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Rotordynamic instability problems are not uncommon in high speed industrial

turbomachinery. One type of the many destabilizing forces that can occur is caused

by a rub between the stationary and rotating parts.

Descriptions are given of several cases of rub induced instabilities. Included

in the descriptions are the conditions at onset, the whirl frequency and direction,

and the steps taken to eliminate the problem.

INTRODUCTION

Rotordynamic instability problems are not uncommon in high speed industrial

turbomachinery. Actually, a large percentage of industrial machines operating at

high speed will sustain some low level subharmonic vibrations even during normal

operation. Some of these units have been observed to develop instability problems.

One mechanism that has been responsible for some of these instabilities is a rub

between the rotating and stationary parts.

The mechanics involved during a rub have been described by several authors.

Den Hartog (ref. 1) describes rubs from the standpoint of dry friction whip with

Coulomb friction between the rotating and stationary parts providing the destabi-
lizing force. Ehrich (ref. 2) added stator flexibility to this model in an attempt

to define the conditions necessary for a rub to be unstable since not all rubs pro-
duce instabilities. Both analyses conclude that the instability should produce a

backward whirl at the rotor natural frequency.

Bentley (ref. 3) proposed and experimentally demonstrated that several mecha-

nisms, including a partial rotor-stator rub, could produce a subsynchronous

vibration due to the periodic variation it causes in the rotorWs support stiffness.

The subsynchronous vibration was stated to occur most often at exactly 1/2 the run-

ning speed when operating at or slightly above twice the first critical speed. The
_hirl direction could be forward, backward, or even in a single plane. Although

less common, the whirl frequency was noted to also have occurred at 1/3 and 1/4

running speed. It was also stated that it was possible, but not likely, for the

subharmonic to occur at 1/5, 1/6 .... and 2/3, 3/4, 2/5, 3/5 .... of running

speed. This parametric excitation mechanism was further analyzed by Childs (ref. 4
and 5). The rub model used included the effects of both Coulomb friction and the

* This work was funded by The Hartford Steam Boiler Inspection and Insurance

Company.
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periodic variation in support stiffness. The analysis indic&ted that zones of
instability exist around integer multiples of the first critioal speed within which

a rub could cause an instability to occur. The frequency of the whirl would occur

at slightly more than the first critical speed causing a vibration at exactly 1/2,

1/3, . . of running speed. The possibility that the rub would be unstable was found

to be primarily dependent on the amount of damping of the first mode, the magnitude

of the Coulomb friction factor, and a parameter q which represents several param-

eters that essentially indicate the severity of the rub. An unstable rub was found

to be promoted by low damping, a high friction coefficient, or a high q factor,
i.e., a severe rub.

In this paper some field experiences with rub induced instabilities are re-

viewed. As with most industrial problems, the pressure to resume production often

prevented a more detailed investigation. But most of the essential characteristics

involved are presented including the conditions at onset, the whirl frequency, the

direction of whirl, and the steps taken to correct the problem. Some rubs, of

course, have occurred that were not unstable, such as the one shown in figure 1 from

a 5000kw turbine generator. These are usually characterized by increases in the

higher order harmonics as well as a general increase in the low level broad band

vibration. While these types of rubs can be serious, it is usually the unstable

rubs that have the most potential for damage and so are of deep concern to the in-

dustry.

BACK PRESSURE _RBINE ON SYNTHESIS GAS COMPRESSORS

Figure 2 shows a schematic of a 20,000 H.P., 11,000 rim Synthesis Gas Com-

pressor train composed of a condensing turbine, a back pressure turbine, a low pres-

sure and a high pressure compressor. The back pressure turbine, or topping turbine

as it is referred to, is a two stage 12,000 H.P. drive through turbine using 10.34
MPa (1500 psi) inlet and 3.79 MPa (550 psi) exhaust steam. The first and second

critical speeds are 6750 rpm and 13,000 rpm respectively as determined from proxi-

mity probe data during start-ups and overspeed trip tests. The 5800 kg (913 lb)

rotor is supported in a 12.7 cm (5 in) diameter bearing at the inlet end and a 7.6

cm (3 in) diameter bearing at the discharge end. Both are 5 shoe tilting pad bear-

ings with a load on pad orientation. This machine, like many others, tends to show
some low level (2.54 tun or 0.1 rail) subharmonic vibration over a broad band of

about 30-150 Hz during normal operation.

