50 percent) of the larger traffic beams existing in Traffic Models A and B. The 140 MHz capacity will be achieved with one-half of a normal sector's filter complement (32 vs 64).
Since the filter complement is reduced, switching arrangements will be limited at the sector level. The electrical performance of the POC will be modeled as nearly to the end-item flight router as practical. The number of inputs, outputs. and associated frequency ranges will be compatible with the switch capabilities.

22.16 POC ROUTER BLOCK DIAGRAM

The POC router will be subdivided into five subassemblies (see Figure 2.2-5). Each assembly will be divided in: o modules. Present requirements for modules are:

Assembly Name		Modules
Downconverter		3
Sector Assembly		18
Beam Amplifier		1
Upconverter		2
Synthesizer		2
	Total	$\frac{2}{26}$

- points bemoted by asterisk must be imterfaced WITH STE FOR IESTIMG.

Figure 2.2-5. POC Router Block Diagram
The attenuators located at assembly interfaces are required to simulate the actual gain distribution. The asterisks indicate interconnection points where special test equipmerits are placed to facilitate monitoring and testing.

2.2.17 POC ROUTER GAIN DISTRIBUTION

The gain distribution (see Figure 2.2-6) is based on an input signal power density ($-150 \mathrm{dBm} / \mathrm{Hz}$) that is compatible with the link budget calculations reported in the Task I Final Report. The LNA and associated circuitry preceding the router iriput are assumed to provide a net gain of 27.2 dB with a noise figure of 6 dB . As a result, the router's input signal power density is $-122.8 \mathrm{dBm} / \mathrm{Hz}$ and the router's input noise density is -140.8 $\mathrm{dBm} / \mathrm{Hz}$.

The router exhibits a net gain of 7 dB and a noise figure of 20.6 dB
Intermodulation performance is dominated by the sector brassboard capacity. The input frequency translation circuitry (the first two mixers) will not contribute to the intermodulation circuitry. The output frequency translation circuitry (last two mixers) must exhibit a high third order intercept point to prevent BER degradation due to intermodulation products.

Figure 2.2-6. POC Router Gain Distribution

2.2.18 FREQUENCY SYNTHESIZERS

The frequency synthesizers requirements which must be addaressed are:

- Added Phase Noise
- Trarislator Frequency Response
- Conversion Loss
- Step Size
- Intermodulation
- LSi Compatible Design

The frequency plan to be incorporated in the Router design conserves bandwidth on the downlink requiring the outputs of the switching and filtering elements be translated in frequency by a precisely predetermined offset to a difterent frequency band Similarly. the uplink IF signals need translation to the frequencies at which the required switching and filtering can be accomplished. The translating frequencies are to be coherently related to the uplink net work control carrier frequency.

The wide bandwidth of the composite signal spectrum and the relatively low frequency of realizable filters and switches requires multiple translating to avoid high intermodulation product levels. Both the receiver downconverters and the transmitter upconverters have been modeled as double conversion designs.

2.2.19 POC ROUTER BRASSBOARD MECHANICAL DEFINITION

The router POC model is comprised of five complete assemblies mounted to a single structural plate which contain 23 individual modules. The modules will be laid flat to provide easy access for adjustments. testing, or rework Each module will be fabricated from aluminum and module covers will be provided to eliminate RF leakage. The overall baseplate area is 47 inches by 37 inches.

SMA connectors will be used for all RF connections and multipin connectors will be used for the DC connections. Additional connectors will be provided for test points. Flexible coaxial cables will be used for all RF interconnections between modules.

No environmental testing is planned for the POC model.

2.2.20 POC ROUTER THREE DIMENSIONAL MECHANICAL DESIGN

The mechanical design is of prime importance in the overall development of the SS-FDMA ST router. The overriding concern is the staggering number of RF coaxial cables needed - nearly 2600 for Traffic Model A design and over 3600 for the Traffic B design. Considering there are four connectors associated with each cable (two on the cable and two that attach to the cable), Traffic Model B design would require more than 14,000 threaded connectors for the RF interconnect system. The result is a system which requires considerable space for cable bends and routing and for connector protrusions. Assembly and rework would be a very difficult and time consuming process.

The most promising method for reducing the number of interconnecting cables is the development of the "three dimensional" packaging concept. The three-dimensional concept is one where modules are physically attached to each other to form one integral unit as opposed to the more traditional method of individually mounting each module to a common baseplate. If the three-dimensional concept were implemented for each sector of the router, where a sector consists of an 8×8 input switch, eight 1:8 power dividers, sixty-four SAW filters, eight 8:1 power combiners, and an 8×8 output switch, over 2600 cables would be eliminated. This would result in a substantial reduction in the overall size of the router as space required for the cable bends, the cable itself, and connectors is reduced.

2.2.2 ADVANTAGES OF THREE DIMENSIONAL DESIGN

The greatest advantage of the development of the three-dimensional packaging concept is in the reduction of the required number of coaxial cables. This packaging scheme will eliminate over 2000 coaxial cables; and 4000 threaded RF connectors from the Traffic Model A router desigr and near'y 200 coaxial caises and 58150 threaded RF connectors from the Traffic Model B router design. Instead, an Rr. interccnnect will be developed which will allow each module to plug directly into another module. This will result in a desigr, which is murch simpler to assemble or disassemble. Also, because the connector and cable are eliminated, a mcir compact sector design is achieved which. when multiplied times the number of sectors in the router design, results in a substantial reduction in the overall size.

2.2.22 THREE DIMENSIONAL POC MECHANICAL MODEL

The three dimensional mechanical PCC model effort consists of:

- Design, analyze, and build one dynamic test model (DTM) of one sector
- Perform finite element structural analysis to optimize initial design
- Fabricate one sector to determine maximum allowable tolerances for plug-in type modules
- Perform environmental tests (random vibration and thermal cycle) to verify struciural integriiy of sector

The most challenging part of the three-dimensional package design will be to obtain proper alignment of the RF interconnect pins from one module into the others during assembly. This is critical to both the electrical performance and the structural integrity of the RF interconnect.

The three-dimensional concept requires very tight tolerances be held during fabrication of all modules of the sector. One way to lessen the tolerance requirement is to use a floating interconnect design which will allow the interconneci both lateral and axial displacement.

Another important consideration in the sector design is to keep the resonant frequency of the overall unit high to keep relative motions within the sector very low during dynamic eesing.

Finite element computer analysis will be done during the design phase to ensure these requirements are met. Using finite element analysis allows a sector model to be built on the computer and study the effects of changing different parameters, i.e., wall thickness, floor thickness, ribs, etc.

Once a satisfactory design has been completed, a dynamic test model (DTM) of one sector will be built. A dynamic test model is a mockup which is an exact mechanical replica in terms of form, size, and weight of the end product but is electrically nonfunctioning.

The DTM will be used to determine the practical problems encountered during fabrication and assembly of the sector. Once assembled, the DTM will be subjected to typical qualification level environmental tests to verify the structural integrity of the unit. In addition, some of the RF interconnections will be "wired" so that input to output insertion loss and VSWR can be measured before and after the environmental tests to verify the RF interfacing integrity.

2.2.23 ROUTER POC/STE TOP LEVEL BLOCK DIAGRAM (PART 1)

Part of the Router POC/STE configuration is comprised of Sector POC/STE configuration modified to include uplink and downlink noise source controi. The modification includes adding several relay output cards (HP 69330) to the HP 6940B Multiprogrammer (see Figure 2.2-7).

Figure 2.2-7. Router POC 9 TE Top Level Block Diagram (Part 1)

2.2.24 ROUTER POC/STE TOP LEVEL BLOCK DIAGRAM (PART 2)

The remaining portion of the Router POC/STE configuration (see Figure 2.2-8) includes equipment necessary to simulate uplink and downlink C-band signals. The basic mode is semiautomated. The HP 9825 Calculator controls the commercial test equipment used as stimulus and measurement devices. A summary of Motorola special test equipment follows:

- Input Network Monitor and Control Uplink Simulator
- Output Network Monitor and Control Downlink Simulator
- Row Switch Interface
- Column Switch Interface
- Uplink Noise Source
- Downlink Noise Source

All the STE is commanded by the HP 9825 Calculator via a HP 6940B Multiprogrammer. The multiprogrammer provides switch closures to control:

- Coaxial Relays
- Switch Arrangement

Software measurement tests include (but are not limited to):

- Additive Phase Noise Measuremerits
- Gain Measurements
- Signal Noise Râio Measurements
- Intermodulation Distortion Measurements

2.2.25 TEST DEFINITION

The list of major tests to be performed is as follows:

- Interface Compatibilities
- Voltage Stability
- Router Control
- Frequency Response
- Gain Variation
- Intermodulation Effects
- Adjacent Path Interference
- Connectivity and Blocking
- AM-PM Conversion
- Thermal Noise
- End-to-End BER Performance*

[^1]

Figure 2.2-8. Router POC/STE Top Level Block Diagram (Part 2)

SECTION 3

3. PROGRAM GOALS

3.1 System Design Goals

In brief, the system design goals are to:

- Route up to 3.8 GBPS - ST to ST to trunk to ST traffic
- Use SCPC FDMA
- Mix voice, video, and data
- Maximize system flexibility and capacity
- Provide extensive carrier frequency reuse
- Use narrow beam fixed satellite antennas
- Provide switchable satellite beam-to-beam filtering
- Adapi to changing traffic bads
- Protect against rain losses
- 15 dB on 30 GHz uplinks
- 6 dB on 20 GHz downlinks
- Provide an availability of 0.999
- Maximize RF spectrum utilization

The $30 / 20 \mathrm{GHz}$ SS-FDMA program design goal is to provide a flexible operational point-to-point conımunication system that can service a large number of users, each equipped with a ground station on or near the user premises. The satellite router is required to handle $3.8 \mathrm{~Gb} / \mathrm{s}$ of ST traffic which is a mixture of voice - data and video to support both Traffic Modets .t and B. Design goals of maximizing flexibility and capacity necessarily drives the system architectural frequency plain to consider extensive carrier frequency reuse for nonadjacent beams, require narrow-beam satellite antennas for beam - beam RF isolation and suitable switching through beam-to-beam filtering techniques. RF link margin of $15 \mathrm{~dB} / 6 \mathrm{~dB}$, on the uplink/downlink, will be designed to maintain an availability of 0.999 due to rain loss.

3.1.1 SS-FDMA 1982 SYSTEM TECHNOLOGIES

The entire SS.FDMA system architecture design in Task I is predicated upon using technology that is available off the shelf in 1982. However, in addition the various portions of the system can use technology now in development. In the ground ST and NCS subsystems any applicable NASA ACST program space technology may be used such as the demodulator chip currently being developed in the Baseband Processor program.

The satellite subsystem other than the router mey use any 1982 technology that can be expected to have the SS-FDMA requirement capability by 1987. For example one or the other multiple beam antennas modified for more fixed beams and no scanning beams.

The router may use any 1982 NASA $30 / 20 \mathrm{GHz}$ program advanced space technology. It may also use any technology developed on the Baseband Processor program. Finally it may use any advanced technology to de developed on this the SS-FDMA program such as IF array switches or programmable synthesizers.

3.1.2 SATELLITE—ST—NCS ROUTING ROLES

The satellite provides stable paths between beams and adjusts for expected traffic load changes on an hourly. daily, and yearly basis.

The ST does message switching by frequency selection as directed by the NCS, translates user communication traffic to FDMA format and back, transfers station (area) signalling to NCS, and forwards user signalling to the user.

The NCS monitors message requests and directs all channel selection, receives and forwards all station signalling, directs use of FEC coding, command:s satellits, path structure changes, and monitors and regulates station power. Each of the SS-FDMA subsystern plays a destinct role in the overall architectural design. This design is based upon the following broad conceptual rules: The satellite provides stable paths or routes between uplink beams and downlink beams of the satellite. The path characteristics can be modified on command from the NCS to reflect traffic needs on an hourly, aaily or yearly basis. Each ST terminal performs user messaye switching by frequency selection as directed by the NCS. Each message uses a new set of frequencies dependent upon the source and the destination. The ST translates the user communication traffic to the appropriate FDMA format and back. The ST transfers (area) signalling to the NCS. The ST forwards user signalling to the destination user via the communication link. The NCS monitors message requests and directs all channel frequency selection. It receives and forwards all station signalling. The NCS directs the use of FEC coding and monitors and regulates ST transmitted powers. The NCS commands satellite path structure changes and monitors and regulates satellite power.

3.1.3 USER AND USER SIGNALLING/SUPERVISION

"Local" user use preformatted data via dedicated data lines, preformatted video via dedicated video lines, and analog voice or low rate data via local PABX or simila; voice interconnection. "Local" users are defined as: 1. Any user having dedicated hardiwired interfaces with the ST. 2. Any user capable of accessing the ST through private branch exchange (PABX)-ST interface.

Telephone signalling/supervision will be used to establish/terminate all the types of traffic links the ST is capable of supporting. Local users having "dedicated l.ardwired data" and video interfaces will require a companion telephone line to provide the signalling/supervision. Signalling/supervision for the remaining tocul users (via PABX) will be inherent in the traffic interface. User-User signalling/supervision will be performed by the NCS via the orderwire.

31.4 USER INTERFACE

The success of the ACST SS-FDMA system will depend on the willingness of potential users to buy the available service (see Table 3.1-1). The major consideration shot td be compatibility with existing laial telephone switch centers and local private branch exchanges. The syste., should also be simple to use. Long or compli-
cated "dialling" sequences woul ${ }^{1 / 4}$ make the system prone to human error, and unattractive to use.
Table 3.1-1. User Interface Assumptions

User Interface Traffic Type	Traffic Paths	Signalling
Voice	Existing telephone lines. Existing telephone lines. High Rate Data Video	Commercially leased lines or pri- vately owned lines. Commercially leased lines or pri- vately owned lines.
Existing methocs.	Via companion voice channel.	

Voice and low rate traffic and their companion signalling and supervision will be compatible with the existing telephone systems.

High rate data and video to/from the ST will be over dedicated lines capable of supporting the required bandwidth. Present architecture requires a separate voice traffic path for signalling and supervision.

The high rat? data and video users are restricted to local users who have access to the hardwired dedicated interfaces. In u intrast, the vo.ce and low rate traffic users riay be anyone who can access the switctl center or private branch exchange used to interface the ST station.

3.2 Proot-of-Concept Technology Development Goals

The POC deveiopment goal may be summarized as:

- Develop key technological building blocks necessary for a router organization
- Fabricate a limited proof-of-concept model, utilizing the technology building blocks, to assess and evaluate the technology readiness
- Develop the necessary deliverable STE to support testing
- Evaluate performance impairment mechanisms, applicable to any typical router, by path evaluation.

The POC goals for this recommendation are prinnarily directed towards advancing key technology necessary for a Roster organization. This was the conclusion drawn from the Task I Final Report on the System Architecture Baseline

To facilitate ine test and evaluation of key tachncloo'es, a limited brassboard will be fabricated (along with any deliverable special test equipment), and evaluated for the technological readiness of the critical building blocks for a Full Flight Router Paylead.

3.2.1 KEY TECHNOLOGY IDENTIFICATION

The kfy technologies involved are the:

- LSI 8×8 analog switch
- key component in any router organization
- principal problems
- frequ 'ency response
- path isolation
- input power
- High frequency synthesizer
- key router and payload assembly
- principal problems
- low power
- low EMI susceptibility
- low phase noise
- flexibility of tuning range
- Multiple SAW filter implementation
- essential for any path definition
- principal problems
- 20:1 frequency response range
- efficient packaging requirement
- Three dimensional sector form fit construction
- key to practical router implementation to reduce high nurfioer of interconnects.
- principal problems
accessibility
heat transfer
structural integrity
stress relief
fabrication tolerance allov/ance
Task I, System Design, identified four major areas of critical technology that require advanced development for inclusion inte a flight type router assembly. Each jf the four are listed above with their respective rationale for technology advancement and the key problem areas to be addressed.

3.2.2 TECHNOLOGY DEVELOPMENT

The technology to be developed is:

- LSI 8×8 analog switch
- LSI development using existing GB6 cell array
- Multiple SAW filters
- single substrate development
- High frequency synthesizer
- breadboard development for later LSI implementation
- Three dimensional construction
- dynamic test model subjected to environmental test

The technology to be developed involves both design and processes. The existing GB6 cell array used on the baseband processor (SS-TDMA) will be redesigned for linear operation with a form, fit, and functional LSI chip.

The SAW filters involve multifilter design ar 1 fabrication on a single substrate. Major problems associated with this technology are the use of either Quartz or Lithium Niobate for the wide $20: 1$ frequency response, insertion loss. and RF isolation.

The synthesizer will be desinned and breadboarded to demonstrate the feasibility of a highly stable. !ow phase noise, and flexible synthesizer at \dot{C}-band.

The reduction of thousands of interconnects requires a separate study to evaluate ths it be dimensional approach to facilitate form and fit.

3.2.3 TECHNOLOG: EVALUATION

The methods of lechnology evaluated are:

- 8×8 switch—by functional test and POC sector test
- SAW filters-by functional test and POC sector test
- Synthesizer-by functional tesi and POC router test
- Three dimensionai concept-DTM erivionmental test
- Brassboard sector POC
- includes i) and 2) tachnology buildi ig blocks
- path evaluation of transfer function isolation, and gain stabilit;
input/output frẹuencies at 8×8 switch IF frequency (approximately $100-400 \mathrm{MHz}$)
- Brassboard router POC
- includes 1), 2), and 3) technology building blocks
- part evaiuation from beam infut-to-beam output at the LNA and transmit IF irequencies of approximately $3-5 \mathrm{GHz}$

The test and evaluation of this technolngy will be conducted on a limited proof-of-concept model. The brassboard sector POC represents a very limited program, where the brassboard router POC represents an enlarged program to fully demonstrate the path performance characteristics and additional technology that would be applicable for a flight type router.

SECTION 4

4. SYSTEM ANALYSIS

The primary emphasis of Task I to date has been the development of a system architecture for the SS-FDMA approach for small terminal traffic routing. Tinis section provides a summary of that system architecture.

4.1 System Definition and Requirements

Figure 4.1-1 is a simplified block diagram for the SS-FDMA system. Included are:

- Trunk terminals,
- Small termina's,
- The FDMA satellite, and
- A network control station (NCS).

Entry into the system is accomplished by requests to the NCS. The NCS acts as the master terminal in:

- Making channel frequency assignments,
- Setting frequency and timing references,
- Designating chanr els to be encoded for improving link mar s,
- Controlling satellite power output for each beam,
- Commanding the satellite router switch and IF switch.
- Setting system configurations, and
- System monitoring.

Small terminals vary in size with composite data rates from $0.88 \mathrm{Mb} / \mathrm{s}$ (G terminal) to $33.84 \mathrm{Mb} / \mathrm{s}$ (E terminals). Traffic channels include voice, data, and video with a satellite throughput rate up to $3.8 \mathrm{~Gb} / \mathrm{s}$. In addition to ST traffic, the satellite must also accommodate trunk terminal traffic. The portions of this traffic designated for ST stations will be assigned to the ST band and pass through the router. That fraction of the trunking traffic designated for other trunk stations will be directly routed through an IF switch. 1.5 GHz of bandwidth is allocated for trunk traffic and 1.0 GHz for ST traffic. The ST traffic will be broken into roughly three bands handling 40 beams for Traffic Model A and 71 beams for Traffic Model B in which the satellite will handle routing of all traffic to its proper destination. In the following subparagraphs the basic archi' zture of the ACST SS-FDMA system will be discussed.

Figure 4.1-1. SS-FDMA System Block Diagram

4.1.1 SS-FDMA SYSTEM CHARACTERISTICS

The SS-FDMA system characteristics comprise:

- System capacity $10 \mathrm{~Gb} / \mathrm{s}$
- $2.2 \mathrm{~Gb} / \mathrm{s}$ ST - ST
- $0.8 \mathrm{~Gb} / \mathrm{s}$ Trunk - ST
- $0.8 \mathrm{~Gb} / \mathrm{s} \mathrm{ST}$ - Trunk
- $6.2 \mathrm{~Gb} / \mathrm{s}$ Trunk - Trunk
- Traffic - individually routed voice. data, and video (all digital - but does not preclude analog)
- Two traffic models

	Model A	Model B
		25
Number of citie:	2.000	10,000
Number of stations	14.25	1.36

- Performance - BER $10{ }^{6}$ at 0.999 availability (0.995 alternative)
- Rain fade
- 6 dB on 20 GHz downlink
- 15 dB on 30 GHz uplink
- Multiple bearrı antennas - carrier frequency reuse
- TDMA trunking traific
- Crosslink traffic performed at trunking terminals
- Network control at a trunking terminal.

The total satellite communication system has a capacity of $10 \mathrm{~Gb} / \mathrm{s}$ with $3.8 \mathrm{~Gb} / \mathrm{s}$ involving ST traffic. Of the latter, $800 \mathrm{Mb} / \mathrm{s}$ is from trunking terminals to small terminals and $800 \mathrm{Mb} / \mathrm{s}$ from ST to trunking terminals. The rest, or 2.2 Gb / s, is ST to ST traffic. All ST traffic, whether originating or terminating at ST station is handled in the 1 GHz ST band.

Traffic is entirely single channel per carrier FDMA and is to coexist with the trunking system. It is a mix of voice, data, and video according to one of two traffic models. A user availability of 0.999 at 10^{-6} BER is the design objective. All ST traffic must be protected to 15 dB rain fade on the 30 GHz uplink and 6 dB on the 20 GHz downlink.

Critical to the system is the use of high gain multi-beam antennas which permit extensive carrier frequency reuse without C -channel interference.

4.1.2 SATELLITE BLOCK DIAGRAM

The satellite block diagram, Figure 4.1-2, contains five main subsystems relating to the FDMA communication link. These are the antenna subsystem, low noise receivers (LNR), IF switch, the ST router, and the power amplifier subsystem. With the exception of the ro'tor, these subsystems have all been studied by other contractors and the developed FDMA architecture has used the published characteristics of these studies, where applicable.

Essentially, the FDMA satellite acts as a switchboard to control source to destination traffic. The 30 GHz input is received by the antenna subsystem which contains approximately 40 beam antennas (Traific Model A). The traffic from trunking terminals, which is destined for anotner trunking terminal, is allocated a 1.5 GHz bandwidth and this TDM traffic is destination-controlled through the IF switch. All othe. traffic, which is ST related, is contained in a 1.0 GHz bandwidth and is destination-controlied through the router. Switch configuration, along with synthesizer settings and power output control, are derived from the NCS receiver within the router.

The router contains approximately 1600 SAW filters with 3200 switching crosspoints. The input and output IF frequencies to the router have tentatively been selected as $4.5-5.6 \mathrm{GHz}$ and $2.65-3.35 \mathrm{GHz}$ respectively. With a maximum 3.8 Gbps throughput, the required RF output power for communicating the ST traffic is 460 watts with all terminals in the clear and up to 492 watts with worst case rain conditions. This assumes an effective satellite antenna gain of 45.4 dB .

Power amplifiers are all quasi-linear for the ST FDMA traffic and will operate saturated for the trunking TDM traffic. Details of the FDMA architecture, and in particular the router, are discussed in later sections.

Figure 4.1-2. Satellite Block Diagram

4.1.3 SATELLITE COMMUNICATION PAYLOAD CHARACTERISTICS

The satellite communication system has a capacity of $10 \mathrm{~Gb} / \mathrm{s}$ with $6.2 \mathrm{~Gb} / \mathrm{s}$ on the TDMA trunking system. The rest. or $3.8 \mathrm{~Gb} / \mathrm{s}$. is ST traffic among ST's or between ST's and trunking terminals. The trunking system will share the multibeam satellite transmitting and receiving antennas and the 2.5 GHz allocated RF spectrum. Inasruch as the trunking system is TDMA, it precludes placing any FDMA channels in the trunking band or any beam having a trunk station. To allow trunking capacity to increase, no use of the 1.5 GHz trunking band is used for any ST traffic anywhere. A separate control system is considered for the trunking subsystem although it could be integrated wit', the ST satellite control link.

The satellite probably will be from 100° to 105 West latitude to yield the best coverage of CONUS. Close arc Ka-band satellite spacing is expected. As a result. significant care must be used to ensure that small terminal antennas do not transmit to or receive from other Ka-band satellites. This is particularly true since this system uses and reuses the entire available 2.5 GHz spectrum on both the up and down links.

The ST SS-FDMA satellite communication payload receivers and transmitter FDMA single channel per carrier signals on 40 or more fixed beams. The system uses digital 0-QPSK modulation for a mix of voice, data, and video channels. The satellite payload is configured. however. to allow linear modulation signals of equal or less bandwidth

Since $32 \mathrm{~kb} / \mathrm{s}$ CVSD is used for the voice channels, these require 3 dB less power at a BER of 10^{-6} than 64 kb / s PCM. Toll quality is preserved for BER as high as 10^{-3} when using CVSD. In this case, there is yet another 3 dB power saving for a total of 6 dB . Hence, these channels could have a spectral density of 3 dB less than data and video channels which require a BER of 10^{-6}.
In summary, the satellite communication payload characteristics are:

- Throughput 10 GBPS
- $6.2 \mathrm{~Gb} / \mathrm{s}$: Trunk - trunk
- $0.8 \mathrm{~Gb} / \mathrm{s}:$ trunk - ST
- $0.8 \mathrm{~Gb} / \mathrm{s}:$ ST - trunk
- $2.2 \mathrm{~Gb} / \mathrm{s}:$ ST - ST
- Trunking a separate system
- Shares antennas
- Shares 2.5 GHz allocated bandwidth
- May share LNR's and PA's
- Separate control system
- Cross traffic tie at trunk ground stations
- 3-550 Mb/s bands (BBP - TDMA configuration)
- Satellite characteristics
- Shuttle lauched
- 105° west latitude synchronous orbit
- $\pm 22 \mathrm{Km}$ range $\pm 0.05^{\circ}$ lat - long
- $1.6 \mathrm{~m} / \mathrm{s}$ max radial vel, $\pm 0.005^{\circ}$ max lat-long vel
- Arc separation -1.5°
- Antenna isolation required $>25 \mathrm{~dB}$
- FDMA
- Multiple carriers/beam
- Single digital channel/carrier
- Data rates $32,56,1500,6300 \mathrm{~kb} / \mathrm{s}$ uncoded
$64,112,3000,12600 \mathrm{ks} / \mathrm{s}$ coded
- $32 \mathrm{~kb} / \mathrm{s}$ CVSD recommended
- Linear signals of equal or less bandwidth
- Dynamic range

ORIGINAL PÁGE IS OF POOR QUALITY

- Ideal: Equar power density for all data and video channels

Voice channels 3 dB less power density for BER of 10^{3}

- Practice: TBD
- Output S/iv per channel -14 or 15 dB for high input S / N
- Satellite routing under NCS control
- Integral orderwire system: NCS - ST (separate carriers)
- Integral satellite control link: NC.S - router (separate carriers)

4.1.4 MULTICHANNEL ST RLOCK L AGRAM

The multi-channel ST (see Figure 4.1-3) is characteristic of the E, F, and G class terminals in Traffic Model A and the E, F, G, H, and I terminals of Traffic Model B.

The multi-channel small terminal comprises the same subsystems as the single channel ST terminal. The TIU, traffic transmitters and traffic receivers will increase on a one for one basis as the channel capacity increases.

The TIU capacity may be increased by adding a module to the TIU subsystem main frame for each channel added. Complete subsystems (traffic receivers and traffic transmitters) must be added for each additional channel added. The orderwire subsystem will not change since a.l channels are controlled from a single bus structur:.

Additional HPAs, different antenna sizes and antenria positioning control must be added as channel rapacity increases (increased EIRP requirements). If necessary. the Ka-band outputs maybe summed spatially in a Cassegrain feed structure at the antenna.

The high rate user interface is a direct hardwired interface over dedicated lines. The high rate data is both input and output by the TIU. The TIU cortains 10 buss circuitry and reclocking circuitry. The signailing and supervision signals are provided ty a companion low rate traffic circuit.

Figure 1 1.3 Multichannel ST Block Diagram

4.1.5 ST TRANSMIT, RECEIVE, AND INTERFACE CHARACTERISTICS

Table 4.1-1 shows the EIRP and G / T requirements determined by link budgets yielding a total system E_{N} / N_{O} $>10.6 \mathrm{~dB}\left(B E R: 10^{6}\right)$ when maximurn rain fade occurs on the uplink and downlink.

Table 4.1-1. Transmit and Receive Characteristics

	Traffic Model A Class			Traffic Model B Class					
	E	F	G	E	F	G	H	1	J
EIRP (With Raid Fade) dBm	109.8	101.3	92.6	105.1	98.5	91.4	90	87.7	80.7
Ant. Gain (dB)	61.8	60.3	58.3	61.8	60.3	58.3	58.3	58.3	58.3
HPA (dBm)	48.0	41.0	34.3	43.4	38.3	33.1	31.7	29.4	22.4
GT ($\mathrm{d} / \mathrm{B}^{\circ} \mathrm{K}$)	27	27	27	27	27	27	27	27	27
Ant. Gain (dB Min)	59.1	57.6	55.6	59.1	57.6	55.6	55.6	55.6	55.6
Sys Noise Temp (Max, ${ }^{\circ} \mathrm{K}$)	1621	1148	724	1621	1148	724	724	724	724

The user interface functional requirements are based on the most common type of signalling anticipated in the 1987 time frame:

- Low Rate and Voice

Standard two wire inband signaling interface. Baseline signalling is assumed to be dual tone (touch tone). Supervisory information provided by two wire E\&M.

- High Rate

Bus compatible, bus standard and levels TBD. High rate user traffic, signalling. and superjision are assumed to be via dedicated leased lines.

As a baseline assumption. potential subscribers with unique interfe ee requirements will provide the necessary interfacing equipment which will make their user interface compatible with the ST TIU. Commercial equipment is readily available to satisfy many unique interface requirements.

4.1.6 NCS BLOCK DIAGRAM

The baseline orderwire architecture incorporates 40 unique frequencies (one frequency per beam) for transmission and reception (Figure 4.1-4 shows orderwire transmitters and receivers numbers 1 and 40 only, the other 38 share the bus and control lines in the same manner.). Satellite control will be effected over a dedicated channel to the satellite.

The channels (transmitters and receivers) will include convolutional encoding/decoding to maintain BER $\leq 1 \times$ 10^{8}. A time frequency reference will be used as the station clock. The time/frequency reference shall be transmitted over the orderwire channels to ensure that all stations operating within the system are time referenced to the NCS

Figure 4.1-4. NCS Block Diagram
The NCS will provide processors for system operation and maintenance functions; telemetry, tracking, control of the satellite; biliing and system reconfigurations; and ST adaptive control. The four processors will be slaved to a station computer. The station computer coordinates and controls all NCS functions. A space diversity switch is included to route communication to/from a remote trurking station RF subsystem (HPA, LNA, ANTENNA, and UP/DOWN CONVERTERS). Space diversity is used in combatting severe weather conditions at the primary trunking station site.

4.1.7 NCS PERFORMANCE SUMMARY

The network control station's performance may be summarized as:

- NCS shares LNA. HPA, and antenna with trunking station
- XMIT characteristics
- BW: $\approx 5.0 \mathrm{MHz}$ (composite)
- Bite rate: $=2.5 \mathrm{Mb} / \mathrm{s}$ (composite)
- Channels required: ≈ 41
- No rain-EIRP: 86.5 dBm
- REC characteristics
- BW: $=5.0 \mathrm{MHz}$ (composite)
- Bit rate: $=2.5 \mathrm{Mb} / \mathrm{s}$ (composite)

Channels required: $=41$

- $\mathrm{G} / \mathrm{T} .=28.5 \mathrm{~dB} /{ }^{\circ} \mathrm{K}$ (based on satellite EIRP density of $9.7 \mathrm{dBm} / \mathrm{Bit}$)
- Frequency stability beiter than: 1×10^{-8}
- BER: $\leqslant 1 \times 10^{-8}$
- Forward error correction encoding:
constraint Lengih: 5
Rate: 1/2
Bit decision: 2 bit soft decision
The NCS is part of a trucking station. Common circuitry of the NCS and trucking station includes the LNA, HPA, and Antenna. Since the trunking station is presently undefined, the transmit characteristics and receive characteristics of the NCS are presented in terms of EIRP and C / T. The transmit and receive characteristics are the combined requirements of the orderwire and Satellite Control links. Forty charnels (one per beam) are required for the Orderwire and at least one channel will be used for Satellite Control.

The 5 MHz bandwidth assumes FEC and includes the 4.5 MHz dedicated to the Orderwire channels and the 0.5 MHz dedicated to Satellite Control. The EIRP requ iremer 's are based on the satellite's receiver performance and the link margin prevously defined for the traffic uplink at 30 GHz . The specified no rain EIRP will provide a BER $\leqslant 1 \times$ $10{ }^{8}$ for the NCS transmit link.

The specified G / T requirements will provide a $\mathrm{BER} \leqslant 1 \times 10^{-8}$ for the NCS receive link.
The specified frequency stability is a baseline performance specification based on practical cost and technology.

4.1.8 KEY TECHNOLOGIES

The key technologies involved in the ACST SS-FDMA Communication System are:

- Satellite

Current development studies

- Antennas - TRW and Ford
- Low noise receivers - LNR and IT:
- IF switch - GE and Ford
- Power amplifiers - TRW, LNR, TI and Hughes

FDMA required

- Router switches
- Frequency synthesizer
- Saw filters
- Packaging
- Small Terminals
- Power Amplifiers
- Antennas
- Low noise receive.s

There are four principal technology areas under investigation for use in the satellite. In developing the FDMA architecture, the published characteristics of these items were used as applicable. For the ACS? FDMA system router switching. frequency synthesis. SAW filters, and packaging are satellite technologies which require further development

Router switching characteristics which required particular attention are bandwidth, crosstalk, control, power, and redundancy. The status of these characteristics is discussed in the respective sections within the "Support Studies". For the SAW filters. the bandwidth. center frequency range. selectivity and stability are key factors. In addition, since there are about 1600 such filters. packaging becomes an important consideration In fa t, packaging itself is critical and must be addressed

Techriology breakthroughs may not be required. but organizing and designing a compatible packaging concept is critically important Synthesizer development must address phase noise, power requirements, and tunability wher, placed in a satellite environment. For the small terminals. the three areas requiring technology improvement are low noise amplifier transmitters, and antennas. Technology to meet the ground terminal requirements of the FDMA system are avalable but the costs are prohibitive and some advancement in technology is necessary to make the stations cost compettive

4.2 Link Budgets

Table 4.2-1 lists the requirements and assumptions used in developing the link budgets.
Table 4.2-1. Link Budget Requirements and Assumptions

From table 4.2-1 we see that the bit error rate for the SS.FDMA system is specified at 10^{6}. The correspunding signal to noise ratio is 10.6 dB .

The 54 dB modem and channel impairment assumed in the system is the combination of the following losses:
Adjucent channel interference: 1 dB . Co-channel interference: 0.7 dB
Intermodulation distortion products: 1.5 dB . Filter distortion: 0.5 dB
Phase noise: 0.7 dB . Other hardware imper fections: 1.0 dB
The 1 , rare coding with constraint length 5 and 2 bits soft decision is assumed in the system which results in coding gain of 3.6 ctB .

The 7.6 dB satellite antenna impairment assumed in the system is the combination of the following losses:
Beam to beam variation: 1 dB Area coverage: 3 dB
Pointing error (beam edge): 1.3 dB
Diplexing loss: $2.0 \mathrm{~dB} \quad$ Polarization loss: 0.3 dB

4.2.1 SMALL TERMINAL RF POWER REQUIREMENTS

The required small terminal RF powers in clear air and in rain with method 2 compension scheme are shown in tables 4.2-2 and 4.2-3.

Tabie 4.2-2. Small Terminal RF Power Requirements

	E-Type Terminal		F-Type Terminal		G-Type Terminal	
Power	(dBm)	(Watt)	(dBm)	(Watt)	(dBm)	(Watt)
Environment Clear Air	32.9	1.97	26.2	0.41	19.2	0.034

Table 4.2-3. Rain With Method 2 Compensation Scheme

	E-Type Terminal		F-Type Terminal		G-Type Terminal	
Power	(dBm)	(Watt)	(dBm)	(Watt)	(dBm)	(Watt)
Environment Rall	47.9	61.66	41.2	13.18	34.2	2.63

The require sinall terminal RF power can be determined from the following t;plink hudget equation

$$
\operatorname{EIRP}\binom{E_{\vdots}}{N_{v}}_{w} G_{s} \cdot K T_{s} \cdot L_{u} \cdot L_{w} \cdot L_{w}+R_{t}
$$

where
EIRD - required small terminal EIRP in dBm
$\left(\frac{E_{b}}{\mathbf{N}_{o}}\right)_{\text {up }}$ the uplink signal-to-ruese ratio in a. 3
$G_{s}=$ satellite antenna gain in dB
$k T_{s}$: satellite noise power density in $\frac{d B m}{H z}$
$L_{u}=$ path loss in dB
$L_{r u}=$ rain loss in $d B$
$\mathrm{~L}_{p}=$ pointing loss in dB
$R_{b}=$ terminal bit rate in dB

Seven possible rain fade compensation schemes will be discussed in paragraph 4.2.7. The required small terminal RF power for method 2, that is increasing the terminal power by 15 dB , is tatulated for comparison with a clear air link.

4.2.2 SATELLITE RF POWER REQUIRE:n'ENTS

The required satellite RF powers in clear air and in rain with method 2 compensation scheme are as showil in tables 4.2-4 and 4.2-5.

Table 4.2-4. Clean Air Satellite RF Power Requirements

	E-Type Terminal		F-Typc Terminal		G-Type Terminal		Totai 40 beams	
Power	(dBm)	(Wait)	(dBm)	(Watt)	(dBrt)	(Watt)	(dBm)	(watt)
Environment Clear Air	36.7	4.68	28.3	0.68	19.0	0.08	56.62	459.59

Table 42-5. Rain With Method 2 Compensation Scheme

	E-Type Terminal		F-Type Terminal		G-Type Terrinal		Total 40 Beams in Worst Case:	
Power	(dBm)	(Wa+t)	(dBm)	(Watt)	(dBm)	(Watt)	(dBm)	(Watt)
Environment Rain	39.4	8.70	31.2	1.32	2.2	0.17	56.92	491.73
It is the case when New York beam is in rain.								

The satellite RF power can be determined from the following downlink budget equation:

$$
\begin{aligned}
& S T P=\binom{E_{L}}{N_{o}}_{\text {down }} \quad-G_{\tau}+K T_{R}+L_{d}+L_{r d}+L_{P}+L_{C}+G_{R}+R_{D} \\
& S T F=\text { Sé tellite RF power in dBm } \\
&\left(\frac{E_{b}}{N_{o}}\right)_{\text {down }}=\text { Dowrilink signal to noise ratio in } \mathrm{dB} \\
& \mathrm{G}_{r}=\text { Satellite antenna gain in dB } \\
& K T_{R}=\text { ST receiver noise power density in dBm/Hz } \\
& L_{d}=\text { Path luss in cB } \\
& L_{r d}=\text { Rain loss ini } \mathrm{dB} \\
& L_{\rho}=\text { Puinting loss in dB } \\
& L_{C}=\text { Receiver line loss in dB } \\
& \mathrm{G}_{R}=\text { CPS receiver antenna gain in } \mathrm{dB} \\
& \mathrm{R}_{D}=\text { Data rate }
\end{aligned}
$$

Seven possible rain face compensation schemes will be discusstd in paragraph 4.z.7. The required satellite RF power for Methad 2 , by using rate $1 / 2$, constraint ler.gth 5 and 2 bits soft decision coding at the small terminal and boosting satellite poweı by 2.4 dB , is tabulated for compariso: with a clean air link.

4.2.3 RAIN FADE MARGIN VS AVAILABILITY

Figure 4.2-1 plots cumulative distributions of rain attenuation for 19 and 28 GHz eanh-space signals as derived from measurements using the COMS:AR beacon at Crawford Hill. The left ordinate scale is the tirre that the

Figure 4.2-1. Small Terminal RF Pov er Requirements
attenuation on the abscissa was exceeded during the year May 1977 to May 1978. The right ordinate scale is the percent of the year that the attenuation was exceeded. Signal-to-noise ratio of the measurement in the narrow receivel IF bandwidths is $\sim 15 \mathrm{~dB}$ at the 45 dB attenuation level. (Courtesy of H.W. Arnold et al "Rain Attenuation from a 19 and 28 GHz COMSTAR Beacon Propagation Experiment: One Year Cumulative Distributions and Relationships between the Two Frequencies'.)

From curves, such as these, the up-and down-link rain fade margins can be determined from the specified availability requirements. Conservative estimates are shown in table 4.2-6

Table 4.2-6. Rain Fade Margins

Availability $(\%)$	Uplink Rain Fade Margin (dB)	Downlink Rain Fade Margin (dB)
99.95	22	9
99.9	14	6
99.5	6	2.5
99.0	4	1.5

For 99.9% availability the uplink and downlink ra: in ; margins obtained from above are 14 dB and 6 dB respectively which are compatible .jith the values 15 dB and 6 dB respectively as specified in the link budget.

4.2.4 RAIN FADE CHARACTERISTICS

The geograpinical location of the ST terminal affects rain fade attenuation in two ways:

1. The elevation angle of the ST terminal to the satelite changes as a function of the geographical location of the ST terminal. The path attenuetion in dB in rain is proportional to the cosecant of the path elevation angle measured from the horizon. For a satellite at 95 degree west longitude and the CONUS ST elevation angles to the satellite varying from approximately 30° to 55°, it then has the ratio of attenuations (CB) of 1.64 .
2. The rain statistic at the location of the ST terminal contributes the second factor for the rain attenuation statistic.

A piecewise linear model has been proposed to relate the rain attenuation statistic as a function of the irstantaneous rain rate

At the same geographical location, the ratio of rain fade attenuations (in dB) at two different frequencies is proportional to the square of the ratio of these two frequencies. Therefore if the rain fade attenuation in the downlink is available, then the rain fade attenuation in the uplink can be easily estimated by the equation:

$$
R_{(}(d B)=R_{d}(d B) \cdot\left(\frac{f_{u}}{f_{d}}\right)^{2}
$$

where $f_{\text {u }} f_{d}$ are the carrier frequencies used in the uplink and downlink respectively, and $R_{u}(d B), R_{d}(d B)$ are the rain fade attenuations of the uplink and wonwlink respectively.

4.2.5 RAIN FADE WITHOUT COMPENSATION SCENARIO

ORIGINAL PAGE [S
 OF POOR QUALITY

Referring to figure 4.2-2, suppose terminal A is in rain and it is communicating with terminal B which is in clear air. if both terminals are transmitting the same power as they are in the clean air without implementing any rain fadk compensation scheme, then due to the A-B link suffering uplink rain fade attenuation terminal B will receive less power than the power it receives when terminal A is in clear air by the amount of the uplink rain fade margin. Similarly, due to the B-A link suffering downlink rain fade attenuation, terminal A will receive less power than the power it receives when it is clear air by the amount of the downlink rain fade margin.

4.2.6 RAIN FADE COMPENSATION SCENARIO

Referring to figure 4.2-3, the rain fade compensation scheme is the way the communicating terminals and/or satelite will act to compensate the up- and down-link rain fade margins when the communication link suffers rain fade attenuation.

Suppose in the communication link A-B, terminal A is in rain fade while terminal B is in clear air then one possible rain fade con pensation will occur as follows: Terminal A increases its transmitting power by 15 dB to compensate the uplink rain fade niargin in the communication link $A-B$, while terminal B has its power boosted by 6 dB to compensate the down link rain fade margin in the communication link $A-B$.

Since satellite tran tting power is high even before including rain fade margin in the above scheme, increasing it further (by increasing the terminals' transmitting powers) wil! place a heavy burden on the satellite.

:-igure 4.2.2. Satellite RF Power Requirements

$\begin{aligned} \rightarrow & \text { CLEAR AIR TERMINAL TRANSMITTING POWER } \\ =\rightarrow & \text { TERMINAL RECEIVING POWER IN CLEIR AIR } \\ & \text { AMOUNT OF POWER COMPENSATED OR BJOSTED TO HAVE THE SAME PONER } \\ & \text { AS IN CLEAR AIR }\end{aligned}$

Figure 4.2-3. Rain Fade Compensation Scenaric

4.2.7 RAIN FADE COMPENSATION METHODS

Some other possible rain fade compensation schemes are summarized in table 4.2.7.
Table 4.2-7. Rain Fade Compensation Methods

Mechanism	Uplink Rain Fade Compensation	Downlink Rain Fade Compensation	
Method	Small Terminal in Rain	Satellite Transmitting to Rain-Affected Small Terminal	Clear air Small Terminal
Method 1	15 dB power boost	No change	2.4 dB power boost and coding
Method 2	15 dB power boost	2.4 dB power boost	Coding
Method 3	11.4 dE power boost and coding	No change	2.4 dB power boost and coding
Method 4	11.4 dB power boost arkd coding	< 4 dB power boost	Coding
Method 5	15 dB power boost	No change	6 dB power boost
Method 6	11.4 dB power boost and coding	No change	6 dB power boost
Method 7	15 dB power boost	6 dB power boost	No change

From Table 4.2-7 we note that:

- When two beams are in communication, only one of them is in rain.
- Terminals in rain-affected beam will have the same bit-error-rate as in clear air
- Uplink rain fade margin: 15 dB
- Downlink rairi fade margin: 6 dB
- For coding, the $1 / 2$ rate coding with constraint length 5 and $?$ bits soft decision is assumed to be implemented in the system. The associated coding gain is 3.6 dB .

