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Ns report measurements of isotope abundance ratios for 5-50 MeV/nuc

nuclei from a large solar flare that occurred on September 23, 1976. The meas-

urements were made by the Heavy Isotope Spectrometer Telssacpe (MST) on

the ISEE-3 satellite orbiting the Sun near an Earth-Sun libratlon point approxi-

mately one million miles sunward of the Earth. We report finite values for the

isotopsj abundance ratios 19C/ 12C , 10N/ 14N , 180/ 100 , INNe/ RONe, m1W 94Mg, and

NUg/ "Mg, and upper limits for the isotope abundance ratios sHs/ 4Hs, 14C/ loC,

170/ 100, and s1Ne/ 8ONs.

We measured element abundances and spectra to compare the September

23, 1976 dare with other flares reported in the literature. The flare is .s typical

large flare with "low" Fe / 0 abundance (s 0.1).

For 1sC/ 18C. 1eNI 14N. 1s0/ 180 , 'wMg/ "MS. and OMg/ "MS. our measured

isotope abundance ratios agree with the solar system abundance ratios of Cam-

eron ( 1981). For neon we measure ONO ONe = 0.109 + 0.026 — 0 .019, a value

that is different with confidence 97.58 from the abundance measured in the

solar wind by Geiss at al. (1972) of ONe/ OONe = 0.073 t 0.001. Our measure-

ment for 8ONe/ 80Ne agrees with the isotopic composition of the meteoritic com-

ponentneon-A.

Separate arguments appear ' to rule out simple mass fractionation in the

solar wind and in our solar energetic particle msasurements as the cause of the

discrepancy in the comparison of the apparent compositions of these two

sources of solar material.
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Cater 1 - Ibmtroduction

The isotope abundances of the Light elements in the solar system contain

information that Is useful to several fields of science. Theories of

nucleosysthesis and solar eyotem formation try to explain the observed isotope

abundances. Geologists can use observed isotope abundance patterns as

tracers of various geophysical processes on the Earth, planets, and meteorites.

A important observation, that has emerged after years of study, is that the

pattern of isotope abundances is remarkable homogeneous. To a high degree of

accuracy the relative abundances of different Isotopes. for a given element, are

the same in rocks analyzed from the moon, axteorites, or from Peoria, Illinois.

A very good first approximation to the observr d isotope abundance patterns

states that the relative isotope abundances for a given element are indepen-

dent of the source of the sample containing the element.

A more accurate model for observed solar system isotope abundance pat-

terns postulates that the solar system was formed out of an Initially isotopically

homogeneous ball of gas or "soup". Some smell present day isotope abundance

differences might be expected in this model, as the result of physical and chem-

ical fractionation processes operating on the solar system's initial isotopically

homogeneous ancestral "soup".

It is only recently, that convincing evidence has been uncovered about

inhomogeneity in the initial isotope abundance patterns of the "soup" out of

which the solar system !ormed. In oxygen (Clayton. Grosenum, and Mayeda

1993), and in magnesium and heavier elements (1lasserburg, Papanastassiou,

and Lee 1979), isotope abundance anomalies have been found that differ loom

A
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terrestrial abundances by up to 5-OX. This may be evidence for inhomogensity

in the initial solar system isotope abundance pattern. In neon, Eberhardt at al.

(1879) have found much larger differences from the common meteoritic com-

ponents. A neon-E component was discovered which has over B times the

°Nei ONe abundance ratio measured in the "planetary" component of meteor-

ites.

In view of the importance of the isotope abundance patterns In the solar

system, LL is interesting to study the isotopic composition of the Sun. The gun is

the largest reservoir of solar system material, containing over 99R of the, total

mass of the solar system. Yet, when most researchers quote "solar system" iso-

tope abundances, they quote abundances obtained from laboratory analysis of

terrestrial. lunar, or meteoritic material. The Sun is a qualitatively different

type of solar system .)bJect than the objects (Earth, moon, and meteorites) from

which solar system isotopic abundance information is typically obtained. Infor-

mation about the isotopic composition of the Sun might be used to chock

theories about the isotopic fractionation of tho solar system's ancestral "soup"

or to check the hypothesis that the ancestral "soup" was initially isotopically

homogeneous. However, observational constraints make isotope abundance

measurements of the Sun very difficult, and as a result, isotope abundances on

the Sun are not very well known.

The determination of solar isotope abundances with analysis of the spectra

of radiation emitted by the Sun is a difficult task. Electronic transitions in

different isotopes of the same element are so close in energy that weak isotope

lines may be unidentifiable due to overlap from the wings of adjacent stronger

isotope Lines. Rotational and vibrational transitions have been analyzed, but

require the existence of molecules, and thus a cooler environment than the

solar photosphere. The atmosphere above sunspots provides the necessary
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cooler environment, but there are still many systematic and observational

problems. In one analysis, the 1eC/ /eC isotope abundance ratio was determined

to an accuracy of 1676, the l it/ 110 abundance ratio was determined to an accu-

racy of 3675, and the 190/ 190 abundance ratio was only determined to within a

factor of two (Hall. Noyes, and Ayres 1972).

Isotope abundances have been measured In the solar wind for noble gases

(Gain 1973), but the measurement of other elements presents formidable

diMoulties.

Solar energetic particles (SEPs) are a sample of the solar system material

accelerated to high energies by the explosive energy release mechanisms that

operate in solar flares. The measurement of the isotopic composition of SEPs

might be Useful for the study of the isotopic composition of the Sun or to study

the flare environmeat that produced the SEPs. The isotopic composition of the

SEPs might also provide useful information about nuclear reactions that occur

during solar flame.

Several technical innovations have recently been applied to a spacecraft

SEP detection system. constructed from a stack of silicon solid state particle

detectors. The innovations Include priority systems to select particles with

charge Z z 3 for detailed analysis. trajectory measuring devices to reduce the

mass measurement uncertainty for charged particles, stable electronics,

improved solid state detectors, and heavy ion calibrations. These developments
I have made it possible to measure the isotopic composition of SEPs. In particu-

lar, the instrument HIST, flown on the satelLte ISEE-3 (Althouse at al. 1978),

can measure the isotopic composition of nuclei with charges 1 is Z& 28 and

energies 5 MeV/ nuc s E!% 200 MeV/ nuc.

We will report on the Isotopic composition of SEP9, observed with IUST,

from a large solar flare that occurred on September 23, 1978. We measured
l
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isotope abundance ratio@ for IsC/ "sC, IsN/ 14N, 180/ 160, ssNe/ =No. soft/ s°fg,

and IDW afg, and upper limits to the abundance ratios. No/ 'Ho. 14C/ 11C.

ft/ 100, and s'Ne/ soN@. We obtain results that are consistent with solar system

abundances, except in the case of neon. where the solar ONs/ seNe abundance

ratio is controversial. The SEP measurement of =Ne/ ON@ disagrees with the

measurement of sale/ soNe in the solar wind of Geiss of at. (1072), but agrees

with the meteoritic component neon-A.

Separate arguments appear to rule out simple mass fractionation in the

solar wincl and in our solar energetic particle measurements as the cause of the

discrepancy in CIAa comparison of the apparent compositions of these two

sources (solar wind and SEPs) of solar material.
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chapter B - The Bent

&I. HOT orervlew

The Heavy Isotope Spectrometer Telescope experitnent, (HIST), wav

designed to measure the isotopic composition of nuclei with energies in the

range from d to 250 l[eV/nucleon and in the charge range with Z s 3 to 28. A

general overview of HIST is available in Althouse at al. (1978), and here we will

concentrate only on the characteristics of MST that are relevant to measure-

ments made in a solar !lases particle environment.

MST is oarried on the spacecraft IEEE-3 described by Ogilvie at al. (1977,

1978). ISEE orbits the Sun at appro)dmately the location of a Sun-Earth tlbra-

tion point, about one million miles sunward of the Earth. This orbit is an ideal

observation point for solar particle measurements because it is distant enough

from the Earth that the Earth's magnetosphere does not disturb the solar par-

ticle mmasurements.

The design of MST can be understood and partitioned as two separate

tasks, single particle identification and the generation of rate and telemetry

Information. We will first describe the physical structure of HEST which is

relevant to the single particle detection task and give a brief explanation of the

particle detection method. We will then discuss the generation of rate and

telemetry information. Finally, we will present a calculation of the instrument's

nominal mass resolution.

d3. The MT Particle Detection Telescope

MST includes a stack: of eleven silicon solid-state particle detectors

arranged to toms a particle Lelescope, and the associated signal processing

electronics. Figure 2.2.1 is a schematic diagram of the telescope, and table

2.2.1 is a list of the detectors that comprise it. Detectors M1 through D3 are
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silicon surface-barrier solid-state detectors. Detectors D4 through D9 are U-

drifted detectors with a central detection area and an annular Stzil-A ring

(shaded in Rare ?...2.1), which is used as an active anti- noincidence sh ►aid. The

nominal detection areas f, r the detectors are 505 rnm. s for M1 and M2, 800

"IM I for D2 and D8, and 920 wom I for detectors T)4 through D9.

Single particle identification In HIST is accomplished by a multiple parame-

ter analysis of the energy deposition history of an ion slowing down in the sill••

con particle detectors. As is well known (Bertolml and Cache 1988), for a wide

range of energies, the charge collected from a reverse-blamed etlicon diode is

proportional to the amount of energy lost by a fast ion passing through the

diode. In HIST the detectors M1 through D8 are connected to charge sensitive

preamps and arr. llflers. The amplifiers' outputs are digitized by a series of 4098

channel analog to digital converters, with one ADC for each detector. The

result is a series of pulse heights that are a measure of the energy loss of the

ion in each detector.

A particular innovation of this telescope is the use of two poaltion sensitive

silicon solid-state detectors (M1 and M2), as a hodoscope to measure the incocn-

ing ion's trajectory. Detectors M1 and M2 are special surface-barrier solid-

state detectors that have had their metallic contacts deposited as 24 parallel

strips with a 1 mm spacing, rather than as one large electrode. On each detec-

tor the metallic strips on one side are perpendicular t , the metallic strip q on

the other side. Each strip has a separate preampliIIer and discriminator Thus

when an ion passes through "matrix detectors" Ml or M2, the position where the

Ion penetrated the detector is known. Figure 2.2.2 shows a picture of one such

detector.
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Table 2.8.1-	 C

IW Deteetore

Namleal Detector Nominal Nominal
Detector Tlbi,eimsss Ty" Gain Uwashold A f!e

W of SO 014V/ebmo obv) (CM= Mar)

MI 50 eb--M&O 0.121 0.30 --
M2 50 eb-Mdet 01121 0.30 0.79
Di 90 ebb 0.227 0.54 0.73
D2 150 sb 0.290 0.71 0.73
D3 500 sb 0.817 1.48 0.72
D4 1700 U—D1 1.180 2.78 0.70
D5 3000 U-D 1.531 3.84 0.88
D8 3000 U-D 1.531 3.84 0.80
D7 8000 U-D 2.272 5.41 0.53
DS 8000 U-D 2.272 5.41 0.49
D9 3000 U-D --- 0.19 0.40

° surface-barrier detector - "matrix detector"
surface-barrier detector

° Lithium drifted detector
i estimated error: t 0.01

w({i . (iAL PAGE 13
OF POOR QUALITY,
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Dgm 2.8.1 A schematic diagram (to scale) of the W.ST particle detection

telescope. The shaded areas of detectors D4 to D9 are annular guard rings

used as an active anti-coincidence shield.
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djMm 8,8.8 - A photograph of a matrix detector showing the 24 separate

charge collection electrodes. The electrodes have a morainal spacing of

n The other side of the matrix detector also has 24 charge collec-

tior electrodes, which run in the orthogonal direction to the electrodes

shown.
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I& Stle Particle Identincatlon

I -cicle identification in HISP is based upon a two parameter analysis

method called dE/dX - E. that is valid for Ions that stop in the particle detector

stack. Figure 2.3.1 shows an ion of charge Z, mass M. and energy E, which

entered the telescope stack at an angle ef, and then stopped in the detector

stack. The Ion has passed through a detector of thickness T, depositing there

an energy 69, and stopped in a second detector, losing there an energy E'. If

the range in silicon, of an ion of charge Z and mass M. Is R(Z,M,E), then the

equations

T	 R(Z,d/,E) — R(Z,^l/,E) 	 (2.3.1)c	 —old 
and E = E' t ©E	 (2.3.2)

express the relations between the variables.

