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I. Introduction

Our goal is to understand the fundamental geological and geophysical

properties of asteroids by theoretical and simulation studies of their colli-

sional evolution. We have developed numerical simulations incorporating real-
^O	 ta

4 
M istic physical models to study the collisional evolution of hypothetical asteroid

S10	 A N
=0 populations over the age of the solar system. Our ideas and models are con-

9-, strained by the observed distributions of sizes, shapes, and spin rates in the

c"na asteroid belt, by properties of Hirayama families, and by experimental studies

of cratering and collisional phenomena. Our studies to date suggest that many

asteroids are gravitationally-bound "rubble piles." Those that rotate rapidly

may have non-spherical quasi-equilibrium shapes, such as ellipsoids or binaries.

Through comparison of our models with astronomical data, we may be able to

determine physical properties of these asteroids (including bulk density) and

shed light on physical processes that have operated in the solar system in

primordial and subsequent epochs.

During the past year, we have made extensive improvements in our numerical

models for studying the collisional evolution of asteroid spins and asteroid

sizes. In Section II, we describe the collisional outcome algorithm that

forms the basis for our collisional evolution scenarios.. In Section III, we

outline the numerical evolution models used to study the collisional evolution

of asteroid sizes and spins, together with some tests of the collisional

algorithm including comparison of collisional outcome models with observed

Hirayama families. In Section IV, the collisional evolution of asteroid sizes
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and spins is discussed, while Section V gives an overview of future directions

in this; project.

II. Collisional Outcome Model

The general framework of our collisional outcome model is described by

Greenberg et al. (1978) and Davis et al. (1979). Briefly, the outcome of a

collision (catastrophic disruption, cratering, inelastic rebound) between two

bodies is modeled as a function primarily of the collisional energy relative

to the inherent strength and size of the colliding bodies. Since we are

studying the collisional evolution of asteroids whose orbits are eccentric

and inclined enough to give a mean impact speed of 5 km/s, disruption and

cratering are the only collisional outcomes that are relevant; the categories

of simple rebound and rebound with cratering, defined by Greenberg et al. are

never encountered for plausible material properties at asteroidal impact

speeds.

A. Size Distribution of Collisional Fragments:

A collision between a larger (target) bodyg	 g	 y -.f mass, mt , and a smaller

(projectile) body, mp , at a speed, v, generates a collisional energy, E, in

the center-of-mass frame where

m m 
t 
v 2

E = 2 mp +mt%	(1)

What is the outcome of such a collision? This depends on the "impact strengths"

of the bodies, where the impact strength is defined as the collisional energy
.a

per unit volume delivered to a body that produces a largest fragment that

contains 112 of the original bodies' mass. Experimental studies by Gault and

Wedekind (1969), Fujiwara et al. (1977), and Hartmann (1978) show that there

is a large change in the mass fraction contained in the largest fragment over

-2-
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a narrow range of collisional energy densities. The energy density at which

the sharp transition from cratering tc catastrophic shattering occurs varies

with the type of material: For ba ,Ialts and strong rocky material, it occurs

at -3 x 107 ergs/cm 3 ; for water ice, at about -2 x 10 5 ergs/cm 3 ; for loosely-

bound dirt clouds, -10 4 ergs/cm3 ; for iron, -10 9 ergs/cm3 . We emphasize,

however, that the impact strength is used parametrically to describe the results

of actual impact experiments, and care must be used in inferring other material

properties from an impact strength alone.

Experimental results concerning the size of the largest fragment from a

collision are represented by a least-square data fit:

mQ = 0.5( pE 
)1.24	

(2)
mt 

where mY, is the mass of the largest fragment, p is the target density, and S is

	

the impact strength of the target. If the collisional energy per unit volume 	 1

just equals the impact strength, then the largest fragment contains 112 of the

original mass and the body is said to just be shattered. Collision energy

densities less than S produce cratering outcomes, as described on p. 6 below.

How big a projectile is needed to just barely shatter a given body? The size

ratio between projectile and target depends on the impact speed and the impact

strength. Experiments by Hartmann (1980) indicate that for comparable impact

strengths between the target and projectile the collisional energy is divided

equally between the two bodies. We maY then solve for the target/projectile

,i
size ratio to just shatter the target body, y, from eq. (1):

h

z

Y	 pp (
ptv 2 _1) 

1/3	 (3)

Pt	2S

A power-law model is adopted to describe the fragmental population size dis-

tribution (Greenberg et al., described here). The slope of the distribution

-3-
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is determined by the total mass of fragments, given the largest fragment mass

(see above).

B. Velocity Distribution of Collisional Fragments:

A cumulative power law velocity distribution for the fragments is of the

form

where f is the ejecta mass fraction moving faster than v, v  is the minimum

ejecta speed, and a is a model parameter. Gault et al. (1963) gave a = 9/4

for cratering into basalt, and Greenberg et al. adopt the same slope for

cratering impacts into  sand, as implied by experiments of St6ffler et al.

(1975). For shattering impacts, Greenberg et al. use a constant fragment

velocity which is equivalent to a large value of a.

For a collision which produces an ejecta mass m e , the amount of collisional

energy that is partitioned into ejecta kinetic energy, f ke , is used to calcu-

late v k . For a given impact, 112 the available collisional energy is nominally

assumed to go into each body, an assumption which is supported by experiments

for bodies of comparable impact strengths. Further data are needed to determine

the energy partitioning when the projectile and target strengths differ signif-

icantly (Hartmann, 1980). The parameter v  is found from the total energy

partitioned into ejecta energy. The total kinetic energy carried by the

ejecta is found by integrating the mass-velocity distribution (eq. 4), over

all velocities from v  to some upper bound, 
vmax* 

If a > 2 and vmax >> vk'

then the total ejecta kinetic energy is a function of v k and can be equated to

fke •E/2. Solving this relation for v  yields,

v	 E - fke a -
 21112

k	 me	 a 	 (5)
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Fujiwara and Tsukamoto (1980) measured fragment speeds from catastrophic

disruption of basalt targets. They found that the fragments do have a distri-

bution of speeds and that 70- 80% of the ejecta mass moves slower than 6.4 x

10-5 (E/M)0'76 c111/s, where E/M is the collisional energy per gram of target.
	 i

