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SUMMARY

The occurence of unstable vibrations in rotating machinery requires

corrective measures for improvements of the stability behavior. Before a measure

will be realized, different possibilities should be investigated. In this paper

a simple approximate method is represented, to find out the influence of para-

meter changes to the stability behavior. The method is based on an expansion of

the eigenvalues in terms of systemparameters. Influence coefficients show in a

very intuitive way the effect of structural modifications. The method first of

all was applicated to simple nonconservative rotor models. Furthermore it was

approved for an unsymmetric rotor of a test rig.

INTRODUCTION

The occurence of instability in rotating machinery may be caused by

different effects, for example oil film forces in journal bearings, forces in

seals, unsymmetric shafts, internal damping etc. A machine designer wants to

know, whether a rotor will run stable during operation and what size the stabi-

lity threshold speed will have. Furthermore he needs information about the pa-

rameters influencing the stability behavior.

Important informations about the stability of a linear rotor system can be

obtained by calculations in the design stage. Because of uncertain input data

for calculation, the results have to be considered critically. It is possible,

that unstable vibrations may occur during operation, although the calculation

was predicting a stable machine. On the other hand parameters may change during

operation leading to increasing oscillations. In such cases suitable corrective

measures for improvements of the stability behavior are required. Before a

measure will be realized, different possibilities should be investigated finding

out the simplest and most effective one. For that it would be very useful, to

have approximate formulas, expressing the sensitivity of the dynamic behavior to

changes of system parameters.

In linear rotor systems with nonconservative effects the stability can be

valuated by means of the system eigenvalues. The real parts of the eigenvalues

determine, whether the natural motion is decreasing or increasing. If the

variations of eigenvalues caused by variations of systemparameters (mass-,

damping-, stiffness-coefficients) are known, an estimation of system modifi-

cations to the stability behavior is possible. Such sensitivities, respectively

influence coefficients, expressing the change of eigenvalues to changes of

systemparameters are presented here.
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Lurid (ref. I) has developed a method to calculate sensitivities of the
critical speeds (eigenfrequencies) of a conservative rotor to changes in the
design. Dresig (ref. 2) gives a more general development for conservative mecha-
nical structures. The basic idea in his method is an expansion of the eigen-
values in terms of the system parameters. In Taylor's expansion derivatives of
the eigenvalues to the system parameters are needed. Such derivatives were
developed from Plaut and Huseyin (ref. 3) and from Fox and Kapoor (ref. 4).

Based on Taylor's expansion for complex eigenvalues in this paper an
improvementof the method is presented for rotor systems with nonconservative
mechanisms(oil film bearings, seals ets.) Linear, quadratic or higher order
formulas are obtained, depending on the order of the derivatives taken into
consideration in the expansion. With the linear formula very simple influence
coefficients can be defined, pointing out the influence of special parameters
to an eigenvalue. Superposition of different parameter changes is possible in
this special case. Using the formulas the eigenvalues, the left-hand and
rlght-hand eigenvectors of the original system (without parameter changes)
must be known.

The application of the method is demonstrated for simple nonconservative
rotor models, investigating the effects of stiffness and damping coefficients
to the stability behavior. Furthermore the influence of the massvariation to
the eigenvalues of an unsymmetric rotor is determined. The predicted vibration
behavior caused by parameter variations could be confirmed by measurements.

NATURALVIBRATIONSOFLINEARROTORS

A turbomachine consisting of a high pressure turbine, a generator and an
exciter is shownin figure I. The power of the machine is ]10 MWand the opera-
ting speed 3000 rpm. Contrary to nonrotating structures the dynamic behavior of
such rotating machines is influenced by additional effects. Of great importance
are selfexciting and damping effects (nonconservative effects), caused by the
oil film forces of journal bearings, forces in seals etc.

In linear rotor dynamics the natural vibrations can be described by linear
equations of motion, usually derived by meansof the finite element method.

+ + = 0 (')

M mass matrix (order NxN)

C damping matrix (order NxN)

K stiffness matrix (order NxN)

displacement vector
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The equations express the equilibrium of inertia, damping, and stiffness forces.
Becauseof the nonconservative effects damping and stiffness matrix contain also
skewsymmetric and nonsymmetric terms besides the symmetric ones. Furthermore some
of the matrix elements depend on the operating conditions of the machine (speed,
power, pressure etc.).