Equations 2.3.1 and 2 . 3.2 are two equations for the three unknowns E, M.

and Z. For a given charge estimate x', there is a solution M(s') of 2.3.1, for

each AN and E. Thus, it seems that we must estimate the charge indepen-

dently, it we are to measure the ion's mass M. Actually, there is a third implicit

equation that allows a solution for both Z and M. We can use the fact that the

incident nuclei are stable as a constraint on the number of isotopes that can

exist for a given charge Z. For example, a 14N ion is incident on the telescope,

and deposits 94.82 MeV in D2 and 41 . 22 MeV in D1. The solutions are then M =

20.844 amu for s' = 8, M = 14 . 003 amu for s' = 7, and M = 9.921 amu for s' = B.

The s' = 8 and s' = 8 solutions can be eliminated, because the solutions.

M(s 0), are not near the masses of stable or long - lived radioactive isotopes.

Then the only solution for a stable isotope is M = 14 . 003 amu, and Z = 7.

Throughout the entire operating range of H1Sf, unique solutions for M and Z

are always possible.

Figure 2.3.2 is a plot of &E vs. E' for ions that stop in D2, for all stable

I

ff'-
P
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isotopes with charges in the interval 2 s Z!6 14. Each labeled line, or track. is

the locus of all possible AS. E' pairs for a given ion that stops in D2. Here, it is

easy to see that there is no ambiguity in the solution for M and Z. The isotope

tracks shown are well separated.

Pure 2.3.3 is a plot of AS vs. K for data spanning the Ums interval from

1978: 28E to 1978:272, for ions that stop in detector D2. The figure 2.3.3 data

set consists of "raw' data. No consistency requirements have been placed on

the data to reduce the background apparent below the carbon track, for exam-

ple. For the following two reasons, only charge tracks are visible. F1rst, ions

incident at different angles have different track positions, and the figure 2.3.3

data not accepted all incident angles out to ft 251 . Secondly, each charge has

only one abundant isotope. We wW later find, for example, that 13C has an

abundance only 1% as large as 12C, so that separate isotope tracks may be too

faint to be seen on this type of plot.
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fture 22.1 - A schematic diagram illustrating the basic components of the

dE/dX - E technique of particle detection.

g, M, E
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flgum 2.9.2 - Calculated tracts of AS re. A' for all stable isotopes with

2 s Z s14, that stop in detector D2. AE is the energy deposited in the 901A

thick detector D1. A' is the energy deposited in the 160µ thick detector

D2.
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Bgum L&n - A plot of A6 n. K with experimental data for particles that

i . stop in detector De. Each point corresponds to one event. The figure 2.3.3

data set consists of "raw" data. No consistency requirements have been

placed on the data. AE is the energy deposited in the 90µ Viick detector

D1. 9 is the energy deposited in the 150µ thick detector D'.;.
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L,L B"mL and We Records

An event refers to the simultaneous occurrence of a signal above the

detector thresholds in detectors W 1 and M2. The telemetry record kept by Hl3T

of the set of pulse heights hodoscope discriminator triggers and and other

information, coincident with an event truer, is called an event record. The

deepest detector in the stack triggered by the particle determines the RANGE.

An event is a RANGE 0 event if M2 and M 1 are triggered. An event is a RANGE 3

event if D9 is the deepest detector trt"ered. In an event record up to Ave

detector pulse heights are recorded. The pulse height for MI. PHAM1, is always

recorded. The pulse height from the deepest triggered detector in the stack,

PHAI, is also always recorded. Up to three pulse heights from the next three

deteetorr above the deepest triggered deter for are recorded. The three pulse

heights are named PHA2, PHA3, and PHA4, with the conventlou that PHA2 is the

pulse height of the next detector above the deepest triggered detector in the

stack. A particle that enters the stack and stops in D6, has PHA1 f or the D5

pulse height, and PHA2 for the D4 pulse height.

The pattern of triggered strips in the matri-x detector is not stored directly

in the event record, but is processed to extract the significant information.

Any set of as many as four adjacent triggered strips is called a group. The

hodoscope electronics counts the number of stripe in a group, and the number

of grou" on each side (plane) of each matrix detector. If only one group of

strips is triggered in a matrix detector plane, the event record contains the

address of the highest numbered strip, and the number of strips in the group,

called the strip count. For two groups of strips, the event record contains the

addresses of highest numbered strip and the strip count for each group. With

two or more groups of strips in any matrix detector plane, we have a condition

known as the multiple hodo conditlon,or MH. The MH condition prevents us
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from assigning a unique one particle trajectory to the pattern of triggered

I
	 strips in the hodoscope. For three or more groups of strips, the *rent record

t

	

	 contains only the strap address and strip count for the Mt group, as well as a

record that three or more groups have fired.

M9T also classifies an event as one of either PEN, 113Z or LOZ. The PEN

class contains all *rents that trigger detector D9, the last detector in the

detector stack. All "stopping evcnta", that is, events that tri"er detectors Y2

through D9 an the deepest detector, are either HIZ or IDZ. The HJZ condition is

a requirement that the charge of the particle be Z at 3, as determined by two

parameter pule height analris. The LOZ condition is a requirement that the

charge of the particle be Z 162. This is actc-Mlished with a ' box discriminator".

The HIZ, LDZ, and PEN conditions can be written as a set of logical equations,

with

Z3 =( PHA 1>Hj )OR( PHA 2>hfj _ i)OR	 (2.4.1)

PHA 1 > Ly) AND ( PHA  a 11

HIZ = Z3 •lf9 -ftN 1 OM 	 (2.4.2)

LOZ = MO$ OM17N2	 (2.4.3)

PEN = D9 OM 1 •M2	 (2.4.4)
Here, j specifies the detector, and Hj and L% are the commandable high and low

discriminator settings, listed in table 2.4.1.

E	 ;c
i

i
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1WWA &4.1 -

Hft Dism iminaLor Lswls

(channels) (channels)
Dwelnr H Dlsciiminatoe (MOV)	 L Dlanftm {n kbw (M@V)

Y 1 144 12.82 180 10,14
U2 130 11.68 104 8.08
D 1 128 18.46 N 9.89
D2 136 23.48 96 12.37
D3 08 41.33 86 18.01
D4 128 82.94 104 66.83
D8 128 107.68 96 89.33
D8 128 109.82 96 63.76
D7 128 166.87 96 90.48
D8 128 160.81 96 94.14
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MST has 150 rata registers, that are read out to ISEN.-3 every 84 seconds,

i
to male a rate record. The rate registers count the number of occurrences of

various coincidence requirementm, and an listed in table 2.4.2. hates 1-10

refer to "sectored" rates. ISEE-3 is spinning about a fixed axis In space, normal

to the ecliptic plane, and the sectors specify the 460 octant, relative to the Sun,

into which MST points. Rates 1-8 accumeulate only when MST is not busy pro-

; ceasing triggers or generating event records, and thus mwasure the live time in

each sector. Rate registers 29 through 159 are only accumulated part time,

they are active from 1/3 to 1/24 of the time depending on the speciac rate

register.
TWAs 142 -

Reas Ragletar

1-8
9-10

17-25
28
27
28

29- 124
125-1-2
133-142
143.148
147-149
150-159

HLW RdA Begietwo

FrP*es

50 khz. sectored live tune clock
sectored MZ events
rage distribution of MZ events
LOZ events
PEN events
MC triggers
-tiatrix detector single strip triggers
a ange distribution of IDZ events
single detector triggers
matrix detector triggers by plane
single detector triggers
guard ring triggers
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In. TeUmstr7 and ZvmA Saaspltng

A very important characteristic of the IEEE-3 spacecraft system is the

telemetry bandwidth allocated to MST. 16 eight bit bytes per second, for com-

munications from the spacecraft to the ground. MST his the capability to

count particles at rates of over 5 x 10 particles per second. MST can also send

complete event records to the spacecraft at over 5 x 102 particle rvents per

second. At the ISEE-3 telemetry rate allocated to MST. a maximum of only

ft 0.9 event record per second can be returned to Earth. Thus it was necessary

to design a data sampling system that made some rough cuts in the data, and

sent only significant samples back to the ground. We will describe a very simple

functional model for MST, a_ ' then show how it meets the special needs of

measurements in the solar flare environment.

The solar dare particle environment in which FIST must make measure-

ments is characterized by particle spectr.i that decline rapidly with energy. If

F is the dux per unit energy, for a given element averaged over a solar dare,

and Fi is dt to the functional form F4 - AE-7, then y is often found to be in the

range 3 to 5 The spectral shapes for different elements are often roughly simi-

lar and the relattve abundances are not too different from solar system abun-

dance tables, such as Cameron's (1981), though systematic trends do appear in

the data (Cook 1981).

Suppose there is a solar dare with F4 = At E-", and alLl the elements have

the same spectral form Suppose that the element abundance distribution is

the same as the Cameron (1961) abundance table. Then, if MST observes 10

carbon nuclei iL RANGE 0, there will be 2030 carbon nuclei in RANGE 1, 484 in

RANGE 2, 174 in RANGE 3 and 30 carbon nuclei in RANGE 4. If 102 protons are

observed in RANGES 0 through 3, then there will be in RANGES 0 through 3,

7 2 x 100 helium nuclei, 5800 carbon, 6050 oxygen. 616 neon, and 119 iron
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nuclei. The solar dare particle environmect is weighted strongly towards the

low RANGES and hydrogen and helium nuclei.

What we desire as experimenters. Is an event sample with a more equal dis-

tribution of elements and RA?TGEs. The higher RANGES have better mass resolu-

tion, and more pulse height .measurements of each particle are available as

checks on measurement errors. When measuring spectra, for a given number of

events, the least uncertainty in the bpectral shape occurs when there are

roughly equal numbers of event samples per RANGE. For the measurement of

the ratio of the abundances of two elements, the minimum uncertainty in the

abundance ratio is obtained when there are equal numbers of event samples

per element.

MST has an event sampling system that partially meets some of the needs

expressed in the previous paragraph. MST has eleven registers in which to

store event records while waiting for the ISEE-3 spacecraft to periodically

request data to send to Earth. Nine of the registers are reserved for HIZ event

records. with RANGEs 0 through 8. One register each is reserved for LOZ and

PEN event records. HIZ events are given absolute priority. Each time the

spacecraft requests an event record, a HIZ event record to read out, if there are

any event records stored in the HIZ registers. If R is the RANGE of the last HIZ

event record read out then registers for RANGLs R-1, R-2, ... 0, S. ... and R are

checked in turn. This feature makes the HIZ event sample have a more equal

RANGE distribution. Only if no HIZ event records are available, is either a LOZ

or a PEN event record read out to the spacecraft.

The measurement process is started when the signal in any one of the

detectors exceeds the threshold energy listed in table 2.2.1. In a relatively

quick period of time ( b 10 As ) MST decides whether or not to generate an

i

event record. HISf fleet determines if an event has occurred and whether the



11s-	 ORIGINAL PACE IS
OF POOR QUALITY

event masts the specified coincidence requirements. Then HINT checks to see It

there is an empty register in which to store the event record. In the same

period of time the appropriate rate regimen are incremented. It there is an

empty event register of the proper type. HIST will complete the measurement

task, generate an event record, and load it into an event register. This takes

about 1 ms. It then is no empty event register of the proper type. MST will

reset itself and wait for the next event trigger. Becaum HEST has only tc• pro-

vide event records to ISIS -3 at the maximum rate of ft 0. ►i per second it can

operate at triggering rags ft 5 x 10^ per second. rather than at maxLmum

triggering rates of w 5 x 101 per second. that would be necessary U MST bad to

read out every trigger as an event record.

&a. Tbsaeetioal k11ans Resolution kn VIM

The solution of equation 2.3.1 for the mass estimal or

Y(s7 = M(s' ,LX,W 0.3.1)
depends on three experimentally determined quantities. A, d6 and the path-

length L - caser in the A6 detector. We will examine how experimental errors

and physical fluctuations in I. b' and AN affect the width of the distribution of

the mass estimator. We will follow and expand upon the treatment of Stan a and

Vogt (1972).