Their measurements excluded the 20% or so of mass closest to the impact site,

which presumably contains the highest speed ejecta. Typically only a few per-	 it

cent of the collisional kinetic energy, or less, appeared as ejecta kinetic

energy. The ejecta speed algorithm in eq. (4) is in fair agreement with the

experimental results if the same fraction of collisional energy is partitioned

into ejecta kinetic energy in the model as was experimentally determined. The 	 r

nominal collisional nindel adopted by Davis et al. (1979) partitions 10% of the

collisional energy for each body into ejecta kinetic energy (i.e., 5;0' of the

total collisional energy goes into ejecta for each of the projectile and tar-

get). With the 9/4 exponent for the velocity distribution, most of the ejecta

KE is carried by the high speed tail; indeed, only 16l of the ejecta KE is

carried by the slowest moving 8OZ of the ejecta. Hence, the nominal 0.1 energy

partitioning parameter of Davis et al. translates into about 1% for comparison

with the measured values of Fujiwara and Tsukamoto. They find ejection energy

fractions from 0.3- 3.5%, so the 1% partitioned using our nominal parameters is

right in the middle of the experimental range.

C. Formation of Gravitationally-Bound Rubbl e Piles:

If the body is completely shattered and the minimum ejecta speed v  is

larger than the escape speed v  of the body, then the fragments are totally

dispersed; otherwise, only the fraction of ejecta given by (4) with v = v 
t

escapes the body. The remaining ejecta are gravitationally recaptured. Such
h

a process in which the body is shattered but only a small fraction escapes the 	 r

gravity field leads to the formation of gravitationally-bound "rubble piles."

^f

-5-



T

If a fraction, f, of the ejecta escapes, what is the size distribution of

the escaping fragments? We assume that the gravitationally-bound fraction,

(1	 f), includes the largest fragment from the collision. The largest escap-

ing fragment is taken to be a fraction f, as found from (4), of the largest

fragment mass calculated from (2). Also, the mean speed of the ejecta after

escaping the gravity field of the asteroid is found from

V 2 = Vk2a/(4 - 2)	
Vet

ej 

This method is used to determine (a) the outcome of shattering collisions,

in which the collisional energy in the center-of-mass frame is large enough to

shatter the body, and (b) the size and velocity distribution of the fragments.

D. Cratering Collisions:

If the body is not shattered, it is then said to be cratered. The cratering

algorithm is described by Greenberg et al. and has been modified only to include

oblique impacts as described below. The model retains the energy scaling rela-

tion for calculating the total amount of ejecta produced by a given impact.

This algorithm introduces a discontinuity in the size of the largest fragment

at the boundary between cratering and shattering events. Whereas an impact

that just shatters the body produces a largest fragment containing 50% of the

initial target mass, an impact just slightly less energetic produces a largest

fragment many orders of magnitude less massive: for S = 3 x 10 7 ergs/cm3 , the

largest fragment is 10 9 times less massive for cratering than for shattering.

Several approaches are being considered to eliminate this large discontinuity.

The collisional outcome model described above is for head-on impacts.

However, real asteroid collisions occur at all impact angles, from central

collisions to grazing impacts. Impact experiments by Fujiwara et al. (15x0)

and Gault (1973) indicate that collisional outcomes depend on the impact angle

(C)
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as well as collisional energy and material properties. To account for oblique

impacts, we have modified the collisional outcome model so that the fragmental

size distribution and energy partitioning depend on impact angle. We then use

the probability distribution for impact angles onto spherical targets to average

over all impact angles in order to find the mean values for the largest fragment

and energy partitioning coefficient.

The geometry for calculating the distribution of impact angles is shown in

Figure 1.

ORIGINAL PAGE M
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Figure 1: Trajectory geometry for calculating the probability distribution of
impact angles.

Particles approaching the target body on trajectories that are offset a

distance, b, from the center of the target body are gravitationally attracted

by the target and impact at an angle 0 from the local vertical. The impact

angle, 0, and the impact parameter, b, are related by

1b	
(7)

sin 0 -	 ,
R	 1 + (Ve/V00)2

where V  is the escape speed from the surface of the body, and V., is the

approach speed far from the target.

Assuming a uniform distribution of impact parameters in the plane perpen-

dicular to the approach asymptote, the probability of approaching with an impact

-7-
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(8)

Using eq. (7) to replace b with 0 and then normalizing over all impact

parameters, we find the probability distribution for impacting with an angle

between 0 and 0 + d0 to be:

P(6)d	 = 2 sin 0 cos a do; 0 < 0 < 900 ..	 (9)

Impact experiments by Fujiwara et al. (1981) indicate that the oblique

impacts are less efficient than head-on impacts in shattering a target. In

particular, comminution decreases, hence the largest fragment size increases,

with increasing impact angle:

f (0)
fQ (0) =	 3	 for 0 < 0 < 011, and

cos 6

f  = 1	 if 0 > em,	 (10)

where Ye) = mQ (6)mt , fQ(0) is the fractional mass of the largest fragment for

head-on impacts, and em is the value of a for which f = 1. The mean value of

fQ (0) is found from

em f
Q(6) P(0) de,	 (11 )

0

which yields using P(6) d0 from eq. (9):

2 ft(0)2/3
T-Q = 1 

+ f (0)1^3	
(12)

Q

Table 1 compares the mean size of the largest fragment averaged over all

impact angles with that for head-on impacts. The inclusion of oblique impacts

produces larger fragments, ranging from -40% larger for what would be a barely

s

—8—



} TABLE 1:	 FRACTIONAL MASS OF LARGEST FRAGMENT

fQ (0)	 fQ

Central Impacts	 Mean For Oblique Impacts

	

0.50	 0.70

	

0.1	 0.29
f

	

0.01	 0.08

	

0.001	 0.018

i
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TABLE 2:	 MEAN VALUE OF fke COMPARED WITH CENfRAL IMPACT VALUE

`k4 0 ) Tk-e

0.5 0.56

0.25 0.34

0.10 0.21

0.01 0.134

-9-
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catastrophic impact in the head-on case to increases of more than an order of

magnitude for very catastrophic impacts.