During the start-up of one of the many units like this, a vibration instability

problem developed at the discharge end of the topping turbine. The vibration
levels, as indicated by proximity probes, increased from 25 - 38 pm (1.0-1.5 mils)

to 76 - 89 _m (3.0-3.5 mils) in a few seconds. Since a real time analyzer was pre-

sent to monitor the start-up, it was observed that the vibration was dominated by a

large fluctuating component at 5150 rpm (85.8 Bz) or exactly 1/2 running speed. The

suddenness with which the instability developed, the rapid fluctuations in the sub-

harmonic component, and the fact that the subharmonic was at exactly 50% of running

speed, led to the suspicion that a rub was involved. No explanation could be made

for the fact that the whirl frequency was 5150 rpm (85.8 Hz) when the first critical

was 6750 rpm (112.5 Hz). The problem was almost completely isolated to the topping

turbine discharge end bearing. Some 1/2 running speed vibration was observed at the

inlet end bearing, but only low levels ((5 _m or 0.2 rail) of this component were ob-
served on other rotors in the train.
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A shutdown and inspection of the bearing revealed that everything was normal

including proper orientation, clearance, crush fit, alignment, etc. The beating's

inboard oil guard, however, was found to be heavily rubbed and was replaced with one

that was checked to insure it had the proper clearances. This was the only change
made before the machine was restarted. Since no subharmonic vibrations occurred

during start-up and subsequent operation, it was concluded that the rubbing oil

guard had been the source of the instability.

Another identical unit exhibited the same instability characteristics. This

unit had developed a history of vibration problems during its eleven years of opera-

tion. One problem was occasional bouts of fluctuatin 8 high vibration at the

topping turbine discharge end bearing. It had been found that using water on the

bearing pedestals to change the alignment would sometimes reduce or eliminate the

vibrations. An analysis was made during one vibration excursion to determine what

effect the water was having. Figure 3 shows a spectra taken at 3:29 p.m. with water

being used on one pedestal. There was a running speed vibration of 64 _m (2.5 mils)

at 10,200 rpm (170 Hz) and a 1/2 running speed peak of 38 _m (1.5 mils). The 1/2

running speed peak was superimposed over the normal band of low level subharmonic

noise and there was some electrical interference at 60 Hz, 120 Hz, 180 Hz, etc. The

water was taken off the pedestal and figure 4, taken at 3:35 p.m., shows the

resulting increase in the subharmonic. The water was then put on the other pedestal

and the results are shown in figure 5, taken at 3:47 p.m. The instability had

ceased suddenly and the running speed vibration slowly decreased from 64 _m (2.5

mils) to 38 _m (1.5 mils). During a subsequent outage, the bearings and seals at

this point were inspected and found to be severely rubbed over a bottom quarter of

their diameter. It was concluded that this was another rub which had produced both

a large subsynchronous component as well as an increase in the unbalance from non-

uniform heat input to the shaft. Once the rub was removed by changing the align-

ment, the subharmonic component ceased suddenly and the running speed vibration

returned to normal slowly.

On a later occasion, this same turbine experienced high vibrations during a

start-up. The machine was warmed up and brought up to minimum governor speed (9000

rpm) one evening and the load was to be progressively increased over the next 24

hours. However, at ll:00 the next morning while operating at 10,553 rpm, the vibra-

tion levels at the topping discharge end suddenly increased from about 50 _m

(2 mils) to in excess of 127 _m (5 mils), the limit of the vibration monitors. By

12:00, an analysis had revealed (fig. 6) vibration levels in excess of 152 gm

(6 mils) with a running speed component of approximately 91 _m (3.6 mils) and a

fluctuating 1/2 running speed component of 114 _m (4.3 mils). Table 1 details the

vibration levels during the excursion. A check of the gap voltages showed an

increase of 0.9-1.1 volts had taken place. While some of this may have been due to

the increase in the rotor orbit shifting the rotorts mean position, it still indi-

cated that the rotor was located significantly lower in the bearing than normal. A

slight increase in speed to 10,672 rpm failed to reduce the vibration level as it

had with other rub induced instabilities. During the increase, the subharmonic

tracked the increase in running speed so as to remain at exactly 1/2 running speed.