We will now examine the structure of equation 2.3.1 under the intluer ce of

two simplifying assumptions. The first assumption is that the incident particle

is going fast enough when It passes through the slab of thlclmess L that ttie ion

is fully stripped of electrons. Then the range of an ion of mass Y and charge Z

is

R(Z MA _	 A, 11 J14 , 6( MP)^ i	 I;(A)	 (3.e.2)

wb,.-re X. is the range of a proton. 4 is the proton 's mass, and A = ^r . A
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further assumption is that

4 
s & 

IA)h

	
(2.0.3)

I

with k s 11.71 microns of silicon and A xt 1.776. Within the energy interval

10 AbVic A s 200 Me  equation 2.6.2 reproduces the tabulated proton range in

silicon given by Janni ( 1964) with a ma3dmum error of less than 3x.

Equation 2.3.1 then becomes

A s	 L Se	 (2.0.4)

P7(A) —^^1)
or

A =	 L Es	T4-	 (2.0.6)
k r—(A'^►

The dertvatives that we need for our error analysis are given below,

(2.6.6)
OL 1 L

OA' Ie

— d^ I
It

a I
l

^^ i t I L— 1
l	 1

(2.6.7)

11 f L, (2.4.8)ME E

L = l^►^ 1, L^
1 - L{ (2.0.9)

ab'

where R = R(ZJLE). The uncertainty in Y from fluctuations In N independent

quantities, zi. each with uncertainty a., is

(QaY = f ( CrAr . atis
	

(2.6.10)

where

ow, =	 km I ^.	 (2.6.11)
^y

If we look at the structure of equation 2.6.6-9 they can be written as
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a s ( a) A 11 I^ ( R, .A)

where Jj Is of order 1. Thus the relative precision that we will Set in the mass

measurement is about the some as the relative precision to which 4 A, and 06

are (mown as

M N A-1 f t. (S.e.ld)

'thus amass uncertainty of 0.20 awn at ON*. as will be demonstrated, moans

that all quantiti► e must be (mown to a precision of better than IX.

MI. PaUdismgtb Variations

Equations 2.6.6 and 2 .6. 10 show V ut

vYL 
= l

Al 
l I L 0M 1.29 !L—

One cause of the variation in the pathlengt.h is varioLion in the thickness of the

AN detector from place to place on the detector. Since the position at which a

given incident particle hits a particular detector can be extrapolated with the

position t iformation obtained in the instrument hodoscops, the instrument

response can be corrected for thickness variations in the detectors by the use

nt thiciraess maps.

The thickness variations of the FAST detectors were measured using parti-

ale beams. A beam of constant energy was Incident on a particle hodoscope I

and then penetrated the detector to be mapped. The thickness of the detector

can then be calculated using the amount of energy deposited in the detector

	

and the value of dE/dX, the energy loss per unit distance, appropriate to the 	 3

S particle. The particle hodoscope was an argon proportional counter. Three

dlserent particle beams were used, protons from the Caltsch Kellogg Labora-

tory van de Graaa accelerator at 8-12 MeV, argon ions at w 900 MeV / nuc, and

iron tons at ft 800 MeV/nuc from the Lawrence Berkeley Laboratory Bevalac.

i
i

i
E
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Most of the detectors had measurable thi+ckmeas variations, with !Lr of order

1X The thickness maps were stored on 1 tnm. grids, to a precision of PA 0.271.

A possible limitation of this mapping technique is its inability to discriar

hate between variations in detector thickness and positional variations In the

charge collection efficiency of the detector. Another limitation of the particle

imppLog technique is that the absolute thickness of the detector can only be

determined to the same accuracy to which the relationship between range and

energy V known.

The other source of pathiength variations arises from variations in the

Incident particle's angle d, expressed in the equation L = coedT . Suppose that

a particle intersects detector Y1 at (: t , y t) and N2 at (ss. ys), as illustrated in

figure 2.6.1.1. iror ease in calculation, let y t = ys• and assume that :s is known

without error. Then. As s ss - r t is As + w, for w equal to the matrix detector

strip width. 0 we assume that only one H1 matrix detector strip has fired.

_ dL	 8ti
Vt - of 6(s8 - st) °'n -alt

to first order and
i

(2.6.1.2)

Vale -alt 
a = W.	 (2.6.1.3)

It both s t and ss are confined to an interv
al ofwidth w, on matrix detectors Y1

and M2, then al is V2 larger. Then we get a final result for the pathlength

1
	 uncertainty,

L = stầ ^^ IMILI 
	 (2.e.1.4)

with I equal to the separation of detectors Y1 and H2. This result also holds for

w - 1 mm. and I = 50 mm, L = 0.0031. For s°,Ie this translates to a maximum

11t 0 Vs. At the maximum incident angle for MST of ro 251 , and with parameters
0
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maw uncertainty or = 0.081 amu. For a better estimate we can average in qua-

draturs L over an isotropic distribution of incident particles so that

(a •	 f (L Y coed dA dA

l ` 1 1 `""'" »̂J	 w.	 f coo dA dO

The case with the largest < ±—>  would be range 0 particles. If we approximate

Y1 and YZ as disks of radius 12 cm., and integrate numerically,

< L > = 0.00174.	 corresponding	 to	 wa ( ON@) *A 0.046 emu,	 and

wY ; MFe) u 0.126 mnu .
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f we &B.1.1 - A schematic diagram of a particle passing through the MST
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When an ton passes through the AN detector the amount of energy lost, d6,

fluctuates essentially because the number of electrons that the inn "hit s" is a

statistical process. Rossi (1062) describes this energy loss fluctuation process

E
	

from a semi-claswtcal viewpoint, for thin detectors. For thick detectors a

correction factor for the thin detector result, developed In Spalding is

needed. The correction factor accounts for the fact that a particle's imerdy

changes stgniflcanUy as it passes through a thick detector. The result is

air = we A (P) L DR

when

t; s Zs ( 0.18616 V )s / ("um of +Dtom)
	

(O:.8.2.2)
and

h(p)s-?(1-r-) . (1:.6.2.3)

Ds is the correction factor for the thin detector result and in our pov er law

range energy approvdmatlon,

Dss ff 371 2 L
I o -R)Vs -(1- L

)l .
	 (L.13.2.4)

1 

For large R , we have a thin detector pathlendth and !t a 1. Table 2.0.2.1 shows

D w a function of R for A - 7/ 4 and demonstrates that the correc :ion is

trriportant for R s 2.

Table 2.6.Z1 -

Thick detector correctlon factor

	

R/L D R/L	 D

1.01 5.33 2.00 1.19
1.05 2.77 3.00 1.10
1.10 2.14 5.00 1.05
1.25 1.59 10.0 1.02
1.50 1.34 20.0 1.009
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To compute the mass estimator uncertainty we need the derivative of Y

with respect to AN, equation 8.6.7, at dzed E. This is because the energy toes

fluctuations of AN and a' are correlated. with 6 (An n —4 (A'). as long as the

particle still stops within the E' detector. Then

•...r IN 	1	 &L 1 o. (h(P)  4 D	 (2.6.2.5)
t

and

	

O,. .r = o,.r(o)(R)^^ - (L 
-1).-t (

1 - L	 (2.6.4.6)

Figure 2.6.4.11 shows ow, As an a function of R for a 3 mm detector. Asa func-

tion of R , vg,As has a finite intercept. va,AS(0), at L = 1, and than monotoni-

cally increases. For the power law approxivation the intercept is given by

A M I X cren h (0) L e
OAF. ARM _ (

A- iI E	 3A--2 
1	

(2.6.2.6)

and in silicon for h = 7/ 4,

	

air..s(o) = 1.712 z M 1 
a Ale v h (0) (1,^L.r,.)  	 (2.6.3.7)

f	 I I	 l
where E(L) is the energy for the Lou to go a distance L. For a 3 mm, detector

this works out to oy,AC(0) : 0.117 Amu for "Fe, and oa,AC(0) = 0,042 amn for

'*No. Those are fundamental limits for this thickness of detector.

> s,& knerp Neaffura snt a n rs

The effect of uncertainties to the measurement of AE or E' can be cone

puted using equations 2.6.8-9 and 2 .4.10. In particular, note that at R/L = 1

errors in AE and E' are equally Important since

0L/ _ A	 M
\-. i- Lr L

where E(L) is the energy for the ion to go a distance L.
f
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Digitisation of the energy signal causes an uncertainty c , where c is the

energy width of one pulse height channel. Except for very small signals such as

hnr proton and helium tons, this contribution to the mar uncertainty Is negligi-

ble. For a f°Ne ion in range 2 with R/L s 1, vw (dWtiltsaMon) s 0.016 aorta .

An electronic calibration of HISl' was performed. introducing a signal of

known charge at the pniamp inputs by allowing a test pulse of known height to

charge up a test capacitor. The calibration was done at several temperaturee

over the full dynamic range of the ADC's. Thirty points per detector wure taken.

approximately logarithmically spaced in energy. The result is that the charge

to pulse height conversion is known to better than one half of a channel. Con¢

paeison with the digitisation error shows that electronic calibration errors are

of the same order and thus negligible.

2.6.4. Deviation of the Range Energy Equation V r om the Power Law Form

A single power law representation of the range energy relationship with

Al Ze scaling is only an approximation for the range of energies and ion species

measured by 1116T. To calculate the mass uncertainty. two approximations were

made, that the proton range energy equation could be approximated by a power

law form and that ions were completely stripped of their atomic electrons while

slowing down. At the lowest energies in the IUST operating region both of these

factors become increasingly Lmportant. We have therefore carried out calcula-

tions to examine to what extent the mass resolution calculations depended on

the above two assumptions.

To evaluate

ol.Aff = ve ( h (P) 41'D AAE	 (2.6.4.1)
 L

for arbitrary range energy relations, D and dM uemust be computed numert-
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tally. -IN— 
was computed by finite differences and D was calculated using

numerical techniques from Spalding (1961).

To assess the effects of the power law approximation, the range energy

equation for protons was obtained by integrating (Marmier and Sheldon 1969)

ds (a	 ln(^s) + ln(ol - ln(1-01 - ps	 (2.0.4.2)

with I = 170 sY. In lure 2.6.4.1, we potted ow. ax vs. R/L for OOFe ions. as a set

of wild lines, assuming complete stripping of the ion. The dashed lines are the

single power law approa:matlon of equation 2.0.2.0, and the lance are labeled by

the pathlength L This power law approximation Is a very iaod approximation,

except for R/L at 4 for the 3000µ detector. This corresponds to R a 12 mm. and

S at 200 NeV/ nuc, or RANGE 7 and 9 events, which are not Important for solar

Owe particles.

To describe the effects of incomplete stripping, ions were assumed to lose

enemy at a rate

ds : (Z• r d I	
(2.6.4.3)

where Z' is the effective charge, and the relation

(s
I Z s t+	 where q s 1.3 s 10♦ Z	 (2.0.4.4)
1	 q	 Pi

(Barites and Berger, 1964) ws.s wed. The range of an ion was then obtained by

integrating ( ^	 ox)-l . , ss was then calculated for OOFe ions, with pathlengths in

the M detector of 5014 9014 150µ. 500µ and 3000µ and plotted in figure

2.6.4.2. The 3000µ power law results are plotted for comparison. With incom-

plete stripping. the ton does not slow down as fast as when stripped. Thus an

effective range, energy power law exponent " A" = Ed ^L would be lower than

for a stripped ion. A 'ower " V' will raise or. A&, as it is proportional to 1
X-1'
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Also, a slower ion wW have a lower "A" then a faster ton. Thus. the thinner

detectors wiU have larger am. &g at the rams R/l. which the calculations Mus-

taste.

In figure 2.6.4.3, os, a! vs. R/L Is sbown for a pathlength of 501A and tons

his, uC, nNe, 89M OCa. and 9%. along with power law results for comparison.

