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by 

Emanuel Parzen 
Texas A&M University 

The workshop on IIDensity Estimation and Function Smoothing" held 

at Texas A&M University on March 11-13, 1982 under the sponsorshop of 

NASA, provided the occasion for a cross-section of mathematical scien

tists involved in this field to meet for an intensive sharing of results 

and viewpoints. All participants regarded the workshop as an unusually 

warm, stimulating, and productive experience. The papers collected in 

this volume provide written versions of the papers presented, enabling 

a wide audience to enjoy the excitement experienced at the workshop in 

being able to learn about the diverse research directions that consti

tute the current state of the art in the statistical discipline of density 

estimation and function smoothing. 

One conclusion to be dra~n from these papers is that solutions to 

problems of density estimation and function smoothing involve aspects 

of theoretical and applied mathematics, probability and statistics, 

numerical analysis and computer science, information theory and approxi

mation theory, as well as the scientific fields such as meteorology and 

remote sensing. I believe this field of mathematical science merits a 

name of its own, and I propose "statistical functional inference." I 

believe that statistical model identiflcation techniques are required to 

develop and implement workable practical solutions to problems in density 

estimation and functlon smoothing. There is reason to believe that the 

techniques being developed by the workshop participants will ultimately 

prove to be of great value in accompllshing the objectives of NASA. 

, . f 



The papers collected here are extremely rich in content. and it is 

impossible to convey their importance in a few summary sentences. Never

theless, to help the reader obtain an overview of each paper I have 

written a short description of each. 

Devroy takes a critical look at mathematical results on the con

vergence of estimators of a probability density f on Rd from a random 

sample xl ••••• xn• 

Geman provides insight about the problem of choosing a smoothing 

parameter by cross-validation. 

McClure discusses estimation of a planar convex region from projec

tions of counts of events which are Poisson distributed at different 

rates inside and outside the region. 

Geman and McClure relate kernel type density estimators to maximu~ 

likelihood density estimators calculated by the method Qf sieves. 

O'Sullivan discusses how methods of regularized and generalized cross

validation can be used to estimate the atmosphere's temperature, moistur'e, 

and wind structure from a finite number of noisy measurements by meteorol

ogical satellites on the intensity of upwelling radiation in selected 

channel frequencies. 

Parzen presents an approach to statistical data science based on 

quantile functions, density-quantile functions, and information and entropy 

measures. He outlines a ne\o[ approach to density estimation based on using 

exponential pro~ability densities as exact and approximate models. 

Peters discusses, for a probability model of a finite mixture of 

multivariate distrlbutions. the asymptotlc consistency. normality. and 

efficlency of the maxiMum likelihood estimators of the parameters of this 
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model. 

An important technique of estirr.ating a smooth function g{t) given 

data values xi' i = l ••••• n which are noisy measurements of A g (ti ). 

for a knowr. linear operator A. is to choose g to minimize 

Rice and Rosenblatt examine this procedure in the ca~es of numerical dif

ferentiation and deconvolution. 

Schuster summarizes results reported in several papers by Schuster 

and u:egory on their experience in applying non-parametric maximum like

lihood techniques of density estimation to judge the comparative quality 

of variou!. estimators. 

Scott summarizes his experience in comparing the effects of smoothing 

parameters on probability density estimators for univariate and bivariate 

data. 

Silve~an introduces. and discusses the asymptotic behavior of. a 

test statistic for hypotheses concerning the number of ~des in a proba

bility density. 

Thompson lntroduces a method for generating random vectors from the 

distribution of a random vector x which is based on a random semple of 

x witholJt estimating the underlying density. 

Redner and Walker re'lleW the theory of estimation of parameters of 

mixture aensity models. and discuss in detail iterative procedures for 

numerical approximatlon of maximum likelihood estimates based on the Er1 

algorlthm. 
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Yakowitz and Stofd;:rovszky provide a comprehensive review of "krig-

ir.g" methods for fitting functions to spatial data. 

Wendel berger discusses multidimensional smoothing splines. the 

method of generalized cross-validation. and applications to meteorology. 
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10:30 
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.w_,~ t.V" ,"wllv \,...,,.. 

Nonparametric Regression and Kriging ~'ethods for Spatial Data 
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6 

3:40 Consistency and Other Lars,e Sample Properties of Maximum Likelihood 
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B. Charles Peters, University of Houston 
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Homer Walker, University of Houston 
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TOPICS IN/GLOBAL CONVERGENCE OF DENSITY ESTIMATES 

by 

Luc Devroye 

McG111 University 

9 

We take a Lritical look at the problem of estimating a dpnsity f on R 

-, 

d 

from a sample XI ••..• Xn of independent identically distributed random vectors, 

and review some recent results in the field. Among ot~er things. we will qualify 

tre fol1owing statements : 

(i) For any sequence of density estimates f. any arbitrary slow rate of 
n 

cQnverg~ncc to 0 is poss1ble for E(/lf -fl>. 
11 

(ii) In theoret1cal compar1sons of density esti~tes. one should use 

llf -fl and not flf -flP • p > 1 . n n 
(iii) For mos~ reasonable nonparametric nens1ty estimates. either we 

have convergence of II f - f I ( and then the coO'.'ergence is i:1 the 
n 

strongest possibl~ sense for all f ). or we have no convergen~e 

( and then we don't even have convergence in the weakest possible 

sense for a single f). rhere is no intermed 4 ate situation • 

* ~e~earch of the author was supported by NSERC Grant A345~. The author is with the 

School of Cocputer ~r.ience. McGill Univers1ty. 805 Sherbrooke Street l~est, Montreal, 

Car.ada H3A 2K6. 
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1. INTROD~CTION. 

In this papcr~e ~iSCUSS vGrious issues related to the problem of 

estimating d density on R from a sample XI ••••• Xn of independent identically 

distributed ran dum vectors having density f. such as : how should one judge the 

goodness of an estimate; is there an optimal estimate; how good can estimates be 

for scalI n and large n; and does it pay to use sophisticated °stimates? The 

discussion will be supplemented with a selected survey of recent results in the 

field. 

A density estimate is a sequence f l .f2 ••••• f n , ••• where for each n. 

f (x) - f (x,XI' ••• ,X ) n n n 

d is a real-valued Borel measurable function of x~R and the data X1 ' •••• X • 
-- n 

A density estimate can be parametric or nonparametric, but this distinction 

is not i~portant in what follows. The prototype parametric estimate is defined 

as follows for d-1 : 

The most frequently used nonparametric estimate is the kernel estimate (Rosenblatt 

(1956) and Parzen (1962» : 

1 n -d 
f (x) so - ~ h K«Xi-x) /h) , 

n n i:l 

h> 0 is a number depending upon n, 

K is a given density (kernel). 

For ~ibliographies on density estireation, sec Wegman (1912). Wertz (1978), Wertz 

and Schneider (1979) and Bean and Tsokos (1980). 

., 
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2. HEASURF.S OF GOODNESS. 

·, ... 'll~ ,~_ I' ..... '1_ .. ~ 

OF POOR QU.~lriY 

We would like to obtain a number thet measures how close f is to f n 
in order to carry out theoretical comparisons between estimetes later on. 

For a variety of reasons, but mostly for the sake of convenience, researchers 

have proposed the criterion 

I(! _f)2 • 
n 

All integrals in this paper ore with respect to Lehcsgue measure (dx). Note that 

(3) is a random variable, and that it 1s neceDsary to take its expected value. 

In general, we can consider all integral measures of goodness : 

We will now argue that the only reasonable integral measure is the L measure 
p 

with p-l. Our argument is based on a couple of ~bservations. 

(3) 

1. Let g be an estimate of f. If X h3s density f 

~f(~). and this density should be approximated 

1 
eg R , then aX has density 

I x by -:-8 (-) • But 
a a 

Thus, the only Lp measure that is independent of the scale is the Ll 

measure. 

2. By Hinkowski 1 s inequality we have 

where the lower bound is infinite if one of the terms is infinite and the 

other one is finite. Thus, in any reasonable theory involving the L 
p 

measure. we must ass\~e first that f aL. However, the only space to which 
p 

all densities belong without discrimination is L
1

• 

1
- ... "::", -;~:--,;- .; 0:'" q ." ,< .'"' -. -', .',' -~~ ~'", "', -""'-c''7'~,-,. ~ ",.> .",:.~. ~!; ~..:".,'.'-' -' 
... \0' .; .,;: :~,:: '.1:,,;~ ~ dO" "r", .w __ ',",,;,~';;'~,,,",,,~ .. ,.....::..,./.~·~ ... ""~_. __ ..::k-I.........,j,J.h>....:;b .... =« ...... __ ....... , ... - ... ,& ... ' ... , ............... -.... .. 
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3. If f and g aTe both densities, then for any set B '-.Rd, the probabil1 ties 

of B defined by f and g respectively differ by at most 

~ • sup Ilf - Igi • 
B B B 

-4 For example, if 6 is known to be less than 10 , then two independent 

samples of size 104, one from f and one from g, are all but statistically 

indistinguishable. Thus, keeping 6 small has a true practical impact in 

the area of simulation. But clearly, 

~ - ~/lf-gl • 

No other L measure has any connection with 6 in the sense that for any 
p 

p > 1 and any f, there exist sequences of densities f and g such that 
n n 

(i) Ilfn-fl ~ 0, Ilfn-flP t ~ , 

(ii)/lf -fl- c > 0, Ilf -riP ~ o. 
n n 

2 2 
4. If f and g are normal densities with zero mean and variances a and t , 

then I I f-g I depends only upou air, and tends to 0 if and only H aIT ... 1. 

However, for p > 1, Ilf-sl P can tend to ~ even if air tends to 1 (let 

a .... 0, t _a+a 3pl (2P+1», and it can tend to 0 even if alt tends to ~ (let 

T .... co and air .... coo ). 

,- J H f :x: h b -." I it C 

j 

11 
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3. NEGATIVE RESULTS. 

Many a density estimate (such as the kernel estimate) has been criticized 

for not performing well "for small sample sizes". Recent work in the area of 

density estimation has been in the direction of improved small sample perfor~~nce 

and automatization of the estimate ( automatization of the kernel estimate means 

that the parameter h is chosen as a functi~n of the data). Fc~ research in this 

direction. see Deheuvels (1977a.b). Dliin (1976). Scott et. a1. (1977). Silverman 

(1978). Davis (1977). Scott et. a1. (1981). Wahba (1977. 1978). de Montrich~r et. 

a1. (1975). Good and Gaskins (1980), Breima, et.a1. (1977). Nadaraya (1974), ~nd Devroye 

Bnd Wagner (1980). Most automatization schemes are so sophisticated that it is 

hard to prove that f converges to f in any sense at all. In fact. many schemes 
n 

should be avoided altogether. For example, Schuster and Gregory (1981) have shown 

that the cross-validation method for determining "h" in the kernel estimate will 

not lead to a consistent estimate for most densities f with an infinite tail (such 

as the exponential density). Consistent cross-validated density estimation is also 

discussed by Chow. Geman and Wu (1981). 

EVen if an estimate is known to be consistent for all densities f. its small 

sa~ple and large sample prop~rties may be terrible. The search for always better 

estimates is doomed to be frustrating. In part, this frustration is captured in the 

following result. 

Theorem 1. (Devroye. 1981a) 

For every density estimate, and every p ~ I, and every sequence of positive 

numbers tending to 0 (a ). there exists a density f an Rd suct that 
n 

E(llf -fIP) > a infinitely often. 
n - n 

We can always find such an f among the class of densities bounded by 2 and vanishing 
d 

outside (0,1] • Moreover, for p-l, the density f in question can also be taken from 

the class of infinitely =any times continuously differentiable functions. 
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Thus, any kind of continuity condition alone, however strong, is not 

sufficient for the study of the rate of convergence to 0 of E(/lf -fl ), 
n 

regardless of the type of estimate that is used For such studies, it 

seems that one needs combinations of continuity and tail conditions. 

Theorem 1 is in the spirit of a theorem proved by Boyd and Steele in 1979. 

Theorem 2. (Boyd and Steelp., 1979 1 

For every density estimate, there exists a normal density f with zero 

mean such that 

E(/lfn-fI2) ~c(f)/n infinitely often, 

where c(f) > 0 is a constant depending upon f only. 

In a sense, Theorem 2 gives us new information. EVen if f is known 

to be norma] with zero mean and unknown variance, it is impossible to find 

an estimate with an L2 rate of convergence that is better than lIn. 

The theorem cannot be improved in the sense that the parametric estimate (1) 

satisfies E(/lfn-fI2) ~ c(f)/n, all n (Maniya, 1969). 

Let us finally point out that several results that have received widespread 

attention to date are practically vacuous. For example, Rosenblatt (1971) hus 

shown that the kernel estimate (2) satisfies 

:. b 4 
'" -- + - h nhh 4 

~ J 

, . · · · · . 
· I 
• I 

: I . · . 
· , 

I 
• j 

.1 

2 2 2 2 2 
as n ~ 00 , h -+ 0, when K is bounded and symmetric, dr-I, Ix K < co, aK/K , b-(lx K) If" ,_. 

and f ~ ~ s{al1 densities on R1 that are twice continuously differentiable and for 

which If2 < GO and If,,2 < co and f is bounded}. Thus, if we take h"(a/(bn»1/5, 

then 

E(/lf
n

- f I2) '" t a4/5bl/5 I 4/5 
n 

Thus, there are densities f in ~for which (4) is valid and for which at the sa~e 
time, E(/lf -fl) > II log log log n infinitely often (theorem 1). But without 

n -

(4) 

guarantees for the performance of fn in L l , Rosenblatt's result looses credibility. 
1/5 Thus, the choice h=(a/(bn» for the kernel estimate, even if a and b were known, 

may not be "optimal" after all 
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4. POSITIVE RESULTS. 

A thorough study of global rates of convergence for density estimates 

in gp-neral and the kernel estimate in particular was carried out by 

Bretagno11e and Huber (1979). We cite one of their results that is closest 

to what we need in the present discussion. 

Theorem 3. (Bretagnol1e and Huber, 1979) 

If d-l and fe~= {all densities with compact support, that are s times 

differentiable (s ~ 1 is an integer) such that/lf(s)1 < ~}, and if the kernel K 

in (2) satisfies: IK - 1, Ixj K2 0 (O<j<s), IlxlslKI < m, K has compact support, 

then a sequence h;h(n) can be found such that for the kernel estimate 

sIs 

lim sup n2s+1E(/lf -fl) ~ c{s) (/If(s)11s+l (llf)2s+l , some c(s»O. 
n 

This does not contradict theorem 1 because 1 combines a continuity condition 

and a co~pactness condition. Unfortunately, ~ does not include many common 

densiti~s such as the normal and exponential densities. 

A second po~itive development is related to the ob~ervation that for most 

reasonable nonpararoetric density estimates, R(/lfn-fl> ~ 0 for all densitieq f on 

Rd. If we cannot say much about rates of convergence, at least we are guaranteed 

that the estimates are consistent. The first result of this type is due to 

Abou-Jaoude (1976a, 1976b, 1976c), who studies the histogram estimates. Here 
d we consider a sequence of partitions P of R , where P z{A 1,A 2 •••• } , and we 

n nan 
denote the set Ani to which x belongs by An(h). The histogram estimate is defined 

by 

f (x) - {nh(A (x»-l 
n n 

(5) 

where 1 is the indicator function and h is Lebesgue measure. Although Abou-Jaoude 

treats very general sorts of partitions, we will only state his results for the most 

common partitions P consists of all sets 
n 

d 
)( [aib ,(ai +1)b ) 
i-I n n 

where alt •••• ad can take all the integer values, and b
n 

is a sequence of positive 

numbers. 

(6) 



, , 
( 1 

_\ t , 

Theorem ~.(Abou-Jaoude, 1976a.c) 

For the histogram esticate defined by (5-6), the following conditions are 

equivalent 

A. Ilf -f I .... 0 in probability as n ..... , for all f • 
n 

B. Ilf -f I ~O almost surely as n ..... , for Illl f. 
n 

c. Ilf -f I .... 0 cO::Jpletely as n .... CD, for all f. 
n d D. Hm b • 0, lim nb .. CD. 

n- n n n-

(A sequence of random variables X converges completely to 0 if for all £ > 0, 
n JP( IXn 1»£) <.... Thus, complete convergence implies almost sure convergence.) 

For histogram estimates, all types of Ll convergence are equivalent. The 

Ll convergence of the kernel estimate for all densiti~s f was first observed by 

Devroye and Wagner (1979). Devroye (198b) showed a strong equivalence theoreQ for 

the kernel estimate : 

Theorem 5. (Devroye, 198~) 

For the kernel estimate (2) with a compact support kernel K ~O ~hich 

integrates to 1, the following statements are equivalent : 

A. 11£ -f I .... 0 in probabili ty as n .... 00, for some f. n 
B. 11£ -f I .... 0 almost surely as n .... CD, for some f. n 
C. Ilf -f I .... 0 completely as n -+- ... for some f. n 

, 
D. Ilf -£ I .... 0 completely as n ....00 for all f. , 

n d E. lim h - 0, lim nh • 00. 

n- n ....... 

Furthermore. E implies D whenever K is absolutely integrable and IK-l. 

The difference with Theorem 4 is that weak convergence (A) for ~ f is enough 

to conclude E in Theorem 5, while weak convergence for all £ is needed to conclude D 

in Theorem 4. Thus. either we have'convergence in Ll for ~ernel-estimates (arid,£hen -

the convergence is in the strongest possib1e·sense. and for all f). or we have no 

convergence in Ll for kernel estimates (~nd then the estimate does not cven converge 

in the weakest sense for a single f). 
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1. Int:..:>duction 

Virtually all nonoarametrlc (infinite dimcnsional) problems 

require the choice of a "smoothing parameter". 

Example: xl ,x2 ' ... i.i.d. from a distribution with unknown 

dens~ty "f". Consider the Parzen-Rosenblatt kernel estimator 

with window width l/~: 

where k is a probability kerncl, or the histogram with bin 

width l/A: 

( ~ N{x.'. k-l < ~} [k-l k) f n , A x) = n 1 n Xi < n x En' it . 

In each case A serves as a ~moothing paraMeter. It is well-

known that If An t ~ sufficiently slc~ly then f , + f (e.g. 
n, An 

almost surely in LI (R,B,1x)). Depending on the aS5umpti)ns 

made, optimal rates can be specified for An' but these will 

always depend on the unknown density f. How should A be chosen 

for a fixed, finite, sample? For moderate sam,lc sizes, both 

estl~ator5 are sensitive to th~ choice of A. ThiS is the 

"5moothing prublem'. It has its analo~ue for virtually all 

(non-Bayesian) nor-parametric density estimators. For example, 

the maximum pena'lz~d likelihood estimator requires the choice 

of a weight to be Given thc penalty term. Orthogonal ser\cs 

estlwators (for densities or regressions) require th~t we 

specify the number of terms to be used In a truncated series 
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expansion. Splines for nonrarametric regression typically 

arise from solv~ng a least squares problem with penalty, which 

may be, for example, the interral of ~he squared second derivative 

of the ~stimator. As with penalized maximum likelihood, the 

smoothing parameter here is the weight given the penalty term. 

Some estimators of finite dimensional parameters also 

contain unspecified smoothing parameters. In fact, it is 

sometimes useful to introduce a smoothing parameter into an 

estimator that is otherwis~ completely specified. Consider, 

for example, the linear regression problem: 

y. = X.·lSI ...... +x. 8 +e:. , 
1 I Ip P 1 

Or, in ve~tor-matrix notation: 

1 < i < n e:. iid N(O,a 2). 
1 

Y = XI1+e: 2 e: - N(O,a I). 

The least squales (maximum likelihood) estimator for 8 is 

The ridge estim~tor for S is 

A > o. 

Observe that 80 is the least squares estimator. The introdLction 

of A Into the least squa~es estimator may be motivated by any 

of the following considerations. (1) 8A mlnimlzes an equation 

of the form 

11 
I j 

~ j 
I ! · . 

· , 
, I · 

r' t 

• T 
, I 

t 
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Ilence 6A may he vlewed as a penalized least squares estlmator, 

" with penalty for large values of 8. (2) 
,-

When X X is "ncdrl)' 
... 

singular" (poorl)' conditioned) eO li.1S la]'ge'MS!: due to the fact 

that the inverse of XTX is in,olved in its derlvdtion. Adding 

nAI to XTX improves the conditloning and may he expected to 

reduce MSE. (3) Perhaps the best justiflcation for ridge 

regression is the following easily demonstrated fact: for 

every n, 8, and 0
2 .... 0, there exists a A > 0 su~h that 

Unfortunately. the optImal A (in terms of MSE) depends on B 

and 0
2 , so th~t we are again faced with a version of the 

"smoothing problem". 

It 15 natural to attempt to use the data to guide the chOIce 

of smoothlng parameter. For each of the above examples many such 

"data-driven" cst Imators have been proposed. Perhaps the most 

widely applicable (certaInly the most Widely studled) ddtd-

driven technique is cross-validation. SimulatIons show that 

cross-validation can be a very effective means for chooslng 

smootillng parameters. Ito\~ever, the technique can badly fall, 

and the condltl~ns for success are n~t well-understood. In 

[dct, almost nothlng is known of the analytiC properties of 

~ross-valldated estimators. In collaboratlon With Drs. Y.S. Chow 

and I •. -D. \'Ill (previollc;l)' VISitIng Rrown thuversity) .1Ild A)'tul I.rdul 

(currentl)' a grndlwte student at Rrown UniversIt)') I hav(' been 

attemptIng to establish somc of the analytiC properties of 

... ..... -.' ~ ...... ;;, ~ t ...... ~ ~ J'. ~ -, > 1-,'" 1. r .... ~ • --. ..." ... : _ ... r," ~ J"' '-"'.......~.... ( :...,~ .. >- ~ 
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cross-validated estimators. In the remainder of thIS talk I 

will introduce, by example, the method of cross-validation, 

and announce results which establish consistency for c~rtain 

cross-vaJided density estimators and consistency as ~ell as 

asymptotic normality for ridge regression. 

II. Cross-validation for choo£ing smoothing parameters. 

This method is best introduced by example. 

A. Kernel and histogram. 

Recall : is an i.i.d. sample from a 

distribution with unknown density "f". fn" is either the kernel , 

n 

:; .. 

with window width l/~, or the histogram with bin width l/~. I) 

The problem is to choose ~ when faced with a fixed and finite 

sample xl,xZ"",xn ' The first step in applying cross-validation 

is to form the estimator from the sample after first deleting 

one of the observations: 

i I ~ f (x) = - •• ~k(~(x-xJ'))' n-l,). n-l 
J 1 

i f I ,(x) IS a measure of the appropriateness of'~ for smoothing n- ,1\ 1 

the estimator. If fi I ,(x) IS large, we could say, loosely. n- ,1\ 1 

that f~_l,~(x) "anticIpated the observatIon Xl" (for fixed 

).,f~_l,).(X) is formed independent of xi)' If f~_I,).(Xi) is small, 

then xi was measured as "unlikely", evidence that ~ does not 

properly smooth the estimator. Through this procedure, applied 

n times, we arrive at a likelihood-like expressIon: 
n 

L, = IT fi I ,(x ). 
1\ 1=1 n- , i\ 1 

I 
I I 

~ I , .. 
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We now choose A=A n to maximize LA' The cross-validated 

estimator (due to Habbema et al. (5) and, independently, 

Duin (3)) is fl' Simulations strongly support the use of this 
n, '11 

technique for certain combinations of the kernel and target 

density. However, the method can fail, and i~ surpris1ngly 

innocent looking situations. For example, Schuster and 

Gregory (6) have shown that the cross-validated kernel, using 

compact kernel, is not consistent for the exponential density. 

With this, 3; with all cross-validated estimators, very little 

is known analytically. In fact, with the exception of the results 

mentioned below for kernels and histograms, conditions for the 

consistency of cross-validated density estimators are unknown. 

B. Ri.:.~~ _regression 

Recall that the ridge estimator for B in the model 

Y = XB+E 

is 

"i-Define BA to be the ridge estimator obtained by deletlng 

(lgnorlng) tne i'th observation. The squared error in predictlng 

the i'th observation: 

measures the ~ppropriateness of A as a smoothing parameter. Uefine 

, \ 



and choose ~=~n to minimize LA. The cross-validated ridge 
,., 

estimator (due to Allen (1)) is B~. Our simulations, and 
,., n 

... '" 

those of others, indicate that SA is an extremely good estimator 
. n 

for S, especially when XTX is nearly singular or a is large. 

Although they may exist, we have not found any situations in 

which the mean squared error of the cross-validated ridge 

regression estimator exceeds that of the o~dinary least-squares 

estimator. Often, the ridge estimator reduces the MSE of least 

squares by SO or mQre percent.· 

There is a closely related estimator, due to Golub, Heath, 

and Wahba (4), called the "generalized cross-validation" (GCV) 

ridge regressor. The GCV ridge regressor is computed by first 

rotating the coordinate system and then deriving the ordinary 

cross-val idation estimator·. Simulations demonstrate the GCV 

generally performs somewhat better than ordinary cross-validation, 

and GCV pr~ves to be more mathematically tractable. Although 

the above-mentioned analytic results are for GCV, I will not 

formally define the GCV estimator since this would require that 

I introduce somewhat involved notation. Suffice it to say that 

GCV is ordinary cross-vaildation in a rotated coordinate system. 

I ~~ould emphasize that cross-validation has its verSlon for 

all of the estimators mentioned earlier, each of which requlres 

the choice of a smoothlng parameter to be fully defined. Q~ite 

generally simulations support its good potentlal, and quite 

generally there are no theoretical results available about the 

cross-validated estimator. Thus questlons of distribution, 

efficiency, robustness, and even conslstency are almost completely 

unanswered. 

If 
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ITI. Analytic Results 

A. Why should cross-validat10n work? 

Before stating some analytic results about cross-

validated estimators, let me outlille a heuristic argument in 

favor of the technique" in the ridge regression context. This 

argument has its analogue for most cross-validated estimators, 

whether the target parameter is a dens1ty or a regress10n. 

In some cases it can be made into a proof of consistency (as 

it can for cross-validated ridge regression), but in nonparametric 

problems it appears that one ~ust take a different approach. 

Nevertheless, the motivation is similar for nonparametrric as 

well as parametric problems. 

The cross-validated ridge regressor is 

where An is chosen to minimize 

(*) 
1 n n Ai 2 - r (y. - LX .. BA .) . 
n i=l 1 j =1 1J J 

Ai 
Although BAj depends imp1ic1t1y on Y, it is reasonable to expect 

that a version of the law of large numbers will be in force 
.... i 

uniformly in BAj " This leads us to expect that for l3rge n (*) 

is close to 

1 n 
Ey L 

n 1=1 

n Ai 2 
(y. - L x· .13)..) 

1 j:al 1J J 

where "Ey" means integration W1t~ respect to explicit appearances 
A1 

of the components of y, treating B).j as constant. It is also 

f" -. . .' '.--:-
~£' lJit kelt" ... !~<d 
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"'i Teasonable to expect that B).j will differ very little from 
,. 
B).j' especially when n is large. Thus we choose ).n to minimize 

an expression which we might expect, for large n, to be close to 

n ,. 2 r x· .13)..) 
jo:l 1J J 

The conclusion is that the cross-validated estlmator attempts 

to minimize the positive definite quadratic form 

Since 

,. 
(recall that 80 is the least squares estimator), we expect that 

(**) will also converge to 0, and at least as fast. 

B. Ridge regression 

Here, loosely stated, is what we know about the analytic 

properties of the cross-validated ridge estimator: 

THEOREM (with Aytul. Erdal). If a). is the GCV rl.dge regressor 
n 

then 

and 

,.. 
~B). -8~ + 0 a.s. 

n 

Observe that for least squares the distribution of 

-; . 
" I , 

•• 
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is exactly N(O,a 2I). Thus the GCV estimator asymptotIcally 

assumes all of the distributional properties of the least squares I \ 

estimator. 

c. Density estimation 

Results are much more difficult for infinite 

dimensional target parameters. So far, for the cross-valldated 

kernel and histogram we have only a consistency result (stated 

here without all of the technical details - see (2) for the 

precise formulation): 

THEOREM (with Y.S. Chow and L.-D. Wu). If f (the target density) 

has compact support, then the cross-validated histogram and 

compact-kernel density estimators are consistent: 

' .... .,.... .. 6+ I» 

f1fn,h (x)-f(x)ldx ~ 0 a.s .. 
n 
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OF POOR QUALI N, 

1. Summary 

This report summarizes ongoing work concerned with the 

reconstruction of planar sets that can be only partially observed. 

Details of the problem formulations and of the results reported 

here are being incorporated ln a report describing a broadeT 

class of problems, specifically the estimation of an intensity 

function of a planar Poisson process based on observations of 

stochastically independent fixed-angle projections of the process. 

First, the set-estimation problem is formulated and connected 

n 

n 
f1 

:1 
r- \ 
i. , J , . 
1 I. , . 

to reconstruction methods of emission computed tomography. Then ~1 

the inference problem per se will be isolated and approached by 

traditional estimation methods. 

I shall focus on the special case of estimating an unknown 

planar convex body K2 that is a subset of a known convex body KI . 

Poisson events occur with an intensity A(X,y) that is spatially 

inhomogeneous (and temporally homogeneous) within the larger 

set Kl ; we assume for our prototypal problem that A(X,y) = ~2 
within K2 and ~(x,y) = Al < A2 within KI -K2• The Poisson events 

are projected on a line ~ with fixed arbitrary orientation e 

relative to the horizontal axis, and only the projected points 

are observable. 

The underlying model for generation of the projected point 

process implies that its univariate intensity function ue is a 

superposition of the "shadows" of Kl and KZ' In particular, 

(1) 

. } 

~-

: 1 
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f • 

where (i) wI(~) is the known width of KI , in direction 9+n/2 

and at location ~ along the line ~9' (ii) w2(~) is the unknown 

width function of K2, and (iii) ~l and ~2 are the unknown 

values of A(x,y) within KI -K2 and K2 , respectively. When Kl 

and KZ are convex then wI and wz are unimodal and analogies with 

familiar nonparametric inference problems can be drawn. 

Tha problem that is solved in this report is the character

ization of the maximum likelihood estimates of Al and of 

u = (~2-Al)w2' under the constraints on the structure of u that 

follow from convexity of K2. The characterization is patterned 

after ones that are familiar in the context of isotonic 

estimation and regression. Specifically. the m.l.e. u* of " 

attains a maximum value on a nondegenerate interval [to'~l]' 

To the left of ~O (and to the right of ~l)' u* is the slope of 

the greatest convex minorant of a modified counting function 

for the univariate point process. 

The characterization of u* is finite-dimensional and its 

computation is feasible. The intrinsic complexity of the 

comput~tion of u* is discussed and an implemented algorithm is 

described. Finally, a simulation example illustrates the 

performance of the estimator u* and the use of u* to reconstruct 

the boundary of K2, 

, . .-. 
I 
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As an instance of Grenander's method of sieves [2] for 

adapting the maximum-likelihood approach to settings where the 

target parameter is infinite dimensional, we have considered 

density functions of the form 

01) 

f(x) = J ~ t((x-y)/a)G(dy) = (ta*G) (xY. (1 ) 

-co 

Here G is an arbitrary cdf and t is the standard normal density 

function. In this note, we shall derive a characterization of 

the cdf G* that solve the m~ximum-likelihood equation: 

..sf(G*) = max ..c/(G) 
G 

where ~(G) is the likelihood function 

n 
5f(G) = n f(x i ) 

i=l 

(2) 

(3) 

determined by a random sample x1 ,x2, ••• ,xn from an unknown 

population density fa. 

Geman and Hwang [1] have described the connection between 

this optImization problem and nonparametric maximum-likelihood 

estImatIon. In brief, if we specify a sequence {am}:=l of 

pOSItive values with am '" 0 as m -+ co, then the sequenc..e of sets 

Sm = {f : f = .0 *G, G an arbitrary cdf} 
m 

deflnes a sieve of subsets of Ll , the so-called convolut1on 

SIeve. The method-of-sleves (i) fixes an lndex m, dependIng 

r 
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on sample size n and on the sequence {a l, (ii) seeks the m 
* n solution Gm of (2) determined by the sample {xili=l and am' 

* * and (iii) forms the estimator fm = ~ *G. 
am m 

The familiar Parzen-Rosenblatt kernel estimator fits 

40 

within this framework. The kernel e~timator prescribes G to 

be the empirical cdf. One motivation for introducing the 

convolution sieve is to study the relationship between the 

kernel estimator and ones derived through the principle of 

maximum likelihood . 

Our characterization theorem for G* exhibits a rather 

* close relationship between fm and the kernel estimator based 

on the Gaussian kernel. We shall show that the solution G* 

of (2) is a discrete cdf and that it contains no more than n 

* points in its support. Thus, the estimator fm obtained from 

the method-of-sieves admits a representation of the form 

f;CX) = or PJo ~a (X-YJO
), 

)=1 m 

analogous to a familiar form of the kernel estimator. In 

contrast to the kernel estimator, the support 
n {Yj} of G* does not coincide with the sample {Xi}i-l and, in 

general, the weights {x j } will not be identically equal to 

n- l . Computational experiments with closely related sieves 

strongly indicate that the number q of points in the support 

of G* will typically be much smaller than sample size n . 

-~-' --.-.. ---.-:-----~---.:-'- .... -~- - -, - , . .. -', -,.,- ,~~,~ 
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2. Characterization Theorem 

Theorem. Let x1,xZ"",xn be a random sample from a population 

with density foe Let 0 > 0 and consider estimators f of fO 

defined by (1). 

(i) There exists a solution G* of the maximum-likelihood 

problem (2)-(3). 

(ii) If G* satisfies (2), then G* is a "discrete cdf with 

finite support. Denote supp(G) = {s.}~ l' Then q < n. 
J J= -

(lii)Ii xCI) = minC{xi}~=l) < rnax({xi}~=l) = x(n)' 

then x(l) < minC{sj}1=1) and max({sj}1=1) < x(n)' 

Proof: We may assume, for convenience and without loss of 

generalIty, that 0=1. The sample values can be rescaled, 

setting ~i = xi/o, if Of 1. 

The maximum of YCG), if it exists, \"ill be attained by !l 

cdf with support in [x(1),x Cn)]' To see this, consider an 

arbItrary rIght-continuous cdf G and defined GO in terms of G by 

0 for x < xCI) 

GOCC-co,x]) = G(C-co,x]), for xCI) < x < x(n) 

I for xCn) < x. 

Go is designed so that GO({x(I)}) m GCC-~,xCI)]) and 

GOC{x(n)}) = G([x(n)'co)). SInce ~ is monotone on the separate 

Intervals (-"",0] and [0,""), we have 

· , , 

I 
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00 

~CXi-x(n»Go({x(n)}) > f $(x-y)GCdy) and 

x (n) - 0 

x(l)+O • 
$(xi-x(l»GOC{x(l)}) > f ~(x-y)G(dy). 

_00 

Consequently (~*GO)(x) > (~*G)(x) for all x in [x(l),x(n)J and 

hence ..Sf'(Go) ~ ..Sf'(G). 

The existence of a solution G" of (2) follows from Ci) 

the compactness of the (tight) family of cdfs having support 

in [x(l),x(n)J, and (ii) the observation that ..Sf'(G) is a 

bounded and continuous functional on this set of cdfs, i.e. 

continuous ,~ith respect to the topology of weak convergence • 

Let G* be a solution of (2) and set f* = (~*G*). A 

variational argument characterizes the points in the support of 

G* as roots of a transcendental equation. Let s be an arbitrary 

point in the support of G*. For any E > 0 and for any z, define 

a measure Hs z by ,E, 

H (B) = G*((S-E,S+E1 n (B-z» S,E,Z 

H S,E,Z is a rigid ::hift through distance 

" 
z 

(s-£,s+£J. Define G .,. G*-H . Then S,E,O 5,£ 
cdf for any z, and ::..t may be regarded as a 

near 5 of G*. 

" 

of G* restricted to 
* G S,E + H Ste:tZ is a 

lucal perturbation 

Set f = ~*[G +H ] and observe that f* = f O. StEtZ S,E StEtZ ste:, 
Since rrf*Cx i ) is maxlmal, we have 

d n 
o = az. r log fs e: zCxi)1 

1=1 ' , z=O 

I 
I 
I 
I 

I 
I 
I 



Evaluation of the derivative gives 

Dividing this expression by G*((s-€,s+€]) and letting € + 0 

yields 

for any s in the support of G*. 

Now consider the function 

T(y) = 

The support of G* is a subset of the set of roots of T. 

Properties of this set follow from the connection of T with 

an extended Tchebycheff system. We can re-express T as 

T(y) '" 

2 
-y /2 e n 

~ 
i=l 

2 -x./2 x.y 
[x.e 1 e l. 

1 

2 -x./2 x.y 
e 1 ye 1 ) 

The expresslon in braces is a slmple linear combination of the 

(
x. y X· Yln 

2n functions e 1 , ye 1 i=l' When the xi's are distinct, this 

, , 
I I 
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set is an extended Tchebycheff system of order 2n. (And of 

course if {x.}~ 1 is a random sample from population density 
1 1= 

fO' then the xi's are distinct w.p.l. If the xi's were not 

distinct, we could reduce the order of the system accordingly 

to express, T(y) in terms of an extended Tchebycheff system with 

fewer than 2n elements.) The Tchebycheff property implies: 

(i) ZO :z {y 

(U) Z+- - {y 

T(y)-O} has at most 2n-l elements, and 

T(y)-O, T'(y) ~ O} has at most n elements 

(Karlin and Studden [3]). 

Since the support of G* is contained in ZO, G* is discrete with 

at most 2n-l jumps. 

In order to show that G* has at most n jumps, it suffices 
. +-to show that the support of G* is actually containe~ 1n Z , 

i.e. that T'(s) ~ 0 for any s in the support of G*. For f*, 

we can now wr1te 

f*(x) :a r 
jozl 

p. ~(x-s.) 
J J 

where {sJ11-1 is the support of G*, q ~ 2n-l, PJ > 0, and 

r p. = 1. Set s=s1' for f1xed t between 1 and q. Let c > 0 
1 J 
and define a perturbat10n fc of f* by 

P t Pt 
f~(~) = ) P ~(x-s.) + ~ ~(x-s+c) + ~ ~(x-s-c). 
~ jilt J J L L 

The denslty f adm1ts a representation of the form (1) and c 

f* • foe Since TIf*(x1) is maximal, 



d2 n 
:-! ,r log f (x1.') I ~ O. 
d£ 1.=1 £ £=0 

Straightforward calculation yields 

d
2 

,V I :-! L log f (x1.') • p~ T'(s), 
d£ 1.=1 £ £=0 h 

and hence, as claimed, T'(s) < O. 

Finally, to confirm the last statement in the theorem, 

observe that if s < x(l) for some s in the support of G*, then 

~(xi-s) is strictly increasing for sufficiently small increases 

in s and for all xi' except perhaps xCI)' Further, 

d as ~(X(l)-s) > 0 as long as s < x(l); hence nf*Cx i ) is a 

strictly 1.ncreasing function of s, contradicting the maXl.mum-

likelihood property of G* and f*. The same reasoning precludes 

s > xCn)' o 
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3. Conrluding Remarks 

The characterization theorem was announced in the paper 

by Geman and Hwang [1], where consistency questions for f* are 

analyzed. The consistency results guarantee that f* + fO 

in Ll-norm, with probability one, provided that a + 0 

sufficiently slowly as sample size n + w. 

H. Robbins recently restimulated interest in the maximum

likelihood problem per se during his lecture at the NASA 

Workshop on Density Estimation and Function Smoothing at 

Texas A&M University, March 11-13, 1982. Professor Robbins 

recalled his 1950 formulation of the maximum-likelihood 

problem (1)-(3) in [4] wherein connections are made with 

statistical decision problems. 
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1. Introduction 

Remote sensing of the atmosphere is a rapidly developing science. 

Today's meteorological satellites such as those in the TIROS-N series have 

high resolut1or. instrUr1ents on board which measure the intensity of 

upwelling radiation in selected channel frequencies. A description of the 

data retrieved by the radiometers on the TIROS-N type satellites can be 

found in ~7]. From these data it is possible to obtain information on the 

atmosphere's temperature, moisture and wind structure. One of the goals of 

the current Satellite Meteorology program is to improve the quality of 

atmospheric information obtained from satellite soundings to a point where 

it can be use~ for weather forecasting purposes. A major challenge in this 

direction is to develop refined num~rical and statistical methods for 

inverting the equations of radiative transfer given a finite number of 

noisy measurements. 

For a non-scattering atmosphere in local thermodynamic equil ibrium the 

radiative transfer equations (RTE'sl describe how the satellite upwelling 

radiance weasurements relate to the underlying temperature distribution T:-

Po 
~ (T) • B [T(po'h (po, - f B [T(Pldpdt (pldp !1.1) 

" " " 0" \' 

where PO is the s~rface pressure, T,,(p) is the transmittance of the 

atmosphere above pressure p at frequency". and B" is Plank's function 

given by:-
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OF pOOR QUAL\T'( 

3 BV(T(p)] = C1v /{exp(c2v/T(p)) - l} 
-5 2-1 

C1 = 1.19061X10 erg-cm -sec (1.2) 

c2 = 1.43868 cm-deg(K) 

The R.T.E ' s are of course an ideaiization. Tiley describe the inten

sities the satellite radiometer would record in the absence of such things 

as atmospheric attenuation due to clouds or instrument noise. However, 

by using high resolution radiometers like t~e HIRS or AVHRR, sets of 

intensity measurements from many FOV's (fields of vision) can be combined 

to obtain data of the form 

i = 1, .•• ,n (1.3) 

where ei's are errors. These data relate to an area of about 119 by 140 km 

on the earth's surface. See (6] for more details. 

We are interested in refining the method~ uspd to obtain temperature 

distribution estimates from the above data. The procedure currently used 

to process TIROS-N temperature sounding data is a linear regression 

technique sec [6]. Here we begin to discuss how the method of regulariza

tion (M.O.R.) might be used to improve the quality of t~mperature profiles 

obtainable by this procedure. 

--> 
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let T be the true temperature profile i, the atmosphere. Then T can be 

written as 

T .. TO + 0 0.4) 

where TO is the current best gue~s of T and 0 is the update or correction 

to TO to be estimated from the data {Zi} in h~nd. Using M.O.R. to estimate 

o involves consideration of a functional IA given by 

(l.5) 

and picking the estimated update o~ to minimize this functional 1 over some 

class of physically plausible candidates, for instance the set of fun~tions 

o in W2
m[O,po] for which TO+o is positive or perhaps, if the location 

of the temperature inversion were reliably known, one \'fould look for mini

mizers of IA scbject to an additional constraint involving temperature 

inversion. 

The statistical reasoning for considering regularized estimates of this 

type is well documented in the literature, s~e for example [3] and [1]. 

Intuitively 0A has been designed ~o match the observed data and possess 

certain smoothness qualities. The parameter A controls a tradeoff between 

Po 
the smoothness of a solution (measured by J [o/rn)'p)]2 dP ) and how well it 

o 

[1] This corresponds to the case when the measurement errors are iid N(O,a2
). 

A more "robust" method would be to consider functionals of the form 
n Po 

I~(o) = .L P[zi-~ (TO+o)] + A f [0{m)(p)]2 dp 
1=1 i 0 

where p reflected the possible non-Gaussian natw'e of the noise. 

I " 
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matches the data (~he r [zi-~ CTO+ol)]2 te~'. 

i-l i 

Inverting the R.T.E.'s with noisy data can be viewed as a special case 

of a more general situation ~n which the scientist wishes to estimate a 

function x given data 

(1.6) 

where x is in some Hilbert space H. the N; 's are non-linear functionals 

and ei's are noise. Here. assuming the ei's are iid NCO.o2 ,. an 

appropriate regularization function Il is 

(1.7) 

where J is a roughness penalty functional on H. To estimate x one proceeds 

to minimize IA over some subset of physical interest in H. This report 

summarizes recent results we have obtained on the existence and numerical 

approximability ot minimizers of such lA's in certain subsets of H. We 

indicate how these results apply to the radiative transfer ~quations case. 

There are three sections: section 2 talks about the existence theory; 

a Gauss-Newton algorithm for minimizing the regularization functionals is 

outlined in section 3, while the final section briefly describes how to 

estimate the smoothing parameter using a first order approximation to the 

generalized cross validation function given in [8]. We assume the reader 

is famil~ar with the basic mathematical tools for discussing minimization 

problems in Hilbert spaces. Part 1 of Ekeland and Temam's book [2] is an 

inspiring introduction to this subject. 



2. Existence Theo.,!1. 

Pre 1 tmi na ri es 

OF POOH QU4LITY 

Before describing our main results, let's pause a moment to get our 

notation straight. H is a real Hilbert space with inner product <'t'> and 
2 norm 11'11 (so <x,x>-llxll). P is a projection operator in H with finite 

dimentional null space; the complementary projection I-P is denoted by PO' 

H* is the dual space of H, i.e. the space of all continuous linear maps 

from H into R. L(H,H*) is the space of linear operators from H into H*. 

We will discuss functionals, I say, acting on H (50 I: H+R). The first and 

second Frechet derivatives of I at some point xcH will be denoted by I'(x) 

and l"(x) respectively. Thlnk of I'(x) as an element of H* and I"(x) as 

an element of L(H.H*). Our concern here is with regularization functionals 

1). on H given by 

(2.1) 

whc:'!re Ni'S are functionals on H. zits are inR, xcH and ).>0. Whenever we 

write I). the form (2.1) will be what is meant. So we are considering regu

larization procedures in which the roughness penalty J(x) is a semi-norm on 
2 

H given by J(x) = IIPxl1 • 

M,~ in Resul ts 

We now specify conditions on the non-linear functionals Ni which 

guarantee the existence of minimizers of 1). in closed convex subsets K of 

H. In the R.T.E. case a reasonable choice for K is the set of all func

tions in W2
m[o.Po] for which TO+6 is positive. It is very easy to check 

that th1s K is a closed convex subset of W2
m[0.Po] for any m. Our 

existence results are summarized 1n the following three theorems. 

.' 
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Theorem 1 (proof in [2] pp. 34-35). 

Let K be a closed convex subset of a Hilbert space H. Suppose IA: K+R is 

coercive on K (i.e. IA (x)t~ as Ilxllt~ in K) and ~reover that IA is weakly 

lower semi-continuous (~.l.s.c.) on K then IA attains its infimum on K. 

Theorem 2 (proof in [4]) 

Let ~: R+R be a monotonic increas1ng functio~ in the modulus of its argu

rrent. Suppose 
n 

(i) I ~(Ni(x» is convex on K 
i=l 

n 
(11) I ~[Ni(x)] = ~<=> p x = P 6 for some 6 in K 

i=l 0 0 

then IA is coercive on K. 

Remark: The above theorem can be generalized somewhat but we refrain from 
. 

dOing so because the form given has w~re intuitive appeal. 

Theorem 3 

If Ni is weakly continuous (w.c.) on K for each i then IA is w.l.s.c. on K. 

n 
Proof: If the N. are w.e., then it surely follows that I [zi-Ni(x)]2 is 

1 i=l 

w.c. But IIPxl1
2 

is well known to be w.l.s.c. Therefore IA is 

w.1. s. c • QED 
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Application to the R.T.E.'s (see [4] for details) 

The ~ arising here can be shown to satisfy the hypotheses of Theorem 2 
"i 

with ~ taken to be 

• ( x ) = I x I. x£ R 

There exist regularized solutions to the R.T.E.'s. 

3. A numerical procedure for minimizing lA in K 

k th Let x be the k approximation to the minimizer in K of lA. Define 
k the functional IA on K as follows 

S5 

k k+l each Ni is simply linearized about x. Define x to be the minimizer in 

k Under suitable regularity conditions the iterates x are well defined 

and can be shown to satisfy 

n 
xk+l = xk _ { 2 N;'(Xk)N';(Xk) + A<P ••• >}-lI~ (xk) 

i =1 i\ 

(3.2) 
= xk _ A-1(xk)I'(xk) 
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k 
That this equation makes good ;en~e ~s evident once one realizes that A(x ) 

belongs to L(H.H*) and IA'(Xk) is in H*. 

Those in the know will have recognized that the above procedure is 

nothing more than an infinite dimensional version of the Gauss-Newton 

algorithm. The finite dimentional case is discussed in [5]. The major 

advantage of using a Gauss-Newton procedure to minimize our regularization 

functionals is the ease with which successive interates can be obtained. 

At each stage we have a regularization problem involving linear func

tionals, the "i'(xk),s. consequently we can take advantage of available 

software tools. 

With the appropriate assumptions it is possible to show that the pl'oce
k dure is a decent method and the sequence x converges at least R-linearly 

to a critical point of IA in K. 

Th~orem 4 (proof in [4]). 

Suppose that the N.(.)'S are twice continuously differentiable and 
1 , 

Ni (.}'s are w.c. on int K. Let xOc int K be such that 

is weakly compact and IA has only finitely many critical points in LO • 

Moreover. suppose that vO,v"Y , all positive with vO-~l>O satisfying 

2 22o 
lIollhll < <h.A(x)h> < v,llhll • I~"ex)hh < y,llhll VxcL. hcH 

k 0 k * I ( *) then the sequence of iterates {x }~ L • lim x = x ~here IA x = a and 
Ie 

if IA"ex*) is non-singular. then the convergence is at least R-linear. 

The proof follows an argument similar to that used in 14.4.6 of [5]. 

j 
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4. The choice of A 

The generalized cross validation method for choosing A works as 

Let xA[Ie] be the minimizer2 in K of 

Then A is chosen to minimize 

n 2 
1 I [z -N (x [Ie])] 
"Ie:l Ie Ie A 

V (A) .. -!>--'-------

follows. 

(4.1 ) 

(4.2) 

( [Ie] 
where "Ie x>. ) is the prediction of lk given the data z"l2, ••• ,lk_l 

zk+l···zn and akk*(A) is the udifferential influenceR of the ZIe'th data 

point on the estimate xA (x>. is the minimizer in K of I
A

). 

N (x [Ie])_z 
Ie >. Ie 

(4.3) 

,)1 

From a computational viewpoint veAl is prohibitively expensive so one needs 

to find some convenient approximation. Following Wahba [8], veAl can be 

approxil'flated by 

(4.4) 

[2] Assu~ed to be uniquely defined. 
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where Pi given by 

OnlG'~',~t F'p_.-::~ !3 
OF POC.~ q~,.\:"ITY 

is an easily computed functional of xA' We hope to study this procedure 

more closely in the near future. 
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QUANTILES, PARA.'-1ETRIC-SELECT DENSITY ESTIMATION. 

AND BI-INFORMATION PARAMETER ESTIMATORS 

by 

EMANUEL PARZEN 
Institute of Statis~ics 

Texas A&M University 

Abstract 

This pape~ outlines a quantile-based approach t? ~~ati3tical 

analysis and p~obabi1ity modeling of dd~a which fOrMU1~~es 

statistical inference problems as func~iona1 inference ?roblcmB 

in which tae parameters to be estimated,. a:.-e density furctions. 

Density estimators can be non-parametric (computed inc~endcn~ly 

of model identified) 0r parametric-select (approxinatei by finite 

parametric models that can provide standard models ~h~te fit 

can be tested). Exponential models and autl.regressive m')dels 

are approximat~ng densities w~ich can be j~stified as ~aximum 

entropy for re~pectively the entropy of a probability d~naity 

and the e~tropy of 0 quantile density. Application~ ~f thcce 

ideas are outlined to the problems of mvdeling: (1) u~variat~ 

data; (2) bivariate dat~ and tests for independence; ~d (3) 

two samples qnd li~elihood retios. It is proposed t~~~ 

bi-informati~n er~imation of a density function can ;~ dcvclopr.d 

by a~.logy t~ the problem of identificatioI\ of 'egr~~gion modcla. 

Research supported by the Army Research ~ffice Grant 
DAAG29-80-C-0070. 
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1. Statistical Science, data analysis, and Buffalo snowfall 

Statisticians complain about the failuce of universities 

to adequately educate students on how to analyze statistical 

data. At the S:lme time some statisticians state that data 

analysis is an art, and thu~ cannot be taught. When these 

statisticians speak of statistical science it is difficult to 

imagine to what they are alluding since they seem to 

sneeringly reject all attempts to reason, and reach consensus, 

about the evaluation of methods to be ~sed as part of the process 

of statistical data analysis. 

I would like to propose a data set which I believe provides 

a useful test C,lse for various approaches to data analysis. 

namely the annual time series of snowfall in Buffalo, N.Y. The 

segment of that series w~ich I will discuss is 1910-1972. 

although it has tndny interesting features when extended to 1981. 

The data analysis question to be considered is' What probability 

distributions can be used to describe Buffalo snowfall. An 

ever-present hypothesis to be considered is whether Buffalo 

snowfall is normal. 

2. Functions that descr1be probability distributions 

The probability law of a continuous random variabl(> X can 

be described by one or more of the following functions: 

(1) Distribution Function F(x) - Pr [X~x] 

(2) Probability Density Function f(x) - F'(x) 

, 



, 
\ 

(3) Quantile FI~nctioll Q(u) = F- l (u) 

a inf {x: F(x) ~ u} 

m inf {x: F(x) a u} if F is continuous 

a X ~uch that F(x) = u if F increasing at x 

(4) Quantile-Density Function q(u) = Q'(u) 

(5) Density-Quantile Function fQ(u) = f(Q(u» 

Theorem: For F continuous 

::'Q(u) == u fQ(u) q(u) :: 1 

3. Raw functions that describe samples 

Data X1 •...• Xn is called a random s~mple of X when 

bJ 

X1 •.... Xn are independent random variables identically 

distributed as X. An important role in the analysis of a sample 

is played by the order statistics X(l) < X(2)<"'< X(n) 

(1) Sample Distribution F(x) = fraction X1 •...• Xn < x 

(2) Sample Probability Density. or Histogram. estimates 

f(x) by a numerical derivative 

f-( ) = F(x+h) - F(x-h) 
x 2h 

(3) Sample Quantile Q(u) = r-l(u) 

~-l 1 
= x(j)1 ~ <u ~ n 

A universal display of any data set is provided by the quantile 

box plot introduced in Parzen (1979). 

I 
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(4) Sample Quantile-Density is a numer1cal derivative 

q(u) = Q(u+h) - Q(u-hL 
2h 

~ 

(5) Sample Density-Quantile = fQ(u) = l/q(u). 

An imp~rtant formula is 

4. Smooth functions that describe samples and estimate 

probability distributions 

The functions F, f, Q, q, fQ that represent the true 

probability distribution of a random variable X are estimated by 
A A ,.. " 

smooth functions F, f, Q, q. fQ which are derived from the raw 

descriptive fun~tions F, f. Q, q, fQ. One distinguishes between 

parametric and non-parametric methods of estimating smooth 

functions. 

A parametric estimation method : (1) assumes a family 

Fe' fa' Qa' qa' faQa of functions, ~alled parametric models, 

which are indexed by a parameter e = (e1 •... , 9k); (2) forms 
,. ,. ,. 

estimators 9 = (9l •... ,9k ) of 9; (3) forms smooth functions by 

F(x) = Fe(x). f(x) ~ fe(x). 

Q(u) = Q§(u), q(u) = qg(u), 

fQ(u) = feQg(u). 

A non-parametric estimation method forms estimators which 

are not based on parametric models. Im~ortant examples of 

non-parametric estimators of a probability density f(y.) and a 
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quantile-density q(u) are respectively 

f(x) .. 1 r' K(x;?) dF(x) 0-
-CD 

,.. 1 J1 K(u-t) q(u) = '6 dQ(u) 
o 6 

for sui tab 1e kernels K(·) and bandwidth 6. 

5. Parameter estimation and information divergence 

When a parametric model fa is assumed, parameter estimators 
,.. 
a are often determined by minimizing a "distance" between f(x) 

and fa(x). A "distance" between two probability densities f(x) 

and g(x) is denoted I(f;g) and is called an information divergence 

between f(x) and g(x). It is usu~lly not symmetric in f and g. 

It does not satisfy the triangle inequality for a metric. But 

it does satisfy I(f;g) ~ 0 and I (fig) = 0 if and only if f = g. 

The most famous, and most important, definition of 

information divergence is 

called the information divergence of order 1, or Ku1lback

Liebler information divergence. Information divergence of 

order a is defined for a>O (but a I 1) by 

The most important values of a are O.5<a<2. 

Bi-information divergence is defined by 

it may be regarded as related to 12 (gif). 
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11 (f;g) = H(fig) - H(f) 

defining 

H(f;g) - J~ {-log g(x)} f(x) dx, 
-co 

H(f) a H(f;f) ~ Jro {-log f(x)} f(x) dx. 
_00 

We call H(f;g) the cxoss-cntropy of f and g, and call H(f) the 

entropy of f. 

Maximum likelihood parameter estimation can be shown to 

be equivalent to minimum cross-entropy estimation. The 

likelihood function of a parametric model fa is defined by 

... 

One may verify that 

L(fa) = n 1m 
log fS(x) dF(x) 

_ro 

.: -n H(fi fa)' 

The maximum likelihood parameter estimator a, defined by 

max 
L(fa) - a L(fa) 

clearly satisfies 

H(fifO) -

It ~lso satisfies 

min o H(fifo)' 

min 
e 

A 

In gene~al parameter estimators e are found by minimizing - ~ 

1a(f;fa) or Ia(fa,f). Chi-squared estimators minimize 12(£aif) 

while modified chi-squared estimators minimize 12 (£;£0)' 
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To compute 11(f;fO) one needs to compute H(f). A useful 

formula for accomplishing this is 

H(f) n I~{-log f(x)} dF(x) 
-(I) 

= 11 (-log fQ(u)} du 
o 

= 11 log q(u) duo 
o 

The value of I 1 (f;f8) can be used to test the goodness of fit 

of the parametric model fe' 

6, Information and bi-information parameter estimation, and 

comparison distribution functions 

Given a sample with sample probability density function f 

and parametric model fe' one can form diverse parameter 

estimators, denoted a and 
v 
0, correspon3ing to two choices of 

information divergence which we take to De: (1) 1 1 (f;fO)' and 
'" v We call e and a diverse parameter 

estimators. For greater precision we call e the ~rder 1) 

information estimator, and e the bi-information estimator, 

When the parametric model fa is exact, the diverse 

parameter estimators have equivalent statistical properties; 

they are both asymptotically effi..cient estimators, and are not 

significantly different from each other. 
'" v When the values of e and a computed from a sample are 

significantly different one should suspect that the parametric 

model fa does not fit the data. The Shapiro-il1ilk statistics 

.. ~.... \"':."... .. .. -. \... - .... 
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for testing normality and exponentiality can be regarded as 

comparing diverse estimators which minimize information of 

order 1 and 2 respectively. 

One can interpret a and e as parameter values of "best 

approximatin~' models. 

One wishes to evaluate Fe(x) and Fe(x) as smooth estimators 

of F(x). For any parameter value a, define 

- -
De(u) :: Fa(Q(u» 

which is the sample quantile function of the transformed 

, random variables 

The true parameter velue a has the property that UI"",Un 
are distributed with a unifoLm [0,1] distribution. Then 

'" v parameter estimators e and 0 are comparee by the character of 
-the closeness to the identity function D(u) :: u of De(u) and 

D6'(u) . 

We call De(u) a comparison distribution function. Its 

derivative 

- -
de(u) :: {Da(u)}' 

plays a basic role and is called a comparison density; formulas 

for the comparison density are 

-
do(u) :: fe(Q(u) q (u) 

:: 
fe(Q(u» 

f Q(u) 

I 
I' 
I 

I 

, <- - .' 
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An alternative comparison density introduced in Parzen 

(1979), is 

- -d(u) = fOQO(u) q(u) . 0 0 , 

o "" o 

D(u) = JU d(t) dt 
o 

du, 

where foQo(u) is a specified density-qua1tile function. 

Parameter estimators can be justified as minimizing 

information divergence 

Jl -log de(u) du = 
o 

= Jl Ilog de (u)1 2 du = 11(£;fe) 
o 

-
These measure the closeness to 1 of de(u), or the closeness to 

-
D(u) = u of De(u). However the final decision about parameter 

estimators should be based on visual inspection of the graph of 

, j 

I ' 
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Another consequence of considering infor~ation of order 

a is that we can unify the estimation criterion used to form 

maximum likel~hood estimators with the estimation criterion 

used to form Gaussian time series parameter estimators: 

dw 

where f and fa are spectral densities. It is comparable to 

, -, 

fQ(ul_ du 
foQ{u) 



7. Statistical inference reduced to density eslLmation 

The quantile approach to statistical data analysis being 

developed by Parzen [since Parzen (1979)] is based on the 

proposition that conventional problems of statistical inference 

concerning (1) a random sample X1 •...• Xn • (2) a bivariate 

sample (X1.Y1) •...• (Xn .Yn). or (3) two samples X1 •...• Xm and 

yl •...• yn should be transformed to problems of functional 

inference. estimating and testing hypotheses about del.si ty 

fun~tions d(u). d(ul,u2), ... ,d(ul' .. "~)' on the unit interval 

02u21, unit square 02ul,u221, unit hypercube O~u1, ... ,uk~1. To 

illustrate how this is done consider the following problems. 

Modeling Bivariate Data and Tests for Indpenedence. Let 

X and Y be continuous random variables with joint density 

function fX,Y(x,y). The hypothesis, Ho: X and Yare independent 

can be expressed 

or in terms of information divergence 

dx dy 

by 

Define 



OP..lG'::r-.t. r.:.~: ;-:, 
! ..... , 

We call d(ul ,u2) the quantile dependence density. 

The hypothesis Ho can be expressed 

One can verify that 

Thus estimating the information divergence betveen fX,Y and 

fXfy is equivalent to estimating the negative of the entropy of 

d(ul ,u2)' 
,., 

Estimators dm(u) dependent on a finite number of parameters 

can be formed from the raw estimator 

Modeling likelihood ratios and testing equality of 

distributions. Let X and Y be continuous random variables. 

The hypothesis 



, can be expressed in terms of information divergence 

= /1 -log d(u) du 
o 

= -Hqd (d(u) 

defining the comparison distriLution function and comparison 

density function 

D(u) d(u) = ~ D(u) 

Estimating the information divergence between fy and fX is 

equivalent to estimating the negative of the entropy in the 

quanti1e-densit~' sense of the comparisl.m density d(u). 

8. Parametric-select density estimation and Maximum Entropy 

Densities ------
A density d(u) = D'(u) can be approximated in many ways 

by sequences dm(u).m=1.2 •... of functions which converge to 

d(u). For m-l.2, ...• let dm(u) be an estimator of dm(U)i the 
'" sequence dm(u) then estimates d(u). 

If d (u) corresponds to a standard finite parameteric 
m 

model d(u) for which one could consider testing the hypothesis 

that dm(u) provides an exact model. we call ~(u) a parametric-
" select representation, and dm(u) a parametric-select estim~tor, 

,';,. .",;:, .. 
I 



to indicate that we are free to se1ect thE:: number of parameters 

in dm(u) ID provide an adequate approximation or representation 

of d(u). 
... 

We call dm{u) a non-parametric representation, and dm{u) 

a non-parametric estimator, if dm{u) does not correspond to a 

standard fi~ite parameter model which could be interpreted as 

an exact mode 1. 

An important criterion for developing the functional form 

of exact models for densities is the maximum entropy principles. 

A density f{x), -~<x<~, which maximizes entropy 

H{f) = J={-log f(x)}f{x) dx subject to constraints 
-0 

j=l, ... ,k, 

where T (x) are specified functions (called sufficient statistics) 
.J 

and Tj are specified moments can be shown to have the representation, 

called an exponential model, 

where 

guarantees that f(x) integrates to 1. 

A quantile function q(u), O<u<l, which maximizes entropy 

Hqo(q) = J1 log q(u) du subject to the constraints 
o 

r ~ .. --.. -- .-"', ," -',' -" -.' -,.-- ." T. " '"" -, " ~.~" • 
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11 exp (2niuv) f Qo(u) q(u) du 
o 0 

a p(v). v=O.±l •...• ±m 

where foQo(u) is a specified density quantile function must have 

the representation. called ~n autoregressive model. 

q(u) -= 

9. Exact-Parametric and Parameter-select Estimation of 

Probability den~ity runctions using Exponential Models 

Two important exponential models for a de.5~ty f(x). 

-oo<x<oo are th~ normRl density and the gamma density. 

The normal Jensi'y. denoted Normal (ll.a) 

;, (x) 
H.a 

4l(x) 1 1 x2 exp - 2" 
'ZiT 

is exponential with sufficient statistics T1 (x) = x and 
Z TZ (x) = x • 

The Gamma density. denoted Gamma (r.~,) where A == l/a. 

f (x) = ! f (~) r.a a r 0 

1 r-l -x fr (x) ::c "f(r)- x e x>O 

>= 0 x<O • 
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.:.~ ~;.l.iu'1..;nUai wl.lh sufficient statl.stics T1 (x) 0:: x and T2 (x) 

= log x. 

A location scale parameter Gamma density 

f (x) = ! f (x-u) 
r.u.c a r a 

is not an exponential model. We can treat it as one by 

estimating U (say. by tne minimum X(l) of the random sample 

Xl •...• Xn), and trenting Xj-~ as a sample from fr.o(x). 

The hypothesis that the data is fit by a normal distribution 

versus the hypothesis that the data is fit by a Ganuna 

distribution can be tested bv forming an over-parametrized 

exponential model with sufficient statistics 

2 x , T4 (x) '" log x. T3 (x) 

The (order 1) information divergence. or maximum likelihood, 

" estimators el , 

of order 1 Jl 
o 

model by s('l ving 

e2 , e3 • 64 , which minimize information divergence 
~ 

-log de(u) du, ~al be found for an exponential 

- , 

-' , ." 
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v y ., 
The bi-information divergence estimators a1 • 6 2 , a3 , 

1 -which minimize information divergence f 110g de(u)1 2 du. may 
o 

be found using le8st squares regression analysis techniques by 

minimizing with respect to al •...• 9k the sum of squares 

Stepwise regression is used to suggest p3rsimonious parametrizations. 

Graphical procedures to determine which parameter values 

fit best are as follows: estimate Do<ntr). j=2 •...• n-l. by 

adding 

and normalizing the sum to go from 0 to 1. One inspects its 

graph to see how it deviates from D(u) = u. 

10. Case studies of ~i-informdtion density estimation 

The density estimators corresponding to the bi-information 

parameter estimates of the normal. gamma. and four-parameter 

exponential nodels are presented for four simulated random 

samples: 

1) Exponential or Ga~~a (r = 1. 0 c 1) 

.~ 
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3) Norllai (~ "" 0, a -..- 1;, 

4) Contaminated normal: lOON(O,I).5N(IO,I) 

In addition density estimators, using bi-information 

parameters, are presented for the data set of Buffalo snowfall. 

Bi-information select regression estimation of the parameters 

of a 4-paramential exponential model with sufficient statistics 
2 3 x, x , X , and log x leads to the conclusion that Buffalo 

snowfall obey~ a Gamma distribution. It is equally well fit 

by a normal distribution whose parameters are estimated by 

minimizing bi-information rather than order 1 information. 

The hypothesis that Buffalo snowfall is normal seems to be 

acceptable, but one can question whether the maximum 

likelihood estimators (sample mean and variance) urovide the 

best-fitting normal distribution for Buffalo snowfall. 

As in Parzen (1979), we reject a trimodal shape ~robability 

density estimate for Buffalo snowfall, which has been found by 

several non-parametric density estimation techniques; 

including Tapia and Thompson (1978). 

, 
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Consistency and other large sample 
properties of maxiw~m likelihood 
estimates of mixture parameters 

by 

Charles Peters 
Department of Hathematlcs 

University of Houston 
Houston, Texas 

Abstract 

This paper discusses th~ strong consistency, asymptotlc normallty, 

and asymptotic efficiency of maximum likelihood estlmates of the para-. 
meters in a finite mixture of multivariate distributl0ns. as well as the 

asymptotlc theory of some hypothesis tests for such mixtures. 
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1. Introduction 

The use of multivariate mixture analysis techniques for unsupervised 

classification of large amounts of data has been feasible at least since 

it was proposed and implemented by J.H. Wolfe in 1970, [34]. Prior to 

that time estimation of parameters in a finite mixture of unknown com

ponent distributions had largely been confined to mlxtures of a small 

number of univariate distributions, primarily because of the numerical 

difficulties and computational requirements of parameter estimation in 

larger mixture models. A variety of estimators for mixture parameters 

has been suggested, including moment estimators (Pearson [22] and Rao [26]), 

graphical methods (Blishke [4] Bhattaracharya [3]. Cassle [6] and 

Harding [15]) and least squares and ~lnl r~l squares CSt1mators. 

However, recent attention has f") .' ,I 'ceil focw('d on max '~,!.f" 1 He1 i hood 

estimation (Day [ 9], lIas5~'i ldd III J. D1CK [10]. Peters ana Coberly 

[24 1, and Peters and \,.11 ker [25].) and on nonparametr 1 C Methods (I~urray 

and Tlttenngton [21}, and Hall U4J). 

As shown 1n the next sectlon t~e llkellh,01 equat Ions for mlxture 

parameters are not ex;>licltl] ,-11 .. ltlle and requlre the use of lteratlVe 

methods of solutIon. Because t~ere nd. bp multiple roots of t~e llkeli-

hood equatIons, one lS concerned that the lteratlve method chosen con-

verge to the "nght" solutlOn. i.e .• a conslstent solutlOn If one eXlsts. 

This issue is d1scussed by Kale r20), and also by Peters and Walker [25J. 

For mIxtures with a known number of components, the asymptotlc theory is 

established rather easlly uSlng appropnate general1zatlOns of the comblned 
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results of Cramer and Huzurbazar in the single parameter case [8]. 

[19]. For mixtures with an unknown number of components the problem is 

more difficult and. in particular, the large sample theory of tests for 

hypotheses about the number of components has not been worked out sat1s-

factorily. These issues will be discussed in more detail in Section 4 

The use of multivariate mixture methods in the analysis of remotely 

sensed data is, for the most part. as an alternatlve to clustering. 

Used 1n this fashion. the method is superior to most cluste~ing methods 

in ease of lmpl ementation (with certain reservations) and 1n economy of 

output - it tells the investigator only the most important facts about 

the data distribution. Thus, the usefulness of mixture density 

estimat10n in this mode depends solely on the reality of some prior 

classification of the data lnto s~bpopulation5 accurately described 

by the given parametric family of component distribut1ons. However, 

there is a growing tendency to use large sample considerations. with 

samples drawn from a multivariate mixture density, as a sti.l .• card for 

judging cluster1ng methods (11). Sy this standard then, provided the 

expected consistency, normal1ty, and efficiency properties hold, the 

maximum l,kelihood estlmate of mixture para~eters is the ideal atternative 

to clustering. 