The energy partitioned into ejecta kinetic energy is assumed also to depend

on the impact angle. The model described in Section IV (collisional evolution

of :°>pirs) is adopted:

fk (6)
	 fke(0) + ( 1 - fke( 0 )) sin 

6
0,	 (13)

where fk (0) is the energy partitioning coefficient for central impacts.

Averaging over all impact angles yields the mean value T to be:

7fke(0) + 1

ke	 8

The mean value of fke is compared with the central impact value in Table 2. 	
b

Adopting the mean value 
of 

fke implies that small values of energy partitioning

are notallovied with 0.125 being the minimum value. In the absence of any

experimental data in this area, we adopt this model, but remain cognizant of

the limitation it might impose.

The previous discussion has addressed the effects of oblique impacts on

catastrophic collisions, and we now address variations in cratering outcomes

with impact angle. Experimental data by Gault et al. (1973) indicate that the

amount of ejecta varies as cos 2e, a result which we incorporate into the algo-

rithm. As the mean value of cos 2e over all impact angles is 112, the ejecta

mass is reduced by a factor of 2 from the value calculated for central impacts

to account for oblique impacts.

III. Collisional Evolution Model

The basic structure of the collisional evolution program has been described

by Chapman and Davis (1975) and Greenberg et â 1. (1978). Briefly, an arbitrary

i,u
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population size distribution is modeled using ra series of diameter bins with

the bin width being a program parameter. Typically, each bin spans a factor

of 2 in mass, and up to 30 diameter bins may be used to represent the popu-

lation.The bins are used to represent the large size end of the population

from the largest bodies down to some minimum diameter, 
Dmin, determined by the

largest body and the bin width. Particles smaller than 
Dmin 

are represented by

a power law, which is attached to the small end of the smallest diameter bin

and has a slope equal to the mean slope of a power law size distribution fit

to the smallest six diameter bins. The power law "tail" to the population is

used to calculate collisiunal effects die to particles as small as 1 meter in

size on larger bodies in the discrete diameter bins. Interactions among small

particles in the tail are 01,, t considered. Also, only collisions with small

tail particles energetic enough to shatter a body in a diameter bin are in

cratering impacts involving tail particles are excluded.

The collisional evolution of this system is calculated using a series of

time steps, where the length of a time step is dynamically calculated so that

no important physical parameter of the system can change by more than a fixed

fraction. Typically a change no more than 50% during a single time step is

allowed in the population of any diameter bin or, in the mean eccentricity and

inclination of the orbits for any bin. Curing each time step, the number of

collisions that occur between the particles in two bins (the larger size bin,

the target, and the smaller projectile) is calculated. The collisional outcome

algorithm previously described is applied. Collisional fragments are distri-

buted among the appropriate diameter bins, and the orbital changes due to
M

collisions and gravitational close encounters are calculated. All pairs of

diameter bins are treated, including interactions of particl/es in a bin with

themselves. If there are more than ten collisions for a diameter-bi.n pair,

-11-
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then the number of collisions is calculated deterministically using the

particle-in-a-box algorithm for the number of collisions during the time step.

If fewer than 14 collisions are predicted, then the actual number of colli-

sions is calculated using a Poisson probability distribution and a random

number generator. (However, the collision outcome is still calculated as

described earlier.)

The collisional evolution model has recently been extended to treat the

evolution of two interacting populations having different physical properties

and moving on different orbits. The same collisional outcome algorithm as

previously described is used with the physical parameters appropriate for

each population. All interactions of eat , h diameter bin with all other

diameter bins in both populations is treated. Collision fragments are dis-

tributed into diameter bins for the population that the fragmented body

belonded to; however, accretionary events involving particles from two

different populations are placed in, and assumed to have the physical prop-

erties of, the population of the larger ("target") particle. (Time steps are

calculated and the collisional evolution calculated as described previously.)

In addition to tracing the changes in the population size distribution

and orbit distribution, we have begun recently to calculate the effect of

collisions on the physical state of bodies of various sizes. Gravitationally-

bound bodies are typically shattered many times before they are disrupted, so

we keep track of the mean collisional energy that has been delivered to a given

size body at any time during the collisional evolution. The number of sur-

viving original bodies at any size is also calculated, along with the number

that are eroded fragments or fragments from catastrophic dizruptions at larger

sizes.

Several checks were run comparing the predicted evolution using the two

component simulation with that of the one component model (i.e., the single

-12-



component was input to one of the population distributions, while the other

population was set to zero, or the single component was divided equally between

the two populations). The evolution was the same in all of the test caspk.

We also compared the numerically calculated evolution with the analytic

models of Dohnanyi (1971), after first changing the collisional physics to

agree with that of Dohnanyi. Principally, this required elimination of

gravitational binding since Dohnanyi did not explicitly include this factor

in his models. In most cases, reasonably good agreement was found between the

numerical and the analytic theories.

Our collisional algorithms are applied to predict the outcome of impacts

involving large bod'Jes (i.e., -10 - -10 3 km in size). Yet these algorithms

are based upon experimental results involving laboratory-scale targets, hence

we assume that scaling laws are valid over many orders of magnitude in mass.

`est of the validity of our collisional outcome models would be to compare

our calculated results with the observed properties of Hirayama families,

widely thought to be the remnants of major asteroid collisions. Colorimetric

studies by Gradie and Tedesco (Gradie et al., 1979) find spectral similarities

among members of several large families, while many of the smaller families

exhibit diversity, implying that they may be the fragments of a single

differentiated parent body. Hirayama families provide us with natural experi-

ments with which to compare our numerical collisional outcome algorithms.