Hiere we can am that only for tons with charges Z a 14 will the power law

approximation to ojr, a! be a serious underestimate for moderate R/ L is 2. For

the thicker detectors the power law approximation will work better. For Z s 14,

and detectors with L at 90µ, the power law approximation provides a result with

acceptable error. Since iron is the only element analysed In this report with

Z& 14, figures 2.6.4.2-3 and the power law approximation span the necessary

range to calculate os . As for this work.

t
E

6
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--• ---	 .-......... -...te	 a I. 	 assumlu complete

stripping. The solid lines use the range energy curve obtained by tntadcat-

ing equation 2.6.4.2 and the dashed lines are the power law approximation.

The lines an labeled by the value of the pathlength L.
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figure &6.42 - Calculation of vAr, u for "Fe with the Barka@ and Berger

(1964) effective charge. The line@ we labeled by the value of the path-

length L and the dashed line is the power law approximation.

JoN
O	 O

(nUjD )3V 'w.0
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OSun SLS.4.3 - Calculation cat or. Ag for a SOµ pathlengt.h L and with Barlm

and Barger affective charge for various tons. The dashed Un„ are the

power law approximation.
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Just as a reduced "A" tends to increase 0mIm  , a reduced "A" will also

increase aL . 
The correction for incomplete stripping at low enemies affects

the derivative ey used to calculate the effect of pathlength variations on the

mass estimator. In the single power law approximation the value of this deriva-

tive given by equation 2.8.5 is a constant. as a function of R/L The derivative

was calculated numerically using the Barkas and Berger (1984) effective

charge. The reduced derivative

am	 L saaneric.al calculation)

dL	 am	
(2.4.4.5)

aL 
(power law apprazinalion )

ww calculated for "re ions and pathlengths of 501A, 90µ, 150µ and 500µ of sdi-

con, and is shown in figure 2.8.4.4. For the 50A detector, incomplete stripping

causes US. L to be at 5Ox larger than the value given by the single power law

approximation, for R/L s 2.30. For lower charges the effect is not so severe, for

silicon and a 50µ pathlength, dX	
z 1.50 only for R/ L s 1.40, and for

neon -62—'L Z 1.50 for R/ L s 1.20.
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figure 2.6.14 - Calculations of the reduced derhathe LM-, u defined in

equation 2.6.4.5, for I'F'e and with the Harlaw and Berger effective charge.

The lines are labeled by the value of the pathlendth L.
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For Fe ions, the inclusion of Information about the charge state of the tons,

represented by the Barkas and Berger correction. in the calculations for ON . L

and sa. A&, substantially changes the results. For detectors thinner than 150$A,

and for R/ L is 3, the man resolution is substantiall y worse than would be

predicted it the tons were completely stripped of their atomic electrons. The

Barkas and Berger correction is only approximnte and was derived tram meas-

urements in emulsions, rather than in aWcon. We can use the Barkas and

Berger correction as a guide to see where the Incomplete stripping of atomic

electrons influences the man resolution. An accurate evaluation of Incomplete

stripper's effects on oat and oaAs, may require more accurate knowledge of

the ton's charge state as a function of velocity, than is represented by the Bar-

kas and Berger  correction.

ZAL& 9MM3aey

For table 2.4.5.1 we have calculated the nominal mass resolution of MST

for RANGE 1. Z and 3 events in an idealised situation. The b' detector used was

the deepest triggered detector In the stack and the Aa detector used was the

second deepest triggered detector. We used the Barka* and Borger effective

charge to do the computations, which were curried out for R/ L a 2. we

assumed a flat detector and that 
L 

a 0.00174, as calculated In section 2.0.1.

To calculated the mass uncertainty due to digitization and ignored the man

uncertainty due to uncertainties in the electronic calibration. The mass reso-

lution uncertainty due to energy loss fluctuations dominates the mass uncer-

tainty for Ltus choice of parameters. For the heavier ions, the second most

Important contribution to the mass uncertainty is due to thickness variations.

°or the lighter ions, the second most important contribution to the mass

uncertainty Is due to channel digitization.
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Table 2.6.6.1 -

RANGE 1 - Nooainal Nam Resolution (R/L = 8)

amwulaw

i
moons) >tluctuatloos) dlgt^) dfptization)	 (tota*

Z	 Qi. L	 °r. Ar °n. As °^. r	 as

2	 0.010	 0.080 0.052 0.025	 0.099
i

6	 0.030	 0.180 0.028 0.014	 0.133

1 2 	0.065	 0.184 0.020 0.010	 0.198

as	 0.211	 0.384 0.019 0.008	 0.439

I

RANGE 2 - i`iomiaal Kass Resolution (R/L = 2)

(pathlen<th	 (rnecp loss (channel (cbaanel
weiatioos)	 1hultuations)	 fttization)	 dWU=Mon)	 (total)

Z °AF. L	 °°. As °AF. ^ °r. r	 °^
2 0.010	 0.073 0.067 0.023	 0.102

0 0.029	 0.117 0.034 0.013	 0.124

12 0.060	 0.1w 0.025 0.009	 0.178

26 0.167	 0.290 0.0.40 0.007	 0.335

f	 '

I RANGE 9 - Nominal Mass Resolution (R/L = 2)

(pathlength	 (enwu loss (channel (channel
wetstions)	 Quctuations)	 diotization)	 (total)

Z °l. L	 °l. As °l. as °1f. l	 °l

2 0.009	 0.066 0.O64 0.035	 0.101

d 0.028	 0.110 0.034 0.020	 0.120

12 0.057	 0.155 0.024 0.013	 0.167

'	 20 0.150	 0.252 0.019 0.010	 0.294

t
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Chapter 3 - Data Anatp"

M. 11sM	 OwraieFW

In the two parameter 
d—X – B 

analysis technique of section 2.3, a dnale

mar estimator was generated. For the purpose of mailing accurate isotope

measurements. three and four parameter measurement techniques will be used.

with three and four measurements of a particle's energy deposition history in

the particle telescope, several mass estimators can be calculated and com-

pared. With this type of redundancy, we can detect and remove sources of

baoigfround events from the data set Also. to reduce the mass measurement

uncertainty, the measurements from several mass estimators can be used in a

weighted mean mass estimator.

Figure 3.1.1a is a sch• imatic diagram illustrating a three parameter RANGE

3 event. A particle has stopped in detector D3. depositing an energy A' and Im-

Ing energies AE, and Aas in the two previous detectors. In this configuration

there are actually three separate ways to f orm a two parameter man estimator.

The "AS detector" can be taken to be D1, or D2. Also, D1 and D2 can be treated

together, as one detector. Only two of the mass estimators are independent;

therefore, once the total energy A = 9 + AE, + Aas, is computed, there are

only two parameters left in this system

r
r
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figme 9.1.1a - A schematic diagram oC a three parameter sent. AEi , AZs,

and A' are the energies deposited by a perticle slowing down In the Inds-

cated detectors.

Ague's 31.ib - A schematic diagram of a tour parameter wont.
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Tor this three parameter systems, we will compute two mass estimators.

The first estimator, called Mn, uses TR as the "A6 detector" and is found by

solving

L = R(M= ,Z, ASI + A') — R(M= ,Z.,e) .	 (3.1.1)

The second. Ulm, uses Di as the "AS detector" and can be found by solving

L = R(Mls ,Z, A6s + A91 + A') — R(Mla ,Z. A6, + A') .	 (3.1.2)

For the special case in which all of the mass uncertainty u caused by energy

Ion fluctuations. and in which the fluctuation in AZa, 6(A6a), to small compared

to AAa, the mass estimators MO and Lis are statistically independent. For the

four parameter case illustrated in figure 3.1.1b we compute analogously M4&.

MW and Mo. To avoid confusion, detectors MI and H2 are labeled as A and B,

respecttwely. Thus the mass estimator that uses detector Y1 as the A6 detector

and Y2 as the stopping detector is called MAS . For all RANGEs except RANGES 0

and 1, three mass estimators are produced. For RANGE 1 we calculate the two

mass estimators Ya 1 and MA I. and for RANGE 0, we calculate YAp.

In the following sections, we will describe the calibration of the mass esti-

mators and then use mass vs. mass correlation plots to describe let& selectioc

and background reduction procedures.

3.8. Yaan NeUmstor Cailbcation

In order to measure accurately a particle's mass by the two parameter

dB — a technique, the range energy relation used in equation 2.3.1
dX

L = R(M.Z.1r) — R(M.ZX) 	 (2.3.1)

must be known to sufficient accuracy. it 6(AR) is the systematic error in

AR = R(S) — R(R), then the systematic error in the mass estimator is

6Y = ( 1 1 EAR)
Y A-1 AR

Unfortunately, published tables of the range energy relations are insufficiently
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accurate for our purposes and have sytdetnatic errors of the order of a few per

cent. We need to know the location of each isotope track to s 0.2 wnu if track

location errors are to make only a small contribution to the mass uncertainty.

For •Ne this means that the systematic error in OR must be ken than 0.7571.

One approach used by Vldor (1075) and Cook (1991) is to attempt to c*n-

struct a new corrected rands energ y relation

R(M•t •9) = R (M.Z.Jr) + R=(M.Z.Jr)
	

(3.2.2)

where R= is a function of several unknown parameters I a4 j The values of

the at am found by wlnimislnj the distance. in some sense, between the exper-

imental and theoretical isotope tracks.

The R6W method needs enough experUmntal points to locate accurately

the experimental isotope track in a suMcient number of energy bins in each

RANGE. U 20 particles are suMcient to locate the isotope track in each of 25

energy bins per RANGE, then one needs about 503 particles per RANGE to cali-

brate an element. Unfortunately, for the set of MST Right data, the only ele-

ments with charge Z > 3, in RANGEs 0-4, for which there is on an ataount of data

approaching the above amounts, are carbon and oxygen.

A factor that limits the accuracy of the Rcns function is the possibility of

small systematic errors in the energy calibration or in the thickness maps.

Since the energy ranges for all the possible mass estimators 3/y overlap,

attempting to At one Rams relation to the data for several mass estimators may

not be completely successful.

Oxygen data from RANGES 0 to 3 and than estimators M,v, MAI. MAs, Mas,

* I . Mss, Mss, M ie s Mss and Mss were used In an attempt to And one unique RCM

to represent the oxygen data. A lA point Rcm function and the thicknesses of

detectors Y1, Y2, D1, D2 and D3 were the parameters to be At to the data. The

resulting RCM function was then used to recompute all the mass estimators.
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Deviations of up to 0.5 amu from the correct 19O mug were found. For 12C there

was a similar result Thus a correction scheme was developed to correct each

mass estimator, separately.

In each RANGE the preliminary man estimator was plotted vs. E1, the

energy in the stopping detcc tor. Figure 3.2.1 shows an example of this type of

plot, for helium is RANa^ 0. The approximate form of f/y vs. E1 for the princi-

pal isotope of an element was than fit by hand to the plot by a series of line seg-

ments. This approximate form of the preliminary man estimator, g(El), was

then used to correct the man estimator of each particle with the equation

AFV (owncted) = A, (p WUM&LWV) Ji 
a	

(3.2.3)

where M. is the mass in Amu of the principal isotope.

The advantage of this procedure was that it was quick and easy to imple-

went on a small computer system, One disadvantage is that the procedure is

not functionally exact. If the range energy relation is a function of E/Y, and

p/f/. varies slowly with El, then fly(corrected) is equal to H. plus terms of

order (y/f4)O. Another "disadvantage" of the procedure might be the practice

at doing the fits to :man vs. El by hand. A difficulty is that you do not dot any

information about the "goodness of fit" or errors in the At parameters. In prac-

tice the hand process is quicker, much less confused by noise and background

and gives quite acceptable accuracy. The maximum error in this track location

procedure is about 0.2 amu.

i
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ftm W i - My n. E  for RANGE 0 haUum data. The seUd Une is the hand

dt. g(E1), used to correct the preliminary =as estimator, using equation

3.2.3.
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&& fWb Awokdfion Data Sat Selection

To measure isotope abundances, a high resolution data not was prepared.

We 
will 

describe selection process 2 ,3r that high resolution data set. Restric-

lions on the hodoscope state, energy deposited in D1, radial position in certain

detectors, and mam Beam^tor consistency. will be described.