Investigating the natural motion (stability) of a rotor equation (I) has
to be solved. The solution has the form

_t
q(t) = q e (2)

Substitution yields the quadratic eigenvalue problem

{_2M + %C + K} q = 0 (3)

with 2N eigenvalues % and corresponding eigenvectors (natural modes) q . The
• • • • n

eigenvalues as well a_ the elgenvectors malnly occur in conjugate complex

pairs

eigenvalues: % = _ + i_ , _ = _ - i_ (4)
n n n n n n

-- __n = -eigenvectors: -qn s + it , s it (5)-n -n -n -n

The part of the solution, which belongs to such a conjugate complex pair, can

be written as

t

__n(t) = B e n {SnSin(_0nt + yn ) + t coS(mnt + yn)} (6)- n - -n

is the circular natural frequency and _ the damping constant (decay constant).

T_e damping constant, respectively the rea_ part of the eigenvalue determines,

whether the solution __(t)_n decreases (_n < O) or increases (_n > O).

The four lowest natural frequencies and the corresponding damping constants

of the turbomachine (figure I) are plotted versus the running speed in figure 2.

The eigenvalues are changing with speed, especially the damping constants _I and

_3" The diagram shows that the rotor instability onset speed is 3400 rpm deter-

mined by the zero value of _I" The relative distance between the instability

onset speed and the operating speed is very low. Therefore unstable vibrations

may occur if additional destabilizing forces are acting on the rotor. If such

calculated results are known in a machines design stage, corrective measures

improving the stability behavior should be arranged. If instability occurs in
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operating machines similar problems have to be solved. Approximate formulas,
respectively influence coefficients expressing the influence of parameter
changes to the eigenvalues (stability behavior) maybe very useful for the
above mentioned requirements.

INFLUENCEOFPARAMETERCHANGESTOTHE

STABILITYBEHAVIOR

Eigenvalue Problemand Modal Parameters

Our aim is to find formulas for an approximate calculation of eigenvalue
variations caused by system modifications (parameter changes). Besides the
designed parameter changes this formulas will contain modal parameters of the
initial dynamic system, that meanseigenvalues %, left-hand eigenvectors _ and
right-hand eigenvectors q of the system without parameter changes. Normally they
are knownfrom calculations (ref. 5).

Complementaryto the eigenvalue problem (eq. (3)) the corresponding left-
hand-eigenvalue problem with transposed matrices

{%2MJ+ %CJ+ KJ} _= O (7)

has the same eigenvalues %, but the mentioned left-hand eigenvectors E. Working

with the procedure of inverse vector iteration for complex eigenvalues (ref. 5)

a desired number of the modal parameters _, q, _, can be calculated effectively.

For further derivations we suppose that the interesting modal parameters of the

initial system are given.

Taylor's Expansion for the Eigenvalues

The basic idea of the approximate method is an expansion (Taylor's series)

of the eigenvalues in terms of the generalized system parameters Pk

(k = 1,2, ...K)

X = % + Z 1 !{_ 2 1 + _-_K]ApK}r X(Pl' P2'''PK ) (8)
n no _ -_p APi + -_P AP2 ....

r l 2
O O O

in which the Pk may be mass, damping, or stiffness parameters.
% is the changed eigenvalue after a parameter variation. % is the corres-
n .

pondlng eigenvalue of the initial system. The derivatives o_°the eigenvalues

to the system parameters are expressed in operational notation, r is the order

of the derivative.
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Truncating equation (8) after a desired derivative, the changed eigenvalue
may be calculated approximately. Easy to handle is a linear formula with first
derivatives. A more exact expression can be obtained if an additional quadratic
term is taken into account.

Linear Approximate Formula

Taylor's expansion (eq. (8)), truncated after the first derivatives leads
to the following linear approximate equation (9)

+nL Pl+ nI nI 9= -- AP2 "'" _PK APK no -- APkn no _P! o o o k _Pk o

For determination of An, respectively A% = % - _ the first partial derivativesn n no
_% /_p_ are required.