We selected the Themis and the Eos families for study. These are large,

well-defined families having many members that are spectrally similar. Also,

minimum diameter reconstructions of the parent asteroid have been carried out
	 1

by Gradie. To compare our predicted collisional outcome with the obs6-ved

family distribution, we must first determine the type of collision with the

parent body that produced the fragments. (We suppose that there has been little

-13
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subsequent collisional evolution of the fragments.) If the largest member of

the family contains less than 50- 60% of the parent body's mass, we classify

the impact as one that shattered the target body. We then calculate the

collisional energy necessary to produce the observed largest fragment, and

then calculate the size distribution of the fragments along with their mean

V.0 relative to the parent asteroid. The calculated distribution and v.0 are

then compared ?pith observed quantities.

A. Themis Family:

This is a populous, well-defined family whose parent body was a large

C-type asteroid at least -300 km in diameter (Gradie et al., 1979). Sizes

and types of the largest family members are given in Table 3 and are shown to

scale in Figure 2. If we assume that the parent asteroid had a diameter of	 'a

300 km, then the largest fragment (24 Themis) contains about 60% of the target's 	 {
3

mass. If we adopt the nominal impact parameters for C asteroids described by

Davis et al. (1979, see Table 4) and calculate the outcome for a collision that

delivers just enough energy to barely shatter the body and produce a fragment

the size of 24 Themis, we find that there is not nearly enough ejecta KE to

disperse the fragments against the parent-Themis gravity field. Hence, the

outcome is dominated by a fractured parent body that is nearly as big as it

was before the collision. To produce a bod, as small as Themis requires a

considerably more energetic collision. In fact, the minimum collisional energy

to produce Themis can be calculated using collisional parameters that enhance

disruptive outcomes (i.e., increase f ke to 50%, obviously it can't be more than

or even equal to 100%, and 50% is probably a reasonable upper bound for the

fraction into ejecta KE), and increase the slope of the ejecta velocity distri-

bution to a large number (-10 or so). Physically, the changes correspond to

having all of the ejecta launched at nearly the same speed (barely mc^ A.: than

''	 S

-14-
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TABLE 3:	 SIZE AND TYPE OF THE LARGEST ASTEROIDS

IN SEVERAL HIRAYAMA FAMILIES

4 Family	 Asteroid Diameter (km) Spectral Tyke

1. Themis	 24 249 C

90 138 C

222 85 C

268 85 U

•	 171 80 U

2. Eos	 221 98 U

579 80 S

639 68 S

966 62 C

798 61 SM

TABLE_ 4:	 COLLISIONAL EVOLUTION PROGRAM PARAMETERS

C Asteroids	 S Asteroids

Density (g cm-3 ), p	 2.5	 3.5

Impact strength (erg cm-3 ), S	 6 x 104	3 x 107

Mean collision speed (km sec -1 )	 5	 5

Fraction of KE into ejecta KE, f ke	 0.1	 0.1

Slope of ejecta velocity distribution, a 	 2.25	 2.25

Mass excavation coefficient for cratering
impacts, grams per erg of collisional energy 	 10-8	 10-9
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escape velocity) which minimizes the total ej'ecta ICE required to disrupt the

asteroid, With these changes to the collisional parameters, we now find that

a collision delivering 2 x 10
31
 ergs will shatter and disperse the 300 km

diameter target and produce a largest body -250 km diameter (i e., 24 Themis).

But the second largest fragment is found to be only -15 km in size, whereas the

observed second largest fragment iras a diameter of 135 km, In our models, all

bodies from the second largest down in size are assumed to be collisional

fragments -- only the largest body may be a gravitationally-bound rubble pile.

The only way to increase the size of the smaller fragments in the collisional

model is to increase the impact strength. In fact, if an impact strength of

5 x 100 ergs/cm3 is adopted for C asteroids (an increase of 5 x 104!), then

the predicted collisional outcome is in reasonably good agreement with the

observed Themis family, as shown in Figure 3,

B. Eos Family:

This family is another well-defined, populous family, but its arembers are

dominantly S asteroids, Table 3 lists the largest family members. Gradie

(1970) estimated the minimum parent body size to be 180 km; if so, then the

collision was quite catastrophic. Following the same procedure as for the

Themis family, we find that a collision that produces a largest shattered

frdgiilent containing -151N of the initial mass does not accelerate the ejecta

enough to overcome gravitational binding. The fragments mostly fall back

together, and the reassembled body contains over 99% of the initial mass.

Even the more efficient parameters for dispersal against gravity (f ke * 0.5,

described earlier) produce a largest fragment that has 90% of the initial mass.

As was the case for the Themis family, the only way to disperse a significant

fraction of the initial mass is with much more energetic collision. But more

t
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energetic collisions thoroughly smash the original, and the second and third

largest fragments are again too small, unless the impact strength is again

increased. The best "fit" to the Eos family requires an impact strength

S = 8 x 10
7
 ergs/cm3 , fke	 0.50, and nearly constant velocity. Figures 2

and 3 compare the observed and predicted size distribution for this family.

Both the predicted Themis and Eos families fail to match the observed

y
family distribution using the nominal asteroid collision parameters: In both

cases, the observed population has the second, third, etc. largest asteroid

much larger than calculated when the largest fragment is forced to agree with

the observed largest family member. Hence, either our nominal parameters are

incorrect, or our physical models are not appropriate for the case we are

trying to model.

Two solutions to this dilemma have been discussed recently. Fujiwara (1982)

and Chapman et al. (1982) suggest that gravitational reaccumulation takes place

among the ejecta fragments; hence, not only the largest body, but also many

other large bodies among the collisional products may be gravitationally-bound

rubble piles. In this case, the large-size distribution is not controlled by

the fragmental distribution resulting from the collision, but rather by the

dynamics of the gravitational reaccumulation process -- a process which has

not yet been studied quantitatively. Further progress in understanding the

effectiveness of gravitational reaccumulation of collisional ejecta awaits a

better understanding of the mass-velocity relation for catastrophic collisions.