Ski. H N I n , ope AogtrtremsoRa

To compute a mass estimator, the pathlongth of the particle in the AN

detector Est be calculated. The basic requirement V that the hodoecope

Information specify a unique particle trajectory through the telescope. Thus,

we must have only one group of triggered strips per matrix detector plane, or

the HH condition must be falser. The HH events were rejected, as were event

records in which over two strips per group were triggered. The fraction of

event records with the H}i condition was as large as 1/4 of the total number of

events, at times of high particle counting rates. Most of the HH events were

thought to be caused by accidental coincidences at times of high singles rates,

se detailed in Spalding (1983). Records with over two strips per group were an

insignificant part ( s lx) of the data.

The remaining Brent records were divided into two groups, event records in

which only one matrix detector strip triggered per hodoscope plane, and event

records in which one or more planes had two adjacent triggered strips. It hodo-

scope information were all that was required from detectors H1 and H2, since

the particle had stopped deep in the detector stack. thou both classes of events

wom accepted. Because the particle had to penetrate the detector right

between the strips, we think that the double strip groups may have even located

the particle better in the hodoscope, thereby reducing the position uncer-

tainty, although this idea has not been put to a conclusive test.
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The significance of the double strip condition ties in what it tells us about

the measurement of the energy deposited In a matrix detector. Suppose that a

particle has triggered two adjacent strips on one plane of a matrix detector.

Then there Is a large probability that a "signal defect" in that matrix detector

has occurred. The energy measured by M3T in that matrix detector will be lea

than the energy actually lost by the particle slowing down in that matrix detec-

tor. There is also a population of events that have energy measurements

obameteristic of the "signal defect" condition, and have only single strips trig-

gered.

The "signal detect" behavior can be illustrated with a Doan vs. mass ccrre-

Iatlon plot. Figure 3.9.1.1 shows Mjp j plotted vs. MAI for carbon with the single

strip hodoscope requirement. On this plot, it there was no signal defect

mechanism, about !ilia of the data should be in a clump at the point (12,12) and

1X at the point (13,13). The clump at (12,12) has a horizontal streamer of par-

ticles with lfjr 12 and AIAI with some arbitrary lower value. This is caused by

a signal defect in the matrix detector H1, used as SS detector for MA I , and not

considered for Hj,. The slanted streamer falling from (12,12) is caused by a

signal defect In the matrix detector Y2. H2 is used as the Mr detector for Lj,,

and as part of the Jr detector, together with detector D1, for MAI . The streamer

than slants becaum the Ham. signal defects introduce correlated errors into lfjt

and MAI.

In figure 3.3.1.2 and 3.3.1.3. we plot carbon RANGE 1 events in which dou-

ble strip events are required in the "y plane" of detectors MI and W. respec-

tively. The double strip requirements have greatly increased the signal defect

probability. Figures 3.3.1.4a-b are histograms of MAI and Mjl with a single strip

hodoeeope requirement. Figures 3.3.1.5a-b are histograms of MA I and Mjj with

a double strip requirement in the "y planes" of matrix detectors M1 and Y2,

,

i



Carbon Double Strip !vents

RANGR	 ( M2d ) • ( M1d) (M2d )•(M/1a)	 (M-2d)•( MId)

1	 130 8A5 355
(.050) (.258) (.138)

2	 42 252 184
(.027) (.184) (.120)

3	 21 179 148
(.017) (.147) (.120)

4	 1 28 24
(.004) (.111) (.095)

(IV?&)'(U-1d)

1581

(.608)

1081

(.869)

880

(.715)

199

( .790)

-49-

respectively. The mess resolution for the double strip events is so bad that we

must discard them from the high resolution data set. Table 3.3.1.1 shows the

fraction of HIZ events in the time period 266: 10 to 272:u0 in RANGE@ 0 through 4

for each of four coincidence equations. M2d and Mid refer to the double strip

condition in detectors M2 and MI respectively. In parentheses is the ratio of

the number of carbon events for the coincidence equation to the number of

carbon events in that RANGE.

Tbbis 9.3.1.1 -

In appendix A we And that the probability of a double strip event In a

matrix detector is a function of the energy deposited in that matrix detector.

For the ions analyzed in this report, the probability of a double strip increases

with the amount of energy deposited in the matrix detector. This effect can be

observed in table 3.3.1.1. The carbon Ions that stop In RANGE 1 are going slower

as they penetrate detectors M1 or M2 than carbon ions that stop in RANGES 2-4,

^.nd thus deposit more energy in detectors M1 or M2. The RANGE 1 events then

have a higher fraction of double strip events than the RANGE 2-4 events.

I^
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We can obtain some insight into the double strip events by considering

briefly charge collection In a "normal" (continuous electrode) solid state detec-

tor of the saves nominal thickness and applied voltage u the matrix detector

Y1. With an applied voltage of 25 volts, electrons would take about 1.3 nsec,

and holes about 2.5 nsec, to cross 50 µ of silicon. The time constant of the

preamps is about 2 µ sec, so that in a normal detector, all the charge would be

collected. In a matrix detector, the strong association of a large signal loss with

the two strip events suggests that something happens to the charge collection

procedure In the gap between the two strips. The electric field configuration in

the gaps might cause some fraction of the el ,. ctrons and holes to be directed to

regions of low field strength. There the electrons and holes may either recom-

bine or travel to the strip electrodes so slowly that the signal is reduced,

because part of it is effectively Altered out by the preamp time constant.
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Ogure 9.3.1.1 - M&I vs. MA I for carbon data. '[tie hodoscope triers are

restricted to single strip events.
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Agure &&12 - N&l vs. UA I for carbon data. The hodoscope triggers are

restricted to events with double strip triggers in the "y plane" of K1, and

single strip triggers in the remaining matrix detector planes.

•

d

3
o
ri	 Q

e r
w

•	 L

O
i
	

A

r'.

O

d
r;

J O
O

O	 O	 O	 O	 O	 O
N	 0	 1	 O

V7 1 44 V)

e

.]



f.

. 53-	 OF POOR QUALITY

ltuen 9.9.1.9 - Mal vs. LAS for carbon data. The hodoscope triggers a

restricted to events with double strip triggers in the "y plane" of K2, aj

tingle strip trigers in the remaining me' ~ix detector planes. The stream

of events around MA , N 18-21 and My, a B-20 is due to nitrogen even

which have had their mass estimators calculated with Z=a instead of Z=T.
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Osuew 3.3.1.4x- b - Mass histograms of carbon RANGE 1 events with sui4le

strip triers. Figure 3.3.4a shows MA I and flgurs 3 3.4b shows My,.
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llturs 311.5s-b - Mass histograms of carbon RANGE 1 events. Events in

figure 3.3.5a have double step hodoscope triggers In detector MI's "y

plane" and single strip triggers in the rectilaing detector planes. Events

In Agure 3.3.5b have double strip hodoscope triggers in detector M2's "y

plane" and single strip triggers In the remaining detector planes.
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53.2. Radium Raquiremeata

The particle trajectory In the bodoscope is extrapolated to all the detec-

tors that the particle hits. in two detectors, the radial distances from the

center of the detectors to the positions where the extrapolated trajectories

interscet the detectors, were computed. D1, the smallest detector exclusive of

the matrix detectors, and the next detector deeper In the stack beyond the

stopping detector, D(R+1), were chosen. Particles that had an impact point

near the edge of a detector were more likely to show a signal defect than others

nearer the center of the detector. For the high resolution data not we set max-

imum radii in the two detectors based on the behavior of the mass estimator

near the detector edge.

Figure 3.3.2.1 shows the weighted mean of the RANGE 1 oxygen mass esti-

mators plotted vs. radius in D1. At the largest radii one can see a systematic

underestimate of the mass caused by the signal defect at the detector edge.

For D1, a maximum radius of 13.8 mm was set. The oxygen mass estimator

weighted sum was plotted vs. radius in D2 in figure 3.3.2.2. Again there is a sys-

tematic mass underestimate and a maximum radius of 15.0 mm was set here.

For RANGEs 2-4 no maximum radius was set in detector D(R+1). For the helium

data set more restrictive radius restrictions were needed, because the rare iso-

tope sHe lay below the more abundant lsotope'He. Correlated mass errors pro-

duced b!r signal defects at the detector edge might then masquerade as sHe

events. Table 3.3.2.1 lists the radial restrictions for helium and elements with

charge Z z 8 for the high resolution data qet.



Radius D1

1	 13.
2	 13.8
3	 13.8
4	 13.8
6	 13.8

r
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limmm,m Ift" (mm)

z: 8

Radius D(R+1) Radius Di

8 16.0
none
none
none
none

13.8
13.8
13.8
13.8
13.8

dium

Radius D(R+1)

12.90
16.76
16.76
none
none
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Asur+e 3.32 . 1 - The RANGE 1 oxygen weighted sum mass estimator is plotted

n the radius in detector D1. The maxdaum D1 radius chosen for the h4h

resolution data set is shown as a dashed line.
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Ogum 3.3,32 -'he
 RANGE 1 oxygen weighted sum mass estimator is plottrd

vs. the radius in detector D2. The maximum D2 radius chosen for the high

resolution data set is shown as a dashed line.
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In four instances particles were required to pass a requirement on E1, the

energy deposited in the stopping detector. For RANGE 1 carbon evens we felt

that the 'sC track position for EI < 7A6 V was not known sualclently well, so

RANGE 1 carbon events had to have El a 70V to be included in the high reso-

lution data set. Thus we eliminated about 1271 of the RANGE 1 carbon data.

For RANGE 1 neon events, Hs i vs. MAI cross plots were prepared for five E1

energy intervals of width 28 YeV. In the lowest energy interval, the mass reso-

lution was much worse than in the other four energy intervals; so therefore

neon RANGE 1 events leers required to have E1 :28M#V. Thus we eliminated

about 23X of the RANGE 1 neon data. For nitrogen in RANGE 1, the mass resolu-

tion for E1 < 30AIe V appeared worse than for E1 a 30AIe V. Nitrogen events in

RANGE 1 were required to have E1 2t 30AIe V, thus eliminating about 40X of the

RANGE 1 data

In RANGE 4, particles that have completely penetrated detector D4

encounter two "dead layers" which have a total thickness of approxiumtely 100

microns of silicon. at the rear of D4 and at the front of D5 In these dead

layers, charge is not collected, thus causing a signal loss that systematically

lowers the mass estimators. A signal loss in the stopping detector would cause

a correlated mass underestimate in both M34 and H84 , that would interfere with

the sHe measurement. A particle of a given mass that :tops in the dead layer of

D4 has the same energy measurements in the K and AE detectors, D3 and D4.

as a lighter particle that stops in D4, but in front of the dead layer. Thus, the

'	 mass measurement is ambiguous near the "end of range" position in D4. Only
G	 i

for helium is there a significant population of solar dare events in this RANNGE 4

"end of range" position ( ft 50 out of 207 range 4 events). We therefore chose a

requirement El < 50 AhV, for RANGE 4 helium events, which removes the region



el

of dead layer mass ambiguity.

51.4. IbM Coosieteoey R^equtreeaeafts

Because of the presence of occasional large errors in the man estimators,

which would bias the weighted mass estimator, data included in the high resolu-

tion data set had to pass consistency requirements on the mass estimators. For

elements C. N. 0, No. and Mg, we chose as a mass consistency estimator the ratio

of two mass estimators. For the three parameter systems the ratio chosen was

R, _-^'	 (3.3.4.1)

where J is the detector number. For RANGE 2, R, = Yes . For a four parameter
w

system, R, is the same as above and Rs was defined as

N _,
Re = ^L

For RANGE 3, Rs = Mn

The distribution of R, and Rs is approximately Grussian. For each RANGE

and element the entire IUSf data set was used to form histograms for R, and

Rs. The histograms were then fit to determine the location and width of the

peaks in R, and Rs. Figure 3.3.4.1 shows a histogram of R, for RANGE 1 oxygen

events. For C, 0, and MS. mass consistency ratio requirements were set, which

were symmetric about )^ = 1.0, and approximately included the central two

standard deviations, 2 Y d , of the ratio peak. For N, the ratio limits were set

exactly at the fit peak location, plus and minus two standard deviations of the

ratio peak. With No, the same procedure was followed but the requirements

were relaxed to plus and minus 2.5 Xie, because we wished to include as many

No as possible, in order to reduce statistical uncertainties in the "Ne/ s0N1e

abundance ratio.