2. The Basic likelihond Functions. 

Let X be a random n-vector which is distr1buted according to Q 

finite mixture density of the for~ 
m 

(2.1) f(xl ale) = E n.f·(~1 0i) 
1"'1 1 1 

t . ~ -'"".>. ','" " - y ,-' ,-" 
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hhere the mixing proportions «i > 0 are unknown parameters £atlsfying 

m 
(2.2) t a. = 1 

;=1 1 

and the fi(xl 6i ) are distinct members of parametric families 

{f,(xl ei ) I 0i t: 0i} of density functlOns. For the remainder of this 

section, we assume that m. the number of components in the mixture. 

is known. and that the densities fi{xi ei ) 

famil ies 

come from exponential 

where e,' = Ee [T.(X)J is the mean value parametrization and 0i t: 0i i 1 

dn open subset of mni. [2], Our aim is to investigate the consistency 

of roots of likelihood equations for the parameters (a.e) • where 

a = (nl •.•• ,a) and 0 = (01' •••• 0 ) c °1 x ••• x 0 , for v3rious m m m. 
types of samples. Mixture densities arise most naturally \~hen 1t is 

known that X comes from one of m populat10ns PI' .... Pm and that 

the density of X glV"l that it comes from Pi is of the fonn fi(xl ei ). 

If n t: {l •••. ,m} is the associated random variable which designates 

the population of origin. then a i = Probrrr = iJ. The r.v. IT is usually 

unobserved. 

Independent unlabelled samples: (X1.IT1) ••••• (X .n) are independent n n 

and 1dentically dlstributed accord1ng to (2.1) and the 11; are unknown. 

The correspondlng log likel1hood functions 1S 

(2.3) 
n 

L1{a.O) - [log f{XJI a.O) 
J=l 

r 
I 

r . 
I 
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Partially labelled samples: Here we consider two sample types, both 

introduced by Hosmer [18], and studied in detail by him and Walker (331i 

see also Redner 129]. 

Type 1 - Fixed numbers ~11, .•• ,Mm of samples are taken independently 

of one olnother tram l"ach of the component populations P1' •••• P • 
M m 

Let 
i {Xij} 1=1 be the sample from Pi' In addition a random sample Xl.· .. ,Xn 

is taken from the mixture (2.1). The log likelihood is 

(2.4) 

Type 2 - After a random sample X1 ••••• XN+H ~f size N + M is 

taken from (2.1), the originating populations of XN+1 •.••• XN+M are 

determined (with no error) and it is found that Mi of XN+l.· .. ,XM 

come from Pi' 1::1 .... ,m. The log likelihood is 

(2.5) ~1! MI Mm 
= log Ml M I lll'" llm + l2(n.o). 

I' ,.. m', 

In this expression l2(a.O) has the same form as in (2.4). although 

MI" • ,,~Im are random. 

Samples 1n blocks: For making inferences about the agricultural makeup 

of ground areas from satellite data, certain procedures have been de~igned 

Wh1Ch automatically delineate sets of geographically cont1guous measure

ments which come from the same population (Bryant. [5 J). Thus. the 

data is obtained 1n blocks Xj = Xj1 •..•• XjNj. 

corresponding JI jk have a comnon value TI j . 

j a 1 •.•. , P. where the 

Various kinds of dependence 

can be assumed within each block leading to different likcllhood funct10ns 

of the fonn 

1
_- .,. -. !~.,,~,.,. "1'1"" ~'.v< 

~, 

-. ~ -..: ... 

- " 

I -.............. ,.~'" - , .... " ... ~~il~ .. ~'""'~ ~-~ 1",_,,-..- "..: 



(2.6) 

where f.j(X.\ e.) is the joint density of Xj1 •••.• X. N given that 
1 J 1 J j 

llj = i. In deriving (2.6) it is assumed that the size of the block 

Nj is independent of ITj • which may require careful stratification of 

blocks by size. Finally. we remark that. In applications. samples of 

each type are frequently degraded by missing components in the data 

vectors. In this case. a likelihood function like (2.6) is appropriate 

provided the pattern of missing components is independent of both the 

population of origin and the full data vector. The Xj in (2.6) become 

the vectors of observed components. Note that not all of the scalar 

components of O. are necessarily identifiable in the density f. (x.1 0.). 
1 lJ J 1 

The simplest model (2.3) well illustrates the complications of 

maximum likelihood estimation. After introducing the appropriate lagrange 

mulitpliers and setting the derivatlves of L2(a,O) equal ,to zero. the 

following likelihood equat 1 0ns are obtained (see Hasselblad r17 I and 

Redner [29]). 

(2.7) 

(2.B) 

I N Cl.f (x.1 e.) 
= _ E 1 1 J 1 

a i N 
j=l f(Xj I Cl.O) 

0i = E 1 J T.(x.) r. 1 J 1 
f'l f.(x.1 e1) / N f.(x.1 e.) 

j=l f(X j ! Cl.e) 1 J j=l f(XJI a.e) 

In addition to the implicitness of the likelihood equatlon a further 

difficulty is that the likelihood function may actually be unbounded. 

For example. if the f(xl e,) in (2.3) are multivariate normal. one of 

the means is set equal to a sample value. and the corresponding covarlance 

I 
t I 

, , 
! 
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matrix tends toward slngularity. than Ll tends to infinity (Duda and Hart 

[12]). Redner (29) shows that Ll has a global maximum if a penalty term 
m 

-). r IIr-1U-e is added. where A. 1. > 0 and IIri111 is a norm of the 
i=1 i 

inverse of the ith covariance matrix. For partially labelled samples the 

likelihood function is bounded provided that each multivariate normal 

population is adequately represented in the labelled portion of the sample. 

3. As~nptotic properties of the mle when m is known. 

Let XI ••••• Xt! be independent random variables with densities 

fi (xi I eO). eO € 0. an open subset of lRn. Hhen we say that there is 

a strongly consistent maximum likelihood estimator we mean that given ~ 

small enough neighborhood U of the true parameter eO the probabillty 

is one that there is an interger Nl such that for N ~ Nl there is a 
aLN(e) 

unique solution aN of ao in U and that eN locally maximize 

IN(e). where 

(3.1) 
N 

IN(e) = r log fJ.{XJ.1 e) . 
j=l 

The estimator aN is asymptotically nonnal and efficient if 

c;t2(e
N 

- eO} converges in distribution to N(O.1). where CN is the 

Cramer-Rao lower bound 

(3.2) 

Under the regularity conditions to be assumed this is 

1 N ;) log f (X '0) ;) log f.(X., O)T 
C- = [E [ J ,1 a~ J ]0=00 • 
N j=l 00 as 

{3.3} 

----

L 
,-\ " 
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We observe that for all the sample types considered in the previous 

section, there are only a finite number of distinct densitites f (x.1 0) 
J J 

to be considered, whether the data has missing components or not (in 

sampling by blocks, the block sizes are bounded.) In each instance, a 

straightforward modification of the following theorem and its proof 

suffices to establish the required asymptotic properties of the model. 

Theorem 1. let {gj{Yjl a) 11 s j s p; a ~ 0} be a finite set of para

metric families of density functions with the same parameter ~et 0, an 
n open subset of IR. let Xl' X2, ••• be independent random vanab1es 

with densities f1(x1' aO
), f2(x2' eO) where each fj(xjl 00

) is one 

of {gj{Yi{eo)}~=l' Suppose each g{YI e) € {9j{Y/ O)}j=l satisfies 

the condition. 

a. there is a neighbcrhood U of 0
0 such that for all 

e € U and almost all Y II ag(IJ e} II ~ hI (y) , 
2 3 

110 g(yl 0) II s h
2
(y) and lIa log g(yl e)1I S h (y), 

ae2 ae3 3 

where hI and h2 are integrable and f h3(y)g(YI eO} dy < 00 • 

Suppose that there is a positive number € such that 

a log f. (X I o) T 
a~ J Jo=eo 1 1 I Na log f . (x., 0) 

- c- = - E E [ J J b. n N N. eO ae 
J=l 

~ ~ I for sufficiently large N. 

Then there isa strongly consistent solution eN of the likelihood equation 

a N 
o = as E log fJ.(X J./ a} . 

J=l 

j I 
I: 

/1 
! 1 

r , 
\ I 
; J 

C
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Furthermore, eN is asymptotically normal, eN - N(ao,eN), and 

efficient. 
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Condition (a) and (b) are very similar to those of Chanda [ 7 ], who 

generalized to the multiparameter case the theorems of Cramer [8 J and 

Huzurbazar [19]. For a proof of theorem 1 see Foutz [13], Peters and 

Walker [25], and Peters [23J. 

Returning to the mixture density likelihood functions of the previous 

section with component densities fi(xl ai ) = c(Oi)hi(x) exp~i(ai) • Ti(x)J 

assume that each pattern of missing components in X manifests itself in 

a certain pattern of missing components in Ti(X) (as in the multivariate 

normal distribution). For a sample of size k, let ~(i,j,k) denote 

the relative frequency \'1ith which the jth component of Ti(X) is observed. 

The next theorem is stated for fully observed data vectors; t,Qwever, 

it remains valid for data with missing components provided that for each 

i and j lim ~(i,j,k) > 0 for any sample of size k tending to 
k-t<Xl 

infinity (see Peters [23J and Redner [29]). 

Theorem 2. Suppose the functions {exp[qi(Oi)· Ti(x)]}~=l together 

wlth the component functions of {Ti(x) exp[qi(a i ) • Ti(x)]}~=l are all 

linearly independent. Then there is a consistent, asymptotically normal 

and efflcient mle of (ao,eo) for LI(a,O) as N ~ ~, for L2(a,e) as 
M· 

N -+ ~ and each tf remains bounded, and for L3(a,O) as t1 + N ... ~. 

4. MlXtures with an unknown number of classes. 

If the number m of classes 1n the m1xture density 1S among the para

meters to be estlmated, then the results of the preceding section no longer 
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apply. It is easy to see that the likelihood function L1(a,S) can be 

made arbitrarily large if m is taken to be the sample size. For partially 

identlfied samples leading to L3(a,O) the number of classes is eventually 

determined as N (the number of identified samples) tends to Q); however, 

because of the expense of labelling samples, one would like tc be able to 

include m as a parameter in L1(a,S). An approach WhlCh has had some 

success in applications is the quasi-Bayesian approach used by Rassbach 

[271, which will not be discussed here, although lt has som~ similarlties 

to the use of the Akaike information criterion proposed by Redner and 

Coberly [30]. 

Suppose 

m 
(4.1) f(xl a,m,ljI) = E a.f.(xl 0.) ;=1 1 1 1 

is a mixture density fam;]y \-/ith parameters n, m and ~I = (°1"" 'Om) 

satisfying 

(4.2) 1 s m s m 
m 
E a. = 1 ; a i ~ 0 

i=l 1 

°i I: 0 , 

a compact subset of mn. Since the parameter space is compact we could 

consider global maxima of the llkelihood, except that unfortunately the 

parameters are no longer identifiable, even locally. ThlS is a consequence 

of the partlcular compact parametrizatlon chosen and not of any inherent 

non-identiflability of finlte mixtures (Teicher ~l 1 and Yakowltz [351). 

Redner adapted Wald's consistency theorem (Wald (321) to show that if F 
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is the set of all finite mixtures (4.1) satisfying (4.2), then under 
o certain conditions, if Xl' X2,,,,,XN are iid from f ('in, then there 

is a unique m1e fN ( F~ satisfying 

N N N 
r log f (X.) = max r log f(X.) 

j=l J - f(F j=l J 

and with probabil ity 1, f N (x) -+ fO(x) for each x as N -+ <XI, except 

perhaps for a null set depending only on fO (Redner [28J). 

For estimating m, which is frequently of independent tnterest, it 

is necessary to further restrict the parameters as follows: Replace 

conditions (4.2) by 

(4.3) m = m 
m 
Eo. = 1, 0i ~ (1 > 0 or 

i=l 1 
o. = U 

1 

ai (0, a compact subset of lRn 

where 6: 0 x 0 -+ lO,<XI) is a continuous function such that f(ol a) = 

f(ol 0') if and only if B(O,a'); O. A good example of B is the 

Bhattaracharya coefflcient B(e,O') = 1 - Jlf(xl a}f(11 0')/2dx. Assume 

that 0 1S identifiable in f(xl 0). 

Theol'em 3 (Redner [28]). Let Xl' X2' •.. be independent samples from 

a mixture density f(xl aO
, m, wO

} of type (4.1) subject to conditions 

(4.3). Let Nr(O) be the closed .Jail of radius r at O. Suppose 

the family {f(x/ 0)1 0(0 satisfles the cond1tlons: 



and 

(i) I log f*(x.o.r) f(xl O')dx < m for sufficiently small 

r = r(o.O'). where f*(x,o.r) = max{l. _ sup f(xl a)l 
Odlr(O) 

(i1) for each a there is a null set So such that for all 

x I. So' lim f(xl e') = f(xl 0). 
0'-+0 

I 
(iii) J Ilog f(xl e')l f(xl O)dx < m for all 0.0'. 
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Then the qlobal mle (~n,m'~n) is a strongly consistent estimator 

o 0 of (a .m.~). In particular. with orobability one the number of nonzero 
A components of an is eventually the correct number and for the exponential 

families {f(xl e)l discussed in the Section 3. (~n' ~n) is asymptotically 

normal and efficient. 

Wolfe (34] suggested a hypothesis testlng approach to determining m. 

where the nul' hypothesis is that the Mixt~re has m components against the 

alternative of m + 1 components. Specifically. let Xl.··Xn, be a sa~ple from 

f(x) \~here 

and 

m 
Ho: f(x) = E ai fi (xIOi) 

i=l 

Hl : 

m 
ai > 0 • E ai = 1 

i=l 

0
1 

•••• , Om are distinct elements of 0 

m 
f(x) = r. eti f, (xlo,) 

i=1 
m + 1 

ai ~ 0 r ai = 1 
1 =1 

01 ••.•• Om + 1 are d1stinct elements of G 

t
-------
-+*0,,':'.'-7,$'1:'" an 
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are the null and alternative hypothesis and 0 is an open subset of DRn. 

N N Let fm and fm + 1 be consistent mle's of f under Ho and Hl 

res~ectively. Wolfe bases his test on the assumption that under Ho the 

likelihood ratio statistic 

has an asymptotic x2 distribution with d.f. = n + 1 as N ~ ~. 

Unfortunately, this does not always seem to hold (Hartigan, l16J). Hartigan 

suggests that AN is stochastically smaller than X2 which would be a 
n + 1 

true, since then an upper bound at least for the size of the X2 test would 

be known. Apparently, the m-class model cannot be embedded in the m + 1 

class model regularlY enough so that the classical asymptotic theory is valid. 

Findlly, Redner and Coberly L30J have suggested using the Akalke 

lnformation criterion to est1mate the number of components ifl the model, whereby 

(4.4) 

1\ 
where Lm is the maximurn log likelihood for the m-class model 

1\ N N fN (4.5) Lm = max E log f(X J} = E log (X
J

) 
f € Fm J= 1 J=l m 

and k m 1S the number of free parameters, namely 

(4.6) km = mn + m - 1. 



If m is the true number of components and f:. f: + 1 are consistent 

2 m1e's. and if the 1ike1i~ood ratio statistic has a Xn + 1 distirbution. 

then E~ICm + 1 - AICm]= - n;l asymptotically. The use of the Akaike 

2 criterion then is subJect to the same reservations as the use of the X -test. 

although there is no question of its utility in providing as adequate and 

economlca1 descrlption of a given data distribution. 

r 
I 
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Sutnmary It 
• I 

The statistical properties of a cubic smoothing spline 

and its derivative are analyzed. It is shown that unless un-

natural boundary conditions hold, the integrated squared bias 

is dominated by local effects near the boundary. Similar effects 

are shown to occur in the regularized solution of a translation-
~ I , 

kernel integral equation. These results are derived by developing ; I 

a Fourier representation for a smoothing spline. 
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1. Introduction and Summary 

We consider statIstical properties of smoothing splines and related 

procedures. Given xi· f(t i ) + £i' 1 • I, ••• ,n where g is an unknown 

smooth function and the are r~ndom errors, a cubic smoothing spline 

g(t;A) is the function ~hich minimizes 

(1.1) 

Smoothing splines were proposed by Whittakrr (1923), Schoenberg (1964), and 

Reinsch (1967). Some analysis of their statistical properties in the case 

that g and f are periodic appears in Wahba (1975) and Rice and Rosenblatt 

(1981). The method of cross validation for choosing the smoothing parameter 

A from the data has been discussed in Craven and Wahba (1979). 

Smoothing splines may be viewed in a larger context. Given x -i 

(Af) (t i ) + £i where A is a linear operator, a "regularized" estimate of 

f is the function g which minimizes 

(1.2) 

Frequently Af is of the form 

(AfHt) - f k(t.s)f(.)d. • (1.3) 

Many exampl~s of this type may be found in Tikhonov and Arsenin (1977). 

The method of regularization is used to control the instability that would 

arise if one tried to invert A or A.A. The regularized solutions have a 

formal resemblance LO ridge-regression estimates; in both cases the variance 



of the estimate is reduced at the cost of increasing bias. Although 

there is a large literature on this topic, there has been relatively little 

analysis of the statistical properties of the solutions. 

In this paper we examine two cases of (1.3), numerical differentiation 

(Af)(t) • Lt f(u)du (1.4) 

and deconvolution, 

(Af)(t) • L1 w(t-s)f(s)ds • (l.5) 

We next summarize and discuss our main results. Derivations and some 

further results are contained in later sections. We first deal with a 

cubic smoothing spline. 

Consider observations 

k = O,l, ••• ,n 

with f continuously differentiable, f- E L 2 and the random variables 

with 

2 
a , 2 

a > 0 • 

We wish to determine a continuously differentiable function g = g(t;A,n) 

wah g- E L 2 that minimizes 

> -, 

l' ''irl I:.~ t# =="~~'J at e rt£ $1-" h u,,_ h " 

\ 

r 

1 



.. 
r , . 

r 
1. 

i 
I .. 
I-
I 
! 

1.."01 

{ n-1 
I } I 2 -1-4 (xO+x -g(O)-g(1» + ~ 
n n k-l 

.......... __ ,"t 

+ A )(1 (0'{t»2 dt • 

(1.6) 

Here h - hen) > 0 and the object is to determine A(n) 8S a function of 

n so that 

)[1 E[0(t)-f(t)1 2 dt 

tends to zero as n ~ ~ at a rapid rate. The term 

appears in (1.6) becauae one wishes to allow for the posslbiJity that 

f(O) "f(l) and in that case the Fourier series of fCt) will converge to 

t (f(0)+f(1» at t = 0,1. 

238 Theorem 1. Let fEe. If A (n)n ~ ~~ A(n) ~ 0 as n ~ ~ then 

4 3 8 Theorem 2. Let fEe. Assume +-hat A (n)n ~ w~ A(n) ~ 0 as n ~ w. 

Then if f(2)(O) O~ f(2)(1) I 0 

fIE 0(t)-f(t)]2 dt'" {(f (2) (0)) 2 + (f(2) (1))2) A 514 2-312 



I. 
I 
I , 

~[E 8(t)_£(t)]2 dt ~ (£(3)(0»2 + (£(3)(1»2) 

,,7/4 3.2-3/2 

A common reason for nonparametric data smoothing is to calculate an 

extimate of the derivative of n function. Schemes for numerically differ-
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entiating noisy data that are closely related to the derivative of a smooth-

ing spline have been proposed in Cullum (1971) and Aoderssen and Bloomfield 

(1974). The properties of the derivative of a smoothing spline follow 

fairly directly from the properties of the smoothing spline itself. 

Theorem 3. If f E C2 and if AnS ~ ~ as n ~ ~ and 

A ~ O~ then 

Theorem 4. Assume that f E c4~ and that 

f(2)(0) I 0 or f(2) I 0 

5 An ~ co. Then if 

fa' [E .-(t)_£-(t)]2 dt '" [(,(2)(0»2 + (,(2)(1»2] • ,3/4. 3 • 2- 3/2 

If f(2)(0) - f(2)(1) - 0, but f(3)(0) or f(3)(l) ~ 0 then 

Comparing these results to Theorems I and 2 we see that the variance and 

integrated squared bias of the derivative are a factor of A- l / 2 larger than 

the variance and integrate square bias of the function itself. 

, ) 
I 

I I 
( , 

I I 

I I 

I I 

1 f 

I 
I, 

.1 

I 
I 
1 
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Theorem 2 shows that the integrated squared bias is dominated by con-

tributions from the boundary unless g satisfies the condition g(k)(O)_ 

g(k)(l) - O,k a 2,3. Lemma 6 of section 3 gives a local approximation 

to the bias in the case that these conditions are not met. ~oughly, the 

bi d lik ( 2-1/2.-1/4 ) as ecays e exp - A t trigonometrically modulated. In the 

interior of (0,1] the squared bias is proportional to A2. 

These results are not unexpected. The smoothing spline is a "natural" 

spline and satisfies the two arbitrary end conditions f-(O) - f-(l) = O. 

In the context of pure interpolation the use of a natural spline is usually 

not recommended since the error near the ends is of order h2 where h 

is the mesh size whereas other methods can produce an error uniformly of 

order h4, if f E C4, de Boor (1978), Powell (1981). Similarly, it can 

be shown that the boundary effect dominates the integrated squared error, 

Rosenblatt (1976). In the nonstochastic framework methods of estimating 

the boundary constraints have been proposed in these references and it 

would appear plausible that a similar approach might work in the stochastic 

case. 

Natural splines in the nonstochastic setting and smoothing splines in 

the stochastic setting are the optimal solutions of certain minimax problems, 

Powell (1981) and Speckman (1981). It appears that flexibility is lost by 

guarding against worst cases. 

S~oothing splines have also been proposed in the case of spectral 

density estimation (see Cogburn and Davis (1974) and Wahba (1980». Boundary 

effect~ similar to those studied here occur 1n the case of periodiC smoothing 

sp1ine~ unless the function is smoothly periouic (see Rice and Rosenblatt (1980» • 

--. 
, "':" . .IM''';'':.:' ,.\!.--~ ~\~~':\M~..:;j 
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The aliasing in the case of spectral analysis of discretely sampled data 

implies that boundary behavior will not be smooth in this context. 

In the deconvolution problem we consider observations 

k - O, ••• ,n 
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and the £k uncorrelated where F(k/n) D ~l w(k/n-u)f(u)du, with f-€ L2 

2 random variables with mean 0 and variance a. The regularized approxima-

tion to f is the functi~n g that minimizes 

n-1 

4
1n (xO+x -G(O)-G(l»2 +!~ (~-G(k/n»2 

n n kal K 

(1. 7) 

Here G(k/n) - ~ w(k/n-u)i(u)du. The kernel of the integral equation, 

is the periodic extension of a function defined on [0,1], and it is 

assumed that W € L2. We assume that the FourIer coefficients wk of w 

are nonzero for all k. 

w, 

The constants that occur in the asymptotic ~~pressions for the compo-

nents of the integrated mean square error depend on the exact form of w, 

but the rates of decrease depe~d only on the rate of decrease of the Fourier 

coefficients wk of w. Paralleling Theorems 1 and 2 we have 

Theorem 5. Let f E c2 and suppose that 1 1
2 -26 

w
k 

'" k , tI > O. 

\), 

I I I I I • I 

-J I \ I 
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~02[,(tl]dt _ n-1 ,-(26+1l/(28+4l • 

Theorem 6. 4 Let fEe and suppose that 1 12 -26 2B+3 wk '" k • 6 > 0 and ~n ...... 

as n....... Then if f-CO) or f-(1) " 0 

~[E ,(tl-£(tl]2 dt _ ,5/(26+4l 

If f-CO) = £-(1) = 0 but f(3)(0) or £(3)(1)" 0, then 

~[E ,(tl-£(tl]2 dt _ ,7/(26+4l 

If f(k)(O) - £(k)(l), k = 2.3 then 

~[F 8(tl-£(tl]2 dt _ ,8/(26+4l 

Analytic expressions for the approximate local bias are not available. 

but the qualitative behavior is similar to that of a smoothing spline. 

Note that if w is very smooth, 6 is large, and the integrated 

mean square error will tend to zero relatively slowly. 



2. Exalop1es 

The function f(t)· cos (2nt) + 4 cos (nt) satisfies 

f~l) • 0, f~(O) • f~~l) • O. Figures 1 and 2 show the exact bias of 

the smoothing spline estimate of the function and its derivative for 50 

equi-spaced sampling points and A - 10-6• The effect of f~O) is clearly 

evident. The asymptotic analysis (Lemma 6) predicts that the bias, 

bet) ~ f~0)A1/2 exp (-t 2-1/2A-1/4) 

-[sin (t 2-1/2 h-1/4) - cos (t 2-1/ 2A-1/ 4)1 • 

From this expression we see that the iirst zero-crossing of the bias should 

occur at should be zero at t • 

nA
1/ 4 2-1/

2 
•• 070, which is borne out in Figure 1. Figure 2 shows that 

the bias of the derivative is larger by a factor of about -1/4 A • 

We next consider the deconvolution problem wherein f is convolved 

with a function w, the graph of which is ~n isosceles triangle centered 

at 0 with height 20 and base .4. This is intended to correspond to a 

situation in which averaged values of f are measured with error. Since 

the analysis of section ~ req~ires that w be periodically extended, the 

triangle is also centered over -1 and 1. To calculate the bias, (1.7) 

was discretized assuming 25 equi-spaced observations and the solution was 

computed at 50 equi-spaced points. Other mesh sizes were tried to insure 

that the results did not merely reflect the discretization. The calculations 

were done on a VAX 11/80 in double precision. Figure 3 shows the bias for 

A n 10-8; there is a clear effect near 0 and also an effect near 1. The 

shapes are qualitdtively siMilar to Figure 1. 

1 
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Since the assumption that w is periodically extended is clearly 

somewhat artificial, we also computed the bias for w just correspond-

ing to a triangle centered over O. The resulting bias is shown in Figure 4. 

Here t~e or.ly effect is near OJ the effect near 1 of Figure 3 is apparently 

due to the periodicity of w • 
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OF POOR QUALITY 

3. The Smoothing Spline and Its Derivative 

In this section we derive Theorems 1-4 and some luxi1iary result~. 

,I., 

In order to do this we carry ou: a Fourier analysis of the smoothing spline. 

Notice th:-t 

for k ~ 0 where 

Let 

and set 

6g
0 - gel} - g(O} 

lIgl .. g '(I) - g'(O} 

if j .. 0 

if j a 1, •••• n-l 

n-1 

... 1 '" y --.t.J y 
j In jaO j 

exp (2nijk/n) • 

Given a sequence of coefficients Pk we will let 

(3.1) 

denote the corresr~nd-

ing set of aliased coefficients arising in a discrete Fourier analysis 

-, : 
i J 

I 
I .. 

• 1 

\ 
• _1 I 
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k - 0.1 ••••• n-1 • 

A 0 (n) + A 1b (n) 
uS 8 k ug k ' k - 1 ••••• n-1 • 
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(3.2) 

Lemm~ 1. u·t f and 6g0, hg
1 b~ a~ven. Assume that f.S ~c continuously 

d(ffcr-ential>l ~ with f"'; l! - € L 
2

• Then the function 8 minimiaing (1.1) is 

df"tcr-ined by the following npecification on Fow-ier- coefficionts: 

... 
Yo 

go - -
.Tn 

~ - 0 for 8 of. 0 , 
sn 

1 h ---b z 
~+sn ~+r. k+sn k 

it 

fo'!' k· 1, ••• ,0-1 mui t'Pl~eJroal s. HOl'e it is under-stood t11at 

r k - ~ (21T(k+sn» 4 • 
s 

The Pdr~~val relation implies that (1.1) cuo bp rryrlttcn as 

-, 

(3.3) 

(3.4) 

(3.5) 
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(3.6) 

In minimiring this expression, one cen separately minimize the sum of the 

terms with k fixed for each value of k. Minimizing for k = 0 leads one 

to (3.3) and {3.4). For k ~ 0 we have 

A~ - (i (~b )(n»b -1<.+sn k - -1<. k k+sn 

Multiplying by bk+Hn and summing over s leads to 

... 
() zkrk 

(h b ) n k k .. Hr
k 

and this together with (3.7) leads to (3.5). 

(3.7) 

(3.8) 

Lemma 2. Insert (3.3)~ (3.4) and (3.5) in (3.6). Minimizing the resuZting 

expression with respect to 6g0~ 6g
1 leads to 

(3.9) 

"ind 

(3.10) 

I I 

i· 
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, -

If we insert (3.3), (3.4) and (3.5) in the expression (3.7), the result 

can be written as 

(3.11) 

Minimizing this expression ~ith respect to ~gO and 6gl leads to the 

following ~q~ations 

(3.12) 

- 0 • (3.13) 

o Ag1 On solving for ~g, u the expressions (3.7) and (3.10) are obtained. 

Lemma 3. The function g minimizi:1{J (1.1) hao Fouriel" coefficients 

(3.14) 

~g~ fol" sn s ~ a (3.15) 

and fol" k'" 1, ••• ,n-1 and s integrol. 

Sk+sn = 6g
o

[ak+sn - A;r~ \bk+sn \2 a~n») (3.16) 

6 l[b 1 \b \2 b(n)1 
g k+sn - A+r

k 
k+sn k 

+ 
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with 6g0~ 6g1 given by (3.9) and (3.10). 

The fact that 

and (3.5) inserted 

sen) _ 0 and 
o 

in (3.1) yield 

(3.3) holds lead to (3.14). 

(3.15) and (3.16). 

Also (3.4) 

The integrated mean square error of get) as a function of f(t) is 

1:1 

E[oCt)-fC')J
2 

d, 

_ 1:1 
varCoCt»d, + j(1 [E OC')-fC')J 2 dt • (3.17) 

Moreover 

fo! var(g(t»dt a var(gO) + 2 ~ var(gk) • 10 kal 
(3.18) 

It should be noted that the gk's are complex-valued random variables. The 

covariance of two complex-valued random variables U,V is understood to he 

cov(U,V) - E{(U-EU)(V-EV)} • 

We shall now derive Theorem 1. Notice that 6g0 and 6gl are real even 

though they are written in complex form. It Is clear that 

(3.19) 

for j,k = O,l, ••• ,n-l. From (3.19) it follows that 

1 i 

1, 
\ , 
j t 

fl 
i1 
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(3.20) 

(3.21) 

Since 

(3.22) 

~ ,-3/4 C 
- A 1 • 

(3.23) 

(3.24) 

(3.25) 

where 

c = J 12nxl2 dx. 
1 12nx14+1 

J dx 
C3 = 4' 

12nxl +1 

, 

L..~w: ... .:.~. ~<~: ; .. __ ,,: ': .:::: ~ '.·:~.L:.= ,.: ~ __ ' ,'=~.::~~.~':=~:~' '. ~ :. j 
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4 
if ~(n)n ~ - as n ~., it can be seen that 

2 
a2(~gO) ~: C2C~2~-1/4 , (3.26) 

1 
, J 

2 
a2(~gl) ~: C4c;2~-3/4 

, 1 

(3.27) 

if ~(n)n4 * - as n *~. The term 
I I 

I 

n-1 

" " I 1 Ib 12 (n) 12 ~ ~ ak+sn - A~ k+sn ak s k-l k 
(3.28) 

, I 

occurs as a coefficient of 02(6g0) in contributing to (3.18). However, 

(3.28) can be approximated by 

, 1 
, 
j 

(3.29) 

with an error o(~) if 4 
~(n)n ~ m as n * m. The term 

n-1 

" '" Ib 1 Ib 12 b(n)1 2 
~ ~ k+sn - A+r k+sn k 
s k-1 k 

. , 
: I 

(3.30) 

, 

arises as a coefficient of 02(6g1) in contributing to (3.18). An estimation 
• I 

procedure similar to that used in arriving at (3.39) shows that (3.30) can be 

approximat.!d by 

(3.31) 



,. 
I 
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I. 

I • 

with an error or ~) 
n 

if 
3 8 A (n)n 4 ~ as n 4 m. The estimates obtained 

for (3.28) and (3.30) imply that the contribution to (3.18) from the 

terms involving 6g0 and 6g1 in (3.16) is 

if 3 8 X (n)n ~ m as n ~~. Now consider the contribution from the last 

term on the right of (3.16). We shall see that it makes the major contri-

bution to the integrated variance. The expression 

can be approximated by 

where 

with an error 

~ 1 ! Ot X-1/ 4 C 
~ I 14 2 n - n 5 o<lkl<¥ ( 2nk +1) 

C5 ' J dx 

if 

from these estimates. 

Theorem 1 follows 

(3.32) 

(3.33) 

Our next object is to derive Theorem 2 for the integrated squared bias 

of g as an estimate of f. Notice that for k + 0 we have 

! r...!..:'-- ( .1>1- :, 

I 
I 
I \ 

I 
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with 

Using (3.34) it is clear that 

... n-l 

t (f(O)+f(l» - L fk = L f~n) , 
k .. -oo k=O 

... 
f(j/n) - ~ fk exp (-2nijk/n) 

j .. _oo 

This implies that 

E y" 1m _ fen) 
j j ' 

From (3.34) it follows that 

n-l 

• 2: f~n) exp (-2nijk/n), j :al, ••• ,n-l • 
k-O 

j - O,l, •••• n-l • 

Relations (3.9). (3.10). and (3.37) imply that 

(3.34) 

(3.35) _. 

(3.36) 

(3.37) 

r 
L 

! I 
! J 

, 
• j 

\ i 
. I 
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and 

. f n-l 
o . 0 " 

E llg - llf + i LJ 
k-l 

.. ~ -. ,. 

, , 
'" "" "H .. ~ .. 

(m. b ) (n)"3(n) / ().+r )1 
k k k k r 

iff l~n)12 / (Hrk)j-l 
k-l 

Since we are dealing with real-valued functions f it follows that 

m. - m k -k 

and 

(m. b ) (n) _ (m b ) (n) • 
k k -k -k 

These last two relaticns together with (3.38) and (3.39) imply that 

and 

, .... 

(3.38) 

(3.39) 

(3.40) 
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(3.41) 

If f E C3 one can see t~at 

Re "k' L1 f""(x) <os 2.kx dx 

· L1 t {f ""(x)+f ",,(-x) ) <os 2.kx dx (3.42) 

and 

2.k 1m "k - 2.k L1 f""(x) sin 2.kx dx 

(3.43) 

with 

From (3.l6) it follows that for k - l ••••• n-l 

II 
I; 
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iJ 

, I 
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4 Further, if fEe we have 

with 

~f2 _ f(2)(1) _ f(2)(0) 

6f3 _ f(3)(1) _ f(3)(0) 

Ibk+snl2 (n)l 
'+ ak , 
1\ r k ) 

-- .... - ... ~ ... ------~--
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(3.44) 

(3.45) 

The last term on the right of (3.44) can then be rewritten as 

(3.46) 
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AO(t) .. - L: r: J(b 2) (n) 
s k .. 1 l k 

/ 
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A
1

(t) .. - 2: ~ ! (a b ) (n) _lb...;k.;.;.+..::.;sn:.;;..I_
2 

- a b } exp 
s k .. 1 { k k Hrk k+sn k+sn, 

(-2ni(k+sn)t) , 

n-1 , 

A2(t) - ~ ~ ) bk+sn 
s k"l { 

Ibk+sn 12 bend 
,+ k' exp (-2ni(k+sn)t) , 
1\ r k , 

n-1 J 

A3 (t) - ~ ~ l~sn -
s k-1 

exp (-2ni(k+sn)t) • 

Set 

'" (2ni k)j B
j 
(t) .. A L..J ---4- exp (-2nikt), j '" 0,1,2,3 • 

klO A(2nk) +1 

Lemma 4. 
3 8 If A n ~ ~~ A ~ 0 as n ~ ~ then 

1':::0 

j .. 0,1,2,3 • (3.47) 

7-2j 

AZso f01 IBj (t) 12 dt tends to zero at the rate of A 4 , j - 0,1,2,3. 

The estimates required for this lemma parallel those used to obtain 

(3.29) and (3.31). 

We wish to 6et more convenient representations or estimates of the 

Bj(t)'s. A contour integration shows that 

I 1 

• I !I 
· , 
! I • • 
-, · ) , 

, : 
I 

• I , 1 

· . 

· , 
I 

· , 

• 1 
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• _1 f e
itx 

dx .. _1_ e-ltI2-l .1 .1 CO(t) (cos(t2-%) + sin(ltI2-'» • 
2n 1+x4 21:2 

Successive differentiation then indicates that 

1 f itx(i)3 1 ItI2-! ! C (t) c -- e x dx. - sgn t e- cos (t2- ) • 
3 2'11" 1+x4 2 

An application of the Poisson summation formula tells us that 
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(3.48) 

Only the terms in the sum (3.48) corresponding to k" 0, k .. 1 need to 

be considered since the sum of the remaining terms die off at the rate 

-~ 
e-aA with a a positive constant. Notice that the formulas for the 

Cj(t) above imply that 

1 
C • C --1 3 212 

Lemma 5. A88ume that f E c4• Then if 6f2 ~ 0 

(3.49) 
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E ~gO_~fO ~ 212 ~3/4 t {f(3)(O) + f(3)(!)}. 

If f(2)(0) + f(2)(1) ~ 0 ~e have 

as A - hen) ~ O. 

1£.1 

(3.50) 

(3.51) 

(3.52) 

The asyoptotic re1atiol1s (3.49) and (3.50) foll lW from (3.40), (3.43) 

and (3.45). Formula (3.51) is a consEquence of (3.41) and (3.42). If 

f(2)(0) + f(2)(1) = 0, since I Re ~ 2 i (f(2)(0) + f(2)(1» one can 

see that 

However by (3.45) 

1 f 1 (4) (4) . -""'---.., 2" (f (x) + f (-x» cos 2'lt<x dx 
(2nk).l. 

Thi~ i~plies (1.52). 

0.53) 

(3.54) 
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+ e(t) • (3.55) 

o < t < I, tJ}tere tlza error tem e(t) is such that 

feet) 2 dt • 0 (fIE g(t)_f(t)]2 dt) . (3.56) 

If f(2)(0) - f(2)(1) - 0, f(3)(0) ~ 0, f(3)(1) - 0, tJe mrJ8 

(3.57) 

o < t < I, tJnare the error tem again satisfies (3.5fi).The approximations 

appropriate for the cases f(2)(0). 0
1 

f(2)(l) ~ 0 and f(2)~0) 

f(2)(l) • 0, f(3)(O) a 0, f(3)(1) ; 0 are obtained by repLacing t by 

l-t in the main expression8 on tlw right of (3.55) and \3.57) respectivel.y. 

We next consider the variance and b!~s of toe derivative g~ of the 

smoothing splt~e. Theorems 2 and 3 follow from the previous analysis of g, 

after noting that the Fourier coefficients of g~ are 

(3.58) 

k .; 0 • (3.59) 

We first consider the integrated squared variance 

. - . -"~ '1 
" .. A ,,~?",.~.~~j 
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From (1.26 l • 

As in (3.16) 

~ ~ h. ~ 1 (1 1 b b (n») ~+sn g - ~+sn-K+sn • ~+sn g - A+r
k 

k+sn k 

b .. 
+ (n) I::. 0 ~+sn k+sn Yk 
ak+sn~ g - A+r

k 
In (3.60) 

Estimates similar to those used in the analysis of the smoothing spline 

show that the contribution to the variance from the first term is of order 

-t -1 An. The second term gives n contribution of order 

term dominates. giving a total contribution to V 

Next, the bias: 

2 
Q!E..... 
-- n 

which, as in (3.44) 

dx • 

-!- -1 An; the third 

(3.61) 

(3.62) 

.. 

.-
- .~'-. ~ 

i t; 1'''''~''' ../-~- .. ,£~~;-t ./ . .'<t 

:"' " , " ',' '. . .'. "." '" '. c.," d 11 
,~ _.:~~~~ -•• ::;:,. • .-~-!. -~_~.i· ~_: >i~~.i:.~·'..4I:"':·_" _;-,..., ......... ~.:l_.z,.::_~:;.... ..... ~l>& ..... L_ ..... ..:. ~'.:~ 
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r 
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i 

Making approximations as in the analysis of the spline function itself, 

Using the Poisson-summation approximation and Lemma 5 if f(2)(0) P 0, 

f(2) (1) .. 0, 

E g'(t) - f'(t) ~ - f(3)(0) A! e-u (sin u + cos u) • 

Note that the approxiMate (in an L2 sense) bias of the derivative is 

the derivative of the approximate bias (Lemma 6). 
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(3.63) 

• .-.- - '/~c_ • .. ~< ~ •• ~-.-•• -~ " •• - - , ••• ---~l 

:i 
+' ~-h-M1".4~ ..... + "''';d~..., Hat >; ... r .... ~~',·~bf£>t • .ti,~,.~.F~~ 
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4. Deconvolution 

We now sketch the development of the deconvolution results. Since 

this parallels closely the derivations of Section 3 the presentation will 

be somewhat sketchier. As before let g have Fourier coefficients 

k '" 0 (4.1) 

and let 

and define Yj as in Section 3. Then (1.7) may be written as 

th ?linimizing the 0 term gives h .. 0, s ~ 0, 
sn and 

As in the analysis of Section 3, we first fix ~gO and ~gl and 

minimize with respect to the hj's. If 

; , 

. ' 
, 'i.-\y:. \' J a * ibn .. .. 

(4.2) 

I J 

rJ 

n 
n 
: ! 

, : 
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... 
... :l 0 (n) + A lB(n) 
Zj K - fJg Aj ug j 

10 

Then (4.2) becomes 

"," I ~ _H(n) 12 + ). [(ASl) 2 + " .. ~ lit.· 12 IB 1-21 LJ j j £.J £.J -K+sn k+sn • 
k s 

The minimizing coefficients can be calculated to be 

... 
h .. i ....l. 

j+on j+sn Hpj 

whet'e p .. 
j 

co 

r IBj+sn I2 • Now to calculate the minimizing and 

s"'-'" 

this solution is substituted back into (4.3) to give 

Minimizing this with respect to llgO and llgl amounts to solvi~g two 

linear equations in two unknowns, and it may be seen that the soletion 

1s approximately 

132 

(4.3) 

(4.4) 

1 llg , 

(4.5) 

(4.6) 

) ( )-1 
( H )-l( '1 +" \B(n)\2 (H )-If • 

Pj 't LJ j Pj I 
(4.7) 
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We next consider the integrated oqudred variance, which is the sum of 

the variance of the Fourier coefficients of g. Now, from above, 

o j+8n wj +sn j 
[ 

Ib 12- A(n>] 
gj+sn - 6g aj +sn - --;;='":"').7-'--::;'':';'''''''''-

+P j 

[ 
Ib 12; B(nP 

+ 6 1 b - j+sn j+sn j J 
g j+sn HPJ 

(4.8) 

Via approximations similar to those in Section 3, it may be seen that the 

first two terms contribute a net variance of order n-1).-26/(26+4) whereas 

the third term contributes the dominating variance, which is of order 

-1,-(26+1)/(26+4) n J\ • 

If we ~~ite the Fourier coefficients of f as 

(4.9) 

and take expectations in (4.8), the bias of the th (j+sn) Fourier coefficient 

may be expressed ag 

Ib ,2- (n) 
k+sn wk+snHk 

+ ------- - In. b • 
~+Pk k+sn k+sn 

(4.10) 

-- .. J 

• ti '" 
, . 

.. £ ................... ¥ .L oj, H 

f I 

1 ! 
" I. 
I I .. 
, I 

~ 1 

. , 
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As in section 3 for Ikl ~ n/2. k ; a 

If we let 

j • O,l,i., 3 

(note that 

(4.11) 

(4.12) 

(4.13) 
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The function Djet) play the role of the functions Bj(t) of section 3. 

Although their exact analytical forms depend on w, they arc, like the 

Bj'S, successively odd and even, and are increasingly peaked near 0 

and 1 as ~ ~ O. 

We now consider the individual terms in (4.13). From (4.6) it 

follows that 

L~ ~Bk~(~+Pk)-l 

L~ 1~12(~+Pk)-1 

The denominator can be estimated to be ,..., ~3/(28+4). If 6f2 i- 0, the 

numerator is 

In co~bination with D3 this gives a net contribution to the integrated 

squared bias which is ,..., ~S/(2B+4). If 6f2 m 0 the numerator is 

~ (f(3)(1) + f(3)(0»/2. giving a net contributIon of order ~7/(2B+4). 

If f(k)(O) s f(k)(l) = 0 k. 2.3 the net contribution is 0(X
2
). 

Next, 

-1/(28+4) 
The denominator is ~ X and if f(2) (1) or f(2)(0) ~ 0 the 

numerator is ~ (f(2)(1) + f(2)(0»/'_ This gives a net contribution to 

-~~l...... , ~; !.~ ... -_,>- .... 'r " ....... _ ....... ~ .. -:.{'.,.'"- ....t " 

.... ~<.-.:: .... -.. " ...t.;. ........ ~~:<;r.~ 4k tt ' hb_:~'js< -nee , U 1M01"~ 'I:". b, 

, 

I ! 
j 

- , 
i 
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the integrated squared bias of order ). 5/ (26+4) • If both second derivatives 

are zero the numerator is 

giving a net contribution of order ).7/(28+4). If both second and third 

derivatives vanish at 1 and 0 the net contribution is O().2). 

The last term in (4.11) can be estimated and makes a contribution to 

the integrated squared bias of o-der ).2. 
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1;u~cne F. Schuster 
l)e~artment of Hathem'\tical Sciences 
The University of Texas at El Paso 

1;1 Paso, Texas 7q968 

Abstract 

- ... 

One criterion proposed in the literature for sel~ctinc 
the smoothing parameter(s) in Rosenblalt-Parzen non~3rametric 
constant kernel l'stimators of a probability density function 
is a lcave-out-one-at-a-tir.lc nonparametric maximum likelihood 
method. In empiricnl work with this est!nlator in thl' univariate 
case, we found that it worked quite well for short-tailed 
distrib:ltions. It produced estimators which differed little 
from those produced by an intuitively appealing maximum likeli
hood method, depending on a !:81ldom split of the data, which 
wc had propos(>d earlier in unpuhl1!>lwd work. lIo...,ever, both of 
these methods drastically ovelsmoolhcJ for lone-tailed distri
butions. In fnct, we have shown that these nonl'.:lrarnetric 
Md>..imum lihelihood mcthodb w11l not select unlforDl~y consistent 
estJ.matcs of the density for lanr.-taileJ distrihutions such ae; 
the dou"le expoll('ntial or the Cauchy distribution when the 
kernel h,1$ compact support. 1\ ren"dy we founa for estimatinc 
lonr.-tallul di'ltributlons ,,'as to apply the nonpnrrunetric 
t13ximllm lH.ehhol'll rrOCl'UlITeS to n variable herr.el class of 
(>5 ti!:lntors cons itlered by ot"e ir.lan ct nl (TE'chrome t r ics • .!2.. 
t\o. 2, .Iay 1ll7;. 1)5-141). 

In addition to constant and varinble kern(>l estimators 
we inVeo;l.l. ,Iled tlw m.lximum likelihood crJ.tcrlon ,'lpplied to 
a histo/-:ram f.mily of L'stin:ttors and report our clI.llerience 
with :;ome modifiC<ltloll~ of the nhove procedures. 

Our e:.ycricnce \"1 th these cs t iPlalors includes numerous 
univari.lle ca~e .,tudlC". Thie; p.I(ll'r reports on the methode; 
.10; .lpplll'U tll two univariate data sel:. of onl' hundred ~"mples 
(one C.Juchy, line normal). Finally, loll! discu:.s our limited 
experience in the multlvaridte casco 

,,-
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During the past decade there has been much work in the area of non-para-

metric density estimation. Unfortunately, most of the resul~s have been of the 

large ~ample type and little suidance e~ists as to the practical implementation 

of the estimators proposed. This Is the primary reason why these estimation 

procedures arc used extensively by only a f~w applied statisticians. One cri-

terion for selecting one out of a family of non-parametric density estimators. 

which has been mentioned in the literature is the maximum likelihood (ML) cri-

terion. Habbema et a1. (1974) and Duin (1916) mention the same ML procedure 

in the context of Rosenblatt-Parzen kernel type estimation. The form of these 

estim.:.tors is 

(1) 

where xl ••••• xn is a random sample from the density f(x) and KO is a density 

with smoothing pa~ameter e (the quantities x, xi and e may be multidimensional). 

In the univariate case 

(2) 

where K(o) is a f{xed density. Choosing 0 to maximize the non-parametric like-

lihood 

(3) 

is usc>lc:is; (3) ~s unbounded as 0 -~ O. To .woid tlll~ deger,,'racy problem. 

Habbe~ at ale and Duin consider replaci~r f(xile; xl ••••• xn) in (3) by the 

kernel I'stilll.3tor of f(x i ) based on the data with xi removed. That is. they 

chose 0 to maximize the criterion 

n A 

n f(xilo;x l ••••• Xi_I' x i +l ••••• xn) 
1=1 

(4) 

-
J. 

I 

· ! 

· i · . 

· , 
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.... \.._ ... !'_] _, •• oJ '::cUlOc; O<iy b<! &l!Jpll.cd to any fl.1mily of estimators .lased on some 

smoothing parameter S. We designate by HLl this leave-out-one-at-a-time max-

imum likelihood procedure £10 a general method ot choosing O. 

Wahba (1978) ref~rs to (4) as a "cross-validation likelihood function." 

We think that term better describes the new maximum likelihood method which we 
A 

now propose. Suppose we have a family of estimators (f(xIO; xl ••••• xn)} for 

certain values of a smoothing parameter 6. Let WI' be a subset of {xl •• ••• xn} 
A 

and w2 - (xl •••• ' xnl-wl • Denote by f(xlO i ; Wi) the estimator determined by 

the data values in Vi using the smoothing parameter 0i' We use the data in 

v1 (w 2) to chose 62(SI) as follows: 

6i is chosen to maximize 
A 

n f(xls i ; Wi) i.j c {1,2l 
XtVj it'j 

The natural 1ensity estimator based on the data split (nl • n2) is 
A A 

f(x) a nlfexlol' VI) • 

(5) 

(6) 

where ni is the number of elements in ni • In Section 3 we consider this es

timator for "equal" splits. n
l 

.. [n/2). A permutation invariant estimator of 

f(x) ib the average of estimators (6) over all equal splits of the data. This 

estimator is computationdlly not feasable for moderate n. We suggest averaging 

(6) over several random splits of the data. In our experience there has been 

litlle change in the estimator after averaging over ouly a small number of ran-

dam splits (one. two or three). We designate by ML2 this split-sample procedure 

as a general method for chosing O. In Section 3 a single likelihood value is 

utilized as a measure of overall performance. ('or the liLl Illethod the single 
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n 

(7) 

where f Is given by (6). 

In ecpirical work with these estimators we found that they both worked 

quite well and were in close agreeQent for short tailed distributions. However, 

both methods drastically oversmoothed for long tailed distributions. In 

section 2 we diocuss th~ nnnconsistency of these methods when using kernels 

with compact support to estimate densities with tails as long as the double 

exponential or Cauchy distributions. A remedy which we found for estimating 

these long tailed distributions was to apply the non-parametric maximum 

likelihood procedures to a variable kernel class of estimators considered 

by Breiman et al (1977). This remedy is discussed in section 3 where we 

analyze two univariate data sets, one from the standard normal and one fro~ 

the Cauchy. 

In section 4 we briefly discuss some of our experience in the multi-

variate CAse for the HL2 method. Finally. in section 5 we give some comments 

and conclusions. 

2. Nonconsistency of the ~~ Procedure. 

By nonconsistency we mean that suplf (x) - f(x)l~ 0 in probability. 
n x 

This nonconsistency will be demonstrated for a wide class of densities f 

and kernels k. but we make no attempt to state results for as wide a class 

as possible. ror the sa~e of argument, attention is placed on the left 

tail of the distribution and we consider only the HLI csUt1ators. 

-1 
Let F denote the cdf of the density f nnd let h(u) - u/fF (u). 

! ! .. 
" ... 

•• 

.. 



CR:G ~J,"l PAGE IS 

o < U < 1. We AS8ume 

+ h 18 continuous and lim +h(u) D h(O ) exists, possihle infinite. 
U ... 0 (8) 

+ We S4y f has 4 10n& left tail if h(O ) > O. Assume for the present 

only that k hss finite support. Without lOGS of ~enerality ve suppose 

the support is contained in (-l,l). i.c. 

k(u) - 0 if lui> 1. 

A basic observation concerning the smoothing parameter 0-0 which 
n 

maximbes (4) is that for cach xi' I xi - Xj I 5.. an for some Xj 

with j oj i. In particular for the MLl estil!lator 

(9) 

x - x < a 2n In - n , (10) 

where x
ln < "2n < ... < x arc the order st"tistics of the srunple. nn 

Let u • Fe"in)' 1-1 ••.. ,n. Then x., -1 - ... -le uln
) - x • F (U.,) • in .. n In _11 

* * * (10) follows h(u )(U., - u 1 ) lu ,where u
1 

< U < u
2 . From it n .. n n n n-n- n 

that 

* h(u )(u2 - ul )/u
2 

< 8 • 
n n n n- n (11) 

Using uniformity of (U., - III ) lu., and standard .lrr.umcnts (11) 
.. n l1 .. n 

146 

S' .... v+.1 U 

, 



141 

• PC 0 < be ) < c + PC h(u ) < b). b.e > O. 
n n (12) 

p 
Lemm.l 1. Under (8) and (9) • h(O+) > 0 implieb o ~ O. Furthermore 

n 

h(O+) 
p 

• 0> impliec; 0 -+ ... 
n 

Proof: 
+ 

Choose 0 < b < h(O ) in (12). 

LE:>mma 2. 
P 

If e -+ co 
n 

and suplk(u)1 
u 

< co then 
p 

sup f (x) -+ O. 
n x 

Since k is hounded the proof follows from (1). 

Now Lemmas 1 and 2 combine to give the nonconsistency result 

+ for distributions like the Cauchy wlll're h(O ) - 00. There is no 

difficulty her£"; the density estimate flattens out entirely. It is 

more difficult to establish the nonccnsistency for boundary c.ases where 

o < h(O+) < 00. The douhle exponential density ib one of thesE' and is 

covered by the following lemma. In addition to ('l) we will assume that 

the kernel k is left continuouc; and of boundl'u variation on (_00.""). 

L('mma 3. Let 0 maximize L (0) of (4) 
n n 

+ unimodal and h(O ) - a where 0 < a < "". 

in probability. 

for each n. Suppose f is 

Then suplf (x) - f(x)1 fr 0 
x n 

The proof can be found 1n 'lchubter and Gregory (lf18l). 

<, 
b4d= Fl., s''& ,"'~ 1 ..... > J 5" tH'kb"'-beb' ... ;' b·& ad? } ..... '., ''''2 tr 
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The following table gives the left tail behavior of some common 

distributions. 

dl t ib ti s r u on 

Normal 

Double exponential 

Cauchy 

Finite support 

d ens i ty 

1 
I:z.n {I x - u 2) o 21T exp - - (-) 2 0 

(!) 
2 exp f->' Ix - u/} 

(~) 
1T 

{o2 + (x _ u)2)-1 

3. Two Univariate Data Sets Analyzed. 

-1 
11m +u/fF (u) 

-+() u 

0 

1/>' 

CD 

0 

Two pseudo-randomly generated data sets, one from a Cauchy disttibutior. 

and another from a normal distribution, are investigated in this section. 

Ceneral implications are summarized in Section 5. 

We first consider the Cauchy example. Table 1 shows n-lOO order 

statistics of a pseudo-random sample from a standard Cauchy distribution, 

f(x) - 1T -lCl+x2)-I. The asterisks (*) indicate a division into two sub-

samples to be discussed later. 

We consider two types of kernel estimators, the constant kernel tvpe -

given by equations (1) and (2) where we write 0 - (cr), and the variable 
'" '" 

~- f(x) • f(xlo; xl.· ••• xn) 

where 0 - (k.n) , k c {l, .•• , n} 
n > 0 

(ll) 
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~d <iik ill the kth neares t neighbor to xi in the s~'mple {xl'·.·' xn}. For 

the analysis we chose a kernel K similar to the standard normal but one in-

volving less computing time; 

K is the t(29) density. 

In our experience the choice of the kernel among those with infinite support. 

seemed to matter little. However. for long-tailed distributions (such as our 

present example) kernels with finite support perform poorly. 

Consider first the method MLl for these two types of kernel estimators. 

We consider the types together as one family and let the maximum of the like-

lihood (4) choose between them. Notice that for the variable kernel estimators 

the maximum of (4) is sought over a two-dimennional space {(k,a)}. The range 

of a (as well as a) used for our likelihood calculations is .1(.1)5.5(ie. from 

.1 to ~5 in steps of .1) and that for k is 15(5)45. The constant kernel es-

timate picked by the MLl method is useless. being much too flat (oversmoothed). 

In fact the estimate has a maximum of only .15 and possesses extremely long 

tails. In the combined family the ML1 method picked the variable kernel es-

timator with k-30 and aa2.6. Figure 1 shows this estimator, as well as others. 

superimposed over a graph of the theoretical Cauchy density. Breiman ct a1. 

(1977), page 136, consider three error measures, percent variance not explained 

(PVNE), mean absolute error (MAE), and mean percent error (MPE). for comparing 

as estimated density f to a theoretical density f{in this case the Cauchy density 

which was the model for the pseudo-rando~ samples). The error measures are de-

1 1 
n 

~ 2 
fined as PVNE a ~2 ~ (f (Xi) f(x i » X 100 

n 
1 af 

1 
n 

MAE a~ E If(xi ) - f(xt)1 X 100. and (14) 
n~f 1 

",1 
n /[("1) - f(x i )/ MPE E x 100 

n 1 f(xi ) 

I 

. . . 
•• 

1 · ) 
Ii 
I ' 

• j 

, I · , · . 
· , . 

I 
• j 
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and 

In Figure 2 these are plotted as a function of a for the case k-30, chosen by 

the MLl method. Superimposed on the graph is a plot of transformed likelihood 

values (4), plotted against a for the case ka 30. The particular transformation 

plotted, (-log {expression(4)} -240}/2, is of no significance; the only intent 

was to bring the values into the range of the error percentages. It is seon that 

the MLl method chooses a value of a (2.6) which is near the minimizing value 

for each error measure. Note that since all error measur~s in(14) depend on the 

unknown density, they could not be uoed in selecting the smoothing parameters. 

Breiman at al. (1977), page l~O, used a goodness-of-fit criterion to choose 

the smoothing parameters of kernel estlmators in fitting two bivariate data sets. 

We investigated this goodness-of-fit criterion for the present univari~te datu 

set. The one dimensional value of VCr) in the Breiman paper is 2r. With V(r)-

2r the goodness-of-fit criterion did not vork; over a range of values k, the 

like] !hood values were increasing .1 t U = .1 as a decreased. T;'or a this smdll, 

the estimators were already too rough. It seemed to us that perhaps in one dimen-

sion one should use V(r)-r. However, this change gave no better results. 

Consider now the method ML2 applied to the cons cant and variable kernel 

estimators. The application of the method applied to the constant kernel es-

timators is straightforward. However, for the variable kernel ~ase, the strict 

application of the method might lead to an estimator which is a mixlure of two 

with different values of k, which we view as undesirable. We make a distinction 

between the parameters k and a similar to that made by Wahba (1978) in another 

setting: a is the primary smoothing parameter and k is a secondary shape para-

meter. The value of k rn<1Y be chosen finlt as follows. (i) Choose at random .:l 

partition (n
l

, n2). (ii) For each of several va)u~s of k calculate a value for 

, 
I , 

j 
I , 
l. 
I , 



the overall criterion (7) where the ML2 method has been applied to the smo-

othing parameter a only. (iii) Choose the value k which maximizes (7). We 

repeated the above procedure over three random partitions for the values ka 9(3)21. 

In each case the value k - 15 was selected. Then with k selected at 15 we chose 

a based on a new random split. The asterisks in Table 1 indicate the resulting 

split. Say that a value is in wI if it haa an asterisk and in w2 otherwise. 

3earching over a - .1(.1)5.5 the ML2 method chose u1 - 2.7 and a 2 - 2.5. The 

resulting estimator is shown in Figure 1 and is very close to the estimator 

chosen by the MLI method. Notice that the value of k chosen by the HLI method 

is 3·)% of the total sample size and that the k chosen by the ML2 method is 30% 

of the size of each split sample. 

We also considered a histogram estimator from Van Ryzin (1973), 

if X(j) ~ x < x(j+O) 

j = 1. 0+1, 20+1, ••• , r 

(15) 

if 

o if or 

1\-1 
where r - [--0-]6 + 1, 

with ['1 the largest tntcger function, and x(l) ~ ••• ~ x(n) the ordered sample. 

Now 0 is an integer valued smoothing parameter. We applied the ML2 procedure 

to this estimator with the following modlficatl.ol\. Since at lca&t one of the 

quantities in (5) "'"QuId be identically zero due to the finite Dupport of f, we 

modified (5) in this case so that only thc&e x's for which flo entered into 

-; i 

~ I 
- I 
~ I 
d 

... 

• I 

, .. 

! 
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the product. Averaging (6) over several random splits has a smoothing effect 

on these estiMators. An estimate averaged over five random splits appears in 

Figure 1. The computation time required to generate the histogram estimate was 

very small when compared to the kernel estimates. 

A similar analysis was carried out on 100 pseudo-random samples from the 

-x2/2 r.::-standard normal density f(x) .. C / y211 • The sample values appear in 

Table 2 and the dp.nsity estimates appear in Figure 3. In applyIng the MLl method 

we used the ranges a and a - .100(.015).910 and k a 5(5)85. The MLl method 

picked the constant kernel estimate with a - .460 but only barely so, over the 

case with k - 15. The constant kernel estimate is smooth (see Figure 3) and 

quite saticfactory while the estimate with k m 15 is very rough near the center. 

This pattern persisted in other examples we investigated; indeed the estimate 

corresponding to small k was often chosen over the constant kernel estimate. It 

is seen that the MLI method, which worked well for long-tailed Cauchy data sets, 

has instability at small k for the sl.ort-tailed normal distribution. The error 

me.lsures (14) are graphed in Figure 4. The transformation of ~4) which is super-

imposed is 10(-10g {expression (4)} -135). The MLl method worked very well in 

picking the smoothing parameter a of the constant kernel estimator close to the 

minimizing value for each error measure. 

As described previously for the Cauchy data we first choose k for the ~2 

method based on values (7) and several random splits. The ranges chosen were 

k • 5(5)45 and a and a = .100(.015).910. Instability was noted here also in the 

choice of k, different random splits indicating in turn the constant kernel es-

timator and variable kernel estimators with different k values. The HL2 method 

seemed to guard against the choice of an extremely small k better than the MLl 

method. The use of repeated random splits, which at first glance is a drawback 



of the ML2 method. gave the following useful observation. For each random 

split the constant kernel estimate gave a value for the loga~ithm of (7) close 

to the maximum. In fact averaging the logarithms of the likelihood over four 

random splits showed the constant kernel estimator to be the best. Based on 

this the constant kernel form was chosen; then three &dditional random splits 

were used to give three estimates of the form (6) whose averdge appears in 

Figure 3. We mention in passing that the logarithos of (7) used in making the 

choices among variable and constant kernel forms were often very closp. together. 

differing sometimes only in the fifth significant digit. To check for round-

off inaccuracies we reprogrammed all calculations in double precision but none 

of the selections was changed. 

The ML2 method was applied to the histogram family (15). The allerage of 

25 estimates of the form (6) appea:.-s in Figure 3. 

We checked the goodness-of-fit criterion, used by Bretman et a1. (1977'. 

on the norma.t data set. The same rrsults occurred here as reported for the 

Cauchy d:tta 3et. 

Since the problem with the estimation of lonl: tailet! densities was in the 

oversMoothing cdused by the extreme oDservations, we trimmed observations and 

considered the natural modified emf,uical likelihood representIng an estimate 

of the joint density of the order statistics XCL+l ) through XCn- L)· The 

smoothIng parameter chosen initially decreased drastically with increasing L 

for long tailed distributions a:ld the estimate of the Cauchy density continued 

to improve as L increaBed. However, l"ince the maximizing o was nearly 
n 

decreasing as L increased we are not able to r,ive any guidance so; to how 

rany observations to trim. 

-----... ---- ~-~- .............. ~--- --- -......... ~--- .,--~- / 

•• 

I 

" "'. 

.... 

,.. 

. . 

..J l_ 



4. Multivariate Cane. 

In the immediate generalization of the univariate maximum likeli~ 

procedure to the mul~ivari3tc case one wo~ld need to choose a s~ape fac~~ 

for each coordinate. For simplicity we restrict our~elves to the bivdri~e 

case where the bivariate kernel estimator based on the random sample 

-1 
f (x,y;a,b) - (nab) 
n 

n 
E k{(x-xi)/a'(Y-Yi)/b} 

i-I 

where k is a bivariate density. ~ common oversimplifiLation in case 

studies of ~~plications of bivariate (and mu)tivariate) kernel esticator~ 

haa been to take the same shape fdctor for each coordinat~ OUr empirl~: 

work has been limited to the split sample Ml.2 method. W. again i!!8cuce " 10 

even, say n-2m. Our b~variate procedure randomly splits the bivariate 

data inco two groups of ordered pairs, Bay the first ~nd the l~t m 

pairs, which we refer to as the X ' 3 and the y's. The x's would be used 

in defining the fU.lctional form of tl.e kernel estimator f of f and the 
m 

y's would be used to find the shape factors (3l ,b
l

) which maximizes tte 

"empirical probability" of observing the y's (as 1.n the univariate case) .. 

Tn the same fashion a second e3timator would be constructed which US~5 tld 

y's in defining the functional form of f and the x's would be used to f;',d 
m 

the shape iactorJ (a1 .b
2

) which maximize the "empirical probability" 0: 

observing the x's. 

f m•2(·,·;sZ,bZ)' arc then a\tragcd t~ o~ta~n the bivariate estimator : 

of f. 



. 
r 
t·.- -, 
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of solving the bh'arlate l!U£X!.l!.Ii::ncion problctl. As a good initial guess ve 

U5~d what we refer to £s the marginal solutions. Basically. the marginal 

solution consists of finding the shape parameters which work "best" for 

each coordinate. To be more spLcific. if our data pairs were (xl.Yl ) ••••• 

(xn'Yn)' where n-2m, we use (xl'" •• Xn) as in section 3 to obtain two 

estimators f lex;!) and f 2(x;a·) of the common density of x1 ••••• x • m. m, :1 

SimIldrly we use (yl' •••• y ) as in section 3 to obtain two e .timators n 

hm,l' (y;b) and hu..2(y;b*> of the common aensity of yl •• •• 'Yn' The first 

approximation to (al.bl ) was (ll.b) .:md the first approximation to 

• * (a2.b
2

) was (8 ,~). Of course. one could just estimate the bivariate 

f ~ ~ * * by averaging f l(·.·.a.b) and f 2(·,·,a,b). m, m. We call this our 

marSinal solution. Although somewhat more irr~gulnr in the bivariate 

normal cases we have studied, this ma~ginal solution is less time-consuming 

to compute and oeems to be adequate for many purposes. In figures 5-10 we 

picture the actual density, the mar~inal estimator. and the nonparametric 

maximum likelihood estimator for two case studies of samples of 400 from 

bivariate normal densities. In case 1 ~e are sampling from the bivariate 

normal density with mean vector 0 and unit covariance pictured ~n figure 

5. Figure 7 gives the marginal estimators for this case and figure 8 gives 

the nonparametric maximum likelihood estimator. The second case study is 

~ sample of 400 from the bivariate normal den~ity 0 mean, and covariance 

matrix A - [~iJ pictured in figure (). Figures 9 and 10 give the marginal 

an~ non~urnmetric maximum likelihood estimators for this casco The bivari-

ate kernel u ed was a product of standard normal densities • 

. ' 
.. -1"- ..... ..,. .. ."...,~ ....... ".._ ...... 
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The results reported bele are only a small part of our experience In ap-

plying non-parametric maximum likelihood techniques. However. our multivariate 

experic!nce with simulated dau has been limited to th~ split slUIIple ML2 

method. Below is a list of observations and recommendations. 

B. We find the M1.2 data-splitting method to be very attractive. both 

conceptually nnd in nppl1clltion. 1'hf're is some inutnbiUty in the 

choice of k for variable k~rncl e8tim~tors of short tailed densities 

but we jud~l' it to be h'tls than for the MI.I estimutor9. The answer 

here might be to hllve 1I plclimiuary ClllssHicution of the density as 

long or short tailed and then to suitably restrict the k values con-

sidercl'. F,)r short tailed densities only lnl!~e k v<llues and the l' )n-

stant r.cnll'l l'ase would be consideored. A drawback of thl' HL2 method 

for kernel estimation t~ the considerable computation time involved. 

The MI.l method off~'r"l Olli.\· ml,.\crlltc improvcml'nt in computation time. 

We feel that till.' rllndornlzcd nature ot the ML2 method may prove very 

useful in future work in guarding Ilgainst bad c~tirnates both of den-

siUes llnd functiollllis of dcn~dties. An attempt w.-ts made to remove 

this rllndomt~cd ('ompolll'nt by dividin~ thl! snml'le into thl' even and 

odd statistics. Thls approach faUed; the dt'nNity l'lltimates were too 

rour,h. 

b. The MLl rnt'lhL'J hll'i as l1l>tl'd lIb,lV~ instability in tht' cstimlltion of 

short tllth'd densities. lIowcvl!r. in cnst''i where this was not II pro-

bl~m the MI.l and HL2 metlHlds tt'nded to .1~1I!l' closely Ilnd for constant 

kcrnrl cstimdtion. to coincide IIlmost cXdctly. We view this 09 jU8-

tffic.atoll ,'f the HLl I'nH-l'durl' whhh 01\ the .. urfl\~-t' dUl"; not lrnpllrt 
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c. The histogrem estimators are disappointing in their lack of smoothness 

but wit' .in that class of estimators we judge that the maximum l1kel1-

hood method worked well. Computation time was fast. Perhaps future 

work will develop a "quick and dirty" way of using :t histogram es-

timate as n preliminary in choosing the smoothing parameters of kernel 

estimators. 

d. We have determined that maximum likelihood techniques are also ap-

plicable to multidimensional density estimation. In multivariate 

kernel estimatior with a product kernel a marginal distribut10n tech-

nigue is to choose the smoothing parameter associated with each vari-

able by considering only the univariate marginal distribution of each 

variable. This is to be contrasted with a ID"ltidimensional search of 

the likelihood surface. In the multivariate case computation time 

is very important. In this direction our e.'lIpirical , ... ark was limited 

to several multivariate normal data sets using the r.L2 constant kernel 

method. Although the estimators were quite reasonable there was some 

tendency to oversmooth. 

c. The \Ise of maximum likelihood techniques on famiEes of estimators 

other than those considered here, should be investigdt~d. In particular 

this includes the orthogonal series estimators of Wahba (1978). 

Acl.now1edgcmcnt. The work rel'orted in this paper is primarily a summary 

of results in the papers by Schuster and GreGory (1978, 1979. 1981). 
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Reviel" of So"Je Res'Jlts in Bivariate Density Estimation 

1. Introduc .. tlln 

For represcntio3 C!ud examining data in up to several dimensions, 

nonparametric density fstimation provides an analytic tool that is 

simultaneously exploratory and confirmatory. Unusual data features that 

may be discovered or explored include multiple modes or clusters, as 

.~ll as unusual isolated points. At the same time, uonparametric density 

estimators are confiroatory silce they provide a consistent estimator of 

the true underlying sacple density function under mild restrictions. 