4.2.8 SMALL TERMINAL RF POWER VS. RAIN FADE COMPENSATION METHODS

By implementing each of the seven possible rain fade compensation schemes in the derived uplink budget equation. Is in paragraph 4.2.1. the transmitting power required for each type of small terminal to meet the specifiej bit error rate can be determined. Table $4.2-8 \mathrm{~s}$ 'ws the required smál terminal RF powers in clear air and rain for the diferent rair 'ade compensation schemes 3 margin):

Table 4.2-8. Small Terminal RF Power Vs. Rain Fade Compensation Method

Power	E-Type Terminal		F-Type Terminal		G-Type Terminal	
	(dBm)	(WATT)	(dBm)	(Wat	(dBm)	(Watt)
Nc-Rain	32.9	1.97	26.2	0.41	19.20	0.084
1	47.9	61.66	41.2	13.18	34.2	263
2	47.9	61.66	41.2	13.18	34.2	2.63
3	44.3	26.91	37.6	5.75	30.6	1.15
4	44.3	26.91	37.6	5.75	30.6	1.15
5	47.9	61.66	41.2	13.18	34.2	2.63
6	44.3	26.91	37.6	5.75	30.6	1.15
7	47.9	61.66	41.2	13.18	34.2	2.63

4.2.9 SATELLITE RF POWER BY TERMINAL TYPE VS RAIN FADE COMPENSATION METHODS

B_{y} ' implementing each of the seven possible rain fade compensation schemes in the derived downlink budget equation, as in paragraph 4.2.2, the required satelite RF transmitting power to each type of small terminal can be determined.

Table 4.2-9 shows the required satellite RF powers in clear air and rain for the different rain fade compensation schemes (no margin):

Table 4.2-9. Satellite RF Power by Terminal Type Vs Rain Fade Comp^nsation Method

- Power	E-Type Terminal		F-Type Terminal		G-Type Terminal	
Method	(dBm)	(Watt)	(dBm)	(Watt)	(dBm)	(Watt)
No-Rain	36.7	4.68	28.3	0.68	19.0	0.08
1	38.4	6.92	30.2	1.05	21.2	0.13
2	384	6.92	30.2	1.05	21.2	0.13
3	38.4	6.92	30.2	1.05	21.2	0.13
4	38.4	6.92	$3 C 2$	1.05	21.2	0.13
5	43.0	19.95	34.8	3.02	25.8	0.38
6	43.0	19.95	34.8	3.02	25.8	0.38
7	43.0	19.95	34.8	3.02	25.8	0.38

4.2.10 SATELLITE RF BEAM POWER VS RAIN FADE COMPENSATION METHODS

The required satelite RF power to each beam can be determined from the number of E - F - and G - type terminals in each beam and the satellite RF power transmitting to each terminal. It has the following resuits

- In clear air, the satelite RF power required to New York beam is 32.37 watt It 459.59 watt for all 40 beams
- In worst case when New York beam is in rain, the required satellite RF power to New York beam with Method 2 rain fade compensation 63.78 watt, while it is 146.13 watt with Method 5 rain fade compensation scheri:e.
- In worst case when New York beam is in rain. the required total satelilite RF power to all 40 beams is 491.73 watt with Method 2 rain fade compensaicn scheme, while it is 574.06 watt with Method 5 rain fade corrpensation scheme.
- In calculating the required satellite RF power to the NCS. the following informa ion is used as the baseline:
- Coded bit error rate: 10^{8}
- Bit rate: 2.5 Mb s
- Coding gain 3 dB
- Antenna characteristic
- Antenna sire 6 meter (as E-Type terminal antenna)
- Antenna gain 59.2 dB (as E-Type terminal antenna)
- Receiver noise figure 5 dB

Then the satellite RF power required is around 0.8 watt
For rain of the downlink. the transmitting small terminal will have some coding scheme implemented and the satellite beam power will be increased. The convolutional code with rate $1 / 2$, constraint length 5 , and 2 bits soft decision is assumed to be implemented in the system. This coding circuit is available trom $30 / 20 \mathrm{GHz}$ TJMA Baseband Processor Development Program. The amount oi satellite power increase is to be determined, but is around 2.4 dB .

For rain on the uplink, the affected terminal will have its transmitting power increased. The amount of powe increase is to be determined. but is around 15 dB

In clear air, in order to insure the proper system performance. some fixed power margins can be added in the small terminal and the satelite. The amcunt to be added is to be determined

4.2.11 LINK BUDGET REFINEMENT (DISTRIBUTED MODEL)

The previous mathematical model used for calculating system $\underset{N}{E_{i}}$ assumed equal uplin's and downlink $\frac{E_{0}}{N_{0}}$ contributors, did not include effects of small terminal TWT compensation. and assumed imparments were is presented in the proposal

$$
\binom{E_{i}}{N} \quad(d B) \quad 10 \log \left[\begin{array}{ccc}
& 1 & \\
\binom{N}{E_{i}}_{i n} & \binom{N}{E_{i}}_{1}
\end{array}\right] \quad \sum \operatorname{IMPAIRMENTS}(d B)
$$

The refined mathematical model used for calculating the system $\mathrm{E}_{\mathrm{o}} / \mathrm{N}_{\mathrm{o}}$ is more realistic. It does not assume weighting of uplink and downlink $\frac{\mathrm{E}_{\mathrm{b}}}{\mathrm{N}_{\mathrm{o}}}$ contributors, it updates the impairments, and it includes the effects of small terminal TWT compensation. It also includes the anticipated intermodulation products which will yield yet more accurate results:

$$
\left(\frac{E_{b}}{N_{o}}\right)_{\text {sys }}(d B)=10 \log \left[\left(\frac{N_{o}}{E_{b}}\right)_{U L}+\sum U_{i}\left(\frac{N_{o}}{E_{b}}\right)_{U L}+\left(\frac{N_{o}}{E_{b}}\right)_{\mathrm{DL}}+\sum_{j} D_{i}\left(\frac{N_{o}}{E_{b}}\right)_{D L}\right]-1
$$

where the uplink impairments $\left[\sum_{j=1}^{4} \mathrm{U}_{\mathrm{i}}\left(\frac{\mathrm{N}_{\mathrm{o}}}{\mathrm{E}_{\mathrm{D}}}\right)_{\mathrm{DL}}\right] \quad$ are defined as:

U_{1}	Source
U_{1}	Ground Station Intermodulation \& Modulator
U_{2}	Phase Noise

$U_{3} \quad$ Co-channel Interference
U_{4} Other

ORIGINF:
OF POOR QUALITY
and the downlink impairments $\left[\sum_{i=1}^{6} \mathrm{D}_{\mathrm{i}}\left(\frac{\mathrm{N}_{\mathrm{o}}}{\mathrm{E}_{\mathrm{D}}}\right)_{\mathrm{DL}}\right]$ are defined as:

D_{1}	Source
D_{1}	Satellite Intermodulation
D_{2}	Phase Noise
D_{3}	Co-channel Interference
D_{4}	Adjacent Channel Interference
D_{5}	Filter Distortion
D_{6}	Other

From Table 4.2-10 we see that TWT impairments U1 and D2 (ground and satelliie respectively) change as the weather conditions vary:

- Condition:Uplink rain. downlink clear Impairment U, degrades from 0 dB to 3 dB because the ground station TWT must be driven close to saturation; to increa" > power out and compensate uplink fade due to rain. Without compensation U_{1} degrades to 4.8 dB .
- Conc. un: Uplink and downlink rain

Impairment U, improves from 3 dB to 1.8 dB because coding will spread the intermodulation products over twice the bandwidth: C/IM ratio improves 3 dB .

- Condition: Downlink rain Impairment D 1 improves from $3 . \mathrm{A}^{\mathrm{A}} \mathrm{B}$ to 0.5 dB because:

1. Drastic degradation of the signal strength due to increased path losses and.
2. Spreading of the intermodulation products due to coding.

Table 4.2-10. $\quad E_{b} / N_{o}$ Impairments

Impairment Source	Magnitude			
	Uplink \& Downlink Clear	Uplink Rain Downlink Clear	Uplink Clear Downlink Rain	Uplink \& Downlink Rain
${ }^{*} 3 \mathrm{U}_{1}$	0.0 dB	* 13.0 dB	0.0 dB	$\cdot 21.8 \mathrm{~dB}$
U_{2}	0.7 dB	0.7 dB	0.7 dB	0.7 dB
U_{3}	0.7 dB	0.7 dB	0.7 dB	0.7 dB
u_{4}	1.0 dB	1.0 dB	1.0 dB	1.0 dB
${ }^{*} \mathrm{D}_{1}$	3.4 dB	3.4 dB	0.5 dB	0.5 dB
D_{2}	0.7 dB	0.7 dB	0.7 dB	0.7 dB
D_{3}	0.7 dB	0.7 dB	0.7 dB	0.7 dB
D_{4}	1.0 dB	1.0 dB	1.0 dB	1.0 dB
D_{5}	0.5 dB	0.5 dB	0.5 dB	0.5 dB
D_{6}	1.0 dB	1.0 dB	1.0 dB	1.0 dB

*1 ST TWT compensated: uncompensated impairment $=4.8 \mathrm{~dB}$.
*2 ST TWT compensated: uncompensated impairment $=3 \mathrm{~dB}$

* 3 Uplink $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ is assumed to be 19 dB :
-4 Downlink $\mathrm{E}_{\mathrm{o}} / \mathrm{N}_{\mathrm{o}}$ is assumed to be 17.8 dB .
Table 4.2-11 shows the RF power requirements of ST and satellite for each link weuther condition.
Table 4. ©-11. RF Power Requirements

Several important features may be deduced by comparing the distributed model results with the lumped model results:

Condition

Clear Air
Downlink Rain

Nominal \triangle Power Improvement
Small Terminal
No Change
No Change

Satellite
$2.4!B$
3.7 dB

An important consequence of using the distributed model leads to the conclusion that power boost is not necessary in the satellite' when the downlink experiences rain. If the satellite power is nominally set for the worst case condition (rain on both links), the distributed model requires 3.4 dB less satellite power than the lumped model under the same conditions. If rain exists in only one of the two beams, the distributed model requires 3.7 dB less satellite power. (See Table 4-12 below).

Table 4.2-12. Satellite New York Bea.m RF Power Requirements

Condition	Traffic Model A	Traffic Model B
DL Rain		
Distributed Model	21.6 Watts	29.2 Watts
(Gnd Station TWT Not Coinpensasted)		
Distributed Model		
(Gnd Station TWT Compensated)	21.6 Watts	29.2 Watts
Lumped Mcael	63.8 Watts	06.2 Watts
2 Beam Rain		
Distributed Model		
(Gnd Station TWT Not Compensated)	23.2 Watts	31.4 Watts
Distributed Model		
(Gnd Station TWT Compensated)	23.2 Watis	31.4 Watts
UL Rain		41.2 Watts
Distributed Model	30.5 Waits	
(Gnd Station TWT Not Compensated)		
Distributed Model		27.8 Watts
(Gnd Station TWT Compensated)	20.6 Watts	
Lumped Model	34.3 Wat!s	46.4 Watts

The values of power were computed by extrapolating the relative powers to the appropriate bandwidth for the New York beam. The RF power shown is required to produce a BER of 1×10^{5}

The effects of ST TWT compensation may be calculated from the two values for the distributed link budget model:

$$
\circ_{0} \text { reduction }=\left(\frac{30.5-20.6}{30.5}\right) 100=32 \%
$$

If the model assumes worst case power on the downlink for the simultaneous uplink and downlink rain case. the effects of ST TWT compensation may be calculated:

$$
\% \text { reduction }=\left(\frac{30.5-23.2}{30.5}\right) 100=24 \%
$$

The RF powers shown are those required to support a bit rate of $207 \mathrm{Mb} / \mathrm{s}$ for Tiaffic Model A and $279.8 \mathrm{Mb} / \mathrm{s}$ for Traffic Model B.

4.3 Forward Error Control

The following subparagraphs discuss the methods used to achieve forward error control.

4.3.1 MONITOR. SENSING AND CONTROL

Each ST statıon monitors its downlink orderwire AGC level. If the level is below its nominal value, the ink between the small terminal and the satellite is assuniad enduring fade. The station will increase its total transmitting power 2.5 dB per dB fade in the received signal strength. The baseline for this power bousting is that the system uplink rain fade rilargin is assumed to be 15 dB while it is only 6 dB in the downlink. Therefore, proportionally it has 2.5 dB fade in the uplint. when it has 1 dB fade in the downlink

Each ST station monitors downlink traffic channel power level. If the level is below its nominal value. it reports this situation to the NCS and asks for the NCS decision. The NCS monitors the orderwire of each small terminal uplink signal level. If some link fades, the NCS directs the affected transmitting small terminal to use coding and commands the satellite to boost its power.

4.32 ENCODING

The recommended encoding scheme is the rate one-half. constraint length five and two bits soft decision convolution code. This provides a coding gan of 36 dB at a 10° bit error rate. The chip circuit ($\mu-\mathrm{CMOS}$) is in processing for the 3020 GHz TDMA Baseband Processor Program and is scheduled for chif tests in the test module in Juty 1982

4.4 Frequency Plan

The trunking and ST frequency plan requirements are:

- Trunking
- Trunk channel bandwidth -1.5 GHz (three bands)
- Trunk traftic burst rate $=550 \mathrm{Mb} / \mathrm{s}$
- TDMA transmission as per 30/20 $\mathrm{G}^{\prime \cdot} \mathbf{I}$ z TDMA communication system
- Number of beams with trunk traffic $=18$
- Peak hour traffic $=6053 \mathrm{Mb} / \mathrm{s}$
-23×223 IF switch for routing
- $S T$
- $S T$ bandwidth $=1.0 \mathrm{GHz}$
- Includes T/ST, ST/ST and ST/T traffic
- Traffic mudel A: 45 cities, 40 beams, 3.0 Gb/s throughput
- Traffic model B; 277 sities, 71 beams, $3.0 \mathrm{G} / \mathrm{bs}$ throughput
- General requirements
- Polarization diversity not required
- Frequency plan to avoid spot-to-spot interference

Traffic consists of both trunk and ST traffic. Any trunk traffic which is destined for a ST terminal is assigned a frequency allocation in the ST band. This also pertains to the ST to trunk traffic and resi, its in a maximum total ST traffic of $3.0 \mathrm{~Gb} / \mathrm{s}$. All trunk-ic-trunk traffic is switched in the satellite via an IF switch in which the trunk traffic is generated from approximately 18 terminals. Frequency organization for the trunk traffic is the same as in the TDMA $3 \mathrm{C} / 20 \mathrm{GHz}$ Communication System. Since this FDM/TDMA design is presently fixed, the fcilowing discussions pertain to just the ST traffic. Frequency plans for Traffic Model A a id Traffic Model B are included in which the traffic models described in the NASA Statement of Work and Western Union refinement of these traffic models are the baseline from which frequency allocations have been derived. The frequency plans do not assume any isolation through polarization diversity. Frequency allocations are ternpered by router complexity but essentially reuse is maximized while avoiding spot-to-spot interference degradation. The use of the trunking band for ST traffic is not considered at this time.

44.1 TRAFFIC FREQUENCY PLAN

Shown in Figure 4.4-1 is a composite frequency plan for small terminal (ST) and trunk traffic. For beams requiring two trunking channels A and C are used. For ST traffic only one of the three $S T$ bands are required and in most cases these bands are only partially filled by any single beam. For the special case where two trunk bands are requred, the ST traffic will avoid placemerit in band three, thus minimizing co-channel and adjacent channel interference

The trunking band is nominally 1.5 GH 12 white witt: each channel capable of $550 \mathrm{Mb} / \mathrm{s}$ serial MSK. traffic as was recommended in the Baseband Processor piogram. The inree small terminal bands are unequil in width but are each nomirally 300 lHz wide The total is about 1 GHz

Figure 4.4-1. Composite Frequency Plan

4.4.2 FREQUENCY PLAN DESIGN ASSUMPTIONS

In capsule 1 rm, the frequency pian design assumptions are:

- beam spot coverage equal approximately a 150 mile diameter on the earth's surface
- beam spot centers separated by 250 miles or less must operate in different frequency bands
- bandwidth allocation - $1 \mathrm{~Hz} /$ bit (i.e., bandwidth required equal data bit rate)
- voice traflic is $32 \mathrm{~kb} / \mathrm{s}$
- every beam spot communicates to all other beam spots except to itself
- spot traffic follows reiationship
$T_{i J} \quad T_{1} T_{J} /\left(T \quad T_{1}\right)$ (traffic from beam I to beam J equals traffic from heam I times traffic from beam J divided by
If $I=J$, the total traffic from all beams less that from deam $I, \because-T_{1}$)
$T_{1,1}=0$
- router complexity to be considered in the frequency plan design

Beamwidth of the satellite antenna is approvimately 0.3 degrees. Although the actual antenna pattern will vary over the CONUS. a spot diameter of 150 miles is estimated for frequency planning purposes. As the spot diameter increases, the number of frequency tuands will increase accordingly. In the limit, with a data rate of $3.0 \mathrm{~Gb} / \mathrm{s}$ and a bandwidth of 1 Hz b/s then without frequency reuse the required bandwidth would be a minimum of 3.0 GHz . Studies to date indicate that the required $\mathrm{Hz} / \mathrm{b} / \mathrm{s}$ is approximately 1.25 if worst case channel degradation is to be less than 2 db . Also coding and channel availability requiremerts will add another $15-20 \%$ to the uplinik bandwidths shown. If conversation of uplink bandwidth becomes crucial there are other routing and frequency organizations which can be ernployed. However, for the architecture described herein, the downlink bandwidth is near minimum and the router design is kept reasorable at the expense of uplink bandwidth. Many factors must be considered before final ailocations are assigned and consequently bandwidths showi are baseline and can be adapted as operating conditions change.

4.4.3 ST TRAFFIC-CITY AND FREQUENCY BAND ALLOCATION FCR TRAFFIC MODEL A UPLINK

As shown in Table 4.4-1, the ST band has been subdivided inte three frequency hands in which the total bandiwidth allocated for ST traffic is 833 MHz . The arrangement of cities in a given frequency band is not unique, and any number of arrangements are possible. The key consideration which led to the distribution shown is maintaining cities in close geographical proximity (250 miles separation) in separate frequency bands

Table 4.4-1. Traffic-City and Frequency Band Allocation for iraffic Model A L'plink

ORIGINAL PAGE IS
 OF POOR QUALITY

Without regard to the router design the required total bandwidth would be 496 MHz (vs the 833 MHz shown in Figure 4.4-2) and each of the cities would require less bandwidth (ie., New York would be 207 MHz instead of 310 MHz). City numbers shown are that city's position in terms of input/output traffic. For example, New York is the heaviest traffic city, and Hartford is number 33. It should be noted that even though cities are in the same zone they need not overlap in frequency allocation. For example, Kansas City and St. Louis are in the same frequency band and are less than 300 miles apart. However, with the frequency bands of these cities adjacent to one another, they still wont exceed the bandwidth of Frequency Band 2 (ie., $137+147<307$).

Figure 4.4-2 shows a graphical representation of the same data tabulated in a previous section (see ST Traffic City and Frequency Band Allocation for Traffic Model A). Even though the 3 dB bandwidths are shown as circles instead of ellipses, the presentation provides a clear picture of frequency band and city assignments.

The numbers shown accompanying the beam spots are that particular city's position in terms of input/output traffic (ie., Fresno is number 40 in terms of traffic volume).

4.4.4 ST TRAFFIC BEAM SPOT FREGUENCY ALLOCATION TRAFFIC MODEL B UPLINK

As shown in Table 4.4-2, the ST band has been subdivided into three frequency bands in which the total bandwidth allocated for ST traffic is 1179 MHz . The arrangement of cities in a given frequency band is not unique, and any number of arrangements are possible. The key consideration which led to the distribution shown is maintaining cities in close geographical proximity (250 miles separation) in separate frequency bands.

Figure 4.4-2. Beam and Frequency Allocation for Traffic Model A

$$
c-2
$$

Table 4.4-2. ST Traffic Beam Spot Frequency Alloction Traffic Model B Uplink

Frequency Band 1		Frequency Band 2		Frequency Band 3	
Beam Spot \#	$\begin{gathered} \mathrm{BW} \\ (\mathrm{MHz}) \end{gathered}$	Beam Spot \#	$\begin{gathered} \mathrm{BW} \\ (\mathrm{MHz}) \end{gathered}$	Beam Spot \#	$\begin{gathered} \mathrm{BW} \\ (\mathrm{MHz}) \end{gathered}$
52	412	22	375	26	392
17	360	30	334	10	322
39	345	67	304	18	313
20	316	71	286	55	298
25	270	28	254	70	292
15	260	14	250	35	281
8	245	5	186	33	276
63	241	24	182	44	265
23	220	9	180	16	236
66	174	34	177	32	232
58	171	43	163	1	209
51	165	45	160	53	202
60	155				
37/46/68	216	11/31/56	198	38/29/57	228
2/36/65	212	49/50/69	195	7/27/54	224
6/21/61	192	4/41/48/64	168	13/40/59	205
		3/19/42	157	12/47/62	189
22 Beams		25 Beams		24 Beams	
Reqd BW $=412 \mathrm{MHz}$		Req'd BW $=375 \mathrm{MHz}$		Req'd BW $=392 \mathrm{MHz}$	
$\stackrel{\text { Total }}{\text { Uplink Bandwidth }}=1179 \mathrm{MHz}$				Total Downlink Bandwidth $=609 \mathrm{MHz}$	

The beam spot numbers are those shown on the map for Traffic Model B. For the case where multiple spots are indicated these are combined before processing in the router. This will not increase the total bandwidth needed but will increase the necessary satellite transmit power (approximately 1 dB for the arrangement shown).
Without regard to the router design the required total bandwidth would be 609 MHz (vs the 1179 MHz) and each of the cities would require less bandwidth. (i.e.. New York area would be 280 MHz instead of 316 MHz .)

Figure 4.4-3 shows a graphical representation of the same data tabulated in a previous section (see ST Traffic City and Frequency Band Allocation for Traffic Model B). Even though the 3 dB bandwidths are shown as circles instead of ellipses. the presentation provides a clear picture of frequency band and beam spot assignments. Beam spot numbers have no particular significance except as reference to the preceding table showing frequency allocation.

Figure 4.4-3. Beam and Frequency Allocation for Traffic Model B

4.4.5 CF:ANNEL ARRANGEMENT

The cinannel arrangement shown in Figure 4.4-4 is designed to simplify the satellite router while still insuring sufficient traffic flexibility. Although this will be discussed in more detail in the section titled "Satellite Routing", some comments are worth noting here.

The numbers shown in each rectangle, $m-n$, represents traffic from source city " m " to destination city " n ". Although not deleted above, there is no frequency allocation for the case when $m=n$ since instraspot traffic is precluded. Neglecting this detail here then in all cases, the destination location. n. is made up of contiguous channel slots. That is. the end of slot $1-1$ is even with the beginning of $7 / 16-1$ and the end of $7 / 16-1$ coincides with the beginning of 2-1 and so on. Thus, the traffic to any beam spot does rot overlap in the frequency domain with any other traffic to that same destination. This has some definite router switching advantages. Source traffic is arranged in order of descending traffic. That is, the traffic from city number 1 is the heaviest while that from $7_{i}^{\prime} 16$ is second in volume followed by that from city number 2 , and so forth.
Arrangements in other than descending (or ascending) traffic volume will result in a required total bandwidth greater than that described in the paragraph titled "ST Traffic-City and Frequency Band Allocation for Traffic Model $A^{\prime \prime}$. The above channelization is depicted as if total frequency reuse were possible. In reality, the source transmissions must conform to the overall frequency allocations plan and offset shifts are required as shown.

* In the actual traffic allocation these slots are not present since communication FROM A BEAM SPOT TO ITSELF IS PRECLUDED.

Figure 4.4-4. Channel Arrangement

4.4.6 ALTERNATE FREQUENCY PLAN FOR TRAFFIC MODEL A

The channel arrangement shown in Figure 4.4-5 will result in the minimum uplink bandwidth required for ST traffic transmission. This 496 MHz bandwidth contains the same cities in each pand as that shown in the recommended frequency plan. The difference here is contiguous arrangement of transmit frequency slots. This in turn requires considerably more processing in the satellite for destination frequency channelization.

A number of other frequency plans were investigated, including a six band allocation and a channelization plan where all destination lo:ations were "vertically" aligned. That is, referring to Figure 4.4-5, channel 41 - 1 woula be centered in the 1-1 frequency band, 45-45 would be centered in the 1-45 frequency slot, and so forth.

This arrangement can also be established at the section level where a section is defined as a subdivided portion of the total traffic matrix. A "vertically" aligned design at the section level appears to have definite advantages in both router simplicity and in conserving bandwidth. i iowever, studies were not completed in this area

Figure 4.4-5. Alternate Frequency Plan for Traffic Model A

4.5 Satellite Routing

The following subparagraphs discuss satellite router requirements, router architecture, and router switching design.
4.5.1 SATELLITE ROUTER REQUIREMENTS

In summary form, the satellite router requirements are:

- Route multiple beam input traffic to proper output beam destinations.
- Inisut from single beam segmented into traffic for all other beams.
- Beam traffic controlled by path filter sizing and arrangement.
- Switching to provide for rearrangement of traffic to output beams.
- Frequency conversions to minımize interference and meet traffic flexibility requrements. + 30% on majr "traffic beans (approximately 18 beams) and $\pm 50 \%$ on all other beams.
- Design to address frequency plan impact

Listed above are the gerieral architecture requirements for the satellite router. The primary concern in designing the ro'ster is satisfying the flexibility requirements and minimizing router complexity. To this end, reasonable compromises should be considered and evaluated using the total reçuirements as guidelines.

Essentially, the router must handle up to 3.0 Gbps of digital traffic or equivalent analog information (i.e., it must be a linear transfer) from approximately 40 inputs in Traffic Model A and 71 inputs for Traffic Mrdel B. Each input is segmented into traffic for the outputs. The amount of traffic from a given beam to an output beam is sized aciording to the traffic requirements and is set by the path filter bandwidth.

Changes in traffic demand are accommodated by changing the path filter. Since filters and switches have a finite bandwidth capability, the required frequency conversions must be carefully selected to avoid any interference problems. This is particularly important when it is realized that within the router there are 1600 path filters in Traffic Model A and 2304 in Traffic Model B. Thus, the router design must consider hardware restrictions in conjunction with architectural constraints. In the paragraphs which follow, the router will be discussed primarily from an architectural standpoint.

4.5.2 ROUTER ARCHITECTURE SUMMARY

The basic router architecture will affect a compromise between flexibility and complexity. To this end, an approach has been developed which will significantly reduce switching and synthesizer requirements relative to a total interchange capability.

Studies indicate that using the frequency plan previously discussed with switching arranged to handle sets of path filters instead of individual path filters, a significant hardware savings can be realized with only minor impact on flexibility.

In the following section, a description of the basic architecture will be presented. In brief, the router architectue is:

- Router architecture is related to the frequency plan. Frequency plan of previous section assumed.
- Switching interchanges sets of path filiers and not individual path filters.
- Switching will be restrictive in that any path filter cannot be assigned any path.
- Switching will be among beams of comparable traffic volume.
- Flexibility requirements met with a minimum of switch crosspoints.
- Switcn requirements are moderate.
- Synthesizer requirements are moderate

4.5.3 ROUTER SWITCHING DESIGN GENERAL

In developing a router architecture, an ordered and logical process must be followed. In the discussion which follows, fundamental rules, characteristics and terminology observed throughout the router switching design are established.

The approach taken here follows only the rules of common sense. Terminology employed is not necessarily that of any other switching theory definitions. At the outset. the traffic model is broken into a matrix which defines all the source and destination path filters. The complete matrix is broken into smaller switching blocks of traffic defined as zones and sections. Within sections, are independent switching blocks. Tnat is, within each section, switching can be accomplished to rearrange the bandwidth (path filter assignment) from the various beam sources to the beam sources to the beam destinations within that section. Thus switching does not influence other sections. Switching
may occur at the element level (one path filter for another) or at the row/column level where a number of path filters are rearranged for any one switch change.

These concepts will be illustrated in the following sections. Switching traffic from one section to another may be accomplished by means of overlap switchir. j and will be described herein.

4.5.4 BEAM AND PATH FILTER MATRIX FOR A NINE BEAM, THREE ZONE ARRANGEMENT

As an illustration of the concepts employed, consider a nine beam system as depicted in Figure 4.5-1. With nine beams in which all beams can transfer traffic from any beam to any other beam (including to itself) there must be $81\left(\mathrm{~g}^{2}\right)$ filters if path indenendence is to be preserved.

For the nine beam configuration, assume that there are tinree separate zones. Assume still further that the respective three zones contain three beams, four beams, and two beams. The number of beams assigned a zone is dependent primarily on traffic volume. With nine beams and zones of three beams, four beams, and two beams, the sections within the matrix are as shown.

It should be noted that a traffic zone and section arrangement is not. normally related to the frequency plan organization. Obviously it would be desirable to have such correspondence in order to simplify the frequency synthesis in the router. Howziver this is generally not realizable since beams of comparable traffic volume often overlap geographically and thur; must be frequency separated.

The numbers within the matrix represent the nominal path filter nomenclature. That is, for the traffic originating at beam seven with an intended destination to beam nine, the path filter is designated at 7-9. The bandwidth f. this filter is designed to handle the nominal prescribed traffic. As these traffic demands change, the path filter assignments within a section are changed via the router switch. The section in bold outline vill be used to illustrate basic router switching principles.

4.5.5 GENERAL SWITCH CONFIGURATION FOR A 4×3 BEAM DATA TRANSFER

Consider a 4×3 section which might follow from the matrix described in Figure 4.5-2. For inputs from beams 4-7, which have traffic destined for beam 1-3, the possible switch arrangements are shown. The first switch is designated as a row switch since a change in this switch will transfer path filters between two rows in a section.

From the example shown, let the original state of the switches be straight through as shown in the dotted line for the row switch. This will then satisfy the matrix designations shown previously. Now, let the row switch from beams four and five have their destinations reversed. Then the path filters previously allocated to paths 41,42 , and 43 will be the path filters for paths 51,52 , and 53 . This corresponds to a row interchange as shown. The column switch performs an interchange between column elements within a section and can be verified rather easily by performing the switch interchange and noting the effect. The inner switches allow switching between individual elements and if these were implemented, there would be little need for the outer column and row switches. More important, however, is the possibility of eliminating the element switches and employing oniy the row and column switches.

This certainly reduces the switch crosspoints and with a well chosen frequency plan will greatly reduce synthesizer requirements. This will be demonstrated in the succeeding paraqraph.

ORIGINAL PAGE IS
OF POOR QUALITY
TO BEAM

Figure 4.5-1. Beam and Path Filter Matrix for a Nine Beam, Three Zone Arrangement

EXAMPLE

SWITCH	INTERCHANGE	ELEMENT(S)
ROW	$4-1,4-2,4-3$	ELEMENT (S)
ROW ELEMENT	$4-1$	$5-1,5-2,5-3$
COLUNN ELEMENT	$4-1$	$5-1$
COLUMN	$4-1,5-1,6-1,7-1$	$4-2$

Figure 4.5-2. General Switch Configuration for a 4×3 Beam Data Transfer

4.5.6 EXAMPLE SHOWING CONFLICT AND NEED FOR SYNTHESIZER WITH SINGLE ELEMENT SWITCHES

The example shown in Figure 4.5-3 considers element switching, and in particular a column element switch operaion. The same comments would apply to a row element switch. The freque ncy channelization plan is that as described in the section titled "Frequency Plan and Channelization" and its basis will become apparent as the discussion proceeds.

The diagram on the left shows a path, a path filter, and an assigned path filter channelization bandwidth (bears no relation to actual assignments). The graph to the right shows the result if a column element switch change is made to reverse the paths of beam segments 61 and 62. When this occurs, then the traffic from beam six to beam two will occupy a frequency band which overlaps that from beam five to beam two. A similar overlap occurs for traffic to beam one from beams six and seven.

Obviously, this kind of downlink interference cannot be allowed and a frequency (ffset (or some equivaiont method) must be provided. Thus, a synthesizer is required to avoid downlink frequency band overlap. This condition can always exist with element switching unless the transmit bandwidths are extremely vide. For this system, the required bandwidth would be prohibitive.

4.5.7 EXAMPLE SHOWING RESULT OF COLUMN INTERCHANGE

Figure 4.5-4 demonstrates row and column switching. Note that for the frequency plan as previously described, row and column switching will never result in the frequency band overlap as demonstrated in the preceding cell.
The right half of the figure shows the result of changing the column row switch between beam destinations one and two. In this case, the band of frequency slots originally routed to beam one has been allocated to beam two and visa versa. Obviously, the drawback to this arrangement is the increased transmit bandwidth and multiple path filter switching as opposed to single element interchange. The advantages are a significant reduction in switch complexity and less severe synthesizer iequirements.

These savings, plus increased reliability, reduced power, size, and weight savings, lead to its recommendation as the baseline architecture. Its acceptance as a final architectur? requires further evaluation in terms of hardware implementation and flexibility analysis. This is in process.

4.5.8 OVERLAP SWITCHING

Figure 4.5-5 illustrates a method whereby traffic from one section can be routed to another section. This capability is not currently employed, but may become a consideration if flexibility studies indicate such is necessary. Overlap switch advantages and disadvantages are as shown in which the primary tradecif is between flexibility and complexity.

NOTE: FREQUENCY INTERFERENCE IN DOWNLINK BEAM 1 AND BEAM 2
UNLESS FREQUENCY MANAGEMENT IS PROVIDED BEFGRE COMBINING.

Figure 4.5-3. Need For Synthesizer wisth Single Elements Switciles

NOTE THAT FREQUENCY INTERFERENCE IN DOWNLINK CANNOT OCCUR FOR ANY COLUN OR ROW INTERCHANGE.

Figure 4 5.4. Results of Column interchange

Figure 4.5-5. Overlap Switching

4.6 Modulation Selection

4.6.1 REQUIREMENTS AND CONDITIONS AND CANDIDATE MODULATION FORMS

In summary, the modulation requirements and conditions are:

Requirements

- For a given communication link, select a modulation technique which will minimize the required transmit power to give a bit error rate (BER) of 10^{-6}.
- For a given communication link minimize the required channel separation for a given adjacent channel signal level relative to that in the desired channel.

Conditions

- Degradation due to individual channel filtering shall be less than 1.0 dB .
- Adjacent chennel interference will not exceed 20 dB and shall result in a signal channel degradation less than 1.0 dB

Candidate Modulation Forms

- Offset quadraphase shift keying (O-QPSK)
- Minımum shift keyıng (MSK)

The modulation requirements as stated above al'ow corsiderable latitude unless some boundary conditions are established. For exampie. closer packing of the traffic channels may be accomplished by decreasing channel
bandwidths which will aid in filtering adjacent channel interference. However, as the channel filter bandwidth decreases the basic individual channel loss will increase. Since adjacent channel interference is not the normal mode it is considered more realistic to first decrease the channel bandwidth until some small individual channei degradation is established. Then for this condition begin adding adjacent channels with a fixed relative signal level and slide these in fiequency toward the signal channel until some additional allowed degradation is observed. This then is the procedure followed here. It is fully realized that this must be approached witt, caution since many other factors can influence the final modulation selection. These include channel filter response characteristics, sensitivity to phase distortion, response to operation in a quasi-linear mo Je, modem complexity and efficiency, and equalizer requirements. Although signific \quad, these items are not the selection drivers in this case, but will remain as topics for consideration in the final selection.

From the first requirement to minimize transmit power to provide the most efficient data link the obvious modulation class to be selected is one which has phase coherency. Thus the primary forms considered here are bi-phase (BPSK), quadraphase (QPSK), offset quadraphas (O-QPSK) and minimum shift keying (MSK). BPSK may be eliminated due to spectrum inefficiency and QPSK is not considered a strong candidate due to spectrum inefficioncy when operated in a limited or saturated environment. Since this is a distinct possibility (i.e. video channels) the forms of modulation considered here are O-QPSK and MSK.

4.6.2 FUNCTIONAL BLOCK DIAGRAM

The functional block diagram in Figure 1.6 -1 shows linear operation for the traffic channel subject to white gaussian noise (WGN) only. Linear operation permits a model with a single transmission filter for channel shaping and application of theoretical BER curves. The satellite channel filter includes traffic from other terminals in the same beam. All $\subseteq A W$ filters are assumed to have bandwidths greater than an individual traffic channel bandwidth, and are therefore assumeo to be transparent for analysis purposes. The modulator/detector transfer function in the receiver is assumed to be an ideal matched filter, matched to the transmitted waveform.

4.6.3 EANDWIDTH PERFORMANCE COMPARISON

From Table 4.6-1 we can see that for what are considered unbiased conditions, there is not a significant difference to be observed between O-QPSK and MSK in terms of allowable channel density in a given bandwidth. For a 20 dB relative adjacent channel signal level and allowing 2 dB total degradation the MSK will allow about 10% greater chunnel density (1.13 R separation vs 1.25 R) whereas for the same t, tal 2 dB degradation and equal power in the adjacent and signal channels O-QPSK has a 6% advantage. If the filier for Q-CPSK were to have one more pole than that for MSK the scales would tip in favor of O-QPSK for all above conditions. However, in this comparison a four pole Butterworth filter was used for the transmission filter and only the bandwidth was allowed to vary. Derivation of the data shown in the above has been extracted from the analysis described in Sectior, 11. Support Studies.

ASSUMPTIONS: LINEAR OPERATION THROUGHOUT
CHANNEL FILTER BW > TKANSMIT FILTER BW

Figure 4.6-1. Functional Block Diagram
Table 4.6-1. Bandlimited Performance Comparison

Modulation Forrnat	Filter SW	Adjacent Channel Int Level (dB)	Channe! Separation	Channel Separation Degradation (dB) " A "	Degradation Due to Signal Loss in Fill (dB) "B'	$\begin{aligned} & \text { otal Degra- } \\ & \text { dation (dB) A } \\ & +B \end{aligned}$
O. QPSK	1.35R	0	0.97R	1	0.5	1.5
	1.05 R	0	0.79R	1	1.0	2.0
	1.35R	20	1.55R	1	0.5	1.5
	1.05R	20	1.25R	1	1.0	2.0
MSK	1.35R	0	0.89R	1	0.5	. 5
	1.17R	0	0.84R	1	1.0	2.0
	i.35R	20	1.25R	1	0.5	1.5
	1.1i	20	1.13R	1	1.0	<0

From Table 4.6-1 we can see that for what are considered unbiased conditions, there is not a significant difference to be: obseryed between O-QPSK and MSK in terms of allowable channel Jensity in a given bandwidth. For a 20 dB relative adjacent channel signal level and allowing 2 dB total degradation the MSK will allow about 10% greater channel
density (1.13 R separation vs 1.25 R) whereas for the same total 2 dB degradation and equal power in the adjacent and signal channels O-QPSK has a 6% advantage. If the filter for Q-QPSK were to have one more pole than that for MSK the scales would tip in favor of O-QPSK for all above conditions. However, in this comparison a four pole Butierworth filter was used for the transmission filter and only the bandwidth was allowed to vary. Derivation of the data shown in the above has been extracted from the analysis described in Section 11. Support Studies.

O-QPSK has been chosen for the SS-FDMA system. This choice is based on the following considerations.

1. An equivalence has been shown, under the condition stated, between O-QPSK and MSK modulation schemes.
2. The choice allows a comparison between O-QPSK chosen here for the SS-FDMA system and SMSK (a theoretical equivalence between MSK and SMSK is assumed) chosen for the Baseband Processor System given O-QPSK demodulation being accomplished with the Baseband Processor SMSK demodulation chip as has been proposed.

4.6.4 CODING FOR VOICE LINK TRAFFIC

A continuous slope delta modulator (Motorola MC3518 CVSD) digitally sampled at $32 \mathrm{~kb} / \mathrm{s}$ is defined for all voice link traffic.

The digitize voice signal (speech encoded signal) quality as a function of sample rate is summarized as follows.

Current state-of-the-art in speech coding is shown in Figure 4.6-2(a) where it is assumed that "toll quality" or better voice transmission is required. The encoder selected for application to the SS-FDMA system is the Motorola MC3518 CVSD coder. The bleck diagram for the CVSD encoder is shown in Figure 4.6-2(b). The CVSD contains the basic delta modulator (comparator, sampler and integrator) in which the gain of the integrator is changed by utilizing previous signal history and thereby increases the basic delta modulator dynamic range. Exiernal to the basic delta modulator is an algori.hm which monitors the past few outputs of the delta modulator in a simple shift register. The register is 3 or 4 bits long, depending on the application. The accepted CVSD algorithrin simply monitors the conterits of the shift register and indicates if it contains all 1's or 0's. This condition is called coincidence. Wher it occurs, it indicates that the gain of the integrator is too small. The coincidence output charges a single-pole low-pass filter. The voltage output of this syllabic filter controls the integrator gain through a pulse amplitude modulator whose other input is the sign bit or up/down control.

The algorithn is repeated in the receiver and, thus, the level data is recovered in the receiver. Because the algorithm only operates on the past serial data, it changes the nature of tie bit stream without changing the channel bit rate.

The effect of the algorithm is to compact the input signal. If a CVSD encoder is played into a basic delta modulator, the output of the delta modulator will reflect the shape of the input signal but all of the output will be at an equal level. Thus, the algorithm at the ourput is needed to restore the level variations. The bit stream in the channel is as if it were from a standard delta modulator with a constant level input.

The delta mooulatur encoder with the CVSD algorithm provides an efficient method for digitizing a voice input in a manner which is especially convenient for digital communicatioris requirements. A key factor in the

(a) SPEECH CODING TRANSMISSION RATES AND ASSOCIATED QUALITY (FROM FLANAGAN "SPEECH CODING" IEEE TRANS. ON COMM. TECH. APRIL 1979)

(D) Motorole CVSD Encoder

Figure 4.6-2. Coding For Voice Link Traffic
selection of the Motorola MC3518 is that it can be configured to be identical to the delta modulator used by the Bell System in subscriber loop telept one systems. This factor will facilitate interface with the Bell System and is an indicator of the voice quality which can be achieved with this algorithm.

Motorola has tested the identified CVSD's ability to handie general modem traffic. The results are tabulated in Table 4.6-2. Tests were conducted as follows:

Table 4.6-2. CVSD Model Resuits

Modem BER	$\frac{f_{\text {CVSD }}}{f_{M D R}}$
$.0^{-2}$	3.0
10^{-3}	3.4
10^{-4}	3.8
10^{-5}	4.3
10^{-6}	5.0

An analog signal was passed th. ough a Codex modem. The Codex's output is an eight phase modulated signal that is clocked into the CVSD encoder. This encoder's output is clocked into a CVSD decoder and then into the receiver section of the modulator/detector. Bit error rate were measured as a function of the codex modem's bits per second rate and the CVSD clock rate. Conclusions regarding high modem rates are shown above. Further, it was shown that 4800 bps indem rate $:=$ supported by a $32 \mathrm{~kb} / \mathrm{s}$ CVSD clock rate for BER's $\leqslant 10^{-6}$.

4.7 Terminal and Satellite Antenna Design

4.7.1 CANDIDATE FEED AND REFLECTOR CONFIGURATIONS-GROUND TERMINALS

In order to provide the necessary antenna gain the ground terminal antenna size will be in the 3-6 meter class. Consequently, one of the prime considerations is selection of the basic radiation technique. The most simple and probable designs are prime focus, cassegrain or offset cassesgrain as shown in Figure 4.7-1. Selection of a particular design involves both mechanical and electrical considerations in which the cassegrain antenna configuration will, in general, offer some advantages when the gain exceeds 40 dB . Blockage due to the subreflector is no longer serious and the increased efficiency obtained by shaping both the reflector and subreflector make this configuration the selected choice for the baseline design.