_ .
Uslng _he standard subscrlpt notation for partial derivatives

% _ _ _qn _'k -- _'k _'k (I0)
n,k _Pk qn,k = _Pk = _Pk - _Pk - _Pk

the differentiation of equation (3) with respect to Pk yields

{%2n_M + %n_C + _K} _n,k + {2%n%n,kM-- + %n,k _ + %_'k + %n_'k + _'k } qn- = O

(ii)

We premultiply equation (II) by _T to obtain the scalar expression
n

ET {%2 M + % C + K} + %T {2_ M + C} _n %n,k-n n - n- - _n,k -n n-- --

= _ £T {%2 M_,k + % C, k +-n n n K'k}qn (12)

The first term in this equation is zero, it represents the left-hand eigenvalue

problem, multiplied with q , . Furthermore it is assumed that _n and _ are
normalized in a way to sat_y the relation -n

_T {2_ M + C} -qn I--n n-- -
(13)

It follows that

_ n = _ _T {%2 _'k + % _'k + _'k } _n (14)
n,k _Pk n n n
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Substitution of this result into equation (9) yields

K

A)_ = E %T{%2M'I + %n_'k + = % gnk APk (15)n (%n-%no) = - -n nv K _'k}_n APk k=l

with the influence coefficients gnk"
Finally we introduce A-matrices

K K

AM_ = kS l _ = k=IE M,kAPk

K K

AC = k_ 1 ACk = E (16)-- k=l _'kAPk

K K

AK = kS 1 A_Kk = k_ I K,kAP k

expressing the change of mass, damping, and stiffness matrices and we obtain

the linear expression

A% = = _ _T {%2 AM + % AC + AK} _n (17)n LIN (%n-%no)LIN -n no -- no-- --

This approximate equation is a good tool for calculation in many cases, pointing

out the influence of parameter changes to the stability behavior of rotors.

As above mentioned for application of the formula the modal parameters of the

initial system are needed besides the parameter changes. Derivatives of the

eigenvectors do not appear in equation (17).

Influence Coefficients

In equation (15) we have defined influence coefficients gnk

= _ _T {%2n_M,k + % C_;, + K,k} qn
-n n o K

0

(18)

This differential quotient, respectively differential sensitivity yields the

influence on the eigenvalue % of an infinitesimal change of a particular
n

parameter Pk' It can be used as a meaningful approximation for finite parameter
changes, when the considered modifications are relatively small.

A% As A_
n n + i n

gnk _
AP k AP k AP k

(19)
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Influence coefficients are complex numbers. They depend on the modal parameters
of the initial system.

Changing the stiffness kk of a spring with one end fixed and the other end
free (see Table l), we obtain with _'k = O and _'k = 0

= _ _T _'k _ngnk -n (2O)

The derivation _'k leads to a unity main diagonal element Kkk = ] with all
other elements zero and therefore the influence coefficient of the spring is

gnk = - _nk qnk = - (%kqk)n (21)

Table | contains further influence coefficients for the most important

elements in rotor dynamics like springs, dampers, masses, oil film bearings
and seals.

Quadratic Approximate Formula

Taking into consideration the quadratic terms in Taylor's expansion too,

we obtain the following expression

2

j IK K I% = % + E _pk. APk +-_ E E nk=l %=I _pk_p_ ApkAp_ (22)
n no k= | o o

in this improved formula the second derivatives %'k_ are needed besides the
first derivatives and the given parameter changes. The determination of the

second derivative is shown in the appendix. The expression is more complicated

than the first derivative, but all quantities can be determined from the initial

system.

PARAMETER CHANGES AT SIMPLE ROTOR MODELS

We applicate the method at simple rotor models to show the influence of

particular parameter changes to the stability behavior. Naturally these simple

examples can be solved also exactly, on the other hand they are suitable to

demonstrate the approximate formulas. A comparison of the results with exact

solutions is possible.
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Rigid Rotor with Flexible Supports and Clearance Excitation

The first example is an elastically supported rigid rotor with massm
(fig. 3). The supports have the stiffnesses k.. in horizontal direction and k_^

• • |
in vertical direction. A clearance excltatlon _orce acts in the middle of the zz

rotor. For instance such excitation forces appear in steam turbines. They result

from the unsymmetrical fluid flow through the radial clearances at rotor and

blading which appears according to the eccentricity between rotor and casing.

The clearance excitation force acts rectangular to the displacement direction

(fig. 3).

I IE°:IF2 k Lq2j
(23)

The coefficient k depends on the power of a turbomachine, increasing with power.

Investigating the translatory natural motion we employ the coordinates

q| and q2 "

Equations of Motion, Eigenvalues and Eigenvectors

The equations of motion for the rigid rotor with elastic supports are

[om L2k,,kIp_j -_ _ L_
= 0 (24)

or with the definitions

2 !

= 2k 1 =_o I/m T Wot ( )

T = k22/kll stiffness ratio of support

B = k/2kl]

=d( ) I dT

dimensionless clearance excitation coefficient

(25)

in dimensionless form

[2J -_ T q2

--0 (26)
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The corresponding eigenvalue problem is (_ = %lw o)

B ql

- Y+_ q2

=0

with the characteristic equation

(27)

4 2+ (l+y) + y+B 2 = O (28)

we obtain the solutions Z = 2 from

_ 1+_ + /(I-_)2-4_ 2
ZI,2 = -_-- - 4

, (29)

respectively the four eigenvalues _n as a function of y and _.