The family cf nonparametric density estimators is diverse, including 

the histogram. frequ~ncy polygon, kernel estimator, series estimatryr, and 

penalized-likelihood esti~~to=s to name a few important choices. Each of 

these methods has one or r::ore calibration or deisgn parameters cOIImOnly 

refcrred to as sreoothing parameters. The bin width for an equally-spaced 

histograM plays the role of the srcoothing parameter; too wide a bin width 

gives an overs~~thed estimate while too narrow a bin width results in an 

undcrsmoothed or rough-looking figure. In the ter~inology of lukey's 

exploratory data analysiS, in the first case we sec too nuch of the 

forest (i.e., the snooth) and 1n the latter case we see too many trees in 

the forest (too rough). 

Huch theoretlcal and sor.e practlcal work has appeared on how to 

choose the S~ooth1ng paraweter to prOVIde the best approxiMation to the 

underlying density functior'. It is also the case that the smoothing 

para~ctcr has a certain cyploratory n3ture, where we dyna~ically adjust 

how much forest and ho~ ~ny trees we wlrh to see. 

" 
c_ 
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2. Univariate Densitr Esti~~tion 

2.1 ~ Graphical Interactive Approaches 

In recent years there have appeared some interesting algorithms that 
.... 

automat~caJ'Y pick a smoothing parameter appropriate for a given data set ... 

for a particular nonparametric density estimation procedure. Prior to 

the evolution of these alGorithms, statisticians learned how to pick good 

smoothing parameters through ~imulation experiments and interactive 

graphical m~thods. These latter methods viII be important to use even 

vith the automatic methods for validation purposes, data exploration 

purposes, aDd in cases where the automatic methods return occasiondlly 

bad smooth -l.g parameter values. 

We can illustrate several graphical methods, some known, some not 

with a nonparametric kernel density estimator 

f{x) 1 
co --I: 

nh i 
(I) 

.. 

The first method is to pick a decreasing sequence of smoothing parameters 

(his) and look at the corresponding sequence of density estimates. For 

some simulated Gaussian mixture data with n Q 300. we show a sequence of 

estimates in Fi3ures l{A)-(C). It in important to start with obviously 

oversmoothed estimates (large h) and look at the resulting sequence of 

estimates that shows increaSing fidelity to the data and then finally 

becomes contaminated with n01sy fluctuationg. 

The preceeding interactive approach is not very sensitive for 

discriminating moong several apparently "good" estimate-pictures. A 

similar problem exists in curve fitting. Tukey points out that plots of 

the residuals :: data - fit provide a greatly enhanced ability to compare 



t 1 ' [ 

.. 
The second derivati~e is much more sensitive to small changes in h than 

the density function itself. This is the procedure advocated by 

Silverma., (1978), which .:esults in pictures he cal::; "test graphs." 

With a little more experience and experimentation, we can go through a 

sequence of test graphs and accept a test graph with an desired amount 

of noisy fluct~ations. In Figure 2, we reproduce three test graphs 

presented by Silverman. 

A third procedure provides a useful shortcut and sometimes welcome 

relief to the previous nethods. A possible choice or a measure of the 

roughness contained in a univariate test graph for a Gaussian kernel is 
2 

_ (xi -x
j

) 
4 2. 2 1 4 2-

[h - (xi-Xj)-h + 12 (xi-xj ) ) e 4h (2) 

We s1mply plot the logarithm of equation (2) as a function of h. The 

graph has slope near zero for values of h cor~esponding to moderate 

oversmooto1'g a~d very large slope for values of h correspondi~g to rough 

estimates approach:..ng Dirac spikes at the sample points. In Figure 3 we 

<ihm" six exat:1ples for var10US simulated data sets of this so-called "h-rough" 

plot. Also shotm 1.n each h-rough graph is a point labelled "best h." 

Th1s is the particular cho1ce of h for that sample thal minimized the 

"tntcgratcd squared error (ISE) bett.;een the sampling density f and the 
A 

e&tirnate f and is g1ven by 

A 2 
lSE =: (f (x) -f (x» dx. 

It is clear that good choices of h lie in the region where the slope of 



Other useful approaches arc based on rules of thumb derived from 

asymptotic theoretical results. For example, Scott (1979) proved that 

the optimal bin width h for an equally spaced histogram denSity estimator 

is given by 

h 
6 ]1/3 -1/3 • n • ,. 2 

oJ f' (x) dx 
(3) 

The rule of thumb he propo'led was to choose 

* h .. 3.5 s -1/3 n , x 
(4) 

a formula based on using equation (3) aud data .llOment estimators 

assuming the sampling data is N(~,(12). He also provided multiplicative 

corr~ction factors based on higher order sample moments such as the 

skewness. In Figure 4, we show 3 histograms of the same simulated Normal 

data with n ~ 1000. These figureR also illustrate the usefulness of the 

integrated squared error criterion upon which equation (3) is based. 

Also notice how the sequential interactive approach works well here. 

One automatic method for picking (I kernel smoothing parameter is 

called the "quasi-optimal" procedure (Scott, 1976). It is based upon the 

'Jell-known theoretically optimal choice for 

* h .. h 
,. 2 

e{f) == f3(" [" (x) dx) (5) 

For a particular choice of h, w(' hav(' it ready estimate for lhe right-hand 

side of equation (5) using equation (2) for a Gaussian kernel. The 

quasi-optimal SIllOlltlllllg par.1meter is the' largest stationary point of 

r" , 

.' 



the right- and left-hand ~ides of C"qu,'\tion (5) llS a. [unction of h. 

Stationary points nrc tm1rkcd by nrrows and occur whcn the lines intersect. 

This aud several other automatic procedures have recently been compared 

by Honte Carlo methods (Scutt and Factor, 1981). 

2.2 ~ Univariate Procedures 

A new density estimator was proposed (Scott, TapiD & Thompson, 1979) 

basC"d on the maximum penalized-likelihood critcrion: 

In L(f) ~ ~ In[f(xi )] 
i 

Ci: f"(t)2 dt • 

If we optimize (6) over the class of continuous piecewise-linear 

functions defined on a given mesh we obtain the DMPLE - the discrete 

(6) 

maximum pennli1cd-likelihood estimator, a code for which exists in the IMSL 

library (1982, NDHPLE). Here Ci, the penalty or roughness weight, plays 

the role of the smootlling p:n"ameter. While consistency of the DHPLE is 

well-kn0\ffi. we have tew theoretical results on actual convergence bchavior. 

Extensive numerical simulation3 indicate that the rate of converge~cc is 

-4/5 n , th", same as for many other techniques (except, for e~ample, for 

-2/3 the histo).;ram. which is n ). However. these same simulations indicate 

that the DBI'Ll: is very efflcient for the sampling dC"nsl.tl.es examined. 

III 1able I, we e>-nmine sample sizes required to achieve an average integrated 

squared error of 1/400 for Gaussian sample data N(O.l). A complete 

picture of t:1C general behavior of the DHPLl: :or various pcnalty functions 

and sampling densitics 1S an opcn area of research. 

f " . - '\:' . p""," 
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infrequently used. Note the DHPLE has the same form if not origin as the 

frequency polygoll. IIm-tever, I have recently shown that the frequency poly-

gOIl properly constructed actually shares the Game approximation properties 

as the kernel methods rather than the poorer properti~8 of the histogram; 

-4/5 that is, it converges at the rate n ; see Scott (1982). This 

observation was recently made independently by David Freedman at SLAC. 

However, this is a whole pap~r in itself. But notice how the frequency 

polygon behaves in Table 1. This is generally the case. 

With the above as background, we can look more closely at some 

('orresponding tt-to-d1.mension.:t1 results. 

3. Bivariate Densitv Estimation 

3.1 ~!EE.. ~ Smoothins Par~eters 

The biv~riate kernel estimator is given by 

1 
n I: 

i 
K (xi'Y')' x, y 1. 

that is, the kernel varies from point to point. A more useful form is 

f(x,y) I 
nh h 

),. Y 
K [ 

o 

x -x 1. 
h 

x 

(7) 

(8) 

where K loS a bivar1.ate density function uith certain restrictions, but 
o 

whos(' exact form is secondary in importnnce to the choices of hand h • 
x y 

.' . - , . 

l,e lrt ,M"" H v_ " .... .&: .... [ 
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symmetry condition: K (x,y) = K (-x,-y). o 0 

Cacoullus (1964) examined this general case and, in fact, proposed 

the simpler product kernel 

x -x y -y 
.. x... [ --L- ) K [ _i_.] 

-L h I h x y 

This form has certain computational advantages especially when the 

univariate kernel Kl has finite support. Cacoullus wrongly proves in 

his last theorm that optimally for product kernels we should restrict 

ourselves to 

h a h 
X Y 

Nezames (1980) has consideled this question (and much of the following 

material comes from her thesis). Suppose f is bivariate Normal with 

covariance 

(9) 

(10) 

(11) 

Then in Table II we look at the ineffiCiency with respect to average ISE 

for the restricted optimization problem satisfying equation (10) versus 

the unrestricted optimization problem. The results given in the Table 

emphasize how large this inefficiency can be. The obvious fix is to 

standardize the data so s 
x 

s. However, the behavior shown in Table II 
y 

is the re£ult of complicated functions of second order derivatives of f and 

not simply functions of the moments, in general. 

..... 't 
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For other bivariate methods, the above results emphasize the need for 

having at least one s~~othing parameter for each variable. 

3.2 Optim4l Kernels 

For UIl iate kernel estimation, Epanechnikov (1969) proved that 

the opti~l kernel was of the form 

3 2 
7; (l-x ) -1 < x < 1 

Nezames has proven the following: 

Theorem: The optimal bivariate kernel K is given by 
o 

* K (x,y) o 
1 

:: 

3" 

(12) 

(13) 

* This kernel looks like kernel Kl swept 360 0 about the z-axis. The increase 

in efficiency of the optimal kernel (13) compared to other kernels is not 

large, a situation similar to the one-dimensional case investigated by 

Epanechnikov; see Table III. Notice how the product kernels arc only 

slightly inefficient. The Gaussian product kernel is perhaps surprisingly 

inefficient. 

3.3 Picking the Smoothing Parameters hx and hy 

All of the one-dLmensional methods described in section 2.1 may be 

directly extended to the 2-dimensional case. Direct sequential biv~riatc 

iterations are much more time consumLng and difficult to perform repeatedly. 

The test graph approach is less easy to visu!llize than the d(:nsity estLmate 

(USLng contours, say) because the test graph will have contours corrl'spondinG 

. ' 
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to negative valuE's. However, the tent graph is Gtl.l1 .'i r.hJre scnsHl·.-

instrument than the direct interactive approach. 

There also exists a bivariate quasi-optimal algorithm implementation 

that has been evaluated in some simple cases by NeEames. 

There are also bivariate extensions of rules of thumb based on 

theoretical results. For example, for bivariate histograms with 

rectangular bins of size h by h , the data-based rules are x y 

h x 

h 
Y 

- 3.5 

- 3.5 

s n x 
-1/4 

-1/4 
s n , 
y 

and 

expressions virtually the same as the one-dimensional result in 

equation (4). except for the exponent on n. The first correction to 

equation (14) is b.:1sed on the sample correlation coefficient r. 

Equation (14) should be divided by 

( 1 _ r2 ) 3/8 

Higher order monent corrections could be developed. 

(14) 

(15) 

We next consider the suoothing of a bivariate series estimator using 

the cross-validation algorithm of Wahba (1981). The smoothing parameters 

used minimize a cert.:1in generalized cross-validation functional. 

Dt'pendlng upon the exact form of the initial series estimator, you get 

either the algorithm given by Wahba (1981) or a slightly different version 

developed by Nezam('s (1980). First, for n - 50, and p - .80 with bivariate 

Gaussian sample data, We show contourn of the cross-validation functions for 

the two approaches, sec Figures 6 and 7. The two corresponding estimates 

are ShO\ffi in Figures 8 and 9. 

• I 
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:file edge cffc~"s of series cstirutors ale well-known to e>"1st but 

are always somewhat surprising to sec. In Figure 10 we show an 

estimate for n = 100. P = 0. bivariate Gaussian data. Notice how the 

periodic nature of the solution is clear. 

3.4 ~ of Convergence 

In Taole IV. we summarize the rates of convergence of the variOU3 

density estimators. The frequcn~y polygon again performs very well. 

Notice that the two-dimensional kernel methods have the same convergence 

rate as the one-dimensional histogram. As an aside. the bivariate 

frequency polygon may best be constructed using histograms with base 

bins in the shape of hexagons; that is, a shape capable of tiling 

the plane and approximating a circle. 

3.5 Bivariate D~~ 

Nezames has :!.mplemented the Bivariate D!-lPLE for the class of 

piecewise constant functions. As an example, n = 200. P = 0 bivariate 

Gaussian sample, the histogram is shown in Fi&ure 10 and the 

corresponding DMPLE in Figure 11. Notice the reduction in noise and 

false peaks in Figure 11. 

3.6 Scatter Didgrams £r Density Esti~1te Contours? 

One thing statisticians are supposed to do well is examine scatter 

diagrams, such as those from rc~idual plots. It has been my experience 

that the naked scatter d!agram is a difficult object to "sec." For exatrple. 

1 

.1 

I 
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" 
com:ider the blood lipid (fat) data shown in Figure 12 (Scott, et aI, 1978). •• 

-~ t I 

i I These data represent the cholesterol and triglyceride values of 320 ... 
males with angiographically demonstrated coronary artery disease. Now look · , I ~ 

' .... · . at the contours of a kernel estimate of the same data shown in Figure 13. . 
The bimodal feature was an important undiscovered feature in I 

- : i · . previous analyses of these data. 

, 
. 1 
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Table 2.2.1 

2 
9 

or 0 

r 

0» 

± 103 
or +10-3 72.11 

:1:100 or ±.01 15.54 

± 50 or ±.02 9.79 

:I: 10 or ±.1 3.35 

± 5 or ±.2 2.13 

:I: 2 or i.5 1.23 

:t1 1.00 

57 
100 
/.31 
/IG3 

5"~ 
2,255 
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K(x,v) 

.. 
K (X.y) 

922 
Kl - 16 (1 - x )(1 - Y ) 

122 
K .. - CYn {- ~ - y } 3 2 ~ "r 2 2 

Table 2.3.1 

Support 

Ixl.IYI~1 

Ixl.lyl < ... 

Ixl.lyl <1 

, , ' 

A 

0.1710 

0.1731 

0.1141 

0.1850 

0.1908 

R 

1 

1.0121 

1.0179 

1.0819 

1.1157 

t \ 
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1. INTRODUCTION 

An ~mportant quest~on 10 cluster analysis and pattern recoqn~tlon 

15 the deter~natlon of the number of clusters into which a given popu1atlon 

should be d1Y1ded. Frequently, partlcularly when certaln specif1c c1uster1t1g 

methods are being used, the number of clusters 15 taken to be equal to the 

o~her of modes, or local maXlma, 1n the probablllty density function 

underlYlng the g~ven data set; In some appl1cations this questlon 15 of 

dlrect lnterest 1n lts own rlght. 

Investlq~t10n of the number of local maXlma ln a density or 1tS derlvative 

has been cons1dered by several authors, for example Cox (1966) and Good and 

Gasluns (1980). Most methods seem to depend on some arb1trary lmpllcit or 

expl1c1t ch01ce of the scale of the effects belng stud~ed: see the remarks 

of Sllverman (1980). The slmp1e approach based on kernel denslty estimates 

descrlbed 1n th~s paper has the v~rtue of mak~ng th~s cllolce ~n an automat1c 

and natural way. 

Thc use of kernel denSity estlmates 1n mode estlmation ,.,.15 or1ginated 

by Parzen (1962). The 'gradlent method' of cluster analYSls 15 based on 

clustcrlna to,,·.::;.!"ds modes In the est~materl dens1ty; see, for example, Andrews 

(1972), Fukunaqa and Hostetler (1975), and Rock (1977). 

In Sectlon 2 below the test statlstlc to be used ~s defined, and a 

bootstrap techn1que for a5sess1ng slon1f1cance lS qlven In Sect~on 3. An 

111u~tratlve appl1catlon 15 qlven in Sectlon 4. In S~ctions 5 and 6 the 

aSl~rtotlc bchav10ur of the test stat1st1c 15 d1scussed. 

For a puh11shed verS10n of thl~ work, ~ee Sllverman (1981a) and 

Sllverman (1983). 
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ORIGINAL :::~:t: i~ 
OF POOR QU;\L..,TY 

2 THE CRmCAI. WINDOW WIDTH 

A possIble test statIstIc for hypotheses concernmg the number of modes in the densIty can be 
obtamed by constructmg kernel density estimates of the data. The kernel density estimate 
(Rosenblatt. 1956) for wmdow width II based on univariate observations X I'" • X" is defined by 

" 
Icc; h) = n-Ih- I L K{h-I(c-X.)}. (l) 

where K is a kernel function, which we shall assume throughout to be the normal density 
function. Apart from the theoretIcal advantages of this choice, the use of a normal kernel has. 
strong computatIOnal advantages; see SIlverman (1981b) 

The wmdow WIdth h controls the amount by which the data are smoothed to obtam the 
kernel estimate. Thus, for example. If the data are strongly bImodal a large value of It WIll be 
needed to obtain a ummodal estimate. Suppose that we wish to test the null hypothesIs that the 
density funderlying the data has k mooes, against the alternative thatfhas more than k modes; 
often k = 1. Define the k-critical window width herll by 

henl = inf {h; 1( .. h) has at most k mode:;}. (2) 

Large values of henl will reject the null hypothesis. Silverman (1978qused a critical value of a 
smoothing parameter in a somewhat different context The computation of "CUI in practice is 
facilitated by the following theorem and corollary. 

Theorem Given any fixed X I •.•• , X". define I (t, h) as in (1) above, usmg a normal kernel K 
For each mteger m ~O. the number of maxima as c varies in il"j,arn IS a nght contmuous 
decreasing functIOn of h. 

The following corollary follows at once . 

Corollary. Defining lIen' as in (2) above,] (.; II) has more tha~ k modes If and only If" < lIerll" 

The corollary shows that he", can be found by J bmary search procedure, since for any value 
of h we can tell at once whether or not h < !tefll by countmg the number of modes ;n/(.; h). The 
result is also used in Section 3 below 

This ~~c~ion IS concluded With the proof of the theorem. which makes use of the theory of 
tot~l positIVIty; see, for example, Karim (1968) Let V",+ ,(h) denote the number of sign changes 10 

J<'" + I'(.,it). Since ( -cr+ II'''' + I) (t. h) IS, for all m ~O and h. eventually positive as t _ - co and as 
I .... 00, jt suffices to show that V"'+ I IS decreasing and nght continuous. For hl > hi> O • 
.1''''+ ~' (., h l ) 1<; the convolutIon of ]<'" + 11(., h.) With a N(O. hi" hi) density, and P"'+ 11(., h a> is 
contl~uous and bounded. Thus, by Theorem 2 of Schoenberg (1950), v .. + 1(ltl}~V",+ I(h.) so that 
v", + I IS decr~asmg. Now suppose. for given ho > O. ,here exist a l < b, <al < ... <a,. <br such that 
J(,.,+I'(a"ho»O and J''''+II(b.,ho)<O for all I By the continuity of ]'",+II(t •. ). for all 
~ufficient1y small l: and all I, f"'+ lI(a l .ho +£»U and j''''+ II (b" ho+£)<O. Hence lim 
mflll,.o V",+ ,(h)~v",+ I (Ito). the nght contmUity of l'", + I follows from the fact that. v"'+ I is known 
to be decreasmg. 

Note that Schoenberg's theorem does not apply for general kernels Indeed, the convolutIOn 
of unimodal densitIes need not be ummo.dal. see Feller (1966, p. 164). 
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For any particular k-modal simple null hypothesis. it is easy to assess. by simulation. the 
significance of the value of the critical window width obtained from the data. Suppose the null 
hypothesis is that the true density is g and that the value of hero\ obtained from the data is ho 
Then the theory of Section 2 implies that 

pr,(hcrl\>ho) = pr{J(.; ho) has more than k modes I{X1 ..... XII } is drawn from g;. 
Thus. in order to assess the significance of ho for sample size n. it is only ne<'essary to calculate 

the single density estImate] (.; ho) for each sample of sIze n generated frem g; there IS no need to 
find hcrh for each rephcatlOn. 

The hypothesis that the true densIty is at most k-modal is of course a compound hypothesis. 
To provide a conservative assessment of the significance of ho• an appealing choice of the 
representatIve go from which to sImulate IS obtained by rescaling] ( .• ho). as constructed from 
the data. to have variance equal to the sample variance. The theory of Section 2 shows that go is 
indeed at most k-modal; it is, in a sense. the most extreme k-modal density consistent with the 
data. It IS extremely easy to simulate from go; Efron (1979) pointed out that independent 
observations Y. from go are given by 

YI = (1 + },5I(12) - t(X 1(1) + "0 £.), 

where X 1(.) are sampled Uniformly. With replacement. from the data X It •••• XII. (12 is the sample 
variance of the data. and £1 is an mdependent sequence of standard normal random variables. 

Simulating from go to assess significance is an example of a smoothed bootstrap procedure 
as defined by Efron (1979). However. Efron's procedure contains an implicit arbitrary choice of 
smoothing parameter. since his ~ is essentially arbitrary. In our case. the amount of smoothing 
is automatically detennined in a natural way. 

Fmally. it should be pointed out that the theory and procedure of finding a critical window 
width and simulating from a res~aled density estimate constructed using this window width 
carries over Immediately. mutatIs mutandIS. to the investigatIOn of maxima in the first or higher 
derivative of the data. Both Cox (1966) and Good and Gaskins (1980) show a preference for 
seeking maxima in the density derivatIve. 

, 
'. 
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We illustrate the method by a.lalysing a small data set of observations on chondrit~ meteors. 
These data consIst of 22 observations which are given in Table 2 of Good and Gaskms (1980). 

TABLE 1 
Clwlldnte data cntical wmdow IVldths awl llll!lr 

estimated significance leveh 

Number of modes Crlllcal WIndOW Wld,h P 

I 2-39 0'08 
2 183 0·05 
3 0-68 0·79 
4 0-47 J·93 

The data have been considered by several authors, see Good and Gaskms (1980) for details In 
lhls analysIs the raw values of the observatIOns were used Table I gives cntlcal window widths 
and slgmficance levels [or tests of the null hypothe,)ls that the underlYing densIty has at most k 
modes against the alternative that it has more than k modes The p-values are computed by 
SImulating from a en tical density as G.:scribed above; 100 rephcatlons of 22 observations were 
used III each case. 
These results must of course be interpreted as a hierarchical sct of Significance tests All other 

thmgs b-:mg equal, consldelations of parsimony perhaps suggest that we should test 
successIvely for an increasing number of modes until we find a number that is accepted. 
Particularly beanng in mind the small sample size, the results clearly indicate the trimodal 
nature 'he populatIOn; Good and Gaskins (1980) also arnved at this conclUSIOn. 

', ... ·"H-....'w ... '· , ,. __ ......J 



5. ASYMPTOTIC BEHAVIOUR OF THF CRI'nCAL WINDOW WIDTH 
INTRODUCTION 

In Section 2 above it was stated heuristically that larqe values 

of hcrit will tend to reject the null hypothesis. The results of this 

section show that this procedure does indeed lead to a ccnsistent te&t. 

Subject to certa1n regularity conditions, 1t :s sho~~ that, under 

the null hypothesis, hcrit converges stochastically to zero, ~lile 

this 1S not the case under the alternative hypothesis. The exact rate 

of conv~rgence of h to zero under the null hypothesis is found. 
cn.t 

It is perhaps interest1ng that thlS rate of convergence has prec1sely 

the same order as the rate of convergence for the opti~um choice of 

w1ndow w1dth for the un1form e5timat10n of the dens1ty given, for 

example, by Silverman (1978b). 

In the smoothed bootstrap procedure given in section 3, the 

representat1ve of the null hypothesis constructed from the data is 

obta1ned from the dens1ty estimate with window width h : the cr1t 
est1mate 1S rescaled, as r.uggested by Efron (1979), to have var~ance 

equal to the sample variance of the data. The remarks above show that 

f (.,h 't) is, 1n a certa1n sense, opt1mally uniformly consistent as an n cr1 
est1mate of the true density f. It follows that, on the null hypothesis, 

the bootstrap procedure 1S 11kely, at least for large samples, to provide 

an estimate of the true underlY1ng density Wh1Ch is accurate in the uniform 

norm. A poss1ble drawback for small samples is the fact ti&at the im-plied 

constant in the rate of convergence does not necessarlly take its opt1mum 

value. 

An interesting open question raised by this discussion is the possibility 

of uS1ng h i (k) for some value of k in developing an automatic method cr t 
for choos1ng tile smooth1ng parameter 1n density estimation. Boneva, Kendall 

and Stefanov ,1971) suggested choos1ng the w1ndow width where 'rabbits' or 

rap1d fluctuations just started to appear. Such a wlndow width would 

perhaps correspond to hcrit(k) for some k > j: since h 't(k) cr1 converges 

to zero at the optimum rate for all k > j, a sUltable formalization of the 

Boneva-Kendall-Stefanov procedure would glve estimates which converged at 

the opt1mal rate, though not nece~sarlly with the optimal constant mult1plier. 
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has the same rate of convergence for all 

~ul 

k > j 

provl.des some explanatl.on for the observation made by Boneva, Kendall and 

stefanov that the estl.mate seems suddenly to become noisy as the window 

Wl.dth is reduced. 
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6. ASYMPTOTIC RESULTS 

In this section, the main results on the asymptotic behaviour 

h 
crit 

are stated and proved. It is convenient to use the convention 

throughout that all limits and 1mplied limits are taken as n tends to 

infin1ty. Varying conventions w1ll apply to unqualified supre~a and 1nf1ma 

in propositions 1 and 2 below, and these will be introduced where necessary. 

The notations p lim inf and p lim sup will be used to s1gnify the 

correspond1ng 11m1ts in probability as n tends to infinity, and 0 
-p 

o w11l denote probab1lity orders of magnitude. 
-p 

Oeflne. for h) O. 

-5 -1 
n(h) - h 109(h ) 

The ma1n results are all con~ained 1n ~he folloving ~heorem. 

Theorem 

and 

SuppOse f 1S a bounded density v1th bounded support (a.b). and 

suppose that the following conditions are sat1sfIed: 

(1) f IS tWIce contlnuously dIfferentIable on (a.b) 

(11 ) f has exactly' ) local 1!IaX11:1a on (a.b) 

(111 ) f' (a+ ) ) 0, f' (b-) ( 0 

(lV) 
f-(z)2 - ) O. 1II1n c 

{z:f'(z)-O} 
fez) 0 

Let hcri~(k) be the k-critical window width constructed from an l.l.d. 

( 1 ) 

sample of size n from f. Tnenr if k > j, defining n as in (1) above, 

-1 2 fi 
p lim in! n a{~#i:.!t (k)} > 3". 2 Co 

-1:1"'- ~ 
p li4 sup n Qfb~ i (k)} < a 

.F.r t 

(2) 

and (3 ) 

whIle if k ( j then there existsJll' constant hoff ,k) :such thAt 

P{h i (k) ) h } + 1 cr t 0 
(4 ) 

Note that condltion (lV) is equlvalent. in the presence of the other 

condltl0nS. to the condltlon that f IS strlctly posltive on (a.b) and 

f' has no multlple zeroes on (a.b). 

,,' 
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It is convenient to prove the varlOUS assertions of the theorem 

separately. Except where otherwise stated, the conditions of the theorem on 

f will be assumed to be true throughout. The first proposition facilitates 

the proof of (2). 

Piopos~tion 1. Given any c , wlth 

2 o < c , < 3" lfl2 Co 

suppose the seque~~e of w~ndow widths ~ satisf~es 

-1 
n a(h

n
)" c

1 
(5) 

Then the number of max~ma of fn tends ~n probabll~ty to J. 

It follows from PropoSl.tion 1 and 'C!~ Th.tl(\"tm1~tlJIO'\2t.hat, for all k) ), 

provided (5) holds, 

and hence that (2) is s~tisfied. 

The proof of Proposition 1 makes use of several l~as, the first of 

which shows that, under certain condltlons, maXlma and ~nima of fn can, 

eventually, only occur arbltrarlly close to L~ose of f. 

Lemma 1. Let I be any closed interval contalned ~n [a,b), such that I 

contains none of the zeroes of f' • 

-1 2 
n h a(h ) .. 0, it will follow that 

n n 

Then, provided h .. 0 and 
n 

P(f monotonic on I in the same sense as f) .. 1 
n 

Proof. By slight adaptation of the resul~s of Silv~rman (1978a), it can be 

5een that, provided f is bounded, we will have, if ~ satiofies the 

assumptions of Proposition 1, 

1 1 - - -
SUD If' - Ef'l - 0 {n 2h-l a (h )2} 

(;;..,;iWA;_) n n -p n n 

(6) 
- 0 (1) -p 
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In Silverman (1978a) the uniform continuity ot t was additionally assumed, 

but careful examination of the proofs ot that paper shows that the derivation 

of the rate of stoch~stic convergence, though not of the exact constant 

implied in the ~, goes throuc;tt under the assumption of bounded f. 

Supposing without loss of generality that f is increaaing on I, it 

follows from the continuity of fl on (a,b] that fl is bounded away from 

zero on I And 1S non-negat1ve on a nelghborhood of I, and hence by 

elementary analysis that 

lim inf inf Ef' ) 0 
I n 

Combining (6) and (7) completes the proof of Lemma 1. 

The next le~ shows that, under suitable con~itions, fn will 

(7) 

eventually have exactly one ~ximUM and no minima near each maXlmum of f, 

And exactly one minimum and no maxl~ near eAch ~nimum of f. 

Le~~ 2. Suppose f'(z) - 0 and f has a local maximum (respectively 

minimum) at :t. Suppose 

-1 
n a(h)" 

n 

h .. 0 and 
n 

2 2 
c

2 
E: (0, 3" TfI2 f"(z) /f(z» 

Then, for all sufficiently small t > 0, the probability that f' has 
n 

exactly one zero in (z-£, ~+£), and that this zero is a maxi~um 

(respectively minimum) of f n , tends to one as n tends to infinity. 

(8 ) 

Proof. Only the c~se of a local maximum will be considered. The proof for a 

minimUM procoeds very similarly And is omitted. Throughout this proof 

unqualified infima and suprema will be taken to be over x in (z-£, z+£]. 

By the continuity of f and t", choose £ sufficiently small that 

(9) 

I 

"'0 

. i 

, I 
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and also (%-C, %+c) ~ (a,b). It 1s then ~ediate thAt !'(Z-c) > 0 and 

f'(%+c) (0 since, by (9), t- cannot crOBS ~ero in (:-c, z+c). Since 

f' is cont~nuous at % ± c, by standard results on the consistency of t' 
J'l 

(a combination-of ~Arzen (1962) and Bhattacharya (1967» 

P{f'(z-c) > 0 and f'(%+c) < o} + 1 
n n 

( 10) 

Very slJqhtly adapting the proofs of Silvorman (1976 and 1978a) to cope 

wlth the fact that f- is only uniformly continuous on a neighborhood of 

[z-c, z+c) glves 

-2 2 D 
n a(h) suplf-(x) - Ef-(x)1 ~ K, 

n n 

where 

K~ - 2 sup f f ~_2 

-1 
- 3(2wI2) sup f 

Since, by elementary analysis, converqes to zero, it 

follows frOl:l (8) thAt 

1 
2 

P limnsup suplt~(x) - t(x)1 < ~,c2 

by (9). It is i=mediatc that 

p{t-(x) < 0 tor All x in [z-c, z+c)} + 1 
n 

C~ininq (10) and (11) completeG the proof ot Lemma 2. 

( 11) 

To complete the proof of Proposition " note first thAt no maxima of fn 

can occur outside the interval (A, b). Let z:,' ••• ,1.2j- 1 be the zeroes ot 

f' in (a,b) And choose ( sufficlently small to satisfy the concluslon of 
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(12) 
I .,. 

Applyin9 either Lemma 1 or Lemma 2 as appropr~ate to each of the intervals in i 
I 

the partition (12) of the interval (a,b) completes the proof of Proposition 

The next proposition leads to the proof of assert~on (3), in a similar 

way to the derivat10n of (2) from Proposlt10n 1. 

PrOPOS1 t~on 2 

Defining a ~ (1) above, suppose that 

-1 -5 
n h .. 0 

n 
(13) 

Then the number of max~ma ~n fn tends 1n probability to 1nflnlty. 

Given any k, it follows from this result and the corollary of Silverman 

(1981) th~t, provlded (13) holds, 

P{h (k) > h } .. 1 
cr~t:. n 

assertion (2) follows at once. 

To prove Propos~t1on 2, suppose w1thout loss of general1ty that f has a 

maximum at 0 in (a,b). Choose a sequence 1 WhlCh satisfleG 
n 

+ CD and Ilog 1 1 Ilog h 1-1 
+ , 

n n 

(14) 

The exp11ci~ dependence of hand 1 on n w~ll often be supprc9sed. Let 

Ij,n be the interval [(j-l)!, jlJ for integer j) o. 

Following Silverman (1~7Ba) apply Theorem 3 of y~os, Major and Tusuady 

(1975) to obtain 

---1 2 
f~lx) - Ef~lx) + h n p,(x) + £~(x) 

"'. 

.. 
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where P1 is a GaU8s~an process with the same covariance structure as 

1 
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n2h(f~ - Ef~) and c~ 1S a ~econdary random error. The process P1 lS 

obtained ~ pItting 6(u) equal to ~'(u) in Pr~position 1 of Sjlverman 

(1g78a). By elementary analysis and t~e arguments of Silverman (1978a) we 

have, in A neighborhood of 0, 

and 

I Ef I (x) - f I / x) I - Q (h) 
n 

Ie' (x) I 
-1 -2 

n) - Q( n h 10C) n 

.2( h2 ) from ( 13) above 

It' (x) I - Q,(x) 

a.s. 

since f' (0) • 0 and f- exists. It tollo~s t~At. a.s •• 

supIEf'(x) ... c'(x>l n Q,()t) ... Q,(h) 
n n 

1 
-1 -5 2 

- 2,{n h log(t/h)} 

(15) 

by (13) and (14) above. where we aaopt the convention, here and subsequently 

1n this proof, that unqualified supre~ are taken to be over the interval 

Il,n' and that a fixed j is being considered. 

We slightly aUapt the argume~t o! Silverman (1976) pp. 13a-1~0 tc 

investigAte sup P 1. De f.' ne 

for x in :t j,n 

s4.t1cc the end points of Ij.:l both converge to zero. An~l.ogoU8ly to (12) of 

Silverman (1976). given any ~ in (0.2~, 



-1 
P(sup 0 Pl 

1 
G (1 - 2' ). i (2 log 

< £(1-2 )10g(h- 1L) 

x !f Ix I exp{2 
I j,n 

(16) 

where X(x,y) - corr{p(x),p(y)}. Uning A Gimilar Argument to that following 

"2) of Silver=an (1976), but allowinq th~ interval I to vary, .h~D that 

the express10n 1n (16) lS dominated by 

-, 
- (h 1) 

-). + .!. ). 2 
4 -1 

log(h 1) + 0 

by (1") above. 

It follows thAt, setting K-

1 
-1 -1 J. 

P l~~ inf sup{' loq(h t)} P, ) K 

dnd th~t the same result holds if is replaced by giving Ii 

corrc5ponding result f~r inf p,. It follows from (15), (17) and th1 

corres~ndin9 result for in! P, that 

and h'mce that 

1 
2 

crosses -n 1.(1.!' + c') 
n n 

in I } + 1 
j,n 

p{~' crusses zero in I }. 1 
J1 j,n 

Since (18 \ holds for all j, the number o! cuud..ma in ~ tends in 

probabili~y to in~inlty, completing the provf of Propo~itlon 2. 

(17) 

(18) 

iT 
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The final proposi~~on of this 6ec~ion deals with the case where the 

alternative hypothesis i8 true, and shows thAt hcrit will remain bounded 

away from zero. , .. 

If Ie () then ,there ex~sts a constant ho ) 0, 

and k. 

Proof --
such t.hat . 

p{ h (Ie» h } • 1 crlt 0 

dependin~ on f 
c ,< < .... , .. 

By arguments analogous to those of the proof of the theorem of ~,~ ~ 

J.bc\.t. , IllAking use of the variation diminishin9 properties of tt.e Gaussian 

kernel and the continui~y proper~ies of Efn , the number of ~xima in 

Ef (·,h) I~ a r~ght continuous decreas~ng function of h, for h) O. By 
n 

choosIng ho sufflc1ently small, we can ensure that Efn(·,ho) ha~ 

in~ependently of '1, exac~ly j maxilllA. Because of the condi~loons lomposed 

0' f 1n the statement of tne Theorem above, we can also ensure that 

Ef~'·,hO) loS non-zero at all stationary points of Efn,-,hO). 

The argument of LemmA 2.2 of S~hu~ter (1969), which does not in fact 

requlore ~~e convergence to zero of tile sequence of window widths. then implies 

tllat, with probablolity Olle, 

f~(x,hO) - Ef~(x,hO) ~nd t~'x.hO) - Et~(x,hO) 

both converge to zero unifo~y over x. By an argument simtl~r to that U3ed 

in PropoSition 1 above, it follows that the number of .anima of rnCo,ho) on 

(a,b) tends almost surely to j, the number of ~xima of Eln(-.hO). 

Applying the corollary ot ~,,2. cODplctes the proof of Proposition 

3. 

, 
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It is natural to enquire to what extent the conditions o( the theorem 

above can be relaxed without affectinq tho concluuions. In part~cular 1t 

" .. 
I 
T 

." T 
.eems intuitlv.ly clear th~t the condition of bounded support for the 

density f should be able to be replaced by som. condition on the talls of 

f, though the present ~thod of proof cannot deal with thlS case. Condltl0n 

I~v) appears to be more fundamental to the result: If, for example, f' (01 • 

f"(O) • 0 ~ fW'(O), then an exAminat~on of fn and Efn near zero seems to 

indicAte that. under suitable reqularity conditions, there w1ll be no max1mum 

of fn near zero provided If"' - Ef"'1 
n n 

re~ins small. A heur1st1c argument 

suggests that a result corresponding to th~ theorem of Section 2 can be 

proved, but wlth a(h) replaced by h- 7 log(h- 1 ), so that hcrlt converges 

to zero more slowly. Even slower convergence w11l occur for h1gher order 

zeroe$ in f'. 

The interest 1n thlS discussion lies in the fact erat the bootstrap 

density constructed using the critical window width w~ll no~ only have 

infin~te tails of similar voight to those of the cor~espondin9 normal kernels 

but will also ha~e a stationary point which i& a point of inflexion. The 

• 
slower convergence to zero of hcrit provides f>upport for the r.I!Iarl.. ""'" 

that the bootstrap tsst may be conBerva~~vel it also bears 

.1~1 ~ ... 
out the intuition of P. Huber Cf<" ~~~'ta c:cm::mn.1ea~).(tbat: the bootstrap 

""-~~~~ , ,--
procedure any be exce~.ively cona~~v •• though~~ditforcnce bo~ween 

"'\'1:""1 

n 

, 
5 

1 - ., 
and n convergence ie very slight in practice. 

The _thod. ot t.his paper ClU1 al80 be wsed to study the asy::ptotic 

properti~s of a correspondinq teat tor tho number of points of lnflcxl0n 1n 

the density. Both Cox (19f:o) and Good and Gasklns (1980) prefer to \lse polnts 

of inflexion as an lndicatl0n that the density 15 a mixture. The crlt1cal 

.. 

.. 

" 

I 

\ .. 
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wlndow wldth will now be the smallest window wldth for whlCh the density has 

k maxima. Under suitable conditions ~ result correspondinq to the theorem ot 

Section 2 can be proved, but 4q4io, among other chanq8s, a(h) wlll be 

replaced by h-7 loq(1/h) since fW will be replaced by (WI 
n n 

in lIluch of the 

argument of the proofs of Proposltlons 1 and 2. 
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ABSTRACT. Let X be a k-dimensional random variable serving as input for a 

system with output Y (not necessarily of dimension k). Given X. ~ outcome 

Y or a distribution of outcomes GcYIX) may be obtained either explicitly or 

implicitly. We consider here the situation in which we have a real world 
n data set {Xj}j=l and a means of simulating an outcome Y. A method for 

empirical random number generation based on the sample of observations of 

the random variable X without estimating the underlying density is discussed. 

INTRODUCTION. The manner of dealing with multivariate data depends upon the 

application at hand. For example, let us suppose that {Xj}j~l is a sample 

of size n of a k-dimensional random variable. '~e may be interested simply 

in estimating the mean p. In such a case, we may complete pur task by com

puting the sample mean X. If we are interested in the interrelationships 

between the various vector components. we may find it desirable to compute 

the sample covariance matrix a. 

At a greater level of complexity. we may be required to estimate the 

..... , 

density of X nonparametrically [1.3]. He~e. the representational difficulties 

are substantial--- particularly for k > 2, where our 3-dimensional intuitions 

are inadequate for graphing the density even if we knew it precisely on a 

discrete mesh. Indeed. it would appear that for increasing dioensionality. 

our estimation theoretic difficulties pale in comparison to those of repre-

sentation. 
i\ 
This research was supported in part by ARO Contract DAAG-Z9-82-K-0014 at 
Rice University. To appear in Proceedings of the Twent -Seventh Conference 
on the DeSign of &pennents in Anny Researc estIng. 
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• Suppose we nre given, for example, the task of estimating the density 

f at a point X in k-space, based on a sample of size n. The naive nearest o • 

neighbor estimator 

where d(Xo'p) is the Euclidean distance from Xo to the pth nearest neighbor 

and Vk(Xo,d(Xo'p)) is the volume of the k-sphere centered at Xo with radius 

d(X ,p), is likely to be quite satisfactory. But a problem occurs when we o 

are asked for a usable summary of the unknown density over the space of non-

negligible mass. If we know the functional form of the density f(XiO), 

then we have a relatively easy task--- the e~timation of 6. But in the 

highly ubiquitous nonparametric situation. in which we do not know the func-

tional form of f. we are not so fortunate. We might decide, for example, to 

tabulate f on a mesh of size 20 in each dimension. This would require 20k 

pointwise estimations of f--- a tedious but manageable task. But how shall 

we scan this k-dimensional table to obtain a useful feel for the density? 

Other approaches, clearly are required. One of these is discussed in [2]. 

There are, happily, cases in which the density representational diffi-

cui ties may be sidestepped when coping nonparametrically with data sets in 

higher dimensions. For example, let us suppose the k-dimensional random 

variable X is an input into a system with output Y (of whatever dimension). 

Given X, an outcome Y or a distribution of outcomes G(VJX) is obtained 

either explicitly or implicitly through an output data set. Let us suppose 

thes~ outcomes fall into six categories: Very Good, Good, Fair, Poor, Very 

Bad, Catastrophically Bad. Suppose further that these sets are well-defined 

~ j 
j • 

.. 
". 

.. 
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\~e are given a real world data set {X.} .n1• 'We have a 
J J= 

216 

means of simulating an outcome Y given the input X. We wish to determine 

the p£obability of arriving in each of the six category sets. 

One way to achieve this result might be, simply, to sample from the n 

data points n 
{X.}. 1. 

J J= 
In many cases this will prove quite satisfactory • 

But let us suppose that "Catastrophically Bad" happens for Y > 10, 

where Y 
4 2 

= 1/ r x. 
i=l 1 

Then, if the xi's are (unbeknownst to us, but in actuality) independently 

distributed as N (0,1), the chance of a "Catastrophically Bad" event is 

.0012. Let us suppose the size (n) of our data set is 100. The chance of 

~ of these observations being in the "Catastrophically Bad" region is 

.887. So, a simulation which used only the 100 data points would, with 

probability .887, give us the information that "Catastrophically Bad" 

occured with zero probability. We need to avoid this pitfall. 

One procedure would be to estimate the density of X nonparametrical1y 

and then build a random number generator using the density. Such a scheme 

would run into the representational difficulties mentioned above. We can 

be much more efficient • 

THE ALGORIl1~. Let us consider the following situation: '~e have a random 

n sample {Xj}j=l of size n from a multivariate distribution of dimension k, 

and we want to generate pseudorandom vectors from the underlying, but unknown, 

distribution that gave rise to the rand on sample. Since we do not know, 

and usually will never know, the form of this distribution, our attack 
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should be empirical. '~e shall endeavor to see to it that our pseudorandom 

vectors look very much like those in the original data set. In so doing. we 

will maintain the essential structural integrity of the problem. 

We now direct our attention to the mechanics of the algorithm. After 

carrying out a rough rescaling to account for differing variances that may 

exist among the k variates. we select at random one of the n data points. 

say Xl. from the data base and then proceed to determine its m-l nearest 

neighbors. The nearest neighbors are determined under the ordinary Euclidean 

metric and the value of m will depe&d upon the sample size n. the character-

istics of the data, and can best be determined after perusal of the data. 

A conservative estimate would be to choose m = n/20. 

now coded about the sample mean X = 11m E X. 
1 

and an independent random sample of size m is 

generated from the uniform distribution U(l/m - VJC:;l) ~ l!m + V3(:;1) ). 

Now the linear combination 

is fonned, where {uR.l1: 1 is the random sample from the U(l/.m - r., 11m + r. ). 
Finally the translation 

X = X' + X 

restores the relative magnitude, and X is a pseudorandom vector \~hich we 

propose to be representative of the multivariate distribution that provided 

the {X.}. n
l 

• 
J J= 

jl 
I I 
I .. 

, I 
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To obtain the next pseudorandom vector we randomly select another of 

the n data points and proceed as above. 

We will now attempt to motivate the algorithm by considering the mathe-

matics that suggests the mechanics that we have just outlined. Consider 

the distribution of Xl and its m-l nearest neighbors: 
t m m 

{(xlt ,x2t , ••• ,xkt) }t=l = {Xt)t=l· Let uS suppose that this "truncated set" 

of random observations has mean vector ~ and covariance matrix G. Let 

{utl
t
:} be an independent random sample from the uniform distribution 

U(l/m - t:, 11m + ~). Then, E(ut ) = 11m, Var(ut ) = (m_l)/m2, and 

Cov(u., u.) = 0, for i I- j. 
1. ;I 

Forming the linear combination 

th 
we have, for the r component zr = u1xrl + u2xr2 + ••• +.umxrm' the following 

relations 

t 

Clearly, if the mean vector of X was p = (0.0, •••• 0) , then the mean vector 

and covariance matrix of Z would be identical to those of X. In the less 

idealiz~d situation with which \ie are confronted. the translation to the 

sample mean of the nearest neighbor cloud should result in the pseudoob~erva-

tion havin~ very nearly the same mean and covariance structure as that of the 

.. 
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(truncated) distribution of the points in the nearest neighbor cloud, a con-

jectura borne out in nlany actual cases that have been considered. For m 

moderately large, our algorithm essentially samples from n Gaussian distribu-

tions with the means and covariance matrices corresponding to those of the 

n m nearest neighbor clouds. 

EXAMPLES. For a substantial test case, we considered a mixture of three bi-
• 

variate normal distributions. The iirst (Nl ) has mean vector (:~) and covariance 

matrix (-I~Z -1{2); the second (NZ) has mean vector C-;) and covariance matrix 

(l}2 I{Z); and the third (NS) has mean vector (3;2) and covariance natrix 

I 1/10) (1/10 1 . The corresponding mixing scalars are al = 1/2, aZ = 1/3, and 

as = 1/6, respectively. Representative contours of equal density are illus

trated in Figure 1. To establish a data base, a sample of eighty-five points 

was generated from this distribution via Monte Carlo simulation; a sample of 

eighty-five pseudorandom values was then produced by the algorithm, and the 

combined sample is shown in Figure 2. 

Notice that the structure of the data is maintained in that the modes 

are preserved; the algorithm has not attempted to fill in gaps where gaps 

belong; the algorithm has, however, generated some points outside the boundary 

of the convex hull of the data base, all of which are desirable properties. 

These observations lend credence to the term "structural integrity" mentioned 

previously. 

An application of the algorithm to a real world data set is s~~arized 

in figures 3 and 4. In Figure 3, a tHo-dimensional marginal of a set of 973 

four-dimens10nal behind .lrmor debris measur'!ments is portrayed; in Figure 4, 

973 simulated data POlllts produced by our procedure. Once again, the sallent 

features of the data set are preserved. 

~. , 
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Fig. 1. Density contours for a mixture of three bivariate normal distributio'l$. 
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CONCLUSIONS. We have demonstrated a means of empirical random number gener3-

tion based on a sample of observations of a random variable X. No esti-

mation of the underlying density is required. And. because of the local 

nature of the generation scheme. it is e3sentially free of assumptions on 

the underlying density of X. Naturally, a~y attempt to use this algorithm 

for generating bona fide new observations using the computer rather than 

producing real world data would be unwise. Rather. th~ algorithm operates 

somewhat like a smooth interpolator--- highly dependent on the quality of the 

data points on whic~ it is based. It gives us a means of avoiding nonrobust 

conclusions due to "holes" in the data set at important points of the siInula-

tion model. 

Also Included in Thompson's presentation was a discussion of 110W alterna

tives to the usual (contoul map) dCI~ity estimators lnay be constructed based 

on stochastic interpolatIon. 
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MIXTURE DENSITIES, MAXIMUM LIKELIHOOD. AND THE EM ALGORITHM 

by 

Richard A. Redner 
Department of Mathematical Sciences 

University of Tulsa 
Tulsa, Oklahoma 74104 

and 

Homer F. Walker 
Department of Mathematics 

University of Houston 
Houston, Texas 77004 

Abstract: The problem of estimating the parameters which 
determine a mixture density has been the subject of a large, 
diverse body of literature spanning nearly ninety years. 
During the last two decades, the method of maximum-likelihood 
has become the most widely follo~ed approach to this problem, 
thanks primarily to the advent of high-speed electronic com
puters. Here, we first offer a brief survey of the literature 
directed toward this problem and review maximUfu-likelihood 
estimation for it. We then turn to the subject of ultimate 
interest, which is a particular iterative procedure for numeri
cally approximating maximum-likelihood estimates for mixture 
density problem.'l. This procedure, known as the EM algorithm, 
is a specializatiun to the mixture density context of a general 
algorithm of the same name used to approximate maximum-likeli
hood estimates for incomplete data problems. We discuss the 
formu~~tion and theoretical and practical properties of the EM 
algori~hm for mixture densities, focu~sing in particular on 
mixtures of densities from exponential families. 

Key words and phrases: Mixture densities, maximum-likelihood, 
EM algorithm, exponential families, incomplete data. 
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MIXTURE DENSITIES, MAXIMUM LIKELIHOOD, AND THE EM ALGORITl~ 

By 

Richard A. Redner 

Department of Mathematical Sciences 

1. Introduction 

University of Tulsa 

Tulsa, Oklahoma 74104 

and 

Homer F. walker l 

Department of Mathematics 

University of Houston 

Houston, Texas 77004 

Of interest here is a parametric family of finite mixture 

denslties, i.e., a family of probability density functlons of the 

Cerm 

p(x I~) -

where each 

, x - T (xl' ••• , xn) £ 

m 

(1.1) 

is nonnegative and r: at - 1 , and where each 
i-l 

is itself a density fUnction parametrized by P
1 

£ 0i ~ 

We denote ~ - (a1 ,···,am,Pl , ···,Pm) and set 

1. The work of this author was supported by the U.S. Department 
of Energy under grant DE-ASOS-76EROS046. 
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n - (al,···,am,Pl,···,Pm):.L a 1 - 1 and a 1 ) 0 , Pi £ n 1 1-1 

tor 1 - 1,··· ,m} • 

The more general case of a possibly infinite mixture dens1ty, 

expressible as 

I p(x I~( >. »da( >.) , 

h 

(1.2) 

is not considered here, even though much of the followlng 1S 

applicable w1th few modifications to such a density. For general 

references dealing with inf inite mixture densit1es and related 

dens1ties not consldered here, see the survey of Blischke [12]. 

Also, 1t is understood that in determining probabilities, 

probability density functions are integrated with respect to a 

measure on which is e1ther Lebesque measure, counting 

mr~sure on some f1n1te or countably infinite subset of 

a combination of the two. In the following, it is usually 

obv ious from the context which meaaure on R
n is appropr iate 

tor ~ particular probability density function, and so measures on 

Rn are not specified unless there is a possibility of 

confu51on. It lS further understood that the topology on n lS 

the natural product topology induced by the topology on the real 

number~. At times when it Is convenient to deter~lne this 

topology by a norm, we will regard elements of 

m 

n as 

(m + E n 1) 
i-I 

vectors and consider norms defined on such 

vectors. 
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Finite mixture densities arise naturally - and can naturally 

be interpreted as densities associated with a statistical 

population WhlCh is a mixture of m component populations with 

aSBociated component densities and mixing 

Proportions (a ) Such densities appear as fundamental i i-l,···,m· 

models in areas of applied statistics such as statistical pattern 

recognition, classification, and clustering. (As examples of 

general references in the broad literature on these subJects, we 

mention Duda and Hart [44], Fukunaga [48], Hartigan [621, Van 

Ryzin [128), and Young and Calvert [138]. For some spec if lC 

applications, see, for example, the Special Issue on Remote 

Sensing of the Communications in StatisticB (3:j). In addition, 

f lnite mixture densities often are of interest in life testlng 

and acceptance testing (cf. Cox [34], Hald [60], Mendenhall and 

Hader (89], and other authors referred to by Blischke (121). 

Finally, many scientific investigations involving statistical 

modeling require by their very nature the con~ideration of 

mixture populatlons and their associated mixture densities. The 

oxample of Hosmer (68] below is slmple but typical. For 

references to other examples in Fishery studies, genetics, 

medicine, chemistry, psychology, and other fields, sec Blischke 

(12), Everitt and Hand [45], and Hosmer [67]. 

Example: According to the International Halibut Commission of 

Seattle, Washington, the length distr ibutlon of Hallbut of a 

given age is closely approx imated by a mixture of two normal 

d 1str 1but ions correspond iog to the length distr lbutions of the 
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male and female subpopulations. Thus the length distribution is 

modeled by a mixture density of the form 

(1. 3) 

where for i - 1,2 , 

2 R ,(1.4) 

and ~ - (a l ,a2 ,Pl,P2) . Suppose that one would like to estimate 

~ on the baSlS of some sample of length measurements of halibut 

of a given age. If one had a large s~mple of measurements which 

were labeled according to sex, then it would be an easy and 

straightforward matter to obtain a satisfactory estimate of ~. 

Unfortunately, it is reported in [68] that the sex of halibut 

cannot be easlly (i.e., cheaply) determined by humans; therefore, 

as a practical matter, it is likely to be necessary to estimate 

~ from a sample in WhlCh the maJority of members are not labeled 

according to sex. 

Regarding p in (1.1) as modeling a mixture population, we 

say that. a sample observatlon on the mixture is labeled if its 

component population of or igin is known with certainty; 

otherwise, we say that it is unlabeled. The example above 

illustrates the central problem wlth WhlCh we Are concerned here, 

namel, that of estimating ¢ in (1.1) using a sample in which 

some or all of the observatlons are unlabeled. This problem is 
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teferred to in the following as the mixture density estimation 

problem. (For Simplicity, we do not consider here the problem of 

estimating not only ~ but also the number m of component 

populations in the mixture.) A variety of cases of this problem 

and several approaches to its solution have been the subject of 

or at least touched on by a large, diverse set of papers spanning 

nearly ninety years. We begin by offering in the next section a 

cohesive but very sketchy reVlew of those papers of which we are 

aware which have as their main thrust some aspect of this problem 

and its solution. It is hoped that this survey will provide both 

some perspective in which to view the remainder of this paper and 

a starting point for those who wish to explore the literature 

associated with this problem in greater depth. 

Following the reView in the next section, we discuss at some 

length the method of maximum-likelihood for the mixture density 

estimation problem. In rough general te'tms, a maximum-likelihood 

estimate of a parameter which determines' a density function is a 

chOice of the parameter which maximizes the induced density 

function (called in this context the likelihood function) of a 

given sample of observations. Maximum-likelihood estimation has 

been the approach to the mlxture denSity estimati¢n problem most 

widely considered in the literature since the use of high speed 

electronic computers became wldespread in the 1960's. In Section 

3, the maximum-likelihood estlmates of lnterest here are defined 

precisely, and both thea important theoretical properties and 

aspects of their practical behavior are summarized. 
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The remainder of the paper is devoted to the subject of 

ultimate interest here, which is a particular iterative procedure 

for numerically approximating maximum-likelihood estimates of the 

palameters in mixture densities. This procedure is a 

specializatlon to the mixture density estimation problem of a 

general method for approximating maximum-likelihood estimates in 

an incomplete data context which was formalized by Demptster, 

Laird, and Rubln (38] and termed by them the EM algorithm (E for 

"expectation" and M for "maximization"). The EM algor ithm for 

the Mlxture denslty estimation problem has been studied by ~any 

authors over the last two decades. In fact, there have been a 

number of independent derivations of the algorithm from at least 

two quite distinct pOlnts of view. It has been found in most 

instances to have the advantages of reliable global convergence, 

low cost per iter.ation, economy of storage, and ease of 

programming as well as a certain heuristic appeal. On the other 

hand, it can also exhibit hopelessly slow convergence in some 

seemingly innocuous applications. All in all, it is undeniably 

of considerable current interest, and it seems likely to play an 

important role in the mixture density estimation problem for some 

time to come. 

We feel that the point of view toward the E~ algorithm for 

mixture densities advanced in [38] greatly facilita~es both the 

formulation of a general procedu:e for prescribing the algorithm 

and the understandlng of the important theoretical properties of 

the algor lthm. Our objectives in the following are to present 
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thlS point of view in detail in the mixt.ure den&!ty context, to 

unify and extend the diverse results in th~ literature concerning 

the der ivatlon and theoretical properties of the EM algor ithm, 

and to review and add to what ia known about its practical 

behavior. 

In S~ctlon 4, we interpret the mlxture dens lty estlmatlcn 

problem as an incomplete data problem, formulate the ~eneral EM 

algorithm for mixture densities from this point of view, and 

disCUGS the general pr.,perties of the algor ithm. In Section 5, 

the focus is narrowed to :nixturcs of densities from the 

exponential family, and we summarize and augment the results of 

investlgations of the EM algorith~ for s~ch mixtures which have 

appeared j n the literature. Finally, in Section 6. we discuss 

the performa ~ of the algor1thm 1n practlce through qua~ltat1ve 

comparisons \ }ther algorithms and numerical stud!es in simple 

but important caS~5. 

.... 



2. A ReVIew of the Lit~rature 

The following is a skeletal &urvey of papers which are 

primarily d!rected toward some part of the mixture density 

ostImatlon problem. No attempt has been made to include pdpers 

WhlCh are str ictly concerned with applications of estimation 

procedures and results developed cls~whorc. 

references relating to mIxture densities as well as more detailed 

summarIes of the conte~ts of many of the papers tou~hed on below, 

we refer the reader to the recently published monograph by 

Everitt and Hand [451. As a convenIence, this survey has been 

divided somewhat arbitrar ily by topics 1.1to four subsections. 

Not surrrislngly, 1'I\~.\y papers are citel1 in morE' than one 

SUbs('ctIon. 

2.1 The method of moments. 

'l':-te f ir~t published investigation relating to the mixture 

density estlmatlol" probleln appears to be that of Pearson [97]. 

In that paper, as in Example 1.1, the problem considereu is the 

estimation of the parameters in a mixture of two univariate 

nott'l::ll dens 1 tIes. The sample from which the eotimates are 

obtalned is assumed to be independent and to consist entirely of 

~nlabE'led observations on the mixture. (Si~ce this is the sort 

of sample rlealt WIth 1n the vast maJorIty of work on tho problem 

~t hand, it 1S u~de~stood in this review that all samples are of 

this type unless othevwise indicated.) The approach suggeated by 

Paarn~~ fo~ solvlng the problem 16 known as the method of 



moments. '!'t.e method of moments cons iats generally of equating 

some set of sample moments to their expected values and thereby 

obtaining a system of (generally nonlinear) equations Lor the 

parameters in tt~ mixture density. To estiffiate the five 

independent parameters in a mixture of two univar iate normal 

densities accordlng to the procedure of [97], one beglns with 

equations determined by the first five moments and, after 

consIderable algebraic manipulatlon, ultimately an: ives at 

expressions for estimates ~hich depend on a suitably chosen root 

of a single ninth degree polynomial. 

From the timu of the appearance of Pearson's paper until the 

use of high speed electronlc computers became widespread in the 

19&0' 5, only fairly simple mixture dens ity estimation problems 

were stud led, and the method of moments was usually the method of 

choice for thelr solution. Durlng this period, most energy 

devoted to mixture problems was directed toward mixtures of 

normal densities, especlally toward ~earson's case of two 

univariate normal densities. Indeod, most work on normal 

mixtures durlng this perlod was intende~ either to simplify the 

job of obtalnlng Pearson's estlmatos or to offer more accesslble 

estimates in restricted cases. Charlier [24] described the 

implementation of Pearson's method as -an heroic task-, and 

suggested a somewhat slmpler method of solvlng the moment 

equations which involves a cubic a~d ratio of two other 

polynomials. Pearson and Lee [99] recommended using "incomplete-

normal moment functions to cbtaln first approxlmations to the 
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roots of the non~c equat~on produ~ed by the procedure of Pearson 

(97]. Charlier and w~cksell [25] fUrther simplified the method 

of Pe~rson [97], suggested graphical methods for obtaining roots 

of the nonic, and studied estimates which can be obtained 

relatively eas ily under the assumption of known means, equal 

variances, or symmetry ~t the mixture density. Burrau (18) 

computed certaln "half-invariantn functions of the moments, 

thereby obtalning nc~ equations for the five unknown parameters; 

convenient methods for the solution of these equations are .. 
offered In the companlon paper of stromgren [119]. Gottschalk 

[51] explolted symmetry to obtain simple equations satisf ied by 

the moment estimates for a symmetr ic mixture of two univar iate 

normal densitles. Graphical aids for obtalnlng Pearson's moment 

estimates were derived by sittig [116], Wiechselberger [J.31], and 

Preston [104). Cohen [31] suggeeted circumventing the solution 

of Pearson's nonlC equation via an iteration which involves 

solving a cubic equation at each step. An :lndependci1t sample 

from one component of the mixt~re was used by Dick and Bowden 

[42] to estimate one mean and one variance, thereby reducing to 

three the number of parameters to be estimated from an unlabeled 

sample on the miy-ture; their estimates were used as initial 

approxlmatl~ns ln an Iteratlve procedure for approximacing 

maximum-likelihood estimates. Gr idgeman [S3] discussed moment 

cstlmates of the var iances and the mixing proport.i.on under the 

assumption of a common mean. Robertson and Fryer [113) and Fryer 

and Robertson [47] studied the '3tatistical properties of the 

moment estimates and ccmpared them to the multinomial maximum-

t::="i7'~...,.'S'C"Y<tCW"...,.., 1,.k·· .teH"trt teo mr 1 *' t t t t b at • ,.,.. .)='\-$ h" '1 btt h,l z#M""t'W 
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likelihood and minimum chi-square estimates obtained by grouping 

the sample observations. Assuming equal variance~, Tan and Chang 

[121J compared the efficiency of tho moment and maximum

likelihood estimates by computing the asymptotic variances of the 

estimates. The space of acceptable solutions of the moment 

equations was descr ibe.i by Bowman and Shenton [16 J • Finally, 

Quandt and Ramsey [106) compared moment estimates with the 

estimates produced by their moment generating function method, of 

which we say more later. 

Some work has been done extending Pearson's method of 

momenta to more general mixtures of normal densities and to 

m!xtures of other continuous densities. Pollard [103J obtained 

moment estimates for a mixture of three univariate normal 

densities by assuming aymmetry and other simplifying features 

which t:educe the number ot: unknown parametet:6 to four. The 

problem of obtaining moment estimates for mixtures of 

multivariate normal densities was considered by Cooper (33). 

Assuming equal mixing proportions for simplicity, he explored 

both the two-component case involving genet:al component 

covar1ance matrices and the multiple-component case fot: 

spherically symmetric component densities. Day (36) investigated 

moment estimates for a mixture of two multivariate normal 

densities with a common covariance matrlX. Gumbel [54] derived 

moment estimates for the means in a mixture of two exponential 

densities under 't.he assumption that the mlxing proportions are 

known. The results of [54 J were extended by Rider (111) to 
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, . 



include ostimates of unknown proportions as well as meano. 

Later, Rider offerc-d moment estimates tor mixtures of Weibull 

distributions in [112]. 

Moment estimates for a variety of simple mixtures of 

discrE'te densities were der ived more or less in parallel with 

moment estimates for mixtures of normal nnd continuous densitieo. 

Pearson [98) cor.att uct.ed moment estimates for a mixture of two 

binomial denoities of common unknown power and for a mixture of 

two POlsson densities. Muench [90) published simpler estimates 

for a mixture of two binomial densities of known power; in [91), 

he sketched the extension of the results of [98] and [90} to 

mixtures of any number ot Poisson densities or binomial densities 

of con~on known power. Later, the moment estimates for a mixture 

of two Poisson densities were independently re-derived by 

Schilling [115]. In the case ot: known mixing proportions, the 

moment estimates fo~ a mixture of two Poisson densitiea were 

obtained independently by Gumbel [54) and Arley and Buch [3]. 

Further independent reconstruction and extension of earlier work 

was done by Rider (112) and Bl1schke [11). In [ 112), moment 

estlmates are derlved for mlxtures of two of elther the POlason, 

blnomial, negative binomial, or (as mentioned above) Weibull 

densitie~. In a construction paralleling that of [112), moment 

estlmates are glven ln [11] for a mixture of two blnomial 

densltlee of common known power; in addition, properties of these 

estimates such as their limiting dietr ibutions and asymptotic 

rel~tiYe efficloncleo are consldered. Tho results of Rider [112) 



were simplified through the uae of factorial rather than ordinary 

moments and extended to include certain alternative estimates and 

additional mixtures by Cohen [29]. Following the outline of 

Muench [91], Blischke [13] extended the results of [11] to give 

moment estimates for a mixture of any number of binomial 

densities of common known power. Por additional information on 

moment estimation and many other topics of interest for mixtures 

of discrete distr1butions, we refor the reader to the extensive 

survey of Blischke [12]. 

Before leaving the method of moments, we mention the 

important problem of estimating the proportions alone in a 

mixture density under the assumption that the component 

densities, or at least some useful statistics associated with 

them, are known. Most general mixture density estimation 

procedures can be brought to bear on this problem, and the manner 

of applying these general procedures to this problem is usually 

independent of the particular forms of the densities in the 

mixture. In addition to the general estimation procedures, a 

number of special procedures have been developed for this 

problem; these are discussed in the third subsection of this 

review. The method of moments has the attractive property for 

this problem that the moment equations are linear in the mixture 

proportions. Moment estimates of proportions were discussed by 

Odell and Basu [92J. The sensitivity of moment estimates and 

other proportion estimates to changes in location of the 

component densities was studied by TubbA and Coberly [127]. 

-----.------~---"---~--~-~.---~----.-~-

, , 

I 
I 

, I , 

'"> 

• 



L 

-- . - -----. .. --.-.... ,..----~--- ..... --- -- - - -

2.2 The method of maximum likelihood. 

With the arrlval of inc~easlngly powerful computers and 

increasingly sophisticated numerical methods during the 1960's, 

investigators began to turn from the method of moments to the 

method of maXlmum likelihood as the most widely preferred 

approach to mixture density estimation problems. To reiterate 

the working definition given in the introduction, we say that a 

maximum-likellhood estimate associated with a sample of 

observations is a choice of parameters which maximizes the 

probability density function of the sample, called In this 

contey.t the likelihood function. In the next section, we define 

precisely the maximum-likelihood estimates of interest here and 

comment on thelr prop1rties. In this subsection, we offer a very 

brier tour of the literature addressing maximum-likelihood 

estimation for mixture densities. Of course, more is said in the 

sequel about most of the work mentloned below. 

Actually, maximum-likelihood estimates and their associated 

eff iCiency were often the subject of wishful thinking pr ior to 

the advent of computers, and some work was done then toward 

obtaining ma~imum-likellhood estimates for simple mixtures. 

Specifically, Baker [4] obtained maximum-likelihood estimates of 

the ratio of the proportions both in a mixture of two essentially 

arbitrary univariate densities for samples of sizes two and three 

and in a mJxture of two unlvarlate dJnsities which are uniform 

over intervals for arbltrary sample sizes. Also, Rao [107) 

considered a m':'xture of two univar iate normal densities with 

.--- ----~--~ .. -- ... '----..... ~ ---



equal variances and specified the likelihood equations, a system 

ot fOUT equations satisfied by the four unknown parameters at the 

maximum-likelihood estimate. He suggested solving the likelihood 

equations numer ically with an itel:ative procedure k."lown as the 

method of scor ing, which we descr.ibe in Section 6. Finally, 

Mendenhall and Hader [89] obtained maximum-likelihood estimates 

of the parameters in a miy.ture of two exponential densities using 

a. sample in which some of the observations are labeled. They 

reduced the problem of obtaining the estimates to that of solving 

a Single nonlinear equation in one unknown; a numerical solution 

ot this equation was found using Newtonls method. Despite this 

early work, however, the problem of obtaining maximum-like11hood 
\ 

estimates was generally considered during this period to be 

completely intractable for computational reasons. 

As computers became available to ease the burden of 

computation, maXimum-likelihood estimation was proposed and 

studied in turn for a var iety of increasingly complex m1xturc 

densities. As before, mixtures of normal densit1es were the 

subject of considerable attention. Hasselblad (64) treated 

maXimum-likelihood estimation for mixtures of any number of 

univariate normal densities; his major results were later 

obtained independently by Behboodian [70]. Mixtures of two 

multivar late normal dens1ties with a common unknown covar iance 

matrix were addressed by Day (36). The general case of a mixture 

of dny number of multivariate normal densities was considered by 

Wolfe [132], and additional \.,.ork on this case was done by Duda 
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I ... 



J 

242 

and Hart [44] and Peters and Walker (101). Tan and Chang [121) 

compared the moment and maximum-likelihood estimates for n 
I 

mixture of two univariate normL t densities with common var1anc~ 

by computing the asymptotic variances of the estimates; they 

found that maximum-likellhood estimates are much better, 

especially when the component densities are poorly separated. 

Hosmer [67) reported on a Monte Carlo study of maximum-likelihood 

estimates for a mixture of two univariate normal densities when 

the component densitips are not w~ll separated and the sample 

size is small; the reSults of hie study suggest that the method 

of maximum-likelihood should be used with considerable caution is 

such cases. 