4.7.2 ANTENNA CHARACTERISTICS FOR THE BASELINE SMALL TERMINALS

Shown in table 4.7-1 are estimated baseline antenna characteristics for the E, F, and G small terminals. Physical size of the antenna is based on link budget requirements and primarily involves system tradeoffs between anterna size, transmit power, receiver noise figure and cost. Cost is a key factor in these tradeoffs since the antenna and transmitter are the most significant hardware cost items in the ground terminals. Maintaining good surface accuracy on the antenna reflector and subreflector is an important consideration and his been initially established as 0.5 mm RMS. As the antenna size becomes larger, surface errors will tend to increase. Hi wever, with care, this error can be kept less than the estimated 0.5 mm RMS. Overall antenna efficiency is budgeted a, 53% at 20 GHz and $\mathbf{4 3 \%}$ at 30 GHz . Both the 5 and 6 meter antenna are estimated to require continuous tracking. Requirements for tracking are dependent on relative satelite motion. Since with reasonable foundation support, fixed antenna pointing can be maintained within $\pm 0.01^{\circ}$ for long periods of time. However, with beamwidths epproaching satellite drift, some form of tracking is required. In some cases a manual track may be acceptable, although it is not assumed here. Polarization diversity is assumed with 30 dB sidelobes on both transmit and receive links. In summary these antenna characteristics are based on reasonable antenna capabilities which are compatible with the remaining system architecture.

Figure 4.7-1. Antenna Feed Design

Table 4.7-1. Antenna Characteristics for Baseline Small Terminals

Item Description Terminal Type	Characteristics						Comments
	E		F		G		
Ant. Dia (Meters)	6		5		4		
Frequency (GHz)	20	30	20	30	20	30	
Directive Gain (dBI)	61.9	65.5	60.3	64.0	58.4	62.0	$4 \pi \mathrm{~A} / \lambda^{2}$
Surface Tol. Error (dB)	-0.7	-1.4	-0.7	-1.4	-0.7	-1.4	0.5 mm RMS error
Efficiency Luss (dB)	-2.0	-2.3	-2.0	-2.3	-2.0	-2.3	Other antenna losses
Effective Gain (dB)	59.2	61.8	57.6	60.3	55.7	58.3	
Beamwidth (Deg)	0.17	0.12	0.21	0.14	0.26	0.17	3 dB beamwidth
Sidelobes (dB) Polarization Bandwidth (GHz) Peak Power (KW) Feed Type Tracking Req'd Foundation Req'd	horiz cas continu	vert gain $\pm 0.01^{\circ}$	horiz cas continuo	vert rain $\pm 0.01^{\circ}$		vert rain $\pm 0.02^{\circ}$ bly	Below peak gain either linear available Handling capability Requirements depend on satélite stability

4.7.3 SATELLITE ANTENNA REQUIREMENTS AND CHARACTERISTICS

The following is a list of the basic satellite antenna requirements being addressed by TRW and Ford:

- Requirements
- Uplink frequency
- Downlink frequency
- On axis gain
(excluding losses)
- Bandwidth
- Cll performance
- Polarization
- Pointing accuracy

Pitch and roll
Yaw
27.5-30 0 GHz
17.7-20.2 GHz

56 dB @ 20 GHz
56 dB @ 30 GHz
500 MHz
$>30 \mathrm{~dB}$ (relative to all other beams)
horizontal or vertical
$<0.02^{\circ}$
$<0.40^{\circ}$

- Other characteristics
- 3 dB beamwidth
0.30°
- Station keeping accuracy
$\pm 0.04^{\circ}$
- Assumptions
- Antenna can provide 25 dB of adjacent spot isolation through frequency diversity

This very complex development will include many other stringent requirements and those listed pertain only to items which impact the overall traffic communication link. Motorola intends to employ the configuration selected by NASA and therefore has not pursued any design effort on its own. The most disturbing area at this time is the antenna bandwidth. For both the uplink and downlink this is specified as 500 MHz . If this is the actual design bandwidth then trunk traffic covering 2.5 GHz cannot be handled by the satellite antenna. For the recommended frequency plan the ST traffic requires less thar. 500 MHz for any beam and is therefore compatible with the antenna design. However the total coverage is on the order of 1 GHz , thus requiring "tuned" antennas to cover the complete band.
Antenna gains listed do not include such losses as beam to beam variation. pointing errors area coverage, polarization, diplexer and line losses. Taking these into account the actual antenna gain used in the link budgets is 45.4 dB . The beamwidth of the antenna is approximately 0.3° thus providing a 3 dB earth coverage of about 150 miles. In addition to narrowbeam isolation and 30 dB beam isolation, polarization diversity is available. Such has not been assumed in any link calculations.

Station keeping and pointing accuracy of the antennas will determine, to some extent, the requirements of the ground terminal antenna. It is certainty desirable to avoid any autotracking at the ground termina: station. However, it appears that for the higher gain terminals such will be necessary in order to avoid signal fades.

4.7.4 EXAMPLE OF BEAM ISOLATION CONTOURS

Figure 4.7-2, reproduced from a TRW report, shows the -3 dB and -30 dB antenna gain contours for the spot bearris centered upon the cities of Minneapolis, St. Louis, New Orleans, Miami, Washington, and Boston. From the extent of overlap of the -30 dB coriiuirs, Motorola's concern with adjacent spot interference is apparent.

4.7.5 TRAFFIC MODEL A CITIES ANTENNA BEAM SPOTS

There are forty-five metropolitan areas encompassed within forty 0.3° nalf-power beamwidth spots in Traffic Model A (see figure 4.7-3). Ten of these forty-five cities are covered by five spot beams - two cities per beam. Consequently, the total number of beams is 40 in which the circler, numbers are the SOW cities listed in order of decreasing traffic.

4.7.6 TRAFFIC MODEL B CITIES ANTENNA BEAM SPOT

There are 277 metropolitan areas encompassed within seventy-one 0.3° half-power beam width spots in Traffic Model B (see figure 4.7-4). A large number of these spots will be combined onboard the satellite in order to reduce the size and complexity of the ST routing switch.

Figure 4.7-2. Beam Isolation Contours

Figure 4.7-3. Traffic Model A Cities Antenna Beam Spots

Figure 4.7-4. Trafic Model B Cities Antenna Beam Spots

4.8 System Control

48.1 SYSTEM CONTROL REQUIREMENT

The system control requirements are as follows:

Availability -	The system control provides the service between any two traffic users of compatible capabilities in the system whenever they have messages to transfer.
Connectivity -	The system controi provides a suitable communication path between users. Users must be insensitive to any path differences when different messages pass through different communication paths.
Monitor -	The system control monitors the status of the satellite and the ST stations Ind signals diagnostic and corrective comands.
Low Cost -	The system is to provide low cost communication medium to users. The system control implementation is based on the priority that the users' cost burden be as low as possible.
Simplicity -	The procedure for the user to enter into the system should be simple.
Resource Sharing -	The operation of the system control should consider the shared use of the resources: e.g., the usage of the orderwire control link and the traffic link.

4.8.2 SYSTEM CONTROL CONCEPT

As can be seen from Figure 4.8-1, the system control consists functionally of the following four control links:

- Access Control Link:

The user initiates his call request through the access control link by using the ordinary telephone signalling information.

- Orderwire Control Link:

It conveys request and status message between ground stations and the network control station through the satellite and provides the following functions:

- Communication frequencies assignment
- Terminal coding and/or power adaptation control
- Time and frequency standards for ST stations
- Diagnosis and monitoring of ST stations
- Satellite Control Link:

It conveys command, control, and supervision messages between the satellite and the network control station and provides the following functions:

- Satellite path rearrangement
- Satellite radiated power control
- TT\&C
- Time and frequency standard for the satellite
- Traffic Link:

Once a traffic link is established, all users' messages are transmitted through the traffic link.

Figure 4.8-1. System Control Concept

4.8.3 MULTIPLE ACCESSING

In satellite communication, there are three possible multiple accessing candidates: (1) contention; (2) reservation; and (3) poling.

In contention multiple accessing, there is no identification nor scheduling procedures. Users are allowed to transmit their messayes as soon as they have messages to trans nit. Since there are no scheduling steps, the users endure access collisions. If a localized scheduling among users can be implemented, the possibility of access collisions can be reduced. If no access collision occurs, the user access time is very low.

In reservation multiple accessing, users schedule the system usage before transmitting their messages. There are no access collisions among users entering the system. The system availability decreases as the number of users increases.

In polling multiple accessing, a central controller polls individual users. When polled, a user has the right to access the system, either for reception or transmission of messages. As more and more users have access to the system, the time between polling requests to nonactive users increases.

RECOMMENDATION

The contention access method will be used for users to access into the system. As soon as the user gets into the system, a reserved traffic link is established for the user to transmit his messages. Specifically, the system will have the following access characteristics:

- Access Contention: When a user has message to transmit, he contends with other users to access into the system. Access denial probability is assumed low enough to allow this procedure.
- Communication Reservation: After the user gets into the system, a traffic cirannel with dedicated communication frequencies assigned by the NCS will be established. The user will transmit his messages through this reserved traffic channel.

4.8.4 USER ACCESS PROTOCOL

Two possible access protocols, shown in Figure 4.8-2, can be implemented in the system: (1) NCS-based and (2) Terminal-based. In NCS-based access protocol, the sending user (USER ${ }_{5}$) dials the called party number to the NCS. The NCS interface provides the dialing register, number interpretation, and translation. Also, the NCS possesses the routing arrangement information so that it can transfer the call request from the NCS to the receiving user. The NCS has complex structure, but the average channel cost is not expensive since the system will support several thousand channels.

In terminal-based access protocol, the sending user dials the called party number to the sending ST terminal $\left(\mathrm{ST}_{\mathrm{s}}\right)$. The ST_{s} interface provides the dialing register, number interpretation, and translation. When the ST_{s} is connected with the receiving small terminal (ST_{r}), the routing arrangement information in the $\mathrm{ST}_{\text {, }}$ will transfer the call req!est to the receiving user (USER ${ }_{r}$) through suitable terrestrial telephone networks. The terminal structure is complex, and the average channel cost is expensive especially for those low traffic terminals.

Figure 4.8-2. Access Protocol NCS-Based
The NCS-based access protocol is recommended for the system. Simple and less expensive small terminal is the main concern for the selection of this access protocol. This NCS-based access protocol has the following characteristics:

- The NCS provides the dialing register, number interpretation, and translation.
- The NCS possesses the information for routing arrangement and access codes interpretation.
- The small terminal structure is not complex, and the average channel cost is low.

User-to-User Call Sequence:

1. USER ${ }_{s}$ off-hook
2. $P A B X_{s}$ sends dial tone
3. USER $_{s}$ dials access code, and PABX $_{s}$ routes the access code to $S T_{s}$
4. ST_{s} dial tone to users
5. Users dials destination address
6. ST_{s} sends off hook and destination address to NCS
7. NCS sends frequency assignments to ST_{s} and ST ,
8. $S T_{\mathrm{s}}$ and ST , send acknowledgement
9. NCS sends destination address to ST,
10. ST, sends acknowledgement to NCS and off-hook to PABX,
11. PABX , sends dial tone to $S T_{\text {, }}$
12. $S T_{r}$ dials called party number
13. PABX, rings call request to USER, and rings back to USER,
14. USER, off-hook and the communication link is established
15. USER $_{s}$ on-hook to the NCS
16. NCS cuts off the communication link between $S T_{s}$ and $S T_{\text {, }}$

4.8.5 SYSTEM CONTROL PERFORMANCE CHARACTERISTICS DESCRIPTION

The Traffic Model A peak hour system capacity is 1200 calls per second. Iraffic Model B peak hour system capacity is 1000 calls per second. The time slot per second per beam is 200, and the time duration for each time slot is 5 milisecond.

The NCS will possess the system time and frequency standard which will be broadcasted to all ST stations and the satellite for time and frequency reference for modulators ar:d frequency converters. The frequency stability will be better than 10^{8}.

The frequency allocation for the orderwire control link will be placed within the frequency band reserved for each beam. The orderwire message from the NCS to the ST is combined with the beam traffic in the combiner of the ST routing assembly and then the composite messages are transferred to the ST station. The orderwire messages from all ST -tations are FDM in the satellite before routing to the NCS.

The frequency allocation for the satellite control link should be a dedicated frequency. The satellite control link message is filtered out from the NCS beam to provide the information for satellite path rearrangement, satellite power adaptation, TT\&C, etc. The satellite information is combined with the orderwire messages from all small terminals to transmit from the satellite to the NCS.

4.8.6 SATELLITE CONTROL LINK PERFORMANCE CHARACTERISTICS

The contention protocol will be used for the user to access into the system. Dedicated channels, one for each beam, are provided for the orderwire operation between the NCS and the ST stations. From the user access protocol proposed in paragraph 4.8.4, it totally requires 1900 bits for the NCS to complete a call request (includes 200 bit overhead for each message transmitted).

Traffic Model A system capacity is 1200 calls/second. The NCS requires the bit rate of 2.28 Mbits/second to meet the calls request. Proportionally, the NCS has the bit rate of $121.6 \mathrm{Kbits} / \mathrm{sec}$ to New York (Traffic Model A) beam to handle its 64 calls/second calls request. On the other hand, it totally needs 950 bits to complete a call request from the ST station to the NCS (includes 200 bit overhead for each message transmitted). It then has the bit rate of 2.28 Mbits/second (Traffic Model A) from all ST stations to the NCS. Delta PSK modulation will be implemented in the orderwire control link, and the link has the coded bit error rate better than 10 .

One dedicatec' channel is provided for the satellite control link. The link bit rate is $0.25 \mathrm{Mbits} /$ second to provide the information for satellite path rearrangement, satellite power adaptation control, and TT\&C. Delta PSK modulation will be implemented in the satellite control link, and the link has the coded bit error rate better than 10^{8}

User's traffic is transmitted along the reserved traffic channel with communication frequencies assigned by the NCS. The traffic bit error rate is $10{ }^{6}$.

4.9 Small Terminal User Interface

High rate data or video users may only interface with the ST (as shown in Figure 4.9-1) over a set of dedicated lines which do not pass through a PABX or SC. The set of dedicated lines include; $\mathbf{4}$ lines for traffic (full duplex: $\mathbf{2}$ transmit, 2 receive), 2 lines for signalling, and 2 lines for supervision. Signalling and supervision may be provided throigh a telephone extension originating at the users location and terminating in the local ST station.

* optional customer interface: not considered as baseline

Figure 4.9-1. Potential Customer Interfaces

Voice and low rate data, shown in Table 4.9-1. ($4800 \mathrm{~b} / \mathrm{s}$ maximum) users interface with the ST through private branch exchanges (PABX) or switch centers (SC). The PABX and SC are part of the existing telephone system. Signalling will be done by dual tone multiple frequency (CTMF). DTMF is inband signalling (on traffic path). DTMF is used on the pushbutton telephones commonly used today. Supervision (ori-hook/off-hook status) is provided by separate E and M lines. Each voice or low rate data interface at the $S T$ is comprised of 4 lines: 2 wire traffic and 2 wire supervision (E\&M).

Table 4.9-1. SS-FDMA Interface

Traf:			Signalling			Supervision		
Type	User/ST interconnect	No. of Interconnects	Type	User/S ${ }^{\top}$ Interconnect	No. of Interconnects	Type	User/ST Interconnect	No. of Interccer acts
Voice or Low Rate Data	PABX or Switch cntr	2	Inband DTMF	Via Traffic interconnect	0 (inband)	EAM	PABX or switch center	2
High Rate Data or Video	De icated lines	$\begin{gathered} 4 \\ (\mathrm{~min}) \end{gathered}$	DTMF	Dedicated lines	2	E8M	Dedicated lines	2

4.10 Signal Level Variations

An important part of a satellite switched FDMA system is the signal level variations that may be encountered and the means whereby to minimize the variation. Since this system does not employ demodulation and remodulation in the satellite, the role of the router is to provide a "bent pipe" relay for each signal. Signal variations throughout the system can be seen at the receiving terminal if proper level control is not exercised.

Figure 4.10-1 broadly illustrates the general sour:es of amplitude variation. It also illustrates graphically how small channels are combined to form laryer groupings on the uplink. These are then combined with other station inputs within the same beam by the satellite antenna to form a still larger set into the router. Here through filtering a separation occurs and a recombination before retransmission. The key here is that the router does not reduce the channelization to a single message signal. It can only treat groups of message signals at one time. And even here a choice must be made as to the place to control signai levels in order to assure each message adequate output power and at the same time to minimize the power required of the satellite power amplifiers.

Small groupings at the router switch output at the input to the summer are a logical choice, but there are 1600 or more of these. Larger g.roups provide less control but require a fewer number of stages of AGC or equivalent circuits.

Figure 4.10-1. Signal Label Variations

4.10.1 SYSTEM GAIN LEVEL VARIATION SUMMARY

There are some 43 principle sources of gain variation in any given message path. The standaru deviation of any path could be 3.34 dB without some monitor and cor,rol. Monitoring the uplink orderwire signal level from each station at the NCS and directing station power adjustments accordingly can reduce this to 1.9 dB . Further moritoring, outlined hereafter, can reduce the variation to the order of 1.3 dB residual.

To preserve an availability of at least 0.999, defined here to mean that less than one message path in a 1000 will fail to yield a maximum error rate in clear air of $10{ }^{6}$. requires that the power be boosted by 3.1 times to standard devision or about 4 dB total. This boost is distribtited between the ground and the satellite.

For an availability of 0.995 , the corresponding power boost is about 3.3 db .

4. 10.2 MESSAGE ROUTE GAIN VARIABILITY (UPLINK)

Table 4.10-1 indicates the main gain variation factors that apply to an uplink. These variations can be categorized as random (RAND), compensatable by automatic gain control (AGC), reduced by orderwire nonitor (OW MON). or preadjustable (PREADJ). Given above are the ranges, the standard deviations assuming the variable is isniformly distribuited, and the composite standard deviation (S_{st}) for that portion of a path.

Table 4.10-1. Message Route Gain Variability (Uplink)

Transmit						
Channel	Plus	Minus	Range	S_{x}	$\mathrm{S}_{\text {st }}$	Note
Modulator	0.2	0.2	0.4	0.12	0.12	Rand
Station Summer PA Ant. Pointing Range Location Rain Comp Carr Freq ($1 \mathrm{~dB} / 200$ MHz)	$\begin{aligned} & 0.2 \\ & 2.0 \\ & 0.5 \\ & 0.4 \\ & 0.0 \\ & 2.0 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 2.0 \\ & 0.8 \\ & 0.4 \\ & 3.0 \\ & 2.0 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 4.0 \\ & 1.0 \\ & 0.8 \\ & 3.0 \\ & 4.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.12 \\ & 1.2 \\ & 0.3 \\ & 0.24 \\ & 0.3 \\ & 1.2 \\ & 0.3 \end{aligned}$		Rand AGC OW MON OW MON OW MON (Residual) Rand
Total	5.6	8.6	14.2	0.69		1.7
Beam SAT Ant. Axis Ant. Gain Beam Pointing Carr Freq Polar Loss Rec Gain Rec Freq. Feed Loss 1st Mix IF Filt	0.0 1.0 0.0 0.1 0.05 0.5 1.0 0.5 0.4 0.2	$\begin{aligned} & 3.0 \\ & 1.0 \\ & 0.5 \\ & 0.1 \\ & 0.05 \\ & 0.5 \\ & 1.0 \\ & 0.5 \\ & 0.4 \\ & 0.2 \end{aligned}$	3.0 2.0 0.5 0.2 0.1 1.0 2.0 1.0 0.8 0.4	$\begin{aligned} & 0.9 \\ & 0.6 \\ & 0.15 \\ & 0.06 \\ & 0.03 \\ & 0.3 \\ & 0.6 \\ & 0.3 \\ & 0.24 \\ & 0.12 \end{aligned}$		OW MON OW MON OW MON Rand
Total	3.75	7.25	11.0	425		1.34

4.10.3 MESSAGE ROUTE GAIN VARIABILITY (ROUTER PROCESSING)

Table 4.10-2 illustrates the variations within the router. The same definitions apply as in Table 4.10-1.
Table 4.10-2. Message Route Gain Variability (Router Processing)

Router	Plus	Minus	Range	S_{x}	S_{st}	Note
Mixer	0.2	0.2	0.4	0.12		Random
Filter	0.2	0.2	0.4	0.12		Random
Row Switch	2.0	2.0	4.0	1.2		Random
SAW Filt	0.5	0.5	1.0	0.3		Random
Colm Switch	0.5	0.5	1.0	0.3		Random
Summer	0.2	0.2	0.4	0.12		Random
Mixer	0.2	0.2	0.4	0.12		Random
Total	3.8	3.8	7.2	0.57		1.28

4.10.4 MESSAGE ROUTE GAIN VARIABILITY (DOWN'_INK)

Table 4.10-3 continues the summary of gain variations for the downlink. The same definitions apply as for the uplink.

Table 4.10-3. Message Route Gain Variability (Downlink)

Receiving						
	Plus	Minus	Range	S_{x}	S_{st}	Note
Beam						
Rout Mix	0.4	0.4	0.8	0.24		AGC
Rout Filt	0.2	0.2	0.4	0.12		Rand
Summer	0.2	0.2	0.4	0.12		Rand
Upconv	0.5	0.5	1.0	0.3		AGC
PA.	2.0	2.0	4.0	1.2		AGC
Fecd Loss	0.5	0.5	1.0	0.3	Rand	
Freq (1 dB/200 MHz)	0.5	0.5	1.0	0.3	Rand	
SAT Ant. Axis	0.0	3.0	3.0	0.9	Rreadj	
SAT Ant. Gain	1.0	1.0	1.0	0.3		Rand

Table 4.10-3. Message Route Gain Variability (Downlink) (Cont)

Receiving						
	Plus	Minus	Range	Sx	S_{31}	Note
SAT Ant. Pointing	0.0	0.5	0.5	0.15		Rand
Rain	0.6	0.6	1.2	0.36		Rand
Total	5.9	9.4	15.3	0.55		1.84
Station						
Location	0.0	3.0	3.0	0.9		Rand
Range	0.4	0.4	0.8	0.24		Preadj
Ant. Pointing	0.5	0.5	1.0	0.3		Rand
Polarization	0.05	0.05	0.1	0.03		Rand
Frea	0.5	0.5	1.0	0.3		Rand
Noise Figure	0.0	1.0	10	0.3		Rand
Total	1.45	5.45	6.9	0.435	0.66	
User Channel						
- mod Sensitivity	0.0	1.0	1.0	0.3	0.3	Rand

4.10.5 SYSTEM GAIN LEVEL MONITOR AND CONTROL

By monitoring portions of the system signals throughout, the variability per path can be reduced. The simplest is to monitor the uplink performance from each station by monitoring each uplink orderwire signal level at the NCS. This provides a reasonable measure of general uplink performance. This provides the means to lower the path variation to 1.9 dB .

Further monitor requires downlink monitor by each receiving station. This is then reported to the NCS on a message basis. The NCS catalogues this data and builds a long-term history from which some adjustment can be made on downlink power to reduce the standard deviation to perhaps 1.3 dB .

Detalled path history is probably not possible due to the sheer magnitude of the numbers involved. This can be seen in the Table 4.10-4.

4106 SS-FDMA INTERCONNECTIONS

As can be seen from table 4 10-4 the number of possible paths is some 5 billion. This presents an unattractive number of paths on which to attempt to maintain a history. Even the number of station interconnects is imposing. Some means must be found to collect information on uplinks by station and downinks by beam.

Table 4.10-4. SS-FDMA interconnections

	Traffic Model A	Traffic Model B
No. of Message Channels	70,000	70,000
No. of Stations	2.100	10,000
No. of Beams	40	71
No of Beam to Beam	1,600	5,041
No. of Possible Sta. Interconnects	4.41×10^{6}	10^{8}
No. of Possible Message Paths	4.9×10^{9}	4.9×10^{9}

4.11 System Architecture Summary

4.11.1 SYSTEM ARCHITECTJRE SUMMARY (TRAFCIC MODEL A)

Characteristics summarized in table 4.11-1 are based on either Statement of Work (SOW) requirements or respunse thereto as discussed in the previous sections. The letters shown, in conjunction with the antenna size, transmit power, and traffic rate. are the particular stations defined in the SOW. The data modulation selected is 0-QPSK although there is not a great deal to choose between it and MSK.

Table 4.11-1. System Architecture Summary (Traffic Model A)

Table 4.11-1. System Architecture Summary (Traffic Model A) (Cont)

ST Station Type	E
Satellite Transponder	
Trunking Capacity	$6.2 \mathrm{~Gb} / \mathrm{s}$
ST - ST and ST - Trunk Capacity	$3 \mathrm{~Gb} / \mathrm{s}$
Number of Antenna Beams	40
Number of LNR's	40
Number of HPA's	61
Size. Weight, Power	$336 \mathrm{cu} \mathrm{ft}, 2,660 \mathrm{lbs}, 5130 \mathrm{watts}$
Satellite RF Power Out	357 W
FDMA Router	
Capacity	$-0,000 \mathrm{channels}$
Number of Filter Paths	1600
Switch Cross Points	1920
Switch Size	8×8
Size. Weight, Power	$15,900 \mathrm{cu}$ in, $260 \mathrm{lbs}, 200$ watts

Link improvement will be realized through convolutional encoding and power boost. Uplink rain fades are handled through power boost and downlink through coding and power boost This, along with frequericy and time reference. will be controlled by the NCS as will assignment of path filters in the satellite router. The basic frequency plar has been organized to effect a simpler router design at the expense of bandwidth efficiency.

The frequency plan for the ST traffic will contain three bands which are divided into five zones with eight sections per zone. This will result in all switches in the satellite router being 8×8. Required satellite RF transmit power for the ST traffic will be less than 400 wai.s.

4.11.2 SYSTEM ARCHITECTURE SUMMARY (TRAFFIC MODEL B)

Table 4.11-2 provides the architectural summary for iraffic Model B. The significant differences are the station capacities which range from a single voice channel up to a 36 channel voice, data, and video station. The total throughput is as before. The number of antenna beams has been increased to 71 although the number of router paths has increased only to 48.

Table 4.11-2. System Architecture Summary (Traffic Model B)

ST Station Type	E	F	G	H	1	J
Antenna Diameter Transmitter Power (clear air) Transmitter Saturated Power Req'd	$\begin{gathered} 6 \\ 0.7 \\ 100 \end{gathered}$	$\begin{gathered} 5 \\ 0.2 \\ 25 \end{gathered}$	$\begin{aligned} & 4 \\ & 0.075 \\ & 10 \end{aligned}$	$\begin{aligned} & 4 \\ & 0.056 \\ & 5 \end{aligned}$	$\begin{aligned} & 0.03 \\ & 5 \end{aligned}$	$\begin{aligned} & 4 \\ & 0.005 \\ & 1 \end{aligned}$
Signal Modulation BER, Availability Uplink Rain Fade Power Boost Downlink FEC Rain Protection Frequency ST Allocated RF Bandwidth	0-QPSK $10^{-6}, 0.999$ 15 dB $3.6 \mathrm{~dB}(\mathrm{R}=1 / 2, \mathrm{~K}=5, \mathrm{Q}=4$ convolutional codst) 30 GHz uplink, 20 GHz downlink $1.0 \mathrm{GHz}$					
System Control and Monitor Orderwire Data Rate Number of Channels Access Time Orderwire Bare	NCS based $1.9 \mathrm{Mb} / \mathrm{s}$ 71 $<5 \mathrm{sec}$ 10^{-8}					
Satellite Transponder Trunking Capacity ST - ST and ST - Trunk Capacity Number of Antenna Beams Number of LNR's Number of HPA's Size. Weight, Power Satellite RF Power Out	$6.2 \mathrm{~Gb} / \mathrm{s}$$3 \mathrm{~Gb} / \mathrm{s}$717193$354 \mathrm{cu} \mathrm{ft}, 3,970 \mathrm{lbs}, 5850$ watts465 W					
FDMA Router Capacity Number of Filter Paths Switch Cross Points Switch Size Size, Weight, Power	$\begin{aligned} & 57,00 \\ & 2304 \\ & 2688 \\ & 8 \times 8 \\ & 21,70 \end{aligned}$	chann cu in.	lbs, 25	watts		

SECTION 5

5. SATELLITE DEFINITION

The transponder subsystem of the spacecraft consists of the following five assemblies:

1. Two antenna feed assernblies
2. Receiver assembly
3. Trunking IF switch
4. ST router
5. Transmitter assembly

- The antenna assembly consists of two 3 meter reflections.
- The receiver assembly includes all low noise receivers/down converters, power splitters, diplexers, down converters, etc., for all beams.
- The trunking IF switch
- The ST IF switch router consists of down converters - analogue processing - up converters
- The transmitter assembly includes all TWT's, high voltage power supplies, diplexers, combiners, etc., for all beams.

The major components of the spacecraft transponder subsystem are those listed above. With the exception of the ST router, the size, veeight, and power estimatos were derived from industry briefings or proposals submitted to NASA. Specifically, the antenna feed assembly estimates were derived from the GE study, "Customer Premise Service Study for 30/20 Satellite Systems", January 13, 1982, and the March 5, 1982, Task I and II report "Spacecraft Multibeam Antenna System for $30 / 20 \mathrm{GHz}$ " by Ford Aerospace and Communications Corp.
The low noise receiver estimates were based on reports published by ITT こき'ense Communications Division, " 30 / 20 GHz Communications Sa ellite Low Noise Receiver", October 1980 and by LNR Communications, Inc., " $30 / 20$ GHz Communications Low Noise Receiver". The IF trunking switch estimate was derived from the GE report " $30 / 20$ GHz Satellite Switching Matrix Development', May 7, 1981.

The estimate was based on a 20×20 matrix switch and was appropriately scaled to reflect the 23×23 matrix need for the SS-FDMA satellite. The 20 GHz TWT estimates were derived from data supplied by Hughes and Wat-kins-Johnson for the Hughes 918 TWT and the Watkins-Johnson 3712 TWT. The remainder of the estimates were derived from readily available existing hardware.

There are six basic functional parts to the satellite communication payload:

1. Multibeam narrow beam receiving antennas
2. Low noise receivers at 30 GHz
3. IF switch for TDMA trunk signal routing
4. Upconverters to 20 GHz and power amplifiers
5. Multibeam transmitting antennas

ORIGINAL PAGE IS OF POOR QUALITY

6. FDMA ST router

Although this program is not concerned with the trunking system, nevertheless the SS-FDMA ST system is inextricably interwoven with the trunking subsystem. Figure 5.0-1 makes clear the points of contact.

The satellite block diagram, Figure 5.0-2, contains six main subsystems relating to the FDMA communication link. These are two antenna subsystems, low noise receivers (LNR), IF switch, the ST router, and the power amplifier subsystem. With the exception of the router, these subsystems have all been studied by other contractors and the developed FDMA architecture has used the published characteristics of these studies, where applicable.

Essentially, the FDMA satellite acts as a switchboard to control source to destination traffic. The 30 GHz input is received by the antenna subsystem which contains approximately 40 beam antennas (Traffic Model A). The traffic from trunking terminals, which is destined for another trunking terminal, is allocated a 1.5 GHz bandwidth and this TDM traffic is destination-controlled through the IF switch. All other traffic, which is ST related, is contained in a 1.0 GHz bandwidth and is destination-controlled through the router. Switch configuration, along with synthesizer settings and power output control, are derived from the NCS receiver within the router.
The router contains approximately 1600 SAW filters with 1920 switching crosspoints. The input and output IF frequencies to the router have tentatively been selected as $4.5-5.6 \mathrm{GHz}$ and $2.65-3.35 \mathrm{GHz}$, respectively. With a maximum 3.8 Gbps throughput, the required RF output power for communicating the ST traffic is 357 watts for Traffic Model A and 465 watts for the Traffic Model B. This assumes an effective satellite antenna gain of 45.4 dB .
Power amplifiers are all quasi-linear for the ST FDMA traffic and will operate saturated for the trunking TDM traffic. Details of the FDMA architecture, and in particular the router, are discussed in the following subparagraphs.

Figure 5.0-1. Satellite Payload Block Diagram

Figure 5.0-2. Satellite Block Diagram

5.1 Small Terminal Router

5.1.1 FUNCTIONAL REQUIREMENTS

Functional requirements of the router are listed below for Traffic Model A and B:

- Traffic input: multiple beam FDMA
- Total ST channel quantities available for traffic model A and B

Channel	$6.3 \mathrm{Mb} / \mathrm{s}$	$1.5 \mathrm{Mb} / \mathrm{s}$	$56 \mathrm{~kb} / \mathrm{s}$	$32 \mathrm{~kb} / \mathrm{s}$	Total Channels
Traffic Mi:Jdel A	80	860	8148	59.088	68.176
Traffic Model B	200	800	7400	48,600	57.000

- Throughput

Up to 50% of available channels

- Beam to beam routing through flexible switching
- Traffic variations

High volume beams (approximately 18 beams)
Other beams

$$
\begin{aligned}
& = \pm 30 \% \\
& = \pm 50 \%
\end{aligned}
$$

- Blocking probability $<0.1 \%$
- Linear input to output transfer (No limiting)
- Maximum input bandwidth $=1.5 \mathrm{GHz}$
- Input/output impedance: 50 ohms, VSWR $\leqslant 1.2: 1$
- Minimurn weight and power

In both cases, the router throughput is based on a $32 \mathrm{~kb} / \mathrm{s}$ voice traffic rate. Traffic frorn any input beam will be capable of routing to all other beam locations. In the case of Traffic Model A, there are 45 cities in which five of the beams are combined to give a resulting 40 inputs to the router. Traffic Model B has 277 cities and approximately 71 beams. Traffic from these beams are combined. The router requirements do not change materially for Traffic Model B as compared to Traffic Model A. In addition to the requirements regarding traffic control, the Iouter must also be responsive to the NCS control signals inputs and must address the selected frequency plan.

The total small terminal channels available is the sum of all the ST station capacities. Using $65 \mathrm{~Kb} / \mathrm{s}$ voice the corresponding total available traffic would be about $6 \mathrm{~Gb} / \mathrm{s}$ for both models. At 50% of available channel use at peak loading this is $3 \mathrm{~Gb} / \mathrm{s}$ to which must be added the $800 \mathrm{Mb} / \mathrm{s}$ trunk to ST traffic.

5.1.2 BEAM AND PATH FILTER MATRIX

Referring to figure 5.1-1, the general traffic matrix and recalling that Traffic Model A contain 40 beams, then the source-destination filtering can be described by a 40×40 matrix. This matrix is identical for Traffic Model B except the size will increase from 40×40 to 48×48. For Traffic Model B there are actually 71 beams, which through combining, result in an equivalent 48 beams so far as the router design is concerned. This combining will simplify the router at the expense of approximately 1 dB in satellite transmit power. In both traffic models, subdividing occurs in 8×8 sections as illustrated above. For Traffic Model A there are 25 sections and a required 1600 filters while Traffic Model B contains 36 sections and 2304 filter; (482). Each of these 8×8 sections acts more or less independently from other sections and with this breakdown a segmented router block diagram can be easily represented and is shown in paragraph 5.3.

5.1.3 ROUTER CONFIGURATION

A three dimensional pictorial view of the router is shown in figure 5.1-2. This illustrates the traffic flow. Incoming traffic from a beam in Zone 1 is routed by frequency and distributed by a $1: 5$ power splitter. Each of these outputs is applied to one of five sectors (wit, i five zones there are five squared sectors). In the lower left hand corner is shown a blowup of one such sector. The inputs from the eight beams in one zone are applied to one 8×8 row switch then further separated in a 1:8 power divider. Individual paths are then filtered in a bank of 64 surface acoustic wave (SAW) filters. The outputs are recombined in an 8:1 power summer. Data then rotates 90° between power division and power summation. The sector output is sumrned in the $5: 1$ beam summers with outputs of the other five sectors thai contribute to that beam. Not shuwn is the final column switch that can interchange the column of paths that apply to any one beam.
This diagram best illustrates the horizontal-to-vertical to horizontal-to-vertical rotation that goes on within the Router structure. This rotation, coupled with the switching, is what allows the interchange of path characterisin an economical manner.

Figure 5.1-1. General Traffic Matrix

Figure 5.1-2. Router Configuration

ORIGINAL PAGE IS
 OF POUR QUALITY

5.1.4 ROUTER OUTPUT SEGMENT

The output segment of the router is illustrated in figure 5.1-3. This shows the detail of the 5:1 beam summer. Each beam has its own LO frequency synthesis for up conversion in the mixer before filtering and summation. The beam is further up converted before being sent to the output.

Figure 5.1-3. Router Output Segment

5.1.5 ROUTER INPUT SEGMENT

Figure 5.1-4 illustrates the detail of the input segment of the router called the 1:5 power divider in the previous diagram. The input signal is mixed down in frequency in the mixer by a local frequency generated by the frequency multiplier before being split by the power splitter. Each output is filtered in a sector filter before being applied to the sector circuitry.

5.1.6 ROUTEF, BLOCK DIAGRAM

A segment of the router is shown in Figure 5.1-5 in which the primary emphasis is in presenting the switching and path fiter arrangements. Although applicable to both traffic models, the following discussion is directed to Traffic :Model A. Functions for both are identical and only the assembly quantities will differ. These differences can be seen in paragraph 5.1.7. For any input beam, after down conversion, the power divider breaks the input s!gnal into one output for each zone. With five zones, there are then 25 processing sections. The row switch in each section has one input from each beam in that input zone, that is, the inputs to any given switch are the eight common row element beams in that section.

Figure 5.1-4. Router Input Segment

() REFERS TO TRAFFIC MODEL B

Figure 5.1-5. Router Block Diagram

The outputs of the row switches are then separated by frequency division into outputs to each of the destination zones with surface acoustic wave filters. There are $€ 4$ such filters in each of the 25 processing sections. Filter outputs destined for the same output zone are then summed first with other outputs in the same section and then with common destination signals from the other four input zones. They are then directed to ", ecc'umn switches. Analogous to the row switches, the column switches have as inpuls the forty common column filter sutputs. eight on each switch. The outputs of the common switthes are then translated to the proper router IF output frequency.

In addition. the router cc rtains a control processor which directs the switching configuration. 7 his direct on is generated in the Network Control Station together with system clock and frequency references. All translating frequencies for the router a a derived by frequency synthesis from these references.

5.1.7 ROUTER CHARACTERISTICS

The router for Traffic Model A has 40 intermediate frequency inputs which are segmentis: into traffic tor all other beam spots. Thus, there are $1600(40 \times 40)$ paths through the router visich are controllec by the row and column switches. Traffic Model B differs only in that there are 48 intermeJiate frequencies and 2304 (48×48) paths which are available. In both cases, a path can carry many iransmissions being dedicated only to having common source and destination spot beams (see Table 5.1-1).

Table 5.1-1. Router Characteristics

Item Description	Traffic Model A	Trattic Model B
IF Input Frequency IF Output Frequency Input Signal Power Density Number of Beams Number of SAW Filters Total Available Bandwidth SAW Filter Bandwidths Power Divider quantity (size) Power Combner: quantity (size) Interconnect Switch quantity (size) Cross Points - Total Reconfiguration Time Fiequency Synthesizers	$\begin{aligned} & 4.5-5.5 \mathrm{GHz} \\ & 2.7-3.2 \mathrm{GHz} \\ & -120 \cdots 100 \mathrm{dBm} / \mathrm{Hz} \\ & 40 \\ & 1600 \\ & 2964 \mathrm{MHz} \\ & 1 \mathrm{MHz} \cdot \mathrm{~B} \cdot 20 \mathrm{MHz} \\ & 40(1: 4) \\ & 40(1: 5) \\ & 200(1: 8) \\ & 200(8: 1) \\ & 40(5: 1) \\ & 3 C(8 \times 8) \\ & 1920 \\ & 100 \mu \mathrm{sec} \\ & 14-\mathrm{fixed} \text { program } \end{aligned}$	Same Same Same 48 2304 2826 MHz $\begin{aligned} & 1 \mathrm{MHz}: ~ B-20 \mathrm{MHz} \\ & 48(1: 4) \\ & 48(1: 8) \\ & 288(1: 8) \\ & 288(8: 1) \\ & 48(6: 1) \\ & 42(8 \times 8) \\ & 2688 \\ & 100: s \mathrm{sec} \\ & 14-\text { fixed program } \end{aligned}$

Table 5.1-1. Router Characteristics (Cont)

Item Description	Traffic Mode! A	Traffic Model B
NCS Peceiver	one	one
Prime Puwer	195 Watts	244 Watts
Size	$9 \mathrm{ft}^{3}$	$13 \mathrm{ft}^{2}$
Weight	350 pounds	500 pounds

All switches are identical 8×3 crossbar types, the design being baseo upon Motorola's GB6 cell array, and the SAW filters are ripple-cancellation designs with bandwidths in the $1-20 \mathrm{MHz}$ range. The range of center frequencies fir hoth the switches and filters is from about 80 MHz to 400 MHz .

All reference frequencies are derived through frequency synthesis from references supplied by the Network Control Receiver which in turn are locked to the System Reference in the Network Control Station. The Network Control Receiver also is the source for the switch control function.

5.1.8 FDM RELIABILITY MODEL ROUTER SWITCHING SINGLE PATH

This reliability model of Figure 5.1-6, shows the functional dependency for the throughput of a single input beam to a preselected single output beam The probability of successful operation for ten years has been calculated at 0.8247 . The primary contributors to the high failure rate (2.2×10^{-6} failures/hour) are the mixers, which contribute 58% of the total failure rate. The 8×8 switches are assumed to be current 8×8 switches with some modifications incorporated to switch analog signals. The equipment that is common to more than one beam has been considered to have redundant elements (possible multiple redundancies) such that the resulting high probability of success does not affect the reliability of the remainder of the system. It is possible that portions of this circuit can be bypassed through switching techniques. That portion would be from the input of the first 8×3 switch to the input of the second 8×8 switch. This allows a slight improvement in the reliability to 0.8333 .

5.1.9 FDM RELIABILITY MODEL FOUTER SWITCHING

A sliciry technique has been used to model and calculate the reliability of the FDM router switch network. As shown by the model in Figure 5.1-7, the router switch has been sliced inte six distinct functional elements: 1) 40 identical beanl input circuits; 2) 40 power splitters to provide a fanout th 200 lines; 3) 3×8 switches to route signals to power splitter which provide 1600 outputs; 4) 1600 SAW filters for filtering; 5) summing networks to combine SAW filter outputs to 40 outputs: and 6) final switching, mi.sing and filtering to provide the 40 output beams.

An additional block on this diagram provides for those elements that are common throughout the router. These elements are power supplies, master oscillator, switch controls, synthesizers, etc. It is recognized that these common elements are critical to the proper operation of the entire syctem. Because of this critical nature, redundant techniques will be utilized to assure that the reliability of the common elements will have only a minor impact on the total systems probability of success.

2) ALL $\quad \lambda^{\prime}$ 'S ARE $\times 10^{-6}$ FAILURES/HOUR

Figure 5.1-6. Router Switching Reliability Model

Figure 5.1-7. Router Switching Model

The objective of this reliability analysis was to determine the reliability for a ten year mission with a 67% data throughput. The reliability for each slice has been calculated on the basis of the throughput. For example, the Input Circuitry Block has a reliability figure of 0.9947 for 80% throughput, or 32 out of 40 of the input circuits are operating properly. Because of the switching capabilities of the Router, it is posssible to switch the 80% good inputs io the 80% good outputs. If all remaining failures occur on the remaining "good" lines within the block power splitter, input switching, SAW filters, and summing network, the total throughput would be 67.6%. This calculation is shown on the diagram. The calculations predict that there is a probability of 0.9584 for a 67.6% data throughput of the Router Switching, for a ten year mission.

5.1.10 ST IF FREQUENCY SELECTION REQUIREMENTS

As it is not now feasible to perform the required router functions of filtering and switching directly at the uplink frequencies, it is necessary to reduce both the center frequencies and the bandwidths in which the operations are accomplished. Thus, the choice of the router input frequency range is heavily influenced, not only by the interface with the receiving subsystem and the impact upon the complexity of that subsystem, but also by the constraints that the router itself imposes upon the choice.
Similarly, the router output intermediate frequency selection is influenced both by the router configuration and its internal operating frequencies as well as the impact upon the final upconverters, filters, power amplifiers, and combiner.

Candidate frequency ranges for the first intermediate frequency at the router input were examined from 2 GHz to 8 GHz for suitability with a 1 GHz signal bandwidth in accordance with the frequency plan. Frequencies above 6 GHz were found to have a dominant fitth order intermodulation product and those below 3 GHz would make it difficult to reject images for the receiver. The selected range of 4.5 to 5.6 GHz has, as worst case, a ninth order intermodulation product appearing in band.
The router output intermediate frequency has also been selected by examining the potential intermodulation products generated in the translations from the signal filtering and switching frequencies to the desired transmit frequency band and the rejection of undesired mixing side bands.
The selected output IF range of 2.56 to 3.34 GHz results in intermodulation products which can be easily controlled in level. This frequency range selection was dominated by the processing frequencies internal to the router.

