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I. INTRODUCTION

Operating experience on a compressor commissioned 12 years ago has pre-

sented an interesting history of sporadic increases in shaft vibration.

Initial operation was satisfactory with low levels of vibration. However,

after some time the shaft vibration level increased to several mils. Ini-

tially this was believed to be due to rotor unbalance from deposits formed

in the passages due to process upsets. After cleaning up the rotor, opera-

tion was again satisfactory. In time the vibration level again

increased. It was then found that the rotor vibration was primarily sub-

synchronous. Further investigation revealed that the original seal design

was subject to wear and was no longer properly pressure balanced. A

modified seal design was installed and it has operated successfully for

the past six years.

Subsequent analysis has provided a better understanding of the seal destab-

ilizing effects on the rotor and motion of the seal which has been con-

firmed by test data on the current seal design. These will be briefly

presented.

NOMENCLATURE

MW

P

Kyx Kxy

Cxx Cyy

D

L

c

F
P

F A

molecular weight

pressure

hross coupled stiffness damping properties for seals

principle damping properties for seals

angular velocity (rad/sec)

diameter

oil viscosity

seal or bearing length

clearance

force, radial

force, axial
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Q

coefficient of friction

aerodynamic or seal destabilizing

logarithmic decrement

II COMPRESSOR DESIGN

The subject machine is a 5-stage, vertically-split, centrifugal compressor

with floating ring oil film seals in refinery service. (See Figure I)

The gas is a diesel distillate (MW = 8.2) and the process conditions are

as follows:

Inlet Pressure

Discharge Pressure

Flow

Driver Size

PI = 2896. K Pa (420 PSIG)

P2 = 4178 K Pa (606 PSIG)

= 322 Kg/min (739 LB/MIN)

= ii18.6 KW (1500 HP)

The compressor has 38.1 cm (15") diameter impellers and operates at 12,320

RPM in 8.89 cm (3.5") diameter tilting pad journal bearings. The seal

diameter is 11.43 cm (4.5 in.)

III OPERATING HISTORY

Commissioned in 1970, the machine had a history of minor, occasional

vibration problems. A pattern developed which was noted by the

Allis-Chalmers Field Service and Repair Group:

The machine generally operated smoothly following service or

maintenance.

Increased shaft vibration would develop over time (6 months).

Seal oil flows would sometimes increase substantially, resulting

in operation of the auxiliary seal pump to keep up with the

increased flow.

Upon disassembly, the unit would be fouled with ammonium chloride

deposits in the aerodynamic passages. (See Figure 2) The presence of

the deposits and the resulting unbalance was initially believed to be

the cause of the vibration.

The floating bushing would be quite worn on the axial face

resulting in high axial forces on the seal housing. (See Figure

3 for arrangement.)

Finally, in 1975 the operator reported that vibration levels had become

unacceptable and noted that the machine behaved differently with each of

the two rotors (main and spare). One rotor performed smoothly with

enlarged radial seal clearances (8 mils vs. 2-3 mils design), even though

it was fouled and a balance check indicated it was out of balance. The

other rotor ran rough with design seal clearances, despite a touch-up

balance. The apparent contradiction between vibration experience and the
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machine balance condition strongly suggested that the vibration problem

was non-synchronous in nature. The Allis-Chalmers service group discussed

the problem with the Compressor Engineering group and a study was

initiated.

Field vibration spectra were obtained by Allis-Chalmers on the balanced

rotor at several locations using displacement probes and accelerometers.

See Figure 4a.

The data showed:

i. A subsynchronous vibration signal was present at all locations

checked. (See Figure 4b & c)

. The frequency which would change with a slight variation in bearing

and seal oil temperature, varied slightly from 80.6 to 81.6 hz, (4836

to 4906 CPM).

. Accelerometer data (integrated to yield displacements) showed

casing motions which were significantly lower than shaft

amplitudes indicating that the probes were measuring actual

shaft motion, and not a foundation resonance.

Vibration amplitudes at various locations are shown in Table i.

TABLE I. VIBRATION AMPLITUDES AT 4850 CPM (FILTERED)

AMPLITUDE A 1 IB I A 2 OB 1 OB 2

mm .0127 .051 .009 .009 .074

(mils) (.5) (2.0) (.35) (3.5) (2.9)

The synchronous component of shaft vibration was less than .0127 mm (.5

mils). This coincided with the customers comments about the performance

of the two rotors. An increase in the synchronous vibration of the out-

of-balance rotor could still result in lower overall vibration levels if

the sub-synchronous component present in the well balanced rotor were

eliminated.

IV ANALYSIS OF PROBLEM

At the time the machine was designed, analysis was limited to undamped

critical speeds, so an updated rotor dynamics analysis was performed using

improved rotor dynamics programs in use at Allis-Chalmers in 1975 which

included:

Undamped critical speed map showing intersection of

undamped critical speeds with bearing stiffness curves.

Mode shapes.

Elliptical orbit synchronous response analysis.