Another hypothesis suggested by Davis et al. (1982) is that the impact

strength of large bodies increases with the size of the body due to internal

self-compression. If the basic fracturing mechanism for impacts is tensional

failure of material during passage of a rarefaction wave produced by the

reflection of an elastic compressive wave at a free surface, then the strength
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of the rarefaction wave must be sufficiently great to overcome both the in-

trinsic tensile strength of the material plus the loading due, to internal self-

compression of the body. Assuming that the experimentally determined impact

strength is a measure of the rarefaction wave strength required to exceed the

dynamic tensile strength of the material, then one needs to add the internal

pressure to the intrinsic impact strength in order to find the effective impact

strength for large bodies. To calculate the impact strength as a function of

target size, we add the compressive pressure at a depth below which half the

mass of the body lies to the intrinsic impact strength, So:

S(D) = So +P,
	

(14)

22
where P = 0.37Pc= 7T06 	 with Pc being the central pressure of the body.
For this calculation, the body is assumed to be spherical with constant density.

P is the pressure at a depth of 21% of the radius of the body, where 50% of

the mass is below this depth.

How does the impact strength vary with size in the model? For small

bodies, the impact strength is constant, equal to the intrinsic impact

strength; while for large bodies, the impact strength is determined by the

pressure term. For a basalt body with a density of 3.0 gm/cm 3 and a nominal

impact strength of 3 x 101 ergs/cm3 , the effective impact strength is double

the nominal value in a body 160 km in d iameter. Bodies larger than 250- 300 km

have impact strengths dominated by internal compression if they are made of

basalt-like or weaker materials.

The above described model certainly works in the direction to bring the

calculated collisional outcomes for Hirayama families into better agreement

with the observed values. Using the above model, the effective impact strength

for the patient. Themis body is 7 x 10 1 ergs/cm3 , while that for parent Eos is

8 x 107 ergs/cm3 . This is very close to the required impact strength to pro-

-20-
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duct the observed Eos family by our model, but the strength is about a factor

of 8 too small for the Themis family. Clearly more work is required to better

understand the above model for scaling impact strength, but such an approach is

qualitatively in the right direction and of the right magnitude for one of the

families considered.

IV. Studies of Asteroid Collisional Evolution

A. Size Evolution:

We have applied the numerical collision evolution model to study the

evolution of a variety of hypothetical initial asteroid populations over the

4.5 b.y. age of the solar system.. We wish to learn about which initial popu-

lations could collisionally evolve to the present asteroid belt, assuming the

dynamical environment of the asteroids has been constant over most of solar

system history. The assumption of dynamical "uniformitarianism" cannot hold

back to the accretional stage of asteroid history, since accretion cannot

occur for any reasonable geologic material at impact speeds of -5 km/s.

Really, we are studying the collisional evolution of asteroids subsequent

to the time when asteroid orbits were stirred up, resulting in the large mean

impact speed of -5 km/s. We seek to answer questions such as: What was the

mass of the asteroid belt when their orbits were randomized? What initial

size distributions are consistent with the present belt? Now do physical

and geological parameters affect the collisional evolution?

The total mass in the asteroid zone must have been much larger, assuming

the belt formed largely as a result of accretion in its current location,

otherwise the accretion time for large asteroids exceeds the age of the solar

system. Was there amass of 1- 2 Me in the asteroids at the time their orbits

were randomized and is collisional evolution an efficient enough process to

grind down and remove most of this initial mass from the asteroid zone? Or
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did mass depletion have to occur prior to, or as part of, the processes that

established the current dynamical environment?

We are interested also in studying the physical state of asteroids resulting

f	 from the collisional environment in the belt, as well as calculating the number

of original asteroids that might exist at various sizes. Several algorithms

have been added to the collisional model in order to keep track of the average

collisional energy delivered to asteroids prior to their disruption, the total

number of bodies added to and removed from each size bin, the number of original

bodies that survive to the end of the simulation, and the number of asteroids

created by cratering erosion and gravitationally-bound cores. Figure 4 illus-

trates the flow of asteroids through a typical size bin.

Collisional evolution over 4.5 b.y. for several hypothetical initial popu-

lations is shown in Figures 5, 6, and 7. The effect of initial population mass

on the final population for initial power law size distributions containing

0.1 Me and 0.01 Ms is shown in Fig. 5. Both initial populations evolve to the

present belt for sizes smaller than -100 km diameter, but larger asteroids are

overabundant relative to the present belt. Increasing the kinetic energy par-

titioned into ejecta energy makes it easier to disrupt large asteroids as shown

in Fig. 6. The evolution of several minimum mass initial populations is illus-

trated in Fig. 7. Variations in the evolution due to changing the impact

strength are shown for three cases: (i) constant, weak strength of 104 ergs/cm3,

(ii) constant, strong strength of 108
 
ergs/cm 3 , and (iii) the size-dependent

impact strength model involving internal pressure, as previously described.

While none of these caseE evolves to the present belt, the variable strength

case is the best match, while case (ii) gives the poorest fit to the observed

belt.
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FIGURE 5: Coiiisional evolution of two hypothetical initial populations (solid
and dashed straight lines) over the 4.5 b.y. age of the solar system.
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As noted, the collisionally evolved asteroid population is a mixture of

collisional fragments, eroded cores, and largely intact survivors from the

initial population. Figure 8 illusV. ,ates the fraction of each type of asteroid

as a function of size for the small (0.001 M e) belt among both C and S asteroids.

This result was based on the fixed impact strength model and gives the sur-

prising result that down to sizes as small as 25 km only a small fraction (-20%)

of the asteroids are fragments from collisions. Most small asteroids, although

the fractions are different for C and S asteroids, are either survivors from

the original population or are bodies which have been eroded down from larger

sizes. The lack of 25-km fragments is due largely to the fact that there are

not very many produced in our models -- catastrophic disruption of larger bodies

dominantly held together by gravity produces fragments that are typically much

smaller than X 25 km. Clearly, we need to rc-examine this outcome in light of

our new variable impact strength model. Figure 9 shows the degree to which

asteroids have been shattered without being dispersed, again using the fixed

impact strength model. This figure shows, as a function of size, the average

collisional energy delivered to a unit mass of the asteroid by non-disruptive

collisions, normalized to the impact ;trength of the asteroidal material. In

this case, even the minimal collisional evolution produces C asteroids that have

been impacted enough to deliver energies that are many multiples of their impact

strength, suggesting that weak C asteroids would be thoroughly smashed through-

out much of their interiors.