(3.3.4.2)
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The PWVGE 3 neon consistency requirements were widened to accept all of

the RANGE 3 neon data except for very large mass disagreements. ngures

3.3.4.2a-b show RANGE 1 and RANGE 3 neon man cross plots with the con-

sistency requirements drawn in. Other exceptions are the RANGE 1 C. N. and 0

consistency requirmments, which are about plus and minus 1.5 X" . In RANGE 1

the background problems were more severe than in the other RANGEs and the

C. N, and 0 measurements were for isotopes at or less than the lx level of the

more abundant isotopes. 'thus we chose a more restrictive consistency require-

ment, selecting on the ratio histogram only the central Gaussian peak and

excluding most of the tails of the ratio distribution. Table 3.3.4.1 contains the

man consistency requirements chosen for the elements C. N. 0, No and MS.
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figure 3.9.4.1 - A histogram of the mass consistency esti=tor.

R, = r &II MAI . for RANGE 1 oxY6en data.
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Ogwe 3.8.4.2& - A plot of Njh vs. MA  for neon RANGE; 1 events, in the time

period 713:280:10 to 78:272 : 00. The mass consistency requirements are

shown as dashed lines.
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Agure 3.3.4.2b - A plot of Mu vs. M is for neon °`NGE 3 events, in the time

period 78.266 10 to 78 272 : 00. The mass cone ncy requirements are

shown as dashed lines.
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h%la 3.3.4.1 -

Nam Ratio Regairomenta

ELRment RANGIS	 IDdtlo	 unite X d

carbon	 1 Mph/ MA 1 1.0 t 0.050 1.4
'	 2 M121 Mm 1.0 t 0.070 2.1

2 Mli/ MA/ 1.0 t 0 075 2.0
'	 3 Ma/ M S S 1.0 t 0.060 2.0

3 Mas/ Mn 1.0 t 0.065 2.0
4 Vul M34 1.0 t 0.050 1.9
4 Mayo/ MI4 1.0 t 0.070 2.1

nitrogen	 1 Mjh/ MAI 1.000 t 0.052 1.5
2 MIS/ Mpg 1.000 t 0.053 2.0
2 MIi/ MA/ 1.008 t 0.067 2.0
3 M$/ M I3 0.998 t 0.044 2.0
3 Mo/ Mjp3 0.994 t 0.055 2.0
4 M341 Ms4 1-006t 0.047 2.0
4 M34/ M I g 0.995 t 0.058 2.0

oxygen	 1 N811 MA 1.0 t 0.050 1.4
2 Mss/ Mim 1.0 t 0.066 2.1
2 M Is/ MAI, 1.0 t 0.070 2.0
3 Ma/ M 1!, 1.0 t 0.080 2.1
3 M$/ Mas 1.0 t 0.08,5 2.0
4 M3/ Ms4 1.0 t 0.050 2.0
4 M841 MI4 1.0 t 0.050 2.0

neon	 1 Mal/ MA  1.000 t 0.055 2.5
2 M Ia/ Mjft 1.000 t 0.049 2.5
2 Mss/ MA3 1.007 t 0.084 2.5
3 Mml M 1.000 ±:0.051 3.0
4 M34/ Aiu 1.000 t 0.082 2.5

magnesium	 2 M Ia/ M82 1.0 t 0.04 1.8
2 M IR/ MAR 1.0 t 0 05 2.3
3 M231 M I , 1.0 t 0.04 1.9
3 Mg3/ MB3 1.0 t 0 05 2.1
4 M341 Mu 1.0 t 0 .04 1.7
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The choice of a mass consistency requirement based on mass ratios implies

that or is proportional to M for different isotopes of the same charge. We would

expect such a result if most of the contribution to vy came from uncertainties

in the detector thicimess, or in the isotope track location. On the other hand, if

most of the contribution to oy came from other sources, such as energy meas-

urement uncertainties, or energy loss fluctuations, then vjV would be more

nearly constant. For C, N. O, No. and Mg, the variation In M is not sufficient to

test the behavior of off.

For helium, there are sufficient events to check the scaling of oy experl-

mentally. The time intervals 296:09 to 297:09 and 307:00 to 308:00 contain two

'He rich dares. RANGEs 1 and 2 have enough events to measure oy for both sl-le

and 4He, separately (see figure 3.4.9). Table 3.3.42 contains uy for that time

period as a function of RANGE and isotope. For helium, in this case, the data

are consistent with the hypothesis that oy is independent of M.
Table 9.9.4.2 -

Helm Mas Resolution

Mass	 oy(eHe)	 oy("He)

Mg, 0.118±0.018 0.162±0.020
MA I 0.238±0.037 0,228±0.029
M is 0.138 t 0.031 0.137 t 0.020
MjN 0.170 t 0.040 0.182 t 0.028

We chose a consistency statistic for helium that was different than for ele-

ments with charges Z Z 6. All of the helium measurements were made with the

three parameter analysis method. We therefore chose the difference of the two

mass estimators,

fir! = MJ -1-j — Mi-e.1 -	 (3.3.4.3)
where j is the detector number, as a consistency estimator. For the entire H1ST

helium data set, histograms of Mdv f were accumulated for each RANGE, and fit

to determine the M.Vf peak location and width. Helium events were accepted
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into the high resolution data not if IJW f for each event w,is less thug tik o stan-

dard deviations from the peak location. The limits adopted are listed In table

3.3.4.3.

Table 3.3.4.3 -

HelluM MdVf Regvirameab

Limita(am*

1 -0.027 t 0.504
2 -0.005 t 0.448
3 0.023 t 0.440
4 -0.001 t 0.454
5 -0.014 t 0.384

3.3.b. lisp Rewlut! an

Events that passed the selection criterion of section 3.3.1-4 were summed

into a histogram for each mass estimator. The histograms were fit usiri,; Gaus-

sian peak shapes, and the peak location and am were determined for eac h mass

estimator. For each RANGE a weighted sum of the mass estimators was 1 ormed,

using for weights (ay) -2 , as determined in the fits of the individual mass estima-

tors. Table 3.3.5.1 lists the mass resolution obtained by element and RANGE,

where NJ is the weigELed sum for RANGE j.

The mass resolution that we measured for the H15T flight data is

signiAcantly larger than the nominal resolution calculated in chapter ::, table

2.8.5.1. Let us compare the measurements of ay for MBi , M ip, and M22 to the

calculations of am for R/ L = 2 and RANGEs 1-3 in table 2.6.5 1. The experimen-

tal measurement of ay for helium is 35% to 50% larger, ay for carbon ii about

65% larger, and am for magnesium is 40% to 75% larger, than was calculated.

The reasons for this discrepancy are not known at present. However, thi . preci-

sion of the main results of this work, involving the abur dances of isotopes sHe.

lac, nNe, "Mg. and 2°Mg, is mainly limited by the statistical fluctuation:; in the

number of particles observed in the 78.288 solar flare.
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Tabu 3.3.6.1 -

L

HMT Was RooduUon

Yam	 Helium	 Chrbon	 Nitrogen

MA 1 0.152 10.003 0.225 t 0.004 0.216.t 0.017
Mm, 0.169 t 0.002 0.228 t 0.007 0.277 t 0.025
W, 0.127 t 0.002 0.194 t 0.006 0.101 t 0.017

Y,s 0.134 t 0.003 0.203 t 0.006 0.208 t 0.018
Mj@ 0.170 t 0.003 0.256 t 0.008 0.211 t 0.018
Yas --- 0.25:1 t 0.009 0.272 t 0.028

Ma 0.122 t 0.002 0.159 t 0.006 0.162 t 0.013

XIS 0.139 10.003 0.191 t 0.007 0.185 t 0.018
MIS 0.173 t 0.003 0.208 t 0.008 0.232 t 0.022
man --- 0.303 t 0.011 0.276 t 0.033

Ns 0.124 t 0.003 0.159 t 0.006 0.137 t 0.013

N9, 0.113 1 0.003 0.148 1 0.010 0.138 t 0.006
us6 0.186.t 0.006 0.227 t 0.018 0.273.t 0.012
M14 --- 0.322 t 0.024 0.373 t 0 020

N4 0.099 t 0.003 0.128 t 0.009 0.145 t 0.008

M,w 0.094 t 0.003 --- ---
M" 0.155 } 0.006 --- ---

We 0.088 t 0.003 •-- ---

Table 3.:,.6.1 -
(C=tinued)-

Yam Oxygen	 Pieon	 mwednm

IVY 1 0.307 t 0.006	 0.377 t 0.031	 ---
My t 0.293 t 0.006	 0.302 t 0.024	 ---

N, 0.240 t 0.005	 0.288 t 0.020	 ---

N1t 0.261 t 0.006 0.204 t 0.024 0.310 t 0.032
Min 0.300 t 0.007 0.288 t 0.032 0.401 t 0.052
MA  0.287 t 0.008 0.358 t 0.048 0.461 t 0.131

Ng 0.170 t 0.005 0.170 t 0.019 0.232 t 0.024

MIS	 0.214 t 0.005 0.213 t 0.020 0.238 t 0.029
M 1 s 	 0.278 t 0.007 0.260 t 0.027 0.282 t 0.042
MB3 0.344 t 0.010 --- 0.285 t 0.057

No 0.170 t 0.005 0.203 t 0.020 0 211 t 0.027

M34 C.152 t 0.012 0.224 t 0.041 0.233 t 0.019
Ms4 0.285 t 0.024 0.399 t 0.089 0.363 t 0.057
M 14 0.360 t 040 --- ---

N4 0.137 t 0.012 0.232 t 0.048 0.194 t 0.016
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&4. A C ltioat Evaluation of UW Hligb fiseolution Data Set

The high resolution data set is to be used for the purposes of computing

the ratio of abundances of two isotopes of the same element. In all the cases to

be considered here, especially for the elements He, C. N. and 0, one isotope is

very much less abundant than the other. Much of the difficulty in estimating

the isotope abundance ratios arises from the necessity of estimating the shapes

of the distribution functions for the mass esUzndtors, due to a single isotope.

Unfortunately. HIST was not exposed to pure beams of single isotopes for

calibration purposes, and the flight data must be used both to calibrate HIST

and to measure isotope abundances. We will make plausible inferences about

the shape of the various mass estimator distribution functions in order to

obtain isotope abundance ratio measurements.

The measurement of the isC/ isC abundance ratio is the most difficult

measurement attempted here. Figure 3.4.1 shows a plot of M R, vs. MAi for

RANGE 1 carbon. There is a background source for events that have high values

of My,. which may interfere with the clump of events at (13,13) that are prob-

ably due to the isotope "IC. The events with high MR, valucs are possibly caused

by M2 retriggering, a phenomenon that is discussed in Spalding (1983).

Retriggermg is a type of error that can occur in the analog to digital conversion

process. If the output of an ADC is equal to gain tiottage + of f"t, then

retriggermg error gives a digital output equal to gain tiottage + 2 bf f set

where offset is about q 30 channels.

Figures 3.4.2a-e show the weighted sum mass histograms for carbon events

in the time interval 78:288:10 to 78:272:00 (the 78:288 flare), for each RANGE

and for the sum of all RANGES. We will take a very simple approach to finding
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the 'sC/ 12C abundance ratio. We will count the number of events in the inter-

vals 12.5 s Wj it 13.5 and 11.5 s Wj s 12.5 and assign them to " 1sC' and "Inc'

respectively. Then we will try to correct for spillover from the 1sC peak only, as

spillover from the 19C peak into the ' sC peak makes a statistically insignificant

contribution to the rsC/ 12C abundance ratio,

In RANGES 1 and 2 it appears that a smooth continuation of the 12
C peaks

will show that events with 12.5 is ll'j is 12.8 are most likely 11
C events. Thus we

excluded events with 11.5 s Wj is 11.8 from the 1sC events and 12.5 s Wj s 12.8

from the 1sC events. For the remainder of the events In the mass interval

12.6!9 Wj s 13.5, we made plausible assumptions about the minimum and max-

imurn number of 1aC events In the mass interval, and listed those assumptions in

table 3.4.1. For example, In RANGE 1, a smooth continuation of the 12 C peak

might also include up to 2 additional events in the interval 12.8 s N1 is 13.5.