Figure 4 shows the real part and imaginary part of the essential eigenvalue

with positive damping constant. The system is unstable within the range of

(i-2B) _ y _ (l + 2_). This range increases with increasing values of the

clearance excitation coefficient B. Isotropy (y = I) of the supports is the most

disadvantageous case. An increase of the anisotropy stabilizes the rotor system.

For (I - 2B) _ y _ (l + 2B) the real part of the eigenvalue is zero and the

natural frequencies are split.

The amplitude ratio of the right-hand eigenvector corresponding to an

eigenvalue V can be determined with equation (27), the left-hand eigenvector has

the opposite sign

q2 _ 1+_ 2 _2 _ 1+_ 2

ql _ ' z I 13
(30)

Parameter Variations

To demonstrate the approximate formulas we choose an initial system with

parameters y = 1.1 and _ = O.| (fig. 5) and investigate variations of y, _ and

an additional damping AD. With normalized eigenvectors the particular expressions

for eigenvalue changes are

-variation of _' with increment Ay

[:o]
A_ = - [_I' _2 ] Ay q2 = - £2q 2 Ay
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-variation of B with increment AB

L°
A_ = - [_l' _2 ] -A_ -- q2 = - (_lq2 - _2qi ) A_?

-additional modal damping AD = c/2n_
O

AI_ = - l_ [_l' _2 ] o 2A q2 -- - 2_ (_,lq I + _,2q2 ) AD

The linear approximate formula points out the stabilizing effect of anisotropic

supports (Ay positive in fig. 5b). Figure 5a shows an increase of frequency

caused by stiffening the system from y to y + Ay.

For special cases the linear approximate formula has disadvantages, for

instance in the isotropic case (y = I) with horizontal tangent line. Then better

results will be obtained with the quadratic formula (fig. 5b).

The destabilizing effect of increasing clearance excitation coefficient B

and the stabilizing effect of additional damping AD are presented in figure 5c.

Rigid Rotor in Journal Bearings

Figure 6 shows a rotor of a test rig. Compared to the bearings the stiff-

ness of the shaft is very high, therefore it can be regarded as a rigid rotor

supported in two equal bearings (cylindrical bearings B/D = 0.8), rotating with

the rotational speed _. The rotor has a mass m = 72 kg, the distance between

the bearings is 660 mm. The statical bearing load F is equal to 353 N. Each

journal has a diameter of 50 mm, the values for theS_ial clearance and for the

oil viscosity are Ar = 210 _m, respectively 3.35 Ns/m 2.

The dynamic behavior of journal bearings can be characterized by four

stiffness - and four damping coefficients kik and Cik, respectively by the non-
dimensional quantities

Ar Ar _ (31)
Yik = kik F ' Bik = Cik F

stat stat

They are functions of the Sommerfeld number. The pure translatory motion can be

described by means of the coordinates ql and q2"

Equations of Motion, Eigenvalues and Eigenvectors

The following equations of motion for a rigid rotor in two journal bearings

describe the equilibrium of forces in the case of pure translatory motion and

without external loads.

293



]L_ Cll c12

+2

Lq2 LC21 c22 _2 _ k21

=0

(32)

Defining

2 !

C0o = g/Ar, T = C0ot, w = _/00o, ( ) = d ( ) / dT

the equations of motion can be written in the nondimensional form

The statement for the natural motions

=0

(33)

Xt e_T,qi = qi e : qi _ = X/_
O

(34)

yields the eigenvalue problem

BII 2 BI2

= 0 (35)

The four eigenvalues _n are i. g. conjugate-complex quantities. If the eigen-

values are known, the corresponding eigenvectors can be calculated from equation
(35).

Figure 7 shows the eigenvalue that causes the instability in dependence

of the dimensionless rotational speed w. Also the eigenvalue that belongs to a

rotatory motion is plotted, but it has no meaning for the stability behavior of

the rotor. The real part of the eigenvalue will come to zero at w = 2.66.