5.1.11 ROUTING INTERFACE

The routing assembly, Figure 5.1-8, will interface with the receiving assembly and the transmitting assembly using coaxial cables. As the planned intermediate frequencies are high and the distances between these assemblies considerable, a low loss interconnect using solid wall coaxial cable is planned. The lower frequency signals connecting the network control receiver to the routing assembly should also be coaxial, but can be miniature flexible cables.

Figure 5.1-8. Routing Interface

5.1.12 A SLICE THROUGH THE ROUTER

Shown in Figure 5.1-9 is one slice through the router. A slice is intended to shown the signal flow through the router and to give the overall dimensions, in inches, of each of the four major subassemblies within the router. A modular approach is used in packaging the router as this has proven to be the most rugged and reliable method of packaging large spacebome electronic equipment. This packaging scheme will minimize both the size of the router and the number of interconnecting cables needed within the router. Semi-rigid cables must be used on the input to the IF assembly and on the outputs of the downlink translator/amplifier modules. Flexible coaxial cables may be used for all other RF interconnections between the assemblies shown.

5.1.13 ROUTER LAYOU'T

The layout of the router is essentially an array of individual module stacks mounted on a common baseplate. The module stacks have been arranged to minimize the lengths of the interconnecting cables. Referring to Figure 5.1-10, and assuming that rows are from left to right and columns from bottom to top, the input signals to the router from the receiver subsystem are located in each of the IF assemble module stacks on the far left. The outputs from the stacks are distributed to each of the five 8 way divider module stacks located directly to the right in the same row. The output from this stack and each of the other four module stacks in the same column inust be routed up to the five way combiner stack located at the top of the drawing. The output from this stack is then routed to the downlink translator stack in the same column and the output from this stack, located at the top of the page, then becomes the input to the transmitter subsystem.

Figure 5.1-9. A Slice Through The Router

Figure 5.1-10. Router Layout

5.1.14 SATELLITE ST ROUTER ASSEMBLIES TRAFFIC MODEL A

The corresponding table, Table 5.1-2, is a detailed breakdown of the major subassemblies within the router. Estimates for the size, weight, and power of each module were derived from similar existing hardware.
The modules are machined from 6061 aluminum to minimize the weight of the router. The modules are then arranged to form several individual module stack assemblies. The first assembly, of which there are five, consists of eight IF assembly modules and five 8×8 input switch/decoder modules. The eight IF assembly modules are mounted vertically in a breadslice fashion and mounted to these are the five 9×8 input switch/decoder modules. Shear panels are attached to the top and sides to provide additional strength and rigidity and to improve the heat transfer characteristics.
The next assembly, of which there are 25 , consists of eight amplifier/eight-way divider modules and eight SAW filter/eight-way combiner modules. The SAW filter/eight-way combiner modules are stacked horizontally and mounted to these are the amplifier/eight-way divider modules. The SAW filter/eight-way combiner module is the largest and heaviest module within the router and these 25 assebmlies account for over one-half of the total size and weight of the router. The size and weight of each assembly could be reduced approximatley 25% if four SAW filters were mounted onto a single substrate.

The next assembly, of which there are five, consists of eight five-way combiners and one 8×8 output switch/ decoder. The eight five-way combiner modules are stacked horizontally and mounted to these is the 8×8 output switch. This output switch module is identical to the input switch module.

The last assembly, of which there are five, consists of eight downlink translator/amplifier modules stacked horizontally.

The previously described assemblies comprise the major portion of the ST router. Two additional units, the satellite control demodulator and the switch control are of similar design and consist of six modules each.

5.1.15 SATELLITE ST ROUTER ASSEMBLIES TRAFFIC MODEL B

The corresponding table, Table 5.1-3, is a detailed breakdown of the major subassemblies within the router. Estimates for size, weight, and power of each module were derived from similar hardware.

The modules are machined from 6061 aluminum to minimize the weight of the router. The modules are then arranged to from several individual module stack assemblies. The first assembly, of which there are six, consists or eight IF assembly modules and six 8×8 input switch/decoder modules. The eight IF assembly modules are mounted vertically in a breadslice fashion and mounted to these are the six 8×8 input switch/decoder modules. Shear panels are attached to the top and sides to provide additional strength and rigidity and to improve the heat transfer characteristics.

The next assembly, of which there are 36, consists of eight amplifier/eight-way divider modules and eight SAW filter/eight-way combiner modules. The SAW filter/eight-way combiner modules are stacked horizontally and mounted to these are the amplifier/eight-way modules. The SAW filter/eight-way combiner module is the iargest and heaviest module within the router and these 36 assemblies account for over one-half of the total size and weight of the router. The size and weight of each assembly could be reduced approximately 25% if four SAW filters were mounted onto a single substrate.
Table 5.1-2. Satellite ST Router Assemblies - Traffic Model A

Assembly	Technology	$\begin{gathered} \text { Unit Size } \\ \mathbf{L} \times \mathbf{W} \times \mathbf{H}(\mathbb{N}) \end{gathered}$	Unit Wt (LB)	Unit PW (WT)	Qty Req'd	Total Weight	Total Power
IF input Assembly	Stripline	$4.0 \times 5.0 \times 0.5$	0.67	0.9	40	26.8	36
8×8 Input Switch/Decoder	Bipolar-Mosaic	$4.0 \times 2.0 \times 0.8$	0.23	0.85	25	5.75	21.25
8 Way Divider/Amplifier	Bipolar	$4.0 \times 2.0 \times 0.5$	0.155	0.035	200	31.0	7.0
SAW Filter/8 Waiy Lombiner	SAW/Discrete	$8.0 \times 5.25 \times 0.5$	0.763	0.035	200	143.2	7.0
5 Way Combiner	Stripline	$3.0 \times 2.0 \times 0.5$	0.10	Passive	40	4.0	-
8×8 Output Switch/Decoder	Bipolar-Mosiac	$4.0 \times 2.0 \times 0.8$	0.23	0.85	5	1.15	4.25
Downlink Translator	Bipolar	$4.0 \times 3.5 \times 0.5$	0.54	0.97	40	21.6	38.8
Synthesizers/LO Distribution	Bipolar	$5.0 \times 2.5 \times 0.5$	0.198	0.27	14	5.6	22.4
Satellite Control Demodulator	Bipolar	$5.5 \times 6.0 \times 2.5$	2.89	2.0	1	2.39	2.0
Switch Control	Bipolar	$5.5 \times 6.0 \times 2.5$	2.89	2.0	1	2.89	2.0
Power Converter	Bipolar	$10.0 \times 6.0 \times 2.0$	6.5	54.7	1	6.5	54.7
Cables	Coaxial				1250 ft	10.5	-
Structure	Aluminum					Q1.8	-
Total		$59 \times 54 \times 5.0$				353.1	195.4

Table 5.1-3. Satellite ST Router Assemblies Traffic Model B

Assembly	Technology	Unit Size $\mathrm{L} \times \mathrm{W} \times \mathrm{H}(\mathbb{N})$	Unit WT (LB)	Unit PW (WT)	Qty Req'd	Total Weight	Total Power
IF input Assembly	Stripline	$4.0 \times 5.0 \times 0.5$	0.67	0.9	48	32.2	43.2
8×8 Input Switch/Decoder	Bipolar-Mosiac	$4.0 \times 2.0 \times 0.8$	0.23	0.85	36	8.3	30.6
8 Way Divider Amplifier	Bipolar	$4.0 \times 2.0 \times 0.5$	0.55	0.35	288	44.6	10.1
SaW Filter/8 Way Combiner	SAW/Discrete	$8.0 \times 5.25 \times$	0.763	0.35	288	219.7	10.1
6 Way	Stripline	$3.0 \times 2.0 \times 0.5$	0.10	Passive	48	4.8	-
8×8 Output Switch/	Bipolar-Mosaic	$4.0 \times 2.0 \times 0.8$	0.23	0.85	6	1.38	5.1
Decoder							
Downlink Translator	Bipolar	$4.0 \times 3.5 \times 0.5$	0.54	0.97	48	25.9	46.6
Synthesizers/LO	Bipolar	$5.0 \times 2.5 \times 0.5$	0.40	1.87	14	5.6	26.18
		$5.5 \times 6.0 \times 2.5$	2.89	2.0	1	2.89	2.0
Satellite Control Demodulator	Bipolar	$5.5 \times 6.0 \times 2.5$					
Switch Control	Bipolar	$5.5 \times 6.0 \times 2.5$	2.89	2.0	1	2.89	2.0
Power Converter	Bipolar	$12.0 \times 6.0 \times 2.0$	8.0	68.4	1	8.0	68.4
Cables	Coaxial				1920 ft	14.1	-
		$65 \times 62.5 \times 5.0$				497.7	244.3

The next assembly, of which there are six, consists of eight six-way combiners and one 8×8 output switch/ decoder. The eight six-way combiner modules are stacked horizontally and mounted to these is the 8×8 output switch. This output switch module is identical to the input switch module.

The last assembly, of which there are six, consists of eight downlink translator/amplifier modules stacked horizontally.

The previously described assemblies comprise the major portion of the ST router. Two additional units, the satellite control demodulator and the switch control are of similar design and consists of six modules each.

5.1.16 ROU":ER TECHNOLOGIES

Below are listed the key technologies with the router:

- Switching:
bandwidth
crosstalk
control
power requirements
crosspoint limitation
redundancy
packaging
- Synthesizer(s):
power
tunability
phase noise
- SAW filters:
center frequer:cy range
bandwidth
stability
selectivity
packaging
- Packaging:
crosstalk
ground loops
reliability
For each of the four primary items, the most critical decision characteristics are listed. Requirements for each has not been detailed at this time; however, design of the router has proceeded in conjunction with support studies involving the switch, synthesizers and SAW filters. Although packaging is not normally included as a technology development. its importarice cannot be neglected in view of the complexity of the router.

Crosstalk, ground loops, interconnects, EMI, heat transfer, relibility, size and weight are a few of the items which must be addressed in the packaging design of the router. From a review of the architecture to present technology status. there are no design requirements in the router which are imcompatible with current design capabilities. Certainly some refinements are required, but there are no apparent technology breakthrough necessary to satisfy the architecture described herein.

5.2 Transponder Subsystem Size, Weight, and Power

5.2.1 UPLINK SATELLITE RECEIVER CONFIGURA TION DUAL TRUNK/ST BEAM (TRAFFIC MODELS A AND B)

The L.NR, common to all satellite receiver configuration required to decompose dual trunk, single trunk and ST only beams, is comprised of; two filters used to strongly reject transmitter leakage before downconverting (i.e. $>140 \mathrm{dBm}$ of rejection required), an RF LNA delivering 20 dB gain and having a 4 dB noise figure (NF), a highside LO for downconverting to ensure that no images fall within the receiver passband, and an initial IF low noise GaAs amplifier (10 dB gain, 5 dB NF) used to set $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ at the LNR's output.

Figure 5.2-1 identifies the dual trunk configuration. This figure is applicable to both Traffic Models A and B. The dual trunk beam is comprised of irunk bands A and C and ST band 1 and 2 and spans a bandwidth of 2.5 GHz or 2.0 GHz respectively. The first IF BPF, used to reject spurious signals prodiced by the RF/IF mixer, has a relatively broad bandwidth.

Two diplexing operations are used to fully decompose the dual trunk beams. Filters shown as part of diplexir.g operations possess bandwidths, as depicted in the figure, and strongly tapered skirts that fully separate the signals in both arms of the diplexers. The first diplexing operation separates the unlink beam's full trunk bandwidth (1.5 GHz) from the ST band while the second diplexing operation separates the full trunk band into its constituent bands, A and C. The second IF amplifiers shown prior to the second diplexing operation is also a low noise GaAs amplifier with 5 dB noise figures and 10 dB gain, and is used to counter line losses due to filtering and signal splitting. While each separated ST channel enters the ST Routers with the same relative IF frequency it had upon RF/IF downconverting* the trunk bands are required to have a common center frequency upon entering the trunk IF switch. The center of trunk band \mathbf{A} is taken as this common center and the translation of band C to band A is accomplished by downconverting as shown. The BPF at the mixer output passes trunk band A to the IF switch and reject spurious signals produced by the mixer.

[^2]

Figure 5.2-1. Uplink Satelite Receiver Configuration Dual Trunk/ST Beam (Traffic Models A and B)

5.2.2 UPLINK SA IELLITE RECEIVER CONFIGURATION SINGLE TRUNK/ST BEAM (TRAFFIC MODELS A AND B)

The "single trunk" (single trurik band/single ST band) receiver configuration is identified in Figure 5.2-2. The diagram is applicable to Traffic Models A and B. The presence of one of eight possible combinations of trunk band and ST band in a "single trunk" beam" necessitates two single trunk IF receiver forms. When trunk band A is a beam component the structure of the first form is:

- A BPF used to reject spurious signal from the RF/IF downconverter.
- A single diplexing operation with the associated BPF's (are centered for one of three prossible ST bands and one centered for trunk band (A) being shaped in bandwidth and band edge rolloff to yield good signal separation in the diplexer arms.

Since the IF frequency position of trunk band A is taken, in this report, as the common IF band into the trunk IF switch no further operations are required in the trunk path to the IF's switch. In addition, no further operations are required in the ST path to the ST router because all addition frequency translation are accomplished within the router itself.

[^3]

* trunk bands b and c require translation to proper if frequency.

Figure 5.2-2. Uplink Satellite Receiver Configuration Single Trunk/ST Beam (Traffic Models A and B)

When trunk band B or C is a beam component the IF receiver form for the "single trunk" case is:

- Identical first BPF used in the first form
- A single diplexing operation with the two BPF's (one centered for one of one three ST bands and one centered for trunk band B or C) being shaped in bandwidth and band edge rolloff to yield good signal separation in the diplexer arms.

To achieve the common IF band required for at the trunk IF switch frequency translations taking trunk band B to trunk band A or trunk band C to trunk band A are implemented. The mixer with appropriate $L O$ is shown in the trunk arm of the diplexer. The filter following mixing passes trunk band A and rejects spurious signals produced by the mixer. Again no further operations are required in the ST arm of the diplexer.

5.2.3 UPLINK SATELLITE RECEIVER CONFIGURATION TYPICAL ST BEAM (TRAFFIC MODELS A AND B)

Figure 5.2-3 identifies the "ST only" receiver configuration. The configuration is applicable to Traffic Models A and B. The IF component at the LNR's output identified is a single BPF. This filter is not used to tightly confine the channel bandwidth around the ' ' T band present in the beam. The filter is used to reject spurious signals produced by the RF/IF downconverter. Further bandwidth restriction is accomplished in the ST router.

BEAM j

LOW NOISE RECEIVER

Figure 5.2-3. Uplink Satellite Receiver Configuration Typical ST Beam (Traffic Models A and B)

5.2.4 DOWNLINK SATELLITE TRANSMITTER CONFIGURATION TYPICAL DUAL TRUNK/ST BEAM (TRAFFIC MODE! S A AND B)*

All data output, in the form of data bands, from the trunk IF switch are essentially handled in the same manner. As can be seen from the figures defining downlink transmitter configurations a trunk data bano is:

- Initially amplified to an appropriate signal level into the mixer,
- IF/RF upconverted to produce bands center at trunk band A, B, or C, with one of three LO $\operatorname{s}\left[\operatorname{LO}\left(A_{T}\right), L O\left(B_{T}\right)\right.$, $!-O\left(C_{T}\right)$) since all data oulput from the IF switch are at a common center frequency,
- Filtered with a elatively wide BPF to reject any spurious signals produced by the mixer while minimizing insertion loses at apprcxirnately 20 GHz center frequency.
- Amplified with a TWT operating in a saturated mode supporting 550 Mbps of data through the channel,
- Filtered to remove spurious signals generated by the TWT and to eliminate band overlay when channels are combined $\approx s$ in the dual and single trunk beam cases.
-ST ba.ld 3 and trunk band C are not permitted simultaneously, all other combinations of A trun s band and ST band are permitted

ORIGINA: RAC:
OF POOR QUALITY
All data output from the ST router in the form of ST bands is essentially handled in the saine manner. As can be seen from Figure 5.2-4 the essential differences between the handling in trunk ind ST channels are

- The initial amplification is part of an AGC function to ensure an adequa c power density at the :utput of the linear mode TWT minimizing of overall satellite power requirements.
- The TWT is operated in a linear mode.
- A directional coupler is used for a feedback path into the AGC assembly which runs off an NCS level coniol used appropriately set the threshold detector level based on the traffic load anticipated for beam k,
- One LO value is required for uniconvertion since the data bands output from the ST router are already centered at the IF for ST band 1 or 2 or 3.
 considerations with the exception of Traffic Model B's New York beam which is discussed on the following pages. RF trunk bands A and C are proituced through upconversion for all dual trunk beams. white ST band 1 or 2 can appear in a dual beam depending on router zoning considerations. Diplexers are used to; sum trunk trinds A and C which have been well separated through final bandwidths restriction in the final BPFing after TWT arriclification, and then sum the full trunk bandwidth with the ST band.

> - TYYICAL IN THAT THE CONFIGLIRATION SHOWN REPRESENIS A!I DUAL TRUNK/SINGLE ST BEAMS EXCEPT THE TRAFFIC MODEL B NEW YORK BEAM.

Figure 52.4 Downink Satelite Trarsmitter Configuration Typical Dual Trunk ST Beam (Traffic Models A and B).

5.2.5 DOWNLINK SATELLITE TRANSMITTER CONFIGURATION UNIQUE DUAL TRUNK/ST BEAM (TRAFFIC MODEL B - NEW YORK BEAM)

The dual trunk beam associated with the Traffic Model B's New York beam is shown in Figure 5.2-5. Here the trunk crannels are operated upon in the same manner as defined for the other dual trunk beams. The ST band. however, requires two TWT's to output an adequate power density for the peak traffic load defined. To handle this case with minimum E_{B} / N_{0} loses due to signal splitting and recombining, contiguous diplexers are used to split the single ST band into two half, (i.e.. slightly overlapping bands). After amplification in two arms of the diplexer with TWT's acting in a linear mode another contiguous diplexer is used to recombine the two band halves. Filters in the final diplex suinming operation have a restricted bandwidth capable of handling further summing with the combined trunk bands.

The directional coupler used for an AGC feedback path as shown is placed at the output port of the ST band summer.

Figure 5.2-5. Downlink Satellite Transmitter Contiguration Unique Dual Trunk/ST Beam (Traffic Model B-New York Bearr;

5.2.6 DLINNLINK SATELLITE TRANSMITTER CONFIGURATION TYPICAL SINGLE TRUNK/ST BEAM (TRAFFIC MODELS A AND B)"

The single trunk beams transmitter configuration shown in Figure 5.2-6 is appropriate for both Traffic Model A and Traffic Model B cases with no exceptions. Eight possible combinations between trunk band and ST band can occur*. This necessitates that one of three trunk LO's be used to produce trunk band A, B, or C depending on specific beams assigiments. The trunk band output from the trunk IF switch and ST band output from the ST router are acted upon in the same manner discussed at the beginning of this subsection. The summing betiveen trunk and ST channels is accomplished with a diplexer as shown and the AGC circuitry is the same as described for the dual trunk case.

Figure 5.2-6. Downlink Satellite Transmitter Contiguration Typical Single Trunk/ST Beam (Traffic Models A and B)

52.7 DOWNLINK SATELLITE TRANSMITTER CONFIGURATION TYPICAL ST BEAM (TRAFFIC MODELS A AND B)

The ST band only transmitter contiguration is shown in Figure 5.2-7. The only difference between the ST channel in this figure compared to those in the dual and single trunk cases is the bandwidth of the final BPF. The exclusion of summing between ST and trunk bands negates the need for a narrow tandwidth in a given charnel the wider bandwidth minimizes any insertion loss at 20 GHz

[^4]

Figure 5.2-7. Downlink Satellite Transmitter Configuration Typical ST Beam (Traffic Models A and B)
For relatively large downlink ST traffic beams, drive levels to the TWT were not sufficiert to produce the required output power levels required to support the downlink E8/NO. For such cases (19 in Traffic Model A, and 10 in Traffic Model B), a GaAs FET driver will be placed between the mixer and TWT to increase the drive level out of the mixer.

5.2.8 TRAFFIC MODEL A TRANSPONDER RLOCK DIAGRAM

The satellite transponder block diagram associated with Traffic Model A is depicted in Figure 5.2-8. The diagram identifies the receiver and transmitter configurations necessary to handle the decomposition and structuring of dual trunk/single ST (dual trunk), single trunk/single ST and ST only beams.

The dual trunk receiver configuration decomposes each of three dual trunk beams and yields six trunk channels for entrance into the trunk IF switch at a common IF frequency, and three ST chansiels for entrance into the ST router. Each chiannel supports a band of data (i.e., band A, B, or C for trunk channels with each band supporting 0.55 Gbps of data and band 1, 2, or 3 for the ST channels with each band supporting up to 0.40 Gbps of data).
The single trunk receiver configuration takes on two forms, as shown, to support the eight possible combinations of trunk bands and ST comprising the beam. The decomposition of fifteen single trunk beams yields fifteen trunk channels and 15 ST channels for entrance into the trunk IF switch and ST router, respectively. The two configuration forms are required to translate all trunk channels to the proper IF for entrance into the trunk IF switch.

The ST only receiver configuration of an LNR and BPF passing ST band 1 or 2 or 3 as is appropriate to beam make up is defined for 22 beams. There are then, no decomposing simple 22 ST channels constructed for passage to the ST router. The ST router then for Traffic Model A supports 40 input channels, while the trunk IF switch supports 21 channels.

ORIGINAL PEAE: F
OF FOOR QuALITY

Figure 5.2-8. Traffic Model A Transponder Block Diagram

The satellite system outputs the same number of dual trunk (3), single trunk (15) and ST only (22) beams as was input to it. On the transmitter side of the trunk switch and ST router all 21 trunk channels are upconverted from IF to RF and amplified for transmission by a TWT operating in a saturated mode, while all forty ST channels after upconversion from IF to RF are amplified by a linear mode TWT. Further, the output power density from the ST channels are regulated with the AGC circiitity as shown.

5.2.9 UPLINK SATELLITE RECEIVER COMPONENT COUNT FOR TRAFFIC MODEL A

The component numbers were derived from:

- The uplink satellite receiver configuration. Table 5.2-1.
- The traffic model A transponder block diagram, Figure 5.2-8.
- Assumptions made concerning the use of trunk bands A, B and C in specific beams.
- The ST zone designations in paragraph 4.4 identifying the use of ST bands 1,1 and 2 for specific beams.

Table 5.2-1 lists the uplink satellite receiver component count for Traffic Model A.
Table 5.2-1. Uplink Satellite Receiver Component Count for Traffic Model A

Uplink Satellite Receiver Component Count									
	Dual	runk	Single	unk			Com	$\begin{aligned} & \text { link } \\ & \text { Coun } \end{aligned}$	
Items	Per Beam	Total	Per Beam	Total	Per Beam	Total		ST	Trunk
RF BPFS'	2	6	2	30	2	44	RF BFS	80	0
IF BPFS'	6	18	3 or 4 .	55	1	22	IF BPFS'	58	37
RF/IF Mixers	1	3	1	15	1	22	RF/IF Mixers	40	0
IFIF M:xers	1	3	0 or 1^{1}	10	0	0	IF/IF Mixers	0	13
LNA's	1	3	1	15	1	22	LNA'S	40	0
Amplifiers	2	6	1	15	0	0	Amplifiers	0	21
Diplexers	2	6	1	15	0	0	Diplexers	0	21
' Common IF inputs to the trunk IF switch are achieved by frequency translation of trunk bands B and C down to trunk band A. Required hardware is noted.									

5.2.10 DOWNLINK SATELLITE TRANSMITTER COMPONENT COUNT FOR A TRAFFIC MODEL A

The component numbers were cierived from:

- The downlink satellite transmitter configuration. Table 5.2-2.
- The traffic model A transponder block diagram. Figure 5.2-8.
- Assumptions made concerning the use of trunk bands A, B, and C in specific beams.
- The ST zone designations in paragraph 4.4 identifying the use of ST bands.

Table 5.2-2 lists the downlink satellite transmitter component count for a Traffic Model A.

Table 5.2-2. Downlink Satellite Receiver Component Count for Traffic Niodel A

Downlink Satellite Receiver Component Count									
	Dual Trunk		Single Trunk		ST Only		Final Downlink Component Count		
Items	Per Beam	Total	Per Beam	Total	Per Beam	Total		ST	Trunk
RF BPS'S	6	18	4	60	2	44	RF BPF'S	80	42
IF/RF Mixers	3	9	2	30	1	22	IF/RF Mixers	40	21
TWT'S	3	9	2	30	1	22	TWT'S	40	21
Amplifiers	3	9	2	30	1	22	Amplifiers	40	21
Diplexers	2	6	1	15	0	0	Diplexers	0	21
Directional	1	3	1	15	0	22	Directional	40	0
Couples							Couples		
GaAs Drivers	1	3	1	7	1	9	GaAs Drivers	19	0

5.2.11 NUMERICAL TABLES TRAFFIC MODEL A COMPONENT COUNT DOWNLIM:K ST CHANNEL AGC

 ASSEMBLYThe component numbers were derived from:

- The downlink satellite transmitter configuration, Table 5.2-2.
- The traffic model A transponder block diagram, Figure 5.2-8.

Table 5.2-3 lists the numerical tables Traffic Model A component count for 'Jownlink ST' ch2.nnel AGC assembly.
Table 5.2-3. Numerical Tables Traffic Model A Componert Count Downlink ST Ciiannel AEC Assembly

Items	ST Chanurio くriiy	
	Per Beam	Total
IF BPS'S	2	80
RF/IF Mixers	1	40
IF/IF Mixers	1	40

Common IF inputs to trunks IF switch are achieved by frequency translating trunk bands B and C down to A . Required hardware is noted.

5.2.12 TRAFFIC MODEL A SUMMARY

Table 5.2-4 is a summary of each of the five SS-FDMA satellite transponder subsystems. The antenna subsystem is the single largest subsystem within the satellite, due primarily to the large reflectors and supporting structure. The antenna estimates are based on data published by Ford Aerospace and General Electric.

The IF trunking switch is the smallest subsystem in terms of size, weight, and power. The estimate is taken from existing published industry data.

The transmitter subsystem is the heaviest and the laraest power consumer of all the subsystems. The weight and the power are a result of the many TWT's and the high voltage power supplies needed to drive the TWT's. This high power dissipation wili necessitate extensive external cooling to keep the operating temperature within reasonable limits. Information obtained verbally from Watkins-Johnson indicates it may be possible to reduce the transmitter section weight to 1500 lbs. This is primarily due to power supply improvements.

Table 5.2-4. Transponder Subsystem Size-Weight Power-Traffic Model A

Assembly	Weight (lb)	Power (Watt)	Size (ft$)$
Anterna w/ Reflectors	250	-	300.0
Receiver Section	84	99	1.2
If Switch (Trunking)	25	8	0.4
ST Router	353	195	9.2
Transmitter Section	1944	4902	24.7
Total	2656	5204	335.5

5.2.13 TRANSMITTER ASSEMBLY TRAFFIC MODEL A

Table 5.2-5 is a detailed breakdown of the transmitter section of the SS-FDMA satellite for Traffic Model A. The quantities required were derived from the transponder block diagrams. The TWT estimate are based on the Hughes 918 and the Watkins-Johnson 3712 TWT's. The high voltage power supply estimate was derived from existing power supplies presently available and a power supply efficiency of 82% was used. The amplifier and local oscillator estimates were obtained from existing published industry data. The remainder of the estimates are from actual hardware presently available. The contingency is included to account for cables, wiring, and mounting hardware, and to account for any uncertainties in the estimates.

Table 5.2-5. Transmitting Assembly-Traffic Model A

	$\left\lvert\, \begin{aligned} & \text { Unit } \\ & \text { Size } \\ & \text { (in) } \end{aligned}\right.$	Unit Weight (Ib)	Unit power (W)	Qty. Req'd.		Total Size (in) ${ }^{3}$		Total Weight (b)		Total Power (W)	
				ST	Trunk	ST	Trunk	ST	Trunk	ST	Trunk
RF Filter	0.4	0.04	-	80	42	32	16.8	3.2	1.7	-	-
IF to RF Mixer	0.5	0.05	-	40	21	20	10.5	2.0	1.1	-	-
TWT*				40	21	5760	3024	240	126	1633	1862
Power Supply*				40	21	16000	8400	880	462	365	425
LO	9.8	0.4	1.2	40	21	392	205.8	16.0	8.4	48	25.2
Amplifier	1.2	0.1	0.5	40	21	48	25.2	4.0	2.1	20	10.5
Diplexer	1.0	0.1	-	0	21	0	21.0	0	2.1	-	-
Directional	1.0	0.1	-	40	0	40	0	4.0	0	-	-
Coupler											
AGC Assembly	3.5	0.3	-	40	0	140	0	12.0	0	-	-
GaAs FET Driver	1.7	0.2	3.6	19	0	32.3	0	3.8	0	68.4	0
Subtotals						22464	11703	1165	603	2134.4	2322.7
Contingency						5616	2925	117	60	213	232
Total						28080	14628	1281	663	2347.4	2554.7
Overall Total						42708		1944		4902	

- Differences in size, weight, and power between the different TWT's and the different power supplies make unit values meaningless.

5.2.14 RECEIVER ASSEMBLY TRAFFIC NIODEL A

Table 5.2-6 is a detailed breakdown of the receiver assembly of the SS-FDMA satellite for Traffic Model A. The quantities required were derived directly from the block diagrams of the satellite transponder preceding this section. The low noise amplifier/power converter and the local oscillator estimates were derived from existing published industry data. The remainder of tie estimates were derived from actual hardware presently available. The power converters were assumed to have a 72% efficiency which is typical for equipment of this type. The contingency is included to account for cables and wiring, mounting hardware, and to account for uncertainities in all estimates.

Table 5.2-6. Receiving Assembly—Traffic Model A

					aty. er, d.	Total	$z e(i n)^{3}$	Total	$\begin{aligned} & \text { Weight } \\ & \text { b) } \end{aligned}$		$\begin{aligned} & \text { Power } \\ & \text { V) } \end{aligned}$
	$\left\lvert\, \begin{aligned} & \text { Unit } \\ & \text { Size } \\ & (\text { (in) } \end{aligned}\right.$	Unit Weight (b)	Unit Power (W)	ST	Trunk	ST	Trunk	ST	Trunk	ST	Trunk
RF Filter	0.4	0.04	-	80	0	32	0	3.2	0	-	-
IF Filter	2.8	0.14	-	58	37	162	104	8.0	5.3	-	-
RF to IF Mixer	0.5	0.04	-	40	0	20	0	1.6	0	-	-
IF to IF Mixer	1.2	0.07	-	0	13	0	15.6	0	0.91	-	-
First LO	9.8	0.4	1.2	40	0	392	0	16	0	48	0
Second LO	9.0	0.38	0.25	0	13	0	117	0	4.9	0	3.25
LNA	3.4	0.2	0.1	40	0	136	0	8.0	0	4.0	0
Amplifier	1.2	0.1	0.5	0	21	0	25.2	0	2.1	0	10.5
Diplexer	1.0	0.1	-	0	21	0	21	0	2.1	-	--
Power Converter	15.0	0.6	0.6	40	0	600	0	24	0	24	0
Subtotals						1342	283	60.8	15.3	76	13.75
Contingency						335	71	7.1	1.5	7.6	1.3
Total						1677	354	66.9	16.8	83.6	15.05
Overall Total						2031		83.7		98.7	

*Differences in size, weight, and power betwsen the different TWT's and the different power supplies make unit values meaningless.

5.2.15 SATELLITE ST ROUTER ASSEMBLIES TRAFFIC MODEL A

Table 5.2-7 is a detailed breakdown of the major subassemblies within the router. Estimates for the size, weight, and power of each module were derived from similar existing hardware. The modules are machined from 6061 aluminum to minimize the weight of the router. The modules are then arranged to form several individual module stack assemblies. The first assembly, of which there are five, consists of eight IF assembly modules and five 8×8 input switch/decoder modules. The eight IF assembly modules are mounted vertically in a breadslice fashion and mounted tc these are the five 8×8 input switch/decoder modules. Shear panels are attached to the top and sides to provide additional strength and rigidity and to improve the heat transfer characteristics.

The next assembly, of which there are 25 , consists of eight amplifier/eight-way divider modules and eight SAW filter/eight-way combiner modules. The SAW filter/eight-way combiner module is the largest and heaviest module within the router and these 25 assemblies account for over one-half of the total size and weight of the router. The size and weight of each assembly coulde be reduced approximately 25% if four SAW filters were mounted onto a single substrate.

The next assembly, of which there are five, consists of eight five-way combiners and one 8×8 output switch/ decoder. The eight five-way combiner modules are stacked horizontally and mounted to these is the 8×8 output switch. This output switch module is identical to the input switch module.

The last assembly, of which there are five, consists of eight downlink translator/amplifier modules stacked horizontally.

The previously described assemblies comprise the major portion of the ST router. Two additional units, the satellite control demodulator and the switch control are of similar design and consist of six modules each.

Table 5.2-7 Satellite ST Router Assemblies-Traffic Model A

Assembly	Technology	$\begin{gathered} \text { Unit Size } \\ L \times W \times H \text { (in) } \end{gathered}$	Unit WT (b)	$\begin{gathered} \text { Unit } \\ \text { PW }(w t) \end{gathered}$	$\begin{gathered} \text { Qty } \\ \text { Req'd } \end{gathered}$	Total Weight (b)	Total Power (W)
IF Input Assembly	Stripline	$\begin{gathered} 4.0 \times 5.0 \times \\ 0.5 \end{gathered}$	0.67	0.9	40	26.8	36
8×8 input Switch/Decoder	Bipolar-mosaic	$\begin{gathered} 4.0 \times 2.0 \vee \\ 0.8 \end{gathered}$	0.23	0.85	25	5.75	21.25
8 Way Divider/Amplifier	Bipolar	$\begin{gathered} 4.0 \times 2.0 \times \\ 0.5 \end{gathered}$	0.155	0.035	200	31.0	7.0
SAW Filter/8 Way Con iner	SAW/discrete	$\begin{gathered} 8.0 \times 5.25 \times \\ 0.5 \end{gathered}$	0.763	0.035	200	143.2	7.0
5 Way Combiner	Stripline	$\begin{gathered} 3.0 \times 2.0 \times \\ 0.5 \end{gathered}$	0.10	Passive	40	4.0	-
8×8 Output Switch/Decoder	Bipolar-Mosaic	$\begin{gathered} 4.0 \times 2.0 \times \\ 0.8 \end{gathered}$	0.23	0.85	5	1.5	4.25
Downlink Translator	Bipolar	$\begin{gathered} 4.0 \times 3.5 \times \\ 0.5 \end{gathered}$	0.54	0.97	40	21.6	38.8
Synthesizers LO Distribution	Bipolar	$\begin{gathered} 5.0 \times 2.5 \times \\ 0.5 \end{gathered}$	0.198	0.27	14	5.6	22.4
Satellite Control Demodulator	Bipolar	$\begin{gathered} 5.5 \times 6.0 \times \\ 2.5 \end{gathered}$	2.89	2.0	1	2.89	2.0

Table 5.2-7 Satellite ST Router Assemblies-Traffic Model A (Cont)

Assembly	Technology	Unit Size $L \times W \times H \text { (in) }$	Unit WT (l)	$\left\|\begin{array}{c} \text { Unit } \\ \text { PW }(w t) \end{array}\right\|$	$\begin{gathered} \text { Qty } \\ \text { Req'd } \end{gathered}$	Total Weight (b)	Total Power (W)
Switch Control	Bipolar	$5.5 \times 6.0 \times$	2.89	2.0	1	2.89	2.0
Power Converter	Bipolar	$10.0 \times 6.0 \times$	6.5	54.7	1	6.5	54.7
Cables	Ccraxial				1250	10.5	-
Structure	Aluminum					81.8	-
Total		$59 \times 54 \times 5.0$				353.1	195.4

5.2.16 TRAFFIC MODEL B TRANSPONDER BLOCK DIAGRAM

The satellite transponder block diagram associated with traffic Model B is depicted in Figure 5.2-9. The diagram identifies the same receiver configurations for dual trunk, single trunk and ST only beam decomposition as shown in the Traffic Model A diagram, paragraph 8.2. The diagram indicates that: each of three dual trunk beams is decomposed into two trunk channels and one ST channel; each of 15 single trunk beams is decomposed into one trunk channel and one ST channel; 53 three ST only beams are received downconverted and BPF to produce 53 channels into the ST Router. The total number of channels supported by the trunk IF switch is 21 while the number of channels supported by the ST Router is 71 .

The transmitter configurations that structure the dual trunk, single trunk and ST beams for down link transmission are the same as for Traffic Model A except in the case of the configuration for the New York dual trunk beam.

To maintain the appropriate power density for the New York ST traffic at peak load periods two linear mode TWT's must be used. Contiguous diplexers are used to split the signal and recombine it as shown. Three dual trunk, 15 single trunk, and 71 ST only beams are structured and transmitted.

5.2.17 NUMERICAL TABLES TRAFFIC MODEL B COMPONENT COUNT UPLINK SATELLITE RECEIVER

The component numbers were derived from:

- The uplink satellite receiver configuration, Table 5.2-8.
- The traffic model B transponder block diagram, Figure 5.2-9.
- Assumptions made concerning the use of trunk bands A, B and C in specific beams.
- The ST zone designations in paragraph 4.4 identifying the use of ST bands 1,2 and 3 for specific beams.

ORIGINAL FRSE $:$: OF POOR QUNLITY

Figure 52-9. Tratiic Model B Transponder Block Diagram

Table 5.2-8. Numerical Tables Traffic Model B Component Count Uplink Satellite Receiver

Items	Dual Trunk		Single Trunk		ST Only		Final Uplink Component Count		
	Per Beam	Total	Per Beam	Total	Per Beam	Total		ST	Trunk
RF BPF's	2	6	2	30	2	106	RF BPS's	142	0
IF BPF's	6	18	3 or 4 ${ }^{(1)}$	55	1	53	IF BPF's	99	37
RF/IF Mixers	1	3	1	15	1	53	RF/IF Mixers	71	0
IF/IF Mixers	1	3	Cor $1^{(1)}$	15	0	0	IF/IF Mixers	0	13
LNAS'	1	3	1	10	0	53	LNAS'	71	0
Amplifiers	2	6	1	15	0	0	Amplifiers	0	21
Diplexers	2	6	1	15	0	0	Diplexers	0	21
${ }^{\text {i1 }}$ Common IF inputs to the trunk IF switch are achieved by frequency translation of trunk bands B and C down to trunk band A. Required hardware is noted.									

5.2.18 NUMERICAL TABLES TRAFFIC MODEL B COMPONENT COUNT DOWNLINK SATELLITE. TRANSMITTER

The component numbers were derived from:

- The downlink satellite transmitter configuration, Table 5.2-9.
- The traffic model B transponder block diagram, Figure 5.2-9
- Assumptions made concerning the use of trunk bands A, Q and C in specific beams.
- The ST zone designations iri paragraph 4.4 identifying the use of ST bands 1,2 and 3 for specific beams

Table 5.2-9. Numerical Tables Traffic Model B Component Count Downlink Satelite Transmitter

${ }^{12}$ Two TWTS' are required for the New York downlink. The increased hardware for this dual trunk case is noted.

5.2.19 NUMERICAL TABLES TRAFFIC MODEL B COMPONENT COUNT AGC ASSEMBLY

The component numbers were derived from:

- The downlink transmitter configuration diagram, Table 5.2-9.
- The traffic inodel B ${ }^{\text {t }}$ ansponder block diagram, Figure 5.2-9.

Table 5.2-10 is a numerical table for Traffic Model B Component count on AGC assembly.
Table 5.2-10. Numerical Table Traffic Model B Component Count AGC Assembly

Items		ST Channels Only	
		Total	
IF BPS'S	2	142	
RF/IF Mixers	1	71	
IF/IF Mixers	1	71	

5.2.20 TRAFFIC MODEL B SUMMARY

Table 5.2-11 is a summary of each of the five SS-FDMA satellite transponder subsystems. The antenna subsystem is the single largest subsystem within the satellite, due primarily to the large reflectcrs and supporting structure. The antenna estimates are based on data published by Ford Aerospace and General Electric.

The IF trunking switch is the smallest subsystem in terms of size, weight, and power. The estimate is taken from existing published industry data.

The transmitter subsystem is the heaviest and the largest power consumer of all the subsysterns. The weight and the povier are a result of the many TWT's and the high voltage power supplies needed to drive the TWT's. This high power dissipation will necessitate extensive external cooling to keep the operating temperature within reasonable limits. Information obtained verbally from Watkins-Johnson indicates it may be possible to reduce the weight $\mathrm{c}_{\text {f }}$ the transmitter section to 2000 lbs. This is primarily due to power supply improvements.

Table 5.2-11. Transponder Subsystem Size-Weight PowerTraffic Model B

Assembly	Weight (lb)	Power (Watt)	Size (ft$)$
Antenna w/ Reflectors	350	-	301
Receiver Section	133	164	2
IF Switch (Trunking)	25	8.0	0.4
ST Router	498	244	12.6
Transmitter Section	2966	5528	37.7
Total	3972	5944	353.7

5.2.21 TRANSMITTING ASSEMBLY TRAFFIC MODEL B

Table 5.2-12 is a detailed breakdown of the transmittci, section of the SS-FDMA satelite for Traffic Model B. The components listed here are identical to those listed for Traffic Model A. The only difference between the two transmitter subsystems is in the number of required components, Traffic Model B being the larger of the two.

Table 5.2-12. Transmitting Assembly-Traffic Model B

	Unit	Unit	Unit	Qty.	Req'd.	Total Siz	ize $\left(\right.$ in $\left.^{3}\right)$	Total (Ib)	$\begin{aligned} & \text { Weight } \\ & \text { b) } \end{aligned}$	Total (W)	Power N)
	(in ${ }^{3}$)	(lb)	(W)	ST	Trunk	ST	Trunk	ST	Trunk	ST	Trunk
RF Filter	0.4	0.04	-	145	42	58	16.8	5.8	1.7	-	-
IF to RF Mixer	0.5	0.05	-	71	21	35.5	10.5	3.6	1.0	-	-
LO	9.8	0.4	1.2	71	21	696	206	28.4	8.4	85.2	25.2
TWT*				72	21	10368	3024	432	126	2070	1864
Power Supply*				72	21	28800	8400	1584	462	473	425
Amplifier	1.2	0.1	0.5	71	21	85.2	25.2	7.1	2.1	35.5	10.5
Diplexer	1.0	0.1	-	2	36	2	36	0.2	3.6	-	-
Directional Coupler	1.0	0.1	-	71	0	71	0	7.1	0	-	-
AGC Assembly	3.5	0.3	-	71	0	248.5	0	21.3	0	-	-
GaAs FET Driver	1.7	0.2	3.6	10	0	17	0	2.0	0	36	0
Subtotals						40381	11719	2092	605	2700	2325
Contingency						10005	2930	209	60	270	233
Total						50	14649	2301	665	2970	1558
Overall Total						65125		2966		5528	

'Differences in size, weight, and power between the different TWT's and the different power supplies make unit values meaningless.

5.2.22 RECEIVER ASSEMBLY TRAFFIC MODEL B

Table 5.2-13 is a detailed breakdown of the receiver section of the SS-FDMA satellite for Traffic Model B. The components listed here are identical to those listed for Traffic Model A. The only difference between the two receiving subsystems is in the number of required components, Traffic Model B being the larger of the two.

Table 5.2-13. Transmitting Assembly-Traffic Model B

	Unit	Unit	Unit	Qty.	Req'd.	Total S	ze (in ${ }^{3}$)	Total (Ib)	$\begin{aligned} & \text { Weight } \\ & \text { b) } \end{aligned}$	Total	Power)
	(in ${ }^{3}$)	(Ib)	(W)	ST	Trunk	ST	Trunk	ST	Trunk	ST	Trunk
RF Filter	0.4	0.04	-	142	0	56.8	0	5.7	0	-	-
IF Filter	2.8	0.14	-	99	27	277.2	75.6	13.9	3.8	-	-
RF to IF Mixer	0.5	0.04	-	71	0	35.5	0	2.8	0	-	-
IF to IF Mixer	1.2	0.07	-	0	13	0	15.6	0	0.91	-	-
First LO	9.8	0.40	1.2	71	0	696	0	28.4	0	85.2	0
Second LO	9.0	0.38	0.25	0	13	0	117	0	4.9	0	3.25
LNA	3.4	0.2	0.1	71	0	241.2	0	14.2	0	7.1	0
Amplifier	1.2	0.1	0.5	0	21	0	25.2	0	2.1	0	10.5
Diplexer	1.0	0.1	-	0	21	0	21	0	2.1	-	-
Power Converter	15	0.6	0.6	71	0	1065	0	42.6	0	42.6	0
Subtotals						2372	254	107.6	13.8	134.9	13.75
Contingency						593	64	10.7	1.4	13.5	1.4
Total						2965	318	118.3	15.2	148.4	15.15
Overall Total						3283		133.5		163.6	

*Differences in size, weight, and power between the different TWT's and the different power supplies make unit values meaningless.