Several interesting variations on the usual estimation 

problem for mixtures of normal densities have been addressed in 

the literature. Hosmer (68) compareg the maximum-likelihood 

estimates for a mixture of two univariate normal densities 

obtained from three different types of samples, the first of 

which is the usual type conslsting of only unlabeled observations 

and the second two of which consist of both labeled and unlabeled 

observations and are distinguished by whether or not the labeled 

observations contaln information about the mixing proportions. 

(We elaborate on the nature of these samples and how they might 
I 

arise in Section 2.) Earller, Tan and Chang [120] considered a 

problem from genetics WhlCh is nearly identical to that 

cone ~dered by Hosmer [68) for partially labeled samples which 

contain no information about the mixing proportions. Aloo, Dick 

.. 
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and Bowden [42] independently addressed a special case ot this 

problem 1n which maximum-likelihood estimates are obtained using 

a sample of labeled observations from one component population 

together with a sample of unlabeled observations on the mixture. 

Finally, a number of authors have investigated maximum-likelihood 

estimates for a aswitching regression" model which is a certain 

type of estimation problem for mixtures of normal densities; see 

the papers of Quandt [lOSJ, Hosmer [69], Kiefer [77], and the 

comments by Hartley [63], Hosmer [70], and Kiefer [78] on the 

paper of Quandt and Ramsey [106]. A generalization of the model 

considered by these authors was touched on by Dennis [39]. 

\ 

Maximum-likelihood estimation has also been studied for a 

variety of unusual and general mixture density problems, some of 

which include but are not restricted to the usual normal mixture 

problem. Cohen [30] considered an unusual but simple mixture of 

two discrete denSities, one of which has support at a single 

point; he focused in particular on the case in which the other 

density is a negative binomial density. Hasselblad [65] 

generalized his earlier results 10 [64J to include mixtures of 

any number of unlvariate densitles from exponential families. He 

included a short study comparing maximum-likelihood eetimatee 

wlth the moment estlmates of Blischke [13] for a mixture of two 

binomial distributions. Baum, Petrle, Soules, and Weiss [7] 

addressed a mixture estimation problem which is both unusual and 

in one respect more general than the problems conSidered 1n the 

sequel. In their problem, the ~ priori probabilities of sample 
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observations coming from the various component populatlons in the 

mixture are not independent from one observation to the next 

(that is, they are not simply the proportions of the component 

populations in the mixture) but rather are specified to follow a 

Markov chain. Thelr results are specifically applied to mixtures 

of univariate normal, gamma, binomial, and Poisson densities and 

to mixtures of general str ictly log concave density functions 

which are identical except for unknown location and scale 

parameters. Peters and Coberly (100) and Peters and Walker [102] 

treated maximum-likelihood estimates of proportions and subsets 

of proportions for essentlally arbitrar~' mixture densities. 

Maximum-likelihood estimates were included by Tubbs and Coberly 

[127] in their study of the sensitivity of various proportion 

estimators. Other maximum-likelihood estimation problems which 

are closely related to those conoidered here are the latent 

structure problems touched on by Wolfe [132] (see also Lazarsfeld 

and Henry [81]) and the problems concernlng frequency tables 

derived by indirect observation addressed by Haberman [57), [58], 

[59]. Finally, although lnf inite mixture ::,~nsities of the 

general form (1.2) are specifically excluded from considera~ion 

here, we mention a very interesting result of Laird [80] to the 

effect that under various assumptlons, the maximum-likelihood 

estimate of a poss ibly inf lnite mixture dens ity is actually a 

finite mixture density. 
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2.3 other methods. ----
In addition to the method of moments and the method of 

maximum-likelihood, a variety of other methods have been proposed 

for estlmating parameters in mixture densities. Some of these 

methods are general purpose methods. Others are (or were at the 

time of their derivation) intended fo: mixture probleme the forms 

of which make (or made) them either ill-suited for the 

application of more widely used methods or partlcularly well

Buited for the appllcation of special purpose methods. 

For mixtures of any number of univariate normal densities, 

Harding [61J and Cassie [19J suggested graphical procedures 

employing probabillty paper as an alternative to moment 

estimates, which were at that time practically unobtainable in 

all but the simplest cases. Later, Bhattacharya [lOJ prescribed 

other graphlcal methods as a particularly slrnple way of resolving 

a mixture denslty into normal components. These graph~cal 

procedures work best on mixture populations which are well-

separated in the sense that each component has an associated 

region in which the presence of the other components can be 

ignored. 

Also for general mixtu!"es of univar iate normal densities, 

Doetsch [43] exhibited a linear operator which reduces the 

varlances of the component densitles withou~ changlng their 

proportions or means and used this operator in a pLJcedure which 

determines the component densities one at a time. Medgyessy [8BJ 
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(see also the review by Mallows [86]) extended ehe techniques of 

[43] to a large class of univa~1ate mixtu~e densities subject to 

the restrlction that each component density have no mo~e than two 

unknown parameters. Gregor [52) prescribed an algorithm fo~ 

implementing the methods t)f Doetsch [43) and !'~edgyessy [88] on a 

mixtu~e of univa~iate no~mal densities. stanat [117) b~oadened 

the methods of [43] and [88] to study mixtures of multivariate 

normal and Bernoulli dens i ties. In [1~4J, Sammon considered a 

mixtu~e density consisting of an unknown number of cOMponent 

densities which are identical except for translation by unknown 

location parameters; he derived techniques based on convolution 

fo~ estimating both the number of compon~nts in the mixture and 

the location parameters. 

A nu~ber of specialized procedures have been developed fo~ 

application to the problem of estimatil"g the propo~tions in a 

mixture under the assumption that something about the component 

denslties is known. Choi and Bulgren [28J proposed an estimate 

determin~d by &. least-squares cr iter ion in the I1pir it of the 

minimum-distance method of Wolfowitz [133 J • A var iant of the 

method of (2S) for which smaller blas and mean-equare error were 

reportc~ was offered by MQcoonalcl [84:. A method termed the 

confusion matrix method was given by Odell and Chhikara [93J (see 

also the review of Odell and Bacu [92]). In this method, an 

estimate is obtained by subdividing Rn into disjoint regions 
/\ and then solVlnt the e~uution Pa - e , in which 

thE: estimated vector of proportions, e is a vector who"Je 

/\ a 
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component is the fraction of observations falling in R i , and 

~he ·confusion matriY· P has ijth entry 

The confusion matrix method is a special case of a method of 

Macdonald [85], whose formulation of the problem as a least-

squares problem allows for a singulnr or rectangular c.onfUf;io:l 

matr ix. Earlier, specinl cases of estimates of thi~ typ~ WE:r:e 

considered by Boes [14], (15J. Guseman and \,lalton [55~, [55] 

employed certain pattern recognition notlons and techniques to 

obtain numerically tractable c·>nfueion matrix proportion 

estimates for mlxtures ot multlvariate normnl denRlties. James 

[73] studied seve~al simple c~nfusion matrix ~roportion e~timates 

for a mixture of two univari~te normal densities. Ganesalingam 

and McLachlan [491 comFared the performance of confusion matrlx 

proportion estimates with maxlmum-l~kelihood proportion e~timates 

tor a mi~ture of two multivariate normal de~sitle6. Finally, we 

m~ntlon that Walker [130] con~idered n mixture ~~ two e-~entially 

arbitrary multivar iate dens lties and, assuming onl!' that the 

mez..:1S of the cC'mponent densities are knovn, suggested a simple 

procedure using linear mapp which yields unbiased pr~portlon 

est1mates. 

A stochastic approxlmatlon algor itllm for estlnatlng the 

parameters 1n a mlxture of any number of univariate normal 

densities was offered by Young and Cora1uppl [139). In such an 

algorlth~, one determines a se~uence of recurslvely updatpd 

" . 



estimates ftom a sequence of obscIvat.ions of indeterminate length 

considered on a one-at-a-time or few-at-a-time basis. Such an 

algorithm 1S 11kely to be appealing when a sample of desired size 

is either unavailable in ~oto at anyone point in time or 

unwieldy because of its size. Stochastic approximation of 

mixture pIoport10ns alone was considered by KazakoB [76]. 

Ql1andt and Ramsey [106] derived a procedure called the 

~oment generating function method and applied it to the problem 

of estimating the parameters i&1 a mixture of two univar iate 

normal densities and in a switching regression model. In brief, 

a moment generatIng function estimate is a choice of parameters 

which minimizes a certain sum of squares of differences between 

the theoretical and sample moment generating functions. In 3 

comment by Kiefer PS), it is pointed out that the moment 

generating function method can be rega~ded as a r.atural 

generalization of the method of moments. Kiefer [78] further 

offere an appeal1ng heur1stic explanation of the apparent 

superiority of moment generating function estimates over moment 

estimates reported by Quandt and Ramsey [106]. I n a comment by 

Hosmer [70), eV1dence is presented that moment generating 

function estimates Inay in fact perform better than maximum-

likeliho~d estimates in the small-sample case. The moment 

generatIng function method appears to be a potentially valuable 

tool in mlxture density estimation problems. 

ch1-square estimation is a general method of 

e::3timation which has been touched on by a number of authora in 
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connection with the mlxture density estimation problem but which 

has not become the subject of much consideration in depth in thi3 

context. In minimum chi-square estimation, one subdivides Rn 

into cells Rl , .•• , Rk and seeks a choice of parameters which 

minimizes 

or some similar criterion function. In this expression, and 

are, respectively, the observed and expected numbers of 

observatlons .Ion for j-l,···,k. For mixtures of normal 

densities, minimum chi-S'..j'lare estimates were mentioned by 

Hasselblad (64), Cohen (3).], Day [36], and Fryer and Robertson 

[47]. Minimum chi-square estimates of proportions were reviewed 

by Odell and Basu [92] and included in the sensitivlty study of 

Tubbs and Coberly [127]. Macdonald [85] remarked that his 

welghted least-squarE'S approach to proportion estimatlon 

suggested a convenlent iterative method for computing minimum 

chi-square estimates. 

As a final note, we mention three methods WhlCh have been 

proposed for general mixture density eetimation problems. Choi 

[27] dlscussed the extenslon to general mlxture denslty 

estimation problems of the least-squares method of Choi and 

BUlgrcn [28] for estimating proportions. Deely and Kruse [37] 

suggested an estlmation procedure which is in epirlt llke that of 

choi and Bulgren [28] and Choi [27], except that a sup-norm 
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distance is used l.n place of the square integral norm. Deely and 

Kruse argued that their procedure ia computationally teas ible, 

but no concrete examples or computation results are given in 

[37]. Yakowitz [135], [136] outlined a very general -algorithm" 

for constructing consistent estimates of the parameters in 

mixture densities which are identifiable in the sense described 

in the fifth sUbsection of this revisw. The sense in which his 

-algor ithm" is really an algor ithm in the usually understood 

sense of the word is discussed in [136]. 
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2.4 The EM algorithm. 

At several points in the review above, we have alluded to 

computational dlfficultiea associated with obtaining maximum-

likelihood estimates. For 

difflculties arisc because 

likelihood function on the 

mixture density problems, these 

of the complex dependence of the 

parameters to be estimated. The 

customary way of findlng a maximum-llkelihood estimate is first 

to determine system of equations called the likelihood 

equations which are satisfied by the maximum-likelihood estimate 

and then to attempt to find the maximum-likelihood estimate by 

solving these likelihood equations. The likelihood equations ate 

usually found by differentiating the logarithm of the likelihood 

funct ion, setting the der ivatives equal to zero, and perhaps 

performing some additional algebraic manipulations. For mixture 

density problems, the likellhood equations are almost certain to 

be nonlinear and beyond hope of solution by analytic means. 

Conscquently, one must resort to seeking an approximate solution 

via some iterative procedure. 

There are, of course, many general iterative procedures 

which are suitable for finding an approximate 60lution of the 

likellhood equations and which have been honed to a high degree 

of sophistlcation within the optimization community. We have in 

mlnd here pr lncipally Newton I s method and var ious quasi-Newton 

methods WhlCh are variants of it. In fact, the method of 

scoring, which was mentioned above in connection with the work of 

Rao [107) and WhlCh we descrlbe ln detall in the sequel, falls 
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into the category of Newton-like methods and is one such method 

which is specifically formulated for solving likelihood 

equations. 

Our main interest here, however, is in a special iterative \ ..... , 

method which is unrelated to Newton's method and which has been 

applied to a ,.,.ide var iety of mixture problema over the last 

fifteen or so years. Following the terminology of Dempster, 

Laird, and Rubln (38), we call this method the EM algorithm (E 

for "expectation" and M for "maximization"). As \'1e mentioned in 

the introduction, it has been found in most instances to have the 

advantage of rellable global convergence, l~w cost per iteration, 

economy of storage, and ease of programming as well as a certain 

heuristic appeal; unfortunatJly its convergence can be 

maddeningly slow in simple problems which are often encountered 

in practice. 

The EM algorithm has been derived and studied from at least 

two distinct v iewpoints by a number of authors, many of them 

working independently. Hasselblad [64] obtained the EM algorithm 

for an arbitrary finite mixture of univariate normal densities 

and made empirical observations about itc behavior. In an 

extension of [64], he further prescribed the algorithm for 

essentially arbitrary finlte mixtures of univariate densities 

from exponential families in [65]. The EM algorithm of [64) for 

unlvarlate normal ml.xtures was gillen again by Bohboodian [9], 

whlle Day [36] and Wolfe ()32) formulated it for, respectively, 

mixtures of two multivariate normal denSities with common 
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covariance matrix and arbitrary finite mixtures of multivariate 

normal densities. All of these authors apparently obtained the 

EM algorithm independently, although Wolfe [132] referred to 

Hasselblad [64]. They all derived the algorithm by setting the 

partial derivatives of the log-likelihood function equal to zero, 

and after some algebraic manipulation, obtained equations which 

8uggesc the algorithm. 

Following these early derivations, the EM algorithm was 

applied by Tan and Chang [120) to a mixture problem in genetics 

and used by Hosmer (67) in the Monte Carlo study of maximum

likelihood estimates referred to earlier. Duda and Hart (44] 

cited the EM algorithm for mixturco of multivariate normal 

densities and cor.mented on its behavior in practice. Hosmer (68] 

extended the EM algorithm for m1xtures of two univariate normal 

densities to include the part1ally labeled samples described 

briefly above. Hartley [63] prescribed the EM algorithm for a 

·switching regression" model. Peters and Walker [101] offered a 

local convergence analys 1S of the EM algor i thm for mixtures of 

multi-variate normal densities and suggested modifications ot the 

algor lthm to accelerate convergence. Peters and Cober ly [100] 

stud led the EM algor ithm for approximating maximum-lIkelihood 

estlmates of the p~oportions in an essentially arbitrary mixture 

denslty and gave a local convergence analysls of the algorithm. 

Peters and Walker [102] extended the results of [100] to include 

subsets of mlxture proportions and a local convergence analysis 

along the llnes of [101]. 
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All of the above investigators regarded the EM algorithm as 

arising naturally from tho particular forms taken by the partial 

derivatives of the log-llkellhocd function. A qUlte different 

point of view toward the algor it:.hm was put forth by Dempster, 

Laird, and Rubin [38]. They interpreted the mixture dens ity 

estimation problem as an estimation problem involving incomplete 

data by regarding an unlabeled observation on the mixture as 

-missing" a label indicating its component population of origin. 

In doing so, they not only related the mixture density problem to 

a broader class of statist. ~al problems but also showed that the 

EM algorithm for mixture density pror-lems is really a 

specializatlon of C' more general algorithm (also called the EM 

algorithm in [38]) for approximating maximum-likelihood estimates 

from incomplet€' data. As one sees in the sequel, this more 

general EM algorithm is deftned in such a way that it has certain 

desirable theoretical properties by its very definition. 

Ear lier, the EM algor ithm was def ined lndependel'.tly in a very 

similar manner by Baum et al [7] for very general mixture denslty 

estimation problems and by Haberman [57], [58], [59] for 

mlXture-related problems lnvolvlng frequency tables der ived by 

indirect observation. Haberman also refers in [59] to versions 

of his algorlthm developed by Ceppellini, Siniscalco, and Smith 

[20], Chen [26], and Goodman [50]. In addltlon, an 

interpretation of mlxture problems as incomplete datD problems 

was given in the br ief dlScussion of mixturee by Orchard and 

Woodbury (94) . The desaable theoretlcal propertles 

automatIcally enjoyed by Lhe EM algor 1 thm suggest in turn the 

"'. 

.J 



good global convergence behavior of the algorithm ~hich has been 

observed in practice by many investigators. Theorems which 

essentially conf irm this suggested behavior have been recently 

obtained by Redner [109], Boyl~s [17], and Wu [134] and ar e 

~utl1ned 1n the sequel. 

I 1 



2.5 Identifiability and information. 

To complete this review, we touch on two topics which have 

to do with the general well-posedness of estimation problems 

rather than with any particular method of estimation. The first 

topic, identifiability, addresses the theoretical question of 

whether it is possible to uniquely estimate a parameter from a 

sample, however large. The second topic, information, relates to 

the practical matter of how good one can reasonably hope for an 

est~mate to be. A thorough survey oi these topics is far beyond 

the scope of this review; we try to cover below those aspects of 

them wh~ch have a specific bearing on the aequel. 

In general, a parametric family of probability density 

functions is said to be identifiable if distinct parameter values 

determine distinct members of the family. For families of 

mixture densities, this general de! inition requires a spec ial 

~nterpretatlon. For the purposes of th~s paper, let us flrst say 

that a mixtUre density p(xl~) of the form (1.1) is economlcally 

rCEresented if, for each pair of integers i and j between 1 

and m , one has that Pl (xlp l ) - Pj(xIP j ) for almost all 

x £ Rn (relative to the underlying measure on Rn appropriate 

for p(xlll>)} only if elther ~ - j or one of a
i and a

j 
is 

zero. Then lt sufflces to say that a family of mlxture densltles 

of the form (1.1) lS ldentlf lable for (1) £ n 1f for each pal.r 
I •• t 

q,' • (al , ···,am,P l , ···,Pm) and q," - (a" , ... a" p" ••• p" ) in 1 ' ro' l' , m 
n determ~nlng economlcally represented dens~tles p(xlq,') and 

p(xlq,") , one has that p(xlq,') a p(xlq,") for almost all X £ 
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only if there is a permutation 11 of (1, ••• ,m) such that 
5 • 

a 1 ~ 0 , Pi - P- 11 (i) for i - 1,···,m • 

For a more gen..lra1 definition suitable for possibly inf inite 

mixture densities of the form (1.2), see, for example, Yakowltz 

and Spragins [137]. 

It is tacitly assumed here that all families of mixture 

densities under consideration are identifiable. One can easlly 

determine the identifiability of specific mixture densities 

using, for example, the identifiability characterlzation theorem 

of Yakowitz and Spragins [137]. For more on identifiability of 

mixture densities, the reader 1s referred to the papers of 

Teicher [123], [124], [125], [126], Barndorff-Nielsen [5J, 

Yakowitz and Spragins [137], and Yakowitz [135], [136J and to the 

book by Maritz [70]. 

The Fisher information matrix is given by 

I(~) - J [V4l1og P(XIcl»][V~log p(xl~)]'rp(xl~)d~ , (2.5.1) 

Rn 

provided that p(xl~) is such that this express ion is well-

deflned. (In ,-,r 1 tl.ng v
4I 

, we suppose that one can conveniently 

redefine ~ as a vector ¢> -
T 

(t 1 ,···,tv ) of unconstralned scalar 

parameters, and we take v .. a a T Also, in (2.5.1), ¢I (ay-, ... 'ar) . ~ 
1 v 

denotes the underlying measure on Rn appropriate for p(xl¢l) . ) 
The Fl.sher lnformation matrix has general slgniflcance concernlng 

the di str Ibut10n of unbiased and asymptotIcally unbiased 

estimates. For the present purposes, the importance of the 
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• P isher informatlon matr ix lies in its role in determining thE' 

asympcotlc dlstrlbutlon of maximum-likel!hood estlmates (se~ 

Theorem 3.1 below). 

A number of authors have ~onsiderod the Fisher information 

matrix for finlte mixture densities in a variety of contexts. We 

mention in particular several investigations in which the Flsher 

lnformation matrlx is of central interest. (There l.ave been 

others in WhlCh the Fisher information matr ix or some 

approximation of lt has played a significant but less prominent 

role; see those of Mendenhall and Hader [89], Hasselblad [64], 

[65], Day [36], Wolfe [132], Dick and Bowden [42], Hosmer [67], 

James [73], and Ganesalingam and McLachlan [49].) Hill [66] 

6xploited slmple apprOXltnatlons obtained ln limiting caees from a 

general power series expansion to investigate the Fisher 

information for estimating the proportion in a mixture of two 

normal or exponential densltles. Behboodian [9) offered methodo 

for computing the Fisher information matrix for the proportion, 

means, and variances in a mixture of two univariate normal 

densltles; he also provlded four-place tables from WhlCh 

approximate information matrices for a variety of parameter 

values can be easily obtained. In their comparison of moment and 

maxlmum-llkellhood eatlmates, Tan and Chang [121] nurnerlcally 

evaluated the diagonal elements of the inverse of the Fisher 

information matrix at a variety of nnrameter values for a mixture 

of two univariate normal densitlcs with a common variance. Using 

the Fisher infor~ation matrix, Chang [22] investigated the 

, J 
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effects of addir.g a second variable on the asymptotic 

distribution of the maximum-likelihood estimates of the 

proportion and parameters associated with the first variable in a 

mixture of two normal densities. Later, Chang [23) extended the 

methods of [22] to include mixtures of two normal densities on 

variables of arbitrary dimension. F~r a mixture of two 

univariate normal densities, Hosmer and Dick [71] considered 

Fisher information matr ices determined by a number of sample 

type~. They compared the asymptotic relative eff iciencies of 

estimates from totally unlabeled samples, estimates from two 

types of partially labeled samples, and estlmates from two types 

of completely labeled samples. 
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3. Maximum-likelihood 

In this section, maximum-likehood estimates for mixture 

densities are defined precisely, and their important properties 

are discussed. It 1S assumed that a parametric family of mlxture 

densities of the form (1.1) is spec if ied J.nd that a particular 

* * * * - (al ,··· ,am,Pl ,··· ,Pm) E: n is the "true" parameter value to 

be estimated. As before, it is both natural and convenient to 

regard p(x I~) in (1.1) as modellng a statlstical populatlon 

which is a mixture of m component populations with associated 

component densities proportions 

In order to sugger t to the reader the var iety of samples 

which might ar ise in mixture problems as well as to provide a 

framework within which to discuss samplea of interest in the 

sequel, we introduce samples of observations ln Rn of four 

distinct types. All of the mixture density estimation problems 

which we have encountered in the literature involve s~ples which 

are expresslble as one or a stochastically lndependent unlon of 

samples of these types, although the imaginative reader can 

probably think of samples for mixture problems which can not be 

so represented. The four types of samples and the notation WhlCh 

we associate with them are given as follows: 

Suppose that is an independent 

sample of N unlabeled observations on the mlxture, i.e., a 

set of N observations on independent, identically 

distrlbuted random varlables wlth density p(xl~*). Then 

( 
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suppose that J , ••• , J 
1 m are arbitrary non-negative 

integers and that for i - l,···,m, {Yik)k-l"",J
1 

is an 

independent sample of observations on the i th component 

population, i.e., a set of J 1 obaervatJona on independent, 

identically dietr lbuted random var iables wlth density 

m 
Then S - U {y } is a sample of 2 i_11k k-l,···,J i 

~ 1. Suppose that an independent sample of K unlabeled 

observations is drawn on the mixture, that these 

observations are subsequently l~beled, and that for 

i - l,···,m , a set (z ) of them 1s associated ik k-l,···,K 

with tho 

m 

1 
m 

component populatlon wlth K - E K1 . 
i-l 

S3 - i~l {Zik)k-l"",K
1 

ia a sample of Type 3. 

Then 

~ 1. Suppose that an independent sample of M unlabeled 

observatlons is dra~n on the mixture, that the observatlons 

in the sample which fall in some set E ~ Rn are 

subsequently labeled, and that for i - l,···,m , a set 

(W ) of them is thereby associated with the ith ik k-l,···,M 
i 

component population while a set remains 

In 
unlabeled. Then S4 - 1~O{Wlk}k-l""'Mi i8 a sample of 

Type 4. 
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A totally unlabeled bar.lple 51 of Type 1 is t.l.e 60l:t of 

sample considered in almosl all of the litel:ature on mixtur.} 

densities. Throughout most of the aequel, it 1s assumed as l 

convenience that samples under consideration are of this type. 

The major qualitative difference between completely labeled 

samples S2 and S3 of Types 2 and 3, l:espectively, i~ that the 

numbers Xi contain 1nfol:mation about the mixing proportlons 

while the number~ J i do not. Thus if estimalion of propoctions 

is of interest, then a sample S2 is useful only as a subset of 

a larger sample WhlCh includes samples of other types. For 

~ixtures of two univariate densities, Hesmer [68] con&idered 

samples of the form~ 81 , Sl U S2 ' and Sl U S3' Previously 

Tan and Chang (120) consldered a problem involving an application 

of mixtures in expl~ining genetic variation which is almost 

identlcal to chat of [68] 1n which the sample is of the form 

Sl U Sl' Also D1Ck and Bowden [42] used a sample of the form 

51 U S2 in WhlCh m - 2 anti H~smer and Dick [71] 

evaluated the F1sher informat10n matrix for a variety of samples 

of Types 1, 2, 3, ard their unions. 

A sample of Type 4 is lj kely to be associated wlth a 

mixture p~oblem involvtng censored sampling. While the numbers 

contain lnformatlon about the mixing proportlons, as do the 

numbers of a sample of Type 3, they aleo contain 

informat10n about the parameters of the component densities whlle 

the numbers do not. An l~teresting and informative example 

of how a sample of Type 4 m1ght arise 1S the following, which 15 

1 

1 
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11'\ the area of life testing and is outlined by Mendenhall and 

Hader [89]. 

Example. In life testing, one is interested in testing 

·products· (systems, devices, etc.), recording failure times or 

causes, and hopefully ther~by belng better able to understand and 

improve the performance of the product. It often happens that 

products of a particular type fail as a result of two or more 

distinct causes. (An exal.1ple of Acheson and McElwee [1] is 

quoted in [89] in which tha causes of electronic tube fallure are 

divided into gaseo~s defects, mechanical defects, and normal 

deterioration of the catho~e.) It is therefore natural to regard 

collections of such products as mixture- populations, the 
I 

component populations of which correspond to the distinct causes 

of failure. The first objective of life testlng in such cases is 

likely to be estimation of the proportions and other statistical 

parameters associated with the failure component populations. 

Because of restrictions on time available for testing, life 

testing experIments must often be concluded after a predetermIned 

length of tlme has elapsed or after a predetermlned number of 

product units have faIled, resulting in censored sampling. If 

the causes of failure of the failed products are determined in 

the course of such an experiment, then the (labeled) falled 

products together with those (unlabeled) products which did not 

fail constItute a sample of Type 4. 

The llkellhood function of a sample of observations is the 

probabll1 ty dens i ty function of the random sample evaluated at 

11 
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the observations at hand. When maximum-likelihood estimates are 

of interest, it is usually convenient to deal with the logarithm 

of the llkelihood function, called the log-likelihood function, 

rather than with the 11kelihood function itself. The following 

are the log-likelihood functions 

samples Sl' S2' S3 

respectively: 

and S4 

N 
L1 (~) - E log 

k-l 

m J i 
L2(~) - E E log 

i-1 k-1 

m Ki 

of Types 1, 2, 3 

p(xkl¢l) 

Pi(Yik1pi) 

I K! 
L3(~) - ~ E 10g[aiPi(zik ~i)] + log K I"'K ' 

i-l k-1 l' m' 

of 

and 4 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

Note that if a sample of observations is a union of independent 

samples of the types considered here, then the log-likelihood 

function of the sample is just. the corresponding sum of log-

likelihood funct10ns defined above for the samples 1n the union. 

If s is a sample of observations of the sort under 

* consideration, then by a maximum-likellhood estlmate of ~ , \~e 

mean any cholce of 1n n at WhlCh the log-likel1hood 

l or ~. 
"-A -1"-".i l- ~ '" 

t 'z4u t.w + .... , ....... ti bid / 

'_,\~'~ r ~ .. 
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fUnction of S, denoted by L(41), attains its largest local 

max lmum in n. In defining a maximum-likelihood estImate in 

this way, we have taken into account two practical difficultIes 

asaociated with maximum-likelIhood estimation for mixture 

densities. 

The first diff lculty is that one cannot always in good 

conscIence take n to be a set in which the log-likelihood 

function is bounded above, and 00 there are not always points in 

n at which L attaIns a global maxImum over n. Perhaps the 

most notorious mixture problem for which L is not bounded above 

in n is that in which p is a mixture of normal densIties and 

S - Sl ' a sample of Type 1. It is easily seen in this case that 

if one of the mixture means coincides with a sample observation 

and if the corresponding variance tends to zero (or if the 

correspondlng covarIance matrIx tends in certaIn ways to a 

singular matrix in the multivariate case), then the log-

likelihood function increases without bound. For the normal 

mixture problem, an acvantage of includlng labeled observatIons 

1n a sample is that with probability one, this diff iculty does 

not occur if the sample includes more than n labeled 

observations from each component population. This was observed 

in the univariate case by Hosmer [68). 

The second dlff lculty is that mixture problems are very 

often such that the log-likelihood function attains its largest 

local maximum at several different choices of ~. Indeed, If PI 

and are of the same parametrlc famIly for some land j 

! 
1 
1 

1 

1 

, 1 -"'. 
I 



and if S - Sl ' a samFle of Type 1, then the value of L(~) 

will not change l.f the component pal.rs (ai"oi) and (aj,.pj) are 

interchanged in ~ , i. e. , if in effect there is "laQel 

switching" of the ith and jth component populations. The 

results reviewed below show that whether or not such "label 

switching" is a cause for concern depends on whether estimates of 

the particular component density parameters are of interest or 

whether only an approx1mation of the ml.xture dens~ty is deslred. 

We remark that this "label switching" diff iculty can certainly 

occur in mixtures which are identifiable (see Section 2.5). 

In tht: remainder ot this section, our interest is in the 

important general qualitative properties of maximum-likelihood 

estimates of mixture dens~ty parameters. For convenience, we 

restrict the discussion to the case which is most often addressed 

in the literatu~e, namely that in which the sample S at hand 1S 

;\ sample Sl of Type 1. We also assume that each component 

density Pi is differentiable with respect to.pi and make the 

nonefl::;~~t1al assumption that the parameters.pi are unconstrained 

in n
1 

and mutually independent variables. It 1S not dlff~cult 

to modify the discussion below ~o obtain similar statements which 

are appropriate for other mixture dens1ty estimation problems of 

interest. For a discuSS10n of the properties of maXlmum-

likelihood estimates of constrained variables, see the paper of 

Aitchison and Silvey [2]. 

The traditional general approach to determIning a maximum

likelihood estimate is first to arrive at a system of likelihood 

I', 



equations satisfied by the maximum-likelihood estimate and then 

to try to obtain a maximum-llkelihood estimate by solving the 

lik--:lihood equations. Basically, the likelihood e'~uations are 

t I 

! 
found by considering the partial derivatives of the log- ' ~, 

likelihood : ,cTlon \Hth respect to the components of CZI. If 

is a maximum-likelihood estimate, then 

ono has the likelihood equations 

(3.5) 

determined by the unconstrained parameters Pi' i-I,'" ,m • 

(Our convention is that ·v· with a var iable appear ing as a 

Bubscr ipt indicates the gradient of first partial der ivatives 

with respect to the components of the variable.) 

To obtain likelihood equations determined by the 

proportions, which are constrained to be non-negatlve and to sum 

to one, we follow Peters and Walker 
I\. 1\ I\. T 
a - (aI' ···,am) , one sees that 

for all a -
T (a,···,a) 1 m such that 

[102]. Settlng 

(3.6) 

and 

i - l,···,m. Now (3.6) holds for all a satlsfYIng the gIven 

constraints if and only if 

I 
I 

·1 
I 
i 



with equality for those values of i 
~ for which ~1 > 0 . (Here, 

e i ie the vector the i th component of which 1s one and the 

other components of which are zero.) It follows that (3.6) is 

equivalent to 

N 
1 ) 1: E 

N k-l 
, i-l,···,m " (3.7) 

with equality for those values of i for 'fdlich 

Finally, mult1plY1ng each aide of (3.7) by :for i-l,"',m 

yields likelihood equations in the convenient for.m 

(3.8) 

We remark that it is easily seen by considering the matrix 

of second partial derivat1ves of L with rospe~ to a l ,··· ,am 

that L is a concave funct10n of a .. '7 (a,···,a) 1 m for any fixed 

set of values 1\ i-I, ... ,m Thus, for any fixed 1\ 
.pi £ n i , . .pi , 

i - l,···,m, (3.6) and, hence, (3.7) are sufficient as well as 

necessary for 1\ 
a to maX1m1ze L 

satisfying the given constraints. 

over the set of all a 

On the otiler hand, the 

llkel1hood equat10ns (3.8) are necessary but not sufficlent 

conditions for ~ to maximize L 1\ 
for flxed.pi y 1 - l,···,m. 

Indeed, satisfies (3.8) for i-l,···,m_ In fact, it 

follows from the concavlty of L that there 16 a solution of 

(3.8) in each (closed) face of the simplex of points a 

satisfying the given constraints. In spite of pe:rhl\ps suffering 

'I 

1 

I 



from a surplus of solutions, the likelihood equatlons (3.8) 

nevertheless have a useful form which takes on additional 

significance later in the context of the EM algorlthm. 

The equations (3.5) and (3.8) together constitute a full set 

of likelihood equations which are necessary but not sufficient 

conditions for a maximum llkellhood estlmate. Of course, Borne 

irrelevant solutions of the likelihood equations can be avoided 

in practice by using one of a number of procedures for obtalning 

a numerlcal solution of them (among which is the EM algorlthm) 

which in all but the most unfortunate circumstances will yield a 

local maximizer of the log-likelihood function (or a singularity 

near which it grows without bound) rather than some stationary 

point which is a local minimizer or a saddle point. still, it is 

natural to ask ,·t this pOlnt the extent to WhlCh solv ing the 

likelihood equations can be expected to produce a maXlmum-

likelihood estimate and the extent to which a maximum-likelihood 

* estimate can be expected to be a good approxlmatlon of ~ 

Two general theorems are offered below which give a fair 

summary of the results in the literature most pertinent to the 

question put forth above. As a convenlence, we assume that 

* a i > 0 for i - l,···,m. F~r the purposes of the theorems and 

the discussion followlng them, this justifies writing, say, 

- 1 -
m-l 
L at 

1-1 
and consldering the redeflned, locally 

unconstrained variable in the 

mod if led set 

, 



for i - 1,··· ,m) . 
• 

The likelihood equations (3.5) and (3.8) can now be written in 

the general unconstrained form 

(3.9) 

which facil1tates our present1ng the theorems as general results 

which are not restricted to the mixture problem at hand or, for 

that matter, to mixture problems at all. In our discussion of 

the theorems, all statements regarding measure and integration 

are made with respect to the underlying measure on Rn 

appropriate for p(xl~) , Wh1Ch we denote by ~ 

The f1rot theorem states roughly that under reasonable 

assumptions, there is a unique strongly cons istent solution of 

the likelihood equations (3.9) and this solution at least locally 

maximizes the 10g-11kel1hood funct10n and 1S asymptot1cally 

normally distributed. Cons istent in the usual sense means 

converging with probability approaching 1 to the true parameters 

as the sample Slze approaches inf1nitYi strongly consistent means 

having the same limit with probability 1.) This theorem is a 
/ compendium of results generalizing the initial work of Cramer 

(35) concernlng eXlstence, cons1stency, and asymptotic normal1ty 

of the maximum-likelihood estimate of a single scalar parameter. 

The conditlons below, on which the theorem rests, were 

t WT ) .. " ... J 
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essentially given by Chanda [21] as multi-dimensional 

" generalizations of those of Cramer. With them, Chanda claimed 

that there eXlsts a unique solution of the likelihood equations 

which is consistent in the usual sense (this fact was correctly 

proved by Tarone and Gruenhage [122]) and established its 

asymptotlc normal behavior. (S~e also the summary in Kiefer 

(77], the discussion in ZacKs [71], and the related material for 

constrained maximum-likelihood estimates in Aitchison and Silvey 

[2] . ) Using these same conditions, Peters and Walker [101, 

Appendix A] sho\iled that there is a unique strongly consistent 

solution of the likellhood equations and that it at least locally 

maximizes the log-llkelihood function. 

In stating the followlOg conditions and in the discussion 

after the theorem, lt is convenient to adopt temporar ily the 

m 
v - em - 1 + E n 1) 

1-1 
where and 

€i E: Rl for 1 - l,···,v. Also, we remark that because the 

results of the theorem below implied by these conditlons are 

strictly local 1n nature, there is no 10s5 of generality in 

restricting n to be any neighborhood * of c%l if such a 

restriction is necessary for the first condltion to be met. 

Condition 1. For all c%l E: n , for almost all x E: Rn, and for 

i,J,k - l,···,v , the partial derivatives and 

1 

1 

.. 
I 



where and 

Condition 2. 

." ... , , ... , .. , .. ~ -.. .. ,.._ ,n 
• > 4 ..... 

are integrable and f ijk satisfies 

f f i j k ( x ) p ( x I ¢J '* ) d# < CD 

Rn 

The Fisher information matrix I (~) 

'* (2.5.1) is well-defined and positive definite at ¢J 

given by 

Theorem 3.1. If Conditions 1 and 2 are satisfied and any 

'* sufficiently small neighborhood of ~ in n is given, then with 

probability 1, there 1s for sufficiently large N a unique 

solution ~N of the likelihood equations (3.9) in that 

neighborhood and this solution locally maximizes the log

likelihood function. Furthermore, ~N(~N_~*) ia asymptotically 

normally distributed with mcan zero and covariance matr1x 

I(~*)-l • 

The second theorem lS d1rected toward two quest10ns left. 

unresolved by the theorem above regarding 

strongly consistent solution of the likelihood equations. The 

first questlon 15 whether ~N is really a max1mum-llkellhood 

estimate, 1. e., a point at which the log-lilcel1hood funct lon 

atta1ns its largest local maximum. The second 15 whether, even 

if the answer to the f1rst question 16 "yes", there are maX1mum

likelihood estimates other than ~N which lead to limiting 

densit1es other than p(xl~*). Oi ven our assumption of 

1dentlflablllty of the famlly of m1xture dcns1t1ce p(xl<l» , 

. 
; , 
I 

1 
1 
1 

I 

l 
.' I 
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~ EO, one easily sees that the theorem below implies that if 

* 0' 15 any compact subset of 0 which contains ~ in its 

inter ior, then with probability 1, ~N ie a maximum-likelihood 

estlmate in n' for suff lciently large N. Furthermore, every 

other maximum-likelihood estimate in n' is obtained from eN 

by the alabel switching" described earlier and, hence, leads to 

the same limltlng density p(x I ~ 2 ). Accordingly, we usually 

assume in the oequel that Conditions 1 through 4 are satisf ied 

and refer to c%l
N as the unique strongly conslstent may.imum-

likelihood estimate. The theorem is a slightly restricted 

version ot a general result of Redner [110] which extends earlier 

work by Hald [129J on the consistency of maximum-likellhood 

estlmates. It should be remarked that the result of [llOJ rests 

on somewhat weaker assumptions than those made here and is 

specif lcally aimed at famllies of distr ibutions which are not 

identlfiable. 

For and sufficlently small r > 0 

denote the closed ball of radius r about ~ in 0 and deflne 

p(xl¢l,r) - sup p(XI¢>I) 
<b' £Nr (¢l) 

and 

p*(xl~,r) - max{lrp(xl~,r)} . 

Condition 3. For each and sufficlently small r > 0 , 

I 
1 

I 
! 
~ 

I 
• 1 j 

·1 
I 

~ 

I 

I I . 
I 

-~ 
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Theorem ~.£. 
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I * I * I * log P (x Q ,r)p(x ~ )d~ < m • 

Rn 

J log p(xl~*)p(xl~*)d~ < m • 

n R 

Let 0' bo any compact subset of 

contains ~ in its interior, and set 

• , I 

o which 

C - (~ £ 0': p(x/O) - p(xl~*) almost everywhere} • 

If Conditions 3 and 4 are satisfied and D is any closed eubset 

of 0' not intersecting C, then wlth probabllity 1, 

liM '»'i' 
N"'" <:-(,.1) 

N 
11 p(y.kl~) 

N I: n p(x,J~ ) 
k-l h. 

... a . 

From a theoretical point of view, Theorems 3.1 and 3.2 ar~ 

adequate for mixture dens i ty eotimation problema 1 n pro'! iding 

assurance of the eXlstence ot Gtrongly conslstent maXlmum-

llkellhood estlmates, character iz lng them as solutions of the 

likelihood equations, and prescribing tneir asymptotic behavlor. 

In practlce, however, one must stlll contend with certaln 

potential mathematical, statistical, and even numerical 

difficulties associated with maximum -likelihood estimates. Some 

pOSS ible mathematlcal problems have been suggested above: The 

log-likelihood function may have many local and global maxima and 

! 
! 

r 
1 , 

''',,1 
i 
1 

"' 
I 
1 
1 
i 
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1 
1 
1 , 
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perhaps even singularities; furthermore, the likelihood equations 

are likely to have solutions which are not local maxima of the 

log-likelihood function. Accordlng to Theorem 3.1, the 

statistical soundness (as measured by bias and v~riance) of the 

strongly consistent maximum-likelihood estimate is determined, at 

least for large samples, by the Fisher informatlon matrix 

* * I(~ ). As it happens, I(~) also plays a role in determining 

the numerical well-po&edness of the problem of approxlmatlng the 

strongly consistent maximum-llkelihood estimate for 

samples. 

* 

large 

To show how I(~) enters into the problem of numerlcally 

approximating for large samples, we recall that the 

condition of a problem is reflected by the relative sensitivity 

of its solution to perturbations in the data associa~ed with the 

problem. For an optimization problem, the condition is 

customarily measured by the condltion number of the HeS81an 

matrix of the functlon to be optimlzed evaluated at the solut!on. 

(For the definition and properties of the condition number of a 

matrix, see, for example, stewart [118).) For the log-llkellhood 

function at hand, the Hesslan matrix, WhlCh we denote by H(~) , 

is given by 

H(~) - (3.10) 

T a2 
v4>v~ - (ae a( ). If Conditions land 2 above are 

i j 

satisfied, thert it follow~ from the strong Law of Large Numcers 

I .. 

1 

I 
I 

1 

1 

1 
i 

1 

·1 

1 

I 
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/ 
(see Loeve [82]) that with probability 1, 

(3.11) 

Since has the same condition number as H(~N) , (3.11) 

~s tho desired result . 

To illustrate the potential severity of the statistical and 

numer~cal problema associated with maximum-likelihood estimdtes, 

we augment the material on the Fisher information matrix in the 

literature cited in Section 2.5 with Table 3.3 below, which lists 

approxim~te values of the condition number and the diagonal 

* elements of the inverse of I (~ ) for a mixture of two 

univariate normal densities (see (1.3) and (1.4» at a variety or 

choices of To prepare this table, we took 

* I(cZl ), j.ts 

* conditlon number, and its inverse for selected values of ~ 

using IMSL Libra.ry rou ... ines DCADRE, EIGRS, and LINV2P on a 

CDC7600. 2 The choices of 

_ 

4%1 were obtained by taking 

and 2- 2- * * 
0 1 - "2 .. 1 and varying the mean separation ~1 - ~2 . 

* In the table, the condition number of I(~) is denoted by K, 

and the (irst th:ough fifth diagonal elements of I (~*) - 1 are 

denoted by I-l(a
l

) , I-l(~l) , r- l (JL
2

) , I-l(ai) , and I-l(ai), 

rcepectively. 

2. We are grateful to the ~athematico and Statls~lcB Dlvision of 
the Lawrence Llvermore Natlonal Labordtory for allowing us to 
UDe their computing faclllty in generating this table. 

I .... 



-
* * I-1 (a

1
) 1-1 (#1) I-1 (.lL

2
) 1-1(02 ) 1-1(a~) #1-#2 Ie 1 

0.2 3.06)(1010 4.39)(1010 4.86)(10 9 8.98)(10 8 2.15xl0 7 4.02xl0 6 

0.5 6 6 6 5 5 4 
8.05)(10 5.54xl0 3.81xl0 7.17xl0 1. 04xl0 2.07)(10 

1.0 5.18)(104 8.59xl0 3 2.32x10 4 4.55xl0 3 2.58x10 3 578. 

1.5 4.80)(10 3 237. 1.43xl0 3 290. 383. 95.0 

2.0 1.10)(103 20.4 216. 45.8 115. 31.3 

3.0 187. .874 18.9 4.81 2C.2 8.83 

4.0 71.7 .267 5.72 1.95 13.4 4.71 

6.0 35.7 .211 3.44 1.45 7.47 3.06 

Table 3.3: Condition number and diagonal elements of the inverse 

'* ~t I(~) for a mixture of two univariate normal densities with 

• 2* 2* a 1 - .3 , 01 c 02 - 1 • 
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Table 3.3 reinforces ones intuitlve understanding that for. 

mixture density estimation problema, maximum-likelihood estimatec 

are more appealing from both a statistical and a numerical 

standpoint if the component densities in the mixture are well 

separated than if they are poorly separated. Perhaps the most 

troublesome implication of Table 3.3 is that if the component 
/ 

dens ities are poorly separated, then impractically large sample 

sizes might be required in order to expect even moderately 

precise maximum-likelihood estimates. For example, Table 3.3 

indicates that if one considers data from a mixture of two 

* univariate normal denaities with (11 ... 3 , 

* * 

2* 2* 
0 1 - O 2 - 1 , and 

#1 - ~2 - 1, then a sample size on the order of io 

necessary to insure that the standard deviation of each component 

of the maximum-likelihood estimate is about 0.1 or less. Even if 

a sample of such horrendous oize were available, the fact that 

evaluating the log-likelihood function and associated functions 

such as its derivatives involves summation over observations in 

the sample, considered together with tho condition number of 

5.18xl04 for the information matrix, suggests that computing 

undertaken in seeking a maximum-likelihood estimate should be 

carried out wlth great care. 

Slmilar observatlons regarding the asymptotic dependence of 

the accuracy of maxlffium-llkellhood estimates on sample Slzes and 

separation of the component populations have been made by a 

number of authors (Mendenhall and Hader [89], Hill [66], 

Hasselblad [64], [65], Day [36], 'fan and Chang [121), Dick and 



Bowden [42], Hosmer [67], [b8], Hosmer ... nd Dick (11]). "O.)"vaxa.i 

of them (Mendenhall and Hader [89J, Day [36J, Hasselblad [65J, 

Dick and Bowden [42], Hosmer [67]) alao suggested that things are 

worse for small samples (less than a few hundred observations) 

than the asymptotic theory indicates. Hosmer [67J specifically 

addressed the small-sample, poor-separation case for a mixture of 

two univariate normals and concluded that in this case maximum-

ljkelihood estimates -should be used with extreme caution or not 

at all.- Dick and Bowden [42], Hosmer[68], and Hosmer and Dick 

[71J offered evidence which suggests that considerable 

improvement in the performance of maximum-likelihood estimates 

can result from including labeled observations 1n the samples by 

which the estimates are determined, particularly when the 

component densities are poorly separated. In fact, it is pointed 

out in (71) that most of the improvement occurs for small to 

moderate proportions of labeled observations in the sample. 

In spite of the rather pessimistic comments above, maximum

likelihood estlmates have fared well in comparisons with most 

other estimates for mixture density estimation problems. Day 

[36J, Hasselblad [65], Tan and Chang [121], and Dick and Bowd~n 

[421 found maximum-likelihood estimates to be markedly superior 

to moment estimates in their investiga~ions, especially in cases 

involving poorly separated component populatlons. (See also the 

comment by Hosmer [70) on the paper of Quandt and Ramsey [106].) 

Day [36] also remarked that minimum chi-square and Dayes 

estlmates have less appeal than rnaximum-llkelihood estimates, 

--
, , 
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pr imar lly because of the diff lculty of obtaining them in mosl, 

cases. James [73] and Ganesal1ngam and McLachlan [49] observed 

that their proportion estimates are less efficient than maximum

likelihood estimates; however, they also outlined circumstance'l 

in which their estimates might be preferred. On the other hand, 

as we remarked in Sec. 2.3, the moment generating function method 

of Quandt and Ramsey [106] provides estimates which may 

outperform maximum-likelihood estimates in the small-sample case 

(see the comment by Hosmer [70]). This method should be kept in 

mind as a promising alternative to the method of maximum 

likelihood. 
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4. The EM Algorithm. 

We now derive the EM algorithm for ger~ral mixture density 

estimation problems and discuss its important general properties. 

As stated in the introduction, we feel that the EM algorithm for 

mixture density estimation problemti is best regarded as a 

Dpecialization of the general EM algori~hm formalized by 

Dempster, Laird and Rubin [38] for obtaining maximum-likelihood 

estimates from incomplete data. Accordingly, we begin by 

reviewing the formulation of the general EM algorithm given in 

[38]. 

Suppose that one has a measure space ~ of -complete data

and a measurable map y .. !(r) of Jj to a measure space T or 

-incomplete data". Let f (y I ¢I) be a member of a par arnetr ic 

family of probability density functions defined on Jt for 

¢I £ n, and suppose that g(!I¢I) is a probabillty density 

function on X induced by f (rle) For a given x e: X, the 

purpose of the EM algorithm is to maximize the incomplete data 

log-likelihood 

relatlonshlp 

L(¢I) - log g(xl¢l) over ¢I £ n 

between f(y'~) and g(xf~). - -

by explolting the 

It is intended 

especially for applications in which the maximization of the 

complete data log-likelihood log f(yl~) over ¢I e: n is 

partlcularly easy. 

For ! E: 1 ' set Jj (!) - {x e:j(: !(y) - !} . The 

conditional density k(rl!,¢I) on $t (!) ia given by 

f(yl¢l) - k(ylx,¢I)g(xl~) For ~ and ~. in n , ono then has - -

, 

I I 
i 
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r 
1 

L(~) - Q(~I~') - H(~I~') r 

where Q(~I~') - E(log f(yl~)I~,~,) and -
The general EM algorithm of 

Dempster, Laird and Rubin [38) is the following: Given a current 

approximation ~c of a maximizer of L(~) r obtain a next 

approximation ~+ as follows: 

1. E-step: Determine Q(~I~c) • 

2. M-etep: Choose ~+ £ arg max Q(~I~c) • 
~£n 

Here, arg 

maximize 

max Q (el" ~c) 
~£n 

Q(~I~c) over 

denotes the Bet of ·"alues 

n. (Of course, this 

~ £ n which 

set must be 

nonem~,y for the M-step of the algorithm to be well-defined.) If 

this set is a singleton, then we denote its sole member in the 

same way and write ~+ - arg max Q«t)Iq;,c) . Similar notation is 
~£n 

used without further explanation in the seguel. 

From thls general description, it is not clear that the EM 

algorithm even deBerves to be called an algorithm. However: au 

we indicated above, the EM algor ithm is used most often in 

applications which permlt the easy maximization of log f (y I~) 

over ~ £ n . In such appllcat1ons, the M-step maximization of 

Q(~I~') over ~ £:l lS usually carl.ied out w1th correspondlng 

ease. In fact, as one secs in the seguel, the E-step and the M-

step are usually comb1ned 1nto one very easlly implemented step 

ln most applications involving mixture density estimation 

problems. At any rate, the sense of the EM algorithm lies in the 



/ 

fact that L(~+») L(~c). Indeed, the manner in which ~+ is 

determined guarantees that Q(~+ I~c) ) Q(~c I~c) ; and it follows 

trom Jensen's Inequality that (See 

Theorem 1 of Dempster, Laird and Rubin [38].) This fact implies 

that L is monotone increasing on any iteration sequence 

generated by the EM algorithm, which is the fundamental property 

of the algorithm underlying the convergence theorems given below. 

To discuss the EM algorithm for mixture density estimation 

problems, we assume as in the preceding section that a parametric 

family of mixture densities of the form (1.1) is specified and 

that a particular * * * * - (a ••• ·,a .p ••• .p) 1 m' l' , m is the "true" 

parameter value to be estimated. In the usual way, we regard 

this family of densities as being associated with a stati&tica1 

population which is a mixture of m component popu1atlons. The 

EM algorithm for a mixture density estimation problem associated 

with this family is derived by first interpreting the problem as 

one involving incomplete data and then obtaining the algorithm 

from its general formulation given above. The problem is 

interpreted as one involving incomplete data by regarding each 

unlabeled observation in the sample at hand as "missing" a label 

indicating its component population of origin. 

It is instructlve to conslder the forms WhlCh the EM 

algorithm might take for mixture density estimation problems 

involving samples of the types introduced in the preceding 

section. We f Hst illustrate in some detail the der ivation of 

the function Q(~I~') of the E-step of the algorithm, assuming 

. i 
, , 

! 



for convenience that the sample at hand is a sample 

S - {x } of Type 1 descl:ibed in the preceding section. 1 k k-l···N 

One can regard S1 as a sample of incomplete data by considel:ing 

each xk to be the -known" part of an observatlon 

Yk - (xk,ik ) where is an integel: between 1 and m 

indicating a component population of origin of xk . Por 

riensity functions 

. " . 
~. - (a1,···,am,P1,···,Pm) E:n 

k(~I~,~·) is given by 

N 
n 

k-l 

the sa'l\ple variables 

and 

respective.LY· Then for 

the ccnditional density 

and the function Q(~Icl>'), which we denote by Ql (~Icl>') , is 

determined to be 

m 
L 

1 -1 
1 

, , 
aikPik(XkIPlk) 

p( X
k 

I cl> I ) 

(4.1) 



m N 
- E [ E 

1-1 k-l 

Por 

m 

samples 

S3 - U (z1k'k 1 K' and i-I - , ..• , 1 

m 

S2 - 1~I(Y1k}k-l, ••• ,Ji ' 

m 
S4 - U (w 1k}k-l, ••• 1M of Types 

i-O i 

2, 3 and 4, one determines in a similac manner the respective 

functions Q2(~I~I) , Q3(~I~') , and Q4(~I~I) for the E-step of 

the EM algorithm to be 

(4.2) 

(4.3) 

(4.4) 

+ 

• •• • for ~ - (al,···,am,Pl,···,Pm) and ~. - (a 1 ,···,am,Pl"",Pm) 1n 

n. We note that Q2(~I~') and Q3(~I~') are just L2(~) and 

(except for an additive constant) L3(~) given by (3.2) and 

(3.3), respectively; and one might well wonder why they are of 

interest in this context. By way of e!cplanation, we observe that 

if a sample of interest is a stochastically independent unlon of 

emaller samples, then the function for the E-step of the EM 

, I 
I I 

r I 
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: ) 

, 
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algor ithm which is appropr iate for this sample is just the SlIm of 

the functions which are appropr iate for the smaller samples. 

Thus, for example, if S - Sl U S2 U S3 is a union of independent 

samples of Ty~es 1, 2, and 3, then the function for the E-step 

appropriate for S is Q(~I~') - Ql(~I~') + Q2(~I~') + Q3(~I~') , 

where Ql(~I~') Q2(~I~')' and Q3(~I~') are given by (4.1), 

(4.2), and (4.3), respectively. 

Having determined an appropriate function Q(~I~') for the 

E-step of the EM algol ithm as one or a sum of the functions 

defined above, one is likely to find that the 

maximization problem of the M-step haa a number of attractive 

features. It is clear from (4.1), (4.2), (4.3), and (4.4) that 

this maximization problem separates into two maximization 

problems, the first involving the proportions al,"',am alone 

and the second involving only the remaining parameters 

PI'" ·,Pm · Since log a l , ···,log am appear linearly in each 

function Qi(~I~') for i ~ 2 , the first maximization problem 

has a unique solution if the sample is not strictly of Type 2; 

and this colution is easily and explicitly determined regardlez~ 

of the functional forms of the component densities Pi(xlp i ). 

If are mutually independent variabies, then the 

second maxImizatIon problep separates further into m component 

problems, each of WhICh involves only one of the parameters Pi. 

Both these component problems an1 the maXImIzatIon problem for 

the proportions alone have the appealing property that they can 

be regarded as "weighted" maximum-likelihood estimation probl~ms 

I 
I ' 

I 
I 
! 
I 
I 
I 
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involving sums of logarithms weighted by posterior probabilities 

that sample observations belong t.o appropr iate component 

populations, given the current approximate maximum-likelihood 

* eotimate of ~ 

To illl.lstrate these remarks, we consider a sample 

8 1 - (xk}k-l, ••• ,N of Type 1 and assume that are 

mutually independent var iables. If 

1s a current approximate maximizer of the log-likelihood function 

Ll(~) given by (3.1), then one easily verifies that the next 

approximate maximizer 

the M-step of the EM algorithm satisfies 

c c 
a i Pi (xk l.p i ) 

Ii(Xkl~(,) 

for i - l,···,m • Note that, as promised, each 

and explicitly determined and each + and .pi 

prescribed by 

(4.5) 

(4.6) 

+ a i is uniquely 

is obtained as 

the solution of a weighted maximum-likelihood estimatIon problem 
c c 

a i Pi (xk I .p 1. ) 

weights c' 
P(xkl~ ) 

involving a sum of logarithms multiplied by 

each of which is just the posterior probability that xk 

or 19 1nated in the th i component population, given the current 

apprOXImate maximum-likelIhood estimate ~c. 

; 

. ! 
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In addition co prescribing each + a i and P~ as the solution 

maximum-1.ikelihot'\u of a heuristically appealing weighted 

estimation problem, there are other attractions to (4.5) and 

(4.6) • For example, (4.5) insures that the next approximate 

proportions a~ inherit from the current a~proximate proportions 

a~ the prnperty of be ing non-negati va and summing to 1. 

Furthermore, although there is no guaran~ee that the maximization 

problems (4.6) will have nice properties in general, it happens 

that each p 1 is usually easlly (even uniquely and explicitly) 

determined by (4.6) in most applicatic'ns of interest, eSJ1P,clally 

in those application~ in which ~act ~omponpnt density Pl(xl p i ) 

is one of the common parametr ic densities for which ordinary 

(labeled-sample) ma:;imum-likelihood estimates of are 

uniquely and explicitly decermlned. As an illustration. consider 

the case in which some Pi(X/Pi) is a multivariate normal 

(4.7) 

where anu is a positlve-definite ~ymrnetric nxn 

matrix. For a given .p~ .. (JL~,t~) the unique solut ion 

c c 
cr i P (xk Ip . ) N 

1 C 1 )/{ E 
p(Xkl¢ ) k-l 

c c 
aiPi (XkIP 1 ») 

P(Xkl~c) 
(4.8) 
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(The factors have ,een left in the numerators and 

denominators of these express ions for aesthetic reasons only.) 

l~ote that is positive-defin1te s)~ctric with probability 1 

if N>n. 

Wnat convergence pro~erties hold for a sequence of iterates 

g!!nerated by applyi!.g the EM algor ithm to a mixture dens ity 

estimati~n problem? If nothing in particular is said about the 

parametric family of interest, then the properties WhiCh can be 

specH ied are essentially those obtained by apecidlizing the 

convergence results associated with the EM algorithm for general 

incomplct~ data problems. The conv~rgcnce resulto below are 

formulated so that they are valid for the EM algorithm in 

general. Points relating to these results which are of 

part1cular 1nterest 1n the mixture dens1ty context are m.·de in 

remarks followi~g the theorems. 

The first theorem is a global convergence result for 

sequences generate1 by the EM algorlthm. It essentially 

su~nariZC5 the result5 of Wu [134] for the gene~al EM algorithm 

and of Redner r 109] for the more spec lallzed case of the EM 

algC't i thm applied to a mixture of dens ities from exponent ial 

families. S1.milar but weaker results have been formulated for 

the general EM algorlthm by Boyles [17]. statements (1), (li), 

and (i i 1) of the theorem nrc valid for any sequence and are 



stated here as a convenience because of their usefulneos in 

applications. statements (i v), (v), and ("Ii) are based on the 

fact reviewed earlier and reiterated in the statement of the 

theorem that the log-likellnood function lncre~ses monotonically 

on a sequence generated by the EM algorithm. Through the use of 

this fact, the theorem can be related to general reaul'Cs in 

optimization theory such as the convergence theorems of Zangwill 

[141; pages 91, 128, and 232] concerning point-to-aet maps which 

increase an objective function. One such general result was 'lsed 

explicitly by Wu [134] in his study of the EM algorithm. 

Theorem _4._1: Suppose that for some ~(O) € n {~(j)} , j -0, l, 2, ... 

is a sequence in n generated by the EM algor lthm, L e., a 

sequence in n aatiefying 

~(j+l) € arg max Q(~I~(j» , j - 0,1,2, •.. , 
~€n 

where Q(~lo') is the functlon determined in the E-step of the 

EM algorithm. 

monotonically 

* 

Then the log-likelihood function L(~) increases 

on {~(j)} to a (possibly 
j-0,1,2,··· infinite) 

limlt L Furthermore, denotlng the eet of Ilmit points of 

{ ~ (j ) } 
j-0,l,2,··· in n bY~, one has the following: 

( i) ~ is a closed aet in n . 

(l'i) If {~(j)} tid i t b t f ~ lS co~ a ne n a compac au s~ 0 J -0, 1, 2, ... 

n , then £. is compact. 

( iii) is contained in a compact subset of 

nand 11·11 on n , then 



i8 connected as well as compact. 

( iv) If is continuous in n and ~ ~ ~ , then 
t 

L is 

finite and '* - L for $ c ;t... 
(v) If Q(¢lf¢l') and H(¢lI¢I' ) - Q(¢lI¢I') - L(¢I) are continuous 

in ~ and ~, in n , then each $ (£. satisfies 

$ E: arg max Q(~IS) . 
(tIE:O 

(vi) If Q(~I¢I' ) and H(¢lI¢I') are contim:ous in ~ and ~. 

1n 0 and differentiable in ¢I at ¢I - ~, - $ c , then L(~) 

is differentiable at ~ .. $ ant;! the likelihood equations 

VeL (¢I) - 0 are satisfied by ~ - $ . 

Proof: The monotonicity of L(¢I) on (¢I(j)} has 
j-O,l,2,··· 

already been established; the existence of a (possibly infinite) 

'* limit L follows. statement (i) holds since closedness 1S a 

general property of ~ets of limit pointe. To obtain (ii), no~~ 

that if (¢I(j)} is contained in a compact subset of j-O,l,2,··· 
n, then ;;t. is a closed subset of this compact subset and, 

hence, is compact. To prove (iii), suppose that 

(¢I(j)} is contained in a compact subset of n, that j-O,1,2, .•• 

limll¢>(j+l) - ¢I(j)" - 0 , and that ~ is not connected. Slnce 
j ... .., 

£ is compact, there is a minimal distance between distinct 

components of ;;(; and the fact that l1mll¢>(j+l) - ¢>(j) II - 0 
J-o", 

implles that there is an inf iniLe subsequence of 

(c%I(j) } whose II embers are bounded away from;;(. This j-O,l,2,··· 

8ubsequence lies in a compact set, and so it has limit points. 

Since these limit pOlnts cannot be in C;(, one has a 

, , , 
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contradiction. 

statement (iv) follows irnrnedtately from the rnonotonicity of 

L(<%I) on (<%I(j)} To prove (v), suppose that Q(<%II<%I') j-O,1,2,··· 
and H(<%IIQ') are continuous in <%I and Q' in n and that one 

can find some $ € ~ and III c n for which Q(<%II$) > Q($I$) . 

Then for every j , 

by the M-step determination of ~(j+l) and Jen&en's inequality. 

and H ( ~ 1 <%I' ) are continuouB, it follows by 

taking limits along a subsequence converging to $ that 

Wh1Ch 1S a contradiction. To establish (vi), suppose that 

0(<%11<%1') and H(<%II<%I') are continuous 1n <%I and <%I' in nand 

differentiable 1n <%I at ¢ - <%II - $ €;;(. Then L(<%I) - Q(<%II$) -

H(<%II$) 1S d1fferentiable at <%I - $ ; and, Slnce 
A <%I € arg max 0(<%11$) by (v) and A 

~ € arg max H(<%IIS) by Jensen's 
q'>€n <%I€n 

inequality, one has V<%IL($) - 0 . 'fhis completes the proof . 

statement (lil) of Theorem 4.1 hao precedent in Buch results 

as Theor em 28. 1 of ostrowski [96]. It is usually Batisf ied in 



practice, especially in the mixture density context. Indeed, it 

often happens that each .z, + is uniquely determined by the- EM 

a190rithm as a funct10n of ~c which is continuous in n. Por 

+ + example, one sees that al,···,am are detcrmined in this way by 

(4.5) whenever each Pi(xl~i) depends continuously on ~1. In 

addition, each Pi is likely to be determined in this way by (4.6) 

whenever each Pi(xl~l) is one of the common parametric densities 

for which ordinary maximum-likelihood estimates are determined as 

a continuous function of Pi; see, for example, (4.8) and (4.9). 

If ~+ Is determined in thls way from .z,c and if the conditions 

of (v) are also satisfied, then each $ £ JC is a fixed point of 

a continuous function. It follows tl'lat if in addition 

(~{j}) is contained in a compact subset of n, then 
J-0,1,2,··· 

the elements of a "tail" sequence (~{j) } 
j-J,J+l, •.• can all be 

made to lie arbitrarily close to the compact set oC by taklng J 

sufficicntly large and, hence, limllq,(j+1) - q,(j) II - 0 by the 

uniform conLlnulty near ;t of the function determinIng ¢(j+l) 

from ~ (j) . 

It Is useful to expand a little on the interpretation of 

statement (vi) in the mixture nensity context. Assuming that 

each Pl(xl p
1

) is dlfferentiable w1th respect to Pi' that the 

parameters Pi are uncons~rained in and mutually 

independent, and, for c~nvenience, that the sample of interest is 

of Type 1, one can reasonably interpret the likelihood equations 

(3.9) at a point 

such that each is 

- 1 
I 

I 
i' 



positive. Now it is certainly possible for some 

for $ (;(, in which case (3.9) might 

to be zero 

be valid. 

Fortunately, (3.5) and (3.8) provide a better interpretation than 

(3.9) of the likelihood equations in the mixture density context 

which is val1d whether ea~h ~i is positive or not. Indeed, 1f 

the conditions of (v) hold, then it follows from (4.5) that the 

equat10ns (3.8) are satisfied on dC. Thus in the mixture density 

cl)ntext under the pre&ent assumptions, (vi) should be replaced 

with the following: 

(vi) I If Q(~,jc%ll) and H(~I~') are continuous in ~ and ~I 

in n and differentiable in p , ••• ,p 
1 m at ~ - ~I - $ (£ , then 

L(~) is differentiable 1n pl,""Pm at (1) - $ and the 

likelihood equations (3.5) and (3.8) are satisfied by $ 

To illustrate the application of Theorem 4 .1, we consider 

the problem of estimating the proportions in a mixture under the 

assumption that each compor.:nt density Pi(xlp i ) is known (and 

denoted for tho present purposes by Pi(x) for sl~pl1city). The 

theorem below is a global convergence result for the EM algorithm 

applied to this problem. For convenience in presenting the 

theorem, 1t is assumed that the ~ample at hand 1S a sample 

Sl - {xk}k-l, ... ,N of Type 1. Similar results hold for other 

cases in which the sample at hand is one or a union of the types 

considered in the preceding section. For this problem, one has 

simply (1) - (aI' .·.,am) ; and it lS, of course, always understood 

m 
that 1: a i - land a i ) 0 , i - l,···,m , for all such (1). 

!-l 

I _. 



We remaz:k that the condition of the thcoz:em on the matz: ix of 

aecond dez:ivatives of LI(~) is qUite z:easonable. This matrix 

1s always defined and negative semi-definite whenevel: 

for k - 1,···,N; and if 

linearly independent non-vanishing functions on the support of 

the underlying measure on Rn apPl:opr iate for p, then with 

probability 1 it is def ined and negat1ve def inite for all 4> 

whenever N is sufficiently large. 