At this rotational speed the stability threshold is reached. The Sommerfeld

number here has the value So = 0.563. The corresponding circular natural fre-

quency _/_o is 1.435.
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Influence of Parameter Changesat the Stability Threshold

Westart from the stability threshold and we investigate how particular
parameters effect the stability behavior. Therefore we take the linear approxi-
mate formula (17). First we ask about the influence of the single coefficients
T., and _.k/W. It can be judged by the influence coefficients in Table I. Figure
81_hows the influence coefficients in the complex plane. For example, one can see

that an increase of T-^ is labilizing or that an increase of the damping coeffi-IX
cients B11/w and B22"/w is stabilizing the rotor motion.

If we change the rotational speed, the Sommerfeld number and the stiffness

and damping coefficients also will change. Figure 9 shows the variation of the

eigenvalue in dependence of the rotational speed calculated by the approximate

formula. The formula figures the tangent line to the eigenvalue curve at the

expansion point. An increase of the rotational speed causes instability.

Finally in figure 9 the influence of the oil viscosity is shown. If we

increase the oil temperature from 38°C to 44°C, the oil viscosity will decrease.

The real part of the eigenvalues becomes negative and there is a stabilizing

effect.

ELASTIC ROTOR WITH FLEXIBLE SUPPORTS AND SEAL FORCES

A more complicated rotor-system, an elastic turbopump rotor with flexible

support_ an impeller and two plain seals is shown in figure IO. Between the

bearings where the basic shaft diameter is 64 mm, the shaft carries the impeller

mass of 55 kg. Two plain seals are mounted besides the impeller with a seal

length of 40 mm and a radial clearance of 0.3 mm. The dynamic characteristics of

the seals are given by the stiffness, damping and inertia coefficients K, k, C,

c, nf(fig. IO). The shaft is supported in two identical bearings, each one having

a horizontal stiffness k = 1.0 107 N/m and a vertical stiffness k22 =.75 107 N/m.
The distance between thel_earings is equal to 1.2 m.

First of all eigenvalues and eigenvectors were calculated for the described

original system in a speed range from 2000 rpm to 8000 rpm. In figure II two

damping constants (decay constants) are plotted versus rotational speed. One of

the damping constants crosses the zero axis, pointing out the instability onset

speed of 5200 rpm, which is above the operating speed.

In order to improve the stability behavior, some parameter changes were

investigated, starting from the initial system with a rotational speed of 5000 rpm.

Figure II shows the results, especially the influence of seal stiffness and dam-

ping coefficients. All coefficients were changed 20 per cent. An increase of K

and C stabilizes; an increase of k has a destabilizing effect.

Furthermore it is shown that a positive change of k22 in direction to
isotropic bearings is disadvantageous.
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VARIATIONOFTHEMASSOFA TESTRIG ROTOR

WITHUNSYMMETRICFLEXIBLESHAFT

The test rig rotor shown in figure 12 consists of a flexible shaft with

rectangular cross section 8 x 12 mm 2. It is running in two ball bearings which

are comparatively stiff. In the middle between the bearings a disk is supported,

having a mass of 0.89 kg. The nonrotating shaft has two different natural fre-

quencies 24.6 Hz and 35.1Hz concerning to the different stiffnesses in two

rectangular planes.

It is well known that in rotors with unequal moments of inertia different

dynamic effects may occur, for instance vibrations caused by the rotor weight

and unstable vibrations (ref. 6). Concerning the stability behavior in this case

a variation of the disk mass was investigated by calculations (exact results and

approximate formulas) and for control by measurements at the test rig. Theore-

tical results for the eigenvalues of the undamped shaft are plotted in figures

13a and 13b versus the rotational speed and the mass of the disk. The eigenvalues

defined for the rotating coordinate system are either pure imaginary (fig. 13a)

or pure positive real (fig. 13b). The last one occur in a rotational speed range

between the two natural frequencies of the nonrotating shaft. That means that

the rotor motion is unstable in this range.

In order to show the utility of the approximate formula the change of

the eigenvalues (rotating system) caused by a positive 25 per cent variation of

the disk mass was investigated for the three different running speeds ;200 rpm,

18OO rpm and 2400 rpm. The three figures 14a, 14b, 14c show the variation of

the natural frequency, respectively the damping constant, in dependence of the

mass. The mass of the original system is 0.89 kg, the changed mass is I.I kg.