The direction of whirl during the entire episode was forward. Water was used on the

turbine casing supports in an attempt to lower the bearing relative to the shaft and

hopefully clear the rub. When water was placed on one support pedestal, the vibra-

tions increased to about 229 _m (9 mils). But when water was quickly placed on the

other pedestal as well, the vibrations began to decrease. Within an hour, the gap

voltages had returned to normal and, as shown in figure 7, the vibration levels were

almost normal. During a subsequent inspection of the turbine, the bottom part of
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the bearings and seals at the discharge end showed severe rub damage and some break-
age. Again, the instability was thought to be caused by a rub brought about by a
severe misalignment during a thermally transient condition. There was still no

explanation for the whirl frequency to be at 5250 rpm (87.5 Hz) when the first

critical speed was 6750 rpm (112.5 Hz).

TUI_BINE ON CO s COMPRESSOR

Figure 8 shows a schematic of a COn compressor train driven by a 8200 H.P.,
9300 rpm, single extraction, condensing turbine. The 19,240 kg (3030 lb) rotor was

supported on 15.2 cm (6 in) journals with sleeve type bearings. The first and

second critical speed were approximately 4900 rpm and 10,150 rpm respectively as

determined from proximity probe data during start-ups and overspeed trip tests.

This unit had been in operation over nine years with no reported vibration problems

except for occasional temporary bows during start-ups. The machine's susceptibility

to thermal bows was due to short warm-up and start-up periods that were necessitated

by plant design. Due to the trouble free operation of the unit, it had only been

overhauled once five years after installation. The train was located outdoors with

a protective roof over it.

A problem was first noted one February when the turbine thrust position monitor
showed a temporary alert condition after a sudden change in wind direction. Future

changes in wind direction caused the problem to recur with enough regularity that a

portable blower was used to keep a constant air flow directed at the thrust bearing

housing. This worked until March, when a rainstorm occurred which resulted in all

the turbine vibration alarms going off as well as a thrust alert condition. The
condition lasted for about one minute and subsided as quickly as it started.

During a brief outage in the summer, the bearings were inspected and found to

be acceptable. But the bearinges oil seals were replaced at the governor end due to

excessive leakage. These seals were noted to be tighter than normal with 50-75 _m

(2-3 mils) diametral clearance. During the start-up, another vibration excursion

occurred. The turbine had reached minimum governor speed and the speed was being
increased slowly as needed. At 9250 rpm, the vibration levels suddenly increased

from about 25-38 _m (1.0-1.5 mils) to about 76 _m (3 mils) and fluctuated rapidly
between 25-38 _m (3 and 4 mils). The thrust monitor showed an alert condition also.

The condition lasted two to three minutes and it was found that a slight increase in

speed caused the vibrations to return to normal.

During a rainstorm several days later, another vibration excursion occurred

lasting less than a minute with symptoms very similar to the previous excursion.

The problem subsided when the speed was increased from approximately 9300 rpm to

9500 rpm. Several more vibration excursions occurred during rapid changes in wea-
ther conditions over the next few weeks.

Due to the transient nature of the problem, the plant connected their tape

recorder to the proximity probe monitors and the operators were instructed to turn

the recorder on during any sudden changes in weather that might precipitate another
vibration excursion. Local thunderstorms resulted in three vibration excursions in
the next 24 hours.
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_pical frequency spectra from just prior to and just after the start of a

vibration excursion are shown in figures 9 and 10 respectively while operating at

9360 rpm (156 Hz). The transition time between figure 9 and figure 10 was less than

0.1 second. The overall vibration level had been 33 pm (1.3 mils) with 15.7 _m

(0.62 mils) at running speed and approximately 5 pm (0.2 mils) at 62 Hz or 2/5 of

running speed. During the excursion, the vibration level increased to approximately

76 pm (3 mils) with the majority of this increase due to the 62 Hz component. The

amplitude of the subsynchronous component averaged about 53 _m (2.1 mils), but was

fluctuating wildly over a range as wide as 13 to 89 pm (0.5 to 3.5 mils) but typi-

cally from 38 to 64 _m (1.5 to 2.5 mils). The orbit developed into a "double orbit"

from a relatively circular one and the whirl direction was noted to be forward.

Various other frequencies noted during the excursion were found to be sum and dif-

ference fxequencies of the two dominant frequencies of 62 Bz (subsynchronous vibra-

tion) and 156 Hz (running speed). These are shown in more detail in figure 11. A

very narrow band analysis verified that the subsynchronous component was 2/5 of

running speed to within 0.1 Hz.