5.2.23 SATELLITE ST ROUTER ASSEMBLIES TRAFFIC MODEL B

Table 5.2-14 is a detailed breakdown of the major subassemblies within the router. Estimates for size, weight, and power of each module were derived from similar hardware. The modules are machined from 6061 aluminum to minimize the weight of the router. The modules are then arranged to form several individual module stack assemblies. The first assembly, of which there are six, consists of eight IF assembly modules and six 8×8 input switch/decoder modules. The eig' IF assembly mo es are mounted vertically in a breadslice fashion and mounted to these are the six $\& \times 8$ input switch/decoder modules. Shear panels are attached to the top and sides to provide additional strength and rigidity and to improve the heat transfer characteristics.

The next assernbly, of which there are 36, consists of eight amplifier/eight-way divider modules and eight SAW filter/eight-way combiner modules. The SAW filter/cight-way combiner modules are stacked norizontaiiy and mourted to these are the anrplifier/eight-way modules. The SAW filter/eight-way combiner module is the largest and heaviest module within the router and these 36 assemblies account for over one-half of the total size and
weight of the router. The size and weight of each assembly could be reduced approximately 25% if four SAW filters were mounted onto a single substrate.

The next assembly, of which there are six, consists of eight six-way combiners and one 8×8 output switch/ decoder. The eight six-way combiner modules are stacked horizontally and mounted to these is the 8×8 output switch. This output switch module is identical to the input switch module. The last assembly, of which there are six, consists of eight downlink translator/amplifier modules stacked horizontally.

The previously described assemblies comprise the major portion of the ST router. Two additional units, the satelite control demodulator and the switch control, are of similar design and consist of six modules each.

Table 5.2-14. Satellite ST Router Assemblies-Traffic Model B

Assembly	Technology	$\begin{aligned} & \text { Unit Size } \\ & \mathbf{L \times W \times H (I N)} \end{aligned}$	Unit WT (LB)	Unit PW (WT)	Qty Req'd	Total Weight	Total Power
IF Input Assembly	Stripline	$4.0 \times 5.0 \times 0.5$	0.67	0.9	48	32.2	43.2
8×8 Input Switch/Decoder	Bipolar-mosaic	$4.0 \times 2.0 \times 0.8$	0.23	0.85	36	8.3	30.6
8 Way Divider/Amplifier	Bipolar	$4.0 \times 2.0 \times 0.5$	0.55	0.35	288	44.6	10.1
SAW Filter/8 Way Combiner	SAW/discrete	$8.0 \times 5.25 \times 0.5$	0.763	0.35	288	219.7	10.1
6 Way Combiner	Stripline	$3.0 \times 2.0 \times 0.5$	0.10	Passive	48	4.8	-
8×8 C.jthit Suitch/Deceder	Jipolar- , osair,	$4.0 \sim 2.0 \times 0.8$	0.23	6.85	6	1.38	5.1
Downlink Translator	Bipolar	$4.0 \times 3.5 \times 0.5$	0.54	0.97	48	25.9	46.6
Synthesizers/LO Distribution	Bipolar	$5.0 \times 2.5 \times 0.5$	0.40	1.87	14	5.6	26.18
Satellite Control Demodulator	Bipolar	$5.5 \times 6.0 \times 2.5$	2.89	2.0	1	2.89	2.0
Switch Control	Bipolar	$5.5 \times 6.0 \times 2.5$	2.89	2.0	1	2.89	2.0
Power Converter	Bipolar	$12.0 \times 6.0 \times 2.0$	8.0	68.4	1	8.0	68.4
Cables	Coaxial				1920 tt	14.1	-
Structure	Aluminum					127.4	-
Total		$65 \times 62.5 \times 5.0$				497.7	244.3

5.2.24 TRANSPONDER SUBSYSTEM SIZE, WEIGHT, AND POWER SENSITIVITIES

The transmitter assembly dominates the weight and power requirements of the transponder subsystem for both Traffic Models A and B. The antenna assembly dominates the size of both the transponder subsystems.

Reliability and availability requirements will also impact the transponder system size and weight as each will require redundancy which will increase the size, weight, and power requirements. All estimates presented do nut include redundancy and are concidered baseline values.

Ground station (G / T) will have a significant effect on the transmitter assembly power requirements which will be reflected in the entire satellite power requirements.

5.3 Proof of Concept Router Definition

The POC router brassboard includss the POC sector brassboard, C-band upconverters, C-band downconverters, and C -band synthesizers. The POC router brassboard is an extension of the POC sector brassboard to the C -band input and output frequency range.

The following subparagraphs identify and describe the POC router brassboard building blocks with a description of the necessary special test equipment (STE) for evaluation of the POC.

5.3.1 POC ROUTER BRASSBOARD FUNCTIONAL REQUIREMENTS

The development of an LSI 8×8 analog switch is essential to the success of an FDMA system. New technologies of SAW filter construction must be addressed. New SAW filter technologies include:

Multiple SAW filters per substrate Unidirectional SAW filter construction

The discrete development of a synthesizer is essential to provide the necessary frequency translations to implement the frequency plan.
The POC router brassboard includes the POC sector brassboard and will provide demonstiation of the frequency plan at C -band.
Testing and evaluation of the POC brassboard will provide accurate impairments to be used in BER calculations.

5.3.2 POC ROUTER BRASSBOARD PERFORMANCE REQUIREMENTS

The POC sector brassboard is intended to duplicate (within economic reason) the electrical performance of an FDMA router as defined in Section 5, Task I, Communication System Design Final Report, June 25, 1982.
The sector capacity of 140 MHz represents a portion (approximately 50 percent) of the larger traffic beams existing in Traffic Models A and B. The 140 MHz capacity will be achieved with one-half of a normal sector's filter complement (32 vs 64).
Since the filter complement is reduced, switching arrangements will be limited at the sector level. The electrical performance of the POC will be modeled as nearly to the end-item flight router as practical. The number of infuts, outputs, and associated frequency ranges will be compatible with the switch capabilities.

5.3.3 POC ROUTER BLOCK DIAGRAM

The POC router will be subdivided into five assemblies (see Figure 5.3-1). Each assembly will be divided into modules. Present requirements for modules are:

Assemb: Name	Modules	
		3
Downconverter		18
Sector Asscmiviy		1
Beam Amplifier		2
Upconverter		2
Synthesizer	Total	26

- POINTS DEMOTED BY ASTERISK MUST BE INTERFACED WITH STE FOR TESTIMG.

Figure 5.3-1. POC Router Block Diagram
The attenuators located at assembly interfaces are required to simulate the actual gain distribution. The asterisks indicate interconnection points where special test equipments are placed to facilitate monitoring and testing.

5.3.4 POC ROUTER GAIN UISTRIBUTION

The gain distribution, Figure 5.3-2, is based on an input signal power density ($-150 \mathrm{dBm} / \mathrm{Hz}$) that is compatible with the link budget calcultions reported in the Task I Final Report. The LNA and associated circuitry preceding the router input are assumed to provide a net gain of 27.2 dB with a noise figure of 6 dB . As a result, the router's input signal power density is $-122.8 \mathrm{dBm} / \mathrm{Hz}$ and the router's input noise density is -140.8 dBm : Hz .

The router exhibits a net gain of 7 dB and a noise figure of 20.6 dB .
Intermodulation performance is dominated by the sector brassboard capacity. The input frequency translation circuitry (the first two mixers) will not contribute to the intermodulation circuitry. The output frequency translation circuitry (last two mixers) must exhibit a high thisis rder intercept point to prevent BER degradation due to intermodulation products

5.3.5 ROUTER SWITCH AND SAW FILTER TECHNOLOGY

The switch and SAW filter technology for the router is identical to the technology requirements of the sector.

Figure 5.3-2. POC Router Gain Distribution

5.3.6 FREQUENCY SYNTHESIZERS

The frequency plan to be incorporated in the router design conserves bandwidth on the downlink requiring the outputs of the switching and filtering elements be translaters in frequency by a precisely predetermined offset to a different frequency band. Similarly, the uplink IF signals need transiation to the frequencies at which the required switching and filtering can be accomplished. The translating frequencies are to be coherently related to the uplink network control carrier frequency.

The wide bandwidth of the composite signal spectrum and the relatively low frequency of realizable filters and switches requirs m. mitiple translating to avoid high intermodulation product levels. Both the receiver downconverters and the transmitter upconverters have been modeled as double conversion designs.

5.3.7 ELECTRICAL CONFIGURATION RATIONALE

In Table 5.3-1 the router will inherently include the new technologies associated with the sector assembly. in andition, synthesizer technology will be addressed

The frequency plan will be extended to include the C -band range
Both sector and router impairments on system BER will be demonstrated.

Table 5.3-1. Electrical Configuration Rationale

Flight Router		POC Router	
Configuration	Rationale	Configuration	Rationale
Downconverter Assembly/Beam (40 required)	Required to provide frequency translation from C-band input to sector's UHF input.	One downconverter assembly	POC router accepts only one beam input.
Sector Assembly (25 required)	Provide switchable frequency paths.	One partial sector assembly	POC router will demonstrate LSI switch and SAW technology.
Upconverter Assembly (40 required)	Provide frequency translation from UHF to C-band output.	One upconverter assembly	POC router provides only one beam output.
Synthesizer Assembly (4 required)	Provide fixed freauencies for uplink and downlink translations.	One synthesizer assembly	POC router accepts and outputs only one beam.

5.3.8 BREADBOARD ACTIVITY

The switch design (essentially a redesign) will have a limited breadboarding activity to determine design/analysis integrity on a functional basis.

The SAW filter will be designed and breadboarded by the Integrated Circuits Facility (actually, the breadboard activity is synonomous with a prototype prior to production quantity buildj.
The synthesizer will be breadboarded in its entirety (100%) for design . - ufidence testing.
The UHF amplifier will be breadboarded as a single stage to determine wideband-frequency response.
The frequency converters require precise layouts to determine the effects of parasitic capacitance on gain versus frequency response.

5.3.9 POC ROUTER THREE DIMENSIONAL MECHANICAL DESIGN

The mechanical design is of prime importance in the overall development of the SS-FDMA ST router. The overriding concern is the staggering number of RF coaxial cables needed-nearly 2600 for Traffic Model A design and over 3600 for the Traffic Model B design. Considering there are four connectors associated with each cable (two on the cable and two that attach to the cable), Traffic Model B design would require more than 14,000 threaded cornectors for the RF interconnect system. The result is a system which requires considerable space for cable bends and routing and for connector protrusions. Assembly and rework would be a very difficult and time consurining process.

The most promising method for reducing the number of interconnecting cables is the development of the "three dimensional' packaging concept. The three-dimensional concept is one where modules are physically attached to each other to form one integral unit as opposed to the more traditional method of individually mounting each module to a common baseplate. If the three-dimensional concept were implemented for each sector of the router, where a sector consists of an 8×8 input switch, eight 1:8 power dividers, sixty-four SAW filters, eight 8:1 power combiners, and an 8×8 output switch, over 2600 cables would be eliminated. This would also result in a substantial reduction in the overall size of the router as space required for the cable bends, the cable itself, and connectors is reduced.

5.3.10 ADVANTAGES OF THREE DIMENSIONAL DESIGN

The greatest advantage of the development of the three-dimensional packaging concept is in the reduction of the required number of coaxial cables. This packaging scheme will eliminate over 2000 coaxial cables and 4000 threaded RF connectors from the Traffic Model A router design and nearly 200 coaxial cables and 5800 threaded RF connectors from the Traffic Model B router design. Instead, an RF interconnect will be developed which will allow each module to plug directly into another module. This will result in a design which is much simpler to assemble or disassemble. Also, because the connector and cable are eliminated, a more compact sector design is achieved which, when multiplied times the number of sectors in the router design, results in a substantial reduction in the overall size.

5.3.11 THREE DIMENSIONAL POC MECHANICAL MODEI

The most challenging part of the three-dimensional package design will be to obtain proper alignment of the RF interconnect pins from one module into the others during assembly. This is critical to both the electrical performance and the structural integrity of the RF interconnect.

The three-dimensional concept requires very tight tolerances be held during fabrication of all modules of the sector. One way to lessen the tolerance requirement is to use a floating interconnect design which will allow the interconnect both lateral and axial displacement.
Another impo:tant consideration in the sector design is to keep the resonant frequency of the overall unit high to keep relative motions within the sector very low duririg dynamic testing.
Finite element computer analysis will be done during the design phase to ensure these requirements are met. Using finite element analysis allows a sector model to be built on the computer and study the effects of changing different parameters, i.e., wall thickness, floor thickness, rios, etc.

Once a satisfactory design has been completed, a dynamic test model (DTM) of one sector will be built. A dynamic test model is a mockup which is an exact mechanical replica in terms of form, size, and weight of the end product but is electrically nonfunctioning.

The DTM will be used to determine the practical problems encountered during fabrication and assembly of the sector. Once assembled, the DTM will be subjected to typical qualification level environmental tests to verify the structural integrity of the unit. In addition, some of the RF interconnections will be "wired" so that input to output insertion loss and VSWR can be measured before and after the environmental tests to verify the RF interfacing integrity.

5.3.12 POC ROUTER BRASSBOARD MECHANICAL DEFINITION

The router POC model is comprised of five complete assemblies which contain 23 individual modules. The modules will be laid flat to provide easy access for adjustments, testing, or rework. Each module will be fabricated from aluminum and module covers will be provided to eliminate RF leakage. SMA connectors will be used for all RF connections and multipin connectors will be used for the DC connections. Additional connectors will be provided for test points. Flexible coaxial cables will be used for all RF interconnections between modules. No environmental testing is planned for the POC model.

5.3.13 POC ROUTER LAYOUT

Shown in Figure 5.3-3 is the preliminary layout of the router POC model brassboard. The router is laid out on a single aluminum baseplate. One cable runs from the downconverter module into the 8×8 input switch. Eight cables run from the switch to the $1: 4$ divider/SAW filter raik. Thirty-two cables run from there into the $4: 1$ combiners. Eight cables run from the combiner to the 8×8 output switch. One cable runs from the output switch to the beam amplifier and one from the beam amplifier to the upconverter. Semirigid cables will run from the synthesizer to the downconverter and to the upconverter.

Figure 5.3-3. POC Router Layout

5.3.14 PART OF THE ROUTER POC/STE TOP LEVEL BLOCK DIAGRAM

In Figures 5.3-4 and 5.3-5 the router POC/STE configuration is comprised of sector POC/STE configuration modified to include uplink and downlink noise source control. The modification includes adding several relay output cards (HP 69330) to the HP6940B Multiprogrammer.

In Figure 5 3-5 the remaining portion of the router POC/STE configuration includes equipment necessary to simulate uplink and downlink C-band signals. The basic mode is semiautomated. The HP 9825 Calculator controls the commercial test equipment used as stimulus and measurement devices. A summary of Motorola specia! test equipment is as follows.

- Input network monitor and control uplink simulator
- Output network monitor and control downlink simulator
- Row switch interface
- Column switch interface
- Uplink noise source
- Downlink noise source

All the STE is commanded by the HP 9825 Calculator via a HP 6940B Multicrogrammer. The multiprogrammer provides switch closures to "ontrol:

- Coaxial relays
- Switch arrangement

Software measurement tusts include (but are not limited to):

- Additive phase noise measurements
- Gain measurements
- Signal noise ratio measurements
- Intermodulation distortion measurements

5.3.15 COMMERCIAL TEST EQUIPMENT

As cor figured in Table 5-3.2, four methods of testing the router POC are possible:

Input		Output	
Router (C-band)	Sector (UHF)	Router (C.	Sector (UHF)
X		Band)	
x	x	x	
	x	x	
			x
			x

Figure 5.3-4. Part of the Router POC/STE Top Level Block Diagram

Figure 5.3-5. Part of the Router POC/STE Top Level Block Diagram

5.3.15.1 System Demonstration (BER Testing)

Stimulus at the router's input is provided by an HP 1645 S Data Error Analyzer. STE uplink simulator provides QPSK modulation. The modulated signal is upconverted twice by stable synthesizer signais supplied by an HP 8660A and an HP 9617A. The modulated C-band signal's power level may be varied by the variable attenuators, HP 949H and HP 8495H, operating from bus commands via HF 11713A Switch Driver. Downconversion and demodulation is performed on the downlink side of the router. Bit error analysis is performed by the HP 1645S Data Error Analyzer.

5.3.15.2 Path Performance Testing

Uplink C-band stimulus is generated by the HP 8671A. Path performance measurements are made using the HP 8566A Spectrum Analyzer.

Table 5.3-2. Commercial Test Equipment

Qty.	Equipment	Descriptior
1	HP 9825	Calculator
1	HP 6940B	Multiprogrammer
1	HP 14550C	Interface Kit
1	HP3325A; OPT 1001	Function Generator
1	HP 8660C; OPT 001, 004, 005, 100	Synthesizer
1	HP 86634A	Phase Modulator
1	HP 86602B; OPT 002	RF Section
1	HP 436A; OPT 022	Power Meter
1	HP 8484A	Sensor
1	HP 8568A	Spectrum Analyzer
2	HP 69331A	Digital Output Card
12	HP 69330A	Relay Output Card
2	HP 11713A	Switch Driver
2	HP 8494H; OPT 022	Attenuator
2	HP 8495H; OPT 002	Attenuator
2	HP 8671A	Synthesizer
3	HP 8660A; OPT 001, 004, 005, 100	Syrthesizer
1	HP 1645S	Data Error Analyzer
3	HP 86603; OPT 003	RF Section
1	HP 8566A	Spectrum Analyzer

53.16 MOTOROLA SPECIAL TEST EQUIPMENT IVPUT NETWORK MONITOR AND CONTROL

In Figure 5.3-6 lnw level digital test commands from the calculator (via the multiprogrammer) are interfaced through the digital interface where they are buffered to 28 -Volt relay excitation voltages.

The input switch configuration provides for one of two input signals to be distributed to one of eight possible POC inputs. The remaining seven inputs may be independentiy set to various .oise leveis. Eight noisa sources are provided to accomplish this. The eight outputs are samped through directional couplers. Each sampled output may be monitored to determine POC input level.

5.3.17 MOTOROLA SPECIAL TEST EQUIPMENT OUTPUT NETWORK MONITOR AND CONTROL

In Figure 5.3-7 low level test commands from the calculator (via the multiprogrammer) are interfaced through the digital interface where they are buffered to 28 -Volt relay excitation voltages.

The input switch configuration provides for selecting one of eight possible inputs. The selected inpui may be routed to two possible output paths (aux output or commercial test equipment). As configured, the commercial test equipment may be used to measure the sector's output signals or the sector's input signals.

5.3.18 MOTOROLA SPECIAL TEST EQUIPMENT ROW/COLUMN SWITCH INTERFACE

The switch bus structure is not explicity detailea. The complexity of the STE switch interface may range from simple to moderate. As presently envisioned, 12 data lines will be required for proper switch operation. The switch bus structure will be determined pritrarily by the LSI design of the switch and its complexity.

5.3.19 MOTOROLA SPECIAL TEST E(XUIPMENT NOISE SOURCES

5.3.19:1 Uplink Noise Source

In Figure 5.3-8 the uplink noise source is used to simulate the noise figure of the 30 GHz satellite low noise amplifiet that precedes the router's downconverter assembly. It is capable of generating $-140 \mathrm{dBm} / \mathrm{Hz}$ thermal noise. This value of noise is compatible with the input noise demonstrated in the gain distribution diagram.

5.3.19.2 Downlink Noise Source

The downlink noise source is used to simulate the noise figure of the 20 GHz satellite low noise amplifier. It is sapable of generating - $115 \mathrm{dBm} / \mathrm{Hz}$ thermal noise. A variable attenuator is included to set the noise level. A 3P bandpass filter shapes the frequency response of the wideband amplifiers used to generate the noise.

5.3.20 MOTOROL_A SPECIAL TEST EQUIPMENT UPLINK AND DOWNLINK SIMULATOR

5.3.20.1 STE Uplink Simulator (Refor to Figure 5.3-9)

A commercial QPSK Mod. e.g.. Comtech QTV. is used to develop a QPSK signal at a nominal IF carrier frequency. Dual upconversion translation using calculator controlled commercial test equipment provides the C -band signal. The data is provided by the HP 1645S Error Analvzer. The maximum data rate is limited to 5 MHz .

5.3.20.2 STE r ownlink Simulator (Refer to Figure 5.3-9)

The STE downlink simulator performs a reciprocating function of the STE uplink simulater. The received C-band downink signal is translated twice to a nominal !F frequency where the commercial QPSK demod, e.g., Comtech QRV. is used to recover baseband datis The data is then forwarded to the HP 1645S Error Anaiyzer for bit error rate calculations.

Figure 5.3-6. Motorola STE Input Network Monitor and Control

Figure 5.3-7. Motorola STE Output Netw.ork Mcnitor and Control

ORIGINAL PACE [:
 OF POOR QUALITY

UPLINK C BAND SIGNAL

DOWNLINK UHF SIGNAL

DOWNLINK NOISE SOURCE

Figure 5.3-8. Motorui_ i. E Noise Sources

STE UPLINX SIMLLATOR

STE DOWNI INK SIMULATOR

Figure 5.3-9. Motorola STE Uplink and Downlink Sirnulator

ORIGINAL FAEE IS
 OF POOR QUALITY

5.3.21 TESTING DEFINITION MATRIX SECTOR TESTING

In Table 5.3-3 sector output test measurements are made with the HP8566A Spectrum Analyzer operating under calculator control. The primary advantage of computer control is the execution of complicated and time consuming measurement routines with a minimum involvement of a human operator. The test data is not biased by human error. Accuracy of measurements performed by the 8568A are:

- Spurious response $- \pm 0.6 \mathrm{~dB}$
- Phase noise - $\pm 2.3 \mathrm{~dB}$
- RF power - $\pm 0.4 \mathrm{~dB}$

Table 5.3-3. Test Definition Matrix Sector Testing

53.22 TESTING DEFINITION MAIRIX ROU:ER İESTING

In Table 5.3-4 the seven router output iests are measured with the HP 8566A Spectrum Analyzer operating under calculator control. The eightn test (BER testing) will be a "loop back test" and will be a system demonstation test oniy.

1. Intermodulation
2. Frequency response
3. Ga:n variations
4. Adjace t pat', 'nterference
5. Internal'y generated noise

6．AM－PM conversion
7．Phase noise
The test matrix iricludes a carrier only test where the remaining paths are noise loaded in different combinations（ N ways）to determine interdependence of various paths through the sector．

Table 5．3－4．Testing Definition Matrix Router Testing

			Output Tests								
										$$	
Route，Inp：t	Noise Load	Terminated		品	©	$\stackrel{3}{>}$	产产	$\frac{0}{7}$	$\sum_{<}^{1}$	$\stackrel{\check{c}}{\frac{\Gamma}{2}}$	$\underset{\sim}{\sim}$
FI＾Modulà ted Carrier	0	7		X	X						
OPSK Moriulated Carrier	7	0									X
Carrier Onl／	7－N	N	x			x	x		x	x	
Terminated	8	0	x						x		
Terminated	0	7						x			
$1 \leq N \leq 6$											

5．3．23 MOTOROLA SPECIAL TEST FQUIPMENT MECHANICAL CONFIGURATION

The Motorola special test equipment（STE）will be housed in four drawers，two large and iwo small．The drawers will be mourted in a rack which is located directly under tre router POC model baseplate．The draw－ ers will be mounted side by side so that their location will be very close to the points being monitored within the Router POC model in order to minimize the interconnecting cable lengths from the STE to the muter．All con－ nectors will be located or the drawer rear panels，and cable retractors will be used so the drawers can be pulled out without having to disconnect any cables．All controls will be lecated on the front panels with labels engraved for ease of reference．

SECTION 6

6. NETWORK CONTROL STATION

This section discusses the Network Control Station (NCS) of the ACST SS-FDMA system.

6.1 NCS Functional Requirements and Performance Summary

The NCS functional requirements are divided into four functional areas (see Figure 6.1-1). The NCS computer is the focal point for the three remaining functions.

1. System management
2. Satellite control
3. Orderwire
4. NCS computer

The NCS computer cooranates the interchange of data. As examples:

1. System operation (a system managemer. func tion) is the function that establishes the traffic paths between the small terminals. System operation function Idies on the signalling and supervision information provided by the orderwire function.
2. Maintenance function provides beam status and network fault diagnosis. The NCS computer must input data from:
a. Satellite control function (TT\&C), and
b. The orderwire (small terminal status).

The NCS performance characteristics are:

- NCS LNA, HPA and antenna with trunking station
- XMT characteristics

> Traffic Model A

- BW: 5 MHz (composite)
- Bit rate: $2.5 \mathrm{Mb} / \mathrm{s}$ (composite)
- Chanuels required: 41
- No rain - EIRP: 86.5 dBm
- REC characteristics

Traffic Model A

- BW: 5.0 MHz (composite)

Bit rate: $2.5 \mathrm{Mb} / \mathrm{s}$ (composite)

- Channels required: 41
- G / T : $=28.5 \mathrm{JE},{ }^{\prime} \mathrm{K}$ (based on satellite EIRP density of $6.2 \mathrm{dBm} / \mathrm{bit}$)

Traffic Model B

4.3 MHz (composite)
$2.15 \mathrm{Mb} / \mathrm{s}$ (composite)

72

85.8 dBm

Traffic Model B

4.3 MHz (composite)
$2.15 \mathrm{Mb} / \mathrm{s}$ (composite)
72

- Frequency stability better than: 1×10^{8}
- BER: $\leqslant 1 \times 10^{-8}$
- Forward error correction encoding:

Constraint length: 5
Rate: 1/2
Bit decision: 2 bit soft decision
The NCS is part of a trunking station. Common circuitry of the NCS and trunking station includes the LNA, HPA, and antenna. Since the trunking station is presently undefined, the transmit characteristics and receive characteristics of the NCS are presented in terms of EIRP and G/T. The transmit and receive characteristics are the combined reçuirements of the orderwire and satellite control links. Traffic Model A requires 40 channels of orderwire and Traffic Model B requires 71 channel of orderwire. At least one additional channel will be used for satellite control. The bandwidths assume FEC and includes the crderwire bandwidth and the 0.5 MHz dedicated to satellite control. The EiRP requirements are based on the satellite's receiver performance and the link margin previously defined for the traffic uplink at 30 GHz . The specified no rain EIRP will provide a BER $\leqslant 1 \times 10^{-8}$ for the NCS transmit link.

The specified freque $n c y$ stability is a baseline performance specification based on practical cost and technology.

Figure 6.1-1. NCS Functional Requirements

6.2 NCS Block Diagram

Figure $6.2-1$ is a block diagram of the NCS.
The baseline orderwire architecture incorporates a unique frequency per beam (Traffic Model A: 40 tota!, Traffic Model B: $\mathbf{7 1}$ total) for transmission and reception. Satellite control will be effected over a dedicated channel to the satellite. The channels (transmitters and receivers) will include convolutional encoding/decoding to maintain BER $\leqslant 1$ $\times 10^{-8}$. A time/frequency reference will be used as the station clock. The time/frequency reference shall be transmitted over the orderwire channel to ensure that all stations operating within the system are time referenced to the NCS. The NCS will provide processors for system operation and maintenance functions; telemetry, tracking, and control of the satellite; billing and systern reconfigurations; and GT adaptive control. The four processors will be slaved to a station ccmputer. The station conıputer coordinates and controls all NCS functions. A space diversity switch is included to route communication to/from a remote trunking station RF subsystem (HPA, LNA, ANTENNA, and UP/ DOWN CONVERTERS). Space diversity is used in combatting severe weather conditions at the primary trunking station site.

Figure 6.2-1. NCS Block Diagram

6.3 System Mane.: 7a nts Soncepts Summary

To ensure the inierch: at of order traffic flow between small terminals, the NCS must manage the attempts of potential users to $a, d s$ sie y ftom and once access has been gained, the NCS must manage the frequency use.

System timing and freque, sy synchronization is incorporated into the orderwire to ensure every user may access and use the system with t interfering with other users.

Operation includes managing the satellite's bandwidth resources as traffic patterns change (long term). Operation also includes managing the ST (real time) use of available bandwidth for the existing traffic pattern.

Maintenance is limited to unscheduled (improper operation) activity. The intent is to provide fault isolation within the system so that one problem source does not effect the entire system.

Billing is a computatic, ma: jeature (using existing data within the system) providing traceability and charges for the use of satellite resources.

6.3.1 SYSTEM TIMING SYNCHRONIZATION

Propagation delays from the NCS to ST stations results in time ambiguity and causes a significant problem when a TDM orderwire system is used. Each small terminal will resolve the tıme ambiguity by continuously monitoring the NCS transmit orderwire frequency within its spot beam.

Coding will be incorporated into the NCS transmit data stream to indicate a time reference start. The ST station achieves time synchronization by correlating the received time reference and the ST geographic location (propagation delay) in the ST processor. The ST processor will use the timie synchronization to transmit data only within ts reserved time slot on the orderwire return link thus avoring asiilsions with other stations and ensuring more reliable orderwire communication.

6.3.2 SYSTEM FREQUENCY SYNCHRONIZATION

Transmission of narrowband signals at EHF requires some method of providing system frequency synchronization to the ST stations and to the satellite. Since the orderwire link and satellite control link are necessary, the frequency synchronization should be incorporated int • these links. The carrier frequency tor the links will be used as the frequency reference and will be recovered by employing suppressed carrier tracking loops in the satellite and small terminals. Suppressed carrier tracking loops are capable of providing signal to noise ratios orders of magnitude better than the signal to noise ratios required on the ST to ST traffic links. The effect of phase noise associated with the frequency reference and its derivations will be negligible on the traffic BER performance.

6.3.3 OPERATION AND MAINTENANCE

Real time operation of the communication system should be fully automated. Real time operation includes:

1. Supervi: sand signalling for call initiation/terminat:on
2. ST receive/transmit frequency assignments.

Long term operation of the communication systern should be by human control. Long term operation includes:

1. New on line status changes
2. Satellite bandv.idth reallocations per cilanging traffic demands.

Maintenance functions will be limited to unscheduled maintenance. The maintenance function includes:

1. Network fault diagnosis
2. Automated test equipment control
3. Beam status
4. Satellite TT\&C
5. Small terminal status.

The maintenance function will be used to minimize system degradation caused by improper satellite or ST operation.

6.3.4 BILLING

Billing is a computational function. The following six inputs are required to accurately determine billing requirements:

1. Source (originating user)
2. Originating small terminal
3. Destimation (terminating user)
4. Teriminating small terminal
5. Time the traffic path is established
6. Small terminal status.

The required inputs all exist within the orderwire structure and NCS station timing reference. Additional computations will also provide statistical data which may be used for satellite bandwidth reallocations. NCS billing will provide traceability to the small terminals and ST users.

6.3.5 NETWORK ROUTING MANAGEMENT

Network routing management will be used to control the long-term effects of trafic distribution and patterns. Intermediate frequency translations (programmable frequency synthesizers) as well as path rerouting (programmable switches) will be used to recongfigure the long-term traffic patterns. The programmable synthesizers and programmable switches located in the satellite's router will respond to commands from the NCS.

The network configuration and satelite TT\&C link has not been : .fdressed in detail. For baseline purposes, a link capacity of $250 \mathrm{~kb} / \mathrm{s}$ has beenl assumed.

6.4 ST Ordervire Concept Summary

To minimize station small terminal costs, the order complexity should be concentrated in the NCS. A TDM/FDM method of multiplexing is used to reduce the required bandwidth needed for data transfer. The FDM is incorporated by transmitting all orderwire information necessary for a spot beam on one carrier frequency. Forty carriers (one per spot beam) will be used. TDM will be used to distinguish betwoen terminals within a beam. Terminal differentiation within a beam will be performed by correlating address information contained within each time slot. Each time slot transmitted by the NCS is assigned to a unique small terminal. The small terminals will transmit to the NCS in an assigned time slot of the return orderwire link.

6.4.1 ST ORDERWIRE SYSTEM CONCEPT TRAFFIC MODEL A

The peak hour usage for the system was estimated to be 1200 callis/second. The estimate was based on a voice path being used for an average of 3 minutes. Total system channel capacity for Tiuffic Model A is 68176. The average call per second is:

$$
\frac{68176 \text { channels }}{180 \text { seconds }}=379 \text { calls } / \text { second }
$$

To proper.y size the orderwire system, a worst case peak usage was assumed to be:

$$
3 \times 379 \text { channels/second } \Rightarrow 1200 \text { channels/second }
$$

To initiate and terminate a call, the orderwire protocol outlined in paragraph 4.8 requires 6 ST communications with the NCS. The orderwire time slot capacity is then:

$$
\frac{6 \text { time slots }}{\text { Channel }} \times 1200 \text { channels } / \text { second }=7200 \text { time slots } / \text { second }
$$

The orderwire was size to 800 time slots. Including overhead bits the NCS must transmit 1900 bits to complete a call and each ST (two each) must transmit 950 bits to complete a call. The NCS transmit data rate is:

$$
\frac{1900 \text { bits }}{\text { call }} \times \frac{1200 \text { calls }}{\text { second }}=2.28 \mathrm{MBPS}
$$

The iNCS receive data rate is:

$$
2 \times \frac{950 \text { bits }}{\text { call }} \times \frac{1200 \text { calls }}{\text { second }}=2.28 \text { MBPS } .
$$

6.4.2 ST ORDERWIRE BEAM CONCEPT (NEW YORK BEAM TRAFFIC MODEL A)

The New York Beam represents the highest beam traffic density. The New York Beam must support 3610 channels:

			Total
Station Type	Quantity	Channels	Channels
E	3	278	834
F	12	68	816
G	140	14	$\underline{1960}$
		Beam Total:	3610

The New York Beam peak traffic is estimated to be:

$$
\frac{3610}{68176} \times 1200 \text { calls } / \text { second }=64 \text { calls } / \text { second }
$$

The complete a call, the NCS must transmit:

$$
1900 \text { bits } / \text { call } \times 64 \text { calls } / \text { second }=121.6 \mathrm{~kb} / \mathrm{s}
$$

To complete a call, the NCS must receive (from the New York Byam):

$$
950 \text { bits } / \text { call } \times 64 \text { calls } / \text { second }=60.8 \mathrm{~kb} / \mathrm{s}
$$

6.4.3 ST ORDERWIRE SYSTEM CONCEPT TRAFFIC MODEL B

The peak hour usage for the system was estimated to be 1000 calls/second. The estimate was based on a voice path being used for an average of 3 minutes. Total system channel capacity for Traffic Model B is 57000. The average call per second is:

$$
\frac{57000 \text { channels }}{180 \text { seconds }}=317 \text { calls/second }
$$

To properly size the orderwire system, a worst case peak usage was assumed to be:

$$
3 \times 317 \text { channels/second } \Leftrightarrow 1000 \text { channels/second }
$$

The access time of the smaller ST stations is related to the available time slots. To keep access time low, the available time slots for the smaller stations ($1 \& \mathrm{~J}$) must be increased. The 200 slots per beam concept has been extended to Traffic Model 8.

The orderwire was sized to 14200 time slots. Including overhead bits the NCS must transmit 1900 bits io complete a call and each ST (two each) must transmit 950 bits to complete a call. The NCS transmit data rate is:

$$
\frac{1900 \text { bits }}{\text { call }} \times \frac{1000 \text { calls }}{\text { second }}=1.90 \mathrm{MBPS}
$$

The NCS receive data rate is:

$$
2 \times \frac{950 \text { bits }}{\text { call }} \times \frac{1000 \text { calls }}{\text { second }}=1.90 \mathrm{MBPS}
$$

The bandwidth requirements assume rate $1 / 2$ encoding.

6.4.4 ST ORDERWIRE BEAM CONCEPT (NEW YCRK BEAM TRAFFIC MODEL B)

The New York Beam represents the highest beam traffic density. The New York Beam must support 2638 channels:

			Total
Station Type	Quantity	Channels	Channels
E	5	36	180
F	32	9	288
G	78	11	858
H	78	7	546
I	119	5	595
J	171	1	$\frac{171}{2638}$

The New York Beam peak traffic is estimated to be:

```
calls/second = 44 calls/second
```

To complete a call, the NCS must transmit:

$$
1900 \text { bits } / \text { call } \times 44 \text { ca:'s } / \text { second }=83.6 \mathrm{~kb} / \mathrm{s}
$$

To complete a call, the NCS must receive (from the New York Beam):

$$
950 \text { bits } / \text { call } \times 44 \text { calls } / \text { second }-41.8 \mathrm{~kb} / \mathrm{s}
$$

6.5 NCS Hardware Definition

Table 6.5-1 lists the hardware required by the trunking station.
Table 6.5-1. Additional Hardware Required by Trunking Station

Traffic Model A	
40 Orderwire transmitters	71 orderwire transmitters Model B
40 Orderwire receivers	71 orderwire transmiiters
1 satellite control, ransmitter	1 sateliite control transmitter
1 satellite control receiver	1 satellite control receiver
Timing and frequency reference	Timing and frequency reference
Station computer, associated processor	Station computer, associated processor
and associated peripheral equipment	and associated peripheral squipment

The NCS is to be incorporated into a trunking station. For cost effectiveness, the NCS should share the trunking station's antenna, LNA, down converters, up converters. HPA, and space diversity switches.

The transmitters and receivers required for the order:jire and satellite control links will be similar to the traffic transmitters and traffic receivers used in the small terminals. The magnitude of computer hardware and software required to perform the various functional requirements is yet undetermined. Significant software development and ccmputer haidware will be required to implement the orderwire, system management, and satellite control functions.

6.6 NCS Power Dissipation

The NCS power dissipation, Table 6.6-1, is the additional power a trunking station will require. The individual subassembly power dissipations were extended to 41 (40 orderwire channels and 1 satellite control channel) for traffic Model A. Individual subassembly power dissipations were extended to 72 (71 orderwire channels and 1 satellite control channe'.) for traffic Model B.

Power estimates for the station computer, processors and peripherals is based on a PDP-11 computer with 512 K bytes of memory and six peripherals:

Computer	$: 1650$ Watts
Memory	$: 1320$ Watts
Six peripherals	$: 4620$ Vatts
Four processors	$: 410$ Watts

Table 6.6-1. NCS Power Dissipation

Subassembly	Assy (Watts)	Traffic Model A Total (Watts)	Traffic Modei B Total (Watts)
OW xmtr/satellite control xmtr			
ϕ modulator	0.4	16.4	28.8
Csder (FEC)	0.2	8.2	14.2
Xmtr control		5	5
OW receiver/satellite control receiver	0.7	28.7	50.4
i demodulator Decoder (FEC) Receiver contru! Station computer. processors, peripherals Low voltage power supplies	0.25	10.25	18.0
		5	5

SECTION 7

7. SMALL TERMINALS

The following section discusses the Small Terminals (ST) of the ACST FDMA system.

7.1 Small Terminal Functions

Refer to Figure 7.1-1 in the following description of the ST functions. The ST is the user's entry point into the communication system. As such, it must provide three easic functions:

- To link the user's phone lines to the ST hardware (Terresirial Interface Subsystem)
- To effect a comraunication link (traffic channelj hetween the dasired parties (Orderwire Subsystem)
- To provide a means of communicating between desired parties (Trałfic XMT \& REC subsystems)

The primary communication over the orderwire will include the destination address (telephone number supplied by calling party, $\mathrm{Si} \rightarrow$ NCS) and the dedicated frequencies required to establish the communication link (PICS \rightarrow calling and called ST). Signalling and supervisory information concerning the traffic channel will be handled over the orderwire. In addition, the orderwire subsystem is designed to receive and carry-out commands from the NCS via the orderwire communication link to:

- Adjust radiatGd power to combat uplink rain fades
- Initiate FEC coding and decoding to connbat downlink rain fades.

The orderwire subsystem will alsu provide the system synchronization so that all small terminals are slaved to the NCS.

7.2 Small Terminal Organization

The single channel ST station (Station J, Traffic Model B) is comprised of five subsystems, (see Figule 7.2-1).

- TIU subsystem
- Traffic transmitter subsystem
- Traffic receiver subsystem
- Orcierwire subsystem
- Antenna subsystem

These are standard subsystems cummon to al: -mall terminals. The J class $S T$ is designed to support one 32 kbps tol quality voice channel.

Figure 7.1-1. Small Terminal Functions

Figure 7.2-1. Signal Channel ST Station

7.3 Multichanne: ST Block Diagran:

ORIGINAL PAGE IS

OF POOR QUALITY
In the foliowing description, refer to Figure 7.3-1. The multichannel ST is characteristic of the E, F, and G class terminals in Traffic Model A and the E, F, G, H, and I terminals of Traffic Model B. The multichannel small terminal is comprised of the same subsystems as the single channel small terminal. The TIU. traffic transmitters and traffic receivers will increase on a one for one basis as the channel capacity increases.
The TIU capacity may be increased by adding a module to the TIU subsystem main frame for each channel added. Complete subsystems (traffic receivers and traffic transmitters) must be added for each additional channel added. The orderwire subsystem will not change since all channels are controlled from a single bus structure.

Additional HPA's, different antenna sizes and antenna positioning control must be added as channel capacity increases (increased EIRP requirements). If necessary, the Ka-band outputs may be summed spatially in a Cassegrain feed structure at the anterna.

The high rate user interface is a direct hardwired interface over dedicated lines. The high rate data is inputted/outputted by the TIU. The TIU contains I/O buss circuitry and rectocking circuitry. The signalling and supervision signals are provided by a companion low rate traffic circuit.

Figure 7.3-1. Multichannel ST Block Diagram

7.4 Terminal Capacity

Table 7.4-1 gives the ST capacility in tabular form. The channels and bit rates are commensurate with those stated in the SOW with the exception that the voice channel bit rate is $32 \mathrm{~kb} / \mathrm{s}$ instead of 64 kbps .

Table 7.4-1. Terminal Capability

	Traffic Model A Class			Traffic Model B Class					
	E	F	G	E	F	G	H	1	J
$32 \mathrm{~Kb} / \mathrm{s}$ channels	240	60	12	30	5	10	5	5	1
$56 \mathrm{~Kb} / \mathrm{s}$ channels	30	7	2	4	3	1	2	0	0
$1.5 \mathrm{Mb} / \mathrm{s}$ channels	7	1	0	1	1	0	0	0	0
$6.3 \mathrm{Mb} / \mathrm{s}$ channels	1	0	0	1	0	0	0	0	0
Total Capacity Mb/s	26.160	3.812	0.496	8.984	1.828	0.376	0.272	0.160	0.032
SOW Traffic Model Rates (Mb/s)	33.84	5.732	0.88	9.944	1.988	0.696	0.432	0.320	0.064
Power improvement (dB)	1.1	0.8	2.5	0.4	0.4	2.7	2	3	3

7.5 Small Terminal Equipment Characteristics Summary (BER 1×10^{-6})

The antenna size. HPA power, and LNA noise temperature for the Traffic Model A stations were determined through parametric analysis. The parametric analysis is presented in subparagraphs 7.12, 7.13, 7.14, and 7.15. Parametric analysis was not performed on Traffic Model B stations. The equipment characteristics for Traffic Model B stations are based on Traffic Model A stations of comparable capacities.

The HPA saturated power sizes the maximum power capability required. Normal operation (rain fade and clear conditions) will be backed off from the saturated power. The powers listed in Table 7.5-1 are intended only to show the range of power required for each class of station.

The LNA noise temperature listed includes the noise temperature of the antenna due to rain ($290^{\circ} \mathrm{K}$). Delta PSK modulation will be used on the traffic channels. The FEC characteristics as listed will provide the required signal to noise ratio (downlink rain fade) to achieve the required BER when the downlink is experiencing rain fade.