Stability analysis.
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The critical speed analysis indicated that the machinewas operating
between the 2nd and 3rd modes, see Figure 5a. The modeshapes show sub-
stantial motion at the bearings for the second modeindicating it should
be well damped(see Figure 5b). This is confirmed by the response
analysis (Figure 5c), note that the 2nd modeis well dampedand that the
amplitudes produced by an unbalance distribution based on the API
residual unbalance limit are quite low (less than .002 mm, [.8 mils]).
The response analysis showeda ist resonance at 4100 RPM,and the Ist
critical speed on test was 4086 RPM.

Baseline (no destabilizing) stability analysis showedacceptable stability
with a log decrement of .169 at 3845 CPMfor the ist Y-modein forward
precession. (See Figure 5d.)

Since the machinewas stable under baseline conditions it was then
desired to evaluate the rotor's sensitivity to destabilizing forces. To

approximate their destabilizing effect the stiffness and damping proper-

ties of the seal ring were estimated by assuming that the seal stops track-

ing the shaft ("locks up") and behaves as a non-cavitated concentric plain

sleeve bearing.

Under these assumptions the properties are given approximately by:

Cxx =lO'Cyy = 2 Kxy

From this calculation the properties developed for design conditions are:

- Kxy = Kyx = 1077 N/CM

Cxx = Cyy = 1681N-S/CM

(6.148 x 1051b/in.)

(960 ib-sec/in.)

The principle stiffness terms Kxx and Kyy for a concentric seal are negli-

gible. Note that these properties are highly sensitive to variations in

clearance (inversely proportional to C3), and that quadrupling the clear-

ance reduces the properties by a factor of 64. Thus the enlarged clear-

ances at the seals found on disassembly could have allowed operation even

if the seals were locked up. This explains why the unbalanced rotor with

enlarged clearances operated with less vibration than the balanced rotor

with design clearances which had bounded whirl.

More sophisticated calculation schemes exist to develop the seal complete

stiffness and damping matrices for various assumptions about the seal

lock-up eccentricity. However, the results are sensitive to the

assumptions about whether lock-up results in increased or decreased

journal loading. Reduced journal loading will change the natural

frequency of the rotor because the effective bearing span changes with

transfer of the load to the seals. Due to the uncertainties associated

with the assumption of a lock-up eccentricity, the simple concentric seal

properties were used in this case.
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Various values of seal destabilizing were input into the stability
analysis to evaluate the system sensitivity. See Figure 5e. The
stability analysis shows zero log decrement with aerodynamic destabilizing
of 2329 N/CM (1330 ib/in) distributed amongthe impellers and 38,530 N/CM
(22,000 ib/in) at each seal. This is substantially less destabilizing
than would be produced by the locked up seals with original design clear-
ance. Thus the seals can produce sufficient destabilizing to drive the
rotor into boundedwhirl under lock-up conditions.

The frequency of the analytically predicted unstable modewas 3850 CPMas
opposed to 4850 CPMin the field. Phase information from the field test
data indicated that the shaft ends were in phase, so it was concluded from
the limited available information about frequency and modeshape that the
ist 'Y' modeof the rotor was unstable (boundedwhirl) and was being
driven by the seals. Several other conclusions can be drawn from the
operating experience and analysis:

i. Stable operation of this rotor with the design seal clearances is

only possible if the seal "tracks" the shaft and doesn't lock-up.This

implies that any destabilizing produced under tracking conditions must

be substantially less than that present under lock-up, in fact less

than 38,530 N/CM (22,000 ib/in).

. Stable operation is possible if the seal locks up, if the

seal clearances are abnormally large (resulting in much smaller

hydrodynamic destabilizing forces).

, The difference in the frequency of the unstable mode between analysis

and field data is possibly due to the development of principle

stiffness terms (Kxx, Kyy) at the seals due to an eccentric lock-up

of the seal ring which transfers bearing load to the seals, thus

reducing the effective bearing span of the rotor, and raising its

natural frequency from 3850 to 4850

, The frictional force (FR) which restrains the seal from moving

radially (and determines lock-up eccentricity) is a function of the

pressure induced axial forces (FA) on the seal ring and the

coefficient of friction (_) between the seal and its housing.

F R = _F A

Review of the axial forces (FA) on the seal at the design pressure

with no seal wear show a relatively small value. See Figure 6A.

2

F A = P(_ ) (D 2 DI2 ) = 792 N (178 Ibs.)

However, as wear occurred on the axial face of the seal, the outer

diameter of the contact face (D2)increased. For example, if axial

wear on the ring was .0254mm (.001") one fourth of the chamfer would

be removed, and D 2 would increase from 11.53 cm (4.54 in.) to 13
cm (5.118 in.).
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At this point the axial force would be 8985 N (2020 Ibs.) or 11.3
times the original seal design value. The radial force could increase
by more than this if the coefficient of friction increased with wear.

Thus the original design washighly sensitive to both the friction
coefficient and wear so that following some initial wear, the wear

rate would accelerate until lock-up occurred.

6. Since the seal parts had shown substantial wear during earlier

maintenance and service inspections, the compressor performed

well after maintenance, and the stability analysis showed good

correlation with experience, seal modification was selected as the

best method of resolving the problem.