B. Oblique Impacts and Rotational Evolution:

In addition to changing effective energy partitioning and fragment sizes,
	 X

oblique impacts impart angular momentum to a target, altering its rotation

rate. Thus, the observed rotation rates of asteroids may constrain their

collisional history and their physical properties, such as strength and density.

-1

.
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Harris (1979) developed an analytic theory for collisional evolution of asteroid

rotations. He shows that, on average, large impacts tend to increase the spin
pk

rate, and small ones to decrease it, and he derived an expression for an equi-

librium rotation rate. Harris assumed that a gravitationally-bound asteroid

would be disrupted by an impact involving twice its binding energy. This

assumption (equivalent to f ke = 1 in our model) led him to conclude that most

asteroids would be destroyed before their spins would be altered significantly.

Davis et al. (1979) point out that more plausible parameters allow more evolu-

tion of spins, but predict mean spin periods much shorter than are observed.

However, Weidenschilling (1981) shows that "rubble piles" would become rota-

tionally unstable at spin periods near the observed limit of about four hours.

0ollisionally induced fission of such bodies would produce binary asteroids.

A single collision may involve enough angular momentum to greatly change

an asteroid's spin period. In the center of mass frame, the angular momentum

is

m mtvb

H p ( In p + mt

As gravitational focusing is generally unimportant for asteroids, the maximum

impact parameter is roughly the target radius R. Using eqs, (4) and (15) with

a	 9/4, a gravity-dominated target would be catastrophically disrupted by an

impact with m p/mt - (10/fke )Ve2/v 2 . If the angular momentum was shared equally

by the target and escaping ejects, an initially non-rotating asteroid could be

given a spin period as short as 3.5 f ke hr. The actual situation is more

complex, as we would expect angular momentum to be preferentially carried off

by high-speed ejecta, and f ke may itself be a function of impact parameter (i.e.,

of the angle e). Still, we see that the effect of a single impact can be large,

r

(15)
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in principle. In fact, the slope of the asteroidal mass distribution implies

that an asteroid's spin rate is dominated by the largest impact (or the few

largest) it has experienced.

In order to make his analytic theory tractable, Harris was forced to make

simplifying assumptions equivalent to treating all impacts as cratering events.

Actually, the dominant impacts are shattering events, in which the entire target

mass is mobilized as "ejecta". In order to model these events more realis-

tically, we have constructed a numerical simulation program that follows the

stochastic evolution of a single target asteroid due to a series of impacts.

Each impact is treated in the following manner: (a) The initial mass and spin

period of the target are specified; (b) A projectile mass and impact velocity

are chosen at random from appropriate probability distributions; (c) The impact

point and direction, defined relative to the pre-impact pole of rotation, are

chosen randomly; (d) The ejecta mass is computed from the impact energy and

angle; (e) Kinetic energy and momentum are partitioned into the ejecta, according

to algorithms which are discussed below; (f) The mass and angular momentum

carried off by the escaping ejecta are calculated; (g) The remaining mass and

angular momentum define the post-impact spin rate. These steps are repeated

until the target is catastrophically disrupted or reaches rotational instability.

while the basic concept of this program is straightforward, the algorithms for

each stage can be complicated, and presumably more realistic than analytic

approximations required by earlier work. Moreover, the stochastic nature of

the program can determine the expected variation from the mean rotation rate

for various combinations of projectile and target parameters. Our computer

actually generates a repeatable series of pseudo-random numbers, so effects

of varying parameters can be compared for the same set of "random" impacts.
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The projectile mass m  is chosen randomly from a power-law distribution of

the form

dN(m) a m-qdm
	

(16)

where dN is the relative number of bodies between m and m + dm. The nominal

value of q is 11/6 (Dohnanyi, 1969). We must specify a lower mass bound so

the program does not waste time computing an infinite number of infinitesimal

impacts. The lower bound is normally set so the smallest impacts are cratering

events. The formal upper bound of the distribution is m p/mt = 1, but the target

is invariably destroyed by an impact with a much smaller mass ratio.

The impact velocity is chosen randomly from a gaussian distribution about

a specified mean. Nominal values are 9 = 5 km s -1 with standard deviation

1.5 km s -1 . These values are appropriate to the main asteroid belt, and con-

sifstent with those used in our other collisional simulations. As the angular

momentum is proportional to v, and the impact energy a v 2 , low-velocity colli-

sions have more potential for altering the target's spin without destroying it.

However, we noticed no significant effects due to the low velocity tail of the

distribution; behavior was-similar to cases in which all impacts occurred at

the mean velocity.

The angular momenta of the target, projectile, and ejecta are treated

explicitly as vector quantities in a coordinate system defined by the target's

pre-impact spin. The z-axis points in the direction of the north pole. As

longitude is arbitrary, we take the x-axis to lie on the meridian of the impact,

and the y-axis is defined by the right-hand rule. The impact angle, A, is

chosen from the distribution of eq. (9), equivalent to choosing the impact
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parameter b = R sin 6. The impact colatitude, ^, is chosen so that the impact

probability is uniform over the target's surface:

P(¢)d^ = 1/2 sin ^ d¢.	 (17)

The azimuthal angle, V, measured clockwise from "north" at the impact site,

completes specification of the impact direction. The components of angular

momentum are:

Target:	
H 

HZ

Projectile:	 Hx

H
y

Hz

Hy = 0

0.4mtR220

-H p sin, cos

-H p cos

H p sin	 sin	 (18)

where H p is given by (15) and 
o 

is the pre-impact rotation rate.