Table 7.5-1. ST Equipment Characteristics Summary (BER 1×10^{-6})

	Traffic Model A			Traffic Model B					
Equipment	E	F	G	E	F	G	H	I	J
Antenna Diameter (M)	6	5	4	6	5	4	4	4	4
HPA (saturated power)	200 W	50 W	10 W	100 W	25 W	10 W	5 W	5 W	1 W
Rain fade	$\approx 75 \mathrm{~W}$	$\approx 15 \mathrm{~W}$	$\approx 3 \mathrm{~W}$	$\approx 25 \mathrm{~W}$	$\approx 7 \mathrm{~W}$	$\approx 2 \mathrm{~W}$	$\approx 1.5 \mathrm{~W}$	$\approx 1 \mathrm{~W}$	≈ 200
Clear (no rain)	$\approx 3 \mathrm{~W}$	$\approx 0.5 \mathrm{~W}$	$\approx 0.1 \mathrm{~W}$	$\approx 0.7 \mathrm{~W}$	$\approx 0.2 \mathrm{~W}$	≈ 75	≈ 56	≈ 30	$\approx 5 \mathrm{~mW}$

Modem: DELTA PSK

FEC CODEC: Rate $1 / 2$, constraint length 5,2 bit soft decision

7.6 ST Receive, Transmit, and Interface Characteristics

EIRP and G/T requirements (see Table 7.6-1) were determined by link budgets giving a total system EB/NO >10.6 dB (BER $\leqslant 10^{-6}$) when maximum rain fade occurs on the uplink and downlink.

The user interface functional requirements are based on the most common type of signalling anticipated in the 1987 time frame. As a baseline assumption, potential subscribers with unique interface requirements will provide the necessary interfacing equipment which will make their user interface compatible with the ST TIU. Commercial equipment is readily available to satisfy many unique interface iequirements.

Table 7.6-1. ST Receive, Transmit and Interface Characteristics

	Traffic Model A Class			Traffic Model B Class					
	E	F	G	E	F	G	H	1	J
EIRP (With Rain Fade)	109.8	101.3	92.6	105.1	98.5	91.4	90	87.7	80.7
dBm									
Ant Gain (dB)	61.8	60.3	58.3	61.8	60.3	58.3	58.3	58.3	58.3
HPA (dBm)	48.0	41.0	34.3	43.3	38.3	33.1	31.7	29.4	22.4
$\mathrm{G} / \mathrm{T}\left(\mathrm{dB} /{ }^{\circ} \mathrm{K}\right)$	27	27	27	27	27	27	27	27	2?
Ant Gain (dB Min)	59.1	57.6	55.6	59.1	57.6	55.6	55.6	55.6	55.6
Sys Noise Temp	1621	1148	724	1621	1148	724	724	724	724
(Max, ${ }^{\circ} \mathrm{K}$)									
User Interface									
Low Rate and Voice	Standar dual ton	two wir (touch	nband s). Supe	gnaling in visory in	erface. ormation	seline rovided	$\begin{aligned} & \text { haling is } \\ & \text { y two } \end{aligned}$	sumed E\&M.	
High Rate	Bus com supervis	patible, on are	standa umed to	d and le be via de	els TBD dicated le	gh rate sed line	er trafic	signallin	, and

7.7 ST Orderwire Characteristics

(See Table 7.7-1.) The orderwire communication link between the NCS and ST should perform at better than the specified traffic BER $\left(1 \times 10^{-6}\right)$. As a baseline, the OW BER is established at 1×10^{-8}. The orderwire communication link shares the ST traffic link's HPA and LNA. To achieve the required OW BER, FEC will be implemented on a permanent basis.

Capacity for call initiation/termination is based on the worst case beam capacity (New York). Per protocol, each call will require 3 separate sets ST \rightarrow NCS data transfers. Each ST transmit requires 300 bits. Each ST receive requires 600 bits. As a minimum, 198 slots per second m ist be available (5 msec slot duration). The ST transmitted data in each slot must contain 300 bits.

The transmit data rate is:

$$
\frac{30 \mathrm{bbits}}{5 \mathrm{msec}}=60 \mathrm{~kb} / \mathrm{s}
$$

The receive data rate is:

$$
\frac{600 \mathrm{bits}}{5 \mathrm{msec}}=120 \mathrm{~kb} / \mathrm{s}
$$

The bandwidth requirements include rate $1 / 2$ encoding for FEC.
The capacity for the (Traffic Model B) I and J stations was increased by dedicating more time slots to those stations. Increasing the available time slots reduced the access time to effect a call.

Table 7.7-1. ST Orderwire Characteristics

7.8 Orderwire Subsystem Description

The Orderwire Subsystem (see figure 7.8-1) provides the ST with:

1. System timing
2. Frequency synchronization
3. User/system signalling and supervision
4. $1 / 2$ duplex communication path with NCS

System timing relies on reconstructing the orderwire clock which is generated in the NCS. The ST processor computes the appropriate timeslot for orderwire transmission by comparing the known geographical location and the ST address correlation.

Frequency synchronization is effected by reconstructing the NCS carrier in a suppressed carrier track loop. The reconstructed carrier will be used in synthesizing all LO signals.

Figure 7.8-1. Orderwire Subsystem
Signalling and supervision are the necessary signals required to 1) determine destination address and 2) path status (busy, ringing reorder).

Half duplex comic a aication includes:

1. Frequency acsignments for path establishment
2. Small terminal status
3. Small terminal configuration
a. Adaptive power to combat rain fade
b. FEC encode/decode.

7.9 Terrestrial Interface Subsystem Description

The Terrestial Interface Unit (TIU) interfaces the user's two wire phone system and E\&M supervisor lines (see figure 7.9-1). The baselines system is a DTMF (dual tone multi-frequency) inband signalling system. Other systems may be made compatible by introducing commercially available equipment at the user interface external to the ST station. In-band signalling is effected over the traffic and signalling line via the signalling interface. The dual tone analog signalling is adapted to the orderwire service by using tone encoders and decoders whose outputs/inputs are controlled by the processor bus structure.

Low rate traffic is interfaced to the traffic transmitter or traffic receiver via the 2-4 wire hybrid conversion. Echo suppression or cancellation is included in the hybrid.

Coders/decoders provide the traffic A / D or traffic D / A of voice data. The codec digital rate for voice is $32 \mathrm{~kb} / \mathrm{s}$.
High rate data to/from the user is interfaced through the TIU. Each high rate data interface must have I/O buffers, bit sync circuitry for outbound traffic and relock circuitry for inbound traffic. The signalling and supervisory signals are provided by separate 2 wire interface and associated pair of E \& M lines.

Figure 7.9-1. Terrestrial Interface Subsystem Description

7.10 Traffic Transmitter and Receiver Subsystems Description

Frequency conversion is to be performed by four translations: two fixed and two adjustable (both the transmit and receive paths). For the traffic transmitter, a VHF frequency is used to establish the carrier. A fixed frequency translation and two selectable frequencies provide the remaining translations to Ka-band. A similar but reverse process occurs for the traffic receiver (see figure 7.10-1).

Encoding and decoding of the digital data is provided to combat rain fade. The FEC is controlled by the transmitter control unit and the receiver control unit. The control units provide the interfacing circuitry for commands from the processor as well as providing telemetry to the processor. In addition, the transmitter control module provides power boost commands to the TWTA for combating rain fade.
The ϕ compensation network at the input to the HPA is a phase distorting circuit. The phase predistorting circuit compensates the phase change in the HPA. The compensation reduces the AM-PM distortion of the TWT.
No active gain blocks are shown in the transmit path. Based on preliminary gain budgeting, if the HPA is capable of 50 dB of gain and the output of the upconverter is nearly 0 dBm , no additional gain will be required.

7.11 ST Potential RF Technologies Description

The technologies defined are for a first order approximation aimed at minimizing station costs.

7.11.1 LNA TECHNOLOGY

FET technology at 20 GHz may be capable of providing the required noise temperatures for the smaller stations employing the 4 meter antenna. The low noise temperature LNA at 20 GHz is a pctential candidate for advance technology for (ground applications).

FROM TIU

Figure 7.10-1. Traffic Transmitter and Receiver Subsystems

7.11.2 TRANSMITTER TECHNOLOGY

The higher power HPA requirements will most certainly have to be incorporated with TWTA's. Of the TWTA configurations, coupled cavity devices must be used for higher power while the helix type device can be used in the lower power region ($\leqslant 5$ watts). For the low range of HPA requirements, IMPATT solid state devices when operated as an amplifier may prove to te adequate. Stability poses a serious problem when considering IMPATT devices. At the present, FET devices at 30 GHz are not practical but may be capable of supplying the required power ($\leqslant 2 \mathrm{~W}$) linearity in the 1987 time frame. The Varian VTA 6298A1 ($3 \mathrm{~L} / 20 \mathrm{GHz}$ TWT development) is capable of meeting the high power requirements. The Hughes 914 H is a potential cancidate for the high power TWT. The 914 H was developed for USA SATCOMA in 1 s 79.

7.11.3 ANTENNA TECHNOLOEY

Cassegrain antenna design has been considered because of its ability to provide spatial power summing low aperature blockage, and minimization of insertion loss between feeds and receiver inputs/transmitter zuiputs.

7.11.4 ST LNR

The noise performance of the LNR should be optimized to simultaneously minimize the satellite RF power and the ground station cost. A high noise figure will require large satellite RF power and/or large ST receive antenna gains. By using a noisy ST LNR and a relatively small ST receive antenna, the satellite RF power requirements will become so high that the satellite is impractical. On the other hand, using a very expensive and high perfor-
mance ST LNR with a large ST receive antenna will reduce the required satellite RF power, but will raise the smaller station costs to impractical levels. To make the system practical, a realistic satellite RF power should be established.

7.11.5 ST ANTENN

The physical size of the antenna is limited by environmental considerations such as wind loading. The upper limit of the ST antenna has been arbitrarily set at 6 meters. Surface tolerancing of the antenna will significantly impact the gain as well as cost of the antenna.

The ST antenna impacte the ST LNR, ST HPA, as well as the satellite RF power. The parametric analysis that follows optimizes the ST antenna for minimum ST station costs at a practical satellite RF power.

7.12 Antenna Parametric Analysis

A family of curves are plotted in figure 7.12-1 as a function of antenna size (meters) versus units of cost. The curves for surface tolerances of $\epsilon=0.25 \mathrm{~mm}$ and $\epsilon=0.75 \mathrm{~mm}$ are published ćata. The curves for $\epsilon=0.50 \mathrm{~mm}$ and $\epsilon=1.0$ mm are approximation based on the following assumptions:

1. As surface area increases for a fixed surface toterance the cost increases linearly.
2. As surface tolerancing increases for a fixed area antenna the cost decreases linearly.

Efficiency of the antenna is a function of the surface tolerancing. Four constant gain contours (2 @ 20 GHz and 2 @ 30 GHz) are plotted to show the effects of surface tolerancing and antenna diameter as a function of cost. The Y axis (cost) is not intended to suggest the actual cost of the antenna. Cost figures are approximations based on 1981 information and quantities of 200.

7.13 HPA Parametric Analysis

The curve in figure 7.13-1 is a reproduction of a cost information for a 44 GHz TWTA proposed by Motorola in 1981. The minimum cost of 40 units is based on estimates provided by Hughes. The Y axis (cost) is not intended to suggest the actual cost of the TWTA. Units of cost are approximations based on 1981 information and quantities of 200.

7.14 LNA Parametric Analysis

The curve in figure 7.14 -1 is a reproduction of cost information for a 20 GHz LN .. Cata was obtained from a Motorola proposal prepared in 1981. The Y axis (units of cost) is not intended to suggest the actual cost of the LNA. Cost figures are approximations based on 1981 information and quantities of 200.

Figure 7.12-1. Antenna Parametric Analysis

Figure 7.1j-1. HPA Parameter Analysis

Figure 7.14-1. LNA Parametric Analysis

7.15 Composite Parametric Analysis for an LNA, HPA, and Antenna (Traffic Model A)

The cost curves in figure 7.151 were developed to determine the optimum ST antenna size. These cost curves apply for a fixed satellite transmit power based on the receiver parameter G / T. For a G / T of $27 \mathrm{~dB} /{ }^{\circ} \mathrm{K}$; a static antenna surface tolerance of 0.5 mm RMS and a satellite EIMP of $10 \mathrm{dBm} / \mathrm{BIT}$, the minimum cost impact occurred for the parameters shown in table 7.15-1.

Table 7.15-1. Cost Impact Parameters

Station	Antenna Diam(m)	Receiver Noise Temp ($\left.{ }^{\circ} \mathrm{K}\right)$	TWTA (Watts)
E	6	1621 Max	200 (Sat.), 65 (Lin)
F	5	1148 Max	42 (Sat.), 12.6 (Lin)
G	4	724 Max	9 (Sat.), 2.7 (Lin)

No absolute cost significance is intended other than to show the minimum antenna diameter required to minimize impact on station cost.

ORIGINAL PACE IS
OF POOR QUALITY

Figure 7.15 1. Cost Curves

7.16 O-QPSK Demodulation Serial Implementation Description

The serial detection scheme shown in figure $7.16-1$ is used to maintain hardware simplicity while reducing the performance sensitivity to various sources of degradation. The received signal is detected in phase quadrature to perr : the matched filtering to be performed at baseband. Matched fitering is done at baseband rather than at IF because the required frequency response is easier to obtain. The serial oemodulator structure employs a Costas loon configuration to maintain carrier synchronization and clock synchronization is performed by the MSIC. A preset equalizer is used to offset amplitude and group delay distortions introduced by the transmitter and channel filtering. A preset rather than adaptive equalizer is employed for simplicity. The H9 demodulator MSIC. under development in the $30 / 20 \mathrm{GHz}$ baseband processor program, performs the actual carrier phase detection, bit synchronization and data detection.

7.17 ST Power Requirements

In the following description refer to table 7.17-1. The HPA power consumption is based on 10% TWT efficiency and 50% HVPS efficiency, when the ST station is experiencing maximum uplink attenuation due to rain. The LVPS power is based on 50% efficiency of all circuitry excluding the HPA.
The traffic transmitter/traffic dissipations are based on extending the individual subassembly dissipations by the total number of channels on each station. The TIU power dissipations are based on extending the inidividual subassemb!y dissipations by the number of voice channels in each station. The breakdown of the various subassemblies shown in table 7.17-2 indicates those purtions whose power consumption was included in table 7.17-1.

Figure 7.16-1. O-QPSK Demodulator Serial Implementation

Table 7 17-1. ST AC Power Requirements OF POOR QUALITY

Subassembly	Watts	Station Power (in watts)								
		Traffic Model A			Tra..ic Model B					
		E	F	G	E	F	G	H	1	J
HPA		1,500.00	300.00	60.00	500.0	140.0	40.0	30.0	20.0	4.0
Traftic XMTR	1.64	455.92	111.52	22.96	59	14.8	18	11.5	8.2	1.6
Traffic RCVR	1.99	553.22	135.32	27.86	71.6	17.9	21.9	13.9	10.0	2.0
TIU	1.20	288.00	72.00	144	36.0	6.0	12.0	6.0	6.0	1.2
Orderwire		250.0	65.0	24.0	45.0	19.0	21.0	17.0	15.0	11.0
LNA	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0
Low Voltage Power Supplies (LVPS)		1556.10	393.0	92.2	220.6	66.7	81.9	57.4	48.2	24.8
Approximate Total		4612.00	108.5	250.0	941.0	273.4	203.8	145.0	116.0	54.0

Table 7.17-2. Breakdown of Subassemblies

Traffic Xmtr	Traffic Rcvr	TIU	Orderwire
\% Modulator	ϕ Demodulator		Processor
Coder (FEC)	Decoder (FEC)		Freq gen/timing ref
Traffic Xmtr Control	Traffic rcvr control	Tone encoder	ϕ Modulator
Upconverter	Downconverter	Tone decoder	ϕ Lemodulator
Uplink Synthesizer	Downlink synthesizer	Coder (CVSD)	Encoder (FEC)
		Decoder (CVSD)	Decoder (FEC)
		Upconverter	
			Downconverter

SECTION 8

8. ADVANCED TECHNOLOGY PROJECTIONS

The SS-FDMA router design for an operational system in the 1990's will use advanced technology available in 1987. It is expected that the router design will be based upon new mosiac, bipolar processes for linear signal processing through VHF. The dominant areas where low power: high frequency capability is required is in the router IF switches, the programmable synthesizers, and in small LSI functions for summing, distribution, and AGC amplifiers.

The SS-FDMA router satellite conirol and management functions will employ CMOS for digital processing. This will definitely include forward error correction decoders and CMOS microprocessors for router management and telemetry data processing. Paragraphs 8.1 and 8.3 depict the likely trends in these areas.

8.1 1987 Projections For Bipolar Random Logic

Research on advanced processing techniques indicates availability of two advanced versions of the mosaic process by 1987 (see table 8.1-1). Reduction in device geometry will yield higher maximun. transistor operating frequency (f_{r}) ano higher packing density resulting in an 84 percent lower speed-power product int m nally (see figure 8.1-1). At the system level, the net result forecasted is a 40 percent lower power consumption with a :imultaneous 74 percent higher clocking rate possible. Additionally, the higher packing density and lower power consumption implies more complex functions can be built per chip.

Table 8.1-1. Projections for Bipolar Logic

Technology	Year	No. of Functions	Power \times Speed Product (Raw Gate)	Gate Delay	Gate Power
MECL 10 K	1971	50	50 PJ	2.0 ns	25 mW
MECL III	1970	15	54	0.9	60
MMT-L SI	1975	400	20	1.0	20
MECL 20K	1974	150	8	1	8
MOSAIC I	1978	750	3	0.75	4
MOSAIC II	1981	2100	1.4	0.5	2.8
MOSAIC III	1984	6300	0.48	0.2	2.4

Figure 8.1-1. No. of Funct. Power \times Speed Vs Year

8.2 1987 Projections For Improved Switch Performance

The projections for improved switch performance comprise:

- Technotogy: silicon bipolar integration
- Implementation: Custom LSI using latest processes
- Anticipated results:
- Improved processing

Allows reduction of device geometry and consequent improved F. Allows higher density and a reduction of overall chip size or increased capability per chip
Both of these improvements should lead to increased isolation aid bandwidth or reduced DC power for the switch, probably at the expense of RF power handling capability

- Custom LSI

Aliows higher density and a reduction of overall chip size or increased capability per chip. This can be repeated to improve isolation in the ceramic substrate.
Allows reduced DC power through availability of more optimum resistor values in control circuits
Allows better separation of input/output lines on chip for improved isolation

8.3 1987 Projections CMOS Technology

Semiconductor manufacturers are projecting major advances in CMOS memories by 1987 (see figure 8.3-1). Reduction in device geometry is expected to decrease power requirements from $7 \mu \mathrm{~W} / \mathrm{MHz} /$ bit for 1982 technology to $1 \mu \mathrm{~W} / \mathrm{MHz} /$ bit for 1987 technology. At the system level this provides in 85 percent reduction in power for active memories. Reduced device geometry will allow higher memory density. One megabit IC and greater is projected for 1987. Also, reduced geometry will increase ipeed by a factor of five by 1987. Chip carrier technology for space applications is also expected to provide great pin-out capability allowing high density packaging.

Figure 8.3-1. 1987 CMOS Technology Projections

8.4 CMOS Radiation Hardening

The projected radiation characteristics have been based upon existing state-of-the-art technology and the development rate of radiation hard CMOS processes. Current developments in silicon gate radiation hard processing have produced low density devices with $3 \times 10^{5} \mathrm{rad}$ (Si) hardness. High density processes have been successful to a level of 10^{4} rads (Si). By 1987. lithographic and processing techniques will be refined to a point where $1.5 \mu \mathrm{~m}$ minimum features will be possible. At this resolution, the packing of the current low density process would increase by a factor of four. This would be sufficient to enable the layout of a device as complex as the present rate $1 / 2$ MCD chip or a 2 K $\times 8$ static RAM with the hardness of the present low density process ($\approx 3 \times 10^{5}$ rads (Si).

In general, speed and power for CMOS devices are scaled by $1 / L^{2}$ and $1 / L$, respectively, as critical dimensions of a layout are reduced.

$$
\mathrm{L}=\frac{\text { old minimum dimension }}{\text { new minimum dimension }}
$$

For 1987, the new minimum dimension of $1.5 \mu \mathrm{~m}$, as compared to the present size of $5 \mu \mathrm{~m}$, will result in an $\mathrm{L}=2$ and $L^{2}=4$. Therefore, since the present device operates at a maximum data rate of $8 \mathrm{Mb} / \mathrm{s}$, a 1987 version will be capable of 32 MBPS in a nonradiation environment. At a total dose of 3×10^{5} reds, there is sufficient dislocation damage and mobility reduction that the final operation speed of a device is cut in half. This means a 1987 rad hard MCD would operate at a maximum frequency of $16 \mathrm{Mb} / \mathrm{s}$. The power scale factor is based upon the device operating at its maximum frequency. It can be shown that for CMOS devices $P_{A V E} \simeq C_{T} V^{2 f}$ where $C_{T}=$ total capacitive load driven, $V=$ supply voltage, and $f=$ maximum clocking speed. A 1987 device would operate at about $1 / 2(1=2)$, the averaye power of the 1981 technology device. The same type of scale factors have been used in projecting the 1987 memory devices (see table 8.4-1).

Table 8.4-1. CMOS Radiation Hardening

	1982	
		1987
1. Convolution Decoder		
Max Data Rate	$8 \mathrm{Mb} / \mathrm{s}$	$16 \mathrm{Mb} / \mathrm{s}$
Min Feature	$3 \mu \mathrm{M}$	$1.5 \mu \mathrm{M}$
RAD Hardness	$2 \times 10^{4} \mathrm{RADS}$ (Si)	$3 \times 10^{5} \mathrm{RADS}$ (S
Power Consumption	200 mW	100 mW
2.Custom LSI (CMOS) Max Clock Speed Min Feature RAD Hardness$\quad 15 \mathrm{MHz}$		
Memories	$3 \mu \mathrm{M}$	30 MHz
Access Time	$3 \times 10^{5} \mathrm{RADS}$ (Si)	$3 \times 10^{5} \mathrm{RADS}$ (Si)
Size	100 ns	
Power	$2 \mathrm{~K} \times 8$	50 ns
RAD Hardness	$5 \mu \mathrm{~W} / \mathrm{BIT} / \mathrm{MHz}$	$2 \mathrm{~K} \times 8$

SECTION 9

9. SS-FDMA TECHNICAL CONCLUSIONS

The SS-FDMA technical conclusions are:

1. 32 KBPS CVSD is efficient and effective for voice links.
2. Zoning frequency plan reduces router complexity.
3. Router sectorization allows systematic and dramatically reduced complexity.
4. Row-column switching is adequate for required flexibility.
5. Ground Station TWTA linearizatio: p potentially saves satellite power.
6. Ground stations may require antenna tracking for large stations.
7. Large ground station TWTA dictated by satellite characteristics.
8. Small ground station G / T dictated by low satellite power.
9. No satellite power boost required for 6 dB downlink rain fade.
10. Estimated router size $15,900 \mathrm{cu}$ in, wt 360 lbs , and power 200 watts can provide a practical small terminal routing system for traffic model A.
11. Satellite small terminal routing system radiated power 360 watts is practical.
12. Router is naturally beam-to-beam path oriented.
13. FDMA SCPC is naturally station-to-station oriented.
14. CONUS coverage inefficient for small station.

The above technical conclusions have been explained rather thoroughly in the previous presentation. The importance of the zoned frequency plan, the sectorized router, and row-column switching can not be understated. These three in combination made a realistic FDMA system architecture. Switch point were reduced from $\mathbf{2 . 5}$ million or more to the order of 200. The router power was reduced by an order of magnitude or more. The interconnection topology became manageable. Yet there has been little of any significant reduction in capability. This structure provides insight to even more capability without increased complexity.

The router path orientation and FMDA channel orientation have been noted but not presented in the previous analysis. However, their significance should not be overlooked in further review and analysis of the router structure to enhance greater flexibility and involve simplier multichannel FDMA ground stations.

The SS-FDMA Task I program conclusions are:

- SS-FDMA system architecture dramatically improved by
- new frequency zoning plan
- sectorized router organization
- Architectural approach yields insight to even better structure
- improved organization for wideband video
- simplified ground stations using path multiplexing
- Key design building blocks
- analog 8×8 switch
- compact SAW filter construction with good isolation
- three dimensional structural design

The results of the TASK I 1982 technology SS-FDMA system architecture study have produced a dramatic simplification in the system architecture. The combination of a zoned frequency plan and a sectorized router have made possible a practical FDMA small terminal system. What was an unrealistic and impractical satellite router configuration has become both attractively flexible and realistically practical. This has been realized through a dramatic reduction in number of switch points and in frequency synthesis. This has been the result of this effort.

Further this evolution has yielded insight into possibilities for still further improved structures, probably at no further reduction in size, weight, and power, but with significantly improved throughput flexibility for wideband video and possibly better and simpler multichannel ground stations.

The keys to this structure are the 8×8 analog switch development, compact, well isolated, SAW filters, and a practical three dimensional structural design.

SECTION 10

10. RECOMMENDATIONS

10.1 SS-FDMA Technical Recommendations

The SS-FDMA technical recommendations are as foilows:

1. Use zoning frequency plan.
2. Use sectorized router.
3. Use row-column switching.
4. Modify frequency plan to accommodate inter-sector switching.
5. Reconsider separate "router' for wideband video.
6. Evaluate single carrier per path impact on ground stations (TDMA/FDMA).

The first three recommendations are a natural result of the conclusions of the analysis. In the process of assembling the final report to TASK I a possible frequency plan modification with no increased ground complexity would allow complete intra-sector column switching. This should be pursued to its logical end as it offers significantly increased router flexibility.

Also not readily apparent in the previous system architecture development is the full role played by the wideband video. Unlike the other channels whose interconnect potential greatly exceeds the number paths, potential wideband video channels represents perhaps only 10% of the number of potential paths. A router reorganization that reflects this could significantly increase the router throughput capability and reduce reaction time to changing traffic. This too should be pursued.

Finally serious consideration should be given to time division multiplexing ground station traffic by paths using TDM/ FDMA. Considerably simpler larger FDMA stations are possible.

10.2 SS-FDMA Program Conclusion

The results of the TASK I 1982 technology SS-FDMA system architecture study have produced a dramatic simplification in the system architecture. The combination of a zoned frequency plan and a sectorized router have made possible a practical FDMA small terminal system. What was an unrealistic and impractical satellite router configuration has become both attractively flexible and realistically practical. This has been realized through a dramatic reduction in number of switch points and in frequency synthesis. This have been the key result of this effort.

Further, this evolution has yielded insight into possibilities for still further improved structures, probably at no further reduction in size, weight, and power, but with significantly improved throughput flexibility for wideband video and possibly better and simplier multichannel ground stations.

The keys to this structure are the 8×8 analog switch development, compact, well isolated, SAW filters, and a practical three dimensional structural design.

10.3 Recommended SS-FDMA Planning Objectives

The SS-FDMA system architecture design study has resulted in a significantly changed architecture and particularly different router configuration than that first presented in Motorola's original technical proposal. The truly key role played by the 8×8 switch, the SAW filters, and the three dimensional architecture have been made evident. In addition the basic subassembly of the router is the sector. A successful demonstration of the three technologies in this subassembly is key and dominant in a demonstration of an SS-FDMA router capability. This in conjunction with the input and output circuitry of one beam would demonstrate the router and its technology. This is recommended as essential to pursue. Likewise this leads to a restructuring of the STE for path evaluation rather than channel testing. Finally there are truly significant advantages that can be pursued for better organization of the router for full rowcolumn switching and to better handle wideband video.

SECTION 11

11. SUPPORT STUDIES (APPENDIXES A THRU J)

A number of support studies have been conducted which provided principle input data to the overall system architecture and to the preliminary organization of the satelite ST Router. Tho principle studies are listed below as Appindixes A through J :

APPENDIX A HIGH POWER AMPLIFIERS
APPENDIX B ROUTER ANALOG SWITCH
APPENDIX C FREQUENCY SYNTHESIZER
APPENDIX D ROUTER SURFACE ACOUSTIC WAVE (SAW) FILTERS
APPENDIX E MODULATION ANALYSIS
APPENDIX F DEMODULATOR EVALUATION
APPENDIX G ERROR CORRECTION CODING/DECODING
APPENDIX H TRAFFIC MODELS
APPENDIX I TRAFFIC MODEL REFINEMENT
APPENDIX J SIGNALLING INTERFACE

APPENDIX A

HIGH POWER AMPLIFIERS

APPENDIX A
 HIGH POWER AMPLIFIERS

A1. EHF HIGH POWER (20GHz) AMPLIFIER CONSTRANTS

- SOLID-STATE (ADVANCED DEVELOPMENT FOR $30 / 20 \mathrm{GHz}$ PROGRAM)
- IMPATT
- FET
- VACUUM TUBE (AUVANCED DEVELOPER FOR $30 / 20 \mathrm{GHz}$ PFOGGRAM)
- TWT

IMPATT and FET devices are the only solid state devices capable of approaching the required operating frequency $(20 \mathrm{GHz})$. The TWT is the only vacuurr tube device capable of supporting the required bandwidth.

A2. TRANSMITTER TECHNOLOGY SUMMARY

Technique	Freq. (GHz)	Gain (dB)	Sat. Power	Eff. (\%)	Bandwidth (GHz)
GaAs Power FET	20	5	2w	20-40	
Multi-Stage GaAs	17-20	40	40w	20	2-3
FET Amplifiers*	17-20.2	30	13.5w	15	2-3
Si-IMPATTS	40-50		$\sim 2 w$	-10	
GaAs IMPATTS	40-50		0.5-2.0w	6-18	
TnP IM.PATTS	35		~iw	16	
Multi-Stage	41	12	400 mw	10	0.2
IMPATT	37	33	$5 w$	8	0.7
Amplifier	37	13	200 mw	3.5	2.6
	60	23	100-200 mw	6	. 3
	60	21	1w	NA	C. 0
-	20	30	20w	20	0.5

The GaAs FET as a power device is severely limiter above 20 GHz . In addition, efficiency of the FET when operated linearly is significantly reduced below its saturated efficiency of 15 percent. Tinc bandwidth capability of the IMPATT severely limits its usefulness. In addition, the IMPATT device is typically operated as an ILO. To achieve some degree of linearity, it must be operated in the reflex mode degrading even further inherently low DC-RF efficiency.

The TWT is the most efficient of the three possible devices discussed. It is inherently a high power device. A high cost is associated with the EHF TWT because of severe machining anc assembly problems.

A3. TWT TRAN8MITTER TECHNOLOGY

- Hughes 9i8A

P_{0}	75 watts saturated (high mode)
	7.5 watts saturated (low mode)
n(\%)	$>40 \%$ at saturated power (high mode)
BW	$>2.5 \mathrm{GHz}$ (17-20 GHz)
Gain	$>40 \mathrm{~dB}$ (high inode)
WJ-3712	
P。	25 watts saturated
m\%)	>39.5\% at saturated power
BW	$>4 \mathrm{GHz}$ (18-22 GHz)
Gain	$>49 \mathrm{~dB}$
VTA 6298A1	
P°	200 watts saturated
$\underline{M}(\%)$	10-15\% at saturated power
BW	1.5\% of $\mathrm{F}_{\mathrm{o}}\left(\mathrm{F}_{\mathrm{c}}=29 \mathrm{GHz}\right.$)
Gain	TBD

The table above lists important features of tina Hughes TV:T (model 918A) being developed for NASA L 3 wis Research Center:

Watkins Johnson is currently performing an IR\&D program to develor, a TWT capable of operating in the : $5 \mathbf{- 2 0}$ GHz range. The WJ. 3712 TWT is also included in the table.

The Varian TWT (VTA 6298A1) is being developed as $30 / 20 \mathrm{GHz}$ advanced tectrology. The VTA 6298A1 preiminary data is compatible with the ST requirements for the larger classes of ground stations.

A4. CARRIER TO INTERMODULATION PERFORMANCE FOR A TWT

The IM distortion presented in the table below was predicted using the following constraints:

- The input power spectrum to the TWT is composed of many unmodulated equal amplitude carriers. In the limit. the input spectrum may be modeled by white noise.
- The carrier to IM ratio plotted on the Y axis is for a centralized carrier component. The C/IM ratio at band center represents the ivorst case C/IM.

A5. PHASE/GAIN TRANSFER FUNCTION APPROXIMATION FOR TWTA HPA
The gain transfer characteristic is modeled by the error furiction defined as:

$$
\operatorname{erf}(\mathrm{x})=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-\kappa_{d t}}
$$

The phase transfer characteristic is rather typical of TWT performance and is defined as $0_{\text {our }}(\mathrm{deg}) \approx .602[1$ $\left.\exp \left(-3.54 \mathrm{P}_{\text {in }}\right)\right]+.05 \mathrm{P}_{\text {in }}$. The gain transfer characteristic is used to predict the $I M$ distortion due to amplitude nonlinearities. The phase transfer characteristic is used to predict the AM-PM IM distortion. The phase and gain transfer characteristics are required to predict IM performance.

A6. DC-RF EFFICIENCY FOR HUGHES 918A TWT

The high and low model efficiency of the Hughes 918A TWT is plotted below. The efficiency was calculated from the following equations:

$$
\begin{aligned}
\text { High Mode } \quad \mathrm{P}_{\mathrm{Dc}}(\text { Watts }) & =36.4+2 \mathrm{P}_{\mathrm{RFout}} \\
\text { Low Mode } \quad \mathrm{P}_{\mathrm{DC}}(\text { Watts }) & =4.9+3.4 \mathrm{P}_{\mathrm{RF} \text { out }} \\
\text { where Efficiency } & =\frac{\mathrm{P}_{\mathrm{RFout}}}{\mathrm{P}_{\mathrm{DC}}}
\end{aligned}
$$

A7. TWT LINEARIZATION CANDIDATES

- Ground station TWT phase characteristic
- Ground station TWT amplitude characteristics
- Satellite TWT phase characteristics
- Satellite TWT amplitude characteristics

Conclusion: Linearize ground station TWT phase characteristics

Linearization of the ground station TWT phase characteristic was chosen because of the following process of elimination:

- Predistortion/linearization circuitry requires periodic alignment (once or twice a year). As a conclusion, no attempt to linearize the satellite TWT is contemplated.
- Amplitude linearization requires predistortion of the input envelope to the TWT. The input envelope is not easily represented nor is it predictable. In addition, attempts to linearize the transmit envelope could lead to corruption of $\mathrm{E}^{\circ} / \mathrm{N}^{\circ}$ at the receiver. The possible corruption is introduced by adding more amplitude nonlinearities and consequently, more potential uncertainty.

A8. GROUND STATION TWT AM/PRA EQUALIZER

Conclusion: Three dB improvement in TWTA's AM-PM conversion
Equalization of TWTA amplitude and phase nonlinearities has been practical over the last 5 years. Although theoretical predictions indicate significant improvements are possible, practical laboratory experiments have yielded less than ideal performance. The equalization circuits are difficult to align and need periodic readjustment (1 to 2 times per year). Practical circuits requiring no adjustment are being built by NEC. An achievable $\mathrm{C} /$ IM improvement for AM/PM conversion has been assumed to be at least 3 dB .
The proposed AM/PM equalizer operates as follows:
The amplitude of the multicarrier signal is detected and the bias of a varactor is modulated by this detected amplitude. The change of the varactor is modulated by this detected amplitude. The change of the varactor bias changes the phase of the input signal to the TWTA to cancel the AM/PM distortion.

CONCLUSION: THREE dB IMPROVEMENT IN TWTA'S AM-PM CONVERSICN

ORIGINAL PAGE IS
of POOR QUALITY

A9. TWTA POWER REDUCTION RESULTING FROM GROUND STATION EQUALIZATION OF AM-PN

The curves shown below depict the resulting satellite power reduction when the TWTA at the ground stations are equalized. Two cases of equalization are shown:

- CASE 1 -- The AM/PM IM products are completely cancelled out at the ground station (ideal case)
- CASE 2 - The AM/PM IM products are reduced 50% at the ground station (practical case)

The uncompensated satellite TWTA DC power at 3 dB BO is very large (in excess of 100,000 Watts). At 5 dB back off, the uncommpensated TWTA satellite DC power is typically 2500 watts. At 5 dB backoff, the equalization reduces the power requirement to 1200 Watts.

APPENDIX B

ROUTER ANALOG SWITCH

APPENDIX B
 ROUTER ANALOG SWITCH

B1. IF SWITCH CONCEPT DESCRIPTION

The IF switch matrix is an essential element of the SS-FDMA system providing interconnection flexibility between the various spot beams and SAW band limiting filters. In analog applications the crosspoint switch configuration offers superior isolation, bandwidth and intermodulation performance over the other non-blocking switches since signals flow through only one switch closure and signal interconnections are straight forward.

The building block concept provides flexibility through the use of one monolithic IC switch element for a variety of switch size and redundancy requirements. The number of elements which may be connected to form a large matrix is limited only by isolation, bandwidth and ceramic substrate size considerations.

The monolithic building block elements are configured to allow fully redundant 8×8 switch comprised of four 8×8 elements. Switches with only redundant inputs or redundant outputs require two $8 \times$ IC elements.

Multilayer ceramic substrates offer a mature technology capable of isolating the large number of interconnection lines required between densely packed monolithic IC die. The multiple layers are usually alternating depositions of thick film gold and special insulating glass, allowing some layers to form ground planes separated from signal lines by thin dielectric. The proximity of the ground plane provides line to line isolation.
The selection of a basic switch approach which offers low size, weight and power is important in the SSFDMA system since the total number of switches is hirh and the DC switch power consumed can be a significant portion of total payload power.

B2. FUNCTIONAL DIAGRAM OF MODULAR SWITCH MATRIX

The functional diagram shown is for a 48×48 switch matrix consisting of 36 monolithic IC 8×8 elements. In this case each input line is connected to six 8×8 elements in parallel. Similarly eaci, output is derived from the outputs of six 8×8 elements. Each output may be switched to any one of forty-eight inputs. Forty-eight inputs may be simultaneously connected to forty-eight different outputs.

Immunity to single point failures is achieved on the input by using spare SAW filters and spare switch inputs. On the outputs redundant lines each service three 8×8 elements.
The current limitation on multilayer ceramic substrate size (typically $2-1 / 4$ by $2-1 / 4 \mathrm{in}$) probably will not allow an entire 48×48 matrix to be implemented on one substrate. A substrate containing one half the matrix appears feasible.

Ideally the switch control would be implemented so that any signal path could be changed without disturbing other paths, the number of control bits would be the minimum number possible to specify the switch, and the number of control lines would be small. These mutually exclusive goals can be approached through use of row/ column addressing of individual 8×8 elements with a single 8 bit data bus to all elements.

uriginal page is OF POOR QUALITY

83. SUMMARY OF PREDICTED SWITCH PERFORMANCE CHARACTERISTICS

Parameter	Proposal		Present Prediction (for Motorola GB6 Gate Array)
	Requirements	Prediction	
Size	48×48	48×48	$8 \times 8 \text { to } 48 \times 48 \text { in }$ multiples of 8
Input Bandwidth	20 MHz per ch.	--	$\begin{aligned} & 48 \times 48: 25 \mathrm{MHz}(-1 \mathrm{~dB}) \\ & 16 \times 16: 160 \mathrm{MHz}(-1 \mathrm{~dB}) \end{aligned}$
Output Bandwidth	200 MHz	$200 \mathrm{MHz}(-3 \mathrm{~dB})$	$\begin{aligned} & 48 \times 48: 200 \mathrm{MHz}(-3 \mathrm{~dB}) \\ & 16 \times 16: 300 \mathrm{MHz}(-3 \mathrm{~dB}) \end{aligned}$
Upper Frequency	300 MHz	$300 \mathrm{MHz}(-3 \mathrm{~dB})$	$\begin{aligned} & 48 \times 48: 300 \mathrm{MHz} \text { max. } \\ & 16 \times 16:<300 \mathrm{MHz},<400 \\ & \mathrm{MHz} \end{aligned}$
Isolation:		--	$48 \times 48: 23 \mathrm{~dB}$ at 270 MHz
Worst Case	20 dB		$16 \times 16: 40 \mathrm{~dB}$ at 270 MHz
Switch Elements Alone	--	$48 \times 48: 100 \mathrm{~dB}$ at 270 MHz	---
Nominal Signal Level	$-30 \mathrm{dBm}$	--	$-30 \mathrm{dBm}$
Setup Time	1 msec	\cdots	$100 \mu \mathrm{sec}$ with 1 MHz clock.
Intermodulation Distortion	$-30 \mathrm{~dB}$	$\begin{aligned} & \text { 3rd order } \\ & -60 d B \end{aligned}$	3 dr order -40 dB
Gain	0 dB	+3 to +6	0 dB
DC Power Consumption	---	$\begin{aligned} & 8 \times 16 \text { chip: } 174 \mathrm{~mW} \\ & 48 \times 48 \text { chip: } 3132 \mathrm{~mW} \end{aligned}$	$\begin{aligned} & 8 \times 8 \text { chip: } 306 \mathrm{~mW} \\ & 48 \times 48: 5300 \mathrm{~mW}(\mathrm{pwr} \\ & \text { managed) } \end{aligned}$
Dimensions	---	$2 \mathrm{in} \times 2$ in	$48 \times 48: 2.5 \times 2.5 \mathrm{~min}$ substrate $16 \times 16: 1.0 \times 1.0$ substrate

The present performance predictions are the preliminary results of analysis for monolithic 8×8 switch elements mounted on a multilayer ceramic substrate. A control concept for the switch elements has been devised, preliminary schematics for array cells have been generated and the limitations imposed by available intercell interconnect space
have been assessed. These efforts have resulted in preliminary values for power consumption, maximum IC switch dimensions (8×8) and setup time.

The use of groundplane layers in the multilayer ceramic substrate for isolation between RF lines has been investigated resulting in computer models for stripline and microstrip approaches. Results shown are for microstrip. Interconnection lines and other elements of the monolithic ICC switch element have also been modeled. Values for bandwidths and isolation have been generated by combining the models.

B4. MOTOROLA GEG GB6 CELL ARRAY LAYOUT

The GB6 cell array was developed for large scale ECL integrated circuit applications. Each cell in the array contains a number of unconnected transistors and resistors. The final steps of wafer processing, where first and second metal are applied, provide the interconnection patterns. Thus, wafers preprocessed through deposition of first metal may be used for various devices which differ only in interconnect patterns. Since each cell contains isolated transistors and resistors, applications are not limited to ECL functions.

The number of resistors and transistors and the resistor values and transistor current carrying capabilities vary among the various cell types. The bias networks in each cell are designed for proper temperature compensation with a -4 volt supply. The bias networks are fairly flexible; current may be adjusted to minimize power consumption.

Resistive level translators allow internal ECL to operate from 0 to +5 volt CMOS logic level inputs. ECL may be implemented with low operating currents to provide necessary on-chip logic functions for the monolithic IC switch.

DIE SIZE 251×229 MILS
NUMBER OF BOND PADS 72
WAFER PROCESSING: MICARL
CHIP CONTROL: GEG
INTERCONNECT CONTROL: GEG

TUTAL CELLS	100
INPUT (I)	24
ARRAY (A)	64
OLTPUT (B)	8
BUFFER (DC)	4

CMOS-ECL INPUT TRANSLATORS 24
bias internal to each cell

B5. POWER BUDGET FOR 8×8 SWITCH CHIP USING THE GB6 CELL ARRAY
Power Budget for 8×8 switch chip using the GB6 Cell Array

Cell Description	All Outputs Operating		Reduction Per Off Output
	Contributors to Current	Total at $V_{C E}=-4 \mathrm{VDC}$	
CMOS-ECL	$0.2 \mathrm{~mA} / \mathrm{Input} \times 12$ Inputs	240 mA	-
Data Latch	$0.21 \mathrm{~mA} /$ Latch $\times 8$ Latches Plus $0.32 \mathrm{~mA} /$ Bias $\times 2$ Bias Circuits	2.32 mA	-
Output Buffer	$0.284 \mathrm{~mA} /$ Power Control $\times 8$	2.27 mA	$2.62 \mathrm{~mA} /$ Buffer
	Controls $3.70 \mathrm{~mA} /$ Buffer $\times 8$ Buffers	29.6 mA	
Master-Slave	$0.458 \mathrm{~mA} / \mathrm{M}-\mathrm{S} \times 3 \times 8$ MasterSlave	11.0 mA	-
Dual Decoder	$0.114 \mathrm{~mA} /$ Dual $\times 4 \times 8$ Dual Decoders	3.65 mA	$0.114 \times 4 \mathrm{~mA} /$ Output
	$0.14 \mathrm{~mA} /$ Bias $\times 8$ Bias Circuits	1.12 mi	0.14 mA/Bias Circuit
Switch	$2.16 \mathrm{~mA} / \mathrm{S}$ witch $\times 8$ Switches	17.28 mA	$2.16 \mathrm{~mA} /$ Switch
	$0.52 \mathrm{~mA} / \mathrm{V}_{\mathrm{B}} \times 8$ Switches	4.16 mA	$0.52 \mathrm{~mA} /$ Output
Clock Driver	$1.30 \mathrm{~mA} /$ Driver $\times 2$ Drivers	2.60 mA	-
Total Chip Current		Outputs On: $76.40 \mathrm{~mA}$	Reduction: $5.9 \mathrm{~mA} /$ Output Off
Total Chip		305.60 mW	23.6 mW/Output Off

Power consumption for a 48×48 switch: $(305.6 \mathrm{~mW} \times 36)-(23.6 \times 8 \times 30)=5335 \mathrm{~mW}$
Power consumption for a 16×16 switch: $(305.6 \mathrm{~mW} \times 4)-(23.6 \times 8 \times 2)=845 \mathrm{~mW}$
The power budget values are calculated from preliminary schematics of each array cell type. The schematics were based on the available transistor and resistor values of the GB6 cell array. Power management is implemented to controlling current sources which supply the dual decoder cells, the switch cells and the output buffer associated with each output. The reduction shown is that caused by disabling one output. The eight data latches store the on/off control data for the power management circuits.