Theorem .1..£: Suppose that the matr ix of second der ivat1ves of 

Ll(~) is defined and negative definite for all 4>. Then there 

is a unique maximum-likelihood estimate; and for any 

~~~) - (alO), •.. ,a~O» with ala) > ° for i - l,···,m, the 

sequence {~(j) - (a(j), ... ,a(j»} generated by the EM 
1 m j c O,l,2, ..• 

algorithm, i.e., determined inductively by 

a(j+l) _ 1 ~ 
i N k-l 

, i-l,···,m , 

converges to the maximum-likelihood estimate. 

Proof: It follows from Theorem 4.1 and the subsequent remarks 

that the set of limit points of is a compact, 

connected subset of the slmplex of proportion vectors ttl on 

which the likelihood equations (3.8) are satisf ied. Since the 

matr ix of second der ivatives of Ll (~) is negative def inite, 

Ll (ttl~ is str ictly concave. It follows that there 18 a un1que 

[ I 
I 

, : 

• 1 

, 

! 

i 

· , 
I , , 

· ! 

· . 

I 
I 

I 
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maximum-likelihood estimate and, furthermore, that the likelihood 

equations (3.8) have at most one solution on the interior of each 

face of the proportion simplex. Consequently, each component of 

the set 

single 

pOlnt. 

of solutions of the likelihood equations consists of a 

point; and {~(j)}j-0,1,2, .•. muat converge to one such 

But if {~(j)) is convergent, then its limit j -0 i 1,2, •.. 

must be the maxlmum-likelihood estimate by Theorem 2 of Peters 

and Coberly [100] or Theorem 1 of Petera and Walker [l02J. 

Despite the usefulness of Theorem 4.1 in characterizing the 

set of limit pOints of an iteration sequence generated by the EM 

algorithm, it leaves unanswered the questions of whether such a 

sequence converges at all and, if it does, whether it c~nverges 

to a maximum-likelihood e3timate. In an attempt to provide 

reasonable eufflcient conditions under which the answer to these 

questions is "yes", we offer the local convergence theorem below. 

Theorem 4.3: Suppose that Conditlone 1 through 4 of Section 3 are 

satisfied in n, and let n' be a compact subset of 0 which 

" contains ~ 

p(x/4» = p(xl¢>") 

in its interior and which is such that 

almost everywhere in x for ¢> € 0' only if 

Suppose further that with probability 1, the function 

Q(¢>/4>') of the E-step of the EM algorithm is continuous in ¢> 

and ~, in 0' and both Q(cl>I4>' ) and the log-llkellhood 

function L(¢» are differentiable In ¢> for Q and ¢>' in 0' 

whenever N is sufflclently large. Pinally, for ~(O) in n' , 

denote by {¢>(j)}j-O,I,2, ••• a sequence generated by the EM 



algorithm in 0' , i.e., a sequence in 0' satisfying 

~(j+l) E: arg max Q(4II~(j» , j - 0,1,2,··· • 
4I£n' 

Then with probability 1, whenever N is sufficiently large, the 

unique strongly consistent maximum-likelihood estlmate (bN i3 

well-defined in 0' and eN - lim e(j) whenever e(O) is 

sufficiently near 4IN 

Proo~: It follows from Theorems 3.1 and 3.2 that with probability 

1, N can be taken sufficiently large that the unique strongly 

consistent maximum-likelihood estimate eN is well-defined, lies 

in the interior of 0' , and is the unique maximizer of L«(I) in 

0' Also with probabllity 1, we can assume that N is 

sufflclently large that Q«(I)I(I)') 18 contlnuous ln e and (I)' in 

0' and o(el(l)' ) and L«(I) are differentiable in (I) for e 

and (I)' in 0' Since L«(I) lS contlnuous, one can flnd a 

neighborhooo Ow of eN of the form 

0- - (e £ 0' 

for some ( > 0 which lies in the int~rior of 0' and which is 

such that clI
N 

lB the only solution of the likelihood equations 

contalned in it. If (1)(0) lies ln Ow , then ((b()) 
j-0,1,2,··· 

must also lia in Ow since L«(I) is monotone increaslng on 

(¢I( j) } It follows that each limit point of 
j-0,1,2,··· 

((I)(j» lles in Ow and, by statement (Vl) of Theorem J-0,1,2,··· 

, I 

r 1 

I I i 
1 

, \ 

i 
,J , 

, 
, I 
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4.1, also satisfies the likelihood equations. Since ~N is the 

only solution of the 1~ke1ihood equationa in n" , one concludes 

that ~N - lim ~(j) . 

I . 
f 

As 1n the case of Theorem 4.1, Theorem 4.3 is stated so that ! 

it is va1~d for the EM a1gor~thm in general. It should be noted, 

however, that Theorem 4.3 makes heavy use of Theorems 3.1 and 3.2 

as well as TheorE'rn 4.1; and so for mixture density estimation 

problems, ~t perta~ns as ~t stands, str ictly speaking, to the 

case to which Theorems 3.1 and 3.2 apply, namely that in which 

the sample at hand is of Type 1 and L(~) - Ll(~) given by (3.1) 

and Q(QI~') - Ql(QI~') given by (4.1). Of course, Theorems 3.1 

and 3.2 and, therefore, Theorem 4.3 can be modified to treat 

mixture density estimation problems involving samples of other 

types. 
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s. The EM Algorithm for Mixtures of Densities ~ Exponential 

Families 

Almost all mixture dens ity estimation problema whi::h have 

been studied ln the literature involve mlxture densities whose 

component denslties are members of exponential families. As it 

happens, the EM algor ithm is especially easy to implement on 

problems involving densities of this type. Indeed, in an 

application of the EM algorithm to such a problem, each 

successive approximate maxlmum-likelihood estimate is 

uniquely and explicitly determlned froIr. its predecessor (bc, 

almost always in a continuous manner. Furthermore, a sequence of 

iterates produced by the EM algorlthm o~ such a problem is likely 

to have relatively nlce convergence properties. 

In this section, we first determlne the special form which 

the EM algorithm tak~s for mixtures of densities from exponential 

families. We then look into the desirable properties of the 

algorithm and sequences generated by it which are apparent from 

this fo~m. Finally, we discuss several speclflc examples of the 

EM algor i thm for component dens Ities from exponential families 

which are commonly of interest. 

A very brief discussion of ~xponential families of densities 

1s in order. For an elaboration on the topics touched on here, 

the reader is referred to the book of Barndorff Nielsen [6]. A 

parametric family of densities q(xlo) , 6 £ n £ k R , on 

said to be an exponential family if its members have the form 

1 , , 

"I 

'I )' 

, : 

. · 
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aCe) - J 
Rn 

Rr d , an 

(5.1) 

aCe) ie given by 

for an appropr late under lying measure /.L on Rn. It is, of 

x € Rn and that course, assumed that b(x) ;> 0 for all 

aCe) < m for e £ n. Note that every member of an exponentlal 

family has the same support in Rn, namely that of the function 

b(x) 

The representation {5.l) of the members of an exponential 

family, in which the parameter 8 appears linearly in the 

argument of the exponential function, i6 called the "natur~l" 

parametrlzationi and e is called the "natural" parameter. If 

the set n is open and convex and if the component functions of 

t(x) together wlth the functlon WhlCh is identically 1 on Rn 

are linearly independent functions on the intersection of the 

supports of b(x) and /.L, then there is another parametrization 

of the members of the family, called the "expectatlo~" or "mean 

value" parametrlzatlon, 1n terms of the nexpectatlon" p~rameter 

p - E(t(X)18) a J t(X)q(XI8)d/.L. 

Rn 

Indeed, under these conditions on nand t(x) , one can show 

that 



..,,,. 

[E(t(x)lo') - E(t(X)IO)]T(O'-O) > 0 

whenever 9' ~ 9 and it follows that the assignment 

o ~ I' - E(t(X)IO) is one-to-one and onto from n to an open set 

In fact, the c"rrespondence OMp., E(t(X) 19) is a 

both-ways continuously differentiable mapping between nand n . 

(See Barndorff-Nielsen [6; p. 121].) So und~r these conditions 

on nand t(x) , one can represent the me~bers of the family as 

T 
p(xlp) - q(xlo(p» B a(p)-lb(x)e9 (p) t(x) , x £ Rn, (S.2) 

for I' £ n, where 9(.p) satisfies I' - E(t(x)lo(.p» and 

a(9(.p» is written as a(p) for convenience. Note that p(xlp) 

is continuously differentiable in I' since q(xlo) 15 

continuously differentiable in 9 and 0(1') 

differentiable in I' • 

is cOf,tinuously 

Now suppose that a parametr1c family of mixture densities of 

the form (1.1) is given, with 

"true" parameter value to be estlmated; and suppose that each 

component denSity is a me~er of an exponential 

family. Specifically, we al:!sume that each Pi(xlpi) has the 

"expectation" parametrlzation for 
n i R given by 

where is given by 

, I 
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n 1 and 8 1 : 0i"'~ H~re, Jl. is a measure on Rn 

appropriate for the mixture density p(xl~) : and it is understood 

th~t bi(x) ) 0 for x C R
n 

and that ai(~i) < m for ~1 € 01 • 

It is also assumed that the component functi~ns of ti(x) 

together with the function which is identlcally 1 on 

linearly independent on the intersection of the supports of 

u1(X) and Jl. and that the assignment Pi .. 6 1 (P i ) maps 01 to 

n 
a convex o~en set ni £ R i in a one-to-one, onto way so that 

These assumptions allow us to m.lk3 use of the 

"natural" parametrization of the family to which Pi(xl~i) 

belongs using the "natural" parameter 6 i - 6i(~i) • 

To investigate the speclal form and properties of the EM 

algor ithm for the given famlly of mlxture densities, we assume 

that ~l'··· '~m are mutually independent variables and consider 

for convenience a sample s - (x } 1 k k-l,···,N of Type 1. (A 

discussion similar to the following 1s valid mutatis mutandl0 for 

samples of other typet.) If 

current approXlmate maXlmlzer of the log-likelihood functlon 

Ll(~) given by (3.1), then the next approximate maximizer 

+ + + + + 
III - (a1.···'C%m'P1'···,Pm) prescribed by the M-step of the EM 

algorlthm satlsfles (4.5) and (4.6). For i - l,···,m , what 

in the sum 1n 

I 

I 

I 
I 
I 
i " 1 

I 
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(4.6) by its expreseion 1n the "natural" parametf4 r 9 i 
, 

differentiates with resoect to .!1 , equatos the 8um of 

derivatives to zeto, and finally restores the lIexpectation" 

paramet~ization, then that the unique + which one S60S Pi 

satisfies (4.6) is given explicitly by 

+ 
P -i (5.3) 

(As in the caso of (4.8) and (4.9), the factoru a~ are left 1n 

the numerator and denominator for aesthetic reasons only.) 

Not oraly are (4.5) and (5.3) easily evaluated and 

hourlstically appealing formulas for determining ~+ from ~c , 

they abo pr"vlde the key to a global convergence analysis of 

iteration sequenccs generated by the EM algorithm in the case at 

hand which goes beyond Thcorem 4.1. Theor~m 5.1 below summarizes 

such an analys 1 s . In order to make the theorem comp:ete and 

6clf-~ontalncd. s?me of the general conclu~ions of Theorem 4.1 

are repeated its statement. 

'I'heor em 5. l: Suppose that 

(4I(j) - (a
l
C), ••• a(j) .p(j) ••• .p(j)\} 1s a sequence 

m '1' , ffi ' )-0,1,2,··· 

1n n generated t:;.y the EM iteration (4.5) and (5.3). Then 

L
1

(¢I) incrcaseo rnonotonlcall}, on (4)(j)} to a 
j-O,1,2,··· 

* (possib!}p lnftnitc:) limit L 

contained 

Consequently, 

Furthermore, for each 1 , 

in the convex hull of 

the set ..p 
~ 

of all limit 

..... 
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pOlnts of 

equaticns 

{~(J)} 10 compact; 
J-0,112,··· 

(3.5) and (3.8) are satisfied 

and the likelihood 

on ;f. .. ~ no. If 

ct:. tl ~ , then * L is finite and each $ t:.:t. satisf les L($) * .. L 

and is a fixed-polnt of the EM iteration. Finally, lf 

at.. -.i £ 0 , then ~ is connected as well as compact. 

Remark: If the conver. hull of {t (x )} is contained in --- i k k-l,"',N 

01 for each i, then ~ ,,;f. -.l £ 0 and all of the conditional 

conclusions of Theorem 5.1 hold. The convex hull of 

{t (x )} is indeed contalned in 0i for each i in 1 k k-l,···, U 

many (but not all) applications. (See the examples at the end of 

this section.) 

+ Proof: One sees from (5.3) that for each i, Pi is always a 

convex combination of the values {ti(xk»k_l, .. ',N' and it 

follows that is contained in the convex hull 

of ( t (x )} foc each i. Since these convex hulls i k kosl,···, N 

are compact sets, one concludes that ~ is compa.ct. 

Now each density P1 (xlp i ) is contlnuously dlfferentlable 

in Pi on °i 
, a.iu so it is clear from (3.1) And (4.1) that 

L
l

(llI) and Ql(IlIIQ') are contlnuous 1n III and Ill' and 

d~fferentabl~ 1n P l ' ""P
M 

1n n. Furthermore, 1t is apparent 

from (4.5) and (5.3) that 1lI+ depends continuously on IlIc ; and 

one sees from the discussion following Theorem 4.1 that 

11m II III (j + 1 ) - III (j ) II - 0 1f ;;l. - Z .£ n . In 11ght of these 
j"'ao 

points, one verifies the remaining conclusions of Theorem 5.1 via 

r 

I 
I 

l 
I 
l 
I 

I 
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a straightforward application of Theorem 4.1 (including statement 

(vi)'): and the proof ia complete. 

One ca.n also exploit (4.5) and (5.3) to obtain a local 

convergenco result WhlCh goes beyond Theorem 4.3 for mixture 

density estlmation problems of the type now under considerat~on. 

Theorem 5.2 a~d its proof below provide not only a atronger local 

convergence statement than Theorem 4.3 for a seque~ce of iterates 

produced by the EM algorithm but also a means of both quantifying 

the speed of convergence of the sequence and gaining insight into 

properties of the mixture density which affect the speed of 

convergence. ThlS theorem is essentially the generalization of 

Redner [108] of the local convergence results of Peters and 

Walker [101] for mixtures of multlvariate normal densities, and 

its proof closely parallels the proofs of those results. 

Theorem 5.2: Suppose that the Fisher information matr ix I (<<%I) 

given by ( 2 • ~" • 1 ) is positive-definite at and that 
• * •• * «%I - (a ,···,a .p ••• .p) 1 m' l' , m 1s such 

i - l,···,m • For «%1(0) 1n n , denote by 

* that at > 0 

(<<%I(j)} 
j-O,l,2,··· 

for 

the 

sequence in n generated by the EM Iteratlon (4.5) and (5.3). 

Then with probability 1, whenever N is sufficiently large, the 

N N N N N unlque strongly conslstent solutlon ~ - (al,···,am,P1,···,.pm) of 

the llkellhood equations is well-deflned and there is a certain 

norm II· II on n in «hich (<<%I(j)} converges 'l'n~ar1y j-O,1,2,··· - -
to «%IN whenever «%1(0) is sufficiently near «%IN, i.e., there is 

a conntant ~, 0 ( ~ < 1 , for which 

, j 

I 
\ 

, I 

• 1 

, i 
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whenever ~(O) is sufficiently near ~N. 

306 

(5.4) 

Proof: One sees not only that Condition 2 of Section 3 15 

satisfied but also, by restricting n to be a small neighborhood 

* of ~ if necessary, that Condition 1 holds as well for the 

family of mixture densities under consideration. It follows from 

Theorem 3.1 that with probability 1, ~N is well-defined whenever 

* i- N is sufflclently large and converges to ~ QS N approaches 

infinity. It muat be shown that with probability 1, whenever N 

is sufficiently large, there is a norm 11·11 on n and a 

constant ~, a ( ~ < 1 , such that (5.4) holds whenever ~(O) is 

5ufficiently near ~N Toward this end, we observe that the EM 

iteration of interest is actually a functional iteration 

~+ - G{~c) , where G(~) is the functlon defined ln the obvious 

way by (4.5) and (5.3). Note that G(~) is continuously 

differentiable in n and that 
A 

any ~ which satisfies the 

likeli~ood oquatlons (3.5) and (3.8) (and $ - ~N in partlcular) 

lS a f lxed point of G(¢.) 
A 1\ 

1.0., ~ - G(~). Consequencly one 

can wrlte 

(5.5) 

for any ~c in n near ~N and any norm 1\. 1/ on n, where 

. , 
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G1 (4)N) denotes the Prcchet derlvative of C(4» evaluated at 

4)N. (For questions concerning Frechet derivatives, sec, for 

example, Luenberger [83J.) We will complete the proof by showing 

t.hat wlth probablllty 1, CI (4)N) converges as N approaches 

infinlty to an operator which has operator norm less than 1 with 

respect to a certain norm on n . 

For convenlence, we introduce the following notatlon for 

i-l,···rm : 

r 
! 
J n 

R 

m 
Regarding an element 4> € n as an (rn + 1: nil-vector 1.1 the 

i-l 

natural way, one can show via a very tedious calculatlon that 

m rn 
hae the (~+ 1: nt)x(m + r. nil matrix representatlon 

i .. 1 i-I 

j 
I 

I 
I " 

. · 
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where 

T T T 
Vex) - (Pl(x)"",Pm(x),alPl(x)~l(X) , .•. ,amPm(x)ym(x» . 

(Since ~N converges to ~* with probability 1, wo can assume 

that with probabil1ty 1, each is non-zero whenever N is 

sufficiently large.) 

Numbers (see 
/ 

Loeve 

It follows from the Strong Law of Large 

[a2}) that with probability 1, G,(~N) 

* converges to E[G'(~)] - I - QR , where 

and 

R - J V(X)V(x)Tp(xl~*)d~ 
Rn 

It is understood that in these expreesions defining Q and R, 

~N * and its components have been replaced by ~ 

components. 

It remains to be shown that thdre is a norm 

* 

and its 

11·1\ on n 

w1th respect to Wh1Ch E[G'(~)] has operator norm less than 1. 

Now Q and Rare pos itive-def inite symmetr ic operators "'l1th 

respect to the Euclidean inner product, and 50 QR is a 

POB1tive-def in1te symmetr 1C operator with respect to the Ulner 

product < . , . ) defined 

m 
(m + L n

i
) -",ectors U and W. 

i-l 

by for 

Consequently, to prove the 

theorem, it suff1ces to show that the operator norm of QR w1th 

respect to the norm def1ned by <.,.) 1S less than 1. 
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Since QR is postive-def inite symmetr ic with respect to 

(.,.) , we need only show that <U,QRU> «U,U) for an arbitrary 

(m + III T TT L nil-vector U - (Ol,···,Olll'~l,ooo'~m) 
i-1 

One ha.s 

The inequality is a consequence of the following corollary of 

Schwarz's lnequallty: 
m 
L 11 - 1 then 

i-l i 

( ~ ) Since 
"ii-l,"',m o 

If 11 1 ) 0 for i - l,···,m and if 

m 2 m 2 
{ L t i 11 i} ( L ~ 171 i f or all 
1-1 i-l 

J 'Yi (x)p i (xl.p~)d~ .. 0 , 

Rn 

one continues to obtain 

<U,QRU> <; J 
n 

R 

- <U,U> . 

• 1 
1 " 

i 
.l 

i 
, I 

:' 
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This completes the proof. 

It is instructive to explore the consequences of Theorem 5.2 

and the developments in its proof. One see~ from the proof of 

Theorem 5.2 that with probability 1, for s' ..... f lciently large N 

and ¢lCO) sufficiently near ¢IN , an inequality (5.4) holds in 

which 11·11 is the norm determined by the inner product <. , . > 

defined in the proof and ~ is arbitrarily close to the operator 

norm of E[G' (¢I*)] - I - QR determined by 11·11 • Since QR 1S 

positive-def1n1te symmetric with respect to (.,.), th1s 

operator norm is just p(I-QR) , the spectral radius or largest 

absolute value of an eigenvalue of I - QR . Thus w1th 

probability 1, one can obtain a quantitative estimate of the 

speed of convergence to ¢IN for large N of a sequence generated 

by the EM iteratlOn (4.5) and (5.3) by taking ~ .. p(l-QR) 1Tl 

(5.4). 

What properties of the m1xture density influence the speed 
N of convergence to ¢I of an EM iteration sequence for large N? 

Careful inspection shows that if the component populations in the 

mixture are "well separated" 1n the sense that 

* * Pi(XI P i ) PJ(XIPj ) 
"'-;;;---..,.F- * '" 0 for X € Rn, whenever i " j , 
p(xl¢l) p(xl¢I) 

then QR .. I It follows that p(I-QR) .. 0, and an EM 

iteration sequence which converges to ¢IN exhibits rapid linear 

convergence. On the other hand, if the component populations 1n 

the mixture are "poorly separated" in the senoe that, say, the 

" 



",II 

Ith and jth component populations are such that 

for X £ 

then R is nearly singular. One concludes that p(I-QR) - 1 in 

this case and that slow linear convergence of an El-l iteration 

aequence to 4.>U can be expected. 

In the interest of obtaining iteration sequences which 

converge more rapidly than EM iteration sequences, Peters and 

Walker [101], [102] and Redner [108] considered iterative methods 

which proceed at each iteration in the EM direction with a step 

whose leng.th is controlled by a parameter €. In the present 

context, these methods take the form 

(5.6) 

where 0(4.» is the EM iteration function defined by (4.5) 

(5.3). The ldea is to optimize the speed of convergence to 

of an iteration sequence generated by such a method for large 

by choosing to mlnimize the spectral radius 
, a 

and 

«%IN 

N 

of 

E[F€(<<%I )] - I - €QR As in [101], [102] and [108], one can 

easlly show that the optimal choice of c is always greater than 

one, lies near one if the component populations in the mixture 

are ·well-separated" in the above sense, and cannot be much 

smaller than two if the component populations are ·poorly 

separated" in the above sense. The extent to which the speed of 

convergence of an Iteratlon sequence can be enhanced by maklng 

----1 

i J 

11 
1 

f 1 I 

: J ... 

. 1 

. I 

\ 
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the optimal choice of £ in (5.6) is determined by the length of 

the subinterval of (0,1] in which the spectrum of OR 11es. 

(G~eater improvements in convergence speed are realized from the 

optimal choice of € when th1s subinterval is relatively narrow.) 

The applicat10ns of iteratlve procedures of the form (5.6) are at 

present incompletely explored and might \'1ell bear further 

investigation. 

We conclude this section by br iefly reviewing some of the 

special forms which tne EM iteration takes when a particular 

component density Pl (Xl.pi) is a member of; one ot the cornmon 

exponential families. We also comment on some convergence 

properties of sequences (.p(j)} 
i j-0,1,2,··· gener ated by the EM 

algor! thm in the examples cons idered. Hopefully, our comments 

will prove helpful in determining convergence properties of EM 

iteration sequences {~(j)} through the use of Theorem 
j-O,1,2, ... 

5.1 or other means when all component densities are from one or 

more of these example familles. 

Example 

natura.l 

1: Poisson density. 

cholce of 

In this example, n - 1 

Rl: 0 < Pi < co} 

1 -.pix 
P (xl.p ) - -- e .pi x - 0 1 2 ... l. 1. x! ' , , , 

and the EM lteration (5.3) for a sample of Type 1 becomes 

and a 

For 

" 



\ 

Note that 1s always contained in the convex hull of 

( X ) which is a compact subset of 01 Therefore, the k k .. l, - - - , N ' 

set of limit points of an EM iteration sequence 

(pl j
)}j-O,1,2,--- ia a nonempty compact subset of °1 -

Example 2: Binomial density_ Here, n" 1 and one naturally 

chooses 01 to be the open set (p 1 £ Rl: 0 < P 1 < l) • For 

Pi € 0i ' Pi(X!P i ) is given by 

! Yi x Yi-X 
Pi (x Pi) - (x) P 1 (l-p i) , x - 0,1, - - • , v 1 ' 

for a prescr lbed lnteger vi. In this case, the EM iteratlon 

(5.3) for a sample of Type 1 becomes 

is non-zero only if x - O,l,---,v i one sees 

from this expression that the set of limit pOints of an EH 

iteratlon sequence (p(j)} is a nonempty compact 
i j-O,1,2,---

1 subset of 0i - {Pi € R: 0 ( P
1 

( l) -

Example 1: 

0i - {Pi € 

Exponential density_ 

1 
R : 0 < Pi <~} - For 

Again, n - 1 and one takes 

, . 
J 

\ . , 
: ~ 
" ' 

, I 

i ' . . 
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The EM iteration (5.3) for a sample of Type 1 now becomes 

+ 
"'i -

and one sees that the set of limit points of an EM iteration 

seguence (pi j
)}j-O,1,2, ..• is a non empty compact subset of 0i. 

Exampl~!: Multivariate normal density. In this example, n is 

an arbitrary positive integer; and Pi is most conveniently 

represented as and io a 

positive-definite symmetric nl<n matrix. (Of course, this 

representation of Pi is not the usual representation of the 

"expectation" parameter.) is the set of all such 

and Pi(xlp i ) is given by (4.7). For a sample of Type 1, the EM 

iteration (5.3) becomes that of (4.8) and l4.9). 

One can see from (4.9) that each is 1n the convex hull 

of 

which, of course, are not positive definite. Thus there is no 
(j) guarantee that a sequence of matrices (E i }j-O,l,2, ... produced 

by the EM iterat~on will remain bounded from below. Indeed, lt 

has been observed in practice that sequences of iterates produced 

by the EM algorithm for a mixture of multivariate normal 

densities do occas lonally converge to "singular solutions I (cf. 



Duda and Hart [44]), Le., points on the boundary of 01 with 

associated singular matrices. 

It was observed by Hosmer [68] that if enough labeled 

observations are included in a sample on a mixture of normal 

densities, then with probability 1, the log-likelihood function 

attains its maximum value at a point at which the covar iance 

matrices are positive definite. Similarly, consideration of 

oemples with a sufficiently large number of labeled observations 

alleviates with probability 1 the problem of an EM iteration 

sequence having ·singular solutions· as limit points. Por 

example, if one considers a sample S - Sl U S3 which is a 

stochastically independent union of a sample 5 - {x } 1 k k-l,"',N 

of Type 1 and a sample 

the EM ite~ation becomes 

+ 
ILL -

+ 

m 
S - U (z ) of Type 3, then 3 ik k-l,···,K i-I .&. 

I I 

, , 
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m 
where K" 1: Ki . 

i-l 
One sees frOffi the expreeaion for 1:+ that 

i 

1:~ 1s bounded below by 

which ia 1n turn bounded below by 

where 

Now this last matr ix is positive-def inite with probability 1 

whenever Consequently, if then w1th 

probab111ty 1, the elements of a sequence (t(j)} 
1 j-O,l,2,··· 

produced by the EM algorithm are bounded below by a positive 

definite matrix; hence, such 11 ooqucnce cannot have singular 

matrices as limit points. 



6. Performance of the E~t ~ ')r ithm 

In this concluding section, we review and summarize features 

of the EM algor ithm having to do with its effect t.veness in 

practice on mixture density estimation problems. As always, it 

is understood thdt a parametric family of mixture densities of 

the for'll ( 1.1) is of interest ar.i that a particular 
t t t t 

- (a l • ...• am·~l·····~m) 1s the "true" parameter value to be 

estimated. 

In order to provide some pers~ective. we begin by offering a 

brief descrlption of the most basic forms of several alternatlve 

methods numerically approximating maximum-likel1hood 

estimates. In describ:ng these methods, it is assumed for 

convenience that the sl\mpl~ at hand is a sample 

S - (x } of Type 1 described in Section 3 and that one 1 k k-l,···.N 

can wr ite as a vector Q - of unconstrained 

scalar paramer .. ts at points of interest in n. Each of the 

methods to be descr ibeu oeeks a mQxlmum-l1kcllhood est1mate by 

attempt1ng to determlne a point a such that 

(6.1) 

whcte Ll(~) 1S the log-llkelihood function glven by (3.1). The 

features of the methods which concern us here are their speed of 

convergence, the computat1on and storage required for their 

implementation, a~d the extent to which their basic forms need to 

be modi! led in order to make them effective and trustworthy in 

j • 
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The first of the a!ternative methods to be descr ibad 1S 

Newton I 5 method. It is the method on which the othel: methods 

~eviewed he~e are modeled, and it is given as follows: Given a 

current ap~roximation 

next approximat1on ~+ by 

of a solut ion of (6.1), deterlnln'3 a 

(6.2) 

The function H(~) 

given by (3.10). 

in (6.2) is the Hess ian rnatr ix of Ll (~) 

Under reasonable assumptions on Ll(~) , one can show that a 

sequence of 1teratea {~(j)} produced by Newton's J .. O,l,2, •.. 
method enjoys quadratic local convergem'e to a solution $ of 

(6.1) (see, for example, ortega and Rheinboldt [95). This is to 

say that given a norm II· II on n, there is a constant P such 

that if ~(O) 1\ 1S sufficiently near ~ , then an inequality 

(6.3) 

holds for j .. 0,1,2,.... Quadratic convergence is ultimately 

very fast, and it i6 regarded as the major strength of Newton's 

method. Unfortunately, there are aspects of Newton's met~~d 

which are assoclatcd with potentially severe problems in some 

applications. For one thing, Newton' 6 method requires at each 

iteration the computation of the v ~ v HeSSlan matrix and the 

solution of a system of v linear equations (at a cost of O(v 3 ) 



arithmetic operations in general) with this Hessian as the 

coefficient matrix; thus the computation required for an 

iteration of Newton's method is likely to become expensive very 

rap1dly as m ,n, and N grow large. (It should also be 

ment10ned that one must allow for the storage of the Hessian or 

some set of factors of it.) For another thing, Newton's method 

in its basic form (6.2) requires for some problarns an 

lmpract1cally accurate in1t1al approx1mate solut1on 

order for a sequence of iterates {~(j)} 
j .. O, 1, 2, ••• 

~(O) in 

to converge 

to a solution of (6.1). Consequently, in order to be regarded as 

an algor1thm which is safe and effective on applicat10ns of 

interest, the basic form (6.2) i6 likely to require augmentation 

with some procedure for enhancing the global convergence behavior 

of sequence3 of 1terates produced by 1t. Such a procedure should 

be designed to insure that a sequence of iterates not only 

converges but also does not converge to a solution of (6.1) which 

Is not a local maXlmum of Ll(~) . 

A broad class of methods which are based on Newton's method 

are quas1-Newton methods of the general form 

(6.4) 

1n Wh1Ch B 1S regarded as an approxlmat1on of H(~c) . Methods 

of the form (6.4) which are particularly successful are those in 

WhlCh the apprOXlrnatlon B'" H(ctl
c ) is ma1nta1ned by d01ng a 

secant update of B " at each iteration (see Denn1S and More [40] 

or Dennis and Schnabel [41]). In the applications of interest 

I J I 
\ I I' 

I I 

• 1 
\ I I I, 

i ..... , . 
I 
I 

I ' 

. i 
I 
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hete, such updates are typically tealized as tank one OJ: (more 

likely) rank two changes in B. Methods emploYlng such update, 

have the advantages ovel. Newton's method of not requir ing th( 

evaluation of the Hessian matrix at each itetation and of being 

implementable in ways which require only O(V
2 ) arithmetic 

operations to '3olve the system of v linear equations at each 

itetation. The price paid for these advantages is that the full 

quadratlc convergence of Newton's method is lost: rather, under 

reasonable assumptions on Ll(~)' a sequence of iterates 

(~(j) ) produced by one ()f these methods can only be j-0,1,2, ... 

shown to exhlbit local Duperlinear converg~nce to a solution $ 

of (6.1), i.e., one can only show that if a norm 11·1\ on n is 

given and if ~(O) 

approximate Hessian 

is suff iciently near 

B(O) is sufficiently 

S (and an initiaJ 

neat H($» then 

there existe a sequence (P j }j-0,1,2, ... which converges to zero 

and is such that 

for j - 0,1,2, .... Like Newton's method, methods of the 

general form (6.4), including those employing secant updates, arc 

likely to require augmentation with safeguards to enhance global 

convergence properties and to lnsure that lterates do not 

converge to solutions of (0.1) which are not local maxima of 

Finally, we describe a particular method of the form (6.4) 

which is specifically formulated for solving l!kel1hood 

f' 
I 

1.. 
I 

\ 
I 
I 
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equations. This is the method of scoring, mentioned earlier in ri 
connection with the work of R~o [107] and reviewed in a general 

setting by Kale [74], [75]. (ICale [74], [75] also dlscus5es 

modif i..;ations of Newton's method and the method of scor ing in 

which the Hessian matrix or an approxlmation of it is held fixed 

for some number of ltcrations ln the hope of reducing overall 

computational effort.) In the method of scor ing, one ideally 

chooses B in (6.4) to be 

c B ... -NI (~ ) , (6.5) 

where I(~) is the Fisher information matrix given by (2.5.1). 

Since the computatlon of I (<b
c ) is likely to be prohibitively 

expensive for most mixture density problems, a morr. "r'l.ealing 

choice of B than (6.5) might be the sample approximatlon 

B - (6.6) 

The cholce (6.6) can be justified in the followlng manne~: The 

Hessian H(~) is given by 

+ 
N 1 T 
1: ( l¢l) v..,v..,p(xklell) . 

k-l P xk ........ 
(6.7) 

t. 
Now the second sum in (6.7) has zero expectatlon at ell - ~ 

furthermore, Slnce the terms Velllog p(xklell) must be computed ln 

{ I 

" I 

.. 
I 

-, . 
• 1 
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t 
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order to obtaln V~Ll(~) , tho first sum in (6.7) is available at 

the cost of only O(Nv l ) arithmetic operations while determinin9 

the second sum i8 likely to involve a great deal more expense. 

Thus (6.6) 1s a choice of B which is readily available at 

relatively low cost and which is likely to constitute a major 

when N is large and ~c * io near ~ It is 

rlear from this discussion that the metnod of scoring with B 

given by (6.6) is an analogue for general maximum-likelihood 

estimation of the Gauss-Newton method for nonlinear leaet-squares 

problems (see Ortega and Rheinboldt [95]). If the computation of 

is not too expens iva, then the choice of B g ivan by 

(6.5) can be justified in much the same way. 

The method of scor ing in its basic form requires O(Nv
2

) 

arithmetic operations to evaluate B given by (6.6) and O(v
3 ) 

arithmetlc operatlons to solve the system of v Ilnear oquations 

implicit in (6.4). Since these O(NV
2

) arithmetic operations 

are likely to be considerably less expensive than the evaluation 

~f the full Hessian given by (6.7), the cost of computation per 

iteration of the method of scoring lies between that of a quasi-

Newton mothod employing a low-rank secant update and that of 

Newton's method. Under reasonable assumptions on Ll (~) , one 

can show that with probability 1, if a solution $ of (G.l) is 

* sufflclently near ~ 

sequence of iterates 

and if N is sufflciently large, then a 

{~(j)} generated by the method 
j-O,1,2, ... 

of scoring with B given by either (6.S) or (6.6) exhibits local 

linear convergence to $, i.e., thore is a norm II· \I on nand 



a constant ~, 0 < k < I , for which 

whenever is sufficiently near $. 

(6.8) 

If $ 1s very near * o 

and if N is very large, then this convergence should be fast, 

i.e., (6.S) should hold for a small constant k. Llke Newton's 

method and all methods of the general form (6.4), the method of 

scoring is likely to require augmentatlon wlth global convergence 

safeguards in order to be consldered trustworthy and effective. 

Having reviewed the above alternative methods, we return now 

to the EM algorithm and summarize its attractive features. Its 

most appealing general property is that it produces sequences of 

iterates on which the log-likelihood function increases 

monotonically. This monotonlcity is the basis of the general 

convergence theorems of section 4, and these theorems reinforce a 

large body of empir ical eVldence to the effect that the EM 

algorithm docs not require augmentation with elaborate safeguards 

such as those necessary for Newton I s method and quasi-Newton 

methods in order to produce lteratlon sequences with good global 

convergence characterlstlcs. 

More can be said about the EM algor ithm for mixtures of 

dcnsltles from exponent,ial famllles under the assumption that 

PI' ... ..I'm are mutually independent var 1ables. One sees from 

(4.5) and (5.3) and slmllar expresslOns for samples of types 

other than Type I that it is unlikely that any other algor ithm 

I , 
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would be nearly as easy to encode on a computer or would requir.· 

as little storage. In view of (4.5) and (5.3), it also seem:. 

that any constraints on ~ are likely to be satisfied, or at 

least nearly satisfied for large samples. For example, it it; 

+ clear from (4.9) that each £i generated by the EM algorithm for 

a mixture of multivariate normal densities is symmetric and, with 

probability 1, positive-deflnite whenever N > n Certalnly the 

mixing proportions generated by (4.5) are always non-negative and 

sum to l. It is also apparent from (4.5) and (5.3) that the 

computational cost of each iteration of the EM algorithm is low 

compared to that of the alternative methodq reviewed above. In 

the case of a mixture of multivar iate normal densities, for 

example, the EM algor ithm requires 

operations 

[Ol(m2n4N) + 

scoring and 

per iteration, compared 

02(m3n6
)] for Newton's method 

[01 (mn2N) + 02. (m2n 4) ] for a 

arithmetic 

to at least 

and the method of 

quasi-Newton method 

employing a low-rank aecant update (All of these methods 

require the same number of exponential function evaluations per 

iteration.) Arithmetic per iteration for the three latter 

methods can, of course, be reduced by retaining a fixed 

approximate Hessian for some number of iterations at the risk of 

in~reasing the total number of iterations. 

In spite of these attractlve features, the EM a1gorlthm can 

encounter problems in practice. The source of the most serious 

practical problems associated with the algorithm is the speed of 

convergence of sequences of iterates generated by it, which can 



often be annoyingly or even hopelessly slow. In the case of 

mixtures of densities from exponential families, Theorem S.2 

suggests that one can expect the convergence of Et.f iteration 

sequences to be linear, as opposed to the (very fast) quadratic 

convergence associated with Newton's method, the (fast) 

super linear convergence associated with a quasi-Newton method 

employing a low-rank secant update, and the (perhaps fast) Ilnear 

convergence of the method of scoring. The discussion following 

Theorem 5.2 suggests furthe~ that the speed of this linear 

convergence depends in a certain sense on the separation of the 

component populatlons in the mixture. To demonstrate the speed 

of this linear convergence and its dependence on the separation 

of the component populations, we again consider the example of a 

mixture of two univariate normal densities (see (1.3) and (1.4». 

Table 6.1 below summarizes the results of a numerical 

experiment involvlng a mlxture of two univarlate normal densltles 

* lor the cho lces,Jf ~ appear lng in 'l'able 3.3. (These choices 

* * it 
0

2 2 were obtained as before by taklng a l - .3 , 
1 - O2 - 1 , and 

* it 
vatying the mean separatlon ~l - ~2 . For convenience, we took 

* * ~2 - -JL l . ) In thls eX[Jerlment, a Type 1 sample of 1000 

observations on the mixture was generated for each cholce of 

* c%> and a sequence of iterates was produced by the EM algorlthm 

(see (4.5), (4.8), and (4.9» from startlng values 
a(O) (0) ~(O) it ~(O) it 

a 2 - .5 , - 1.S~l - 1. 5~2 and 1 1 , 
2 , 

2(0) 2(0) 
.5 An accurate detcrminatlon of the limlt of °1 - °2 -

the sequence was made in each case, and observations were made of 

( . 
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the iteration numbers at which various degrees of accuracy werl' 

first obtained. These iteration numbers are recorded in Tabl!' 

G.l beneath the co~responding degrees of accuracy; in the table, 

-E- denotes the largest absolute value of the components of the 

difference between the indicated iterate and the limit. In 

addition, the spectral radius of the derlvative of the EM 

iteration function at the limit was calculated in each case (cf. 

Theorem 5.2 and the following discussion). These spectral radii, 

appear ing in the column headed by "p" in Table 6 .1, provlde 

quantitative estimates of the factors by which errors are reduced 

from one iteration to the next in each case. Finally, to give an 

idea of the pOlnt in an iteration sequence at which numer lcal 

error first begins to affect the theoretical performance of th~ 

algor ithm, we observed in each case the iteration numbers at 

which llss of monotonicity of the log-llkelihood function flrst 

occurred; these iteration numbers appear in Table 6.1 in the 

column headed by "U1". 

In prepar ing Table 6.1, all computing was done in double 

precision on an IBM 3032. 3 Eigenvalues wp.re calculated with 

EISPACK subroutines TREDI and TQLl, and normally diatributed data 

was obtained by transforming uniformly distributed data generated 

by the aubroutine URAND of Foroythe, Malcolm, and Moler [46] 

based on suggestions of Knuth [79]. 

3. We are grateful to the Mathematics and statlstics Department 
of the Unlverslty of New Mexico for providlng the computing 
support for the generation of this table. 



* * E<10-1 E<10-2 E<10-3 E<10-4 E<10-5 E<10-6 E<10-7 E<10-8 
l1l -11 2 LM p 

0.2 2078 2334 2528 2717 2906 3095 3283 3472 3056 .9879 

0.5 710 852 985 1117 1249 1381 1513 1643 1361 .9827 

1.0 349 442 526 610 693 777 861 949 779 .9728 

1.5 280 414 537 660 783 906 1028 1151 887 .9814 

2.0 126 281 432 582 732 883 1033 1183 846 .9849 

3.0 2 31 62 93 124 155 185 216 173 .9280 

4.0 1 6 16 25 35 44 54 63 55 .7864 

6.0 1 1 2 3 4 5 7 8 8 .2143 

Table 6.1: Results of applying the EM algorithm to a problem involving a Type 1 
sample on a ~ixturp. of two univariate normal densities with 
* 2* 2* 

cl • .3 t 01 a 02 - 1 • 

A number of comments about the contents of Table 6.1 are in 

order. Firat, it is clear from the table that an exorbitantly 

large number of EM iterations my be required to obtain a very 

accurate numerlcal approxlmatlon of the maximum-llkellhood 

est lmate if the sample is from a mixture of poorly separated 

component populations. However, in such a case, one sees from 

Table 3.3 that the varlance of the estlmate is llkely to be such 

that it may be pointless to seek very Much accuracy in a 
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nume~ica1 approximatlon. Second, we remark on the p1easlng 

consistency between the computed values of the spect~a1 radius of 

the de~ivative of the EM ite~ation function and the differences 

between the ite~atlon numbers needed to obtain varying degrees of 

accuracy. What we have in mind is the following: If the errors 

among the members of a linearly convergent sequence are reduced 

more or les3 by a factor of p, 0 ( p < 1 , from one iteratlon 

to the next, then the number of iterations f1k necessa~y to 

obtain an additional decimal digit of accuracy is given 

approximately hy f1k - log 10/10g p. This relationshlp between 

f1k and p is bo~ne out very well in T~b1e G.1. This fact 

strongly suggests that afte~ a number of EM iterations have been 

made, the errors in th~ iterates lie almost entirely in the 

eigenspace corresponding to the dominant eigenvalue of the 

derivative of the EM iteration function. We take thlS as 

evidence that one might very profitably apply simple relaxation

type acceleration procedures such as those of Peters and Walker 

[101], [102] and Redner [lOB] to sequences of iterates generated 

by the EM algorith~. 

Third, in all of the cases listed in Table G.l except one. 

we observed that over 9S percent of the change in the log-

likelihood function between the starting point and the limit of 

the EM lteratlon sequence was reallzed after only five 

iterations, reqa~dless of the nUr.'Iber of iterations ultimately 

required to approximate the limit very closely. (The exceptional 

* * case 15 that 1n Wh1Ch ILl - #1 - J.. 0 in that case, about B3 

" 



pel cent of the change in the log-likelihood fUnction was observed 

aftel five iterations.) This suggests to us that even when the 

component populations in a mi~ture are poorly separated, the EM 

algorithm can be expected to produce in a very small number of 

i~crations parameter values such that the m1xture density 

determined by them reflects the sample data very well. Fourth, 

it is evident from Table 6.1 that elements of an EM iteration 

sequence cont1nue to make steady progress tcward the lim1t even 

after numerical error has begun to interfere with the theoretical 

properties of the algor1thm. 

Fifth, the apparently anomalous decrease in p occurr ing 

* * when #1 - #2 decreases from 2.0 to 1.0 happened concurrently 

with the iteration sequence limit of the proportion of the first 

population 1n the mixture becoming very small. (Such very small 

* limit proportlons contlnued to be observed in the cases #1-
.. 

#2 - 0.5 , 0.2.) We do not know ~hether thlS decrease in the 

limit propoltion of the fir~t population indicates a sudden 

* * movement of the maxlmum-l1kel1hood estlmate as ILl - #2 drops 

below 2.0 or whether the iteration sequence limlt is something 

other than the maxlmum-llkellhood estimate ln the cases 1n which 

.. * ILl - #2 io less than 2.0. Finally, we also cond:Jcted more 

than 60 trials similar to those reported on in Table 6.1 except 

with samples of 200 rather than 1000 generated observatlons on 

the mixture. The results were comparable to those given ln Table 

£>.1. I t should be ment ioned, however, that trle EM iter at lon 

sequences obtained uSlng samples of 200 observations dld 



occasionally converge to "singular solutions," i.e., llmlt· 

associated with zero component var iances. Convergence to sue!. 

·singular solutions" did not occur among the relatively small 

number of trlals lnvolvlng samples of 1000 observatlons. 

At present, the EM algorithm is being widely applied not 

only to mixture dens lty estimatlon problems but alt.o to a wlde 

var iety of other problems as well. We would like to conclcde 

this survey with a little speculation abuut the future of the 

algor ithm. It seems likely that the El-i algotl.thm ln its ba3ic 

form will find a secure niche as an algorithm useful ir 

situations in which some resources are limited. For example, t~e 

limited time which an exper imenter can afford to spend wr itlng 

programs coupled with a lack of available library software for 

safely ann efficiently implementing competing methods could make 

the B impll. l..:' and reliab1llty of the EM algor ithm very 

appealing. the EM algorithm might be very well suited for 

use on small computers for. which limitations on progrru~ and data 

storage are more stringent than llmitatiol1s on computing time. 

Although meaningful comparison teats have net yet bee~ made, 

it seems doubtful to us that the unadorned EM algorithm can be 

competitive as a general tool with well-designerl general 

optimization algorithms such as those lmplemented in good 

currently-avallable s~ftware llbrary routlnes. Our doubt is 

based on the intolerably olow convergence of sequences of 

iterates generated by the EM algorithm in some applications. On 

the other hand, 1t 1S entltely possible that trc EM algorithm 

..... 
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could be m~dif1ed to incorporate procedules for ticcelerating 

convergEnce and that 6uch mod~fjcation would enhance 1ta 

corr.petith"ness. It is also possible that an effective hybr1d 

algorithm might be constructed which first takes advantage of the 

good global convergence proportles of the EM algorithm by uSlng 

it initially and then exploits the rapid local convergence of 

Newton' s method or one of i t3 var lants by switching to such a 

method later. Our ('el1ng is that time m1ght w~ll be spent on 

research addressing these possibilities. 
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. ABSTRACT ~ J 

: 1 

i 1 
"Krl.ging" is the name OF a parametric regression method 

uscrl by hydrologists and mining engineers, among others. Features 
• I 
t 

"-, 

of th~ kri~ing approach are that it also provides an error estimate 
1 

and that it can conveniently be employed also to esti~ate the 

l.ntegral of the regressl.on function. 1 
1 

In the present work, we describe the kriging method and explore 

some of its statistical characteristics. Also, some extensions 

1 
1 

! 
1 
I 

of the i'latson rr'ethod are made and th~ory so that it too displays 

the krl.gl.ng features. Theoretl.cal and com~utational comparl.sons 

of the krigl.ng and Watson a~praocht·s are off~red. 
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Regress~on Methods for Spat~al Data· 

by S. Yakowitz and F. Szidarovszky 
Systems £ Industr~al Eng~neer~ng Department 

Un~versity of Arizona 

1. Bnckground and Scooe of this Study 

""' ... 

Specialists in hydrology, mining, petroleum engineering, and 

other geosc~ence-based subJects have recently exhibited cons~derab1e 

~nterest and enthus~asm for a methodology known as "krig~ng". To 

name only a few recent (Mostl~' water-resource oriented) works, we 

mention in th~s regdrd, Bakr et al (1978), Chir1in and Dagan 

(l98G~, ~av~d (l!:l77), Delhom.'ne (1978, 1979), Dendrou and Houstis 

(l978), Gambolat~ and Giampero (1979), Gambolat~ and volpi (1979), 

Gelhar et al (1979), HuiJbresr~ (1978), Journel (1974, 1977), 

Journel and HU~Jbregts (19i8), dnd V~lleneuve et al (1979). The 

name "Kr~g1ng" der1ves, accord~ng to Journel (1977), from Kr~ge (1951), 

where the bas1c 1dea \.,as f1rst outlined. l1atheron (1963) should 

be credi ted \~·1 th .lts early dissem1na tion. In the pn'sent sect1on, 

we w~ll carefully examine the statistical problems wh1ch the 

K~ig1ng method 15 intended to solve, and 1n Sect10n II, we w~ll 

reveal the popular krig1ng algor1thms themselves and der1ve the~r 

properties. It tu~n5 cut that there are certain unsat1sfactory 

aspects to the current kr1g1ng te~hn1ques, and yet pr10r to the 

present study, they appear to be the only methods appropriate for 

the problems 1~ the1r domain. However, methods of nonparametr1c 

regression are certa1nly somewhat relevant. In Sect~on III, we 

have prov.lded ~n extens10n of nonpara~etr1c regression theory to 

1ncrease ltS relevance to kr1q1ng problems. 
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Lat f(x} and n(x) be uncorrelated real-valued functions defined 

on a domain X ir Rm. N Suppose {(x.,y.}}. 1 is a sequence of "noisy" - l. l. l.= 

function pairs; that is, suppose 

y. = f(x.} + n(x.}, l<i<N. l. l. l. 
(1.1) 

The interpretation is that f(x) is a function whose values are to 

be estimated, and n(x) represents a noise if a 

measurement is taken at position x. We discuss below two problems 

Wh1Ch are central to the kriging literature: 

Problem 1: Let X*EX be specified. It mayor may not be among the 

sample pairs. On the basis of the sample pairs (xi'Yi}}i~l' 

Ca) Provide an e~tl.mate fN(x*) of fex*), and 

(b) Provide an estimate of the expected squared error 

(1. 2) 

ReMarks. The goal of part (a) coinc1des w1th the obJectives of 

"~on?a~a~et~ic regressl.on" methods, but to our knowledge, 1nvesti-

gato~s 1n thl.S latter area have not concerned themselves wlth task 

(b). Because pract1tl.Oners des1re to estimate piezometric head 

1n 01: a~d water aqul.fers or the grad~ of an ore body as a function 

of ~os~~1on, the d1mepsl.on m of the doma1n X ~s often 2 or 3. 

Problem 2. Let {(x ,y )}'~l be as above and let 0 be a subreg10n 
1 1 1= 

0:: dcmal.~ X. 

(~) =3t~mate the integral !=(x)dx, a~d 
o 

l!:> ) ex:::ec~cd sq'..l.are 

r 
I 
I 
I 
I 
I 
i' 
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Remark. An application motivat~ng Problem 2 is that of est~mating 

the total we~ght of metal which can be extracted from the ore body 

occupying volume 0, ~iven ~rnperfect assay estimates of the grade 

at distinct locations. 
forestry and 

Problems 1 and 2 seem to have their roots in theVgeostat~stics 

literature. In fact, it seems that "geostatistics" is almost synon-

yrnous with kriging. We have I"O doubt that ::>ro!Jlems 

1 and 2 are ~rnportant and interesting. In this connection, in a 

review of a geostatistics book, Watson (1977) has written, "The 

time is certainly ripe for a more serious attack on the estimatio~ 

of the earths' resources, ••. " 

2. Introduction to Kriging Methodology 

In the kriging ap?roach, it is presumed that f(x) and n(x) in 

(1.1) are realizations of stochastic processes uncorrelated from 

one anot~er w~th fin~te second moments. It is further assumed that 

f(x) ~s a real~zat~o~ of an ~ntr~nsic random funct~on (IRF)i that ~s, 
J perhaps unknmvn 

for some functions [¢. (x)} 1 known to the user and/constants 
~ ~= 

a
l
,· •• , a

J
, for all x, h such that x# 5+h~X, 

J 
E[f(x+h)-f(x)] = E a.(~ (x+h)-~)(x» 

)=1 ) J 
(2.1) 

and, ~ndeoendently of x w~th "var" sign1fy~ng "var~ance", 

1/2 var [f(x + h) - f(x)] = y(h). '(2.2) 

?~e constant5 {~.: l<~<J} and the funct~on y(c) arc quantit~c~ J -.1-

wh~ch must be inferred froM the data {(X~'Yi)}i~l' In what follows, 

it ~s ?resumed always that J<N. The funct~on y(h) ~s called the 

var~ograrn. Even i~ the case in wh~ch the mean E[f(x)] ~s known 

to be constant in x (i.e., J=l, 01 = 1), the hypothesis of 

l 
.-..-........~~_---:. ..&.a 
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"intrinsic random function" is weaker than second-order stationarity. 

For example, Brownian motion is an intrinsic random function, 

but it is well-known to be a nonstationary process. 

n 
! 1 

1 

I 

1 
I 
1 
1 

l 
I 
I . , 

The kriging method is composed of two activities, (i) Inferring 

the variogram from the data, and (ii) Assuming that the inferred 

I, i 

,i I '. 

variogram is indeed exact, providing a best linear unbiased 

estimator and associated error variance, as required by Problem 

1 or Problem 2. 

Activity (ii) is a standard least-squared problem, and is 

consequently by far the best understood of the two facets of 

kriging. There ar~ some ~nconsistencies in the fundamental 

defin~tions and results in the kriging literature. For example, 

the definitions of "~ntrinsic random function" given by David (1977) 

and Matheron (1971) do not co~ncide. The discussions of noise 

and the "nugget effect" have likewise been inconsistent. The 

• 1 

\ ' 
1. 

i 1 
I I 

-. . 
equat~ons for kriging in the presence of noise as given by Rendu (1980) ' .• 

for example, agrees with our calculations, but differs from formulas 

offered by other authors (e.g., J,urna1 (1978»). In v~ew of these 

~ncons~stencies, we have elected to derive the "universal kriging" I 
equations for prediction w~th known variogram from first principles. 
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Linear esti~ation from known varioqrams 

To begin w1th, suppose the noise term in (1.1) is zero. Let 

us assume that the variogram y(h) and the mean funct10n components 

t~i(x)}, of the expectation (2.1) are given. The assumption that 

one of these funct10ns, say ~l' is 1, seems to be a universal 

and perhaps unavoidable assumption which we also will adopt. To 

begin with, let us d1scuss the solution of Problem 1. The object1vc 

is to choose the parameters {\i}1~1 so that the linear estimator 

(2.3) 

m1n1mizes 

E [ (f (x*) - fN (x*' ) ) 2} , (2.4a) 

subJect to 

F[iN(x*)] = E[f(x*)]. (2.4b) 
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In view of the assumed form (2.1) of the mean value function, a 

sufficient (but not necessary) condition for the unbiasedness 

equation (2.4b) to hold is that 

N 
r L¢ (x.) = cp.(x*), l<;<J. 

i=l ~ J ~ J ---

Equation (2.5) with CPl = 1, implies that 

N 
1: X. = l. 

i=l ~ 

(2.5) 

(2.6) 

Use this fact, with the unbiasedness of the estiMator fN(x*) of 

f(x*) = f*,to conclude that, with "cov" s~gnifying "covariance", 

N 2 :1 
E[(f* - I: X.y ) ] = var(f* - 1: X.y.) 

i=l ~ ~ i=l ~ ~ 

= I: I: LX cov[ (f* - Yi)' (f* - Y
J
)]. 

i j ~ J 

Now observe that 

(2.7) 

Cov[(f*-vi ), (f*-Yj)] = 1/2 [-var«f*-Yi) - (f* - y)) 

+ var(f*- y.) + var(f* - y)] (2.8) 
~ J 

= -y(x. - x ) + y{x* - x ) + y(x* - x '. 
~ J 1. J 

0r.e ~a~es these subst1.~ut~or.s into ().7) ~~M a~ter some algebra, 

sees that the Lagrange mult1.pl1.er techn~que for m~nirnizi~g 

E[(f(x*) - f (x*»2) subJect to (2.5) Y1.elds 
N 

N J 
r ": .. :( (x - x •. ) 
~=l" 1. f\. 

= '( (x. - x*) + :: ~ ¢. (x. ), 1< l.<N 
1. j=l J J 1. 

N 

(2.9a) 

(2.9b) 

I i 

n I i 
: j I 1 
~ I 1 

I . 
: I I I 
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The variables u are the Lagrange multipliers. Journel (1977) 
J 

calls the above linear equation the universal kriging system. 

FroM substitution according to (2.9) into (2.7), one con-

eludes that the mean squared prediction error is given by 

l-J 
r ;l,.. y (x* - x.) 

i=l ]. ]. 

J 
- r J,I.4>(x*) 

j=l J 
(2.10) 

If the noise term n(x) in (1.1) has zero mean, one accounts 

for its presence by noting that, because it is presumed uncorrelated 

from the f-process, 

cov«f* - y.),(f* - y» = cov«f* - =]. - n.),(f* - f. - n.» 
]. ]. J J 

= cov«f* - f.),(f* - f.» + cov(n.,n.). 
l. J ]. J 

In the above equation, we have, of course, intended that ni signify 

nCx].). As a result of the above, one readily sees that in the 

presence of noise (2.9a) should be replaced by (2.9'a): 

N 
r ;l,.k(Y(x. - xk ) -2cov(n(x]..)n(xk » = 

k=l ]. 

J 
+ : Jl.¢ (x.), l<l.<N. 

j=l J J]. - -

y(x. - x*) 
l. 

(2.9'a) 

Let us now ].nvestl.qate the modifications necessary for solut].on 
replace 

of Problem 2 described in Section 1. ~ssume fdx=l. In this case, we A 
D 

the ob]ectl.ve (2.4) by the task of minimizing 

E [ (f f (x) dx - n y.) 2] 
o l. ]. (2.11a) 

subJect to 

E[rA].y J = E[ff(x)dx). 
l. 0 

(2.11b) 

The precedl.ng krl.ol.ng analysl.s leads,in the integral estimatl.on 

case, to the followl.ng universal kriging system: 
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(2.12) 

The expected squared error of the integral estimate is given 

by 
N 
I: Ai/y(x.-X)dx 

i=l D l. 

J 
(2.13) 

- t ~ /~. (x)dx-//y(x-x')dxdx' 
j=l J D J DD 

Inference of the variogram 

The task of inferring a covariance function or power spectral 

density from data is known by experienced statisticians to be some-

what delicate, and one which furthermore requires a considerable 

quant1ty of data. The subtlet1es of the covariance inference 

~roblem translate directly to the task of inferring a variogram 

from data. 

There are some very real difficulties with variogra~ estimation 

in the published kr1g1ng app11cations. To avoid effects of "non

stationarity", pract1tl.Oners tend to have a single variogram apply 

onlv to a relatively small reqion X of domain p01nts of f(x). More-

over they have not developed procedures to ascertain whether the 

1ntr1nS1c random function hy?~t~esis 1S tenable for the1r aoplica-

tions. A particular difficulty il:; that in the iJounueu Jomain case, 

Co~s15tency. To our knowledge, w1th the except10n of certa1n extreme 

cases such as wh1te r.oise, no met~ods for inferr1ng the covar1ance 

=unct10n from sample pa1rs {(x" f(x~)}}, fell a fixed sample fUnctior., 

- ....... ..-~ -- - - ___ "".-w __ ...... _-...z......... ~_ ..... __ • __ ~ £ ~ ____ ,_ .... 
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are known to be consistent. 

We now concern ourselves with outlininq the present practice 

with regard to varieqram inference. The recommended procedure 
parametr:o.c 

is to choose aAfamiiV of var~oarams from the five or six pooular 

families ~entioned in the literature, and then to select the 

variogram from the chosen family which agrees best, in some sense, 
N 

with the covariance function constructed from the data {(x.,y.)} • 
~ ~ i=l 

We list ~n Table 2.1 some of the prom~nent variogram families. 

Mono~ial ye(h) = 00 Ihl
a 

={;[~ I~I ~(1~1)31 h< a 
Spherical Ye(h) 

00, h>a 

Exponential ye(h) = 00 [l-exp 

Gaussian Y 9(h) = 00 [l-exp 

where 9=(a,w} 

Table 2.1 

A Listing of Popular 
Variogram Fam~l~es 

(-Ihl/a)] 

(-lhI 2/a2 )] 

There ~ecr.~ to bo nn eensensus in ~~e liter~tu~o n~ nethodolo~v 

for the selection of a parametric family from Table 2.1 on the bas~s 

of an observed sample {(Xi,y~)}i~l' Some heurist~c approaches are 

proposed by Dav~d (1977). Concerning the task of select~on of the 

member yo\h) the foremost cr~teria seem to be (~)least squares, 
'" 
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and a geotretric procedure (David (1977». 
(ii) cross val~dat~oP,1 In the least squares approach, one selects 

the parameter 9* so as to minimize 

2 
1 1 (6) = £(yn(hv)-ya(hv » , 

v 

the index v running over some finite collection of arquments hv 

and y (h) being some sample approximation to the variogram, such as 
n 

N(h) 2 
h (h)=1/2N(h) E (y. - y ) 

of such ooints selected. 
where j (h) is an index selected so that x. - x :: h and N (h) is t..'1e ntmberl 
"drift" is ) ) 

n j=l ) j (h) 

Ifl though to be present (that is, if ~., j > 1, in (2.1) is not zero), 
) 

then this approach entails some serious conceptual difficult~es. 

Matheron (1971, Chapter 4) has addressed these difficutties. 

The cross-validat~on approach to parameter selection is as follows. 

Let P(x),S) be the universal kriging estimate of 

of the sample points {(x ,y.)}.~ and parametric 
~ ~ ~r) 

f(x.) on the basis 
) 

variogram 0(8 (h) . 

One then chooses e* to m~nirnize the squared error of the predicted 

values, which is 
n 2 = ~ (y) - p(e,x)) . 

)=1 

Practitioners ~ns~st, quite rightly, that one should not select 

a variogram ent~rely algor~thmically, but w~th attent~on also to 

pas~ exper~ence with similar geolog~cal data. 
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Convergence and Consistensy 

ORlGlNAl PAC2 lS 
Of POOR QUALITY 

With the exc~ption of stud1es by Matheron (1971,1973), the 

literature of kriqing tends to be oractical and pragmatic. MaJor 

issues of consistency and converqence rates have not been addressed. 

In the developments to follow, we attempt to obtain initial results 

in these areas. 

As has been noted earlier, there is no consistent variogram 
_ N 