The problem was thought to be due to a transient rub condition since:

1) the condition was closely related to weather conditions,

2) the wide fluctuations in the subharmonic component,

3) that slight increases in speed caused the instability to

cease.

The unit had a great deal of hot piping attached, all of which was routed through

the roof and exposed to the weather. Significant piping strains associated with

transients was thought to have contributed to the units sensitivity to changes in

weather. The fact that the 62 Hz component was present at a very low level prior to

the excursion was not thought to be very significant since a review of the vibration

records showed that it was almost always present with levels between about 1 to 5

(0.05 to 0.2 mils). Also, as stated earlier, it is not uncommon for high speed

units to display a low level subharmonic even during normal operation. The reason

the whirl occurred at 62 Hz (3720 rpm) when the first critical was known to be at

approximately 81.7 Hz (4900 rpm) remains unexplained.

The possibility that the instability was an oil whirl condition precipitated by

a change in alignment, as has been known to occur, was considered but discarded for

several reasons. First, changes in alignment would probably not cause the almost

instantaneous change in subharmonic vibration level. Also, while subsynchronous

components due to oil whirl instabilities can fluctuate, they have not previously

been observed to fluctuate so rapidly and over so wide a range. And finally, the

fact that slight increases in speed were sufficient to eliminate the instability was

not at all a characteristic of oil whirl. The newly installed oil seals were

obviously suspected as the source of the rub. However, due to the violence of the

instability and the fact that these seals had probably rubbed at other times in the

unit's nine year history, without causing an instability, it was decided that a full

dismantle inspection was in order.

This dismantle inspection revealed that:

1) Standing at the turbine governor end, the governor end of the

rotor was misaligned $10 _m (20 mils) low and 254 pm

(10 mils) to the right and the coupling end was 101 _m

(4 mils) to the right.
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2) A sliding key at the turbine governor end meant to maintain

axial alignment while sliding to accommodate thermal growth,

had frozen preventing the case from moving axially.
3) The bearing oil seals were lightly rubbed.

4) The rotor was heavily rubbed at the center by the interstage

labyrinths.

It was concluded that the frozen footing was primarily responsible for the

rubs. The case was apparently bowing in the center quite severely during sharp
thermal transients as it tried to accommodate the change in casing growth and pipe

strain. This also was thought to be the reason for the rub during start-up since

the case again could not shift to accommodate thermal growth. Although other rubs

had probably occurred at some time in the machineWs history, there had been none

this severe as indicated by the depth of scoring on the rotor. This explained why
this problem had not occurred before.

The rotor was realigned and the frozen footing was freed. The machine has

since operated for a year and a half with no further problems except for the usual
problem of thermal bows during startups.

CONCLUSION

Some cases of rub induced instabilities have been described. These have been

noted to appear and cease very suddenly, can sometimes be controlled during opera-
tion by changing the alignment, and have sometimes been eliminated with minor in-

creases in speed. On one occasion the whirl frequency was noted to track an in-

crease in rotor speed so as to remain at 1/2 running speed. The whirl frequencies

are usually at 50 percent of running speed and the whirl direction has often been
forward. However, whirl frequencies have been observed at other fractions of run-

ning speed. Also, whirl frequencies have been observed at speeds significantly

lower than their first critical speed. Some rubs have produced sum and difference

frequencies based on the whirl frequency and the running speed frequency.
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TABLE. I - SUHHARY OF VIBRATION LEVELS (mtlSp. p)

10:453m

11:43am

12:021_

12:10t_

12:13lm

12:17lm

12:19_

1:451_

Point #3

VERTICAL HORIZONTAL

_X 1X Total _ 1X Tor.al

0.5 0.6

0.5 0.6 1.7 0.8

0.17 0.25 0.48 0.45 0.8 1.05

'Point: #4

VERTICAL HORZZOIfrAL

_jX 13 Total _,_

w 0.8 0.95

4.3 2.3 75 4.3

2.5 3.8 5.8 4.8

2.5 3.5 5.8 4.5

4.5 8.5 4.5

3.0 9.0 5.6

8.3

0.7 1.6 1.79 0.1

1X Total

0.6 0.75

3.6 75

3.6 6.0

3.5 6.0

8.0

8.5

8.2

0.4 0.6
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Figure I. - Turbine case vibration on a 5000 kw turblne-generator.
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