We treat the calculation of ejecta mass somewhat differently than in our

other programs. The projectile is always considered to be part of the total

ejecta mass. The target contributes excavated mass, m eX , proportional to the

impact energy (gravity scaling for the larger asteroids has a small effect

compared with other uncertainties). For competent targets, the excavated mass

is proportional to cos 26, while for "rubble piles" it is proportional to cos 6,

following results of Gault and Wedekind (1969) for cratering. The total ejecta

mass is given by

mej = mp + mex _ mp + CexE 9( 6),
	

(19)

where g(6) = cos 6 or cos 2 0. Note that in the limit ()=  900 (barely grazing

collision), this gives m ej = mp . The coefficient 
Cex 

is inversely proportional
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to the impact strength, S, nominally C eX = 10'°p/S. The target is initially

assumed to be competent, with g(0) = cos t 0, and S the strength of pristine

material. ^fter each impact, the size of the largest competent fragment is

computed from (2) and X10); any excess mass is "regolith". Subsequent impacts

assume that S is reduced (typically by a factor of 100), and g(0) = cos 0. If

the excavated mass exceeds some fraction (nominally 1) of the regolith mass,

Vie impact is assumed to reach pristine material, and the mass is recomputed

for the competent target case. If the regolith exceeds half the total mass,

the target is considered weak throughout.

The nominal collisional outcome model (Section II, above) has a dis-

continuity in fragment size distribution at the boundary between cratering

and shattering events. The problem is more severe in accounting for angular

momentum, as we must model not only the mass and velocity distributions, but

the directions of the fragments. We are hampered by the lack of quantitative

experimental data on oblique impacts, even for simple cratering. We have tried

a number of algorithms consistent with the plausible assumptions that the

degree of forward scattering (or net momentum relative to the target) and

kinetic energy of the ejecta increase with 0. It should be kept in mind that

the algorithms described below for momentum and energy partitioning have at

best qualitative support from experimental data, and may be revised as quanti-

tative results become available.

The energy partitioning of eq. (13) is consistent with the qualitative

observation that there is little variation in crater or ejecta blanket mor-

phology for 0 < 45°, and the requirement that f ke-* 1 as 0 -* 90°. In the

rotational evolution program, we make the plausible assumption that the amount

of escaping high-speed ejecta increases monotonically with impact energy

through the transition from cratering to shattering. We assume that shattering

events yield a superposition of two ejecta components, one with the mass/velocity

-34-
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distribution of cratering events, and the rest of the target mass, lacking

a high-speed tail. This model is consistent with qualitative observations of

shattering events by Fujiwara and Tsukamoto (1980), and unpublished data of

D.R. Davis.

The mass of the "cratering" component is computed from eq. (19), with its

kinetic energy given by (13). This energy is assumed to be due to a combination

of motion of the ejecta's center of mass relative to the target, and radial ex-

pansion of the ejecta cloud that is azimuthally symmetric in a frame moving with

the center of mass of the ejecta cloud. The ejects cloud is assigned a net

momentum (not angular momentum) tangent to the target's surface at the impact

point, in the direction of the impact azimuth as defined by the angle ^ (cf.

eq. 18). The fraction of the impact's momentum delivered to the ejecta, fp,

depends on both the impact angle d and the ejecta mass:

f  = I I - Cos n 0 (mt - meX )/(mt + m p )I k >
	

(20)

with nominal values of n = 2 and k = 3Z. The velocity of the ejecta center of

mass: and the kinetic energy associated with this motion, are determined by

fp . Subtracting this energy from the total ejecta kinetic energy (from eq.

13) gives the energy of the radial expansion of the ejecta cloud. This ex-

pansion is assumed to have the velocity distribution of eq. (4), with slope

a = 9/4.

The ejecta also carries some of the target's pre-impact angular momentum.

We account for this by adding the local rotation velocity of the excavated

matter to that of the ejecta. As the excavated mass need not be small compared

to the target mass, the rotation velocity of the surface at the impact point is

not used. Instead, the excavated mass is assumed for simplicity to be a spher-

ical cap centered on the impact point. The rotation velocity is that of the

center of mass of the cap, which lies somewhat below the surface. The ejecta
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velocity is the vector sum of three motions: a "downrange" component due

to the momentum of the projectile, local "eastward" velocity due to the

(pre-impact) rotation of the target, and radial expansion of the ejecta cloud.

The fraction of mass escaping and the angular momentum carried off are func-

tions of azimuth; the totals are determined by numerical integration. Ejecta

escapes more easily in the prograde direction. When some fraction escapes,

this gives a net braking of the target's spin. This effect is absent when

all or none of the ejecta escapes.

All impacts are treated by the preceding algorithm. In additic,, when

the impact energy is great enough to shatter the target, the velocity distri-

bution of the remaining mass is computed as follows: The minimum ejecta

velocity associated with the "crater" component is computed from eq. (5).

The remaining mass (the "shattered" component) is assumed to follow a steeper

power-law velocity distribution with a nominal slope of 3. The highest ejecta

speed of the "shattered" material is assumed equal to the lowest velocity of

the "crater" ejecta (i.e., the entire velocity distribution for the shattered

body is a kinked power law with two segments of different slope. The fraction

of impact energy going into kinetic energy of the shattered portion is variable,

but generally several times smaller than that going into the higher-speed

cratering ejecta. This algorithm is consistent with qualitative results of

impact experiments by Fujiwara and Tsukamoto (1980). The shattered mass with

velocity greater than escape velocity (if there is any) is assumed to carry

off mean angular momentum characteristic of the surface layer of the spherical

target, including the fractional part of the impact angular momentum not

applied to the "crater" ejecta.

The post-impact rotational state is determined by the total non-escaping

mass and angular momentum. For real asteroids, the observable quantity is

not the angular momentum, but the rotation rate. This may depend on the
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the internal structure -- whether the asteroid is a competent rock or a

rubble pile. As mentioned above, the program keeps track of the mass of the

largest competent fragment of the asteroid. If this is more than half of the

total remaining mass, the asteroid is treated as a rigid, spherical body to

compute the post-impact rotation rate. If less than half the mass is in the

largest fragment, the rotation rate is assumed to be that of an equilibrium

fluid body with its specific angular momentum (Weidenschilling, 1981). The

latter always has a lower rotation rate than a rigid body with the same angular

momentum. If the asteroid is a rubble pile and its angular momentum exceeds

the critical value for rotational instability, binary fission is assumed. A

lower limit to the period of the resulting binary is determined by assuming

both components are of equal mass. Unequal components.produce wider separations

with longer periods. Any single case is run until a binary is produced, or the

target loses more than half its mass in a single impact and is "destroyed".