estimator based on cbservations {(xi,f(xi)}}i=l for xi in a 

bounded domain X and f a fixed sample of an intrinsic random function f. 

In short, the varioqram cannot be consistently inferred, even if 

it 1S known to be a member of a given family such as listed in 

Table 2.1. On the other hand, as we will later demonstrate, under 

certain circumstances, the kriging estimate will converge, with 

increasing number of samples, to the correct value, even when the 

variogram is not correct. An i~terpretat10n of these remarks is 

that the kr1ginq method can ~e e~fcctive for estimating values on 

the bas1s of noisy samples, but that the associated error est1mate 

need not be cons1stent. This interpretation is bourne out by our 

S1mulat1on studies. The fact that the estimate of the squared error 

need not beco~e more accurate with increasing data 1S siqnif1cant 

because kr1ging pract1tioners and their clients place great value 

on the error estimation feature. 

Let us beg1n our ana1ys1s of converqence of 

under the si~plest of conditions by assuminq that 

kriqing estimate 

1) The observations are noiseless (n(x1)=O) 

Ii) yeO) = 0, and y is continuous in a neighborhood 
of the oriq1n. 

iii) There 1S no "dr1ft"; that 1S, J=l, and tl = 1. 

iv) The "true" variogram is known. 

, 

..... 

I ~ 
I 
I 
I 
I 

i 
I 

I 
I 
I 

I 
1 . 
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Theorem 2.1. Let X be the dc~ain of the intrinsic random function 

f(x) and assume the conditions above are in force. 
and 

sequenc~ {Xi} is dense in X, then for any X*EX~for 

If the infinite 

fN(x*) as in 

(2.3), 

(2.14) 

for 
Proof. In view of as~umption (iii), every i, y =f(x.) is itself 

~ ~ 

an unbiased linear estimator of f(x*), and so for N ~ 1. 

{ ,N 
Let x*(N) denota the member of Xi]i=l which is closest to 

By the assumption that {x.} is dense, x*(N) ~ x* as N + =, 
~ 

therefore 

x*. 

and 

E[(f(x*) - f N (x*»2] .::.. E[(f(x*) - f(x*(N)}2]= 2y(x*-x*(N». (2.1~) 

The pro~osition follows by observ~nq that, in l~ght of property(ii), 

y(x~ - x*(~» must converge to O. The bound given by (2.15) may be 

of some practical interest ~n itself. 

The Brow~an motio~ pr~cess affords an exampie OF ~ situation 

~n wh~ch the best estimate is not consistent unless x* ~s an accumula-

t~on po~~t of the sample po~nts ;x~}. For Brownian mot~on is Harkov, 

and the best estimate of f(x*) will depend only on the po~~ts 

(Xa ' f(xa » and (xb,f(xb », where xa ~s the largest domain sa~ple 

less than x* and xb the smallest sample greater than x*. 

There are many common s~t~at~ons in which the hypothes~s 

that ~x.: ~s dense in X will be satisf~ed. One 1mportant case ~s 
1 

~hat 1n wh~ch the x 's are selected ~nderyendently from X accOrd1nq 
1 

to a measure that ass~ons pos1t~ve Drobab~11tv to every ope~ set 

(such as when the probab~l~ty dens~ty funct~on ex~sts and 1S pos1tive). 

. , 
\ 

11 , ..t 

/ 
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Corollary. Assume that the hypotheses of Proposition 1 are 

in force and addit~onally that X is open, and has f~n~te Lebesgue 

measure y(h) has a continuous necond derivat~ve and the samples 
identical~y and in a neighborhood of x*. 

{xi} are/indeper. 4ently distnbuted on X t.n.th pdf bo:l."1ded a'ilaV fran 0 / Th:m fo:-

some fixed constant C and all N, 

E[(f(x*) - f (x*»2] < C/(N(2/m», 
N 

(2.16) 

m being the dimension of the space containing X. 

Proof. Since y(h) ~s an even function, its f~rst derivat~ve or 

gradient must be 0, a~d we have 

y (>." _ x* (N» = (1/2) (x* - x(~» Ty (2) (G) (:{* -x(N» 

+ 0 (I! x* - x* (N) 112) (2.17) 

It ~s known (c.g., Yakow~tz et al (1978), p. 1299) thar under the 

independent, un~formly distributed sample case, for all points 

x*zX and some constant Cl ' 

(2.13) 

From the agrument in that reference, one can conclude that (2.18) 

holds whenever the pdf is bounded away from 0 in a ne~ghborhood 

of x*. The Corollary now follows from (2.17) and (2.18). 

From our experience ~n groundwater analysis, where the 

doma~n points correspond to well 10cat~ons, the hypotheses of 

the corollary are of some use. On the other hand, for some ore 

sampl~ng strateg~es, it may be more reasonable to assume that the 

x~'s form a gr~d of sim~lar-sized rectangles. For such regular 

patterns, one may conclude thac (2.18) ~s true without expectat~on3, 

and hence the conclus~ons of the Corollary remains val~d. 

... 
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We will now discuss convergence of the kriging estimate when 

accounting for drift. Assune that x* is a limit point of {x.J. l. 
Assume furthermore that for some subsequence x , ••• ,:( the matrix 

nl nJ 
~6.~ ( )' J. . 1 =t~. X 1. 1 loS nons1.ngu are 

1. nj 1.,)= 
(Othe1vise, there is no hope of 

being able to obtain estimates satisfYl.ng (2.5) for arbitrary 

~i{x*) ve1ues.~ For N>nJ1 define the linear estimate 

J . 
fN(x*) = (1 - ~N) f(x*(N» + a E Al. f(x ) , 

N i=1 N ni 
(2.19) 

where x~(N) is, as be~ore, the nearest neighbor (among the first 

N samples) ~o x*, and 

(2.20) 

In order to assure that ~_e constraint condition (2.5) holds, 

we T . 1 J T set !(x) = (¢1\x), ••• ,9J (X» and determ1.ne ~=(AN, ••• 'AN) by 

3 ¢ A~ ~ ~(x*) - (1 - aN) _~ (x*(N». 
N -~. -

(2.21) 

The cons:stency of the est1.mate fN(x*) will follow if only we can 

h I h '\ ' .. b d d . s ow t~at t e se~uence \ NJ remal.ns 1n a oun e reg1on. Toward 

that end, note that after taking a Taylor's series expansion of 

1(x*) - ~(x*(N» and d1viding by aN' w~ May rewr~te (2.21) as 

... '\ = _11 (x*) ,.. '''T ' -i. (l/a
N

) V'! ex* (N) -x*) 

+ 1/:::tNo ( II x* - x* (N) II ) , (2.22) 

1 
1 

1 
I 
I 

I 
.I 
I 
1 
I -
I 

1 

I 



359 

where the matr1x 
I 
r~ (2.23) 

\V 
From (2.22), we see that ~N remains bounded wren aN is chosen 

according to (2.20). In fact, 

We have demonstrated above that the constrained linear predictor 

fN(x*) converges to f(x*). By an earlier ~rgument, this, in turn, 
converge. 

implies that f (x*), the best l:near unbiased estimator must likewise / 
~ 

The 1nterested reader can apply the convergence analysis of the 

preceding discussion to achieve 
the preced1ng 

in the proof ofAcorollary. 

for estimation w1th dr1ft ~y 
convergence bounds/using structures 

Our attent10n now turns to the case th~t noise n(xi ) is present 

in the o~servation law (1.1). For simplicity, assume that J=l, and 

9
1

=1. If n(-) is a cont1nuous function, then apparently consistent 

1dentif1cat1on of f(x*) is not possible since local samples cannot 

d1stJ.ngu1sh between the effects of sig'lal and n01se. However, the 

linear estimate provided by the universal kriging equations is an 

appropriate procedure and in fact coinc1des with what is known to 

co~~un1cation eng1neers as a "smooth1ng filter". If {n(x )} 
1 

are 1ndependent var1ables, then, as we now demonstrate, under some 

C1rcumstances, consistent estimation of f(x*) is possible. Toward 

verifY1ng this assert10n, as in earlier arg~~ents, we find a linear 

est1mator whose properties are understood, and then appeal to the 

fact that S1nce the krig1ng est1mate 1S opt1mal 1n the least 

squares sense, it must be at least as good as the estimator under 

J 
I 1 

considerat10n. 1 
• ~,,' ",.'", ' •.• "'\r"".' ,. \,." .••• '" d -, •• '~ ',<," ~., •• ".,~ ': ,. "'.~ ~ .. -l <' .-, '" ... "',. ... J'_"'~"" /'" ,'\~ ... ~ t--:" ; .. ~"I,,'" \ ... ~ ~~ ..... _ ~-." .... ,. ""1 ;),c'" - 1>:: ~a.~~~:iI;r"lf Lt}'t;; ~'...:'~J.;""1L.~ 

~i:toadtrl;(Jcii ce ..... " ~ \ .. ~iV/~ '* ,~ "Lx.";? -.rrllre,..LW, .. l 'iib<-.......... ~+."! .. & .. i; ,~'t a-



For the part~cular task at hand of verifY.l.ng con

sistency in the presence of independent noise, it is suff1cient to 

call attention to the fact that Stone(1977) has discussed a general 
(NPR) 

class of nonparametric regressionAformulas of the form 

N 
r Y1 wi,N(X*iXl,···,xN)· 

i=l 
N 

The \ .... eights \ .... .;,... can be taken to add to 1 (1. e. , 'vI. '1==1), so 
... .. i=l 1,. 

the unbiasedness condition (2.5), with J=l holds. 

His results imply that if x* and x. are i.i.d. observations, and 
1 

1f f(·) is measurable, and provided the weight funct10ns w. ~ (.) 
1, •. 

" satisfy ceta1n natural properties, then fN(x*).f(x*) 1n the mea~ 

Toward applying Stone's results to the 1ssue of co.\sistency 

of kr.1.g.1.ng est1mates in the noisy observat.1.on case, let f(.) denote 

a realization of the intr.1.nsic random function f(.). Then if 

v =f(x ) + n(x) I the se~uence i(x.,y )} const1tutes i.i.d. -.1..1. 1 ~ 1 1 

observat.1.ons and the hypotheses of Stone's convergence result 

holds, provided f(·) is so much as measur9able and a few techn1cal 

assumptions of l.1.ttle practical concern hold. So we conclude that 

- 2 E[(fN(x*) - f(x*» ].J, as N-o>. 

It may be concluded that 1f the noise measurements and tre sample 

funct.l.ons ~ are uniformly bounded, then convergence occurs without 
on sanple f~ct.l.on t i 

the cond1t.1.on.1.ng/ alternat1vely, w.1.thout the boundedness assumpt10n, 

onec~n assert that convergence 1n the mean 1S assurej outs1de an 

f-set 0: any pos.l.t.love measure. From results .lon the next sect.loon, 

.lot ~ay be seen that .lof one .loS w11l.long to ass~me that the sample 

funct.loons 3re tW.1.ce-cont.lonuously d.l.fferent.loable, then convergence 

.lon the ~can .loS on the ent.l.re f-space w.lothout the set qual.l.f1cat.loon. 

Convergence .l.n the ::lean of the l:.near estunate f~ .loMpl.loes, of 

=ourse, mean convergence of the krig.l.ng est.loMate. 

ji 
, I , 

1 
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For certa1n specific NPR estiMatBE, rate& of convergenc~ are 

known (e.g., Fisher and Yakowitz (1976), Parthasarathy and Bhattacharya 

(1961), Sacks and Spiegelman (1980), Schuster and Yakowitz (1979». 

The strongest results related to convergence of point NPR estimates 

known to us are that of Schuster (1972) for one-dimensional xi's, 

and for m-dimensional xi's, the result to be demonst~ated 1n the 

~=xt section, that for ~(x*) the Watson NPR estimate for f(x*), 

that with seme prov1sos to be specified in Section 3, 

E[(Il\.(x*) - f{x*»2] = 0(n-(1/{m/4 + 1»). 
4. 

(2.24) 

This convergence rate will be seen to be optimal, in a certain sense. 

In evaluating the convergence statements concerning krig1ng 

up to this point, it should be emphasized that they are valid 

only if f(·) really is ~~ intrinsic random function and the 

variogram and drift functions are known perfectly. 

Our next discussion of kriging convergence is directed at 

Problem 2 of Section 1, i.e., the integral estimation problem. 

For roblem 2, as has been observed earlier, one must mod1fy the 

universal kr1ging equation development by replacing f* in (2.7) 

by If{x)dx. 
o 

The effect of this substitution is that y(x - x*) 
1 

and ~.(x*) are replaced by 
) 

Iy(x. - x)dx and 19 (x)dx in (2.9a) 
o 1 D ) 

and (2.9b), respectively. 

Let l(f} denote the un1versal krig1ng estimate of ff(x)dx 
D 

obta1ned by the modif1cat1ons Just ment1oned, and let f (x*) 
N 

denote the kriging est1mate of f(x*}. Recall our assumption that 

Idx=l. Then we have the following 
o 
Theorem 2.2. 

I (f) = r f N( x) dx. 
o 

(2.25) 

'I 
1 1 

1 
I 
5 

J 
1 
I ' ... t . 
I 
! 
• I 
I 



Proof. One may express (2.9a,b) in matrix form as 

~(x*) = ~-l £(x*) 

where 

and 

(2.26) 

A. = y (x. - x) 1 < i , J < N: AN' = A A. ( 
~J ~ J' - - J+,~ i,J+N = ~J X~), l~~~N, l~J~J. 

From (2.3), we see that if we define a = (f(X ) 
~ 1 , ..• ,f(~), 0, ••• ,0), tht:r' 

f(x*) = ! ~-ls.(x*). (2.27) 

Now it is clear from (2.12) that for the integration problem, 

un~versal kriging equation may be represented as 

I(f) = B A-I fc(x}dx = fB A-lc(x)dx = 
- = 0- 0- = - (2.28) 

and our proposition ~s established. ~ 

The predicted mean souare error was given in (2.12). But 

the following ev~dent result ~s useful: 

Corollary: 

F[lJ(f) _ ~f(X)dX)2J ~ [~Ol/2[(fN(X)-f(X»21dX)1/2~ 2 

Proof. 

E[( If (x) - If(x»2] = II cov(f(x) - flj(x), f(x) 
tl 

~ [~var (f N(x) ) l/2d j2. 

From the corollary, ~t ~s appdrent that earl~er bounds w~th 

(2.29) 

respect to convergence of kr~g~ng po~nt est~mates can be d~rectly 

appl~ed to bound~ng the convergence of ~ntegral estimates as the 

nu~er of sample pa~rs ~ncreases. Moreover the above analY515 1S 

appl~cable to e5t~mates of other l~near funct~onals L(f' of tne 

-. . 

r • 

... . 
j 

1 
i 
1 
1 
I , 
1 

" 
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, . 

The final theoretical topic we shall broach, in connection with 

kriging convergence, is the effect of incorrect variogram on the 

estimate fN(x*). For simplicity, assume the no drift case. It 

~s fairly clea~ , ~t if the variogram is in error, there is little 

hope of estimat~ng E[(f(x*) - f N(x*»2) correctly. 

Example. In this example, we show that it ~s possible for the krigir.g 

predictor to be exact, while the variogram (and hence the error 

estimate) to contain significant error. Suppose Y2=bYl' where b 

is any pos~t~ve constant. If A=(Al, ••• ,A ) is the minimizer of - n 

(2.7), s~bJect to the constraints (2.5), with Y=Yl' then ~ w~ll 

also be the constrained minimizer of (2.7) with l=Y~' Thus if 
~ 

a presumed variogram is so much as approximately proportional to 

the correct one, the est~mate fN(x*) will be reliable. But from 

(2.10), one sees that (~gnor~ng the drift term) the error estimate 

under 12 w~ll differ from that under Yl by the scale factor b. 

, 1 

I 
~ 
I 
i 
I 

l 
1 

I 

I 
I 
J 

1 
I 
I 
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of f'vv . .;' .~ •.. ,. ' 

Let ~ Cl} and x (2 ) be the solutions of the universal kriging 

equation (2.9a,b) under variograms Yl and Y2 , respectively. 

Suppose that for some positive number ~ and all h, IIYlCh) - y 2 Ch)ll<o. 

From a standard numerical analysis formula (e.g., Szidarovszky 

and Yako\o!itz (1978), p. 214), we have that for 0 < !IA: I/r (A), 

ill Cl) l(2)11 < r(A) Ill(l)llo/(IIAII-o r(A» (2.30) 

where A is the matrix determined in connection with (2.26) and 

in the condition number. Some insight into the potential pernicious

ness of variogram error can be 1nferred from (2.30) by considering 

that the linear equation associated with least squares problems 

fre~uently is ill-conditioned because of collinearity effects. 

Th1s phenomenon is evidenced by large condition number rCA). 
Let El and E2 be expectat10ns of square differences determ1ned 

variocrarrs 
bY/Yi and Y2 respectively and (2.8). From ear11er developments, we 

can be assured that if the kriging equation (2.9) uses Y = 1 2 , 

E2 [ (f(x*) - f N(x*»2] .... 0 

provided only that {x1} is dense in X. In the noiseless case, El 

and E2 determine metr1cs d1 and d2 (2.3) on Y = span {f(x) : X~XJ 

accord1ng to 

d ~y, 2) 
J 

2 1/" = (E ] [y - z] ) -, J = l, 2: y, 2 £'1 • (2.31) 

Thus v 1S the smallest space conta1n1ng all I1near pred1ctors. 

The task of find1ng the circu~stances relat1ng to Y
1 

and :2' under 

w~1ch d l and ~2 determ1ne equ1valent topolog1es rerna1ns a sLbject 

for :uturc research. At this point, one can qU1ckly conf~rm that 

I . 

1 
if VI = iaf(x) : a real, x£X~ is dense 1n ~ with respect to both I 

1 
I 

r::;:::: E:; .... .t>-"- .............. ~ .. ~·"~I~ ••• '" > ~ •• ':; ?~ > '" "-C~"';' ,'." .~., _, ", ,', ,-. I" '. " ~ ... _; -::.-,-:;--: , ,,1 
.i'F'i. ,hl.:tV,q...,';;r:W';-h·h ",,'.1, ,i:!""vM":'_' «';'t;:'rt1,,(J:;""·~Idi4Ls·.w·,.{,,''!::':..l>N.~_\,tl'*' .;£*'·;.:;'* ..... ."/ • .!,.).I..,.; .l; ..... ~~ 
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a re cont~nuous and have the~r 
metrlcS, and 1f both var10gramS 

, then (2 31) lMolies convercence wlth 
unique Mini~a at tne or1q1n, • 

. ~ any unbiased For under these assum~t1ons, _or 
resoect to '1: 1 ' 

, N 
predictor fN,X*' in V, there lS a doma1n p01nt x and .:! 

random variable f(xN)SYl such that 

d; (f{xN) ,f~{x*» < liN, ) = 1,2. (2.32) 

J 

~ote that 1n V1e~ of (2.31), 

d (:(XN) ,:(x*») = 2y (xN_x*), )=1,2. 
) ) 

(2.33) 

So 1f dl(f(x*) ,f~(X*»-~, then xN-x*. Now (2.32) and (2.33' 

Unfortunately, it is not always the case that convercrence 1n 

d Z 1~pl1es convergence with respect to d
l

. 

Let v
2 

be a bounded var10graM and Yl and unbounded 

f~.I:lctlO:1 (as in the Brown1an motlon case). Suppose that q, . .. 
converges to f(x*) w1tn respect to both metrlces d l and d 2 . De~l~e 

(2. 301) 

where \~ is a sequence of numbers converg1nq to 0 and 

Z'.:! are pOlnts 1n '( suc~ that Yl(X* - Z ) > 11' . Then sU.lI 
• ~ N 

c. 2 (.: (x*), f~(::*» - 0, but d l (f(x*), fN(x*» w111 be a::lCrCX1::1ated by 

('/1 )~{x* - z~), which is bounded awav from O. An unsettllng 3spect 
!'l - .~ 

0: t~lS example lS that one rna! very well anticipate that for 

re~at~vel? large s~Mcle Slzes, least souares est1Mates May we:l 

3ss:ryn some welcrnt to samples xn with do~a1n ~olnt5 far frc~ x~. 

~~ese ~01nt3 could C3use ~avoc If E[(:(x ) - f(x*»2 J lS muc~ 
n 

III '<rlg1ng pract1ce, 1 t 15 common to ass:.lM'::' 

b ." " I'" ~,~t va=lograms are o~naea cy Sl _5 • 

.. 

j 
I 

I 
! 
\ I 
I I 
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i 
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i 

I 
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1 
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The intention of the present section is t~ reveal extensions 

of nonparametr1c regression wh~ch make this approach more suited to 

Problems 1 and 2 of Section 1. In the section to follO\." a 

compar~son of properties of kr~ging with those of nonparametric 

regress~on will be offered. 

The particular nonparametric regression (NPR) method to be 

invest~gated here is the kernel estimator propo!ied by Natson (1964). 

The two developments revealed here are (i) a formula for the 

asy:nptotic expected square error, and (ii) a data-based a?proxi:'1at~on 

of the mean squared error. The discussion closes by showi~g that 

the asymptot~c convergence of the NPR estimates ~s, ~n a certain 

sense, opt~mal. 

Let (X,Y) denote jo~ntly distributed random var~ables. The 

d~me~s~on m of X ~s arb~trary. but Y is real. Nonpararnetr~c re-

;resslon methods are intended for the problem of ~nferr~~g 

~ne cond~t~onal expectatlon (~.e., regression funct~on) 

(3.1 ) 

h b f b '()' ~ :: h on t. e aSlS 0 an 0 servatlon . X1 'Yl ~=l o~ t e sequence 

(X,Y)~. 
1 1 

To begln w~th, let us phrase Problem 1 of Sectlon 1 ~~ ~PR 
that 

t~rilS. One presunebAthe random vector (X,Y) satlsfles 

Y = n(X) + n(X), ( 3 • 2) 

~.,~er2 :T' lS a flxed deter:nlnlstlc but u~known "reg-:esslon :unc:!.o~". 

I~ :1?R, tne d~strlbutlo:1 0: the :tOlsa n (x) rna" ce?end" 0'1 th8 C0:'1.::l.1:1 

T~e ::.:ltscn ~?R eSl'iator l.S 

( I 

I; 

i : . , 
, I 

I I 

1 

I 

I 



~(x) (3.3) 

N 
where DN(X) = r k«x - x)/aN), aN is a positive number, and 

i=l l. • 

k(e) is a probability densl.ty f~nction chosen by the user. By way 

of convergence results, it is known (Schuster and Yakow1.tz (1979» 

that if {aN}' k(x), and the (X,Y) variable satisfy certain len1ent 

cond1.tior.s, then for any aiven ~>O, there loS some constant C such thar 

for every N, 
(3.4) 

It l.S often not practical to compute the constant C and 1n anv 

event, the bound above 1.S typ1cally peSs1m1st1c. 

Sl.nce in krl.gl.ng squared-er~or is the essense, 

our analysis at this point is directed toward establ1.shing 

the behav10r of E(~(X) - m(x»2) as the number ~ of observat1.ons 

l.nc~eases. Toward tha~ end, let h(x,y) and g(x) be the pdf's of 

(X,Y) and X, respect1vely. Let ~ .. (x) = f Y h(x,y)dv, thlls 

n(x)=;'l(:,)/g (:.;:) , and defl.ne for some n-tuple x, and 1<1<!l 

• I 

• i 

I 
! 
I 

: 
) , 

• 1 



VNi = 

UN = 

VN = 

Y.UN · , l. • 1. 

lIN E U~i 

lIN i: VNi 

l~i::,N, 

l<i<N. 

CRlc!rlAL p}'/;t. I;:;" 

OF pOOR Q'.J!IUTY 

(3.5) 

Throughout thl.s section, we will assume that the kernel pdf k(u) 

loS selected so as to satisfy the properties (l.) to (J.v) below: 

(i) k(u) and I luk(u)\ I are bounded, 

(i i) ! uk (u) d u = 0, 

(iii) J\!uii 2
k(U) du < «>, 

(iv) the functions g(x) and w(x) are tw\ce contin-

uously differentiable and the second partl.al derl.va-

tives of g(x) are bounded, 

(v) the second moment of Y if finJ.te. 

':'he odf of the mul tl. varl.a te normal law sat:.J.sfJ.es properties (l.) to (ui). 

The convergence facts we wl.ll need are ql.ven in the state-

ment below. 

Theorem 1. Let m be the cl.mensl.on of the sample vectors x l ,x2 , .•• 

and assu~e g(x·) > O. Then 

(a) 

lb) 
2 (E[VNl - w(x*» and (E[U~l - g(x*» are both O{a~ ). 

() If = ~.-(1/(~+4» c aN ~ , then for some sequence of events E~ 

such t~at P{ENl - 1, 

? 
E[(n .. (x*) - :n(x*»-... (3.6, 

P~ocf. rh~s theorem 1S very Much 1nspJ.red by developrne~t5 of 

Scnu5~er (1972). 7hus part (a) 15 essen~l.ally formula (~) 1n the 

proof of hJ.s Lcr-.rna 1, but exte:1ced here to m var1ables. !'1 

11 
I 

Ii I 

d I • ,"j I .. : II .. t ''': 
i 

~, 
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I, 
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particular, after a change of variables to u = (xi - x*)/aN we 

have 

2 E[(U
N
·) J 

L 1 

-m 2 = a fk(-u) q(x* - a u)du N N 

I m) 2 = ~(x*)/aN [/k (u) du + O(a~)l. 

Similarly, one may confirm that 

E[UNiJ = g(x*) £fk(u)du + O(aN)]. 

r.l -1 
Now use that the variables are uneorrelated to get var(UN) = O((aN N) J. 

The demonstratlon for varevN) proceeds in the samp fashlon. The 

proof of part (b) is essentially that of the flrst part of Le~~a 2 

ln Schuster (1972). Thus after the change In varlable, and use of ass~~ed 

property (11) above, 
E[UN1 ] - g(x*) =:k(-u) [g(x* - aNu) - g(x*)1 du 

~(~2/2)SUP) Iq" (x) i Ifllu: 12k(u) du = OCaH
2 ) 

Clearly, UN and UN1 have the same expeetatlon. The analysls of 

E[V~J proceeds In a sl~ilar fashlon. 

Toward demonstratlon of (c), deflne EN to be the event that 

ij;\l>(1/2::~1\X*) and 'IN 2 wex*),. 

!~ Vlew of parts a and band Chebyshev's j~cquality, the ~robabil1ty 

of EN cor-verges to 1. Also, note that var (t· .. 
1
: '8'1) < \'dr (U,.) I!' r s,. j 3nc 

• - , _t 

""'r (\' E) " .. ,. (" ) 'r.'- 1 
.., Q :~::.:.. ~.. \ ~ / J ~ &.:. . 

= (\'"g(x*) 
" 

Now under E , 
N 

u w ( :< *) ) '1' "T •• o .) , N' I -N":7 .... 

+g'x*I'V 
I 'N 

~ON lS easlly see~ to be a consequer.ce cf la l and '0,. 

-' 

, 
J 

~I 



Our attention now turns to derivation of a data-based 

est~mate of the mean squared error of the NPR point estimate ~(x): 

Observe that since the terms fv".}. in (3.5) are uncorrelated , 
• ~ l. l. 

N 2 2 
(: E[n(x.) ]k «x-x )/~». 
i=l]. l.. 

(3.7) 

(3.8) 

The only te~ l.n (3.8) which is not known to the statistician is 

E[n(xi )2 1• But this can be approximated from the sample by defining 

a to be any posl.tl.ve number less than 1 and defl.ning 

E(n(xi )2] = l/N~ (:(Y
j
-rTN(x))2) I (3.9) 

j€S(i/N) 
where S(i/N) is the set of l.ndl.ces of the ~a nearest ne~ghbors 1:1 

Since in view of (3.4), ') .. s convergl.ng I in N, 

to ~(X)=E(Y;X=X), uniformly 1:1 , - lr:CQ ~." _ ...... ~ probc..rJ ..... ll ty I, the 

rad:.i 0: the sets S (J ,N) bcc:.- - 'lJ.n.l.3hlngJ'j s:nall as N---=-, ~ t lS 

evident that the estlmatc 

(3.10) 

satisf~es the relatlon 

D.ll: 

Note C~~~ ~he est.lrna~or ~2(x) ~epends solely on the s~at.lstlCl.a~S 

cnolces of ~(.) and :a(n)}, and the observed seauence :(x ,v ) • J .I J 

Fro~ tne Theorem, one :nay conclude that 1f aN tends to zero 

I'as"'='- ''''':In ('/'" (1,1(:7)+4) th~n ~ - ... -_ ..... _. ... •• I , • '" tne varlance er:-or pa:-t 0_ (a) ·1.111 

d~~lnate, yet need ,ot serlously deg:-ade the rate of convergence l~ 
~ ., 

(3.6). ~nde:- thlS Clrcu~stance, ~-(x) wl11 be an aSY~Dtotlcally 
sauare 

u 
. I I, .. 
I ( 
• I 

! " 

11 I ' : .. 



• 'V>',1~'''!'i ?~~c~!S 

-.~!/ ;.-: .. ~ - {, ',1 .... -if'" 

One can confirm that for any 0>0, as ~~O, the contr~but~on 

in (3.la) of terms x. such that 
~ 

..... x~l ;>c, becomes negl1g~ble, 

and in practice, we have found that 

"2 '" 2 
(J (x)=E [n (x) ], (3.12) 

g~ves a reliable approximat~on of the error variance, Sim~larly, 

one can show that for any po~nts xl,x2 

, N 
Cov(x,x-)=[(l/ON(x )ON<x» Z k«x 

• i=l 
1 -x ) / aN) k ( (x -x ) / a.,) } 

~ l ~ .. 

[E (n (x ) 2)E (N (xl) 2)] 1/2, 
(3.13) 

is asymptotically accurate. 

~s relat~onship is useful in applying the NPR approach to 

Problem 2, of Section 1, as is now seen. 

Our proo=dure for approaclung Problem 2 15 to apply nurencal quadratu....-e to 

.. ~ :1 
the funct~on ~(x). Spec~fically, let t (tj,wJ)JJ=l be quadrature 

points and we~ghts for integrat~ng over the des~red do~a~n D. The 

nonparametr~c estiMate IN is then defined by 

M 
r w~. (t ) I 

1.=1 J ~ J 

11 
wh~ch is an estimate of I = [ w met ). 

i=l :::; J 

The error 

IN - fm(x)dx 

° 
has two componE'uts, 

( 3.14) 

( 3.15) 

the f1rst bracketed term being the error due to a?nrox~natlon of 

t:--e ft:nctJ.on n(x) ::rf ~ (x) w t."1e quadra-:ure fornula, and the secor:d 

~ - ---- ------
~:4a;. .. ~~'Il .. ~ ... Ho!!='-> ... ~..".~~~~~ ...... tE(+,.,,!'''~=T~ ... ~lo.oaoi!o~h.-te ""re.a1 ...... " 

j 
! 
1 ' 
T 1 
j J 

j 
I . , , ; 
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arising (rom quadrature truncation error in approximating the inte

gral. Methods for bounding the latter source are found in the 

numerical analysis literature (e.q., Sz~darovszky and Yakow~tz, 

(1978), Chapter 3). For example, if D is an m-dimensional unit 

cube, and one applies a p~oduct trapezoidal quadrature rule (keeoing 

in mind that the tj'S in (3.l4) can be chosen arbitrarily), one ca:1 

verify that, provided m{x) has continuous second derivatives, 

! I - fm(x)dx I = 0(h 2 ), h being the step size for the quadrature 

formula. 

The variance of the first source is given by rw w covet.,t), 
~ ) ~ J 

\.,rhich can be approximated by 

E [I - I) 2 J = Z I:w. w. Cov (t. , t ): 1 < i , j < M , 
N ~ J k J - -

where the term Cov is the covariance approximat~on given ~n r3.l3). 

As we have noted, as N~w, the covariance terms become neg1~g~ble 

and useful approximation is that, in terms of (3.10), 

M 
- <:' - ~ 

~=l 

2 w. 
~ 

(3.16) 

The flnal cons~derdt~on of this sect~on concerns a certa~n 

optlmallty property of NPR convergence. In view of (3.6) and the 

Chebyshev ipequality, one can conclude that for r~=2/(m+4), a~d 

for a:11 regresslon functl0n m(x) and no~se process n(x) satlsfYln~ 
-1 

.. ' t h th COt' 11 t '0 - (mol. 4 ) t h _:1e nco rem ypo es ... s, ~ ... ~... propor .:Lona y o.~ , en 

for r=r* 

. ,r 
hm sup [P(:~(x*)-m(;.{'I.) --C N J-+-O. (3.17) 

c~, .. , :'l 

Thus, 1:1 tr.e termlnology of Stone {l980), the ~PR est~mate ach1eves 

cc~vergence rate r*. But accord~ng to the Theorem of that ~or~, 

11 

fI 

i i · , 

, · . 

• J 
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[ ~ 1 •. ...\.,... ,,\ ... ~ - "w.'.... r 1', ..... "'; ,fl.,. ,,. ,t~~ .. ~:; ~ ... ;<-~ .... : -J. J' "'''\/' ;....... "' .. : .......... , .-";I~ .. J"'T l' (' : II - ............. ,,~ .... ?\'~_ .. - _~~ .. 'Y_ ... .!~~.- ~", .... - -...-,.~" .. ~~j 
~~.A..J'..l!..........~Lc....'"'~-.:...:-..t..~_:.,~~~~......::d~1a..J.'Ct-.....L..~..:, .. ~~ .. >-Z~ .. ~--~....:u~-~~-.~~~~:~--~~ ...... ~w.~.J:'.AlI..l~·_il.a.'jM-J 



r 

i 
r 
t 

f' 
1 .. 
r .-

r 

for any NPR estimator of a t\o;ice cont~nuously different~able 

regression function of m independent variables, r*=2/(m+4) is 

the optimal rate: there is no estimator for which C3.17) holds 

for some r>r*. 

4. A Comparison of Convergence Properties of Kr~gLnq and 

~onparametric Regression 

Assume that the ~ntrinsic random function CIRF) hypothes~s 

holds, and there is no drift (J=l, ¢l=!). As m~ntioned at the close 

of Section 2, the nOhparametric regression (NPR) approach ~s 

applicable, if the sample domain points {x~} i~l are chosen randanly and 

if, :Xi}i~l with probability 1, the sample functions f(x) of the 

IRF are continuous at x*, then ~Cx) converges to fCx) in the mean. 

If the sdffiple IRF's are twice-continuously differentiable, with 

probability 1, then Theorem 3.1 gives convergence rates. 

Toward address~ng parts b of ~roblems 1 and 2 of Section 1, 

\ve have provided error formulas (3.10) and (3.16) whLch are 
j -
! asymptot~ca11y accurate provided only that the sample funct~ons are 

continuous at x*. These convergence propert~es hold regardless of 

whether no~se n(x) in (1.1) is present. But all these statements 

!- have been predLcated on the assumption that the {xi}L~l values are 

actually a random sample. However, under faLrly len~ent assumpt~ons, 

Schuster and Yakowitz (1980, Theorem 2) have shown Ln the unLvar~ate 

case that ~ (x) converges un~formly in x to f (x) provided only that 

the Xi'S are dense. Undoubtedly such results can be extended to 

bear on kr~g~~g-type problems more focefully, and citat~ons of 

related results (espec~ally concerning the Pr~estly-Chao est~~ator) 

are to be found in the above refere~ce. 



Now ~t is clear that if the variogram is known exactly, 

becaus~ the kriging estimator is the best unbiased linear 

est1mator, then the expected square error of the kr1ging estimator 

fN(x) 1S no greater than that of the NPR estimator, which is also 

linear and unbiased. On the other hand, in the n01sy case, it 1S 

not known at this point whether its asymptotic convergence rate is 

faster than the NPR rate given in Theorem 3.1. In summary, when 

the IRF hypothesis 1S true and the variogram 1S known to the 

statistician, the kriging estimate is better in the :cast squares 

sense than the NPR est1mate, and its error estimators (2.10) and 

(2.13) are exact, whereas the NPR error est1mators are only 

asymptot1cally accurate. 

On the other hand, if the IRF hypothesis cannot be relied on, 

or even when it can, if the variogram is not known (even if it is 

knO\vn to be in one of the parametric fami11es of Table 2.1), ther. 

nothinq can be said about the convergence of e1ther the kriging 

est1mator or the error function, whereas NPR convergence c~nd1tions 

we have alluded to may well be satisfied. 

5. Some Illustrat1ve Comoutat1ons 

We nope to eventually pub11Sh results summar1zing our extens1ve 

comoutat1onal exper1mentation on krig1ng and alternative procedures. 

F~r now, we prov1de a br1ef illustration of the preceding rlaterial 

by report1ng Just a few COM?utat1ons. In th1s part1cular case study, 

the funct10n f(x) 1S chosen to exactly sat1sfy the krig1ng hypotheses: 

1 

f 
r 



r 
r 

It is a realization of the Gaussian process with mean a and variogram 

r 
L y(h) = C(l - exp(-25h)). (5.1) 

[ ~le have plotted f (x) in Figure 1. The samr,>le function f (x) was 

simulated according to an algorithm described in Newman and Odell 

f. 

T • 

L 

I .. 

(1971) and is exact (within machine error) to the extent of one's 

be~ng able to provide independent Gaussian observations. These 

we approximated by the Box-Muller algor~thm (descr~bed ~n Yakow~tz 

(1977» us~ng the CDC random number generator RANF. 

In Table 2.2, we report the results of applying the kr~ging 

method with exponential variogram to 50 uniformly chosen domain 

points from the domain X = [0,11. (RANF was used to obta~n these 

ooints also.) In the first listing, we give the approxirnat~on at 

eight equ~d~stant aomain points, of the kriging algorithm in wh~ch 

the exponent~al parameter has been set to its correct value. This 

is,therefore,krig~ng under the ideal conditions of the variogram 

be~ng known. In the second exponent~al listing, the variogram 

parameters a and w were obta~ned by least-squares f~t according to 

current pract~ce. In Table 2.3, we have repeated the calculations, 

but Gaussian noise n(x~), with standard deviation a = 0.5, wab added 

to each value f(x). In Tabl~ 2.3, we have repeated the calcualtions, 
~ 

using exactly the same (x ,y ) sample values as in the construct~on 
~ ~ 

for Taole 2.2, but here we have assum~d that the var~ogram is 

spher~cal (the parameters aga~n being calibrated by a least squares 

procedure). Also, we have appl~ed the same simulated data to the 

Watson nonparametric regresslon method. 
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One will notice that in all cases, the estimat10n capabil1t1es 

exhib1ted by the various rules are quite comparable. Interest1ngly 

enough, the spherical var10qram is also comoet1tive, even though 

the model is wrong. But, esoeciallv in the noisy case, the 

spher1cal rule is much less accurate than the other rules 1n 

approximating the errors. 

Dclho~e (1979' has claimed that classical function interpola-

tion a~d approxjmacion methods are not effect1ve with intrins1c 

random functions. Our experience with cubic splines, Lagrange in-

terpolat1on, and least squares approxm1ation concurs with this 

assessment. In Table 2.4, we present the estimates obta1ned from 

using the IMSL cub1c spline package on the data points used for 

calculat10ns in the preceding tables. 

We applied the krig1ng integration algorithm to the funct10n 

f(x) wh1ch has served as basis for the calculations reported in the 

preced1ng tables. The same data pairs {(x ,y.)} were used. 
1 1 

The 

results of the 1ntegrat1on estimation studies are su~~arized in 

Table 2.5 below. 
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DOMAIN 
POINT 

X* 
TRUE VALUE 

f(X1<) 

OREDICTED 
VALUES 
L50 (X*) 

.111111 273~70 _..222222 ______ -_ -. ~ -.1t22838 

.33333.i~ =_.009991 .03237', 

.44~44L • 203691 .353256 , .1757(Q .176909 

.555556 -.621823 -.379835 

EXP:CTED 
ERROR 

E[(f(X*)-f
50

(X*»2]1/2 

--..b66 6 b;-t;7;-__ --A.~O 1 09 71 ___ ~ .. o 6 <ill 7 
--'-1H778 -.14196', -.096466 -----

.888689 -.165034 -.16~653 

.1919;'9 

.622' 1 

.1299",; 

.01462€ 

.29812': 
• Z.ZHOt 
.12023( 
.00781 

o = 0, Exponent~a1 Covariogram, a = 1/25 

.HUll -.273470 -.413973 .• ln~41) 

.lUZU -.009991 .(\~91)94 .711)1~0 

.333333 .2,}1601 .34 A )90 .1591 :n 

.1t444;4 .175179 .171)7H .~1'\l3\ 

.5)55'6 -.b21821 -. 3 723~1y- .lb~1')~ 

.bb6bb7 .010971 -.O~7'tbO .Z715'lS 
• 71777d -.141Qb4 -.OQ61b3 .14A534 
.8dSaa9 -.165034 -.1"5'>23 .I)OQ6 Q l 

o = 0, Exponent~a1 Covariogran, Ca1~brated a 

.111111 -.273470 
~'7.2 2 (' 2 r-----. 009991 

.333.33 ~203601 
• ",V ',4 ,~7S779 
.55~~~6 -. 21~23 
.~QL~b7 .010971 
.777778 -.141~~4 
.C88689 -.lb5034 

-.492881 .19~929 
-- ---.' '920 r-----. 62 2I3T 

11;926 .)~~9Q5 
•• :._'L(UjL .014626 
-.:u?5~ .298123 

.311225 .22410b 

.~~;o4Z .120~30 
.195491 ~001817 

~ = 0.5, Exponent~al Covariogram, a = 1/25 

.llllli 

.2Z2122 

.3j3333 

.44444" 
'~~:'J:'& 
• 6bvuo 7 
• 177 77f-
• ''.ld;::tsy 

-.Z73470 
-. OO~qn 

.2 r)3b'H 

.175779 
-.621823 

.010Hl 
-.1419b4 
-.1b~034 

-.30Q4bZ 
.0973J'i 
• bZ9b· J 

.OQZ5 Q 3 
-.2005b7 

.21b933 

.448'3 RO 

.1912~Q 

c = 0.5, Exponential Covariogram, Calibrated a 

TABLE 2.2 

RAN DO:.t FUNCTION ESTIHATES, I 
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DOMAIN 
POINT 

X* 
TRUF. VALUE 

f ex*) 
PREDICTED 

VALUE 
f50 ex*) 

EXPECTED 
ERROR 

E [(f ex*) -f50X*» 2]1/2 

_!..P.llll -,.2n-lt7o. ____ '!.Lj .. ~8_81-___ -Lo.ln2~ __ 
.i"2rr"~ -.oo~91 -.097Q80 .Ollt013 
.333.333 .2,03601 .201102 • 0)511 

, .".44444 .175779 • 04cn 39 .007597 
~~ ___ ~.21.8.23 __ . ____ :..550.2 . .44_ _ ___ !>O.75b5_ 
-;-6tibb6i --.010971 - -- -'- -.087334 .027576 

.777778 • -.141964 -.088491 .'06461 

.888889 -.165034 -.120925 .027717 

a = 0, SF~erica1 Variogram 

-.-1Ili1'1--·- --·~27347:f .. --.313063-' .. -
.222222. -.009991 .0283A1 

.12b4a~ 

.107186 

.14UZ93 

.091;9t _ 

.110714 

.133669 

.333333 .203601 .177298 
_ AIt.."'t't~4!-____ .a~ 7577'L_ -.-- .0571622.:7691--0 --

5555 ~6 -.621823 -. 
:666667 .010971 .100016 . 
.717778 -.14196~ .L137;1 __ 
.886889 -.105034._ ._.-.1007'Z. 

• O=J 102d 
.1174;0 

o = 0, Watson Algorithm 

.11111! -.273470 

.222222 -.COQQ9L 
._ •. B.33_;;3 _____ " 2036u1 

• 444444 .175779 
,~'55~b -.621~23 
.666hol .010~71 
• V]]JJ~. __ __ • -:01 H-iM 
• b8boo'1 -. ",65J3~ 

.143942 .347720 

.214582 .1613~5 

.4773.1.0 ______ ._. 091 ~2.9 . 

.234166 .035164 
-.620942 .O~63~2 
.354~'O .101~~2 

. ___ .202C1as_____ _.~7q503 
-.331417 .026907 

a = 0.5, Sp!1encal Variogram 

: 1 y, 1 1 
• : ~ ~ 2 

. '33 

--- - --: ~C~q5 3 ---- -- -: 1 (, (t l-41 
-.,/u671 .t62684 
-.C~4319 1~~4q2 
.C~~3ql .~47q27 

-.09b83b .2007bQ 
-.10263b .252475 

.173377 .197700 
-- .12164b .2.;09.;:9 

cr = 0.5, Watson A1gor~thm 

TABLE 2.3 

Rfu~DOM Fl~CTION ESTIMATES, II 
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DOMAIN 
POINT 

X* 

.111111 

.222227. 

.333333 

.444444 

.555551, 

.6661:67 
• "'777 7 P. 
.P6'1fPIJ-

TRUE VALUE 
f(X*) 

-.273470 
-.OC'QQQl 

.201t:01 

.17<j77Q 
. - • b Z 16 2 l-. 

.010 0 71 
-.141Q64 
-.165034 

o u 0 

-.n"3470 
-.OOl1QQl 

.203601 

.11r;17q 
-.6211123 

.Cloo 7l 
-.141Q,,4 
-.1b5034 

o = 0.5 

TABLE 2.4 

SPLINE ESTIMATES 

SPLINE VALUE 

-.537764. 
• • ~4 4~0 2 

• ~'l1"'H 
.171214 

-.--- .- • II '! a 4 1 
-.07'j1),)1! 
-_, 1 "6~Q 1 
-.1711"'4 

~: ~:-~:,:,~:~',~:"=:~~.::;.:~:::;;.,,'.~~-. .:.;:.~,,~-~:.>:-":~;.":M'':'_~~.~~~~_:~_~_:} __ -''''-''''-'~ "i'-~ ~~-V~ -:'~J .. ,1,,,,- "! .... \~ __ ____ __ . ___ • _____ .w5=: S-S\n';" ~~~,.,t .+" .. :, . .st. ...... ;;..;..~ ........... ~ 



, ,. 

Exponential Var10gram, 
w1th a = 1/25 

Exponcntlal Var10gram, 
fitted parameter 

Spher~cal Var10gram 

Watson Nethod 

, ... -, ... ,. I. , 

Exact Value. of If (x) dx =-0.089 

No Noise 
Approximation 

-0.051 

-0.053 

-0.043 

-0.056 

Estimated Standard 
Deviation of Error 

0.93 

0.94 

0.13 

0.19 

TABLE 2.5 

Noise, a = 0.5 

Approximation Estimated Sta. 
Deviation of : 

0.126 0.927 

0.088 0.94 

0.079 0.34 

0.069 0.21 

Integration Ex~imation Experiments 

I to.. • v-'" -'1 ,----



• r 

r-
I \ 
I -
I !. 
1 

! r 
: 

r · · 
I · -

r 
J 

, 
j 

~ -

Of POOR QUALIfY 
5. Acknowledgements 

Th~s work is the product of evolution and labor over several 

years. l1any kriging partisans, most notably, G. De l1ars~11y, 

J.P. Delhomme, G. Gambolati, and S. ~euman have been k~~d enough 

to patiently explain their viewpoints on krig~ng in conversat~ons 

with the first author. Also, the first author is grateful for 

fru~tful d~scussions about kriging with P. K. Bhattacharya, J. L. 

Denny, and E. Schuster. 

This collaborative research was made possible by the NSF 

cooperat~ve grant (with the Hungarian Mining ,40hori'ty) ENG 

Int. 78-12184, and additionally the first authol" received support 

for this work from NSF grants ENG 76-20280, 78-07358, and CME 

7905010. 

r 
l i 
r:=~ , .. :::;:;: " " ,= -.>':::': ' . ::-::;3':,..::l\' !~ •• "-~~ 4'i~': Aa :~: '.:.~.·;~:~L E ~: ~ ~-~.~.~ -.~~~~-:::.; ;~::~;~ -: ;-:~.'~~l{;: ~=~J 



, 
, . . 
, ! 
I 

I 
~ J 

~l 
0 
'=' 
C"'-

o 
Q 

,-. .=, 

ORIGINAL PAGE IS 
OF POOR QUALITY 

"1 

ro I 

'=' -t,---,,---~j--~r------'-l ---r-
I-U.OOO 0.200 O.~OO O.SOO O.BOO 1.001 

Figure 1 

Grapn of Tartiet Functlon 

\ 

r 
1. 

r , , 
r 
~ 

r , 
! 

.. 

• 



1 

,I 
i 

'r 
'r 
!l 
t 
i 
i 
f 
t 
! 
I 

i 

... 
1 
• .. 

I 
1. 

-. ... .. ...J ('" .. , '- I. t ~ .. 

OF pOOR QUALItY 

REFE~ENCES 

Bakr, A. A., L. W. Ge1har, A. L. Gutjahr and J. R. MdcM111iam (1978). 
Stochastic Analysis of Spat1al Var1ab11ity in Subserface Flows 

1. Compar~son of One- and Three-D~mensiona1 Flows. Water 
Resources Research. 14(2):263-271. 

Chir1in, G. R. and G. Dagan (1980), Theoretical Head Variograms for 
Steady Flow in Stat1stical Homogeneous Aqu~fers, Water Resour. 
Res., 16(6), 1001-10015. 

David, M., Geostatistica1 Ore Reserve Estimation, E1sev1er, New 
York, 1977. 

De1hornrne, J. (1979), Spatial variabi1~ty and Uncertainty in Ground
water Flow Parameters:a Geostat1stical Approach, Water Resour. 
Research 15(2), 269-280. 

Delhomrne, J. P. (1978), Kriging in the Hydrosciences, Advances 1n 
Nater Resources, 1(5), 251-266. 

Dendrou, B. A. and En N. Houst1s (1978), An Inference-Finite 
E1e'11ent Nouel for F1e1d Problems, Appl. Math. Modelling, ~, 
109-114. 

Fisher, L. and Yakowitz, S. (1976j, Uniform Convergence of the 
Potential Funct10n A~gorithm. SIAM J. Control 14 95-103. 

Gambolat1 G. and G. Vo1p1 ~1979), A Conceptual Determinist1c Analysis 
of the Krig1ng Techn1que in Hydrology, Water Res. Research, 15(3), 
625-629. 

Garnbo1ati, G. and V. Giampiero (1979). Groundwater Contour Mapping 
1n Ven1ce by Stochast1c Interpolators 1. Theory. Water Resources 
Research. 15(2):281-290. 

Ge1har, L. W., A. L. Gutjahr and R. L. Naif (1979). Stochast1c 
Analysis of Macro-Dispers1on 1n a Strat1f1ed Aquifer. ~ater 
Resources Research. 15(6) :1387-1397. 

G1amp1ero, V. and G. Gambolati (1979). Groundwater Contour Mapping 
1n Ven1ce by Stochastic Inter~olators 2. Results. Water Resourc~s 
Research. 15(2):291-297. 

Gut]ahr, A. L., L. W. Gelhar, A. A. Bahr and J. R. MacM111an (1978) . 
Stochast1c Ana1vsis of Soat1a1 Variab111ty 1n Subserface Flows 

2. Evaluat10n ana Applica~10n. Water Resources Research. 14(5): 
953-959. 

HU1Jbregts, c. J. (1975). Regional1zed Variables and Quant1tat1ve 
Analys1s of Spat1al Data. Eds. J. C. Dav1S, and M. J. McCullagh. 
John W1ley and Sons, Inc., New York. 

,-
rJ ;,.: .. "-~;lfE ';.! h 

~ ~... ~ t 
............ y 



ORIGINAL PAGE ts 
(',. -'''''r- ... ..... '''' 1 

384 

Journal, A. G. ~nd C~. J. HU1jbregcs (1978), Mining Geostatistics, 
Academic Press, N.Y. 

Journel, A. (1977). Kriging in Terms of ProJections, J. Math. Genl., 
2,(6), 563-586. 

Journel, A. (1974), Geostatistics for Cond~tioral Simulations of ure 
Bod1es, Scon. Geo., 69(5), 673-687. 

Krige, D. G., A Statistical Approach to some H~ne Valuations and 
Allied Problems on the t~twaterstrand, Unpublis~ed Master's 
Th~s~s, University of Witwaterstrand, South Afr~ca, 1951. 

Krige, D. K. (1966). Two-Dimensional t~eighted Mo,r1.ng Averctge 
Trend Surfaces for Ore Valuation. Journal of the South Afr~can 
Institute of Min~ng and Metallurgy. pp. 13-79. 

Matheron, G. (1973), The Intrinsic Random Funct~ons and the~r 
~pp1ications, Adv. App1. Prob., ~, 439-468. 

Matheron, G. (1971), The Theory of Regionaliz~d Var~ables anc ~ts 
Applications. Les Cahiers du C~1 Fasc. no. 5, ENSMP, Par~s, 
211 fJ. 

Matheron, G. (1963). Principles or Geostatist~cs. Economic 
Geology. 58:1246-1266. 

Ne\"ffian, T. and P. Ouell, (1971), The GeneratHm of Randoln Var~ates, 
Gr~ffin, London. 

Olea, R. A. 
Kr~ginq. 

(1974). Opt1ma1 Contour ~app~ng Using Universal 
Journal of Geuvhys~ca1 Re~earch. 79(5) :695-702. 

Parthasarthy, K. R.f and P. K. Bhettach~rya (1961), Some L1m1t 
Theorems ~n Regress10n Theory, San~hy&, Ser1es A. ~, 91-102. 

Rendu, J. (1980), DisJunctive Kriq~ng: Compar~son of Theory w~th 
~ctua1 R~su1ts, Mathemat1ca1 Ge0]cgy, 12(4), 305-320. 

Sacks, J. and C. Sp1ege1nan (1980), Cons~stent W1ndow Est~mat~on 1n 
Nonparanet!";:: Regress~on, Ann. t1ath. Stat1st., 9 (2), 240-245. 

Schuster, E. F. (1972), Joinc Asymptotic D1str1but~on of the 
~st~mated Reqress10n Funct~on at a Fin1te Number of D1st1nct 
Points, Ann. Math. Statist., 43(1), 84-88. 

Schus~er, E. F. and S. Yakow1tz (1979), Contr1but1ons to the Theory 
of ~on~araMetr1c Regress10n, w1th App1icat~ons to Systpm Ident1f1ca-
t~on, Ann. . Stat1st., 2(1), 139-149. 

Stone, c. (1980). OPt~ma1 aates of Convergence for Nonparamatr1c 
ESU:nators, Ann. Stat1st. 8 (6), 1348-13('0. 

-------------------------
Stone, C. J. (1977). Cons1stent 1Tonparametr1c :<egress1on. 

Ann Stat1st., 5 595-b20. 

SZ1darovszkv, F., and S. Yakow1tz (1978), Pr1nc1ples and Procedures 
of ~~rneri~al Analysis, Plenum Press, New Yor~. 

r 
I ." 

t ., 
a 

I 
. I 

"I 
I 

- j 



I -

I 

. " 
! 

Szidarovszky, F., and S. Yakowitz (1981), Some Mathematical Prooert~es 
of t:J;le Kr~gl.ng rtethod (l.n Hungar~an), accepted for publ. ~n 
Banyaszati LClpClk (H~nl.ng Journal), Budapest, Hungary. 

Villeneuve, J. P., G. r~orin, B. Bvbee, D. Lebanc, andJ. P. Delhonun~,(l979 
Kriging in the Design of Streamflow Samollng Networks, Water 
Resoul. Res., 15(6), 1831-1840. 

Watson, G. (J977), Review of Advanced Geostatistlcs in the Mining 
Industry, J. American Statl.stical Assoc., 72, 637-688. 

Hatson, G. S. (196 t). Sraooth Regression Analysis. Sankhya Ser. A 
26 359-372. 

Yakowltz, S., J. Krinunel, and F. SZldarovszky (1978), HClqhted 
Monte Carlo Integration, SI~1 J. on ~umerlcal Analysls, ~(6), 
l289-13JC. 

Yakowltz, ~. (1~77), Comoutational Probabillty and Simul~tlon, 
Addlson Wesley, Reading, flass . 

h 



", 

" , , 
,lt , 

, . 

y 

" " 

" t, 

~ '-

i -

".' .:.' 
-, - n 

- ~~10' 

t, 

.. ~" .. -

(' 

- " ~ ~. ;"'~ 
~~ 1 1l. , , 
", 

" -

.. ",.-

I r .~, 

" -

.,' . , 

.' 

._'", 

'. 

1,- { I >i}-: 

" 

", 

, . 

" 

r' . 

'1""' .. ~ .tr 
~ I ~ ... '" 

; , 

, . 

, , 

." . 
.. ~: -

~ ... ~_ 1 ... , ~_ ... 

c· 

, 
> • 

; 

" 

, . 
" , 

..... ~ ~ • ~ l_ 

L.:_ ..................... ...:...:...;·""J .. • ............. ·"'.'.:," ........ a ... ::.:;· • ..:'., ...... o; .......... ..w-~"..;,.~ ;.-".:1£ a~:.~.~.· .. : .. ; .............. _*"'."''''{_~ .. '-..i..a"lei .. A,; ~!.~.~~ .... -) . , 
..... '" ...... ~ .... J. .. _t 



r \ 

r 
I 

I I ! I 
I t 

! I 
i I 
I 

. J 
, . 

, 
: 

1 
J , 
I 

I 
I 
I 
l 

I 
! 

~ 

.i 

l. 

------------------------
DEPARTllENT OF STATISTICS 
------------------------
University of Wisconsin 
1210 W. Dayton St. 
Madison, WI 53706 

,. 

March 1982 

ESTIMATION OF DIVERGENCE AND VORTICITY 
USING MULTIDIMENSIONAL SMOOTHING SPLINES 

James G. Wendel berger 

Univ~rsity of Wisconsin-Hadison 

This manuscript ."as PI e.·ared in conjunction with an invited tal k for the 
NASA \'/orkshop or. "Density E'tlmation and Function Snoothing" held at the Texas 
A & M Universlty March 11-13. 1982. ThlS research was supported by NASA under 
Grant No. NAGS-128 and by the Office of Naval Research under Contr'lct No. 
N00014-77-C-067S. 

""~n ... ' __ ._<" ........ h ........ """' ... __ • ... _ ... ,,'"""''''''''" ... =*_ ....... L "*",*-.6M= ... \:ti t-..".&~w ...... ~~~s.~..z~ }e .. riM l'M"'r'l. '*~~~.~ ..... :& .... ~ ...... ,.,..lo.'l...-,.,t .1 



I 

ABSTRACT 

laplacian smoothing splines, smoothing splines on the sphere and ~looth-

1ng pseudo splines on the sphere are presented. The method of generalized 

cross validation to choose the smoothing parameter is described. ftn applica

tion of these methods to esti~ate divergence and vorticity of the atmosphere 

from wind speed and wind direction is provided. 
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1. Introduction 

This report portrays the status of current research into a meteorological 

application which involves the use of multidimensional smoothing splines. 

Aspects of meteorology, theoretical and applied mathematics, statistics, 

numerical analysis and computer science are involved in the analysis. A more 

detailed dissertation involving this problem is provided in Wahba and 

Wendel berger (1980), Wendelberger (1981) and Wendelberger (1982). The re-

levance to problems encountered in remote sensing are mentioned in a very 

general way throughout. Research topics involving the application of multi

dimenstonal smoothing splines are provided. 

To review the work being done in this area there are sections about 

laplacian smoothing splines, smoothing pseudo splines on the sphere and the 

method of generalized cr~ss validation. These three sections are followed by 

one which involves the analysis of meteorological data which is of the type 

which may be encountered in the application of remote sensing. The last sec-

tion proposes some future research areas. 

2. The laplacian Smoothing Spline 

A laplacian smoothing spline (LSS) is a function defined from Euclidean 

d-space, Rd, to R which arises as the estlmate from the statistical model pre

sented below. The term model is meant in the broad sense of Box (1981). In 

that sense we tentatively entertain the assumptions, provide a solution using 

the data and then check the validlty of the assumptions. In this section we 

present the assumpt;ons which this model entertains and provide a solution 

using the data. The question of model validity will not be dealt with here. 

In the model, the data zi £ R, i=I, ••• ,N consist of a fixed component and 

a random component. The fixed (or signal) component, lif, in its most general 



\ 

fonm. is a continuous linear functional L1. i=l ••••• N, of a function 

f & X. X the appropriate Sobolev space. Adams (1975). to R. The random (or 

noise) component ei £ R satisfies 

2.1 

2.2 

for 02. ai2. constants with 02 unknown. ~i2 known and the 

ei. i=I ••••• N are independent. 

In 2.1 and 2.2 E means mathematical expectation with respect to the error dis

tribution of ei. In 2.2 the 01 are known weights which should be thought of 

as relative measurement error variances. The fixed and random components are 

n 

f1 
I I · , 
n 
1 , · . 
• l 

~ 1 

I 
I 

• 1 

, 

additivei ' i 

li = Lif + ei. i=l ••••• N. 2.4 

We concern ourselves here with the evaluation functionals. Lif = f(ti). 

where ti £ ~. 1=l ••••• N and the ti are considered to be known without error. 

Then 2.4 becomes 

21 = f(ti) + ei. 1=l ••••• N. 2.5 

App1icatl0ns of remote sensing may involve continuous linear func~lona1s other 

than the evaluation functionals. For a further discussion of the use of gen-

eral continuous linear functionals see Wahba and Wendelberger (1980). 

To recover an ~stimate of feX. say g. from the observations z = 

(zl ••••• ZN)T we require that f be smooth. By smooth it is meant that Jm(f) is 

small where 

, , , 
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m! m 
a f(t) 2 H' 

Jm(f) = t 
vel -------J dt,2.6 

for H' = ~m~~i:), t=(tl, ••• ,td) T and the al.v, ••• ,ad,v are the H' unique 

combinations of {O,l, ••• ,m} such that al,v + ••• + Od,v = m. The smoothness 

function is in~uced by the Sobolev space X of which f is a member. 

Besides being smooth f should also be close to the data. To measure 

closeness define 

N 2 
C(f) = t ([f(ti) - ZiJ/oi) • 

1=1 

As defined here closeness and smoothness are conflicting criterea. To measure 

the tradeoff between the two we introduce the parameter A. The choice of A 

will be discussed in section 4. The estimate g of f is chosen as the minimiz-

er of 

C(f) + A Jm (f). 2.8 

The minimizer of 2.8 can be shown to be of the form 

N H 
get) = t cin (t,ti) + t dv~v(t) 

i =1 Jm v=l 
2.9 

1 J.. _Ih •• & ,-,Jer. lIio'tk ..... ,~ ... _ ................. w .r's-4 'IF r''*-''t.f ............. *_'fth.!* ... Iter: •• :!it''lo\u-......~.J ~~~~M1"""''''''''~~t1ta*,Ws x.c· "·!'cntni'd"H ___ on _____ • ___ • ____________ • 
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where 

+v(t) = the H polynomials of total degree less 
m-l 

than m which span Pd • 

(d+m-l' 
• \ d J. H 

m-l 
p • the space of all polynomials of total degree 
d 

less than m. 

a a function of It-til which depends on Jm and 

2.10 

2.11 

is rigorously defined in Wahba and Wendelberger (1980). 

c = (Cl •••• ,cN)T. d = (dl ••••• dH)T are constants which arise ~s the solu

tion to the linear system 

2.12 

and 

TTc = 0 2.13 

where Da 2 = diag ("1 2
, •••• ON

2
) and the N by N matrix K and N by M matrix T 

depend only on ti, i=l ••••• N and Jm(·). 

The estimate 9 along with the assumptions stated in this section and 

those made in section 4 invcHving the choice of A constitute the Laplacian 

smoothing spline model. 

The Laplacian smoothing spl ine is given by :J in 2.9. In remote senslng 

appllcations which involve a small section of a sphere (the earth). the 

LaplaclCln smoothlng spline is appropriate. However. for applications which 
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ABSTRACT 

laplacian smoothing splines, smoothing splines on the sphere and smooth

ing pseudo splines on the sphere are presented. The method of generalized 

1: 

r 
r 
l. 

cross validation to choose the ~~oothing parameter is described. An applica- I. 
tion of these methods to estimate divergence and vorticity of the atmosphere 

from wind speed and wind direction is provided. 
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1. Introduction 
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This report portrays the status of current research into a meteorological 

application which involves the use of multidimensional smoothing splines. 

Aspects of meteorology, theoretical and applied mathematics, statistics, 

numerical analysis and computer science are involved in the analysis. A more 

detailed dissertation involving this problem is provided in Wahba and 

Wendelberger (1980), Wendelberger (1981) and Wendelberger (1982). The re-

levance to problems encountered in remote sensing are mentioned in a very 

general way throughout. Research topics involving the application of multi. 

dimensional smoothing splines are provided. 

To review the work being done in this area there are sections about 

Laplacian smoothing splines, smoothing pseudo splines on the sphere and the 

method of generalized cross validation. These three sections are followed by 

one which involves the analysis of meteorological data which is of the type 

which may be encountered in the application of remote sensing. The last sec-

tion proposes some future research areas. 

2. The Laplacian Smoothing Spline 

A Laplacian smoothing spline (LSS) is a function defined from Euclidean 

d-space, Rd, to R which arises as the estimate from the statistical model pre

sented below. The term model is meant in the broad sense of Box (1981). In 

that sense we tentatively entertain the assumptions, provide a Solutlon using 

the data and then check the validity of the assumptions. In this section we 

present the assumpt;olls which this model entertains and provide a solution 

using the data. The question of model validity will not be dealt with here. 

In the model, the data zi c R, i=I, ••• ,N consist of a fixed component and 

a random component. The fixed (or signal) component, Lif, in its most general 

~bJ ... L ... -.... 6 nrwl
oA,-...... - .... ' • .... "'l;oIrl~s '..:;!'5""'''''''·t+Wlk ... _ ... • ... ){t .... ' .. b~iIoi'' ... -·_n«""",..,' <~ ___ ........ t:SlltillOltoil.OIijtlrl ... »i3d_~'*W_~_=~~ 
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form, is a continuous linear functional Li, 1=l ••••• N. of a function 
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f c X. X the appropriate Sobolev space, Adams (1975). to R. The random (or 

noise) component e1 £ R satisfies 

E ei = O. i=l ••••• N. 

for 02. oi2. constants with 02 unknown. 01 2 known and the 

ei. 1=l ••••• N are independent. 2.3 

In 2.1 and 2.2 E means mathematical expectation with respect to the error dis

tribution of ei. In 2.2 the 01 are known weights which should be thought of 

as relative measurement error variances. The fixed and random components are 

n 
n 
n 
n 
fl .. 
I' 
I I 

:l 

, , 

additive; . i 

Zi = Lif + ei. i=l ••••• N. 2.4 

We concern ourselves here with the evaluation functionals. Lif = f(ti). 

where ti £ ~. i=l ••••• N and the ti are considered to be known without error. 

Then 2.4 becomes 

2.5 

Applications of remote sensing may involve continuous linear functlonals other 

than the evaluation functionals. For a further discussion of the use of gen

eral continuous linear functionals see Wahba and Wendelberger (1980). 

f...ftt ,t "'.&611 t 

To recover an estimate of feX. say g. from the observations z = 

(Zl ••••• ZN)T we require that f be smooth. By smooth it is meant that Jm(f) is 

small ~here 

'eM'" tH *; "'Irk !Jh: .. ..t..o.::C....~~~""'M ....... '+ ........ ; · ... "ef......-.!..i.1j;""'_.O&o.~t) .... " ...-... ' .... n""_ ...... _ ............. ' __ ,"'., ........ -..· ....... • .... 1in_ ..... • .. ' .. _· .... - ..... >0 ... _-.. _'M_"'d"'_-<""'1!:e',,-"'J_~ 
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m 
a f{t) 2 

Jm(f} 
H' 

= 1: 
v=1 -------J dt,2.6 

.. 
(m+d-l\ T 

for H' = \ d-l/, t=(tl, ••• ,td) and the al.v, ••• ,Od,v are the H' unique 
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combinations of {O,I, •••• m} such that al. v + ••• + ad,v = m. The smoothness 

function is induced by the Sobolev space X of which f is a member. 

Besides being smooth f should also be close to the data. To measure 

closeness define 

N 2 
C(f) = 1: ([f(ti) - ziJ/ai) • 

i .. l 

As defined here closeness and smoothness are conflicting criterea. To measure 

the tradeoff between the two we introduce the parameter A. The choice of A 

will be discussed in section 4. The estimate g of f is chosen as the minimiz-

er of 

C(f} + A Jm (f). 2.8 

The minimizer of 2.8 can be shown to be of tile form 

N H 
get) = 1: cin (t,ti) + 1: dv~v(t) 

i =1 Jm v=l 
2.9 



where 
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+v(t) = the H polynomials of total degree less 
m-l 

than ffi which span Pd • 

M 
fd+m-l' 

• \ d J. 

m-l 
p • the space of all polynomials of total degree 
d 

less than m. 

a a function of It-ti I which depends on Jm and 

2.10 

2.11 

1'\ 
Jm 

is rigorously defined in Wahba and Wendelberger (1980). 
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c = {Cl •••• ,CN)T, d = (dl, ••• ,dM)T are constants which arise ~s the solu-

tion to the linear system 

2.12 

and 

TTc = 0 2.13 

where 00
2 = diag ("12 

t ••• ,0Nz) and the N by N matrix K and N by M matrix T 

depend only on ti, i=l , ••• ,N and Jm(·). 

The estimate g along with the assumptions stated in this section and 

those made in section 4 involving the choice of A constitute the laplacian 

smoothing spline model. 

The laplacian smoothing spline is given by ~ in 2.9. In remote sensing 

appllcations which involve a small section of a sphere (the earth), the 

laplaclan smoothing spline is appropriate. However, for applications which 

n 
n 
\ 1 
l J 

, 1 
\ ' , J 

i 1 
1 J 

~l . 

: 1 
I I . , 

, 1 
\ 
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I' involve a large area of a sphere ,re requir~ splines which have the surface of 
l 

,-
I 

the sphere. rather than Rd. as theii domai:,. These splines are developed in 

the next section. 

3. Smoothing Splines on the Sph~re 

Smoothing splines on the sphere. as investigated by Wahba (1981). are 

developed both as an extension of one dimens10nal periodic polynomial spl1nes 

and as a restriction of three dimensional thin plate (Laplacian) smoothing 

splines to the surface of the sphere. The derivation of smoothing splines on 

the sphere parallels that of Laplacian smoothing splines. In this section we 

provide the modifications of section 2 which are required to obtain smoothing 

splines on the sphere. 

The first modification is that the independent variable space .Rd. is re-

placed by the surface of the sphere. S. This means that the ti in 2.5 become 

ti & S. i = 1 ••••• N. In particular ti = (~i,Ai)T. ti = latitude and Ai = 

longitude. i = 1 ••••• N. 

The second modif1cation is that in 2.11 H = 1. This means in 2.9 and 

2.10 there 1S only one polynom1al t1(t) = 1. Intuitively, this arises because 

of the necessity of having a period1c solution. 

The third mod1f1cat10n is that Jm(.) in 2.6 1S replaced by K~(')' Km(') 

1S a restr1ction of Jm(.) to S. For the specific form of KmC') see Wahba 

(1981). 

The f~th mo~if\cat1on 1S that n (t.ti) both in 2.9 and in the defini-
A Jm 

tion of K 1n 2.12 is replaced by 

GO 2v+l 
n (t,t1): E Pv (cos{A(t,ti»). 

Km v=l vm(v+l)m 
3.1 

L......,.4"1 ............. ' d ....... H-$.u.'·~"bo ... de_+ ....... ~ .... ! ..... ' ... l-> .... f+e.~~ ......... • ...... ·,...""_ ......... v ... ·"""*" .... · a_M"""""" _~ ................. "'-..., ................. _ .................................... ,J.,+l ........... , "",,, "" ........... ' .... ·_ ..... • ... ,t:cl_-..... e-a"""'" ..... h_· ... # _ .. _' .... ' _* ....... , ........ ""'~~ ... t 
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where cos(A(t,ti» equals the cosine of the angle between t and tie 

Pv(·) is the v-th Legendre ploynomial. 
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Al so, 

Modifications one through four provide the smoothing spline on the sphere 

w~ich is given analogously to 2.9 as 

N 
h(t) = t cin (t.ti) + dl. m = 2,3, •••• 

i-I Km 
3.2 

To obtain and evaluate the smoothing spline on the sphere. 3.1 must be 

evaluated. Uahba (1981) notes that the series given in 3.1 cannot be express

ed in terms of elementary functions. To compute smoothing splines on the 

sphere, the accurate and fast evaluation of 3.1 is necessary. To alleviate 

the difficulties which this entails, she derives smoothing pseudo splines on 

the sphere. 

To obtain these splines Km(.) 1s replaced by a topologically equivalent 

norm ~(.). In both 3.1 and 3.2 !<me·) is replaced by Lm(o), with 

specific expressions for n (t,ti) given in Wahba (1981). For illustrative 
Lm 

purposes we provide for m = 2 

n (tit;) = In(1+(21(1_z))112)[3z 2-2Z-1JI2 
L2 

_6[(1_Z)/2J 3
/
2 + 2 - 3z/2, 

3.3 

with Z = cos(A(t.ti». The smoothing pseudo spline on the sphere is thus 

easlly computed by using expressions like 3.3 to obtain n (t,t1 ). 

Lm 

." hr h OM 7 t cin'· ... ··...,.,"'"'"'·V ft-· :t M,t tog, zt-t 'f1< 1iI.~ 
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4. Generalized Cross Validation 

In applications the smoothing parameter A is unknown. To determine an 

estimate of this parameter, Craven and Wahba (1979) and Golub, Heath and Wahba 

(1979) have su~gested the use of generalized cross validation. To enhance the 

understanding of this method a short synopsis of its development is given. 

The method of cross validation (presented here as related to LSS's) is 

developed in response to the question: How well may one expect LSS's to pre

dict the true functional value f(t) at some point t? 

Simple cross valldation (SCV) suggests predicting the true functional 