The number of events around mass 11 Is comparable to or even greater

than the number at mass 13. The two situations are not the same because, as

seen in the mass vs. mass cross plots, energy lose mechanisms like those that

operate in double strip events, or high radius events, cause the mass estimators

to be lower, increasing the low mass background. Thus it makes sense to con-

sider the background separately above and below the main isotope peak.

Table 3.4.1 -

Carbon Mass Assigmr ents

RANGE max 15C min 13C Mt 13C ':C saospllng interval Total C

1 13 11 12 11.8 s W I s 12.5 784
2 3 2 2.5 11.8 A Wg	 12.5 581
3 8 4 5 11.5s W3  12.5 535
4 2 1 1.5 11.5s W4 -- 12.5 151

total R1-4 24 18 21 2031
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Agury 3.4.1 - A plot of Mjn vs. Y,41 for the time interval 78:288:10 to

78:272:00, for RANGE 1 carbon events. The man consistency requirements

are shown as dashed lines.
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Acura 3.42a-b - Memo hlstograrm of the weighted sum mass asUmator for

carbon, for the time interval 78:248:10 to 78:272:00. Figure 3.4.2a in for

RANGE 1 and figure 3.42b It for RANGE 2.
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re &42" - Mass histograms of the weighted sum mass estimator for

Pon, for the time interval 78:266 : 10 to 78 : 272 00. Figure 3.4.2c is for

GE 3 and figure 3.4.2d is for RANGE 4.
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ANre 3.4.2a - A man histogram of the weighted sum mass estimator for

carbon, for RANGE@ 1-4 and for the time interval 78:266:10 to 78:272:00.
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The RANGE 1 crate plot for oxygen In the 79:266 tiara is shown In figure

3.4.3. For Ib the background situation is much better than for 1eC, the Ib

area is further from the source of the high mass Mjl background source. Fig-

ure 3.4.4 shows the weighted sum mass histogram for RANGES 1-4.

For an upper limit to the 170/ 140 abundance ratio, we noticed that the

region 10.5 s Nj s 17.0 has 56 events and the region 17.0 s Nj it 17.5 has only

one event. Then to measure the 170/ Ib ratio, we used the interval

17.0 it IIj is 17.5 for the 170 event sample and the Interval 16.0 s Nj is 16.5 for

the 180 event sample.

For the Ib/ 160 ratio, we counted 100 events in the interval

15.5 s Wj s 16.5, and 180 events in the interval 17.5 s Nj s 18.5. For a back-

ground estimate, there is one event in the Interval 113.5 s Aj s 19.5, so we

inferred a maximum number of 6, a minimum number of 5 events, and a "beet"

estimate of 5.5 events due to 100 in the interval 17.5 s Nj s :8.5.

Tabire 3.4.2 -

Oxygen Mass Assianments

RAMS 170 190 
160 sampling interval	 100

1-4	 1	 ---	 16.0 s N!! s 16.5 1448
1-4 -- 5-6	 15.5 s N! s 16.5 3142

r
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eNro 8.4.E - A A/n vs. MA  cross plot for RANGE 1 oxygen events In the time

interval 78:266:10 to 78:272:0(' The dashed lines show the man con-

sistency requirements adopted.
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Oturs 3.4.4 - A histogram of the weighted sum ma y• estimator for oxygen in

RANGES 1-4 for the time interval 78:266:10 to 78:272:00.
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The nitrogen weighted sum histngram for the 78:266 Aare for RANGES 1-4 Is

shown in figure 3.4.5. A smooth continuation of the ' IN peak may result in up to

two events in the interval 14.5 s Wj s 15.5 due to "N, giving a maximum number

of 4, a minimum number of 2, and a best estimate of 3' ON events. There are 360

events in the interval 13.5 s Aj s 14 5.
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Brim 3.4.6 - A crass histogram of the weighted sum mass estimator for

nitrogen in the time interval 78 : 288:10 to 78:272:00, for RANCEs 1-4.
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The neon measurements for the 78:288 dare are shown in dgures 3.4.6a-b.

To calculate the "e/ "ON* abundance ratio we tv ed data from RANGEs 1-4. The

wNe measurements are not influenced as much as carbon and oxygen, by the

high maw shape of the main isotope peak, and we estimate that the back-

ground at wNe due to' ON@ is negligible. 'Co calculate the s 'Ne/ sONe abundance

ratio we will use only RANGEs 2-4, to•avoid making any guesses about the RANGE

1 "o peak shape.

Thble 3.4.3 -

RAN= s'Ne SON@ sONe samplim interval iONe

1 0-8 12 19.5 s W, s 20.5 103
2 0 12 19.5!6 Mss RA.5 82
3 0 7 19.5 s Was 20.5 77
4 0 0 19.5s M4 s20.5 8

total R2-4 0 19 19.5 s III! s c0.5
19.5 s IV, s 20.5

145
total R1-4 0-8 31 248

s
s
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trues 9.4-da-b - Neon weighted sum mess estimators for the time interval

78:204:10 to 78:272 : 00. Figure a is for RANGE 1 and 4ure b Is the sum of

RANGES 2-4.

M

^ n

	

^	 ^ S

	

-1	
Q V1

V)

	

^	 Q

TLr,\

	

L^	 J

.T N

L"'yC
i	 1	 ► 	 ^	 ^ --- — rf

14)	\



I

	

	 -	 -	 OF POOR Ql1n^ITY

11esnedum

A histogram of the weighted sum crass estimator for magnesium is shown in

agure 3.4.7. To estimate the "Mg/ "Mg and 8%/ 24US abundance ratius we will

assume that the single isotope peak shape is a Gaussian. "M& and are

abundant enough thc.t the shape of the tails of the mass estimator distribution

function Is not wry important. In section 3.5 we will describe the method used

to obtain values and uncertainties fdr the Mg abundance ratios.
i

Agury 3.4.7 - Magnesium weighted sum mass est' nator in the time interval

78:248 : 10 to 78:272:00, for RANGES 2-4.
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For helium we ani

The data for the weighrea sum resuiu ror rmNuLs ie-a, in the time interval

78:250:10 to 78:272:00, are shown in figure 3.4.8b. We chose mass sampling

intervals of 2.5 s Wj s 3.4 for sHe and 3.5 s Wj s 4.4 for 'He because we felt that

it was likely that events m the mass interval 3.4 s Wj it 3.5 were due to "He. For

RANGES 2-5 we found no 'He events and 1020 'He events.

The weighted sum results for helium RANGE 1 events in the same time

interval are shown in Figure 3.4.8a. Figure 3.4.9 is a plot of weighted sum RANGE

1 data for the sHe-rich time periods 78:298:09 to 78:297:09 and 78:307:00 to

78:308:00, for comparison and to establish the accuracy of the mass scale.

Using the same mass sampling intervals as for RANGEs 2-5, we find 4 sHe events

and 512 4 H events in the data from the 78:288 flare.

The RANGE 1 data set is of poorer quality than the RANGEs 2-5 He data set.

We would like to consider the possibility that the events in the sHe RANGE 1

mass sampling interval are caused by 'He particles. If the 'He particles may

have experienced simultaneous "signal defects" in the measurements of the

energies deposited in detectors M1 and M2, they might have mimicked sHe par-

ticles with no "signar defects". Figure 3.4.10 shows a cross plot of My, vs. MA1

for the RANGE 1 data, with the consistency requirements drawn in as dashed

lines. There is a group of three events near the position (3,3), which may be the

result of simultaneous signal losses in detectors M1 and M2.

If we assume that the probability of a signal defect in M2 is independent of

the probability of a signal defect in M1, a rough estimate of the background due

to 4 H around the position (3,3) can be made. If we restrict 61B1 to the interval

3-5!% My, !% 4.5, then the ratio of events with 3.5!c OVA, s 4.5 to events with

2.5 s MAI s 3.5 is 0.075 t .012. For the background estimate we restrict fly, to
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2.5 s Afg, s 3.5. Then is a small correlation between a signal detect in Atector

M2 and the mass estimator x A I . We expect the main peak of the MA i histogram

to shift slightly, under the requirement for a signal defect In Y2, which is

represented by the equation 2.5 s Ls I s 3.5. Then there are 40 events with

2.5 s My, s 3.5 and 3.4!9 MA I s 4.4, with a mean mass of 3.89 t .03. The number

of events predicted in the region 2.44 MA I s 3.4 and 2.5 is MjFI s 3.5 is then

3.0 (+3.0, —1.7), which is consistent with the observed number of events. Thus

we will evaluate helium observations as placing an upper limit on the amount of

% observed. Table 3.4.4 displays the observed numbers of He events.

Table 3.4.4 -

RANGE *He 4 H 'He settling intern

	

1	 4	 512	 3.5s W, s4.4

	

2-5	 0 1020	 3.5 s Wj s 4.4
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dgun 9.4.84-b - Hellum weighted sum man• estimator in the time interval

78:240.10 to 78:272:00. Figure 3.4.8a is data from RANGE 1. and figure

3.4.8b is data from RANGE@ 2-6.
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Otan 3.4.9 - Helium weighted sum mass estlmator for RANGE 1. The time

intervals are from 78.296 09 to 78:297:09 and 307:00 to 308:00, and include

two *He-rich flares.
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Ogure &4- 10 - Yn vs. MA I for RANGE 1 helium events in the time Interval

79:260:10 to 79:272:00. The dashed lines show the mass consistency

requirements adopted.
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&G. Metope Abundance Rat1 an and UnoertainUm

Is For each element, the results of the auss measurements were expressed as

We ratio of the abundance of a rarer isotope to that of the most abundant Iso-

tope for that element. For nitrogen, the result labeled as OON/ 14N" is the ratio

of the observed abundance of 1ON to the abundance of SIN . The maximum UL-:11-

hood technique was used to determine the most likely value for the abundance

ratioe, and to calculate the statistical uncertainties in the abundance ratios.

For the element magnesium, the weighted sum histogram for each RANGE

had been fit by the chlsquare technique, with Gaussian peak shapes. This

determined the rms. width, oa, and the location of the mass peaks. Fixing oa

and the location of the muse peaks for each RANGE, the likelihood function had

two free parameters, a = @@Hg/ "Mg and a = "Mg/ "MS. The free parameters

were allowed to vary to find the maximum likelihood solution. fitting all RANGE@

simultaneously. The statistical uncertainties in the two parameters were found

by nui.nerically integrating the Likelihood function. Let

f L(a.a) dada 
0.5.1)

L(a,a) dada

Then the confidence Interval for the parameter a at a level of confidence C is

[v^va)where

2
and

1 — ( I-

2

	 = /.(v:)	 (3.5.3)

The probability that a will be found within the confidence Interval is C, if the

"-% priors" probabiUy distribution for a is uniform on the real axis.

For magnesium the form of the likelihood function chosen was
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L (a•A) _ A Pi(A4.a .0)	 (3.5.4)

with

pr = Z o, 	esp-P& - M',Or )s/ 2oj,	 (3.5.5)

when

1	 a	 _ P_
^~ a+p+l ' , 

= 
a+p+l	 ^^ a+A+l '	

(3.5.0)

and

a = aMe "Us A s MUS/ ,Ltd ;
Mot = macs of tsotape y ;

1/1 = weighted man mass estimator for pw-Wle t

Fur carbon, the uncertainties in the abundance ratios were dominated by

uncertainties in the shape of the mass peak for 11C. We then made plausible

assumptions about the mass peak shape, as detailed in section 3.4, and

obtained maximum and minimum abundances for the isoi.ope 1$C. The likeh-

hood function chosen was

	

L (a . _ (A 
is) r-1612 -16M 

(A 1s)" (A 14)
*1.	 (3.5.7)

a = 13C/ 12C ; a = 14C/ 1sC

Aix - a+a+1	 Alm	 Cta+	 A1. a+
where N is the total number of events observed and n/s is the number of 13C

event s. The upper limit to the abundance ratio 19C/ 11 C was obtained by solving

equation 3.5.3 with the above Uellhood function, with n 1s set equal to the mx-

imuin number ( 24) of 13C events from section 3.4. The lower limit to the abun-

dance ratio was found by set"ng n 1s to the mdnlmum number ( 18) of 1eC events,

and solving equation 3 . 5.2. We used the mean of the maximum and minimum

number of 13C events as our best estimate of the 13C abundance.