Results from this rotational evolution program must be interpreted with

caution. Many of its steps involve plausible but somewhat arbitrary assumptions

about ejecta behavior in large collisions. Still, it is an improvement on

analytic models that assume all impacts, regardless of size, are formally

identical to small cratering events. We regard this program as still in

development, to be improved as quantitative experimental data on catastrophic

impacts become available. With these caveats, we present some results of these

simulations.

We find that asteroid size has a significant effect on rotational evo-

lution. For convenience, we define an asteroid as "large" if its gravitational

binding energy exceeds its impact strength. The critical radius for this tran-

sition is proportional to the square root of the impact strength. For a density

of 2.5 g cm
-37

and strength S = 3 x 10 ergs/cm-3 , characteristic of strong

rock, the transition is at R = 50 km. The rotational evolution model agrees

b
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with our other collisional model in that large asteroids are generally reduced

to rubble piles well before they are catastrophically disrupted. Going toward

smaller sizes, a decreasing fraction of asteroids become rubble piles before

disruption, but we have observed some such cases at radii as small as a few

km.

Figure 10 shows results of two simulations for different asteroid strengths.

In each simulation, targets had initial radii of X00, 100, 30, 10, and 3 km,

and initial spin period of 10 hr. For each initial size, ten cases were run

with different random inputs. Each target was followed until it was either

catastrophically disrupted (i.e., lost more than half its remaining mass by

a single impact;) or became rotationally unstable. Spin rate is plotted vs.

target radius (note that the spin period increases downward). Major impacts

cause jumps in both size and rotation rate.

In Fig.10(a) the stren-ith is assumed to be 3 x 107 ergs/cm-3 for pristine

material, and 3 x 10 5 ergs/cm-3 for "rubble". The 300-km bodies retain most

ejecta from small to moderate impacts. They are generally spun up to short

periods before disruption by a major impact. At R = 100 km, the mean period

is significantly longer. We interpret this as due to the fact that our choice

of parameters allows significantly more ejecta to escape, carrying off a larger

amount of angular momentum. The apparent limit of about 4 hr for the shortest

periods of these large asteroids is imposed by rotational deformation and

fission of rubble piles. Below R = 30 km, material strength is important.

Occasionally a competent body or fragment is spun up to shorter period than

could be sustained by a rubble pile. The mean spin rate appears to increase

below about 10 km, but there are significant numbers of very slow rotators as

well. This appears due to the small competent bodies being strong enough that

a fortuitous large impact can "stop one in its tracks" without destroying it.
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FIGURE 10 (a): Outcome of a simulation of rotational evolution. Rotation

period (increasing downward) is plotted vs. target radius. Initial radii were

300, 100, 30, 10, and 3 km; initial period in each case was lOh. 	 Ten runs

were started at each initial size with a different sequence of random numbers,

and followed until disruption or binary fission. Asteroids are binaries,

assuming components of equal mass in synchronous rotation (unequal components

would plot lower for the same angular momentum). Circles are formally computed

final states of remaining mass after catastrophic disruption. this case is for

impact strengths of 3 x 107 ergs/cm 3 for pristine material, and 3 X 105 ergs/cm3

for shattered "rubble".
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Figure 10 (b) shows a similar plot for weaker targets, with strengths of

3 x 106 and 3 x 104 ergs/cm-3 for pristine and shattered material, respec-

tively. Material strength has little effect for the largest targets, which

are dominated by gravitational binding. For somewhat smaller sizes, below

R = 100 km, there is much less variation from the mean spin period than for

stronger targets, down to radii of a few urn, where material strength becomes

significant. Weak asteroids in this size range lose mass rapidly, and are

destroyed before their angular momenta are greatly changed. For comparison,

known spin periods are plotted vs. size for main-belt asteroids in Figure 11.

Data are generally lacking for sizes e,10 km, and there is observational bias

against measurement of long periods. The observed range of spin periods is,

generally consistent with impact strengths intermediate between the two

simulations shown here.

In our simulations, a significant fraction (-20%) of large asteroids

undergo binary fissirn before catastrophic disruption. There are observational

data suggesting that some asteroids are binary (Binzel and Van Flandern, 1979),

although none has been shown conclusively to be so. Our collisional model,

consistent with present knowledge of impact behavior, supports the existence

of binary asteroids as natural products of collisional evolution of the

asteroid belt. In our simulations, binaries result from prograde impacts on

targets which are already shattered and spinning rather rapidly (P <6 h) due

to previous impacts.

The phenomena associated with shattering impacts on finite targets are

complex and poorly understood, compared with simple cratering. Our future

work will continue testing of plausible algorithms for momentum and energy

partitioning to test the sensitivity of our results to these assumptions.

The parameter space to be explored is large, but this effort should allow
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FIGURE 11: The observed distribution of spin periods and radii for main-belt
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the observed distribution of asteroid rotation rates to constrain geological

properties, such as density and impart ?trength.

V. Future Directions

We will continue our studies of asteroid collisional evolution in two

major areas: (i) application of the collisional size evolution model to

explore asteroid collisional evolution, the present physical state of asteroids

and their relation to meteorites, and (ii) synthesis of the separate size and

spin collisional models into a single program that models the simultaneous

evolution of asteroid sizes and rotation rates.

We must address further the problem of scaling of asteroid impact strengths.

We will explore further the model proposed above by examining fracture dynamics

theory and by drawing upon results from explosive shots in terrestrial appli-

cation (e.g., construction, moving, oil shale extraction, etc.). We will also

test the collisional outcome model against all available Hirayama family data;

a necessary condition for any collisional outcome algorithii is that it must

reproduce the observed Hirayama families for plausible impact parameters.

Further collisional evolution studies will commence only after the collisional

model has been finalized.

Integration of both the size and spin program into a single model will

provide a valuable tool for understanding the collisional evolution for arbi-

trary populations. Sizes and spins together will provide more constraints that

the final population must satisfy, and this should enable us to better under-

stand the early history, evolution, and physical state of asteroids.

E
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