values of data different from that used in the analysis to assess this pre

dictive ability. In SCV's Simplest form this entails dividing the sample into 

two pieces of similar size, using one sectior. for optimization and the other 

for testing. In addition, in order to gain more 1nformatio.l from the data, 

the two ~ieces may be interchanged and the optimization and testing performed 

on each. 

SCV is alright if there is an ample supply of data so that halving or 

doubling th~ data has little effect on the quality of the estimator. To 

lessen t~fs effect Mosteller and Tukey (1968) propose single cross validatlon 

(ICV)~ (called ordinary cross validation by Wahba (1979». which is described 

suitably by them as follows: 

·Suppose that we set aside one individual case, optimize for what is left, 

then test on the set-aside case. Repeatlng this for every case SQueezes 

the data almost dry. If we have to go through the full optimization cal-

*"w e' 

culation every time, the extra computation may be hard to face. Occa

sionally. one can easily calculate, either exactly or to an adequate ap

proximation, what the effect of droPPlng a specific and very small part 

•• n. ..... t -cts' MukM4· ..... " • .,..." .. bbt' .,ft. 1* b "., ts.ri'l1" """rl '±·.ih=+e .... b' r rintm.a ..... lfiMp)z e'l 
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of the data 'will be on the optimized result. This adjusted optimized rc. 

sult can then be compared with the values for the omitted individual. 

That ls. we make or,e optimization for all tt.e data, followed 

by one r~petition per case nf a much simpler calculation. a calculation 

of the effect of dropping each individual. followed by one test of that 

individual. When practical. this approach is attl'active." 
(j) 

To descrile lCV mathematl~,lly we require some notation. Let f~ be 

the solution to t~e minimization of 2.8 with the jth point removed from the 
(j) 

analysis. Similarly. 00 is the N-l by N-l matrix composed of 00 with its 

J-th row and column removed. To "test on the set aside case" we require that 
(j) 2 

[(f>., (tj) -Zj)/Oj] be small. "Repeating this for every case" and averaging 

to yield an overall test gives 

VmO(~) = (liN) ~ [(f>.(j)(tj) _ Zj)/Oj]2. 
j .. l 

4.1 

lCV uses the>. which minimizes VmO(>.). Wahba and Wold (1975). 

To minimize VmO(>.) directly is not a trivial computational matter. For 

each proposed value of >. a system of the form 2.12 and 2.13 (of order N+M-l 

instead of N+M) must be snlved for each of the N values left out of the anJl

ysis. This entails solving a linear system of order N+M-l N times! As noted 

earlier. "if we have to go through the full optimization calculation every 

time, the extra computation may be hard to face." Following the ldea of 

Mosteller and Tukey we seek a ccmputational simpl ification for the minimlZer 

of Vmo(>.). 

The simplified form for lCV was first noted by Craven and Wahba (1979). 

Golub. Heath and Wahba (l979) and given in a sl ightly more general form in 

Wahba and Wendelberger (1980). The lCV function may be written 

fl 
n 

·1 
" •• 

\1 •• 

n 
n 
f] 
, I 
I I , 1 
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4.2 

ajj(A) is the jth diagonal element of Am(A) which is defined by 

• 
~(>.)z = • 

• 
fA(tN) 
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where g is the solution of 2.8. Am{A} may be thought of as m3pping the vector 

z into the smoothed values • 

In this form II we make one optimization for all the data" by calculating 9 

\ofhfch is then "followed by one repetition per case of a rr:lch simpler calcu

lation. a calculatl0n of the effect of dropping each individual." Her~ find 

ajj{A) and use (4.2). 

Evaluation of this formulatlon of Vmo(A) involves solving a linear system 

of size N+M to find 9 and one of size N to find ajj(A}. This is a consid

erable fmprovement over using 4.1 directly. Because of a 

mathematical simplification the amount of computation needed to ~inimize 

Vmo{A) can be substantially rp.duced. From a pract1cal point of view this 

makes the u~e of cross validat10n very attractive. 

When applying cross validation to problems other than LSS's, this last 

step of finding "what the effect of dropplng a specific and very small part of 

the data will be on the optimized result ll 1S very important and should n~t be 

overlooked. In fact. this step often makes cross validation computationally 

feasible. whereas. without this inslght it may be impractical. 

_ ... ·£~ ___ d.ct .... • .... ) .... (_ .. ' .... _~_ .... ~_ .................. 
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Finding the minimizer of VmO(A) requires evaluation of VmO(A) at differ

ent valu~s of A as determined by a search routine. Hence, although the mlni

mization is possible, we need to repPdtedly solve larre linear systems with 

the number of solut1 .. 1 times being a function of the selrch routine er:1ployed. 
° (i) 

In Vm (A) of 4.1 each deviation of fA (ti) from th~ observed value Zi 

is treated symmetrically. This choice is arbitrary and is chosen for simpli

city. A more general approach is to weight each term of 4.1 or equivalently 

4.2 to yield 

Vm(fA) = (I/N)NI Wi[(fA(ti) - zi)/(ai(1-aii(A»)]2. 
1=1 . 

Before discussing the choice of these weights, the following definition is 

needed. 

Definition: 

N 
Rm(A) = E(l/N) I [(f(ti) - 9(ti»/al]2 

1=1 

is the expected weighted (by ai) mean squared error between the true function 

(f) ~nd the spline (g) evaluated at the independent variables (tl). E denotes 

mathematical expectation with respect to the error distribution of the random 

errors as described in the model of Section 2. 

If we want Rm(AI to be small, then the generallzed cross validatlcn value 

of A shoula be used as the ~oothlng parameter value. USlng 1CV as motlvation 

Craven Jnd Wahba (1979) and Golub, Heath and Wahba (1979) have shown that the 

A which minlmizes Vm{A) with \,ielghts 

N 
Wi = (l_ail(l»2/(1-N-l I aJJ(A»2 

J=1 

I 
1 . 
j 
• 

------.-----.. -.------~-----.--- ------..------



I , , 

0 ('1" ,. ~ .. ., ...... 
ill"; .. t,.~ I~'''U':' .;::t 

uF PCOR QUALllY 

is an estimate of the A which minimize~ Rm{A). Using these weights in 4.3 

gives the generalied cross vali~ation iun:tion (GCVF) 

4.4 

The minimizer of 4.4 is called the GCV estimate of A. 

1he GCVF can be rewrltten as 

where Tr is th~ trace. -
Wanba (1981) has proposed 

4.6 

as an estlmate of t~e error variance a2
• ThlS leads us to consid~r dfe c 
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Tr(I-Am(A}) as the e~ulvalent ~~grees of freedom of error Wahba (lY~2). USlng 

these notions we rewrl~e the GCVF as 

2 Vm(A} = Nae /dfe • 4.7 

The method of GCV may b~ viewed as ~inimizing the estimated error vari

an~e p~r error equivalent de~rees of frpedom. 

5. Estimation of Height, Wi~d. Dlvergence and Vorticity 

In this section we provlde a prellminary report cf the anoiysis of some 

met~orologlcal data. For a discussl0n of the analysis of ~~nte Carlo experi

ments using Lapiacld' smoothlng spllnes ~ee Wendel berger (198l) and Wahba and 

Wendelterger (1930). The datl to be analysed are obtained from the irregular

ly spaced North .~el'ican radiosonde network durlng the Ohio storm of 00 Z 

January ~5. 1978. 
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The heigh~. hi, wind speed and wind directio~ are reported with measure

ment error at the 850, 700, 500, 400, 300, 250, 200, 150 and 100 mb pressul'e 

levels. To analyse the wind the ui (east) component an~ the vi (north) com

ponent are obtained from the wind speed and wind directl0n ~easurements. Us-

n 
n 

ing those stations and levels for which all three components, : I 

(hi, ui, vi) ~re obtained yields 112, 117, 116, 116, 113, 114, 109, 108 and 93 

observations, respectively, for each pressure level. 

~sing the laplacian Sffioothing spline model the method of sections 2 and 4 

with m = 4 provides three fitted surfaces ~p, up and vp for each pressure 

level p. Figure 1 provide~ the height field, hp, for p c 850, 500 and 200 mb. 

The synoptic patterns are in general agreement with the National Meteorolog

ical Center's analysis. Figure 2 gives the isotachs and streamlines for up 

and vp with p = 850. 500 and 200 mb. The isotachs are levels of constant wind 

speed and the streamlines denote the wind direction. 

The vorticlty. V. and horizontal divergence, 0, may be obtained from 

v c [(3v/3A)/COS$ - 3u/3$ + u·tan~]/R 5.1 

and 

o c [{3u/3h)/COS~ - 3v/3$ - v·tan9J/R 5.2 

where R is the radius of the earth. ~ = latitude and A = longitude. Figure 3 

1S obtalned from 5.1 and 5.2 using up and vp for p = 850, ~OO and 200 mba The 

500 mb v~rtic1ty pattern is in excellent agreement w1th the Nat10nal ~~teoro

logical Center's analysis which is unavailable for comparison at the other 

levels. 
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(2b) 200 mb Streamlines 

(2d) 500 mb Streamlines 

(2e) 850 mb Iso tachs (20 850 mb Streamlines 

Figure 2: Iso tachs (m/sec) and streamlines. 
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£3 b) 200 mb Dlvergonce 

(3 d) 500 mb Divergence 

(3 f) 650 mb Dlvergonce 

Figure~: Vorticity and divergence, X lO-S/sec • 
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The results presented here will be supplemented with estimates of the ac

curacy of these fields by the method presented in Wahba (l981). The smoothing 

pseudo splines on the sphere will be employed to obtain h. u, v and the re

sulting divergence and vorticity estimates. 

6. Further Research 

In this section we list some further research ideas. 

The current comput~tional ~ethod used for laplacian smoothing splines re

quires a spectral decomposition of a~ N-M by N-M matrix, Wendelberger (1981). 

It seems likely that the calculation of all N-M of the eigenvalues and eigen-

vectors 1s unnec~ssary. An algorithm which determines how many eigenvalues 
. 

are needed would be extremely useful; then a truncation algorithm could be 

obtained to compute the spline, Bates and Wahba (1982). 

Often, given N observations for which the analysis has been performed, we 

may need to update or downdate this set of ohservations by the inclusion or 

exclusion of a single observation. An algorithm which does not require the 

spectral decomposition to be performed on the new N-M+l by N-~+1 or N-M-l by 

N-M-1 matrix would be very valuable. We could then generalize 

this to updatlng ard downdating by a small number of points. The usefulness 

of this type of algorithm is very apparent in the example provided in section 

5. 

In remote sensing applications different continuous linear functionals li 

will be required. These need to be identifled and their fast and accurate 

ccmputational algorithms need to be designed. FJr a specific example see 

Nychka (1983). 

In remote senSing applications, experiments need to be designed which 

will demonstrate the utility of smoothing splines. These will include Monte 

n 
n 
n 
n 
n 
n 

r 
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Carlo runs with data similar to that obtained in practice and confidence 

statements about the estimates obtained. 
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Methods to check the validity of model assumptions must be devised. A 

probability plot of the residuals is one such method. see Wendelberger (198l) 

and Wendelberger (1982). 
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ABSTRACT 

laplacian Smoothing Splines (lSS) are presented as generalizations of 

graduation. cubic and thin plate splines. The method of generalized cross 

validation (GCV) to choose the smoothing parameter is described. GCV is used 

in the algorithm for the computation of lSS·s. An outline of a computer 

program which implements this algorithm is presented along with a description 

of the use of the program. Examples 1n one, two and three dimensions 

demonstrate how to obtain esti~~tes of function values with confidence 

intervals and estimates of first and second derivatives. Probability plots 

are used as a diagnostic tool to check for model inadequacy. 
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1. Motivation 

A laplacian smoothing spline (lSS) is a statistical tool used to model a 

smooth but otherwise unknown function. The fitted spline provides an analytic 

function which may be utilized to estimate derivatives, integrals or values of 

the underlying function. For data analysis purposes a graphical display of 

the fitted spline (or cross sections for multidimensional problems) often 

provides insight which might otherw1se remain masked by the irregularly 

spaced. multidimensional and "noisy" data. The residuals, which are the 

observed values of the dependent variable minus the corresponding fitted 

spline values. may be utilized as an aid in model checking. A probability 

plot of the residuals provides a vehicle to detect possibly discrepant 

observations (outliers). With the above ldeas as the eventual objective we 

first elucidate the functional form of the lSS and then describe an algorithm 

for its computation. 

When someone mentions a line. cosine or an exponential we all have a 

visual image of "feel" for the function in question. Using the following 

example we hope to provide an intuitive feeling for an LSS. 

In one dimension imagine a long. thin, perfectly ~igld rod (a line) lY1ng 

on a frictionless plane with coordinate axes (t.z). We represent this rod as 

a function of t. say get). Assume that we are given N points fn the plane 

{(t.z):(t.Z)=(ti.Zi). i=l ••••• N}. The ti are consldered to be distinct and 

~nown without error. The zi are measurements of a true but unknown functlon f 

evaluated at tf plus some "noise" ei. The ei are 1ndependent random 

variables. each having mean zero and flnlte varlance. 
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With the pr~vious setup imagfne that an ideal spring is atta~hed to data 

point (ti.zi) and to the ro~ (ti.9(ti» for each i. f·I ••••• N. This fixes the 

springs to remain parallel to the ordinate axis. What position will the rod 

get) assume? 

Physics provides a means to answer this question. The rod will assume 

the position which minimizes the energy of the springs. The energy of an 

ideal spring is equal to some positive constant K1 (called the spring 

constant) times the square of the length it 1S stretched. Thus the cumulative 

energy of the N springs is 

This is minimized when g is the least squares line (~rovided we restrict ~ to 

be rigid) therefore the least squares line is the position the rod will assume 

if Ki • ko• i-I ••••• N. KO sorr.e constant. If the Ki are not all equal then the 

rod will assume the position of the weighted least squares line. Not1ce that 

this spring idea provides an 1ntuitive explanation for minfmizlng the res1du~1 

sum of squares in rpgression. 

The situation is analogous 1n two dimensions: a thin plate of 1nfinite 

rigidity (not bendable) would assur.e the posit10n of the least squ~res pldne. 

The situation in three d1mensions. although not as easy to vlsu~llze. 1S 

analogous. There are further restrictions on the ti Wh1Ch are rigorously 

given 1n (2.6). 

We have thus far assumed thJt t~e roc is rig1d. T~is is not necessary 

and ~ay not be a good representatlon of the physlcal phenomenon under 
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consideration. So we relax the rigidity assumption and assume that the rod is 

flexible. If zero energy were requil'ed to flex the rod then the minimum 

energy position which the rod would assume is that of a function of 

interpola,ion. Since the residuals are zero, this configuration has zero 

energy and thus is a minimum. By this explanation it is re~dily seen that th~ 

funrtion thus obtai~ed is not unique. This ano~aly will be alleviated by 

requ1ring energy to flex the rod. 

Consider the more real1st1c ca,e where the ro~ is flexible and takes 

energy to flex. The spring of a diving board is testimony to this. Note that 

the ben<!ing energy of a rod 1S (r·la2)J2(9), where pla2 is a constant and 

-J2(9) m ![g(2)(x)]ldx • (1.1 ) .-
Therefore the bending energy is proportional to curvature which may be 

measured ~s J2(9) in (1.1). 

To fin~ the pos1tion which the rod will ~ssume under these Londitions is 

equivalent to finding the function 9 Wh1Ch will minimize the total energy of 

the system 

N 
t Ki(z; . g(t;»2 + (pla 2 ) JZ(g) 

;=1 

or eQu1valently the minimizer of 

N 
(lIN) t a2ki(Z,. 9(ti»2 + (p/N)JZ(g) 

i .. l 

(l.2) 

(1.3) 

The funct10n from a certaln class of functions. X. which mlnirnlZes (1.3) 

can be shown to be a plecewise cubic spl1ne. The functiJn space X lS 

L -------......... ..........-....~_u ___________________ ....... _________ ...... ~ _ _..._ . ..:. __ ~ _______ ..... .-._ .. ______ .... __ 
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rigorously defined in Wahba and Wendelberg~r (1980). Here X should be thought 

of as a space of smooth functions which map Rd into Rl. There is much 

literature about cubic splines in one dimension. To this author·s knowledge 

the e~rliest work on lSS·s is that of Schoenberg (1964); other important work 

on splines is given in Craven and Wahba (1979). Duchon (1976). Prenter (1975). 

and Reinsch (1967). 

The one dim~nsional case generalizes to two dimensions. In two 

dimensions the splines are called thin plate splines because of the analogy of 

minimizing the energy of a thin plate of infinite extent. The earliest 

suggested application of thin plate smoothing splines seems to have been by 

Harder and Desmarais (1972). They suggested that spring forces may be applled 

at the points of lnterpolation. This inspired the spring analogy given here. 

This sprlng concept is equivalent to lSS·s 1n either one or two dimens10ns 

{with ms 2 in (Z.I». Much recent work on lSS·s has been done by Wahba (see 

Wahba (1979) and the references cited there). 

In two dimensions JZ(g) becomes 

• - 2 (2) 3
2g(Xl.X2) 

J2(9) s f f t J [ ]2 dXl dxZ • 
-- -- v-O 3xlv 3xZ2- v 

(1.4) 

J2(9) is proportional to the bending energy of a thin plate (undp.r simpllfying 

assumpt10ns); for details see r~lnguet (1979). However, in two di~~nSlons the 

solution is no longer a piecewise cubic but rather takes the form 

N 
get) = t c,·Ti2ln(Ti} r ~Q + dlxl + d2X2 • 

i-I 
(l.S) 

where Tl 1S the Eucl1dean distance between ~ and !1. that is Ti 2 = 1~-~1 12 
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spline. The terminology "laplacian smoothing spline" was suggested by 

Professor I. J. Schcenberg. An explanation for using the term "laplacian" is 

given in Wahba (1979). 

l~--... ______ ... 
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let Zi a f(:i) + ei. f·l ••••• N. The :i£Rd are known exactly. We assume 

that the function f is smooth but otherwise unknown. By smooth it is meant 

that the function is well approximated by a function g£X; X is rigorously 

defined in Wahba and Wendel berger (1980). X may be thought of as a space of 

functions which approximate well a large class of functions of which f is a 

member. The ei are independent. zero mean and finite varlance random 

variables with variance-covariance matrix a2Do2 • a2diag(a12 ••••• aN2). Here 

a2 is an unknown constant. For example. if we know that all the variarces are 

equal then we may take 1.0 = a1 2 •••• • aN2 in what follows. The ai 2 used 

here are inversely proportional to the kf of Section 1. that is. kf • (~ai)-2. 

The ai 2 may be thought of as relative weights of the measurement errors ei. 

The zi are observed dependent v~riables in Rl and the corresponding ~i are 

independent variables in Rd. l~l ••••• N. 

A Laplacian smoothlng spline is the function 9 which is the solution to 

the problem. 

Find g£X. X a suitable function space. such t~at 

N-IIIDa-1(~-2)112 + (p/N)Jm(g) 

attalns its minimum. Here define 

~ ~ (Zl ••••• ZN)T. ~ • (91 ••••• 9N)T. 9i a g(!!). 1 IDa-l(~-~)1 12 

z (~-2)TDa-2(:-~). Da-l • diag(al- 1 ••••• aN- 1 ) • 

where superscri pt T means transpose througho'Jt. Al so. 

H'm! CD CD 

(2.1) 

= E f ••• J [ ]2dXl .... dxd; (2.2) 
val al.v! ••••• ~.v!_CD _CD aXlal.v ••••• aXdad.v 

--!! ., 
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In the case presented earlier with de 2 and m·2 we have H
I -3 and 

(al,v,a2,v) takes on the HI unique values (1,1), (2,0) and (0,2). In this 

case (2.2) reduces to (1.4). 

The solution to the minimization problem is unique and given in (2.3) • 

(2.3) 

where Ie is the indicator function of even integers. that is Ie{d)sl, for d 

even and Ie(d)=O, for dodd; 

( 

(_1)d/2+l+m/(22m-lwd/2(m-1)!(m-d/2)!). 
em d _ 

• r(d/2_m)/(22mwd/2(m-l)!). dodd 

d even 
(2.4) 

and ~v are the polynomials of total degree less than m. 

Plv Pdv 
~v(:) • ~v(Xl, •• ·,Xd) = xl ••• xd 

(2.5) 

Here the ~v are unique; Piv ~ 0, l a 1, ••• ,d and Plv+",+Pdv < m. val, •••• H, 

H ,. ~+~-l). Define the M by d matrix P to have ivth element P;v' Also, 

2m-d > a and (2.6) holds. 

H 
t av~v(ti) • O. i=l, •••• N im~lies av • 0, v·l ••••• M • (2.6) 

v-I -

(Condftlon (2.6) requires that the matrix To of Section 5 step (ii) be of rank 

M.) c,. (CI ••••• CN)T and ~ • (dl ••••• dN)T are obtained by solving the llnear 

system 
(2.7) 

_--...._............ ' ____ ~~ _________ • _____ ~l!!r~ -1 - *,,&,1., i' 
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In (2.7) K is the N by N matrix with fjth element 

em,dTij2m-d(ln(Tij})Ie(d}. In (2.7) and (2.8) T is the N by H matrix with 

fvth element ~v(~i)' In (2.7) 00
2 is the N by N d1agnal matrix with 1ith 

entry 0i 2• 0 2 is an unknown proportionality constant which along with p is 

absorbed into A using NA - pa2 to yield (2.S) from (2.7). 

(Z.9) 
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The approach of Harder and Desmarais (1972) provides us with a physical 

interpretation of the parameters at least in the d-Z case. p-NAa-2 is the 

plate "rigidity" which is a constant. The value of p depends on the material 

and the thickness of the plate. The spring constant kj is equal to the 

reciprocal of the variance or (acj)-2. The "load" at the jth point is 

PJ ~ PCj • (oaj)_2 rj • KJrj. where rj is the unnormallzed or unsealed residual 

at that point; i.e •• rj • Zj - g(~j). jR1 ••••• N or ~ • ! - K~ - T~. 

For a discussion of a more general problem and the derivation of the 

solution the reader is referred to Wahba and wendel berger (1980). We note 

here that if the ei are not independent but instead have positive definite 

covariance matrix proportional to t then 002 and 00- 1 are everywhere replaced 

by t and the symmetric inverse square root t- 1/2 to obtaln the solution. 

To this pOlnt we have assumed knowledge of the smoothness parameter A. 

However it is generaliy unknown. Before describing a method to dynamicalll 

choose>.. from the data at I,and we provide an example to exhiblt its lnfluence 

(In the lSS. 
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A company which makes and repairs small computers wants to forecast the 

number of service engineers that it will require over the next few years. To 

do this re~uires, among other things, knowledge of the length of a servic~ 

call. The length of a call is a function of the number of components within 

the computer which must be repaired or replaced. The information in Table 3.1 

was collected on 24 service calls; the data are from Chatter~ee and Prlce 

(1977). We would like to fit a ~pline to the data in order to forecast the 

length of a service call. 

We fit a spline to the data using the algorithm given in Section 5. The 

smoothness parameter, At is dynamically chosen from the data using the method 

of generalized cross validation (GCV). By s~owing the influence of A on the 

LSS of this example we hope to provide a clearer understanding of the role of 

GCV in choosing the smoothness parameter. The results of the following 

sections will be easier to understand with this example in mind. Exactly what 

the GCV choice of A is will be presented in Section 4. 

Figure 3.1 shows a plot of the data and the corresponding spline for five 

dlfferent values of A. Because there are only 24 observations of which only 

17 have unique independent variables we should not be surprised if the GCV 

estimate (to be descrlbed in Section 4) of At WhlCh is a large Semple result. 

does not perform well. The confidence inter~als are calculated using method 

of Wahba (1981); the formula used for their computation is given in Example 2 

of Section 6. 

lJ~ ______ ._.~_._ 
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TABLE 3.1 

EXAMPLE 1 - REPAIR TIMES 

Length of Calls Units Repaired 
(Minutes) 

23 
29 
49 
64 
74 
87 
96 
97 

109 
119 
149 
145 
154 
166 
162 
174 
180 
176 
179 
193 
193 
195 
198 
205 

(Number) 

1 
2 
3 
4 
4 
5 
6 
6 
7 
8 
9 
9 

10 
10 
11 
11 
12 
12 
14 
16 
17 
18 
18 
20 
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Figure 3.1a: Example 1 with A = 0.00 
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Considering the brief explanation of the problem given here the GCV 

choice of A. as used in Figure 3.lc. seems reasonable to use fn predicting the 

number of minutes spent. The GCV choice of A appears to be ~he most visually 

pleasing and consistent with how we would expect the number of mlnutes spent 

on a service call to be related to the ~umber of computer compcnents repalred. 
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4. Generalized Cross Validation 

In the exa~ple of Section 3 the smcothing parameter A is unknown. To 

deternnne an estlmate of this para~~ter Craven and WQ~ba (1979) and Wahoa and 

Wold (1979) have suggested t~e use of generalized cross validation. A short 

synopsis of the development of thfs method is gi\en to enhanc,\ the 

understanding of it. 

The method of cross validation (presented here as related to LSS's) 1S 

developed in response to the question: How well may one expect LSS's to 

predict the true f~~ctional value get) at some point t? 

Simple cross validation (SCV) suggests predicting :he true functional 

values of data different from that used in thp analysis to assess this 

predict1ve ability In its simplest form this entails dividing the sample 

illto t~o pieces of similar size usfng one section for ortfmization and the 

other for testing. In addltion to this. in order to gafn more infortlldtion 

from the data. the two pieces ~dy be interchanged and the optimization and 

testing perfornea on each. 

SCV is alright ff there is an ample supply of data so that halving or 

doubl1ng it has little effect on the quality of the estfmator. To lessen this 

effect ~osteller and Tukey (1968) propose single cross validation (ICV). 

(called ordinary cross validatfon by Wahba (1979j). which is described 

suitably by (hem as follows: 

"Suppose :hat we set aside one individual case. optimize for what 1S 

left, then test on the set-as1de case. Repeating this for e~ery case 

squeeze$ the d~ta almost dry. If we have to go through the full 
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ortimizatfon calculation every tfme, the extra computation may be hard to 

face. Occasfona"y, one can easily ca1culate, either exactly or to an 

adequate approximation, what th~ effect of dropping a specific and very 

small part of the data will be on th~ optimized result. This adjusted 

optimized result can then be compared with the values for the omitted 

lndividual. That is, we make one optimization for all the data, followed 

by one repetition per case of a much simpler calculation, a calculation 

of the effect of dropping each ll1dividual, followed by one test of that 

indlVidual. When pr3ctical, this apprCiClch is attractive." 

To describe lCV mathematlcally we require some notation. let g).(J) 'le 

the solution ~o the minimization of (2.1) with the Jth point removed from the 

analysls. Si~ilarly, Dc(J) is t~e N-l by N-1 matrix composed of Dc wlth ltS 

jth row and column removed. To "test on the set aside case" we requlre that 

[(g). (J) (:J) - zJ }/oj]2 be small. "Repeating this for ever,; case" and 

av~~ag1ng to Yleld an overall test gives 
N 

VmO().) = (lIN) t [(g).(j}(tj) - zJ·)/oJ]2 • (4.1) 
j"l -

lCV uses the). WhlCh minlmizes VmO().). 

To min1mlze VmO().) directly is not a trivial computatlonal matter. For 

each proposed value of ). a system of the form (2.8) and (2.9) (of order N+tt-1 

1nstead of N+M) must be solved for each of the N values left out of the 

analysls. ThlS entails solving a llnear system of order N+M-l N tlmes! As 

noted earller ''If we have to go through the full optlmlzation calculation 

every tline, the extra computatlon may be hard to face." Fol1owlng the 1dea of 

~osteller and Tukey we seek a computatlonal Slmp11flcatlon for the mln1mlzer 

I 
1 

-

• 1 

•• 

I 
1 
1 
1 
I 
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The simplified fo~ for 1CV was first noted by Craven and Wahba (1979) 

and given in a slightly more general form in '~ahba and Wendel berger (1980). 

The 1CV function may be written 

N 
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VmO(~) • (lIN) t [(g~(tj) - zj)/{aj(1-ajj{~»)]2 (4.2) 
j-1 -

ajj{A) is the jth diagonal el~ent of Am(~) which is definad by 

Am(~)~ ,.(9Tl») 
9~(:N) I 

where g~ is the solution of (2.1). Am(A) mat be thoug~t of as mapping the 

vector z into the smoothed values. 

In thls form "we make one optimization for ail the data" by calculatlng 

9A then "followed by one repetition per case of a much simpler calculation, a 

calculatl0n of the effect of dropping each individual." Here find ajJ(~) and 

use (4.2). 

Evaluation of this formulation of VmO(A) involves solving a linear system 

of size N+H to find gA and one of siz~ N to find aJj{A). This is a 

considerable irn~rovement over !hat of using (4.1) directly. Because of a 

matheMatical simplification the lmount of computation needed to minlmize 

VmO(~) can be substantially reciuced. From a practical point of view this 

makes the 'Jse of cross validation very attractive. 

When applYlng cross valldation to problems other than LSS's this last 

step of flndlng "what the effect of dropping a speci4'lc alcd very small part of 

the data will be on the optimized result" is very important and should not be 

I , 
I \ 
! 
• 
! . 
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overlooked. In fact. this step often makes ~ross validation computationally 

feasible whereas without this insight it may be impractical. 

Finding the minimizer of VmO(A) requires its evaluation at different 

values of A as determined by a search routine. Hence. although the 

minimization is possible we need to repeatedly solie large linear systems with 

the number of solution times being a function of the search routine employed. 

In VmO(A) of (4.l) each deviation of ~A{i\(:i} from the observed value zi 

is treated symmetrically. This choice i~ ~rb4trary and is chosen for 

simplfclty. A more general approach is to weight each term of (4.1) or 

equivalently (4.2) to yield 

N 
YmCA) ::I (lIN) t Wi[(9A(ti) - zi}/(ai(l-aii(A»»)2. 

i"'l -
(4.3) 

1 
1 
I 
1 
1 

--
~ ! 

Before a discussion of the choice of these weights the following definition is .) 

needed. 

Oefinitlon: 

is the expected welghted (by ail mean squared error between the true function 

(f) and the spline (g~) evaluated at the independent variables (t l ). Here E 

denotes mathematical expectation with respect to the error distribution of the 

random errors as described in the model of Section 2. 

If we want Rm(A) to be small then the generalized cross valldation value 

of ~ should be used as the smoothlng parameter value. USlng ICV as motlvatlon 

.. 

I 
J 
I 
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c. 

r Craverl and Wahba \_~79) and Golub, Heath and Wahba (1979) have shown that the 
4. 

L 
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A "Ihich minirr.izes YmCA) with weights 

N 
Wi = (1-aii(A»2/(1-N-l t ajj(1»2 

jill 

is an estimate of the A which minimizes Rm(A). Using these weights in (4.3) 

gives the gener~11ted cross validation function (GCVF) 

The minimizer of (4.4) is called the GCV estimate of 1. 

The GCVF can be rewritten as 

YmCA) = (1/N)IIDa-l(I - Am(A»~112/«I/N)Tr(I-Am(A»)2 

where Tr is the trace. 

Wahba (1981) has proposed 

as an estlmate of the error variance 0 2 • This leads us to consider 

(4.4) 

(4.5) 

(4.6) 

dfe = Tr(l-Arn(l» as the degrees of freedom of error. Using these notions we 

rewrite the GCVF as 

(4.7) 

The method of GCV may be viewed as minimizing the estimated error 

variance per error degrees of freedom. ThlS may further be thought of as a 

form of parsimonious model selection • 

I 
0- t/+S + 
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In the next section we see that the computation of V~(A) is reduced to 

essentially the singular value (or eigenvalue-eigenvector) decomposition of a 

symmetric positive definite N-H by N-H matrix (H is usually a small integer). 

The above decomposition makes it possible to form YmCA) by simple scalar 

operations for each value of A. Thus we have taken the ideas of Hosteller and 

Tukey one step further. This algorithm is much simpler than the original 

analysis at essentially the cost of a one time eigenvalue-eigenvector 

decomposition; i.e., changing the dependent variable (but not the independent 

variables) does not necessitate another spectral decomposition. Thus, many 

data sets which have lder.~ical independent variables but different dependent 

variables may be analyzed quite easily and inexpensively. 

When using GCV wlth a small sample size we may run into problems. The 

most frequent small sample problem with GCV is that A • 0 or A = • is chosen 

when physlcal conslderations dictate that it should not be. A s 0 implies 

that we are lnterpolatlng the dependent variable. This should be done If the 

true underlying rlgidity p is zero. A equal to inflnity implles that we are 

fltting a polynomlal of degree m-l by least squares. This should be done if 

either the variance is large (relative to the dependent variable) or lf the 

true underlYlng rigldity is infinite (f.e., the true model is a polynomial). 

If it lS clear from other conSlderatlons that the value of A chosen 1S not 

1ndicatlve of the actual underlYlng mechanism then that partlcular value 

should not be used and the model assumptl0ns should be checked for 

vlolatlons. 

The cholce of m can also be made by GCV. see Lucas (1978) and Wahba and 

Wendel berger (1980). 
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5. Algorithm 

The user must supply N independent varfables. !feRd. f.l ••••• N. and their 

corresponding dependent varfables. ZieRd. i·l ••••• N to compute the lSS at a 

point teRd. Assume that the model described in Se:tion 2 holds. In 

particular. assume the independent variables :i are known without error and 

the dependent variables zi consist of the true function value at ~f. f(!i). 

plus "noise." ei. Zi a fitt} + e1. The ci are independent with finite 

variance 02oi2, 02 an unknown constant. 

To produce the coefficients c and d needed to evaluate the spline we 

solve the linear system of equations 

(K + NA*D02)~ + T~ • Z 

and 

TTc • 0 • 

In this system A* is the optimal value of the smoothing parameter A as 

determined by the generalized cross validation function. If A* is known then 

the Solutl0n of the above linear system could be accomplished for relatively 

large values of N. However. it is usually unknown and must be calculated in 

order to solve the system of equations. 

The method currently used to d~termine A* requires the solution of a 

symmetric N-H dimensional eigenvalue-eigenvector problem. This is the current 

computatl0nal barrier to solving problems with large numbers of observations • 

The algorithm presented in Wahba and Wendelberger (1980) requires the 

lnversion of a matrix of order M and two elgenvalue-elgenvector dp.compositl0ns 

of symmetrlr matrices. one N by N and the other (positive definite) 
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N-H by N-H. The algorithm presented here requires the solution of a 

triangular system of order H. the QR-decomposition of an N by H matrix and the 

singular value (or eigenvalue-eigenvector) decomposition of a symmetric 

positive definite N-H by N-M matrix. This algorfthm is faster and requ1res 

fewer opp.rations. primarily b~cause of the replacement of one N by N 

eigenvalue-eigenvector decomposition by the QR-decomposit1on of an N by H 

matrix (H < N). 

This algorithm provides for replicated points. A replicated point is one 

for which there is more than one observation of the dependent variable for a 

particular value of the independent variable. let the total number of unique 

(lndependent variable) points be NN and define No a N - H - NN. Then the 

computational algorithm is as follows: 

(i) Compute Ta aDa-IT. 

(1;) Perform the OR-decomposition described in Dongarra. et al •• {1979}, of 

Ta. 

Ta • (01,02) x (RT,O)T • 

(iii) Calculate B • Q2TDa-lKDa-IQ2 

(iv) Decompose B • (U1,U2)OB , (U1,U2)T • 

using the Singular value decomposition of B, as descrlbed by Golub 

and Re1nsch (1970) or using the spectral decompoSition of B as 

described by Smith, et al., (1976); where 
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OBI - diagonal matrix of the eigenvalues (bf) of B. which is of 

dimension N-H by N-H. 
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DB - diagonal matrix of the positive eigenvalues (bi) of B. which 

is of dimension HN by NN. 

Ul - the eigenvectors of the positive eigenvalues of B, which is of 

dimension (N-H) by "N, and 

U2 - the eigenvectors of the zero eigenvalues of B, which is of 

dimension (N-H) by No. 

(v) Form ~ • UITQZTOa-l~. 

~T • (Wl ••••• WN") • 

(vi) Obcain A* as the minimizer of 

NN NN 
N t [wi/(bi/N + A)]2/( t (1/(bi/N+A»)2. 
i-l i-l 

(5.1) 

where za Z Da-1z • - -



(vii) Calculate 

C I: 
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o < A < e and N-M • NN 
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(5.2) 

o • 

(Vili) Solve the triangular system. 

R~ = QITOa-l(~ - K~) for d. 

~T = (dl ••••• dM) • 

o < ~ < • and N-M ~ NN 

An important aspect of this method is the relatively small cost of 

reconstructlng a new LSS using the identical independent variables whlle 

changlng only the dependent variables. To see this notice that the bulk of 

the computational effort is in steps (1) through (iv) WhlCh do not requlre 

knowledge of the dependent variables. These steps depend upon the independent 

varlables and Da. To construct a second LSS with the same lndependent 

varlables and identlcal Ocr we need only save the matrlces Ul. Da. On. Ql. 02 

and R. With these matrices we perform steps (v) through (Vili) to produce a 

spline for another set of dependent variables. say z'. wlth llttle addltlonal 

romputatlonal effort. 

The fact that obtalnlng another spllne from z' lS easy requires further 

conslderatlon. It is made posslble because of the necessity to mlnimlze the 
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GCVF. This minimization provides the mechanism to easily calculate c and d in 

steps (vii) and (viii) of the algorithm. If A* was somehow known a priori 

then we could go right ahead and solve the linear system (2.8) and (2.9) at a 

much less one time cost. However. even with A* known, if we had many new data 

sets z' then for some number of them it indeed would be easier to do the 

spectral decomposition once and for all • 

Instead of saving Ul, 00' OS, Ql, Q2 and R we actually save Q2Ul, 00' DB, 

QITOo-1K and the QR-decomposition of To to retrieve r., Q2Q2T and Ql- By using 

these matrices we can perform steps (v) through (Vili) quite inexpensively. 

The QR-decomposition can be stored in the storage which has been allocated for 

To plus H additional storage locations. QlTOa-1K is retained so that it is 

unnecessary to reevaluate K. 
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6. Example ~--Franke"s Principal Test ~unction. d-2. 

Example 2 is a Monte Carlo experfmant to demonstra,e the surface (da 2) 

I 
I 
1 

which Olay bp obtained by using an LSS with GCV. The rprfncipa 1 test funct1on" I 
of Franke (1979) is used as the true function f. This surface consists of two 

Gaussian peaks and one Gaussian dip superimposed en a surface sloping towards 

the first quadrant. The surface i~ defined by 

f(x.y) - .75 exp -[[(9x-2)2+(9y-2)2]/4] 

+ .75 exp -[[(9x+1)2/ 49]+[(9y+1)/10]1 

+ .50 exp -[[(9x-7)2+{9y-3)2]/4] 

- .20 exp -[(9x-4)2+(9y-7)2] 

A plot of the surface f is given in Figure 6.1. 

The surface is reconstructed from 169 "noisy" observations on the grid 

2J-1 2k-1 
G· {tilti-(----.----). i=13(j-1)+k; J.k.1 •••• ,13} • 

- - 26 26 

The "n01sy" observat1ons are 

The e1 are generated by the pseudo random number generator RAENBR at the 

Mad1son Academic Comput1ng Center. MACC (1978). The LSS with m=2 and the 

smoothing parameter chosen by GCV is plotted 1n Figure 6.2. The closeness of 

f1t can be qualitatively seen by overlaying Figure 6.2 on figure 6.1. 

For this example the calculated oe2:(.026)2, (uS1n9 (4.6». compares 

favorably w1th the true 0 2:(.03)2. Using oe2 to obta~n conf1dence intervals 

for the true curve at the gr1d points G as 1n Wahba (19B1) glves the 95% 

confldence intervals 
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Flgure 6.1: Example 2--Frank 's Prlnclple Test Function 
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Figure 6.3 gives the c,'oss sectton along the grid showing l.'lc true curve, 

s~line fit. observation and 9~1 confidence interval at each point for each 
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The ,umber of 95~ confidence intervals whic'l cover the true surface is 

known because the true surfacp is known. For this exa~ple 162 or 95.9~ of tne 

intervals cOlter the true surface. This is a favorable comparison since the 

expected number is 161. This eX3mple was not chosen because of this agreement 

but rather was the only one run by prior decision. 

The example given here uses points on a grid only for clarity of display. 

For other d-2 Monte Carlo results see Wahba and Wendel berger (1980). The 

meteorological exa~pl~ given there ~ses irregularly spaced points. 
\ 
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7. Example 3--Derivatives and Outliers. d-3. 

Example 3 is a Monte Carlo experiment with d-3 and true function 

f(Xl.X2,x3)-(Zn)-3/2 exp (x12+4xZ2+9x32)/(-Z)]. 

444 

Contours of f, fl and fll are given as the solid lines in Figures 7.4, 7.5 and 

7.6. 

Three hundred points ti, i-1 ••••• 300 are taken from a uniform 

distribut10n 1n R={{X1.X2.X3)1-2<Xl<2. -1<x2<1. -2/3<X3<2/3}. The true 

function f is evaluated at each of the points :i and added to a Gauss1an 

pseudo random variable with standard deviation au.OOZS to yield observation 

I 
I 
I 
J 
I 

zi. The peak helght of f is approximately .0634. a is roughly 4~ of the peak -i 
height and therefore these data have a "typical" noise level. 

A value of m=4 was chosen for this example in order that the second 

der1vative of the spli~e could be used as an estimate of the second derivative 

of f. If k is the order of the derivative desired then Zm-2k-d Must be 

posltive. Here 2x4-2xZ-3 = 1 > 0 and so the second derivat1ve of the LSS will 

be a good estimate of the second derivative of f; for details see ~ahba and 

Wendel berger (1980). 

The estimate ae for this experiment is .0024 which agrees ~icely with the 

true value of .0025. 

Contours of the true function and the f1tted spl1ne, gA*' are plotted 1n 

Figure 7.4 for 4 values of x3. Secause of the symmetry of the true surface it 

was not plotted for negatlve values of x3. The true function and the fitted 

spl1ne are close to one another near the center of the reglon ard th1S 

closeness degrades as we approach the boundary 10 each of the three 

d1rect10ns. 
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The contours of the derivatives of f and g\* wfth respect tc xl. x2 and 

x3 are given in Figures 7.5a. 7.5b and 7.5c. respectively. The contours of 

the second derivatives of f and 9A* with respect to Y.lxl. xlx2. xlx3. x2x2. 

x2x3 and x3x3 are given in Figures 7.Ga. 7.6b. 7.6c. 7.6d. 7.6e. and 7.6f. 

respectlvely. The same qualitiative behavior is displayed by these 

derivatfves as of the function with the degradation occurring relativaly more 

rapidly as the ~oundary is approached. Figure 7.6f which is (a2)/(aX3ax3) of 

f and gA* displays a particularly good fit near the center of R. 

lSS's may oe utilized to detect outliers in multidimensional noisy data 

provided that the model of Section 2 is (nearly) appropriate. The model 

requlres that the observations are unbiased. i.e •• that Ez-f. The errors 

should be additive and have a known relative error 'structure. Dc. For the 

purpose of the Qutlier study here we shall further assume that each error ci 

has a Gausslan distribution. 

To what extent the assumption of normalfty may b~ relaxed in practlce 

requires further study. The smoothness assumption requires that f(t) is 

a smooth function of t. This rules out "cliff" functions or those with 

dlscontlnulties. By using a probability plot of the residuals the example 

discussed here. WhlCh satisfies the above requiremants. will be used to 

demonstrate an outlier detection method. 

Data sets with outliers need to be constructed. To accompllsh thlS 

choose the two points of :i. f=1 •••• ,300 which are nearest to and farthest 

from the ongln, whlCh is the center of the data reglon. These two pOlnts are 

tk (-.056. -.032. -.042) and tl = (1.985. -.879. -.32S), respectlvely. To 
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construct data sets ~ks, let each element of ~ks equal the corresponding 

element of z except for the kth. The kth element is set equal to f{~k) - sa, 

as.0025. Construct ~ls analogously except that the lth element becomes 

f{:l) + sa. 

Wit~ the data sets ~ks and ~ls probability plots in Figures 

7.7 and 7.8 were obtained with HINITAB, Ryan, Joiner and Ryan (1976). The 

probabillty ~lot is constructed by ordering the residuals ri from smallest to 

largest and plotting them against their corresponding normal scores. The ith 

smallest normal score as used by MINITAB is the (i-3/8)/300.25 percentage 

point of the normal or Gaussian distribution. If the error distribution that 

is postulated in the model is the correct one, then the probability plot 

should be nearly linear. In the data sets constructed here the error 

dlstributlon is not correct because the kth or lth point is biased and 

contalns no random component. 

The numbers in Figures 7.7 and 7.8 indicate how many points are plotted 

at that spot on the graph. An asterisK indlcates one pOlnt and a plus sign 

lndlcates that more than 9 points are overlapplng. In Figures 7.7b. c and d 

the outller lS identified as tne point which is separate from the points WhlCh 

form the line. As the assumption of unbiasedness is more strongl) violated It 

shows up more obviously in the plot. 

Figures 7.8a-d demonstrate that this outlier detection scheme is not 

invinclble and should be used in co~junction wlth other diagnostic cheCKS. 

The paint tl has very high leverage because it is on the boundary of the data 

reglon. In linear regress~on thlS is analogous to the pOints at the extremes 
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of the independent variable range which also have high leverage. Becaust· of 

this the residual at !l is not large and does not show up in the probability 

plots of Figures 7.8a-d. The leverage at :1 is so large that it causes 

another point. the one in the lower left. in Figure 7.8d to appear as 

descrepant. The probability plot provides a technique to check model 

assumptions. However. as demonstrated here. this technique should be used in 

conjunctlon with other diagnostic checks and with a good understanding of the 

pitfalls which may be encountered. 

Another diagnostic check which may be employed here is to plot the 

residuals. ri. against the distance from ~i to ~l. This 1S analogous to 

plotting the res1duals against the independent variable in simple linear 

regression. If a nonrandom pattern is observed. such as serial correlation. 

then we have evidence that some model assumption is being violated. In 

practice. t1 is unknown and hence it may be necessary to do all possible 

plots. 1-1 •••• ,N. 

If a scaling Da had been used then the scaled residuals Da-1r would be 

plotted lnstead of r. 

The procedure described here is a diagnostic method by which some of the 

model assumpt10ns may be checked. Irregularly spaced rnult1dinensional "nolsy" 

data easlly mask outliers. This technique provides a means which may detect 

these discrepant observations. It is presented here in the hope that it 

becomes a routlne method to check for model violations in an analysis WhlCh 

uses LSS's. 

The three dlmenslonal results presented here are new and qUlte promls1ng. 

A quant1tat1ve measurement of the goodness of flt of the est1mated spl1ne and 

1tS der1vatlves to the true functlon 1S glven in Wendel berger (1981). Further 

Monte Carlo experiments w1l1 be performed 1n 3 and more dlmenSlons. 

i, 
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8. Running the program 

To evaluate an LSS at any point. teRd involves the execution of two 

computer programs. The first of these. called MAIN. produces the coefflcients 

of the spline. The second. called EVALUATE. proauces the spline. gN.m.ACt). 

If 2m-2k-d is positive EVALUATE may also be used to produce the first (k=l) or 

second (k=2) derlvative of 9N rr A. Dependlng upon the particular problem at • • 
hand the user speclfies differe~t options to be exercised by the program. 

These options will be explained card by card oelow. Card will be 

abbreviated Ci and the commands are summarized in Table 8.1 wIth an example 

runstream gIven in Table 8.3. 

Cl is used to specify whether or not the coefficient arrays c and d and 

the matrices X and P used to reconstruct the spline are written to un1t 13. X 

conta1ns the values of the independent variables and P contains the exponents 

of the polynomials in (2.5). where P 1S rigorously defined. 

To accomplish storing the spline in unit 13 Cl should have 5513 1n 

columns 1 through 4. If EVALUATE IS not going to be run then the contents of 

unit 13 will be unused. In this case Cl should be DONT. 

Someone other than the casual user may require other arrays and matrlces 

Wh1Ch are also written to unit 13. See subroutine WRT13 1n Wendelberger 

(1981) for deta1ls on the arrays and matrices which are written to unIt 13. 

C2 , to be descr1bed 1n the next paragraph, writes Into unIt 14. See 

subroutInes AWRT14 and BWRT14 to determ1ne the spec1flc values which are 

wrItten to unIt 14. 
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CARD 

1 

Z 

3 

4 

4+ 

5 

6 

7 

8+1 

TABLE 8.1 

Input for MAIN 

POSSIBLE VALUES 

SS13. DONT 

SM14, UM14, DONT 

SR15. SP15. VL15. DONT 

MGCV, USEL 

(A)(Insert if CZ is USEL.) 

VARI. STAN. SAME (Omit if C2 is UM14.) 

(d,N,m) (Omit if CZ is UHI4.) 

Format of cards C8+1 ••••• e8+N. 

(Zl. ~lT, a1 or a12) 

(Zi) (If C2 1S not UM14.) 

(zi, ~iT. ai a" ai 2) (If C5 is STAN or VARI.) 

Format 1S prov1ded on C7. 

8+N (ZN, tNT, aN or ON2) 

9 YES, NO 

FORMAT 

A4 

A4 

A4 

A4 

E15.8 

A4 

315 

IBM 

(See C7) 

A4 
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C2 provides the ability to store certain matrices in unit 14 by using 

~ in columns 1 through 4. The storage of these matrices makes it 

unnecessary to perform the bulk of the computations if a second analysis is to 

be performed. However, on1y the dependent variables may be changed for such a 

subsequent analysis. The relative variances or standard deviations must be 

identical to the run which used SM14 on C2. 

UM14 in the first four columns of C2 provides for use of the matrices 

which have previously been stored in unit 14. If the value of C2 is DONT then 

the matrices are neither stored nor used. 

C3 provides a means to retrieve certain information during the execution 

of MAIN and to store this information in unit 15. The first four columns of 
\ 

C3 must be SRlS, SPlS, .Y.ill or.Q.Q!!!. If C3 is SRlS the residuals 

r = (Z-9N m ~(t)) are stored in unit 15 with the format (G24.18). If C3 is .. _ _ It .. 

SP15 the ordinate and abcissa for each p01nt of the plot of the GCVF as given 

1n the output are stored. First the number (n) of pairs 1S stored in IS 

format followed by the ordered pairs (i,ln(V(I~a1+b))). where i 1s an 1ndex 

number l=l ••••• n and 1n is the natural logarithm; the format used is 

(I3,G24.18). If C3 is VL15 then b1/N, i~l, •••• N-M with format (G2'.18) 

followed by W w1th w1th the same format are stored. If none of the above 

are to be stored then C3 should be DONT. 

The value of MGCV on C4 causes the GCVF to be m1n1mized to determine ~*. 

If the user wants to supply a value of A then the value of C4 shoald be USEL. 

In that case C4+ 1S used. C4+ should contain the value of ~ 1n (E15.8) forMat 

to be stored In a Slngle p~~cls1on var1able. If C4 is MGCV then C4+ should 

not be 1ncluded In the Input stream. 
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CS is not used if the value of C2 is UM14. Otherwise C5 is used to input 

relative variances or relative standard deviations or neither of these for the 

errors of the dependent variable. If the relative variances are to be read 

then C5 should be~; 1f the relative standard deviations are read then C5 

is STAN; and if neither is read then C5 is SAME. The value SAME is equivalent 

to that of entering all l's as the relative variances. However. 1f SAME is 

used then the program circumvents both multiplication and d1vision by 1 Slnce 

Da is simply the identity matrix. 

C6 is not used if C2 is UH14. Otherwise C6 reads in the number of 

independent variables (2 dimension), the number of observations N and the 

value of m to be used. The format used is (315). 

C7 contains the format to be used to read in the data values. The format 

shaul d requi re at most 72 spaces inc h j 

parentheses. 

left- and right-~st 

The data follow 1n ,,)·1 through Cf+14. The data shoul1 bf' r~al rortrdn 

var1ables. each data lfne should contain. in order. the dependent var1able, 

the independent varldole(s) and the relitlvp var1dnce or standard deV1Jtion if 

used. If C2 is UM14 then C8+1 through C8+N < "Jld contJln only the de:>endent 

variables. They s'lculd Ue • ,,!'1 ". the identIcal sequence as the depel1dent 

and independent varlable(~) were ~he~ 2 had the value SH~4. 

The last card to be read IS C9. It should contain one of the values YES 

or NO If YES then cx~erlmental confidence intervals are provided along 

wIth degrees of freedom and an estlmate of the variance (Wahba. (1981)). If 

NO then these values are neither computed nor printed. 
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To evaluate the spline (k = 0), first der1vat1ve (k = 1) or second 

derivative (k a 2) the program EVALUATE is used. Previous to running EVALUATE 

the program MkIN must have been run with C1 wr1tfng the coeffic1ents to un1t 

13 (el must have been 5513). EVALUATE will then read the matrices from un1t 

13 and calculate the spline, its first derivative or second derivatfve. The 

kth der1~ative (k z 1 or k : 2) will be calculated only 1f 2m-2k-d is greater 

than O. A description of the 1nput stream for EVALUATE 1S given 1n Table 

8.2 w1th a sample runstream given 1n Table 8.3. 

e1 conta1ns two integer values in (2I5) format. The first integer, N', 

specifies the number of p01nts t&Rd at which the functlon is to be evalu~ted. 

The second 'nteger should be one of 0, 1 or 2 depending upon whether the 

spline, first 01' second derivative, respec.tively, is to be calculated. 

The second (ard contains the format to be used to read in the N' points. 

The format should require at most 72 spaces, including the left- and 

r1 ght-most pare',theses. The independent vari ab 1 es are real:! 1 i ne by 1 i ne 1 n 

the same sequence as that which was used to calculate the coeff1cients. 

C3 must be either 5V15 or DONT. To store the values in unit IS, e3 

should be SV15. This causes the values followed by the corresponding 

1ndependenL variable(s) to be written to unit 15. If C3 is DONT then the 

values are not written to unit 15. 

C3+ lS used only if C3 1S 5V15. Then e3+ should have the format Wh1Ch 1S 

to be used to write the calculated value(s) followed by the 1ndependent 

var1able(s) lnto unit 15. This ~ornat may have at most 72 spaces 1nclud1r,· 

both the left- and r1ght-most parentheses • 
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TABLE 8.2 .... , 

Input for EVALUATION 

CARD POSSIBLE VALUES FORMAT 

1 (N' .k) 215 

2 Format to read C4+1 •••• ,C4+N'. IBM 

3 SVl5.DONT A4 

3+ Format for 15 {Omit if C2 1S DONT.} IBM 

4+1 

Independ~nt variable points 

of evaluation. t T• (See C2) 

Format is prov1ded ;n C2. 

4+N' 

(" --6 
J 



Sample Runstreams 

@XQT SMOOTH*SPLINE.MAIN 
SS13 
SI-'14 
DONT 
MGCV 
SAME 

1 24 2 
(F3.10,33X.F4.0) 
@ADD C,\TA. 
YES 

@XQT SMOOTH*SPLINE.EVALUATE 
200 0 

(35X,F8.4) 
SV15 

(2EI5.8) 
@ADD PLOTDATA. 

@XQT SMOOTH*SPLINE.~AIN 
S513 
UM14 

DONT 
U5EL 

• OOOI6EOO 
(F3.0) 
@ADD DATA. 
YES 

@XQT SMOOTH*SPLINE.EVALUATE 
200 0 

(36X,F8.4) 
SV15 

(2EI5.8) 
((lADD PLOTDATA. 

ORl~ml~t Pf'hl;;: is 
Of" pOOR QUALITY. 

TABLE 8.3 

Comments 

Implements the MAIN program. 

468 

Stores tne spllne coefficlents in unit 13. 
Stores matrices in unit 14. 
Doesn't store other values. 
Minlmize the GCVr to determlne A*. 
The relative varlances are all the same. 
One dlmenslo~, 24 observatlons, m=2. 
Format of the input data. 
Inserts data from Table 3.1 in runstream. 
Provide confidence intervals. 

Implements the EVALUATION program. 
At 200 points evaluate the spllne. 
Format of the independent varlables. 
Store the spline and lndependent variable 
values in unlt 15. 

ForMat of above. 
Inserts abClssa pOlnts to be used for 
plotting. 

Implements the MAIN program. 
Stores the spline coefflclents In unit 13. 
Uses the matrl ces stored 1 n 14 by I1AI N 
above. 

Doesn't store other values. 
Use the followlng value of A. 
Value of A to be used • 
Format of the dependent varlables. 
Inserts data from Table 3.1. 
Provldes confldence lnterval~. 

rmple~ents the evaluat10n program. 
At 200 pOlnts evaluate the spllne. 
Format of the lndependent varlable. 
Store the spilne and lndependent varlable 
In 15. 

ForMat of above. 
Inserts abClssa pOlnts to be used for 
plottlng. 
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C4+1 through C4+N' contain the independent variable(s) at which the 

function is to be evaluated. These should be in the format given on C2. The 

independent variable(s) should be in the same sequence as used to obtain the 

coeff1cients with the program MAIN. 

The programs MAIN and EVALUATE are wr1tten in ASCII FORTRAN Level 9Rl and 

are runnlng on the UNIVAC 1100/80 computer at the Un1versity of Wiscons1n. 

All calculations are performed 1n double prec1s10n. 

Th~ subroutines used by the programs MAIN and EVALUATE are named: 

AWRT14. BWRT14. CALC. CALO. CALRES. CHECKQ. COLOFK. CONINT. OATAR. DERIVI. 

OERIV2. E. E01. E02. GETASI. GETSM. GETR. GETROE. GETTHM. GRAPHV. MAKEB. 

MAKETS. MINVLl. MINVL2. MQROC, PRINT. ?RNTLM. RCHECK. REA013. SPLINE. SVOB. 

VAROF, VLHELP. VOFL, WHATOO. WRT13. AND WRT1S. GRAPHV. MINVL1 and MINVL2 are 

modeled after sim1lar subroutines of the one dimensional smoothing spline 

program written by Fle1sher (1979) and running at the Madison Acariem1C 

Comput1ng Center (MACC). A descr1ptlon of the program structure is given in 

Wendel berger (1981). 

The follow1ng LINPACK subroutines are also used by the program MAIN: 

OAXPY. OCOPY. DOOT. DNRM2. DQROC. DQRSL. OROT. OROTG. DSCAL. DSVOC. DSWAP and 

OTRSL. The code for these rout1nes is not lncluded here. It may be found 1n 

the LINPACK USERS' GUIDE by Dongarra. Bunch. Moler and Stewart (1979). One 

mod~f1cat1on 1S made 1n the LINPACK subroutine DSVOC: the parameter MAXIT is 

increased from 30 to 60. Th1S parameter sets the maXlmum number of 1terat1ons 

to be performed 1~ the algor1thm to determ1ne the singular values and vectors 

of B before termlnatl0n due to nonconvergence. Increa51ng MAXIT to 60 15 
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necessary because with large N, say N > 140, 30 lterations may not be large 

enough for some problems. An example with N-150 failed because HAXIT=30 was 

too small. However, with MAXIT~60 example 3 with N=300 was successfully run. 

In fact MAXITzGO has proved a~ple for all examples trled to date. The verSlon 

of the program described here uses the singular value decomposition to obtain 

the spectral decomposition of B. A new modified verSlon uses the EISPAC~ 

(Smlth. et al., (1976)) routlnes DTRED2 and DTOL2 to accompllsh this task at a 

much reduced cost and at no loss in accuracy. This is because the slngular 

value decompositlon does not make use of the symmetry of B. The EISPACK 

routlnes do make use of the symmetry of B and thus the cost of the 

decomposition is roughly cut in half. 
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U!>in~ Sphne!> and Cru" Validation 
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D,-pelrlm(/l/oJ S,aIlSII" Viti\( "I" ,,/ 1\'/\((,,/\/11 \t"dl"'" 5'f7J11h 