V SOLUTION:

Such a seal-induced instability can be solved by two types of seal

modifications:

I. Allow the seal to lock up, but reduce the hydrodynamic forces

produced by changing the geometry of the seal in the following ways:

a. Reduce seal effective length - reducing the effective

length by adding grooves to the seal surface reduces

the stiffness and damping produced but this is at the expense

of reduced film thickness and therefore seal centering

capability which can increase the possibility of seal rubs.

b, Increase seal clearances - This reduces the stiffness

and damping properties but increases oil flows dramatically

which is undesirable.

Increased clearance due to wear allowed operation in this case

despite a locked-up bushing. The auxiliary seal pump ran all the

time. In addition the customer added a third pump to keep up.

. Balance the axial forces on the seals as closely as possible so

that the seal doesn't lock up to begin with. Reduction in axial

forces makes the seal less sensitive to the coefficient of friction

between the seal and its housing (which can increase with wear) and

reduces the seals tendency to wear.

The second type of modification was used to solve this problem. Figure 6a

and 6b show the original and modified seal bushings.

Note that the following modifications were made.

i. The residual axial force on the bushing was reduced by balancing

the pressure induced axial force.
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a. O-ring was removed from bushing end reducing friction.

b. Face relief was remachined to better control pressure
equalization.

c. Pressure balancing axial hole added.

d. The taper was removedto make the new design
insensitive to wear.

2. These changes don't affect the hydrodynamic performance (i.e., leak-
age or film thickness) of the seal, only the force required to move it
radially (FR).

Since the new seal has been installed, seal wear has been negligible and
the sub-synchronous vibration problems have been eliminated. The modified
seal has performed successfully for over 6 years.

Allis-Chalmers has over 20 years experience in the design and application
of oil film seals. The current Allis-Chalmers standard "Trapped Bushing
Seal" features:

A "dual" bushing which encompassesboth the inner and outer seal
in one ring for reduced axial length. (See Figure 7)

Low residual axial force on the seal which effectively reduces
the potential for lock-up and seal sensitivity to friction and
wear. (See Figure 8)

VI SEAL VIBRATION TEST PROGRAM

A test program was subsequently conducted in the Allis-Chalmers test

facility to verify the motion of the A-C standard dual bushing at design

pressure level to insure that the bushing tracks the shaft without

lock-up. All seal vibration data were provided by Mr. P. G. Shay, the

Supervisor of the Allis-Chalmers Compressor Test Facility. Two displace-

ment probes were mounted 901 apart in the cage surrounding the bushing to

determine the amplitude of bushing motion and the relative phase lag

between the shaft motion and bushing motion. (See Figure 9, note the

epoxy-filled relief around the probe tips.) The oscilloscope traces show

the seal orbit to be circular with a phase lag of 451 behind shaft motion

and amplitudes slightly less than the shaft amplitude (See Figure i0.)

The vibration spectra show the seal motion to be predominently synchronous

with only small traces of non-synchronous motion. Shaft vibration is

entirely synchronous. (See Figures IIA-D.)

Based on this information, it may may concluded that this arrangement

results in minimal destabilizing effects as the bushing is able to freely

track the shaft motion. Seal induced hydrodynamic forces are dissipated

in seal motion and not applied to the shaft. The seal is also insensitive

to wear on the axial faces.
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VII CONCLUSIONS:

I, Residual axial forces in seals can influence seal and shaft vibra-

tion. Some small level should be present. However, seal lock-up

should be avoided.

. Restraint ("lock up") of bushing results in high levels of

destabilizing forces and it is therefore better to err on the low side

with respect to axial (pressure induced) forces in the event that seal

wear increases the friction coefficient significantly.

3. Normally tracking seals exert only minor destabilizing effects.

4. The seal design should be relatively insensitive to wear on its

axial face to prevent accelerating wear rates.
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Figure 2. - Fouling deposits in compressor.
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Figure 5(c). - Synchronous response.
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Compact Design--allows shorter

bearing spans for higher critical

speeds of the compressor rotor.

Sleeve (impeller) with interference fit

under bushing--protects shaft and

simplifies assembly and disassembly.

Requires only a jack/puller bolt ring.

Spacer fit at initial assembly--no

field fitting of parts.

ITEM DESCRIPTION

1 ........... Shaft

2 ........... Impeller

3 ........... Stator

4 ........... Stepped Dual Bushing

5 ........... Bushing Cage
6 ........... Nut

7 ........... Shear Ring

8 ........... Oil/Gas Baffle

9 ........... Spacer Ring
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SEAL INNER
OIL OUTLET DRAIN

VENT
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GAS BUFFERING INLET
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INNER SEAL
OIL DRAIN

Figure 7. - Trapped bushing seal arr angement.
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Figure 9. - Probe arrangement for trapped bushlng seal vibration test,
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I I
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Lower: Shaft X

13050 rpm 1 MIL Per Division Vibration Y

Figure 10. Shaft and dual bushing vibration data.
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