A further reduction of total switch power is possible by disabling the current sources which supply master-slave shift registers. This imposes the operational constraint that desired outputs must be enabled prior to shift register loading; however, total power for a 48×48 switch will fall to 4.1 watts from 5.3 watts.

B6. DIFFERENTIAL TRANSISTOR PAIR SWITCH, OUTPUT BUFFER, AND BIASING

The different' ' 'transistor pair swiiches shown in this conceptual schematic drive the single differential pair buffer to form one output of an 8×8 switch. Control voltages $\mathrm{C1}$ through $\mathrm{C8}$, one of which is high, steer current to the desired switch. When the desired output is from another IC, the power control disables the current sources and thus disibles eight switches and the buffer in the IC shown.

Several measures are depicted which have been determined through analysis to improve RF characteristics. The differential switch pair is driven single ended so that the output may be isolated by two reverse biased baseemitter junrtions when off. Each or the eight IC outputs has its own separate collector return exiting the device to off chip ground. This is necessary to isolate the base bias of each differential pair output transistors from voltages induced in resistive ground metallization by other output switches and buffers. A resistor in each switch pair provides predictable base emitter reverse bias and thus low input capacitance when the switch is OFF. Inputs are biased off chip from the same voltagrs used to bias the switch pair output transistor. Attempts to devise on-chip bias networks with high isolation have proven futile due to the conflict of low bias source resistances required to maintain balance with high source resistance required for isolation. A sufficient quantity of high value resistors in unavailable in the cells for on-chip bias.

The primary advantages of the differential pair switch are that it can provide high isolation, is compatible with existing MOSAIC processing and existing cell arrays and that is provides flat unilaterial gain over a wide bandwidth with low current drain.

B7. BASIC CONTROL CONCEPT

Control input functions

ORIGINAL PAGE IS
 OF POOR QUALITY

- Enable line for each row of 8×8 switches
- Enables both shift register clock and power control latch strobe.
- Shift register clock to all 8×8 switches
- Simultaneously clocks data to all 8×8 switches occupying a row which has its clock inputs enabled. Drives eight 3 -bit shift registers in each 8×8. All shift registers in one row recieve the same data.
- Latch strobe for each column of 8×8 switches
- Power control latches are strobed in a single 8×8 switch in the row which has its latch strobe inputs enabled. Simultaneously strobes eight latches in an 8×8, one for each output.
- Data bus to all 8×8 switches (8 -bit parallel)
- Provides shift register input data over one line for each of eight 3-bit registers per 8×8. The same daia is simultaneously received by registers in all 8×8 's in a row; however, the data is used only in the one $8 \times$ 8 per row which will have a particular output powered through use of power latches.

The data bus also provides power latch input data over the same lines for each of eight latches per 8×8. An 8 -bit word is strobed into each 8×8, powering only the desired outputs from that chip.

This approach allows the switch to be specified with very nearly the lowest number of control bits possible. The compexity of on-chip logic is minimized as are on-chip interconnections. A disadiantage is that changing one output will momentarily disturv other outputs of the same 8×8 while new serial data is being clocked to registers. A similar approach using latches exclusively is being investigated as an improvement which may elimii, ate this characteristic.

B8. 8×8 SWITCH CONTROL LOGIC ARDD POWER MANAGEMENT

The control logic provides control word storage and routing necessary to specify the state of each crosspoint of the 8×8 switch IC. The memc, is included in the IC so that control words may be transferred sequentially over a reasonably small number of lines to the switch. The configuration shown is within GB6 array complexity limits. It provides flexibility for a range of compromises between the number of control lines, switch setup time and the size of the minimum portion of the matrix which may be updated independently without momentarily disrupting other portions.

For example, the control arrangement shown on a previous cell for a 48×48 switch requires that a fill row of 8×8 switches be updated simultaneously. Twenty-one control lines are required for the full switch which can be completely updated in 54 clock cycles, nine cycles per row. With 22 lines and slighliy more complex external logic, 8×8 switch elements may be updated independently by enabling both row and by column of ICs. The same 54 clock cycle setup time for a 48×48 switch may be retained by enabling all columns simultaneously during shift register loading when a full switch update is desired. in contrast the origirally proposed concept of a single long shift register in each switch chip with one data input and one clock input per chip would require 72 control lines and 160 clock cycles if eight chips are loaded in parallel in a 48×48 switch.

ORIGINAL PAGE IS OF POOR QUALITY

When a much smaller 16×16 switch is used, the control arrangement shown renuires i4 control lines to the switch matrix and a comiplite update can occur in ten clock cycles. The originally prcposed concept would have required eight control lines and 32 clock cycles for a full update if the four chips are loaded in parallel.

A modification of the present swisitch soncept requires evaluation. Replacing the three bit shift register with three latches will allow one output of the switch to be updated without disturbing any other output. Whether the increased number of on-chip interconnect lines may be accommodated and power impact are primary concerns in the full latch approach. The control approach shown is the best one devised to date which can clearly be accommodeted in the GB6 cell array.

B9. REDUNDANT 8×8 SWITCH CONCEPT

Two redundancy approaches are shown since a small increase in hardware appears to produce substantially increased redundaricy, at a price in DC power.

The upper diagram show's a switch which requires no external power division or summing to preclude single point failures when used with redundant source and load units. Loss of a switch input or source unit will not degrade operation of the other switcr input with either output. Similarly, loss of a switch output or load unit will not degrade use of either the primary of redundant input.

The lower diagram shows a switch which requires cross-strapping at either the input or output to prevent single point failures. Passive hybrid coupler cross-strapping of sources or loads with the, switch will prevent loss of a pair of source and load units with failure of one 8×8 element.

InPUT NO. 1

INPUT NO. 1

B10. CHARACTERISTICS OF THE SELECTED MONOLITHIC IC SWITCH DESIGN

- Silicon bipolar technology - well established, low risk, low impedance signal paths, better isolation
- Motorola MOSAIC I monolithic integrated circuit process - high density, high performance
- Motorola GEG cell array (GB6), MICARL processing, flexibility, high performance, low develcpment time
- Differential transistor pairs as switch elements - good isolation, lower power, simple control, wide bandwidth, linear unilaterial gain
- On chip storage of switch configuration (shift reg, latches) - necessary for reasonable number of control lines
- Power management - power reduction in switch elements having inactive outputs

Several alternatives to silicon bipolar technology exist including GaAs FETs, CMOS Silicon on Sapphire and PIN diodes. The desired switch RF characteristics are attainable with all of these approaches. The only notable disadvantage of the silicon bipolar approach over the most likely alternative CMOS-SOS is that silicon bipolar power consumption will be higher. In favor, the unilateral transfer function of silicon bipolar switches provides the isolation necessary to stabilize passband characteristics against possible VSWR variations due to switching.

The features of the Motorola GB6 cell array which provide flexibility include a large number of unconnected resistors with a range of values, interconnect alleys run both directions across the chip so that both layers of metal can be used for connections internal to cells. In addition the option exists for future process changes in pre-metal layers if desirable since wafer processing is under Motorola GEG control.

Power management is desirable for the switch design since the total switch power is a significant portion of total SS-FDMA power for some possible configurations and the potential savings are substantial (i.e., 50% reduction for a 48×48 switch and 30% for a 16×16 switch).

The breadboard design studies listed below are intended to refine the switch concept in key areas prior to detailed design efforts.

- Complete on-chip isolation model:

Analysis to date used estimates for resistive coupling in the substrate below parallel input and output lines. A more exact model is now available. Some unavoidable input to input line cross-overs were not included in the initial analysis.

- Perform further analysis and trade-off studies of isolation in the multilayer ceramic substrate to which monolithic switches will be mounted:

The version of compact used for lire-to-line coupling evaluation must be verified for accuracy at the line dimensions being used.

Trade-off isolation vs bandwidth in selecting line dimensions and microstripline vs stripline structure in the layers. (Preliminary data presented is for microstripline).

- Further study of latch and shift register control concepts is needed:

Prefer latches since each output could be updated without interrupting other outputs.
The number of on-chip interconnect lines may prohibit the latch approach. The latch approach may consume more power.

- Attempt a preliminary metal layout on a few critical cells.
- Continue to refine preliminary cell schematics.
- Refine switch redundancy concept.

APFENDIX C

FRECUE NCY SYNTHESIZER

APPENDIX C
 FREQUENCY SYNTHESIZER

C1. SYNTHESIZER REQUIREMENTS

- Synthesizers are required for carrier frequency generation both at the ST and the satellite.
- The synthesizers must cover a wide range of frequencies.
- The synthesizer phase noise is a major constraint on the design and must be minimized.
- Switching and settling times are not of prime concern up to a reasonable fraction of a second.
- The burden of long term stability can be transferred to the synthesizer reference.

Although the concept of the frequency plan does not require the use of programmable frequency synthesizers in the router, it does not remove the requirements for frequency synthesis as the receive bands must be broken into lesser bandwidth sections for processing. The concept of system frequency control requires that all signals used for translating a received channel be coherently derived from a satellite replica of the system master oscillator at the network control station. Although that master oscillator could have been located in the satellite, it appears more logically placed at the network control station where iong-term arifts can be corrected, and it adds no complexity to either the satellite or to the CPS equipment.

The synthesis in the router is, however, greatly simplified as only a few (~ 15) frequencies need to be synthesized and the synthesized frequencies can be relatively widely separated. This permits a high reference frequency to be used with a wideband phase locked loop in an indirect frequency synthesizer. Although the synthesizers can be programmable, for this application the desired frequencies can be hardwired.

C2. SYNTHESIZER CONCEPT

The synthesizer concept is that of an indirect synthesizer in which the output frequencies are derived in a voltage controlled oscillator which after frequency division is compared against a stable reference. In this case the reference is derived in the network control receiver. The principle design problem with this type of synthesizer, that of added phase noise originating in the VCO, is greatly relieved for this application because the wide spac-

ings of the desired output frequencies do not require high division ratios. This permits a relatively high phase comparison frequency in the synthesizer and a correspondingly wide closed loop bandwidth for the synthesizer. The synthesizer feedback then cancels the low frequency part of the noise spectrum. As the noise spectrum is expected to be modeled as:

$$
S_{\phi}=\sum_{n=0}^{n} \frac{K_{n}}{f^{n}}=K_{o}+\frac{K_{1}}{f}+\frac{K_{2}}{f^{2}}+\frac{K_{3}}{f^{3}}
$$

the majority of the noise will be at the lower frequency offsets from the output carrier.

C3. SYNTHESIZER NOISE SOURCES

The projected phase noise spectral densis, as a function of offset frequency is expected to be dominated by three terms. There will be a frequency insensitive phase noise density at a level which is determined by the noise figure of the oscillator amplifier and it will extend out to the half bandwidth of that amplifier (or any succeeding amplifier). Next there is a noise spectral density which falls at $6 \mathrm{~dB} /$ octave due to the equipartition noise in the oscillator tuned circuit. At frequencies beyond the half baridwidth this component will fall at a higher rate. Finally there is the flicker frequency noise falling at 9 dB per octave which is present in all physical oscillators. This noise extends from very tow offset frequencies out to a comer frequency which is related to the class of oscillator.

For the satellite synthesizers the amplifier bandwidths will exceed 100 MHz , the oscillator tuned circuit " Q " will be about 200 in a distributed component tuned circuit. The corner frequency for the flicker noise is expected to be about 100 kHz for this class of oscillator. The levels shown include the effective frequency multiplication by four.

C4. PROJECTED SYNTHESIZER NOISE

The projected phase noise at the synthesizer output will be the portion of the phase noise in its reference frequency input which lies within the synthesizer phase locked loop bandwidth, and the portion of the noise generated within the synthesizer which is outside its loop bandwidth. As the reference is highly filtered in a narrow band crystal con-

trolled phase locked loop, the synthesizer output phase noise will be dominated by that noise generated by itself and it in turn is primarily the reactance control noise. The resultant mean square phase

$$
\sigma^{2}=\left(\frac{K^{3}}{\sqrt{2 \epsilon\left(1-\epsilon^{2}\right)} \omega_{r:}^{2}}\right) \tan ^{-1}\left(\frac{\sqrt{\left(1-\epsilon^{2}\right)}}{\epsilon}\right)
$$

where $K_{3}=\left(6.25 \times 10_{4}\right) \mathrm{rad}^{4} / \mathrm{sec}^{2}$ from the synthesizer noise source chart and ω_{n} is the loop natural frequency and is 1.89×10^{4} radians $/ \mathrm{sec}$ for this analysis:
then $\sigma^{2}=1.37 \times 10^{-4} \mathrm{rad}^{2}$
or $\quad \sigma=0.67$ degrees RMS
This is the predicted synthesizer loop contribution to the carrier frequency stability.

C5. SATELLITE REFERENCE FREQUENCV GENERATOR

The signal path through the router requires a number of frequency translations, both down and up in its course from an input beam to an output beam. To perserve frequency coherence it is necessary that all of the translations be against a known multiple (perhaps fractional) of the master oscillator in the network control station. This is done by erecting a satellite reference by way of coherent phase lock to the network control carrier.

The required local oscillator and upconverter signals are then gererated for the satellite reference by appropriate frequency multiplication, division, or other means of coherent synthesis and then distributed to the sections of the router where they are required.

This centralized reference generation greatly reduces the amount of hardware over the generation of each signal at the place where it is to be used, but a failure in either the network control receiver or the reference generator would disable a large part of the system. They both should be highly redundant to prevent this from happening.

C6. PROJECTED POC SYNTHESIZER TRANSLATOR

	Fower (mW)	Size (in)	Weight
Voltage Controlled Oscillator	60	$1.00 \times 0.60 \times 0.25$	
Tripler	30	$0.80 \times 0.50 \times 0.25$	
Prescale $\div 2 \div 2$	42	$1.60 \times 0.50 \times 0.20$	
Dual Modulus $\div 8 / 9$	70	$0.75 \times 0.25 \times 0.20$	
Modulus Extender	40	0.23 dia $\times 0.19$	$1 \times 0.4 \times 0.20$
Synthesizer	25	$1 \times 0.21 \times 0.25$	
Mixers (2)	-	$1.338 \mathrm{in}^{3}$	
Bandpass filters (3)	-	0.10 lb	

Asembled volume $=2.0 \mathrm{in}^{3}$
Assembled Weight 0.14 lb
As the numser of frequency synthesizers required in the satellite has been reduced from 1600 to about 40, the incentive for extreme miniaturization has been correspondingly reduced. It may still be economically advantageous to apply some degree of custom LSI to the basic design, however, as each ST station will need a minimum of two synthesizers.

The accompanying chart is for a current design using available components. The major difficulty in meeting these projections will be in achieving the desired VCO " Q " in the allotted volume.

C7. CLOSED LOOP NETWORK CONTROL

The SS-FDMA systein must accommodate tightly packed $1 \mathrm{Bit} / \mathrm{Hz}$ narrowband channels. To do this successfully without requiring excessive carrier frequency guard bands necessitates good frequency stability. The recommended approach is to distribute a system frequency reference from NCS. This "master oscillator" can be recovered at the satellite over the network control link using a long '.op phase locked loop shown as a simple loop in the diagram below. This signal provides the reference for all the satellite local oscillators.

The outboard orderwire signal over the network control channess is sent to each ST. Here it is received again in a long loop phase locked loop to provide a frequency reference for the ST. This signal then provides a frequency reference for the ST data communications uplinks so that . dhen raceived by another ST a fully coherent signal control has been achieved throughout.
This method requires little to no additional hardware. It simply utilizes the information that is contained in the signals throughout the system to achieve a high stability frequency reference at a nominal ST cost.

APPENDIX D

ROUTER SURFACE ACOUSTIC WAVE (SAW) FILTERS

APPENDIX D
 ROUTER SURFACE ACOUSTIC WAVE (SAW) FILTERS

D1. SAW FILTER PREDICTEE PERFORMANCE VS REQUIREMENTS

Detai ed predictions of SAW filter performance requires a design exercise using a definitive set of filter requirements. : ch an exercise will be performed once the frequency plan is more firm than at present. The perforrnance limitatiors of this and paragraph D2 will serve to guide the final frequency plan definitions.

D2. LIMITS OF QUARTZ SAW FILTER BANDWIDTH VS CENTER FREQUENCY

Tre range of practical Quartz substrate SAW bandpass filter bandwidths as a function of center frequency is constrained for the given shape facter and amplitude ripple:

By loss in the case of maximum percent bandwidth
By the sizc of the minimum dimension which must be replicated (i.e. mask and photolithic resolution) in the case of maximum center frequency
By high order effects associated with the large number of transducer fingers required at higher center frequencies in the case of minimum bandwidth.

In addition, the SAW filter substrate length is primarily a function of baridwidth. A 1 MHz bandwidth will be accommodated by a 1 inch long substrate, a practical length.

The technology improvement for 1987 is in the area of mask and photolithograhic resolution. Optically generated masks are presently usable to 400 MHz while electronic beam generated masks are used to 500 MHz fundemental mox ; center frequencies.

As shown, wide bandwidth filters are limited to the upper If frequencies. Dus to switch frequency limitations, some SS-FDMA applications may require wide bandwidths at frequencies as low as 100 MHz . For these requirements Lithium Niobate SAW filters can be used. They provide several times the percent bandwidth of quartz filters; however. their center frequency ter.perature coefficient is $-90 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. For wide bandwidth filter:s (i.e., 5 to $12 \% \mathrm{BW}$) this coefficient is acceptable.

APPENDIX E
 MODULATION ANALYSIS

ORIGINAL PAGE IS OF POOR QUALITY

APPENDIX E MODULATION ANALYSIS

E1. TRADE-OFF CURVES

Trade-ON Curves. The modulation trade-off curves shown in the figure below and the results presented in this section are in support of material presented in Section 4.6. This data is based on a four pole Butterwurth transmission filter, an ideal matched filter (zero distortion), and a bit error rate (BER) of 10^{6}. The investigation is being expanded to more fully investigate filter types and filter order vs. carrier to noise power (CNR) degradation as well as investigating the employment of a nonideal receiver detector (i.e., an optimized raised cosine rolloff filter placed in the receiver).
The trade-off curve of normalized bandwidth efficiency (BT) in bits/sec/Hz vs. CNR degradation is presented in A below.

Minimum Traffic Channels Separation vs. Fitter Bandwidth. The curve is generated from:

$$
\text { CNR Degradation }=\int_{-\infty}^{\infty} H_{T f}(f)^{2} M(f) d i / \int_{-\infty}^{\infty} M(f) d t
$$

where: $H_{T A}(f)$ is the transfer function of the transmitting filter, and $M(t)$ is the power spectrum of the modulation waveform

BT is related to minimum channel separation within the satellite wideband SAW filters in the curve presented in B below. This curve follows the procedure defined in Kalet [IEEE Comm, Sept. 77] and White [IEEE Comm, Sept 77]

where tie measure of adjacent channel interference is the mean square crosstalk between channels. Following the design goals appearing in paragraph 4.6.1, the curve is derived for the maximum allowable CNR degradation due to crosstalk of 1 dB . Further, 20 dB relative adjacent channel interierence level inferred is from the uplink and downlink rain fade control (power adjustment, plus coding) as a worst case condition, and is used as a critical performance parameter.

E2. BANDLIMITED PERFORMANCE COMPARISON

					Degradation Due to	
Modulation Format	Filter BW	Adjacent Channel In Level (dB)	Channel Separation	Degradation (dB) "A"	Total in Filt (dB) "B"	Degradation (dB) A $+B$
O- QPSK	$1.35 R$	0	$0.97 R$	1	0.5	1.5
	$1.05 R$	0	$0.79 R$	1	1.0	2.0
	$1.35 R$	20	$1.55 R$	1	0.5	1.5
	$1.05 R$	20	$1.25 R$	1	1.0	2.0
MSK	$1.35 R$	0	$0.89 R$	1	0.5	1.5
	$1.17 R$	0	$0.84 R$	1	1.0	2.0
	$1.35 R$	20	$1.25 R$	1	0.5	1.5
	$1.17 R$	20	$1.13 R$	1	1.0	2.0

RESULTS:

For the 4 pole butterworth transmitting filter, the receiver ideal matched filter and the BER $=10^{-6}$ considered in this report.

1. The limit on CNR degradation due to filtering losses of 1 dB is seen in the table above to restrict the filter bandwidth. For MSK to be 1.175 R (where $\mathrm{R}=$ data bit rate) O-QPSK to be 1.05 R .
2. The line drawn horizontally for $\Delta F / R=1$ channel separation, defines the maximum filter bandwidths allowed which satisly a 1 BIT/SEC/Hz bandwidth efficiency design goal. For 0 dB Adj channel interference lovel MSK bandwidth must be $\leq 1.6 \mathrm{R}$ and O -WPSK bandwidth must be $\leqslant 1.42 \mathrm{R}$.
For 20 dB Adj channel interference level MSK bandwidth must be $\leqslant 0 . .95 \mathrm{R}$ and O-WPSK bandwidth must b <0.8R.
3. From these considerations the bandlimited performance of O-QPSK and MSK, it is seen that the overall required bandwidth for either modulation technique is $1 \mathrm{BIT} / \mathrm{SEC} / \mathrm{Hz}$ for an adjacent channel interference level of 0 dB (the nominal no rain fades condition), and $1 \mathrm{BIT} / \mathrm{SEC} / \mathrm{Hz}$ for an adjacent channel interference level of $\mathbf{2 0 ~} \mathrm{dB}$ (the worst case condition; uplink and downlink rain fade)

APPENDIX F

DEMODULATOR EVALUATION

APPENDIX F DEMODULATOR EVALUATION

F1. O-OPSK DEMODULATOR SERIAL IMPLEMENTATION

The demodulator employs one HF9 demodulator MSIC in the serial detection of O-QPSK modulated signals. Inphase and quadrature data inputs to the IC are used for carrier phase error detection, clock regeneration. AGC generation, and data detection. In addition to the received modulated signal, the demodulator inputs a sync signal and a symbol rate select signal, both of which are supplied by the ST terminal processor. The sync signal precedes the received signal and is used to reconfigure the carrier and clock loops to enhance their acquisition characteristics. The symbol rate select input is provided to set the rate at which the data is sampled which is dependent upon whether or not FEC coding was performed at the transmitting site. The bias input sets the threshold decision level for the MGN bit when 2 bit soft decisions are desired.

F2. HF9 DEMODULATOR MSIC

The HF9 demodulator MSIC is implemented on Motorola's GEG's HF9 gate array developed on the Baseband Processor Subsystem project funded by NASA. MOSAIC I technology was utilized in the fabrication process in conjunction with emitter coupled logic design techniques to optimize the speed-power tradeoffs. The primary functions performed by the HF9 demodulator MSIC are carrier phase detection, clock regeneration and phase acquisition, two bit soft decision, and AGC. Nominal logic levels are $O \mathrm{~V}$ and -0.5 V and maximum power consumption is 360 mW at $\mathrm{V}_{\mathrm{EE}}=-4.0 \mathrm{~V}$.

F3. DEGRADATION BUDGET FOR PARALLEL AND 8ERIAL Q-QPSK MODEMS

The various sources of degradations listed represent the primary contributors to the sub-optimum performance exhibited by the modem. The associated values of degradation are a result of previous experience with similar modems that have been built and tested and various theoretical analyses that have been performed in the past. While the serial modem appears to have a minimal advantage over the parallel approach, it is important to note that it is much less sensitive to variations in the magnitude of the degradation sources than is the parallel structure. In other words, the increase in the total degradation for a serial modem will be substantially less than that of the parallel modern for a given increase in one of the source degradations.

F4. O-QPSK MODULATION DETECTION USING THE HF9 DEMODULATOR MSIC

- Simple demodulator configuration
- Decreased hardware complexity
- Reduced sensitivity to conventional sources of degradations
- Employes the technology developed on the baseband processor effort

O-QPSK moduiation detection is performed in serial fashion with the HF9 demodulator MSIC. The serial structure is no more complex than a biphase demodulator yet provides better overall performance over the conventional parallel approach to O-QPSK modems when married with a serial modulator structure. This is a result of the simple hardware configuration and the corresponding reduced sensitivity to the typical sources of degradations. These sources of degradation include quadrature phase misalignment, static carrier phase error, and channel amplitude imbalances. In addition, the serial provides full rate data and clock without the need to multiplex as is typical of parallel detection schemes. Another driver in this type of detection scheme is that it takes advantage of the MSI circuit technology developed on the Baseband Processor Subsystem effort funded by NASA.

APPENDIX G
 ERROR CORRECTION CODING/DECODING

APPENDIX G ERROR CORRECTION CODING/DECODING

G1. FORWARD ERROR CORRECTION CODING/DECODING OPTIONS

Convol Code Rate	K	Sym Rate R_{3}	Data Rate R_{b}	E_{d} / N_{0} (Min) (dB)	E_{2} / N_{0} (Min) (dB)	Rel Band Width	Availability
Uncoded		1	1	10.6	10.6	1	Yes
1/3	5	3	1	5.6	0.8	3	Yes
1/2	5	2	1	6.0	3.0	2	Yes
1/2	5	2	1	7.0	3.0	$2(\mathrm{Q}=4)$	Yes
2/3	6	3/2	1	4.4	2.6	3/2	New Dev Req

Baseline Conv. Code R = 1/2, K=5 2 Bit Soft Dec. (BBP-MCD and Demod Comb)
$P_{\mathrm{b}}<10^{-6}$
$\frac{E_{g}}{N_{o}}$ (Minimum) Relative to Uncoded Value
Relative Bandwidth Required Compared to Uncoded for Full Throughput
Availability as a Result of $30 / 20 \mathrm{GHz}$ Program Tech. Dev.
Forward error control can be enhanced by the use of error detection and correction coding. The SS-FDMA message format lends itself best to convolutional encoding and maximum-likelihood decoding. This is the most efficient and powerful method except perhaps for higher coding or concatenated routing methods. The above table lists the practical capability of severa! convolutional codes referenced to an uncoded channel.
Although greater potential gain exists using some of the other listed methocis, a rate $1 / 2$, constraint length 5 , four level soft-decision coding method was chosen for the baseline. This permits the use of the Maximum-Likolihood Convolitional Decoder (MCD) currently under development on the $30 / 20 \mathrm{GHz}$ Baseband Processor program. The decoder can provide either rate $1 / 2$ or rate $1 / 3$ decoding, but a rate $1 / 3$ code requires excessive bandwidth. It can also use 1 , 2. or 3 bit soft-decision. However, the baseband processor demodulator chip provides a two-bit soft-decision intrinsically.

APPENDIX H.

TRAFFIC MODELS

APPENDIX H
 TRAFFIC MODELS

H1. TRAFFIC MODEL OVERVIEW

- Traffic Model A: 2204 ST Stations located in 45 major metropolitan areas-BBP TDMA Model
- Traffic Model B: $\quad 10,000$ ST Stations distributed among the 277 standard metropolitan statistical areas (U.S. Statistical Abstract, 1979) - potential FDMA operational model
- Voice, video, and data signals are transmitted using independent carriers
- Changes in the traffic matrix occur slowly
- Intra-spot tratic not handled by this system
- Satellite in geosynchronous orbit at approximately $100^{\circ} \mathrm{W}$ Longitude

Traffic Models A and B of the NASA FDMA SOW essentially ar 3 designed with two purposes in mind. Traffic Model A is similar to the tratfic model used for the SS-TDMA system.

Traffic Model B, however, represents a likely FDMA market. It features several thousand single-channel ground stations whoses simplicity will compete with the terrestrial network for long distance communications. This low-cnst ierminal is the main selling point of the FDMA system.

Trafic Model A sperifies 2204 ST stations distributed among 45 major metropolitan areas. These cities and their total ST traffic are the same as for the TDMí system.

Traffic Model B specifies 10,000 ST stations distributed among the 277 standard metropolitan statistical areas as defined in the U.S. Statistical Abstract for 1979. These stations are distributed among the SMSA's in direct proportion to population. The total ST traffic handled by mode! B is defined to be the same as that handled by Traffic Model A.

Motorola has made several reasonable assumptions regarding both traffic riodels. The first of these is that voice, video, and data signals are transmitted using independent carriers. Motrrola also assumes that changes in the traffic matrix occur slowly. Sufficient bandwidth will be allocated for projected peak loads, but any additional changes in loading which may require swapping of bandwidths will occur witn time scales on the order of minutes and hours, not milliseconds.

It is likely that the SS-FDMA system can compete economically with terrestrial networks within a particular spot beam area. Thus, intra-spot traffic will not be handled by this system. The final position of the satellite has yet to be chosen by NASA; however, for CONUS coverage, the satellite will be located at approximately $100^{\circ} \mathrm{W}$ longitude.

H2. TRAFFIC MODEL BASELINE

- Traffic models are based on Western Union, ITT, and TRW studies, along with NASA refinement.
- Models are statements of terminal capacities, numbers of stations, and quantity of traffic from metropolitan areas.
- ST-TRUNK and TRUNK-ST cross-traffic interconnect occurs on the ground at the trunking stations.
- Hardwired paths result in router simplification, but the amount of switched traffic versus hardwired traffic will evolve out of Motorola's system study.

The traffic models stated in the NASA FUMA SOW have been culled from studies done by Western Union, ITT, and TRW. NASA itself has also provided some input, especially in relation to Traffic illodel B. These models are essentially only statements of terminal capacities, numbers of stations, and quantity of traffic from major metropolitan areas.

Motorola was mandated by the NASA SOW to ignore trunking traffic, with the exception of providing bandwidth for it in the frequency plan. However, there is a certain amount of "cross-traffic" which must be handied, i.e., traffic from a ST station to a trunking station, and vice versa. The most econom:cal solutiol, to this problem is to place the interconnect burden on the few trunking stations, not on the more numerous ST stations. The trunking stations would thus have the equivalent of a ST terminal on their premises.

A requirement of the SOW stated that 40% of the traffic originating and ending among the 18 largest cities be routed by hardwired paths within the ST ro $\quad 7$ assembly. Hardwired paths reduce the router complexity, but also reduce the flexibility of the system. The amount of switched versus hardwired traffic will evolve out of the system study.

H3. SALIENT FEATURES OF TRAFFIC MODEL A

- Total ST traffic load of $3.8 \mathrm{~Gb} / \mathrm{S}$ distributed among 45 cities in proportion to the amount of generated traffic
- Forty-five cities covered by 40 spot beams; each spot beam is 0.3° HPBW (approximately 150 miles in diameter)
- In spots with no trunking stations, the trunking band could carry ST traffic
- Carrying ST traffic in the trunking band would double the effective frequency reuse (normal reuse $=$ six times)
- Voice channels dominate the traffic model (87 percent) and 50-65 percent of the data rate.

There are 45 cities specified in Traffic Mode: A , with a total amount of ST traffic of $3.8 \mathrm{~Gb} / \mathrm{s}$. The traffic destined for a particular city is in proportion to the amouni of traffic generated by that city. The 45 cities are covered by 40 antenna spot beams (five of the spots cover two cities each); each spot beam has a 0.3° halt-power beamwidth. Projected onto the surface of the earth from geosynchronous orbit. each spot beam has a diameter of approximately 150 miles.

There are 22 cities out of the 45 which carry trunking trafic. The other 23 do not. In these 23 locations, the 1.5 GHz -wide trunking band could be used to carry ST traffic. By using the trunking band in thnse locaticn:s without trunks, a doubling of the available spectruin would be possible 'based on a normal frequency reuse factor of $\mathrm{s} . \mathrm{x}$).

Voice channels dominate the ST traiiic. Wideband channels ($1.5 \mathrm{Mb} / \mathrm{s}$ and $6.3 \mathrm{Mb} / \mathrm{s}$) use 1.3% of the channels but represent 29% of the data rate

H4. TRAFFIC MODEL A DEFINITION OF TERMINAL CLASSES ($64 \mathrm{~Kb} / \mathrm{s}$ VOICE CHANNELS)

ST Terminal Class	Number of Channels	Channel Data Rate (Bps)	Use	Maximum Composite Data Rate (Mbps)
E	240	64K	Voice	33.84
	2	1.5M	Date	
	20	56K	Data	
	1	6.3M	Video	
	5	1.5M	Video	
	10	56K	Video	
F	60	64K	Voice	5.732
	5	56K	Data	
	1	1.5M	Video	
	2	56K	Video	
G	12	64K	Voice	0.88
	1	56K	Data	
	1	56K	Video	

There are three classes of ST terminals in Traffic Model A. Type E terminals have a composito data rate of 33.84 Mb / s; there are 80 such terminals distributed among the 45 cities. Type F terminals have a composite data rate of $5.732 \mathrm{Mb} / \mathrm{s}$; there are 300 such terminals among the 45 cties. Type G terminals have a composite data rate of 0.88 Mb / s; there are 1824 such terminals distributed ameng the $\mathbf{4 5}$ cities of Traffic Model A.

H5. TRAFFIC MODEL A STATION AND CHANNEL SUMMARY FOR ST TRANSMITTED TRAFFIC

Station Type	Data Rate (Mb/s)	No. of Stations	Number of Channels					
			Voice (64K)	Data (56K)	Data (1.5M)	Video (56K)	Video (1.5)	Video (6.3)
E	33.84	80	19.200	1600	160	800	400	80
F	5.732	300	18,000	1500		600	300	
G	0.88	1824	21,888	1824		1824		
Total		2204	59,088	4924	160	3224	700	80
Percent			(87\%)	(7\%)	(0.2\%)	(5\%)	(1\%)	(0.1\%)
Total Data Rate (Mb / s)			3.782	275	240	181	1050	504
Percent			(63\%)	(5\%	(4\%)	(3\%)	(17\%)	(8\%)
Total Number of Stations $\quad=2.204$								
Total Number of Channels $\quad=68.176$								
Total ST-ST \& ST-Trunk Data Rate (Mb/s) $\quad=6,032$								
Total Number of ST Centers $\quad=\quad 45$								
Total Trunk - ST Data Rate (MB/s) $\quad 801$								
(not included in ibove total data rate)								

The figures shown here represent a composite traffic record for Traffic Mod \uparrow. These numbers represent the total available number of stations, channels, and data rate. They are not adjusted for NASA's peak bading.

Voice channels are seen to dominate. As shown, 87% of the channels and 63% of the data rate are devoted to voice. Wideband channels ($1.5 \mathrm{Mb} / \mathrm{s}$ and $6.3 \mathrm{Mb} / \mathrm{s}$) use only 1.3% of the channels, but 29% of the data rate.

Using NASA's peak loading per beam and assuming the peak load occurs simultaneously, there are 1110 stations active, with 30,000 channels active, resulting in about $3 \mathrm{~Gb} / \mathrm{s}$ total traffic.

It is likely that NASA's 50% of the stations on is more likely to be 50% of the channels in use. It is also likely that most of the stations will be on, but with varying channel loading. This means a higher polling requirement but probably a lower peak load.

H6. SALIENT FEATURES OF TRAFFIC MODEL B

- Total ST traffic load of $3.8 \mathrm{~Gb} / \mathrm{S}$ distributed among 277 cities in proportion to population
- Two hundred and seventy-seven cities covered by 71 spot beams; each spot beam is $0.3^{\circ} \mathrm{HPBW}$ (approximately 150 miles in diameter)
- In spots with no trunking stations, the trunking band could carry ST traffic
- Voice channels dominate the traffic model (85\%)

There are 277 cities specified in Traffic Model B, with a total amount of ST traffic defined as being equal to that in Traffic Model A, or $3.8 \mathrm{~Gb} / \mathrm{s}$. The amount of traffic originated from and destined to a particular city is in proportion to the population of that city. The 277 cities are covered by 72 antenna spot beams; each spot beam has a 0.3° halfpower beamwidth. Projected onto the surface of the earth from geosynchronous orbit, each spot beam has a diameter of approximately 150 miles.

As with Traffic Model A, there is a large number of spots which do not originate trunking traffic. In these spots, the 1.5 GHz-wide trunking band could be used to carry ST traffic.

Voice channels dominate the ST traffic load. Wideband channels ($1.5 \mathrm{Mb} / \mathrm{s}$ and $6.3 \mathrm{Mb} / \mathrm{s}$) use 1.5% of the channels but represent 41% of the data rate.

In order to handle traffic to and from the 71 spots without enormously increasing the size of the routing switch over and above the 40×40 switch required for Traffic Model A, some of the 71 spot beams may be combined onboard the satellite. This scheme would reduce the size of the routing switch to something manageable, but would also result in increased downlink power and reduced spectral efficiency.

H7. TRAFFIC MODEL B DEFINITION OF TERMINAL CLASSES ($64 \mathrm{~Kb} / \mathrm{s}$ VOICE CHANNELS)

ST Terminal Class	Number of Channels	Channel Data Rate (Bps)	Use	Maximum Composite Data Rate (Mbps)
E	30	64K	Voice	9.944
	1	1.5M	Data or Video	
	2	56K	Data	
	1	6.3 M	Video	
	2	56K	Video	
F	5	64K	Voice	1.988
	2	56K	Data	
	1	1.5M	Data or Video	
	1	56K	Video	
G	10	64K	Voice	0.696
	1	56K	Data	
H	5	64K	Vorce	0.432
	1	56K	Data	
	1	56K	Video	
1	5	64K	Voice	0.320
J	1	64K	Voice	0.064

There are six classes of ST terminals in Traffic Model B. Type E terminals have a composite data rate of $9.944 \mathrm{Mb} /$ s: there are 200 such terminals distributed among the 277 cities of Traffic Model B. Type F terminals have a composite data rate of $1.988 \mathrm{Mb} / \mathrm{s}$; there are 600 such terminals in Traffic Model B. Type G terminals have a composite data rate of $0.696 \mathrm{Mb} / \mathrm{s}$; there are 1600 such terminals in Traffic Model B. Type H terminals have a composite date rate of $0.432 \mathrm{Mb} / \mathrm{s}$; there are 1600 such terminals in model B. Type I terminals handle five $64 \mathrm{~Kb} / \mathrm{s}$ voice channels, for a composite data rate of $0.320 \mathrm{Mb} / \mathrm{s}$; there are 2400 such, terminals in Traffic Model B. Type J terminals consist of a single $64 \mathrm{~Kb} / \mathrm{s}$ voice channel; there are 3600 such terminal in Traffic Model B.

H8. TRAFFIC MODEL B STATION AND CHANNEL SUMMARY FOR ST TRANSMITTED TRAFFIC

The figures shown here represent a composite traffic record for Tratfic Model B. These numbers represent the total available number of stations, channels, and data rate. They are not adjusted for NASA's peak loading.
Voice channels are seen to dominate. As shown, 85% of the channels and 52% of the data rate are devoted to voice. Wideband channels ($1.5 \mathrm{Mb} / \mathrm{s}$ and $6.3 \mathrm{Mb} / \mathrm{s}$) use only 1.5% of the channels, but 41% of the data rate.
Using NASA's peak loading per beam and assuming the peak load occurs simultaneously, there are about 5000 stations active, with 24,000 channels active, resulting in about $3 \mathrm{~Gb} / \mathrm{s}$ total traffic.

It is likely that NASA's 50% of the stations on is more likely to be 50% of the channels in use. However, station type J is either on or off - a single channel. This might also be nearly true of types H and I as well. The number of active stations might be 6200 or $\mathbf{6 2 \%}$ of the tota!! In this case, the $\mathbf{5 0 \%}$ NASA criterion is not too far off.

H9. TRAFFIC MODEL REFINEMENT

- Change from $64 \mathrm{~Kb} / \mathrm{s}$ PCM to $32 \mathrm{~Kb} / \mathrm{s}$ CVSD voice channels
- Number of voice channels stays the same
- Overall data rate reduced to $2.8 \mathrm{~Gb} / \mathrm{s}$, a saving of some 25%
- For same BER, radiated power required is reduced by 3 dB
- CVSD voice can tolerate higher error rates for an equallay high quality channel
- Time zone effects on traffic flow
- Load peaks mid-morning
- Smaller peak mid-afternoon, gradual fall-off
- For inter-time-zone traffic, the load pattern changes in detail, but general shape remains the same
- Seasonal effects unimportant; believe their impact to be minimal
- Population shifts scoped through year 2000.
- Model B - Several small cities in the northeast lose their ST stations because of migration to the sunbelt.

Acting under subcontract to Motorola, Western Union has made refinements to the NASA traffic models as summarized above. A major recommendation involves a change from $64 \mathrm{~Kb} / \mathrm{s}$ PCM voice channels to $32 \mathrm{~Kb} / \mathrm{s}$ continuously variable slope delta modulation for all the ST voice link traffic.

Using $32 \mathrm{~Kb} / \mathrm{s}$ CVSD, the number of voice channels would remain the same, but the overall data rate required would be reduced to 2.7 or $2.8 \mathrm{~Gb} / \mathrm{s}$, an overall savings of some 25 percent. The radiated power required would be reduced by 3 dB for an equal bit error rate when using $32 \mathrm{~Kb} / \mathrm{s}$ CVSD instead of $64 \mathrm{~Kb} / \mathrm{s}$ voice.

A CVSD voice channel can tolerate higher error rates for an equally high quality channel, certainly to 10^{-3} for an additional saving of 3.5 dB when using coherent phase detection. Indeed. error rates as high as 10^{-2} can often be tolerated for still an additional 2.5 dB savings.

Traffic flow variations due to time zones were examined, showing a traffic peak during mid-morning, with a second, slightly smaller peak during mid-afternoon. This pattern did not undergo gross changes when inter-time-zone traffic was taken into account.

Fopulation studies show a trend of migration to the sunbelt. Scoped through the year 2000, these population shifts indicate that several small cities in the Northeast (Connecticut, Massachusetts) might lose their ST stations (model B), based upon the present method of distributing ST terminals in proportion to population.

H10. REVISED TRAFFIC MODEL A DEFINITION OF TERMINAL CLASSES (32 Kb/s VOICE CHANNELS)

	Nur.. er of Cha':nels	Channel Data Rate (Bps)	Use	Maximum Composite Data Rate (Mbps)
E	240	32 k	Voice	26.16
	2	1.5M	Data	
	20	56 k	Data	
	1	6.3M	Video	
	5	1.5M	Video	
	10	56 k	Video	
F	60	32 k	Voice	3.812
	5	56 k	Data	
	1	1.5M	Video	
	2	56 k	Video	
G	12	32 k	Voice	0.496
	1	56 k	Data	
	1	56 k	Video	

Changing from $64 \mathrm{~Kb} / \mathrm{s}$ PCM to $32 \mathrm{~Kb} / \mathrm{s}$ CVSD voice channels has changed Model A terminal classes in the following way. Numbers of channels have remained the same, but the composite data rates have changed.

- Terminal Type E has changed from $33.84 \mathrm{Mb} / \mathrm{s}$ to $26.16 \mathrm{Mb} / \mathrm{s}$, a reduction of 23 percent.
- Terminal Type F has changed from $5.732 \mathrm{Mb} / \mathrm{s}$ to $3.812 \mathrm{Mb} / \mathrm{s}$, a reduction of 33 percent.
- Terminal Type G has changed from $0.88 \mathrm{Mb} / \mathrm{s}$ to $0.496 \mathrm{Mb} / \mathrm{s}$, a reduction of 44 pecent.

H11. REVISED TRAFFIC MODEL B DEFINITION OF TERMINAL CLASSES ($32 \mathrm{~Kb} / \mathbf{8}$ VOICE CHANNELS)

ST Terminal Class Class	Number of Channels	Channel Data Rate (Bps)	Use	Maximum Composite Data Rate (Mbps)
E	30	32 k	Voice	9.044
	1	1.5M	Data or Video	
	2	56 k	Data	
	1	6.3M	Video	
	2	56 k	Video	
F	5	32 k	Voice	1.828
	2	56 k	Data	
	1	1.5M	Data or Video	
	1	56 k	Video	
G	10	32 k	Voice	0.376
	1	56 k	Data	
H	5	32 k	Voice	0.272
	1	56 k	Data	
	1	56 k	Video	
1	5	32 k	Voice	0.160
J	1	32 k	Voice	0.032

Changing from $64 \mathrm{~Kb} / \mathrm{s}$ PCM to $32 \mathrm{~Kb} / \mathrm{s}$ CVSD voice channels has changed Traffic Model B terminal classes in the following way. Numbers of channels have remained the same, but the composite data rates have changed.