(MoInU\Cnl'l rece.ve.! I~ r-.ovemhcr 1979 In hn .. 1 f,nm 'J Al'nl 1'lIO) 

ABSTRACT 

Lei 4~.t., P II be a meleorologlcal fiel.! of mlerc\1 '.1\. hell:hl leml'cr,IUTc d,eurrpi.'nenl of the 
win.! field etc We wppu<e Ih .. 1 d.ltd 14> I: • cun<c~rntng th~ fidJ ,.f the r.,.m ct,. = L ¢> + '. are 
~Iven ",here e .. ch L. " 3n .. rbltrary contl"lUOU~ ItneJr fun .. ttl,n .. 1 .. n.!. " .. mCl>urcment error The 
.!at .. eI'. m1' b~ the rc,ult of theor}. dlf~ct meawrcment\ rem"l~ ,,'un"tn~' or .. J::lml'tndtton of these 
We .!evel"r 01 n~'" m IIhemattc.11 form11t.m e\l'lolltng Ihe melh,," ,.f G. nL r.III7L d ( (I .... ,V.lltd .. uon IGCVI. 
an.! some re .. ently .!evcloped opllmll .. l",n results fllr .10 .. 1) Zlnt! Ih" J II I I he ,mIll zed held ¢>\ _ • 
.. the <olullon 10 Ihe mlnlmlZdtton problem hnd ¢> In .I \Ullolllle \1' " .. of fun.:"on"'u minimIze 

N-I ~ (L.¢> - 4> I U '+ AJ.t¢>I 
1" 

where 

FuncllOn\ of " = I ~ or , of the four vanable" , P , are oil". con"d,red 'lHc .'rl'rl\Jlh ,an I-e 
use.! 10 .. r.tIYle lemperature field. from rJd,o\onJe me.I\urLd t, mp,"lure' .ml' '~ld":L r~.!lance 
mca\urC'menf\ umlillillfPOu\h ·0 I",=orporalc the {!eC"\(rophlc '" md drpr,l\lm.1llftn ... 11L1 oth.:r m(\.}rmoJhun 

In ~ tcst of Ihe metho.! Ifor J = 21 slmuldted ~()() mil h~lr.ht d~t .. "ere "t-llln,,1 .ltdi'dcle pL'In" Cl'r· 
re'pond.n!,: lolhe l; S rddlo~onde net",or~. Ilv U,tng.on dnJI)II~ rcprc,el"~t,on "fd 'tlO mil ,,~'e and 
'ur~nmpO'lr!! rc .. I.\111.. rJnllom trrors The an.Jh II{ rerr\. 'c. nl,llh'n \\ ., h ... l\ fliJ un ., fine {!f1d "-Ith 
"h.lt ~pp: Ir to t>e l'Tlpre""e re,,,lts An eXl'h.:u repre,cnt .t,,'n f,)f Ihe nllrlll IIcr ""[<1 III" fuund and 
u,cd as the Ill'" for ~ d.rect Id' opro,ed to Iter.ltlvel nUmCneJI ,1).""lhm "ilLh" .. ccurdle and 
,fh"cnl for \ 'ome" hat Ie,s th .. n the hIgh >pee.! ,tor I~e ca[,Jcll\ of th, "'mruter The I .. ~ult, extend 
tho'e of Sol' Ikl dnd (lthe" In ,,'eral dlfec',ons In particular no ,t Irtln;: ~uL"", .. n.1 no I'rChmtndr) 
ontcrpolatlon of .he .! .. ta I~ reqUIre.!. and It IS not necc".I" to ,ul, e ~ llullnJ I" ,dill: prot-tem or e\en 
.. 'sume boundJry lond,llon, to obtain a solution Different 1\ PC' uf dJt~ C In re 1.tmllmed m a natural 
",a} Pnor chmJtologl~"II' estImated covanances .ire nut U\cd Th" method mJ\ hc·tiuu[..hl of a\ a 'crv 
g~ncr .. llorm 01 lo"·p~,, filler The paramelcr A conI"," the hJlf po"'er rOlnt of Ull.llrphed .Jolt a filter 
"'hlle III conlrols Ihe rate of roll ofT of the po",cr 'pcctrum of the "n"l\lLd hchl r",m dnolher POtn: 
of VIew A an.! III pldy Ihe role, of Ihe mOSI Importanl fre: r 1f1meter' In In tlmplmlll'nOr ,O'dnance 
The correct chOice of the parameler A and to some e\t~nt //I 1\ Import.ont 1 hc', rdnmetef\ dre ,,'"mated 
Jrom Ih~ Jalll h~'"!: tIf",I,~,J by the GCV mel hod ThiS method e\lIm •• lc' A .10.1 ",:I>r ",hlCh the Implied 
d .Ia filter h .. , md\lrnUm mtern .. 1 predICtIve capablht) Th" cap hdllY " a"c"ldll} the C.CV method 
r> Iml'h.:rtl\ ledvln!,: oul ore datd POint at a time and determ,mn!! hoy, "'ell the nlN"ng dJtum can be 
prld,cted from the rcmamm& d.!la lhe numencdl algonthm gl\en pro\lde- lor ttrc"ffiuenl calcul.illon 
of the opltmum A and m 

I. In(rolluction tton 4>( f.' p.t) of fom 'l.an.lh1L, rer~e~entrng a 
mctcorologH . .I1 field of mh!rc\t ,.1\ heIght. tem
per.lturl. or d l.omponl.llllJflhl. '~rnd field dS it func
tron of !!rtlund rHOJc~1l0n lliordrn.lIe., (f.'). the 
\ ertlcal cooruin.IIC p .mUumc ( 1 h" funcllon should 
h: .,ulIahl} c111'e to thellutt:ht. tcmpcrature or Vvrnd 
held.l~ mC.l~urcu .11 .1 film: 'cll,f pO\1I10ns. prc,sures 
and ttme.,. II .,htJuld rdttUI I.. no\\ n hchJvlor of ~uch 
field ... .Ind II ,hlluld he ''1moolh In ~ome sen~e 

S.I<;.lkl (1960) Introduced the Idea of numenc,11 
V.lfI.ltrOIl.1l analY~ls lor the obJecttve an.ll, SIS of 
meteoroIO!!,eal fields In the mo~1 genc-r.ll form of 
vanatronal ,lOalysls consIdered here we see" a rune-

'Re" 1rch \upporred 11) the Office of Navdl Re\earch undtr 
("nll •• ct MI()()14 77 C 0675 

: R"CJrlh \upr<>rtLd hy the Nalton .. 1 SCience !-uund .llnn 
under (,rJnt ATM75·23223 
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~oo mb, then 'lJ I, the 500 mb geopotenta,ll height 
Lettang 'I' = It.o(" ~ ,P .. ,(), then the ,um of the teno
ency and honzont .. 1 .. dvectlon 

should be sm .. I1, where (r and e" .. re the t and \' 
componento; of the wand velocity S.I'>dkl .100 others 
have IOcorporatcd we.lk (J e , appro'um.ltel and 
strong (J e , ex .. ct) con'>tr.llnh anvlll\ ang the tend
ency. the advection. the gell .. trophl~ wmd. balance. 
honzont .. 1 momentum. alll .. b .. IIC energy. and thC' 
hydro~tJtlc and contmult} eqUJllon<; (SJ'akl. 1971: 
Lewl!>. 1972: LC\HS and GrJpon. 1972. Achte
meier. 1975) 

Usmg the sum of the tendency .lnd advectIOn as 
a weak con~tr • .IInt. Sasaki (1971) ~ugge~ts find 109 
<I> to manlmlze 

1(<1» = f Jf[ [,;(<1> - 11»2) 

R 

[( 
il<l> a <I> a<l> \ % ] 

+a -+(z-+cM -) il, ilx a) 

+ [a,(~~f + tI,(~~f 

+ a.( ~~ r ]}d(,I\d\. (l 1) 

where ti. c/. a,. a, are smoothlOg parJmeters to be 
determaned. ti> IS the obo;.!rved height field data. ( r 
and C /I are the (observed) components of WlOd 
velocity. and R IS the spallal .lnd temporal regIOn 
of IOterest The fir~t term repre'ent<; the de'itrt: that 
<I> be c1o~e to the d.lta. the second that the <;um 
of the tendency Jnd honzontal JdveCIIOn IS small 
and the third. that the function be smooth In t. 
Y and,. 

SlOce <1>. C rand ( /I are only mea<;ured at a (rela
tively sparse) set of Irregularly spat-ed POints. 
Sasaki assumed th.1t tre d .. t.l h.lve been mterpol .. ted 
to a gnd ~ufficlentlv hne for numerlc .. 1 analytiC pur
poses After some ~Imphtymg .ls!>umpllon~. the 
Euler equatIOn tor the mlntmller of (I II wa'i (.b
taaned by S.l,>.lkl (1971) .lOd the mlntmlZer I'" found 
to s .. tasfy an elliptic p.HtI.·1 dllterenll.11 equ.lu"n With 
some bound.lry lllnllltllln, V .mou~ .lUthor, u~lOg 
thl<; Jnd other con .. tr.llnt~ (,ce. e g . Le\\" .. nd Gray
son 197~) h.l\C' ~hl)'e:n " .. Iue:, tor the ... mlluthlllg 
p.lr .. meh:r, .• mll "lhL'd the: re,ultmg Euler eqU.l
tlon, numerlc.llly to llbl.un a:1 ot"lJl!ctl\ely .1O.l1~ zed 
field 

In 1111' p.lrer \\L' de\c1l1r.1 ~e:ner.11 m.lthem.lltc.11 
ftllm Ih'll1 I' I'I~ dl\ Ll1Ih,d'"h': .... 1'''\-1' .lrrlll.ILh 
\\lIh Ihe: Illlll'\\ III;! h\l' l",dl\l~.llh'"' 

I) It IS not nece ..... lry to fir<;t Interrol.lte the d.ltd 
to .. grid to obl .. m II'. r .. w d.ltJ I' u,>ed ulfC'ctly 

2) The problem of provldmg or c.nforcmg bouno
ary dJta I~ ehmm.lled 

3) The main unknO\\ n .,moothlOg pammeler'i are 
estimated from the d .. ta to be analyzed. r .. ther th .. n 
from hl~tonc .. 1 datJ or by gues ... work 

4) The method prOVide!> a techOlqt.e whereby r .. w 
mdlrect 0.11.1. ~uch .1<; !>.Itelhte r .. dl .. nce d .. ta. C.IO be 
combmed With direct data such .... b .. lloon temper.l
ture dJta 10 a smgle analYSIS procedure Thl' c .. n 
be done Without prcconvertmg the rJdl.lOce dJtJ to 
temperJtures 

5) Dlscretlutton IS Ihe last step rather than the 
first. so Ihls source of error does not propagdte 
through the an .. IY'>I!> Thl'> can be Important (~ce 
Nitta and Hovermdle. 1969) 

The method to be deSCribed aVOids the problem 
of sclvlng partial differential equations numerically 
However. It h .. s Ib 0\\ n challenging numencal pro\::>
lems whlrh we hJve been able to ,olve Simply uSing 
eXlstmg packages for medIUm Sized (but not IJrge) 
data sets 

To IOtroduce our general method. oNe beglO With 
the simplC'st nontnvlJI e,{Jmple We fi"< time a'i .... ell 
as pres<;ure .. nd suppose that <1> = 4>( \.) ) .., the SUO 
mb heIght at (T.).It time' = 0 We Ignorc t!lC lem!
ency and ad\ ectlOn (second term) In (I I) and suppose 
observations ti>( \" \ ,) = Ib,. 1 = 1. 2. . • N. of 
tho: 500 mb height .It the N statIOns With coordmate~ 
(t, )',).1 = 1. 2. . • N. are gl\ en We .... ant to ob
tam a function ¢ \\ hlch IS smooth .tOd <;ul.h tholt 
<I>(.l,.\,) = ¢,.I = 1.2 •...• N. Constderthe nllm
mlzatlon of 

\ 

N-I ~ (<I>( { .. ),) - 4>,)t + ),,1.(<1». (12) 
,-I 

.... here 

1 1(<1» = II fl(8<1>f + (a~)2]J\J.\ (l3) 
,at" • ay 

dnd A I ... gIVen 
If one .. ttempt'i to mmlmlze (I 2~ by. for e"<ample. 

writing the [uler .:qu.ltlon one f.nd ... th.lt the ,olu
tl"n 'm olve'> a Gree:n ... tunctlOn for the L:1pl .. CI.I'l 
oper ah,r .l. .let' ~ d"I'/rI I: + ,J!'Nih!. .md. un
lortlln.llcly. th .... Green, funllllln I., not huundc.1 
S"~JI..I (1971l llh,e:n e, .1 ... Imll .... ph':Ol~menll:1 I ,cc 
pJr.lgr.lph \\ hl~h mdude~ Ell (32,\ but IgnlHcs It 
For t~ ...... Ind uthel 1C:.I'lln., III t"l~ .It ... cu ..... c:l!. \\C ... eek 
to lind Ihe mllllmller (10 ..... mt.II'1C' .,p.lle of lunc
tlon') l)1 

\ 

N-I " (11)( 1 .. \.) - li'.I! + .\),,,(11'» 
• t 

III :- 2. 3. '" (1.4) 

> H$ $' 

I 

j 

1 
I 
I 
I 
J 
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where 

or, more generally, 

J .. (<I» = II ~ (m)( am<l> )2 d'(dy, 
~-O I' a:c'ay'~-r 

m = 2,3, •... (l6) 

If Jm(<I» is small, then <I> will be smooth 
We have dehberately omitted any mentll)n of the 

domam of mtegratlon If the domalll of mtegratlon 
m (1.5) and (1 6) IS taken as a bounded regIOn R 
then It C.ln be shown that the mInimIzer of () 4) 
satIsfies 

t1"'<I> = 0, (x,y) '" (XISI). 1 = 1.2, ...• N. 

where .\ IS the Laplacian. I.e., 

a' <I> 8'<1> 
t1<1> = - + -. 

ax2 ay' 
and It satisfies the natural (Neumann) boundary 
condltlOn~ Thl~ result tn a SImIlar problem appears 
In Dyn 'ind Wahba (1979) We avoId th:- necessIty of 
SOIVtog .1 boundary-value problem by letllng the 
dom:un ofmtegratlOn be -x; "'i t. \' "'i x; The bound
ary condItions are c;hlfted to x; The solutIOn WIll be 
defined for -x < X.) < x However, we WIll only 
compute It on R and. of cour~e, It WIll only have 
meantng If there al e data POtnts not teo far from the 
boundary We are also aS5Umtog here that the world 
IS fiat to R, although the entire andlY~ls that we do 
nere can be done on the sphere [for the theory t see 
Wahba (I979c)] 

The solullon. whIch v.e call <1>, 1ft 't to the proble'll 
IS as follows Fmd <l> tn a SUItable space X to mIni
mIze 

N 

N-I L [<l>(X,.YI) - <f,1J2 
I-I 

+A ~ h~ J'" J" ... (m)( a'"<%> )f 
-.. -0>::0 " ax"ay"'-· 

(I 7) 

ThIS was obtatoed by Duchon (1976a) and further 
qudled by Metnguet (1978. 1979) and Wahba 
(1979a.b) It IS known as a . thtn pldte spltne . dnd 
1\ a n.ltural generaltzatton to tv.o GllnenSlons of 
the one-dlmen~lOndl ~moothtng polynomial spltne 
(RelO'ich, 1967). 

We WIll gl~e an exphclt computable formula for 
II', m A I.tler Problemc; to a\~lgnlOg bound.lry v.llut;~ 
Me eltmtndled. and no prcilmlOdry .1n.1lysls of the 
rdW data IS used. 

'1\ .. \ 1111\ )'1.' lI'II'ldell.·,1 .1' Ih~ 11."1111 "r ,ll'pl)
tn!! .11,\\\-p.I" 1t1tL! III the J.lt.1 In IJI.LjIlI.'II,-) 'r.lll! 
It c.m he ,ltO\\ n th.lt A .. ,'nt ",I, the h.llI-p,'\\ er plllllt 
of the hiler .tnJ 1/1 the 'Iel.'pn,'" ,.1 th.: HIli-oft I,ec 
W.lgner (19711. Crmcn .lOd \\ .lltb.1 (llJ791.lIld W.lhb.t 
(1978.1)1 In one dlmcn'llm the.. II Iter lunctlon J (1'1 

a~ a funl.tlon ,.f " I\enum~er I' Ilwk, hke 1(1') 
= I/() + AI'!''') We cho\)~e A .lOd III lrom 'he data 
by thc GCV (gener..lhzcd cro~~-v.lhd.ltlon, method 
(Cr..lven and Wahba. 1979. G,llub ('I 11/. 1979) 
whle..h proceeds ,IS follov.5 The cnten.1 fur a good 
chOIce of A .lnu III I~ t.lken to he the .Iblht~ to predIct 
the value of the field \\hCII! d..lt.1 .1rl! wlIhheld. 

To estlm:lte thiS predlcuve .1hllll~ from the data 
let q,\!:" 1 be the funcllon \\ hlch ... the mtnlmlzer of 
(I 7) WIth thc /"th data POtnt omllted If A and III are 
good chOIces. then on the .1\ era!:,e <l>\!;".( tA._' A) 
- li'A should be <;mall and \\e me.1sure thIS by the 
ordtnary cro~s-vahd.1tlon function 

, 
V::'(A) -= N-I ~ [<I>\l~'l( 'l,_'d - <i>d2 (18) 

4-1 

ThIS expressIon IS dIfficult to compute. furthermore. 
effects of unequal spactng of data pOtnts are not 
SUItably accounted for For these and other techO!
cal reasons recounted tn Craven and Wahba (1979) 
and Golub cl al (1979). one shOUld measure the 
abIlity of <1', ., • to predlce mlsslO!.! d..lta by the gen
erahzed cr05~-v.lhdauon functIOn (GCVF) 

V .. (A) 

= N-I , [<%>\1:. A( tl.) d - 'h FII1(m.A). (I 9) 
A-I 

where the II d In ,A) are certain v.elghte; \\ hlch have 
been given tn Cr .1\ en and W.1hb.l (1979) and Golub 
f!1 at (1979) V,,,(A) turn~ out to have a collapsed 
rcpre!>entatlOn \\ h'ch IS rc!atl\ el\ eac;y to compute 
For each m == :!. 3. 4 • up to ~ome preset maxI
mum. V,nCA) IS computed as a fun(.\:on of A and 
the value A(m) of A mInimIZIng y'",(A) I~ determined 
Then m IS selected by COfiJpdnng V" (AI m)) over m, 
A computer Implement.Hlon of thl~ cxample has 
bcen made and apphed to dolt.1 <;lmbl,lIed from a 
mathematIcal model for d 500 mb hClgt.t field The 
re~ults are prec;cnted 10 SectIon 4 

We ncxt gener.lhze thl~ olpproolch to dllow the 
Imposlllon of \\c.lk (.onqr.llntc; C()nttnutn~ WIth 
" = 500 mb ( = () \\ e con\lder as an eX.1mple the 
geostrophlc WlOd apprOXlmdtlon 

/Iv '" -f-Ij/ell/cr.. tv"" I-li)(f>{a:c, 

\\here 'I' Ie; the 500 IOn hl.lght. Ii" olrod I , .1re c.1stward 
,tnd north .... ,Ird 1.0mpllne..nh of the gco,trophlc Wind. 
.lOd J I'> the (ofillh, pJr.lnll.ler If the e.lst .... olrd 
dnd norlh\\.lrd lomponl'nh of the .... tnd are mc.!!>
u,eu at e.l(. h st.llilln. one (..10 ~l":!( 'I' to mtnll1llze 

_, .... $ ... • ... _-...· ..... """ ... • ... __ ·..,.' ... 3+_ ........ u ..... 'ttsn_ ........ ·o.l1<j .. ~~ ...... ~ ele ) ·tHt'¥? ........... )y~=sh11',tt4lid't'tt¢r'>.+""....,....:090 aft t 

1 : , 
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I 

-to , 

I 

I, 



OR1Gl!'·IAL F M~~ IS 
OF POOR QUALITY 

479 

At..LUSl 19110 GRAC': WAUBA AND JAMES WENDELBERGER 1125 

"1 

+ N-' ~ a2-Z(iJ~ I + fliI 
/- I CJ.v z, '. 

+ N-' ~ a3-2 - - lv, + H ... (<P). (\ to) N (o<Jl1 )2 
'-1 ax .I. If, 

where N = 3n. «p. IS the measured 500 mb nelght 
and Ii .. V, are the observed Wind componen" at 
"tal IOn I all IS a weIS!'I. ",llIch I~, Ide..llly, the me..ln
square error In Ihe mea~ured height field a~~ IS the 
sum of the mean-~quare error 10 the measured east
ward component 01 the Wind and the mean-square 
error 10 the geostrophlc "pproxlm..ltlon 10 the lrue 
eastward wlOd a,! has the corresponding meamng 
for the north",.lrd component or Ihe Wind 

For m ;. 3 an e~p"clt formula for t!'le mlmmlzer 
~\ m A of (I 10) Will be given 

SlOce we are gomg to choose" from the data. It 
., or.ly neces~ar) that a/I(T:~ and ITllla~: a.l' known 
rea<;ondbly well As,umlllg .111 me"n-sqJare errors 
are known. It hdS been sugge~ted by Reln~ch (1967) 
and others to choose A so thdt Ihe first three terms 
In (I 10) With <P replaced by <11, .'. A !>um to I. How
ever. It has been ~hown (,ee Wdhba. 1975' Craven 
and Wahbd. 197Q) that till" \\llIledd systematlcdlly 
to unJer~moolhlng 

Thl' Idea of the generahzed cross-validation func
tion e~tend~ 10 the chOice of A and 111 m the 
minimiZer of Ii 10) anJ \\e can obtam the GCVF 
V .. (X) which C .. 1l be mlOlmlLeu to estlmale good 
value, of m and X 

In Ihl~ example where IF,!. IF/ and a1: may be 
different the mllllr.lIZer 01 the <.iCVF esllm.ltes A 
and 11/ \\ hll.h be't preul~1 m",mg data POints. 
inver~ely \\elghted b .. the appropn.lte a/ 

We next turn to the an.llY"I~ of d temperature 
field uSing both dlred (b"lIoonl and remote hatelhte 
radlal'ce) data We a<;!.ume that all ddt a are 
measured all -= 0 and t~ ct'( r.I.p) represent<; the 
temperature The u"t~ cnn".,t of dlft:ct mea~ure
ment of the temperature from .,tatlon / ..It pre!>'iure 
P .. and indirect s.lIclhte me.lwn:ments of radlarces 
I,(v) at frequency" .md ,ub!>dlell'le pOint (\,.1,) 
In the ~Imple'l \.I,e (cloudle", lool'dng dawn), 
after some IIOe .. lfIz.ltlon .lOd "ppro\lmatlOn~ I d 
\..nown funcllOn r,(,,) of Ihe med!.ured r..lulance 
J,(/') can be rddted to the temperature (1) t.y 

I"· r,(v) = • "(".,,)<1>( I, " p)t/I', (I II) 

I In Ih", r",'Io.I.", ,\t 1111", 111/1111. hi tlPI 1111 ,I III hi 'of LI 

hI\. 1,1., ", ... II 'hh .... ,I Ifd "hi lin thl' 111'1 lIt." 11 .. 'd b\ IlIlhJIIl!. 

th,,- '" Ilh,4,'" J 11 I aI"o," t"1\ t... 1\ 1I1i! ,111[ thl. I ,dl lit\.\. .. 1,1 t 111 "' hi' 
(.,11." ,I"","J 1,1111 In II 1:1j 

where K(v.p) IS known for edch frequency v = "', • 
• _ •• "'. ('iee Frltl 1'1 CIt. 1972) 

Thus we ~eck ,t, to mIOlmlle 

N-' L ak-2[~\' • .y.,pd - <I>.dt + N-' ~ a;2 
U: I •• 

x [J:" K(v.p)~x")',,p)dp - r,(v) r 
+ Hm(~) (I 12) 

where N IS the total number of observdtlons ,lOd 

1",(<1» = 

We WIll give an expltcl! formula for the mlnlm'zer 
1>, In A. of ': ,12) and the GCVF l' .. (X) for t!-·s prob
lem for .. , '" 2. In th'!ory, there IS no dlfhcully tn 
adl!lng y, \. -::.. lemperaLUre constraints, or In car. ymg 
out th.: analY"ls tn three space vanables and or.e 
time vanable wllh dIrect data, mdlrect 'iat<:. dnd \\ e3k 
constramt<; (A timte number 01 strong constraints 
ca'l be added, too, and \\e br,efiy mdlcate how) In 
practice the method has computatIOnal Itmlt' The 
computatIOn of 4>, In ~ require:; the solution of a 
linear system o' dimenSIOn close to the number N 
of ddta' .md "weak constraml" term~ Tl:e com
putation of the GCVF reqUIred 'he solu!ion of .In 
eigenvalue pwbJern of size l\I We are obtalOtng vl'ry 
good re~ulls With tV up to as large as !40 wllh p.e'i~nt 
methods on the Umvdc II IO at the Umverslty of 
WI~cOnStn, Madison, but Improved algorllhms wII! 
have to be developed to go be)ond thl~ P')lIIt on Ihls 
sIze m'\chme There IS redson to belteve thdl thl~ can 
be done Some algonthms handling four tmles as 
many pomt!! 10 certatn speCial ca!!es have been 
developed by P:llhua (1978). Olher numencdl 
melhlld!> <;ulI.lble for large data sets are s.lgge~ted 
10 Wahba (l980a,b) 4>,,.. ~ IS found m terms of eoef
ficlenls of certam bdSIS funclions, so that the bulk 
of the numencal work IS only dO!1e once for edch 
set of ddl.! (1), no A' and tn cert~.n cases Its denva
lives, can be e"aluated on d fine gTlo essenlidlly 
for 'Iree ' 

We bnefly mentIOn the relationshIp of thl!. work 
to some other approaches m Ihe Itlerdlure Fntslh 
(1971) d"cu.,'e<; .! rciJ!ed form of two-dlmcllslOn.11 
!!plme objectIve anal,,,!> W.lgner (i971) an.llyzcd 
some of Sa".IJ...I·!! v.m.1I10n.ll obJecltve andlv!.l'i 
mcth'Jd<; from the pOint of view of their properltes 
.1" 10w-p.l" filler" .lOd exrenmentcd wllh the p,lr.lm
dll \dlldll.llllll,.I, Ihe h.III r,"\l'r p.lIl1t lIt Ihe hh\.r 
Ihele A), \~ :h Ihc Cljll'\,11c1l1 of our 11/ = 2 1 he 
Field!. III I n!llrm,11I0n Bier Jrng deVeloped hy 1\\ 
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HtlJl .1Ou .lwlei.lte" also h:!" the C.lfl.lhlhty of blend
\O!! dllkll'nt t) pc, uf d.lt.1 Jot \lur nut.ltmn H\IJl'" 
.11'1'1l1,~h I' hI I11mlllllle .1 UI, .. ll·te .11'1'1\1\1111.1111111 
"t tnt' '1' \\ IIII..h mllllmlZC~ 

\ 

~ tT,-f(L,<lJ - 4',)' 
'-I 

(see Holl (1976). Eq (5)) The data are a'\<;embled 
l'n a regul.lr ll"crete grid .1I1U ttl" computed only on 
the ... Ime gnJ Denvatlve .. arc replaced hy finate 
,hfterence, Some 01 the .. moothlllg IS effected by the 
r.lct th.lt there .Ire more term, III 'he <;um .Jb,we than 
there arc gnd P~lnt!> on which ~. IS to he computed 
,.nd.1Il Jddltlon. the system 01 equ.lllons to be solved 
to obtaIn Ih~ minimizer 10; solved Jppro',," jtely by 
Iterallve techOlques. where the chOice of \\ elgntmg 
par..tmctcr'i and number of Iterat«·I'\S Will h..tv!: a 
filter.ng dfect (see. also. Wahba. 1980a. Secllon 8) 

The dlsc\)~~lon would not be corr.~lete Wllhout 
nottng th.lt. III r,enerdl. vand,lOnal obJecllve analYSIS 
melhod~ mv"" 109 a quadratic non-negatIve defimte 
pcnalt) ter~ hl..e .U,,,(<lJ) are mllmatdy related to 
certa.n forme; of (Gandm) opumum obJectl\e anal
y!>l!> method!> We IJlustr.Jte thl<; remark by a simple 
dl .. c~etlled e,ample ConsIder a vector of \anables 
of Intere~t x = ('C,. 'C2' ••• \ .. )' Suppose:, = \, 
+ (' I~ ot"crved for I = I. • 1/. w!l'!re the e / are 
'illp~o .. eu to t-e 7ero mean IOdependent Gau'islan 
Idnuom \ .m.lble'i wllh vanance a: Suppose that the 
x, h.l\e a pnor Gaus'\lan dlstnbutlon \lIth E\, = 0 
and E\, \, = a'J' where E IS malhematlcal expec
tallon LettIng! be the 11 x" matrix \\ IIh "th 
enlr) \Y". then the conulllOna' expectatlon i of x 
given the data z = ~:... •• Zn)' IS 

X = !(l: + U%I)-IZ • 

'yhere I IS the" x n Identity matnx However. 
II IS als(' true that x given abo\t~ IS the solUllon to 
the mllllmlzatllJn problem find). to mlOlmlze 

" ,,-I L tx/ - :,)% + 1I.J(x), 
,-I 

'Where J(x) = X'!-IX 'lnd A = a%!n Returnmg to 
functIons tll(x.\,) fM example. there IS a pnor 
r;ovanan-:t: on <Il( ~,vl such that ctl , '" •• the mllllmlzer 
'If (I 7) ha\ the property that ctl , .... ( \'.) IS the con
dltlOn..t1 e ,peetatlOn of <fl( \",) given the data :/ 
.= 'N \',. , . I + (" .... here the l', .Ire mderendt'nt zero 
me ,11 CI.IlI",.tn (error) random .... lnablcs \\ Ilh com
mon \ .In.lOce fT" The- t"eor~ behind thl~ remark 
C,IO be IllllOd 10 Klln-=:dorf and Wahba (1970, 1971) 
Jno Waht-.l! 11)78b, 1979c) The chOlrt:. of m contrcl,; 
the r.ltc llf dCL<':Y of the power speclrum of the 
~Ign.ll \\lIh wavenumber. eqUivalently the ~h.lpe of 
the Ill\\·p.I'~ filter III the frequency domam Thler.,iUX 
(I%O) dl,cu~\es the relationship of nr to prior 
.:o\'an.mce~ III spme rel.lted but slightly dIfferent 

c\.lmple, Det.1I" fllr 1,1\\ -r.I" liltalll!! on the 'l"hL're 
b\ \ ,m.ltl\ln.11 ml.'th.,d, nl.l~ hl' "lImu III \\'.Iht-a 
( I '17·1~. !,-" 11\111 .: 'I 

In ~c .. llul1':: \\~. l'I\'\I,le the ,ulI'IIUIl tll.1 g~·'lCI.11 
mll1,l1l1/.II1\111 1"1\lhlclll llt \\ hllh ,III Ihe pre\ 1\lu,ly 
mt:ntlolll'd 1'1\1"1.'111' .11\.' 'rel'l.11 C.I'l·' In Sl'Clllln , 
We de,cnt-t: the (ie\' .. \\ hl\:h .llk", .. the e,tlm.ltllln 
of 11. and //I from th,' d.lta ~m~ ,10.11\ Icd In Sl'C

tlon 4. re,ulh of .1 ~h'nt.: ClIlll tc't of the methllu 
1<; gl\ ell. u'mg re.III'tl': 'Inlul.lIt:d 500 mb hell!~t J,Ita 
\\ here the "true 1 • .:\,\1,1..0.1\\ n ~lllnenl.',11 metholh 
u'ed .ue \omt:\\ h.lt OllO,t.lnll.lrd and .lre de~cllhed 
10 some det.ulln the Appendices 

Analy"l', of the heH:ht field via mmlmlz.ltlon of 
(I 4) IS all l~otfllPIC method 1 hleb.lux (1977) has 
pro\lded 'iome e\ldence that an IlT'pro\ ed analYSIS 
may he obt.lIned U'lr.g OIeth(l\,!<; \\ hleh have different 
north-.,outh .\nd ea'\t-\\e~t SC.lle, 1 hiS feature may 
be mcorporclled here b). mal..mg a change of scale 
\' -- I. \' .lnd \ -- I. - '\. A good 'l.lle parameter I.. 
ma, be e!>tlm.lled bv GCV \Imultaneol!~ly With A 
and /1/ Some \t:f\ pr.:hmm3r~ numeneal resul:s 
\\ Ith actual reported SlIO mh heIght data from the 
U.S rawmsonde nct\\url.. "ugge~ts th:!t the I. = 1 
(I e , I~otroplc) .\O .. I\~I' can be lmrroved upon b~' 
eS.lmatmg I. (see '\'endclberger 19HIl We do not 
dl\cus'\ olr.lSl'tfllI"IC melhe.d!> ;urther here 

r..relss (197I)a.hl nNe!> th.lt for ~ucce, ... ful numen
cal <;lllull. n of cert3m \hfferenllal equallonc; r'!I.lted 
to numencdl \\e.ltht:r f,'rec.!<;tlng. ,t IS deSirable to 
have IIl1l1olI COr.ol·llln, :hat ha\ e eertam conllnulty 
propertIes We con lecture that the methods e;ug
gested here Coln I'e l,~ed to rrll\ Ide these 100IIai 
condllions 

2, Solullon of a !!t'lleral minimlzall'ln problcrr. 

In thIS .. eetlOn \\e ~j\ e a sulullon to a general 
mmlOllzatlon pn)bl.:m of \\hlch the mlOlmlzallon 
problems of Eq~ t1 7), (1.\0) and (1.12) are spe
Cial cases 

OUI resJlts hold man} numher of dimensIOns, 
\\ here most metcl'flll"pc.11 problems of Interest \\ III 
mvol"e ,I = ::. ~ ,'r 4 1 he J = I c.l ... e results 10 the 
famll'ar pol~ noml.11 ,m(lothlOg 'phne (see RelOsch. 
1967) We \\111 '.1\ a tunctlon II of" \anables XI< 

Xl' • \d 1'\' ,m,'oth' If 1,,1111. oefined hy 

1, (II) := 

IS'imall 
We 'cel.. to hnd .1 II \\ hlch I!> ;;lmuh.lOcou.-.ly COlO-

p.1l1hle \\lIh ::IC' d.lta :,. :_. • :,. and IS appro-
prt.!tely .. mouth 1 he d.lt.! .Ire as~umcd to be 

=, = L,1I + (h 

~ I 
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where the L, .Ire (.my) contlnuou, Jane.lr fune!lon.lI .. 
of /I and the (', .are me.I,urcmcnt error, A ngorou~ 
defina!lon of .1 ccntlmlOU'" Ilne.lr functll'n.11 ." being 
used here 1<; given In Appendix A. but we note 
the mo,t u ... cful one ... her.! Let 1* = (f,·, ...• x,,*) 
be a fixed pOint In Ii dlmen\lon.. Theil 

J II = lI(t*' 

is a contlnuou ... Ime.1r functaon.11 for e.1ch fixed t* 
piovldcd 

2/11 - II > 0 
and 

With "I f- • + cr., = J. 1<; abo .1 contanuou~ hne.1r 
functllln.11 for each fixed t*. provided 

2m - 2/... - tI > 0 

Thb .tllow~ ancorpor Jtlon of the .... rnd ... .1\ e!>tlmate~ 
of the gr ... dlenl l.f the pre ..... ure field via the geo· 
strophic appro\lm.1tlon L of the form 

Lu = f· f K( t", •• t,,)II{X , • '" td)U'tl • 'dXd 

n 

is a contlnUOU, ImeJr functional If. for eXJmpl.!. 
n IS a bounded loet and 

II 

This allows merging of r<ldl:lI1ce dala .... lIh direct 
temperJture dJta In the obJrctl\e analyc;ls of tem· 
perature field" We n:mark (holt LI/ = 1/"*) IS 1I0t 

a contmu'.>u, hne.lr fun .. llon ... 1 If //I = I. d = 2. and 
th .... leads to 'he JIIII .. ultles menlloned prevlOu!>ly 
In re~.lrd to Ihe IT'a.llmlz.ltll'n of (I ~I 

\Ve suppose Ih.lllhe I', .Ire rndepcndenl zero me:'n 
rrrors With E('': = IT/ We c;ed. to find" In a SUII· 
able (Hllberll ~pace of functIOns (defined In Ap. 
pendlx Al to minimize: 

\ 

N-I ~ (L,II - :,hr,·2 + Xl,.(u) (2 I) ,-. 
In thiS Section ,\ ,Ind II/ are fixed In Section 3 .... e 
show ho\\ III chllll,e h and III We .... 111 give .1n e'(· 
plaClt tormul.I fllf Ihl.' /I .... hleh minimIZe, (2 I) for 
gener,11 L, The 'pe~ 1.11 C.I'I.'<; (I 7) (I 10).11111 ( 1.1:1 
.Ind lllhcr, ,'I II1lerl',1 ~.IO Ihl.'l1 he IIedll~cd COIll· 
put.lIllll1.ll.tI':llIllhm, .Ire dl',-lI"CU an Ihe Appl.:nJlee, 
• and .1 nllmL:n •• tI le'l III ihe n1elhllU llll 'Imul.lled 
500 IlIh hel!!hl d II I I' 1=" CIl In ~~dllln -t 

1 he n111111111/, r , all II II" ,,'II~ 1 I I' l'\PI~'"al'k 
11\ 1"1,1' ,'11'.,1\111'1111 ,1, ,II 1.-t,,1 ,I •. 1" k" 111.111111 
.lOd Ih,' 11111.1 1111,111.11 '1,llIlh'Il' III Ih. lIel.lleJ 
L.lpl.I.: •. 1n Ud"l' ,1.1111l!! Ihe Il,"II. \\e udlOe 'Ollie 

notation In d·dlmen'lon.lI 'p.II:e thele .Ire 

M= (
d + m - I) 

d 

polynomials of tllt.11 degree Ie" than or equJ\ to 
m - 1 We let {Q, l:~ 1 be thc'C' \I pIli} noml.lh. f-or 
example. If d = ~. ttl = 3. then.\I -= 6.md 

cf.,(X •• Xt) = I. cl>l( t .. ttl ::= t, }) 

4>J( t"Xt) = Xt 

cI>.(X"Xl) = x,t. ~.Itl'\:):= f,t: • 

cl>a<x .. xz) = ft t 

(2 2) 

Observe that },,,(4).) = O. I' = 1.2. .• • M. so th I' 
polynomials of total degree..:; III - I are con~ldered 
mfimtely smoolh hy thiS method. We define the 
LaplaCian A by 

d iltu 
Au = ~ --. 

;:. ihl ' 

If u and all I\S denvatl\e'i ur to order III - I .. re 
continuous and are zero at Infinaty. then by Inte· 
gratlon by paris. one has 

} .. (tt) = J J tt.l"'''lh , · Jr" 
R4 

Thus. the Iterated Llpl.lclan .l" \\lluld pl.IY a role 
In dn Euler equ.1twn ,IPPHl,tell fllr the 'olutlon of 
the v ... rratlOn.l1 pmblem (:! I I •• Ihhollgh \\c ~hl Nil 
use that method to oot.tm the '~llutlon 

Leltmgs == (\1.' ,,,).t '" (f" ..• x,,) ana 
d 

Is - II ::: (~(t. - \,I!)"t. 
1-' 

then the fUl'damcnt.t1 <;Olutllln of the Iterated 
LJpl,ICI.ln 1<; given by £ .. (s.O Jellned by 

where 

£(r) 

£ .. (5.t) = E( 15 - til. (2,3) 

tJ,.r t .. - d Inr. d e\en. 

(_ \)"'%+1+ ... 
8 .. ::: --~--------

2:"-'n" :(m - 1)'(111 - .1/2)1 

Omrz .. -It. dodd. 8 .. = 
[(tin - III) 

::!t"'n"'!(1II - I)' 

(/.,.(0; tl ha, the pn'i"~rI\ .l~.F. ... ('i tl = ,'l(, - O . 
\\ herc the ~1I1"cflpt hI andlc.II.'\ th,lt .l" I' ar' 
plal.'d hI I: .. , ll'n'I •. kICd .1 lundhll\ 1'1, .II1J ,'l 1\ th~' 
.1..11.1 11111..1',," ,.'~' "dlll.1I11 t 1')('(111 \\'~" 111 11l'\\ 
,I I,' II .. , 11.'1111 

1 cl L I' L!. . l. \ he .\' hn~"lrl} and,'pendel1l 
Cllnlll1Ullll, Ian,·.lr IUlld1ll11 II, .lIlll ,upp",e 

I 
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1/ 

L~ ~ (/.4> •. = o. f,. = I,:! •...• N. (:!~) 1-. 
IInplles th.11 .llIlhe (/. are O. 

I hen Ihe ~llluII~m 10 Ihe prohlem Find 11\ .. A 10 
minimize 

N -I "_~- (LJI - ::))' J ) , + A .. (II 
)-1 II) 

(2.5) 

is uniquc and has the representation 

\ 101 

U ....... 1(1) = ~ Cj~)(t) + L d.4>.(t), (2.6) 
J-' .-. 

where 

I.·I\.' In !!~·ncl.II. .:. ,,[ 1111' ["1 III III 1\ Ih'l I' ... kIW\\ II 

c\ph\.'llly. .I'hl I hl'n .1 '111.,,11 .11 III \.' .1!'!'It\\lIll.llllln 
nMy hc \1C\.'\.'".1I y .\\1 .11'I'wl'".II\.' '11l.ldr.lt ure 
.lppru\lm.ll"m f"1 .1 ""111.11 !'l\lt·ll·1ll C.lII hc f,lllnd 
III ()~ n .Illd \\'.lh\1.1 (197<)) \11 c\.lllll'le of t, \\ hen 
L,II IOVllhc, dCII\.IIIVC' I' !!l\\.'n 10 \ppl'nd", B 

We m.lI..c th~ Im1'1lI1.ml \\\h~'1\ .111011 Ih.!t e!>tl
m.ltcc; of uen\' .111\ e:s of II IIll to \'1 Ul'l I IO.IY be .,b
t.llOed by ulfTe:lcntl.lung 11\ IN A .m.llrtll.: • .rly. pre
vlded 2111 - 21 - d :-- O. 

We remarl.. th.lt 10 the: ml'fC 1.lmlh.lr Hilbert 
space .. offunCl\on!> for \\ hlch II I!> lllll} .I!>,umed that 

(f ... f u:( tit ••• x,,)dx l • •••• dtd],,2 < X. 

{)(t) = L""E .. (t.s), j = 1,2, ••. ,N, (2.7) hI'" 1 L ) 
t e eva uallon luncllon.! S til = IIU, are not con-

and L"si means the linear funcllonal L) applll'd to 
Yo hat follows conSidered as a functIOn of s. The co
efficients e = (c l• • cd' and d = (dl •.••• d ,,)' 
are determllled by 

(K + NWa')c + Td = z, 

T'c = 0, 

(2 8) 

(2 9) 

where K IS the N x N symmt.'tric matnx with 
J~lh enlry 

Ly..,L,wE .. (s.t). 

T IS the N x M matnx wnhJI'lh entry 

Lj 4>., 

(2 10) 

(2 II) 

and Da is the N x N diagonal matnx With 11th 
entry CT) An oUlllne of the denvatlon IS given an 
o\ppendlx A. 

EXA\1PLES 

The simplest example IS when the bounded Itnear 
fun;:tlOnals are all evaluatIOn functlOI'als L,II 
= lI(t,).' = 1.2. •. • N For condition (2 4) to be 
,all~ficd 1t IS ncce!>sary that the N POlllts t,. . t \ 
do not I'e m.l hYl'erpl.lOe of dimenSion d - lor less 
For example. If d = 2. then we need 

N~(III;I) 

Jnd the N pomts must not fall on a str:lIghl hne 
Then 

If 

then 

LjI •• £ .. (s.tl = £, .. (t).O = ~ • 

L h ,l-11l'C. ... (S.t) = £ .. ,(t,.tt), 

(2 12) 

(2 13) 

(2.14) 

~(XI.tJot3) = r K()'l)E,.(XI·.X2·~\',.XI'{l.f,)cI)1' 

tlnUOU!> IIne.!r functlOnals. 

3. Th ... ~eneralized lro~s-'-:llidation (GCV) method for 
choosing A and 11/ 

Wc de"cnbe the gencr.lhzed cros .. -vahdatlon 
(GCV) method fOI chl\o~ml; ~ .IOJ,". Wc emphaSize 
th.lt ~ .!ntl III ,Ire Ihe "tuning 1',lr.lmclels" of this 
mel hod (c\er> obJec!l\c .1Il.llv'l!> lechmque has 
Iumng parameter,') and O'ltC of Ihe no\cl fealu~es 
bcmg reporled here I!> Ihe .Ibdll~ 10 e\llm ... te good 
vdlues of ~ .lOd /PI .\IItom,\litall~ from Ihe ddla being 
analyzed Frequently. Ihl~ ~,I'1.. I., performed by 
tnal and error We rem:u1 Ih.lt GCV also can be 
used with othel method .. but \\e do not pursue 
this pOint here 

To descnbe the GCV mt:~ft(1d. we first def.ne the 
"ordinary" cro,.,-\ aht.!dlnm functIOn V,/(l.). Let 
,N:' 1 be the mimmlzer of 

\ 

N-I ~ (L,1l - z/ra) -t .. AJ m(U), 
)-1 
)~, 

Ie. the J.lh dolt.! pomt h.l\ re:en Idl out Then, 

(3 I) 

I!> the dlOcrence helween thl' "th U.lt.! POIrl1 .!nd 
... n e.,tlm.llc ollhe "th d,II.I:!"'lnllrom Ihe rem.llnmg 
d.!td when III .1Ilt.! A .If(: u,e.J!. It III .1IlU A Me ,I good 
choice Ihe qu.mtllle, III (3 h ,11Ou1J be ,m.dloll the 
.I\'cr .. ge .!nd Ih ... c.m be mc.l,ureu by 

\ 

V .. "()..) -:: .v • ~ (L.~t'\l~ •• - .:d2(r, -2. (3.2) 
'-I 

The gene. a1 ille •• I~ 1 ...... 1 (,ne \\ ould choo,c A and m 
to mlnllllile n:!1 It 111m ... oul .h ... 1 (3:!) IS very 
llifficlIll 10 compule hill ~rrnOl e. It ... ,hown m 
Cr,IVen dnd \V,lhn,1 (\'J74_ hcrc.lftlr CW) Golub 
1'( til (1979. hue.llier (,H\\ I .lntl W.thn ... (1977) 
Ih.lt from .1 Ihullelll,ll p\~::'1.~ (If \:cw II " hcltcr to 
choo,c A .Ind III 10 Illlllrr.rutC ,. I.crt.lIn \\ clghted 
'''· ... ''n V ,~\ .. f" "I ~ I ,1.·f.I'\.-,1 hv 

" 

.. 
.. 

I 

1 
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N 

V .. (A)=N-I L [L"U\~:".A - z/t12O'/t-2",,,(m.A). (33) 

where w,,( m .A) J.re weights defincd by 

w,,(m,A) 
¥ 

= II - altlt(m.A»'/1I - N-I I a,,(m.A)]2. (34) 
I-I 

where the "H(m .A) ~atrsfy 

(J 
- Lt,ll\ .. A = au(III.A). (3.5) 
(JZIt 

If the ('kit were all the same the weights would be I. 
We first review the resull~ from CW dnd GHW. on 

the optimality propertlc'i of thc GCV estlmdtes j. 
and til which are obt,uncd ao; the minimizers of 13 3). 
Then we provide a slmpllficd expressIon for V (A) 
which IS amenable to comoutdtlon. dnd In fJ.c~ I~ 
much ('asler to compute thJ.n \'","(A) 

The optlmahty properties of A and tTl are based 
on assummg that 

zJ = Lp + El. j = 1.2. .• N. 

where u is the "true" field and EJ is an error'" hlch IS 

assumed to have mean zero and mean·squa'l! 0'/.4 

• In fact. here and dsew.lere II IS only nece\,ary Ihat the cr, 
are relatIvely correct. "nc~ one can mullojlly all the cr, by an 
arbItrary constant whIch then gelS .1bsorbe'" In ~ 

We define an error functIOn when m and A are 
used as 

¥ 

R .. (A) = EN-I L (LJu - LJu" .... A)2O'J-I. (3.6) 
J-I 

where the E means expected value. R ... (A) IS not 
computable. of cour~e. !>mce It I~ not known. How· 
ever, It IS shown In GHW and CW that under 
rather gener,i1 (.Ircum~tances the A and m whIch 
mlnrmlze V",(A) are good estlmJ.tes of the A and m 
Which mmlmlze R .. (A). and EV meA) ~ R,.(A) + (/ 
cono;tant. for A near the mmlmlzer of R,.IA) 

We now give a different. but eq Jlvalent. expres· 
slon for V .. (A) of (3 3) which IS sUitable for effiCient 
numerrcal evaluatIOn Flr<;t. It can be shown by the 
same reasoning as In CWo Lemma 3.2. that 

L"IN:".A - Zt 

e (Ltlt\ ..... A - ZtV[ I - au(m .A)) (3 7) 

and. substituting thl~ Into (3.3) gives an alternative 
expressIOn for V,.(A) of (3.3). I;;:., 

1\ 

V",(A) = N-' I (Lltu \ ... A - ZaJ' O't-2 

t-l 

N 

X (I - 1\'-1 L a,,)-I. (3.8) 
I-I 

where a" = a,,(m.A) Lettmg A.,(A) be the N x N 
matnx defined by 

FIe. I I ."".11110 .,r nlHJ, I r .J,,,,,,nJ.: 'I ..... n' .1n'" I>.,"n'" Ify or I!n'" II', ... 
r"hr 1:\,.1" .I",n "I Ihe .n .Iy", II he ,1.1"," .1t S~n J .. ,.n, Puerto R,c". " ""t 
, own, 

I 
\. 
e 

I 
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then the cxpn:"lon (3.8) fur \' .. (A) C.IO be wntll.'n 
10 the CllulvlIlcnl form 

wh~re /) .. " Ih,,' dl.I~(ln.11 m.IIII' \\llh llih cnlry 
fr,o Ihe tr.I~1.' "I .1 m.lln' j .. thl.' '"m "f Ih ,h.lg"ll.Il 
,,'nlnl." •• lIlll l' " I' lit.· I I'~ h,k·.111 IlI'll1I \11 l'\I'''~11 
furl1lul.1 Illl I - ".,,(Al III 11.'1111' "I Ihl.' 111.11111,",,', ~. 
'1 .mllD I' gl\l.'ll In o\ppl.'lld" (' In A(lpl'nd" C \\c 
d" 'CrillI.' .1 IlUml.'lIc.11 .llg,'nlhl1l f,'r compulmg '· ... (A) 

.IIld Iindll1!,! Ihl.' 11l11ll1ll1l1ll;! A r,'r \.'.I\.h 11/ • • 1, well .. , 
cum pilI Ill!,! Ihl.' ll,cfhclenl .. c _Ind d fll" ,II!,!llnlhm 
W:I!\ ,ucce~!\fully Implemented fur Ihe 'peel.!1 c.!\e 
(/ = 2. LJI = 1111,), a/ = If!. 11/ = 2.3.4. :0; or 6 .tnd 

V .. (A) = N-lllD.,-I(1 - A .. (AHlll~. (3.9) 
liN-I Trace[/ - A",(A)lll~ 

3.0 

2.5 

2.0 

N 
0 

X --.c -"' > . --.c 1.5 -"' '" 

1.0 

-----.5 

-7 -s -5 -4 -3 -2 -1 

FIG 2 R.IAI and" .111 m = S E~amplc I 
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N = 120. to gIve the numem:,11 re!)ulto; In the next 
section 

4. Numeric~1 c'pcriments 

We have progr.lmmed dnd te\ted the method for 
an,llyzrng dat,1 from .. lmUI.lICd 500 mb heIght field<; 
Ulllng \lmul,iled d,lI.1 at N = J 14 North Amcflc,1O 
radlo .. onde stdtlOn locatIon, The o;lmulated d.lt.l 
were obl,lIned from .I m.lthematlc.tl model of 500 mb 
heIght field!> u!)ed by Dr 1 homa .. Koehler of the 
Department of Meteorology at the Unrver!>lty of 

300 

a • 5 

200 

100 V.ti) 
• 

'\.(i) • • 0 

• • • • 0 
2 .. ... .+ .. ... 

~ (a) 

~ 800 .. 
& .. a • 15 
c 700 -
>111 . /i00 
0:,111 

SOO 
V (i) .. 

400 • • • • 
300 

200 RII (1) 

100 • • • • 
0 

2 3 4 S Ii 
11+ 

(el 

Wisconsrn that was bae;ed on an earher model 
developed by Sander .. (1971) The locatIon of the 114 
statlone; III gIven 10 FIg I The equation .. generating 
the field are glvetT 10 AppendiX B DI'iClI'''On of Ihe 
ratIOnale behlOd the model appear!> 10 Koehler'!) 
(1979) the,,!>, Contour map'i of the model field, ap
pear below together with contour mdps of the 
.!ndlyzed held, determined from the e;lmulated d,lt.!, 
O .. ta were !>Imulated by computrng the true 500 mb 
hClght at .. tatlon I by calling Koehler'!> pror,ram and 
.uldlng a !>imulated measurement error The slmu-

300 

y.(~) a • 10 

200 • 
• 0 • 

'] '\.(i) 
• • 0 • 

2 3 4 5 6 .+ 
(b) 

800 
V.(A) 

a • 20 
700 • • • • 
600 

SOO 

400 

300 
R.(i) 

200 • • • " 
100 

0 
2 3 4 5 6 ... 

Cd) 

Fu. , l.(AI,'OII R_fAI 

I 
t 
1 
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r 
I 
I 

, ~, 

\~ 

\ . .. . 1.' 

FIG 4a TI>e model (dashed hnc) and anal) zed (sohd hn() fields v.llh " - S 

lated measurement error was obtained by calling the 
pseudo r.lOdom number generator RAENBR In the 
Umverslty of WisconSin AcademiC Computmg Cen
ter library. This program obtains a pseudo random 

normally dl'itnbuted numher With mean 0 and stand
ard devlallon I and multlp1le, thl" number by a 
constant which IS given here as the standard devia
tIOn of Ihe measurement error ThiS procedure re-

FIG .cb As an FIg 4a nccpl WIth u a 10 
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rIG 4c As In r,g 401 CXlCrl wllh IT ~ I~ 

sulled In a ~et of 114 sImulated mea~ured ~OO mb 
he:lghto; .... inch \\ ere: then u,ed tl' ol1l.lIn .111 .In.lIFed 
field Thl~ 1<; the "mul,\tcd d.lt.1 \ eclor 1 T l' 1 c
capItulate the formul.l\ h1r ot'I,IIn1ng the .lIlalyzed 

d 

field. \\c go bad., to SectIon 2. wl:h d = 2. N = 114. 
1.,11 = 11(1,). where I, = (t/.\',). the coordinates of 
the Ilh ~tatlon We have .:on~ldered m = 2. 3.4. 5 
and 6 Thc analyzed field IS given by u\ HI ~ of Eq 

I .' 
f 

i 

I 
I 
I 
.j 
l 
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(:!.6). where l, ic; defined hy (2. I:!l. lb. ic; defined by 
(:! :!l fur '" = ~ .tnd .tn.llll!!11U' furrm/l.I' fllr ulha 11/. 

h. I' dchnl.'d hy (~ Ill) .lI1d (:!. 13) •• lI1d I I' dclml.'d by 
C!.I J) :md (~.14) For e.lch 11/. l'",(A) IS delinl.'d by 
(3.9). where D,r i~ taken as the Identity m.llnx 'imce 
"II me.l'iurement error~ arc as~umed to have the 
s.Ime standard IleviatlOn. l'm(A) IS computed as m 
Appendl'\ C but slOce Dor IS the identtty matnx. 
then t = T. The earth was assumed "flat" and 
I.Itltude and longltud:: coord/rates were treated as 
(\. ,.) for the analYSIS of the field dnd then converted 
back to latttude and longitude 10 the contour maps 
gIven below. To mllumlze round-off errors x and), 
were rescakd 10 be loughly of magmtude one m 
absolute value for the calculations. 

t 

a:: 
u .. 

30 

20 

- RltSE (.,i) 

• ('\t(i» 1/2 
C/ • 5 

.. .. .. .. .. 

In the fir'it ,enl." uf C\pl'rlOll'nt, \\ e I'I)n'ltlcred 
une 1I.:ld (Ill ".: ~.I'k,f I· \.\lurk· " ,111.1 ~Iln"d.:rcd 
IT = 5. 10. 15 .md:O 01 Illr c.ldl ,f.II.1 'I.'t (I,' • \.,Iuc 
of (T) \\e let 11/ = ~.~. 4.5 .lI1d (. L.:IU, IIr,t C\.lImne 
the ChlllCC uf A In the fir't 1.'\.,011'1.: dNU"cd here. 
(T = 10 .\Od 11/ = :'i (11/ = :'i \\ .1' Ihe "c'tlm.lted . 11/ 

fllr thl~ c.I,e. mOIl.' ahuut th.1l nl.'\I.) hg ~ gl\es ,\ 
plot of V.(A) vs A ,lOd R ,(A) Here R",(A) llo dl.'fincd as 

\ 

R",(A) = tV-I ~ (UH'Ol(t,) - u(t,JF. 
'-1 

where 11(1,) IS the "true". Ie. model 500 mb height 
field at station I Theoretically. l' .. (A) should "track" 
R .. (A) near the mmlmum of Rm{A) (see Craven and 

30 

20 

- RMSE{III,i) 

• (R {A»' /2 
II 

C/ • 10 

; 10 II 10 

t 

r 
:: .. 
II 

o 

40 

30 

2 3 4 5 6 ... 
- RHSE{III,i) 

• ('\ncl» ~2 
C/ • 15 

2 3 4 5 6 

•• 

40 

30 

20 

10 

23456 

2 

... 

• 

- RMSE (lII,i) 

• (R (A»' /2 
• III 

" • 20 

• 

3 4 5 6 

•• 
FIC S RMSE(m,A' and IR.'",)" vs m for" = ~ 10. 15 ~nd 20 
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.l 
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Wahba. 1979. Golub ('1 (/f • 1979) In pr.lctlce R,.(A) 
is not ~m)\l,n but 10 thl' ex.!mple whll.h 1<; 1,lIl1y 
typic.lI. It l..10 be .. ..:en th.!t the minImizer. Colli It A. 
of V .. (A) I~ .1 very good e"lIm.lte uf the mmlmller of 
R",(A) In f,lct the 'lOefllclcncy' R",(A)/mlO, ROI.(A) 
= 1.005 

FIg 3 IlIu,tr.lte'i how III ... cho,en from the d.lt.1 
and how glllld thl'i chOice I~ To study varlablhty 
of the method \\ Ith III and (T. the ~,lme set of 114 
po;eudo·random numher'i h.lO; been u,ed m edch of 
the 20 =- 5 >' 4 andlY'ie., pehmd FIg 3 The p,euuo· 
mndoOl nllmper for stdtlon I '\,.., multIplied by 
(J' - 5. 10. 15 .IOU :0 III turn to get lour d.lt.1 \eh 

FIg 3.1 plot~ \ .. , .It Ihe mlntmlZlng • ollue A for 
m = :!. 3. 4. 5 dnu ti for Ihe Ilr ... t d.lla ~et «(T '" 5) 
The OII01mllll1g \ dlue A \\ III pe dillerent 1'1 e.lch ca~e 
AccordlOg 10 rIg 3.1 Ihe chOice of 111 = 5 would be 
made from Ihe d,lIa For comp.lrt'ion R",(A) IS al'io 
gIven Fig, '\11. 3c and 3d gIve the ~ame plots for the 
other three uat,l !>et'i ,o,llh (T = 10, 15 and:!O It IS 
seen that the chOIce III = 5 would be made from the 
d.Il.1 10 each C.1 .. e In general. R ... (X) IS \ery c1o~e to 
mlO. R,.(X) and these plots sugge~1 that chooslOg III 
to mmimlze \· ... (A) \\ 111 result m a good chOIce of 111. 

Ho\\..:\er R,.(A}forlll = 4andlll ~ 61sonlyshghtlr 
1.lrger th,m N ,(AI The two rOmb correspondIng to 
the m = :; <T = 10 CJ,e of FIg 2 are CIrcled 10 FIg 
3h FIgs 4J-4d gl\e the model and analyzed field 
for III = 5 WIth the e~lImated X for e.lch (T tned The 
modd field contour~ ldd ... hed lines) .1re the S.1me m 
each figure The ,mal} zed field contours are soltd 
hne~ The contours are 1.lbeleJ 10 ten~ of meters 

From the d.1t.1 behlOd Fig 3 one can c'itabh'ih th.!t 
I R ,(A)l1 J " between 0 6(T and 08(T Thu'i the mea<;
urement no"e IS bemg filtered out to gIve d better 
e~tlm.lte over.llI. of the !>t.llton 500 mb heIght th.m 
the me.l~ured heIgh!'>! 

In pmcltce. of cour .. e. \\e w.lnt the analyzed field 
to be a good esltmate of the true field over a whole 
regIon. not Just at the pomts where It IS me.1sured 
To determlOe how well th ... go.1I IS bemg met the 
RMSE (root-me,lO·,quare error) of the analyzed 
field over a 17 x 26 gnd covenng the regIOn (lut
lined over North America WIth a solid hne 10 FIg I 
\\ol~ computed ThIS RMSE IS defined as follo\\~, 

RMSE = RMSE(m J) 

- .... '\' [ • O.J.. - ]' { 
I n Z5 } I'Z 

- 7 6 - - 1/114 'N'( ,.'1',) lI(fI,.cb,) • 
I x 2 ,-1,-1 

where A IS the estImated A for each In The RMSE 
IS. of course. an overall medsure of how well an en
tIre field can be estImated over a regIon trom the 
114 data pOtOls 

FIg 5 gl\es plots of RMSE(mJ) for the four 
values of II tned. RMSE(IIIJ) IS generally greater 
than [R on(A)P 1

• For comparison IR .. (~.)JI: IS also 
plotted The excess of RMSE(m.A) over [R,.(.i.)P· 1 

reflects the tOablllty of the method 10 IOterpolate 
between data POIOt:. 

It can be seen from FIg 5 that by the RMSE 
criteria an 111 somewhat sm.111er th.1n 5 would gIve 
shghtly better r,:sults 10 these examples To \\ hat 
extent thiS result on a model field carnes over to real 

I 
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'j 
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fields IS re.lIly a questton of how c111~ely Ihe model 
rcprc,,:nl,lhc n:.11 w(lrlJ \\Ilh r~,pccll'llh~ fe.lllIle 
~lOg le'leJ • 

To gel .l feel for Ihe v.lnablhly of Ihe analysIs wIth 
actu.l1 vanallon In the mea!>uremenl errors. Exam-

pIc I above Wllh Ir = 10 \\'.1' n:phc.llc,1 hc!!innlOg 
\\ Ilh .1 IW\\ 'CI ,.1 I .111.1"111 nUIll"~'I" \" I \I \\.1' ~Olll
puted Illlm Ihe doll.l .1I1d //I ..:: 5 \'o.l!> .Ig.lIn ch,,,c:n 
from the J,Ita. 

The e'itlmated value;" an the second rephcate was 

FlO 7 Four examples with" = 10 ( .. , "LON .. ~ lOS, (bl ALON. = 100, leI ALON. 2 95, 
(d) ALON. = 90 

..... 
I 

.~ 

.' 

i 
I 
t 

J 
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vcry do'c III A 10 Ihe IIr'l reph~·.ltc (Rememher Ih.lt 
the "mudel . lIe1d " Idcnllc.11 10 huth c.I,e, ) How. 
ever. while the R:-.tSL WoI' 13 6910 Ihe fir,t rephcolte. 
it was 17.13 10 th" one The mudel oInd the two 
analyzed field~ for thl~ Cd,e appcoIr 10 fig 6 

• • 

\ 
: 
• , . \ 

.~ \ 

\ ._\\ . , 
, " ... 

11O.llIy. we lU(lJ.., .11 V.III.llIon, .l\ th.: field v.trled 
Thlcc lither lIe1d" In .Iddltion to Ihe hr,t ex.tmple. 
were gencroltcd hy movlOg the field from we,t to 
e;a\t. The four field, arc chardctenzcd by Ihe 
parameter ALONu 10 the model In Example I. 

" D .. 

J 
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ALON" = 95. Ihe other three C.I'C, .Ire 90. 100 .\Illi 

10' I h~' 'cc\lnd Icph\..ltC \\Ith \ION" - ", I' 
u,cd In \III' 'Clle, •• lIId the ,.llIle 'et \II 114 \1111;111011 
r.mdllm nllrr,ber, u,ed m the ,c\.\lO\1 rcphc.lte 1\ 

u~ed an the other thrce ex.llllpleo; here. A ,et of 
d,lt,1 w'th (1 = 10 \\.I~ !,!cncl.ltcd f\lr e,l\:h \II Ihc,e 
thlcc nc\\ tkt.h. Thc e'tllll.lted vollue, of 11/ welc 

ALONo 

105 
100 
95 
90 

,it 

4 
4 
5 (.1lready gIVen) 
6 

Fig 1 gives a plot of the true and an.1lyzed field an 
each of these fOllr cases. The RMSE value~ were 

ALONo 

105 
100 
95 
90 

RMSE(,i, ,i) 

8.40 
1080 
11.13 
13.08. 

Vie have uc;ed CT = to .1S a tYPical v.due here 
bec,lU~e the rcsults In Thleb,lUx (1977. Table I. 
fir',t rvw. fifth column) sugl:!e,t th.1t the root· mean
!>quare meolSUlement error ,It Topek.1 I' le~~ theln 
10 :n (d'~Umml! zcro me,1n meac;urement elrorc;) 
Notc .111 c,lrhe; ,tudy (Air WC.1ther Service, 1955) 
h,l~ e,tlmated CT .It -20 m. 

The question of \\ hcther In practice m and A can 
be cffectlvely choc;en once and for .Ill or should be 
estimated d} namlcall} from thc data has not been 
completely addre'ised here ThiS quesllon can be 
.Iddres'ied With "model' data only to the extent 
that the model represents the real world with re~pect 
to the phenomend being studied Furthermore, If the 
cnten.1 IS minImum RMSE then thl~ question can
'10' be an,wered \~lth n:.11 d,lta unless illS aVdllable 
on a fine gnd Predlcltve ability on the measure
ment f!nd can be studied In expcnment~ phllosophl
c,llIy hke those ofThlebdux (1977). \\ ho omlhed data 
from Top.:!...! and then exammed hO\~ wellthc fopek.1 
d.ltol \.ould be estlmdted from other data We arc 
prec;ently dOing thiS with both the IsotropIC dnd 
aOl~otroplc method and prehmln~ry result!> are very 
promlc;lng 

A fe\\ prellmanary expenments we have carned 
out \\ lIh ol hmlled 'iet of e>'.1mple~ have resulted an 
effeLiI\c1v ~lml1ar vollue~ of A for fixed 1/1 If //I and 
A can be fixed. then the co~t of repelltl"e e"tlmatlon 
of II \ In' from doltol from .1 given ~et of stations be
comeo; very inexpensive 

Ulum,ltcly. \\ hether or not m and A 'ihould be 
e .. tlm.Jteu from thc d.1t,1 or 1..'.10 ... Ifely be . fixed' at 
~omc prlllr v,IIIIC \\ III h.lve to he determmed With 
re'pecl to the ultlnl.lh! U\( to \\ hlch the ,m,lly lcd 
field I' put (I..' I.! If It " U.,cu 10 .1 fon.:c,"t nlllUcI, 
then one .,hould c.Jctermme whether dyn,lmlc e .. llmol-

tllm of A .lnd III i, Cll"t effeclive 10 Icrm .. \If b(!\ler 
hll~'~.I't'l 

A( 1.1/011 !('dt:lllc'I/(\ The .lUlh\lr .. wi .. h to .Id,nowl
edge.1 numhl..'r 01 tn\ ,IIU.lhlc dl'\. U"lllJl!> \\ Jlh Pr'.lfc'
"Ill Don John'on ,Inu Dr' Tom !-'llchh:r .tnd rllm 
\\ hJlt.lker fhl' rc,e"rdl \\ .1' 'plln'llred b) the 
Atmo'phellc S .. lenee, SeCtlll\l. N.llloll.ll SClenl.e 
Found.ltlOn, unc.Jer GI.1nt A 1 M75·~3:!:!3 and the 
Office of NdV,l1 Re~e;!rch under Contr.1ct NOOOI4. 
11-C-0615. 

APPENDIX A 

Outline of the Ilematioll of Eq. (2.6) 

The "olutlOn to the mmllnJzalJon problem of(2 5) 
Will be found by the u'e 01 geometr} In Hllhert :.p.,\.e. 
By u:.e of cla"lcal method~. It I~ po!>slble to .:-har
actenze the solutlcn as the ,olutlon to a pal tl.11 dlf
ferentl.11 equ,lllOn \\Ith dell.1 function" and denva
tlve!> of delta functions on the neht·hand !olde. but 
the pre!>ent approach le.1d!. ~Im-rly to ,11!!onthms 
which do not reqUIre the numefll . .J1 !>olullon to a 
partial dlflerentl<t1 equation. The re,lder not familiar 
\\Ith Hilbert 'ip,lce' molY find Akhle7er .Jnd GI.1zman 
(1961. PI' I-:!I .Ind 30-3', plo\Jue th.:' necess.lry 
definltlOm ofHJlh.:'rt '1'.11..'.:' nllrm ,lOd lOner product 
The Hllhert "p.lce' \\ e \\ 1\1 11'1..' .111 po~se~, .1 repro
c.Jucmg kCl nel \\ hlch 1\ t"eu III l.on~1J uct the :'0111-

tlon. these kernel .. \', III be desci Ibed belo.l. We Wish 
to minimize 

\ 

N-I ~ (L,II - Z,fCT,-: + )..Jm(u) (25) 

'-1 

In an appropn,lte Hilbert ~pace' X of functions for 
wh'::h J w( III IS finite We fil!>t dchne a !>ullable lOner 
product on X Let 51.5:. • SI/ be .1 fi\ed set of 
,\I pomb 10 Euchc.Je.1ncl .. pace \\llh the property that 

1/ 

~ {I,cP,(sl :: O. for s = 5,. • • 5" .-, 
Imphe, that 0111 /I, are 0 Th.:' polrllcul,lr chOice of 
thc~e pomb I' ullllnportolnt .I, they \';111 colnl.c1 OUI 
loiter An lOner PIllUIICt (1/ [ ) 1\ defined on X by 

" (/I.t) = ~ II(S,Il(S,) ... " 
/II' 

a,l 0',,' Ja, u,+ u,,-'" 

Ib." (AI) 

It follow, from (A I) tholl the norm 1~11I on X IS 

gl\cn by 

". The II!!"""" derln,I"," l,f'" ,,, Ihe _CLlor 'I' 'LL "f dtJ 
Ihe 'Lh" "" ol"III"UIII,"' [U' "llId, .,tllhe I' ,rI,.t dLII' .1, .. , 
10 th ... ~1'111~1I110n Ii ,\..n, ... lit hi! II ,'rJ ... , III JIC .. '\.{u Irl Int\..;r.,~1c 
I,c< ML,"~ULI 1'17'1 I <l I~)I 

J 

1 
I 

1 
1 
J 
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Jf 

IIl1lr = ~1I2(S,) + J ol(lI) (A2) 
J-I 

A (real) contrnuous Imc..Ir function.at L defined on 
functions II 10 X IS a functlon..ll which a"~I)!"S ..I real 
number to c..IC'h II with the property 

L(alll + (3u:) = aLII. + f3LII: 

for any 1/, ..Ind 1/: and furthermolo! there eXIc,ts a 
conc;tant C ~o thlt 

ILIII~CI!III:. all I/EX (AJ) 

For the f..lmlh..lr lop..lCC L! of functIOn, \\ Ith 

IIIIIF = J . J 1/:( \"" • 

". 
LII = 11(/·) I~ not a cOlltmllou, IIne..lr functional be
cause (AJ) cannot be \all .. hed However. In all the 
spaces X that \\ e WIll con~ldcr. L,/ = I/(t*) Will \:e 
a contln~ou~ IIne..lr functlon •• 1 By Ihe Rle .. z repre· 
sentatlon theorem 1 A "hu:zc:r .lOd GlaLm.ln. 196). 
P 33).~ If L. I~ a contlOllous linear functlon..ll on 
funcllOns 10 a Hilbert .. pac.: X. then there IS a func
tion 'TJI 10 X. called the reprec;enter of LI• such that 

LIII = ('TJ •. II) 

Suppose these T/I were gl"en Then our mlmmlla' 
tlon problem I~ a~ follows Fmd II 10 X 10 ml'llnllZe 

\ 

N-I ~ (1) •• 11) - :.)2u,-1 + Ail,,(u) (A4) 
1-' 

We look al Ihls problem from a r;eometnc pomt of 
view. Any II In the Hilbert space X can be wntten 
as a hne,![combmallon ofT/I' .1)\. <b... " $11 
plus some funCllon p whlcl; IS perpendicular to e.lch 
1)1 and $1' thaI IS. 

\ II 

U = ~ CI1)1 ... ~ J.<b. + p (A5) 
.-1 .... 1 

for some coefficlenls c = (c i• . • cd'. d = ({i •• 
• • • ,JS/)', where 

(1)/.p) = o. 
($ •• p) = o. 

I :=. I. 2. .. • N } 
1I= 1.2 •...• M 

(1.6) 

By subs\IIullOg (A~) 1010 (A4) and usmg (A6) rc
pealedl} • one C.IO ~how th:il for 1/ of the fortol (AS) 
to mJOlmlu 10\4). II " nece,~.lry Ih.lt II = 0 By 
u~m~ Lemm.1 ~ ) tn "-IOll'klllrf .lnJ W.lh!">.l (1971). 
.t can abl) be e'I.lbl"hcll ,.",ummg (Z 4)1 Ih.lt Ihe 
cllelficlenh ( • ml"t ,.III,f\ 

(d>I' ~ ',T/,) = o. ":: I. 2. • \1. (A7) . , 
• .. \..IlIacr .• n.l LI'I01'1I u,~ !tn. ,r IItn,IIllO .• 1 f,'r .. h ,I w, 

.trc .: IHII1~ "\mllnu"u,,, 111l~ lr (uO\,lhlO 11 

which I~ equivalent to (2 9). i.e., 

T'c = 0, (2.9) 

slOce (1)I.tb.) = L/cb. It remams to lind the 1)1 and the 
coefficlcntsc = (c ••• • ( d' dndd = (J.. . .dul'. 
To find the 1)1 we u!le the theory of reprouucr'1g 
kernels. [For more Jelallc; cOIH.ermng wh..ll follow ... 
see Aronloazjn ,1950) ..Ind Klmcldorf and W.lhbol 
(J97l) 1 A Hilbert 'pace X IS ,aid to po,~e's a re
prodUCing "erncl (r", If. for each t· In R". the func
'"on..ll LII = u't*) 10; .. conllOuou, hnear functlondl 
Then there eXlsb a repn!'Cnler ", Ir. X !luch th.lt 

LII = 11(1 *J = (CI, .II). 

We define Ihe func'lon Q(s.t) of two (vector) 'an
abIes sand t by 

Q(s.tJ = (Cls.ql)' 

where Q IS called the reprodUCing kernel for X The 
baSIC property oflhc reprodUCing kernel I' that gIven 
Q. one can find tne representers of ,my continuous 
linear funcllon .. lo;. The 1)1 ale given by 

'TJ1(t) = L"sIQ(s.t), 

and. furthermore. 

(AS) 

('TJ,.'TJ,) = Lks,L"IIQ(S.tl. (A9) 

where. as before. the subSCript (5) mdlcates 'h.lt the 
functional L, Ilo to be applted to what follows con· 
Mdered as a function of s 

UStng results 10 Duchon (1976.1. 1976b) :..ld 
Melnguet (1979). II IS posslbie to oc:.! .. c.e Ihat t~e 
reproducmg kt'rncl (!(s.tl for X with the lOner 
product given by lAI) h given by 

Q(s.t) = K(s.t) + P(s.t). (AIO) 
where 

\I 

K(s.tl = £ ... (s.t) - L P.(tl£ ... (!I •• s) 
.-1 

1/ 

- L p,.(S)£m(t.S .. ) 

1I 

+ L P .. (s'l'.(t)£ .. ls .. ,s,). 
I' .-1 

1I 

P(s.t) = ~ P,(S)I'I(t} ... 
£ .. (5.1) IS as define<i 10 (2 3). and ('to. .1'" are 
the \f poIYftOI,'I.lb of lotal degree le'~ th.m JII ~atl" 
fyang fl. IS .. ) = l. If 1/ = I .lOd I~ t>:ju.·j \I) Lcro other· 
.... I"e To "crlf} Ih.lt t'l'i 01, the rcproJlIctng I.ernd 
for X 1\ I" "lIf1Klent III ~ h.:~" th.1t (I' •• ,,) :: I/(Il • 
.... here Iit\") =- 01' II. "nd th.lt '/, I' tn;o.. Thl' C.IO he 
dl'n.: lI'lI1g \klllL:lld 11'/7'>1 

1"0\\. kltlllg ~ III b\. .1' III l~ 71 • 

(2.7) 
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and U\tng 
'1,U) '" 1 .•• ,(1(50. 

and .I"untlng tlMI ( ,.. •• ( , s.l"!>fy tA 7). It e.1I1 
b .. verified that 

\ \ , " 
~ ('1'1m = ~ (,{,(t) - ~ ~ (',e,(s, )l',(t\. {A III 1-, 1-' '-I ..... 

Thm. l>tnce the double '11m on the nght IS a poly· 
nom • .tl. ihls e!>t.lbhshes th.lt tht: mtntntlzer of (2.5) 
h.ts the fnrr,l 

" \I 
II, ... A(t) =- I (',e,(t) + I d,4>.(t). (2.6) 

,-. .,..,1 

The coemc.ent~ e "nd d are obtained 1\<; follows' 
SIIIC(, ~ (','1,. ~ (',e, and ", ...... dIffer by poly· 
nowl.lIs. 

J .. ( ~ (',l},) = } "'( I (',e,) = J .,(11,.", A)' 

By (All). ~~_" .'1,(5.) = O. v = 1.2 ••••• M. so 
by use c; (A2) and (A9) 

'-I 
\ , , 

= II~ (','1.112 = ~ ~ C,(,L'(IILtlIIQtS.t). (AI2) 
.-1 .-1 )-1 

llo;mg (A7) .ll1ll (-\ 10) It C.ln hI' l>hown that the nght
h.lIld SIde of (A 12) I!> cqual to 

, , 
~ ~ (,r ,L'I"L'UlE .. ~s.t) • c'Ke. 
,-, J-I 

UStng 

( 
L,,,~ ~i l ) 

= Kc + Td. 

L,u, ... ' 

Eq ~A4, 10; equ.IIIO 

lV-I(Ke + Td - z)'D,,'2(Ke + Td 

- z) + Ac·Ke. (All) 

~!lnlmlratlOn l,f thIs cxprc\ .,on \\ Itn rc'peet to e 
• \IlJ d glvcs Ihe JC\lfCU cqll.llllln" fnr e .I.,d d. I c • 

(K + lVAI>./)e + Td = z. (28) 

T'c = 0 (2.9) 

We do,!! (h" Appenul\ \\.th the llh,cn.lllon thdl 
onc e.m al,o C:,fofce l>!r,lOg clln,lrdmt .. h} the l>.lIne 
I1Icl. oJs ~Ur!1l',e one wl\hel> 10 mmll1lllC 

rha: fI1lflllltlh'r uft \I .. t) '1I"lcct tu (.\ I 'il" uht.lined 
1.\ 'l'lIl11l! ",: II. I \',, I \. III (~Sl 

"u.\ l" ~I I h~' ~ l'mr"I.II'I 1.11 1'1 "_ l'lhll~' 1!1 \l'1l III 
Appa:l1dl~~' C .m" I) " n\lt 'lIIl.lbl,· ill I Ih" ~.I!>~ 
Mnec the pllll;cJure mh':\l" lIl' '\Il"l h) IT': '"or.I 
Cll l1lput.ltll"l.11 procedure 1\11 thl' C.I'C \ca: W.lhh.1 
(1,)~Ob. So.:c. 6 21. 

APPl:.NDI,{ B 

Exampl~ of thf. Calculation of e,. K Dnd T 
for LJ 'mohlng l>,CTcrenlialion 

Let d = 2. m "" 3 

then 

L"u=- • lJu I 
0\"111111t 

x InlO, - \,}2 + (I~ - .l.nl .. _.rll 

-= 8,{:![( (', - ftl2 + (t~ - t:rJ 

X (tJ, - .II) In(( t'l - \".>~ + ( .. ~ - Xt)t] 

+ [(I J, - .I,)! + (I'. - I~)!l«(', - fa)}. 

LJ",L'IIIE .. (~.t} = ~ ~' [( \, - f,)t + (\"~ - t~)t) 
iJ)"ih, ... 

etc 

x In[(\,- \,)% + (t~ - ,~)tll.i_r; 

AI'PI-NDIX \: 

ClI\cul.lIl(ln of \',.(.\1 lind II, !\h:lhnlnr • 
und IIf c .lI1d d 

r.-.rf 

Calclll:tllon of c. d .lntl \ • 1.\ I arc h.l,ed \111 formul:ts 
(el)-(e3) helow lbe!>c fl'rmul." .Ire dert\cd In 

Ap!'enulx D 

c == R(R'KR + -"AR'D,,'!?) 'Wz (el) 

d -, (7'D,-~n-IT'l>" ·(z - I\c) ,C21 

" N-' ~ (L"II - =.)2(Tl· t t- A}.(u). 
(e .and d h.lv\.' llrlgll1.lIly I~cn g'\ en 111 (::! ~) .Il1U (2 9)] 

(Alot) J - A .. (") .-, 
!>ubJcct to 

LJII :: =J' J"" lV, + I. .. • N. 

= N>"l>./R(R"/o.U + \'AWI>,,'R)·'R'. (e3) 

whcfe R I!> .IOV .v ..... " - \I d,men\lun.11 m.llnx of 
("I~I r.lnk lV - \I ,.It,,fymgR'1 == 0'_1/.\1 

... 

1 
I 

i 
I 

I 
I 
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It IS shown an Appendl\ D that the N - M x N - 1\1 
dlmen'ilOn.11 m",tnx B defined by R = R'",U is 
always stnctly pO'iltlVC 'Jelmltc (although h may not 
be) This <lIIo .... s some of the c.!lcu''''tlOn~ below to 
proceed 

We now dl'icu'is a comput.ltlOnal procedure which 
we h",ve 'iuccessfully Imrh:mented fur thl! specIal 
ca~e d = 2. L,II = 1I1l,1. 'T,~ G IT:. In :. 2. 3. 4. 5 
Of 6. and N ,,; 120 

R can .11 .... "'ys be chl\'icn .. 0 th,1t R'{),/R = 1\_11 
where 1 \ \, I~ the ,\ - \1 l.hmen.,lOn.t1 Identity 
matrix Thl ... I .. done numcnc.llly a, foIlO\\<, I ct 
t = D" -IT and form the m.ltnx C = 1 - n t'n-IT' 
Thl'i s~'mmctnc non-nq:.'II\C defimtc matrix IS.I pro
jection matrix of rank S - ,\f ',IIISt') Ing T'C = O"A \. 
and so It has N - \f eigenvalues equal to I and M 
eigenvalues equal to 0 1 he N - ,\, eigenvectors 
i l • i 2• • i\_I/o say. correspondmg to the ones 
have the prorerty 

t'iJ = O. j = 1.2 •...• N - M. 

and the property that theN '( N - M dimensIOnal 
matrix R .... lIh columns rl' . . r\_I/ satisfies k'R 
= I. The eigenvectors cOlT"'spondmg to the ones are 
not andlvldually umqucJ> defined of cour~e. any set 
.... II~ do Let rJ = D,,-lil and R = D,,-lil. Then T'r, 
= tij = O. J = 1.2. " . N - M and R'D./R 
= R'R :: I. Thus R l'i the desired matnx We suc
cessfully used EISPACK (Smith ('I ill. 1976) 10 

double precIsion to deh ... er the U,} given C. for N 
up to -1~O Once RIo, determined. let the eigenvalue 
decompoSition of B = R'I\R be 

B = UDsU', 

where U IS orthogonal and DR IS the daagonal matnx 
WIth diagonal entnes the ("Igen ... alues b .. of B. 
i = I. 2. . • N - ,\I U and D/I are .lgaan obtalOed 
by EISPACK The h, are theoretically .111 pOSltIVC. 
Then c: I~ readily computed from the Identity 

c = RU(Ds + NXI)-I'JR'lo 

nnd d IS computed from 

d = (t't)-lt·D., -I(r. - he}. 

By (e3) we obl.!10 

D" -1(/ - A .. )l == NAI>,.c 

and U'ilOg (3.9) we ha\e 

Vow(X) 

\ -II 2 

V''" -~-'-'-I \b, t \AI 
\., I : 

(
N-I ,. ) 

,~ hi + NA 

where w == (11'1 ••••• 1\'\-\1)' = U'R'lo. FOf fixed m. 
given the I. / and the hi. It is not hard to find the 
X mlmmlZlng the raght h.lOd Side .1f thl~ expression 
by globdl se.lrch. Il I~ convenaent to work In unlt~ 

.of 10gA. 

APPENDIX D 

Derivation of (CI). (Cll and (C3) 

We obtam (el) and (C2) from (2.8) and (2.9). 

c = R(R'KR + NXR'D,,'R)-IR'l. (Cl) 

d == (T'D,,-'T)-IT'D,,-'(lo - Kc). (C2) 

(K + NXD,/)c + Td :: lo. (2.8) 

T'c = O. (2.9) 

Here R is any N x N - M matrix of rank N - M 
sdtl'ifymg R'T = O. Sance T'c = 0 there eXists a 
unaque N - M vector y. say. With 

c = Ry. (Ol) 

Multlplymg the left SIde of(2.8) by R' and substituting 
10 (01) gl\CS 

R'(K + NAD,,')Ry = R'lo } 
y = [R'(K + NXD,,!)R)"IR'lo 

(02) 

and multlplyang the left Side oC(02) oy R gives (CI). 
To get (C2) we multiply the left Side of (2 8) by 
T' D" -2 to get 

T'D,,-'Kc + T'D" -2Td = T'D,,-'lo. (D3) 

Final1y we multiply the left SIde of (03) by 
(T'D,,-'n- I to obtam (C2). 

To obtalll (C3) 

1 - A .. (X) 

= NXD,,'R(R'KR + NA.\'D,,2R)-IR'. (C3) 

it is neco!ssary to know that 

L"eJ = L,(,)LJ1t)E .. (t.s). 

This is not hard to check from the definallons. Then 
one has 

N 11 

L1JI\ "'.l = ~ cJL"{1 .4. ~ drL 1 cbr. 

k = 1.2 ••.•• N. 
or 

( 

LIII\ '" A ) 

L::lI~ ... A == Kc + Td. 

1.,11\ ", \ 

anll by the deliOl!II.," of A ,.(Al. w(" h.lve 

Kc + Td = A",(A)z. 
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Thus. 
II - A .. (AlIl :.: z - I\r: - 1d (04) 

But from (2.8) 

Z - Ae - 1d = NAD./c. (05) 

Substituting (el) IOto (05) .md the result IOtO (04) 
gives (C3). 

We now give .. bnef argumenl "hy th: N - M 
x N - /It Matnx II = R'I\R I!> always !>tnctly POSI
tive defintte. Let 1\" und R" be the "pectal cases of 
1\ and R when L,,, =- "Ud Oucho:1 (1976b) has 
shown in :hls case that R,,'l\nR .. IS always strictly 
positl\ e definite for an" N ~ AI. By u!>ing the fact 
that all contlOuous hnl!ar Cunctlonals 10 a reproduc
ing kernel Htlbert space are limits of sums of evalua
tion Cunctlonals. one can show the positive definite
"It'ss III general [see Oyn and Wahba (1979) for 
more details). 

APPENDIX E 

500 mb Height Model 

As ment:oned earlier. the height field used 10 the 
numerical expenments IS the same as that used by 
T. Koehler. Koehler adopled the model of Sanders 
to represent meleorologlc.l1 prenomena of Interest 
(10 p,trticular. we used pres!>ure !>urfaces) over an 
area Ihe 'Ize of North Amenca. In hIS model the 
helgrt ;: of any pressure surface p at longItude II and 
latitude 4> IS defined as follows: 

:(8.«b.p) = i cos[(211'lLa)(fl .. - fl + ~fl»G'(<<b) + = 
+ 11 .. (I000)'oylll - (p/IOOO)IIIT'ltl) 

where 

- (Rlg){ln(I(l()()/p) - (a/211In(lOOOlp)]Z} 

X {(llrlsin4>u)(co:;4>o - cos':» 

+ t cos«211'/ Le)(8o - 8))G(4)l}, 

1.,(1000) = 278 K 
t = 10 K 
i = 150 m 
i = 90 m 

Roylg = 0.0953 
a = 0.9 x 1O-~ K m- I 

r = 6371 km 
110 = 9" 

L, = 300 

4>v == 450 

a = 0.621 
R = 287 04 mt s-t K-I 
C = 9.8 m s-t 

p = 500 mb 
00 = ALONo 

Also 

I'S J" liN J~ GlcP) = b l-;; (cP - t/I .. ) of ( -;; (I" - cPII) 

.vlth 

and 

1
18 ]. + J -;; (4) - 4>,,) 

h = -1/60. J = -"0/60, 

( = 11/60. (! = I, 

G'(4)) = J. Sill 4> , clG(cfl') dcfl'. 

"" SIll¢.. iJ4>' 

+ ~. 

In the numencal expcnments the parameter 
ALON .. was vaned 1.l1.lllg the v.llues 105. 100, 9S 
and 90 ThiS parameter determmcd the longitude 
at whIch the wave "beglll~". Hence, by decrcaslllg 
ALONo the wave "moves" from "'est to east. For 
the phYSical Illterpretatlon of the other constants 
and functIOnal form of the model the reader is re
ferred to Koehler (1979) 
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