The three diagrams contain the exact, the linear and the quadratic approximate

solution. Furthermore the results from measurements are plotted in figures 14a

and 14c. There is a good agreement of the results. For ;200 rpm the mass change

decreases the frequency (destabilizing effect), for 2400 rpm the mass change

increases the frequency (stabilizing effect). A stabilizing effect is also

given at the running speed 18OO rpm, where the decay constant _ is lowered by

the mass change.
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APPENDIX

Calculation of the Second Derivatives of the Eigenvalues

First we have to express the right- and lefthand eigenvalue problem

(eq. 3), (eq. 7) in the following form:

(_A - InB) -_n = 0

T
-Yn (A_ - In_B) = O

(A 1)

(A 2)

where the matrices A, B and the vectors x
--n

I: J0

A = ; B =

-K

and Yn are defined as

o:j_M
(A 3)

x[ qnI ninl A
--n _ _ --_n

The vectors --mXand In satisfy the biorthogonality relation

T

--Yn B x = _ (A 5)-- --_II nm

where 6 is the Kronecker delta. The first derivative of % with respect to the
nm n

parameter p_ has the form
3

( T T
%n,j Yn --Bxn) = Yn (A,j - %nB,j)_ -nX (A 6)

For the calculation of the second derivatives of l , we need the derivatives of

the. eigenvectors. .--nX and l-n'_d The vectors _n,j andn--Yn,j can be represented as a
llnear comblnatlon of --nX ln:

2N 2N

= .. x. = (A 7)
_n,j i_l Cnjz -z _n,j i_l dnji _i

Using the equations (Al), A2), (A5) and (A7), Plaut and Huseyin (ref. 3) obtain

the following expressions for the coefficients c °. and d ..
nil nil
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T

Cnjn + dnjn Yn B, 2 x

yT(A, -knB, jc .. _- -- _ )Xn

nix k - _.
n x

T _%nB,jd .. =-Yn(A'J _ )x i

n3x 1 - _.
n 1

Ifor n_ i

(A 8)

we must
In order to get the second derivative of % with respect to pj and E
differentiate eq. (A6) with respect to pE.nWith eq. (A]), (A2) (AS) and
(A7) we obtain for % (ref 3)

n,j_

1 T
n,jZ = Yn (A'jz- % B'jZ) x-- n --n

(Cnjn

2N

i_n

+ dnjn) %n,g + (Cn£n + dngn) %n,j

(In - 1i ) [dnji CnEi + dnEi Cnji] (A 9)

where c .. and d .. can be calculated by eq. (A8).
n3x n3x

If we go back to our initial problem with the matrices M, C and K and

the eigenvectors _ and K, we get by substituting A, B, _ and _ for the second
derivative

n,j£ n = _ £T (%2n + %nC,j + K,j£)
3Pj _P£ -n M,O_ - _ q--n

_ { gT (2%nM_' +--JC'-) qn } X-n -- j n,g

_ { gT (2%nM, + C,g) _n } %
--n -- g -- n,j

2N (_nj_i)(_n_n)+(gTG _.)(£_G .q )
i_ I --aa-n_ x -x-n2-n

iSn (%n - %')£

where G . means
-nj

(A lO)
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_njG- = %2 M, + %n C, + K,
n--j -j --j

(AI])

The second derivative with respect to a single parameter p. can be obtained

by replacing the subscript _ in eq. (A]O) by the subscriptJj.

Element

Spring

Damper

Mass

qk

_k k

qk

Force-motion-relation

_k = kk qk

Fk = Ck qk

Z

Fk =mk qk

Influence coefficient gnk

-- n _

gnk Sk k (_'kqk)n
0

_n Ignk - _¢k
O

_n_kqk)n

n = _ 12(__q.)
gnk = :$rnk n O _ _ n

Journal

bearing _'_ qi

Seals of __
Pumps

qk i

"-F_i _

=
-a

Fk

F. _ C

i]= ¸

Fk -c

Fk

ciicik lq.i+

CkiCkk qk
I_ _ . A

0

=

-k

c qi "K

" +-k

C i qk I

k-l-_i

, v

o qk

k Likik- ql_

ki_ikkk q_k

- T- --

k lqi

= _ i_ ('_iqk)
gncik no n

= -

gnkik (_iqk)n

gnc - }' (_ +_no iqi _kqk)n

_ i ( ;
gnc no iqk-_kqi)n

gnK - (_iqi+i_kqK)n

gnk - (_ -'_ )iqk kqi n

gnk = - ('iqk-_kqi)n
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Figure I. - Rotor of turbomachine.
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Figure 4. Eigenvalues of rigid

rotor with flexible supports

and clearance excitation.
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Figure 5. - Parameter variations at rigid rotor with flexible supports and
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Figure 7. - Eigenvalues of rigid

rotor in journal bearings.
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Figure 9. Variation of rotational
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Figure lO. Elastic turbopump rotor.
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