- Terminal Type E has changed from $9.944 \mathrm{Mb} / \mathrm{s}$ to $\cong 044 \mathrm{Mb} / \mathrm{s}$, a reduction of 9 percent.
- Terminal Type F has changed from $1.988 \mathrm{Mb} / \mathrm{s}$ to $1.828 \mathrm{Mb} / \mathrm{s}$, a reduction of 8 percent.
- Terminal Type G has changed from $0.696 \mathrm{Mb} / \mathrm{s}$ to $0.376 \mathrm{Mb} / \mathrm{s}$, a reduction of 46 p . ent.
- Terminal Type H has changed from $0.432 \mathrm{Mb} / \mathrm{s}$ to $0.272 \mathrm{Mb} / \mathrm{s}$, a reduction of 37 percent.
- Terminal Type I has changed from $0.320 \mathrm{Mb} / \mathrm{s}$ to $0.160 \mathrm{Mb} / \mathrm{s}$, a reduction of 50 percent.
- Terminal Type J has changed from $0.064 \mathrm{Mb} / \mathrm{s}$ to $0.032 \mathrm{Mb} / \mathrm{s}$, a reduction of 50 percent.

H12. BELL BUSINESS LONG DISTANCE

One of the inputs used by Western Union when considering the temporal variations of voice traffic was a composite of Bell business long distance calls. The graph shows a very pronounced peak at about 10 a.m. (Eastern time), then a sharp drop during lunch hour, followed by an equally sharp rise to a second, smaliler peak at about $2 \mathrm{p} . \mathrm{m}$. The late-afternoon decrease in traffic seems to fall off more gradually than the rise in traffic in early morning.


```
RRICNA: --
    \because". He a.a.hY
```


H13. U.S. PEAK HOUR TRAFFIC CONSIDERING TIME ZONES

The composite peak hour traffic graph by Western Union shows two pronounced peaks. The first peak, at about 10:30 Eastern time, is due mainly to peak mid-morning traffic from the East coast. The second peak, at about 2 p.m. Eastern time, is nearly as large as the first. This is due to two contributions. A large portion of the traffic comes from East coast mid-afternoon traffic, while the rest of it comes from West coast mid-morning traffic. As the business day winds down, from east to west, there is a gradual decrease in late afternoon traffic.

H14. TASKS TO BE COMPLETED

- Refine Traffic Models A and B
- Redistribute $6.3 \mathrm{Mb} / \mathrm{S}$ and $1.5 \mathrm{Mb} / \mathrm{S}$ channels
- Recalculate traffic matrices
- Refine year 2000 projections of population growth and migration.
- Select method of combining 71 spot beams for Traffic Model B.

With regard to the traffic models, Motorda's major task is to assess the impact of changing from $64 \mathrm{~Kb} / \mathrm{s} \mathrm{PCM}$ to $32 \mathrm{~Kb} / \mathrm{s}$ CVSD voice channels. This directly affects the overall station and spot data rates, and thus influences the frequency plan, switch parameters, filter bandwidths, and synthesizer frequencies.
Western Union's major task is refining the traffic models so as to treat high-rate ($56 \mathrm{~Kb} / \mathrm{s}$ and $32 \mathrm{~Kb} / \mathrm{s}$) channels separately. This will result in new spot-to-spot tratfic matrices, and will illuminate the roles of the medium and highrate channels.

A lesser task for Western Union is to refine its year 2000 projections of population growth and migration, in order to provide some means of determining year 2000 ST terminal distribution.

APPENDIX I.

TRAFFIC MODEL REFINEMENT

11. PRESENTATION OUTLINE

TRAFFIC MODEL OVERVIEW

- Purpose
- Models
- Definitions
- Assumptions-Model A
- Assumptions-Model B

TRAFFIC MODEL REFINEMENT-MODEL A

- Effects of Time Zones
- Effects of Population Shifts
- Effects of Time Zones, after Population Shifts
- Peak Hour Traffic
- Peak Hour Traffic by Time Zone
- Trunking Station Configuration

TRAFFIC MODEL REFINEMENT-MODEL B

- Effects of Time Zones
- Peak Hour Traffic
- Peak Hour Traffic by Time Zone
- Trunking Station Configuration

The presentation on Traffic Model Refinement includes an overview, the major findings for Model A and the major findings for Model \mathbf{B}.

The overview includes an outline of the purpose, models, definitions and assumptions.
The results for Model A include the effects of time zone, the effects of population shifts, the effects of time zones after population shifts, peak hour traffic, peak hour traffic by time zone and trunking station configurations.

The results for Model B include the effects of time zone, peak hour traffic, peak hoo ir traffic by time zone, and trunking station configurations.

12. TRAFFIC MODEL OVERVIEW PURPOSE

EXPANSION/REFINEMENT OF TRAFFIC MODELS

In order to configure the spacecraft switch, arrive at the required capacity for each, spot beam, etc., it is necessary to obtain detailed information on the expacted traffic flow on each uplink.

To determine the traffic flow on each uplink, it is necessary to determine the peak hour traffic between each pair of metropolitan areas.

To gain an accurate understanding of the peak hour traffic between metropolitan areas, it is necessary to examine the effects of time zones, type of traffic, seasonal shifts and population shifts.

The examination of these effects was the purpose of Item 2.1: Expansion and Qefinement of Traffic Model A and Item 2.2: Expansion and Refinement of Traffic Model B.

13. TRAFFIC MODEL OVERVIEW MODELS

- Tro possible traffic models (i.e., Models A and B)
- Distillation of models generated by other studies and NASA
- Statement of terminal canacity, number of stations, quantity of traffic
- Expansion and refinement desired

NASA Lewis provided two possible traffic models, Models A and B, that might pertain to Customer Premise Service in the 1990s.

Traffic Model A specifies 2204 ST stations distributed among 45 major metropolitan areas while Traffic Model B specifies 10,000 ST stations distributed among 275 standard metropolitan statistical areas.

The models were a distillation of the traffic models Generdted by Western Union, ITT and TRW and involved further inderendent inputs from : ASA, itself.

The models were only statements of terminal capacities, likely numbers of stations, and the quantity of traffic expected to arrive from specified geogiaphicai torjations or spuls.

The intent of the NASA SOW was not to chalienge these models, per se, but to augment and refine them.

14. TRAFFIC MODEL OVERVIEW DEFINITICNS

- Low rate channels = 32 Kbps voice and 56 Kbps data/video less than 1.5 Mbps channels
- Medium rate channels $=1.5 \mathrm{Mbps}$ data/video
- High rate shannels $=6.3 \mathrm{Mbps}$ video

In the expansion of refinement of Traffic Models A and B, three channel rates were defined.
Channels with rates less than 1.5 MBPS, that is, 32 ! KBPS voice and 56 KBPS data/video, were called low rate channels.

The 1.5 MBPS data/vore channels were called medium rate channels.
The 6.3 MBPS videc channels we:e called high rate channels.

15. TRAFFIC MODEL OVERVIEW ASSUMPTIONS-MODEL A

- Voice channels-32 KBPS
- Traffic peak hour loading based on availability of channels
- All high rate channels on during peak hour
*- 50% of all other ch:nnels on during peak hour
- Traffic on high (medium) rate channels can pass only among areas that have stations with high (medium) rate channels
- Traffic on low rate channels can pass among cll areas
- Full duplex for aii channets
- Traffic distributed on a proportional basis
- Matrices of traffic between city pairs devcloped separately ior each rate
- Vuice circuit behavior used to modify models
- Seasonal shifts need not be considered
* Population shifts should be considered.

Twelve major assumptions were made when expanding and refining Traffic Model A. Nine of these assumptions were alsc made for Traffic Mocel B; the three that were not are notrod with an asterisk.

Voice channels should be 32 KBPS, not 64 KBPS as indicated in the NASA Models; the number of voice stations. Traffic peak hotir loading should be based upon the availability of channels, not the availability of stations.
*All high rate channels (i.e., 6.3 MBPS) should he considered on at 100 percent cI capacity during the peak hour. *Fifty percent of all other channels (i.e., meediurt and low rate channels) should be considered on at 100 percent of capacity during the peak hour.

Traffic on high (medium) rate charnels can pass only among metropolitan areas that have stations with high (medium) rate channels.

Traffic on low rate channels can jass ámong all metropolitan areas.
There is full duplex for all channels, i.e., a video link, a FAX' iink, etc., is ex: actly matched by return link.

The amount of traffic from one metropolitan area terminating at a second metropolitan area is proportional to the amount of traffic originating at the second area.
Matrices of CPS traffic between city pairs should be developed separately for each cnannel rate.
Voice circuit behavior (not different traffic patterns for each type of traffic) should be used to modify the traffic models.

Since reductions of traffic during various periods of the year will not affect a system designed for peak hour traffic loads, the effects of seasonal shifts need not be considered.
*Since population shifts are anticipatec, the effects of these shifts should be considered in Model A.
16. TRAFFIC MODEL OVERVIEW ASSUMPTIONS-MODEL B

- Voice channels-32 KBPS
- Traffic peak hour loacing based on availability of channels
- - 50% of all channels on during peak hour
- Traffic on high (medium) rate channels can pass oniy among areas that have stations with high (medium) rate channels
- Traffic on low rate channels can pass among all areas
- Full duplex for all channels
- Terminal types allotted to areas:
E to 45 areas
F to 100 areas
G to J to all 275 areas
- Traffic distributed on a proportional basis
- Matrices of traffic between city pairs developed separately for each rate
- Voice circuit tehavior used to modify models
- Seasonal shifte risad not be considered
- Effects of population shifts need not te considered

Twelve major assumptions were made when expanding the refining Traffic Model B. Three of these assumptions were not made for Traffic Model A; they are marked with an asterisk.

Voice channels should be 32 KBPS, iot 64 KBPS as indicated in the NASA Models; the number of voice channels should not change.
Traffic peak hour loading should be based upon the availability of channels not the availability of stations.
-Fifty p. cent o؛ all channels (i.e., high, medium and low rate channels) should be considered on at 100 percent of capacity during the peak hour.

Traffic on low rate charnels can pass among all metropolitan areas.
There is full duplex for all channels, i.e., a video link, a FAX link, etc., is exactly matcied by a return link.
"Terminal types should be allotted to metropolitan areas in the following manner:

- Eclass terminals allotted, one each to the 45 areas in Model A, with the remaining atiotted proportionally to these 45 areas according to the number of E terminals (plus one) allotted to these 45 areas in Model A.
- F class terminals allotted, one each, to the top 100 areas and the rest distributed by Market Distribution Model-MDM oyer the same 100 areas.
- G through J terminals distributed by the MDM to all 275 areas.

The amount of traffic from one metropolitan area terminating at the second metropolitan area is proportional to the amount of traffic originating at the second area.
Matrices of ST traffic between city pairs should be developed separately for each channel rate.
Voice circu:t behavior (not different traffic patterns for each type of traffic) should be used to modify the traffic models.
Since reductions of traffic during various periods of the year will not affect a system designed for peak traffic load, the effect of seasonal shifts need not be considered.
-Since the effect of population shifts on peak hour traffic were found to be insignificant in the refinement of Traffic Model A, these effects should not be considered in the refinement of Traffic Model B.

17. TRAFFIC MODEL REFINEMENT MODEL A EFFECTS OF TIME ZONES

Not Considering Population Shifts				
	Mbps	$\%$	Areas	$\%$
Channel Rates				
High-6.3	-75.6	12	12	
Med-1.5	-108.0	13	31	69
Low—<1.5	-200.8	13	45	100
Total	-384.4	13	88	65

A consideration of time zones resulied in a change in peak hour traffic amounts from 2.96 GBPS to 2.58 GBPS or a reduction of about 13 percert.

The reduction affected metrop tilan areas and the number of each type of channel in the following ways:

- 12 areas loss a total of 75.6 MBPS of 6.3 MBPS channels
- 31 areas loss a total of 108 MBPS of 1.5 MBPS chidnnels
- 45 areas loss a total of 200.8 MBPS of less than 1.5 MBFi channels

18. TRAFFIC MODEL REFINEMENT MODEL A EFFECTS OF POPULATION SHIFTS

Number/Percent of Mbps and
Number/Percent of Areas Affected

	Mbps	$\%$	Areas	$\%$
Channel Rates				
High-6.3	$(\pm) 12.6$	2	2	4
Med-1.5	$(\pm) 72.0$	9	18	40
Low-<1.5	$(\pm) 140.4$	9	45	100
Total	$(\pm) 225.0$	8	65	48

A consideration oi populaion shifts caused a tetal of 225 Mbps , or about 8 percent, of the peak hour traffic to shift among the 45 metrof litan aleas.

This shift of traffic affec:ea each type of channel and metropolitan areas in the following ways:

- 12.5 Mbps of 6.3 Mbps channels shifted between two areas
- 72.0 Mbps of 1.5 Mbps channels shifted among 18 areas
- 140.5 Mbps of less than 1.5 Mbps channels shifted among 45 areas

19. TRAFFIC MODEL REFINEMENT MODEL A EFFECTS OF TIME ZONES

After Considering Population Shifts Peak Hour Traffic Reduced: 2.96 to 2.58 Gbps

	Mbps	$\%$	Areas	$\%$
Channel Rates				
High -6.3	-75.6	12	11	24
Med - 1.5	-111.0	14	28	62
Low - <15	-202.3	13	45	$i u v$
Total	-388.9	13	81	60

The effects of considering time zones, after considering population shifts, were nearly identical to the effects before considering population shifts:

- Change in peak hour traffic amount: 2.96 Gbps to 2.58 or 13 percent
- 11 areas loss 75.6 Mbps of 6.3 Mbps channels
- 31 areas loss 111.0 Mbps of 1.5 Mbps channels
- 45 areas loss 202.3 Mbps of less than 1.5 Mbps channels

110. TRAFFIC MODEL REFINEMENT MODEL A PEAK HOUR TRAFFIC

By changing 64 Kbps voice channels to 32 Kbps voice channels and assuming 100%, rather than 50%, of the 6.3 Mbps channels on, the data rate throughput was reduced from 3.78 Gbps to 2.96 Gbps or by about 22 percent.

When not considering (i.e. 1982) and when considering (i.e., 2000) population shifts, two major peak hours of the day were found:

- the hour when the traffic was the greatest was 2:00 P.M.; traffic amount $=2.58 \mathrm{Gbps}$
- a second peak was found at 11:00 A.M.; trakic amc ant was 2.46 Gbps

A comparison of the two peak hour curves (i.e.. s.ot con idering and considering population shifts) indicated that population shifts had very little effect on peak hour trakiv ior each hour of the day.

111. TRAFFIC MODEL REFINEMENT MODEL A PEAK HOUR TRAFFIC BY TIME ZONE

The reduction due to a consideration of time zones affected total generated traffic in each time zone in the following ways:

- Eastern Time Zone loss 14 percent
- Central Time Zone loss 16 percent
- Mountain Time Zone loss 13 percent
- Pacific Time Zone loss 6 percent

The shift of traffic due to population shifts affected total generated traffic in each time zone in the following ways (before considering time zones)

- Eastern Time Zone loss 2.6 percent
- Central Time Zone gained 2.9 percent
- Mountain Time Zone gained 7.1 percent

ORIGINAL PAGE IS OF POOR QUALITY

- Pacific Time Zone did not change

A considc: xtion of both time zones and population shifts affected total generated traffic in each time zone in the following ways:

- Eastern Time Zone loss 14 percent
- Central Time Zone loss 17 percent
- Mountain Time Zone loss 13 percent
- Pacific Time Zone loss 6 percent

112. TRAFFIC MODEL REFINEMENT MODEL A TRUNKING STATION CONFIGURATION

	$\begin{aligned} & \text { Voice } \\ & 32 \text { Kbps } \end{aligned}$	Data		6.3 Mbps	Video 1.5 Mbps	56 Kbps
		1.5 Mbps	56 Kbps			
Number of Channels	7209	26	600	26	98	372

In order to determine the type of equipment needed at trunking stations for ST service (i.3., the number of voice, data and video terminations at each and their bit rates) the split between ST \rightarrow ST traffic sources and ST \rightarrow Trunking traffic sources (i.e., the number of channels of each) was calculated. This was done by taking the percentage of each type of traffic as part of the total ST traffic and applying it to the satelite ter.ninal make up for the region. This procedure was employed for each type of channel for each of the 45 metropolitan areas. Then, for each type of channel the numbers of such channels allotted to $\mathrm{ST} \rightarrow \mathrm{T}$ were summed across metropolitan areas and this sum was allotted to the trunking terminals in proportion to the amount of traffic carried (i.e., $\mathrm{T} \rightarrow \mathrm{ST}$ traffic).

113. TRAFFIC MODEL REFINEMENT MODEL B EFFECTS OF TIME ZONES

Not Considering Population Shifts
Peak Hour Traffic Reduced: 2.83 to 2.46 Gbps

	Mbps	$\%$	Areas	$\%$
Channel riates				
High - 6.3	88.2	11%	11	4%
Med - 1.5	99.0	13%	50	18%
Low - <1.5	169.5	13%	275	100%
Total	356.7	13%	335	41%

A consideration of time zones resulted in a change in peak hour traffic amounts from 2.83 Gbps to 2.47 Gbps or a reduction of about 13 percent.

The reduction affected metropolitan areas and the number of each type of channel in the following ways:

- 11 areas loss a total of 88.2 Mbps of 6.3 Mbps channels
- 50 areas loss a total of 99 Mbps of 1.5 Mbps channels
- 275 areas loss a total of 169.5 Mbps of less than 1.5 Mbps channels

114. TRAFFIC MODEL REFINEMciNTS MODEL B PEAK HOUR TRAFFIC

By changing 64 Kbps voice channels to 32 Kbps voice channels the data rate throughput, before considering time zones, was reduced from 3.78 Gbps to 2.83 Gbps or by about 25 percent.

After considering time zones, two major peak hours of the day were found:

- the hour when the traffic was the greatest was 2:00 P.M.; traffic amount $=2.47 \mathrm{Gbps}$
- a second peak was found at 1 i:00 A.M.; traffic amount was 2.34 Gbps

ORIGINAL PAGE IS
OF POOR QUALITY

115. TRAFFIC MODEL REFINEMENT MODEL B PEAK HOUR TRAFFIC BY TIME ZONE

The reduction due to a consideration of time zones affected total generated traffic in each time zone in the following ways:

- Eastern Time Zone loss 14 percent
- Central Time Zone loss 16 percent
- Mountain Time Zone loss 9 percent
- Pacific Time Zone loss 4 percent

ORIGINAL PAGE IS' OF POOR QUALITY

U. 8. fins gomes mo prak monn omerantid tmarfic

- mot considering tim zones or population ehifte (tp)
- Comaldering time zonef, lsut not population uhifts (op)

116. TRAFFIC MODEL REFINEMENTS MODEL B TRUNKING STATION CONFIGURATION

	Voice	Data		Video		
	32 Kbps	1.5 Mbps	56 Kbps	6.3 Mbps	1.5 Mbps	56 Kbps
Number of Channels	6597	56	643	28	57	356

In order to determine the type of equipment needed at trunking stations for ST service (i.e., the number of voice, data and video terminations at each and their bit rates) the split between ST \rightarrow ST traffic sources and ST \rightarrow Trunking traffic sources (i.e., the number of channels of each) was calculated. This was done by taking the percentage of each type of traffic as part of the total ST traffic and applying it to the satellite terminal make up for the region. This procedure was employed for each type of channel for each of the 275 metropolitan areas. Then, for each type of channel the numbers of such channels allotted to $\mathrm{ST} \rightarrow \mathrm{T}$ were summed across metropolitan areas and this sum was allotted to the trunking terminals in proportion to the amount of traffic carried (i.e., $T \rightarrow$ ST traffic).

APPENDIX J

SIGNALLING INTERFACE

APPENDIX : SIGNALLING INTERFACE

J1. SIGNALLING INTERFACE

The function of the Signalling Interface is to translata between the digital format of the ST terminal orderwire circuit which communicates with the NCS and the hybrid digital/analog format required by the PABX or other telephone circuit connected to the terminal. There are two types of information that pass through the interface: supervisory and signalling.

Supervisory information refers to the status of the PABX or the terminal-whether it is active (signalling or talking) or inactive. This information is carried over the " E " and " M " leads by DC signals. The E lead carries the state of the terminal to the PABX and the M lead the state of the PABX to the terminal.

Signalling information consists of status defining tones-dial tone, busy tone, and reorder tone-and network address information (called party number). The network address can be carried by the talking circuit using DTMF ('touch-tone') tones or by DC pulsing the E and M leads. In the latter case the address information is distinguished from the supervisory information by its timing characteristics; i.e., address pulses are 10 Hz square waves, while supervisory state changes must persist at least 140 millisec.

ORIGINAL FEACK
 of POOR DMALITY

The design of the signalling interface has been based on a microprocessor controller, which handles all digital input and output, controls timing of signals, etc., together with external tone generating and detecting circuits. A common set of tone generators is used for the status tones, while the DTMF coder and dacoder are provided one per interface.

J2. DTMF DECODER

DTMF signals consist of a pair of tones selected from two groups of four (artually 1:4 and 1:3 because the fourth tone of the second group is not normally used). The DTMF decoder must recognize the presence of two simultaneous tones of a given minimum duration (23 millisec.) with a wide range of relative ievels between the high and low tones ("twist" up to 4 dB). This must be done in the presence of dial tone. Single tone, triple tones, voice signals, etc. must be rejected.

The circuitry that accomplishes this is shown in the figure. After conversion from balanced to signal ended, filters are used to reject dial tone and power line noise. The two frequency bands are then separated and the resulting signals hard limited. Two groups of bandpass filters then look for a pair of tones. Digital logic then insures correct tone reccurition--minimum time present, proper number of tones, etc. The sutput is a BCD digit corresponding to the tone pair. This is gated onto the microprocessor bus when the enable line is activated.

ORIGINAL PAGE IS

J3. DTMF ENCODER
OF POOR QUALITY
The DTMF encoder generates a pair of tones under command of the microprocessor contrc:ier. An eight bit inpu: word is used, seven bits to select the tone pair (1:4 and 1:3) and the eighth to gate the encoder on and off. The rones are digitally generated to insure accuracy, ?nd shaped by a resistor network to approximate a sine wave and minimize harmonics.

J4. TONE GATING

The tone gating circuit is used to select an appropriate tone on the DTMF coder for transmission to the PABX. Relays are used to connect the tones to the talking path toward the PABX, and disconnect the rest of the TIM. An eight bit word from the microprocessor bus is read into the latches and controls the state of the relays and gates. The tones are converted from unbalanced to balanced in a buffer circuit. The output resistors from this buffer provide the required 600 ohm termination for the line.

Separate reiays have been used for tone insert and disconnecting the voice processinc circuits of the TIM. This makes possible a test mode in which tones can be sent to the NCS (or other monitr.ing station) as a complete test of the tone generating, coding, decoding and voice processing portions of the terminal.

J5. TONE GENERATOR S:STEM (COMMON EQUIPMENT)

The status tones are used by any individual TIM only a small percentage of the time. Consequently they are being provided by a common circuit and bussed to each channel unit. Dial tone and busy tone are familiar to every telephone user. Reorder tone is used to inform a caller that the number he dialed cannot be reached because it is not on the system, wrongly formatted, etc.

Dial tone consists of 350 Hz and 440 Hz sine waves, mixed at equal levels. Busy and Reorder tones are made up of 480 Hz and 620 Hz sine waves mixed at equal levels and gated at one Hz for Busy tone and two Hz for Reorder tone.

Standard low frequency oscillator circuits, opamp adders and transission gates are used in this system.

J6. E\&M INTERFACE CIRC. IT

OF POOR QUALITY
E\&M leads are used to communicate supervisory and DC (pulse) signalling between the ST terminal and a PABX. The M lead carries information from the PABX to the termirial and the E lead carries information from the terminal to the PABX. Relays are used to provide ground and power isolation between the PABX and the terminal. Since the fastest pulsing rate is 10 pps , reed relays are used to prevent relay operating time from affecting operation.

When another interface (not E\&M) is required to match the external PABX or other user equipment, an exterial conversion unit will be used. This is industry standard equipment.

J7. MICROPROCESSOR CONTROLLER

A microprocessor controller will be used to handle the supervisory and signalling information passing between the PABX and the ST terminal. An 8051 single chip controller has been selected. This contains 4 kbytes of program store and 128 bytes of data store, which should be more than adequate for this application. Two of its general purpose input/output ports will be used for a data bus and the port selection function. A 4:16 line decoder generates the 16 possible selection signals (8 input and 8 output). Miscellaneous logic for timing functions, etc. has not been shown.

ORIGINAL PAGE IS
 OF POOR QUALITY

J8. OUTPUT E UFFER

The output buffer stores the customer dialed number (ADXO) and various status bits to make them available asynchronously to the orderwire. Groups of 8 bits consisting of two BCD dialed digits or 6 bits of status information are read into latches from the microprocessor controller data bus under control of latch enable signals from the controller. Three-state outputs have been provided which may be used by the orderwire system if desired.

d9. INPUT BUFFER

Input data from the orderwire to the signalling interface will consist of 7 BCD digits called party address (.ALㄷil) and 8 bits of status information, presented in parallel format. These will be read into the microprocessor controller, via its data bus, $\mathcal{\varepsilon}$ bits at a time, under control of enable signals from the controller.

J10. MICROPROCESSOR PROGRAMMING

ORIGINAL FAGE is
 Of POOR QUALITY

There are two possible processes occurring in the signalling interface-an incoming call or an outgoing call. These are basically complimentary process-only one occurs at a time-except for a possible overlap when both processes start simultaneously. This latter situation is called "Glare" and requires some special precautions to avoid system lock-up.

Because the microprocessor controller operates at microsecond speed while supervisory and signalling signals occur at millisecond speed, the program can be designed to operate in a polling mode, checking each input (M leads and orderwire input status word) alternately and branching to the appropriate subroutine depending on which becomes active.

J11. OUTGOING CALL

A simplified flow chart for an outgoing call is shown in the figure. When an M-lead OFF HOOK signal is recognized, the controller begins to hunt for either dial pulses or a DTMF signal. When it finds one it enters the appropriate subroutine to accumulate the called number and sends it to the orderwire output buffer (ADXO). When the number is complete the appropriate orderwire status flag is set. The controller then awaits a far-end off-hood signal from the orderwire to complete the call establishment sequence.

The above describes a normal call. There are many abnormal sequences, such as insufficient numbers dialed, glare, etc., which must be allowed for. The exact sequence of communication with the NCS must also be determined.

J12. INCOMING CALL

ORIGINAL PAGE IS OF POOR QUALITY

A simplified flow chart for an incoming call is shown in the figure. When the orderwire status line shows an incoming call, the called party acJress (ADXI) is read in. The terminal then signals OFF HOOK to the PABX, waits for a ready to accept dialing signal, and outpulses the number either as DTMF tones or as dial pulses. When number transmission is complete, the controller waits for an answer signal from the PABX. When this is transmitted to the NCS, the call establishment sequenco is complete.

Again abnormal events have not been shown.

ORIGINAL PAGE IS
 OF PUOR QUALITY

J13. CALL DISCONNECT

A simplified flow chart for call disconnect is shown in the figure. The initial disconnect signal may come from either end.

SUBJECT INDEX

Paçe
A SLICE THROUGH THE ROUTER 2-225-12
ADVANTAGES OF THREE DIMENSIONAL DESIGN $2-47$5-45
ALTERNATE FREQUENCY PLAN FOR TRAFFIC MODEL A. 4-31
ANTENNA CHARACTERISTICS FOR THE BASELINE SMALL TERMINALS 4.43
ANTENNA PARAMETRIC ANALYSIS 7-11
ANTENNA IECHNOLOGY 7.10
APPENDIX A - HIGH POWER AMPLIFIERS B-1
APPENDIX B - ROUTER ANALOG SWITCH C-1
APPENDIX C — FREQUENCY SYNTHESIZER D-1
APPENDIX D - ROUTER SURFACE ACOUSTIC WAVE (SAW) FILTERS E-1
APPENDIX E - MODULATION ANALYSIS F-1
APPENDIX F - DEMODULATOR EVALUATION G-1
APPENDIX G - ERROR CORRECTION CODING/DECODING. H-1
APPENDIX H — TRAFFIC MODELS |-1
APFENDIXI - TRAFFIC MODEL REFIT:EMEIVT J-1
APPENDIX J - SIGNALLING INTERFACE K-1
BANDWIDTH PERFORMANCE COMPARISON 4-39
BEAM AND FREQUENCY BAND ALLOCATION FOR TRAFFIS MODEL A 2-13
BEAM AND PATH FILTER MATRIX 5-4
BEAM AND PATH FILTER MATRIX FOR A NINE BEAM, THREE ZONE ARRANGEMENT 2-174-34
BILLING 6-5
BREADBOARD ACTIVITY 5-44
CANDIDATE FEED AND REFLECTOR CONFIGURATIONS - GROUND TERMINALS $4-43$
CHANNEL ARRANGEMENT. $2-14$4-30
CMOS RADIATION HARDENING 8-3
CODING FOR VOICE. LINK TRAFFIC 4-41
COMMERCIAL TEST EQUIPMENT. 5-47

SUBJECT INDEX (Cont)

Page
COMMUNICATION LINK SUMMARY 2-7
COMMUNICATION TRAFFIC MODEL 2-2
COMPOSITE PARAMETRIC ANALYSIS FOR AN LNA, HPA, AND ANTENNA (TRAFFIC MODEL A) 7-13
DOWNLINK SATELLITE TRANSMITTER COMPONENT COUNT FOR A TRAFFIC MODEL A 5-2?
DOWNLINK SATELLITE TRANSMITTER CONFIGURATION UNIQUE DUAL TRUNK/ST BEAM (TRAFFIC MODEL B - NEW YORK BEAM) 5-23
DOWNLINK SATELLITE TRANSMITTER CONFIGURATION TYPICAL SINGLE TRUNK/ST BEAM (TRAFFIC MODELS A AND B) 5-24
DOWNLINK SATELLITE TRANSMITTER CONFIGURATION TYPICAL ST BEAM (TRAFFIC MODELS A AND B). 5-24
DOWNLINK SATELLITE TRANSMITTER CONFIGURATION TYPICAL DUAL TRUNKIST BEAM (TRAFFIC MODELS A AND B) 5-21
ELECTRICAL CONFIGURATION FATIONALE 5-43
ENCODING 4-24
EXAMPLE OF BEAM ISOLATION CONTOURS 4-45
EXAMPLE SHOWING CONFLICT AND NEED FOR SYNTHESIZER WITH SINGLE ELEMENT SWITCHES 4-36
EXAMPLE SHOWING RESULT OF COLUMN INTERCHANGF. 4.36
FDM RELIABILITY MODEL ROUTER SWITCHING 5-9
FDM RELIABILITY MODEL ROUTER SWITCHING SINGLE PATH 5-9
FREQUENCY PLAN DESIGN ASSUMPTIONS 4-26
FREQUENCY SYNTHESIZER 2-465-43
FUNC:IONAL BLOCK DIAGRAM 4-39
FUNCTIONAL REQUIREMENTS 5-3
GENERAL. SWITCH CONFIGURATION FOR A 4×3 BEAM DATA TRANSFER 4.34
HPA PARAMETFIC ANALYSIS 7.11
KEY TECHNOLOGIES 4.10
KEY TECHNOLOGY IDENTIFICATION 2-36

SUBJECT INDEス̈ (Cont)

Prige
LINK BUDGET REFINEMENT (DISTRIBUTEI) MODEL). 4-20
LNA PARAMETRIC ANALYSIS 7-11
LNA TECHNOLOGY $7-9$
LSI 8×8 SWITCH REQUIREMENTS $2-40$
MAJOR SS-FDMA SUBSYSTEMS 2-3
MESSAGE ROUTE GAIN VARIABILITY (DOWNLINK) 4-56
MESSAGE ROUTE GAIN VAFIABILITY (ROUTER PROCESSING) 4-56
MESSAGE ROUTE GAIN VARIABILITY (UPLINK) 4-54
MODULATION, CODING, RAIN FADE COMPENSATION 2-7
MONITOR, SENSINIG AND CONTROL 4-24
MOTOROLA SPECIAL LIST EQUIPMENT ROW/COLUMN SWITCH INTERFACE 5-50
MOTOROIA. SPECIAL TEST EQUIPMENT INPUT NETWORK MONITOR AND CONTROL 5-50
MOTOROLA SPECIAL TEST EQUIPMENT MECHANICAL CONFIGURATION 5-54
NOTOROLA SPECIAL TEST EQUIPMENT NOISE SOURCES 5-50
MOTOROLA SPECIAL TEST EQUIPMENT OUTPUT NETWORK MONITOR AND CONTROL 5-50
MOTOROLA SPECIAL TEST EQUIPMENT UPLINK AND DOWNLINK SIMULATOR 5-5C
MULTICHANNEL ST BLOCK DIAGRAM $2-28$4-67-3
MULTIPLE ACCESSING 4-49
NCS BLOCK DIAGRAM 2-264.7
NCS FUNCTIONAL REQUIREMENTS 2-24
NCS PERFORMANCE SUMMARY 2-27
NETWORK ROUTING MANAGEMENT4.9
NUMERICAL TABLES TRAFFIC MODEL A COMPONENT COUNT DOWNLINK ST CHANNEL AGC ASSEMBLY $5-28$
NUMERICAL TABLES TRAFFIC MODEL \triangle CON:DONENT COUNT AGC ASSEMBLY 5-36
NUMERICAL TABLES TRAFFIC MODEL. B COMPONENT COUNT DOWNLINK SATELLITE TRANSMITTER $5-35$

SUBJECT INDEX (Cont)

Page
NUMERICAL TABLES TRAFFIC MODEL B COMPONENT COUNT UPLINK SATELLITE RECEIVER 5-33
OPERATION AND MAINTENANCE 6-4
CRDERWIRE SUBSYSTEM DESCRIPTICN. 7.7
OVERLAP SWITCHING 4-36
O-QPSK DEMODULATION SERIAL IMPLEMENTATION DESCRIPTION 7-15
PART OF THE ROUTER POC/ST TOP LEVEL BLOCK DIAGRAM 5-47
POC DEVELOPMENT GOALS 2-36
POC ROUTER BLOCK DIAGRAM 2.44
5-41
POC ROUTER BRASSBOARD FUNCTIONAL REQUIREMENTS 5-41
POC RUUTER BRASSBOARD MECHANICAL DEFINITION 2-46
POC ROUTER BRASSBOARD PERFORMANCE REQUIREMENTS 2-435-46
POC ROUTER DESCRIPTION5-41
POC ROUTER GAIN DISTRIBUTION 2.45
POC ROUTER LAYOUT5-42
POC ROUTER THREE DIMENSIONAL MECHANICAL DESIGN 2-47
5.44
POC SECTOR BLOCK DIAGRAM 2.40
POC SECTOR BRASSBOARD MECHANICAL DEFINITION 2-42
POC SECTOR BRASSBOARD PEZRFORMANCE REQUIREMENTS 2-39
POC SECTOR DESCRIPTIONS 2-38
POC SECTOR GAIN DISTRIBUTION 2.40
RAIN FADE CHARACTERISTICS 4-15
RAIN FADE COMPENSATION METHODS 4-18
RAIN FADE COMPENSATION SCENARIO 4.16
RAIN FADE MARGIN VS. AVAILABILITY 4-14
RAIN FADE WITHOUT COMPENSATION SCENARIO. 4-16

SUBJECT INDEX (Cont)

Page
RECEIVER ASSEMBLY TRAFFIC MO JEL A 5-30
RECEIVER ASSEMBL.Y TRAFFIC M? JEL B 5-38
RECOMMENDED SS-FDMA PLANNINS ORJECTIVES 10-2
REQUIREMENTS AND CO*: ITTIONS AND CANDIDATE MODULATION FORMS 4-38
ROUTER ARCHIIECTUAE SUMMARY 4.33
ROUTER BLOCK DIAGRAM 5-6
ROUTER CHARACTERISTICS 5-8
ROUTER CONFIGURATION 2-192-38
5-4
ROUTER FUNCTIONAL REQIIIREMENTS 2-21
ROUTER INPUT SEGMENT 5-6
ROUTER LAYCUT 2-225-12
ROUTER OUTPUT SEGMENT 5-6
ROUTER POC/STE TOP LEVEL BLOCK DIAGRAM (PART 1) $2-48$
ROUTER POCISTE TOP LEVEL BLOCK DIAGRMA (PART 2) 2-49
ROUTER RELIABILITY SUMMARY 2-24
ROUTER SWITCH AND SAW FILTER TECHNOLOGY 5-42
ROUTER SWITCH COMPLEXITY $2-18$
ROUTER SWITCHING DESIGN GENERAL 4.33
ROUTER IECHNOLOGIES 5.17
ROUTING INTERFACE $5-11$
SATELLITE ANTENNA REQUIPEMENTS AND CHARACTERISTICS 4.44
SATELLITE BLOCK DIAGRAM 2.54.3
SATELLITE COMMUNICATION PAYLOAD CHARACTERISTICS 2.34.4
SATELLITE CONTROL LINK PERFORMANCE CHARACTERISTICS 4-51
SATELLITE RF BEAM POIVER VS. RAIN FADE COMPENSA TION METHODS 4-20

SUBJECT INDEX (Cont)

Page
SATELLITE RF POWER BY TERMINAL TYPE VS. RAIN FADE COMPENSATION METHODS 4-19
SATELLITE RF POWER REQUIREMENT ST TRAFFIC 2-9
SATELLITE RF POWER REQUIREMENTS 4-13
SATELLITE ROUTER REQUIREMENTS 4-32
SATELLITE ROUTER SIMPLIFIED BLOCK DIAGRAM 2-19
SATELLITE ST ROUTER ASSEMBLIES TRAFFIC MODEL B 5-14
5-31
SATELLITE ST ROUTER ASSEMBLIES TRAFFIC MODEL A 5-14
SATELLITE-ST-NCS ROUTING ROLES 3-25-39
SAW FILTER DESIGN 2-42
SECTOR POC/STE BLuCK DIAGRAM 2-43
SMALL TERMINAL EQUIPMENT CHARACTERISTICS SL!MMARY (BER $1 \times 10{ }^{6}$) 7-4
SMALL IT.MINAL ORGANIZATION 7-1
SMALL TERMINAL RF CHARACTERISTICS SUMMARY (BER 1×10^{6}) 2-29
SMALL TERMINAL RF POWER REQUIREMENTS 4-12
SMALL TERMINAL RF POWER VS. RAIN FADE COMPENSATION METHOD'S 4-18
SS-FDMA INTERCONNECTIONS 4-57
SS-FDMA PROGRAM CONCLUSIONS 10-1
SS-FDMA SATELLITE PAYLOAD 2-5
SS-FDMA SYSTEM CHARACTERISTICS 2-2
SS-FDMA TECHNICAL RĒCOMMENDATIONS 10-1
SS-FDMA 1982 SYSTEM TECHNOLOGIES 3-1
SS-FMDA SYSTEM CHARACTERISTICS 4.2
ST ANTENNA 7-11
ST if FREQUENCY SELECTION REQUIREMENTS 5-11
ST LNR 7-10
ST ORDERWIRE BEAM CONCEPT (NEW YORK BEAM TRAFFIC MODEL A) 6-6
ST ORDERWIRt •. IARACTEFISTICS 2-31

SUBJECT INDEX (Cont)

Page
ST ORDERWIRE SYSTEM CONCEPT TRAFFIC MODEL A 6-6
ST ORDERWIRE SYSTEM CONCEPT TRAFFIC MODEL B 6-7
ST POTENTIAL RF TECHNOLOGIES DESCRIPTION 7.9
ST POWEH REQUIREMENTS 7-15
ST RECEIVE, TRANSMIT AND INTERFACE CHARACTERISTICS 2-30
ST ${ }^{\top}$ IECEIVE, TRANSMIT, AND INTERFACE CHARACTERISTICS 7.5
ST ROU`ER SIZE, WEIGHT, AND POWER SUMMARY $2-23$
ST TRAFFIC BEAM SPOT FREQUENCY ALLOCATION TRAFFIC MODEL B UPIIINK 4-28
ST TRAFFIC BEAM SPOT FREQUENCY ALLOCATION TRAFFIC MODEL B 2-15
ST TRAFFIC-CITY AND FREQUENCY BAND ALLOCATION FOR TRAFFIC MODEL A UPLINK 2.12
ST TRAFFIC-CITY AND FREQUENCY BAND AILLOCATION FOR TRAFFIC MODEL A 2-11
ST TRAFFIC-CITY AND FREQUENCY BAND ALIOCATION FOR TRAFFIC MODEL A UPLINK 4-27
ST TRANSMIT, RECEIVE AND INTERFACE CHARACTERISTICS 4-7
SYSTEM ARCHITECTURE SUMMARY (TRAFFIC MODEL A) 2-324-58
SYSTEM ARCHITECTURE SUMMARY (TRAFFIC MODEL B) 2-33
SYSTEM BLOCK DIAGRAM 2-34-59
SYSTEM CONTROL CONCEPT
 4-48
SYSTEM CONTROL PERFORMANCE CHARACTERISTICS DESCRIPTION 4.512.24
SYSTEM CONTROL REQUIREMENT 4-47
SYSTEM FREQUENCY SYNCHRONIZATION
SYSTEM GAIN LEVEL MONITOR AND CONTROL 4.57
SYSTEM GAIN LEI EL VARIATION SUMMARY 4-54
SYSTEM TIMING SYNCHROIJIZATION 6-4
TECHNOLOGY DEVELOPMENT 2.37

SUBJECT INDEX (Cont)

Page
TECHNOLOGY EVALUATION 2-37
TERMINAL CAPACITY $7-4$3-5
TERRESTRIAL INTERFACE SUBSYSTEM DESCRIPTION 7-8
TEST DEFINITION 2.49
TESTING DEFINITION MATRIX ROUTER TESTING 5-53
TESTING DEFINITION MATRIX SECTOR TESTING 5-53
THREE DIMENSIONAL POC MECHANICAL MODEL 2-47
THREE DIMENSIONAL POC MECHANICAL MODEL 5-45
TRAFFIC FREQUENCY PLAN 4-25
TRAFFIC MODEL A CITIES ANTENNA BEAM SPOTS 4-45
TRAFFIC MODEL A SUMMARY 5-29
TRAFFIC MODEL A TRANSPONDER BLOCK DIAGRAM. 5-25
TRAFFIC MODEL B CITIES ANTENNA BEAM SPOT 4-452-16
TRAFFIC MODEL B SUMMARY 5-37
TRAFFIC MODEL B TRANSPONDER BLOCK DIÂGRAM 5-33
TRAFFIC TRANSMITTER AND RECEIVER SUBSYSTEMS DESCRIPTION 7-9
TRANSMITTER ASSEMBLY TRAFFIC MODEL A 5-29
TRANSMITTING ASSEMBLY TRAFFIC MODEL B 5-37
TRANSMITTER TECHNOLOGY 7-10
TRANSPOPJDER SIZE, WEIGHT, POWER 2-10
TRANSPONDER SUBSYSTEM SIZE, WEIGHT, AND PJWER SENSITIVITIES 5-40
TRUNKING AND ST FREQUENCY PLAN REQUIREMENTS 2-10
UPLINK SATELLITE RECEIVER COMPONENT COUNT FOR A TRAFFIC MODEL A. 5-27
UPLINK SATELLITE RECEIVER CONFIGURATION DUA'- TRUNK/ST BEAM (TRAFFIC MODELS A AND B) 5-18
UPLINK SATELLITE RECEIVER CONFIGURATION SINGLE TRUNK/ST BEAM (TRAFFIC MODULE A AND B) 5-19
UPLINK SATELLITE RECEIVER CONFIGURATION TYPICAL ST BEAM (TRAFFIC MODELS A AND B) 5-20

SUBJECT INDEX (Cont)

Page
USER ACCESS PROTOCOL 4-49
USER AND USER SIGNALLING/SUPERVISION. 3-2
USER INTERFACE 3-2
1987 PROJECTIONS CMOS TECHNOLOGY 8-2
1987 PRO,IECTIONS FOR BIPOLAR RANDOM LOGIC 8-1
1987 PROJECTIONS FOR IMPROVED SWITCH PERFOP:MANCE 8-2

[^0]: *For sale by the National Technical Information Service, Springfield, Virginia 22161

[^1]: -The BER test is only applicable to the POC Router End-to-End test.

[^2]: -Further frequency translations are accomplished with the ST Router to accommodate the restricted switching bandwidth

[^3]: -The combinations are: Trunk A with ST 1 or 2 or 3 ; Trunk B with ST 1 or 2 or 3; Trunk C with ST 1 or 2.

[^4]: 'ST band 3 and trunk band C are not permitted simultaneously, all other combinations of A trank band and ST band are permitted