The elements nitrogen and helium used a likelihood function of the tyke

3.5.7, but with only one variable, as these elements have only two long-lived isc-

topes.
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Oxygen 1 °0/' 8 0 and ' 70/' 60 abundance ratios and uncertainties were cal-

cult ted separately, with one variable likelihood fun-tions of the type 3,5.7 and

using the data in table 3.4.2.

The neon 21 Ne/ 2°Ne abundance ratio was estimated using the data f om

RANGES 2-4, with a likelihood function similar to equation 3.5.7. The 'ZNe/ 2ONe

abundance ratio and uncertainties were calculated with the data from RANGEs

1-4 and a likelihood function similar 4o equation 3.5.7.

The results of the confidence interval calculations for all elements

analyzed appear in table 4.1.

3.5. taotope SarnpHng Corrections

Different isotopes of the same charge, that stop in a given RANGE, sample

energy intervals that differ slightly. If we approximate the range energy rela-

tion by a power law, we then find that the isotopes A, and A 2 , which each stop in

a distance R., and have energies per nucleon Xa, and XA2 , are related by the

equation

i
XAi	 A2	

(3.8.1)
X,i2 — (A1,

Thus the heavier isotope has a lower energy per nucleon to travel the same dis-

Lance. This effect introduces a bias into any isotope abundance ratio measure-

ment obtained by integrating measurements made over one RANGE.

We can compute the bias in the isotope abundance ratio introduced by

integrating the observations by RANGE, if we assume that the isotopes in the

abundance ratio have the same spectral "shape Suppose that the flux of iso-

tope j, per cm  - sPc - sr - Ale V/ nur. , at an energy/ nue, e, is

iL = J ! f (e),	 (3.8.1)
do

and that the flux for isotope i is
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de = Ki i ( e )	 (36.2)

For element X, the ratio of the abundance of isotope i to the abundance of iso-

tope j, is

_ AL	 (36-3)
X,	

1i

and the spectra of isotopes i and j nre considered to hP.ve  the same -.pecLral

shape as a function of energy/nuc.

Let < X>> be the number of events of isotope j, meast-red in a given RANGE,

an interval in pathlength from R(L) to R(U). Let ej (O be the energy/nL c, such

that isotope j is stopped by a thickness R(U) of silicon_ Thin

,y (M

<Xj > = f Kj J(o) -is = Kj Cj 	(3.6.4)
•}(L)

and

Ks_ <Xj> C{l
^ < ^ > 

Thus we must multiply the observed ratio of < Xj >/ < X > in a RANGE by the

correction factor Q/ C,. Suppose that 2°Ne and aNe he ve the same , pecLral.

shape as a function of energy/nuc, and that J (e) _ ( e )s 11 R(L) is equc.l to the

range of * Ne at 25 MeV/nuc, and R(U) = then

zzze _ < N e > 
0.897.	 (0.66)

22
K20 < Ne>

We can measure the spectra of the more abundant iso', ope as a function of

energy/nuc, Kj J (e) If we assume that the sr-ectra of the less abund int Iso-

tope has the same shape as a function of energy/nuc, we can compute the

correction factor C,1 q. That assumption is equivalent to the assumption that

the isotopes' spectra have the same shape as some arbi'rary functior. of the

tsotopes' velocity

The diffusive propagation of solar energetic particles from Sun to Earth in
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the interplanetary medium is thought to depend on the particles' rigidity, or

mmmentum per charge. 'Thus two isotopes ut the same element night have

spectra which were the same shape as a function of rigidity. We can also com-

puce the corrections to the isotope abundance ratios for this case if the two

isotopes carry the same number of electrons, then they also have the same

spectral shape as a function of their total momentumn.

(3.8.7)

and the flux of isotcpe i is

dJi
dP =	 9(P	 (3.6.8)

Let P, (U) be the total momentum, such that isotope j is stopped by a thickness

R(U) of silicon. Then

Pf M

<Xj >= f 1^9(P)dP	 (3.8.9)
P, (L)

pyIf p is equal to the momentum per nucleon, pj
 - -41

Suppose that the flux of isotope ^, per cm  - sec - sr - Me V/ c is

iL=Ki9(^dP

For isotope ► ,

Thus we have

P1 N)
<'Yi > = Al f xj 9(Aj p)dp =K1 Al Di	 (3.610)

P,UJ

Pt M
<	 f Aj 9(P) dP	 (3.8.11)

P, (L)

Pt"

f 1;9(Ap)dp
Pt (L)
(M .y) Pt M

_A,	 f	 x49(Ajp)dp
(At A,) P4 (L)

i; R I .

	

= < Xj > ^ 	 (38 12)1,	 < X> (Dj,
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We can measure the spectra of isotope j, as a function of momentum per

r
nuck-on, 

%j(Alp) 	 (3.6.13)
dp

' 
if ire assume that ddJ ' has the same spectral shape as a function of total

momentum or rigidity, then we can calculate —DLL. and correct for the RANGE
ri
r

sampling effect, as follows. Let

:el m
dJ

f —A dp = Al Ki D11 = Dj 1	 (36.14)
p'tL) dp

and

dp
dp = A, Kl D{ i = 1Vj	(36.15)

(A4/ ) P, (L) 

then

- _	 (3.616)
Di i	 D1 i

Suppose that 2°Ne and 22Ne have the same spectral sl ,.ape as i function of total

momentum, and that

d^ 
=(e)s de 	 (36.17)

For R(L) equal to the range of 2O Ne at 25 MeV/nuc, and R( U)

Kz2 = < Z2Ne> 1.308.	 (3.8.18)
K2o < Ne>

Note that these two assumptions about the spectral shape have produced

cor, •ection factors that operate in different directions upon the data.

The isotope abundance correction factors were calculated for each range

and isotope ratio, using both of the above assumptions about the functional

dependence of the spectra The spectral shape chosen for elements C . N. 0, Ne,

and Mg, for the most abundant isotope, was the six element spectral fit of sec-

tion 3 9. For helium, we used the helium spectral fit, also from section 3 8 The
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integrals of equation 3.6 2 were done numerically.

To obtain the isotope abundance factors for measurements that integrated

data over several RANGES, we computed a weighted mean of the correction fac-

tors for each RANGE, using fot weights the number of events of the given ele-

rent observed in each RANGE.

The isotope abundance correction factors are listed in table 3.6.1.
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Table 3.8.1 -

S/nuc Momentum
Ratio RANGE to ciaonel dependence functional dependence

13r/ 12C 1 0.942 1.,31
2 0.916 1.243
3 0.883 1.371
4 0.824 1.873

1-4 0.911 1-266 

14C/ 12C 1 0.892 1.292
2 0.852 1.568
3 0.790 1.871
4 0.694 2 846

1-4 0.839 1.538

16 N/ 14N 1 0.935 1 120
2 0.919 1232
3 0 891 1.327
4 0.834 1.625

1-4 0.913 1.238

170/ 1eo 1 0 950 1.121
2 0.919 1.214
3 0 899 1.299
4 0. B36 1.537

1-4 0.926 1.195

18D/ 100 1 0.907 1.264
2 0.852 1.470
3 0.813 1 695
4 0.713 2.178

1-4 0.867 1.436

21 Ne/ QONe 1 0 948 1.116
2 0 929 1.180
3 0.908 1.263
4 0.879 1.319

2-4 0.916 1.228

22Ne/ "'Ne 1 0.902 1.252
2 0.886 1.391
3 0.914 1.605
4 0 773 1.629

1-4 0 869 1.400
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Table 3.6.1 -
(cont.)

S/ nuc Momentum
Ratio RANGE functional dependence functional dependence

2° Mg/ Z̀ 'Mg 2 0.935 1.158
3 0.914 1.241
4 0.921 1.182

1-4 0.923 1.202

28 MV E4 Mg 2 0.877 1.342
3 0.840 1.540
4 0.848 1.335

1-4 0.856 1.44-4

9 He/ 4He 1 1.247 0.8173
2 1.310 0.597
3 1.404 0.504
4 1.470 0.360
5 1.874 0.259

1-5 1.348 0.566
2-5 1.398 0.510

3.7. Low Resolution Data Set

We defined a low resolution data set for the purpose of measuring the

energy spectra of various elements measured by 11I57, We relaxed the require-

ments of the high resolution data set to obtain more events and more coverage

of lower energies (primarily through the acceptance of RANGE; 0 events).

Element identification was through two parameter analysis. In RANGEs 0

and 1. we required that the mass computed using the I..wo deepest detectors

triggered be within 3 amu of the principal isotope of the element. In RANGE 1,

carbon events thus had to have 9 s VB: 5 15 to be included in the low resolu-

tion data set. For RANGEs 2-5, the two parameter mass had to be equal to the

principal mass plus 3 or minus 2 amu. Single strip triggers were required in

matrix detectors used for the mass estimators (M1 and M2 for RANGE 0, and M2

for RANGE 1). No energy limits were plac-d on E1, the energy deposited in the

stopping detector. The radius limits were the nominal detector radii from the
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detector specifications.

For the element helium, the mass limits were 1 and 6 amu for all RANGES.

For helium in RANGE 1, retriggering in detector M2 (see Spaldi.ig 19E 3) made

some protons have mass measurement errors which made the protons indistin-

guishable froth RANGE 1 helium ions, using the My, mass estimator. The protons

and helium ions were then separated by requiring that 1 0 s ,MA i s 6.0 also hold

for RANGE 1 helium.

For iron we could not require single strip triggers in Lhe matrix detectors

used for mass estimator- ! and I- able to use the hodoscope efficiency calibra-

tion of appecdLC A. The hodoscope effletency calibration was not extenc ed up to

the energies characteristic of iron it as stopping in a matrix detect or. For-

tunately, signal defects in the matrix detectors for iron events do not l )wer the

mass estimators enough to make it impossible to differentiate between Lron and

calonum• An iron event in RANGE 0 or RANGE 1 with a signal de!ect in I'l or M2,

still lies above the "track" for calcium events. We then chose mass cor sistency

requirements for 'iron" events that excluded calcium events but summed over

the charge interval 21 s Z s 28 if the SEP abundances were si Milar to

Cameron's 1981 abundance table in this charge region, then this pr ocedLre

would result In an 8% overestimate of the SEP iron abundance, much I ess than

our experimental errors.

3.8. Klement Spectra

Using data from the low resolution data set we computed the sf ectra of

elements He,C,N,O,Ne,Mg,Si, and Fe. During the highest rate time pi • riods, a

number of anomalies Ln the operation of H;ST occurred, which are described in

Spalding 1983. H1ST was operating at counting rates very near to the maximum

t rates at which it was des red to function correct) and the causes of .ill of thel	 ^ •	 Y.

high rate anomalies are not completely understood However, we beb eve that

i
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we have been able to interpret the data correctly and extract the physically

interesting information from the data.

We compute fluxes for time periods that are an integral number of 3 hour

Lime periods. Let the 3 hour time periods be labeled by 1. We compute a flux,

Fu* , of a given element k, in an energy interval i, and for a time irttArval j, con-

sisting of 3 hour time intervals from I = Irma (j) to l ='M= ( j ),

	

F^k 
—=0)^)	

(3.81)

Li mmmak
i= Lamm (!)

with

Lino Lu& = (") (A 1Z j ) (CORRf Lk ) (RL,Ti ) (EROr j )	 (3.8.2)

where

IV,a = number of events, of element k, in the low resolu _ion data set,

in the energy interval i, and the 3 hour time interval 1.

AF = the width of energy interval i, in VeV/nuc.

Any = area solid angle geometry factor for RANGE 1.

(calculated in Mewaldt (1980))

1(i) = RANGE of energy interval i.

RLT = rate live time is seconds, 3 hour time interval 1.

For HIZ events, the event read out efficiency i.9 given by,

number of HIZ emends of RANGE IER01 t 
_ 

number of HIZ rate counts of RotVGE I

LUZ rate events are not accumulatea continuously by RANGE, so for LOZ events,

ERa = 
number of L07 events —

numb er of LOZ ral e c ourd s

Suppose that the events in interval ilk are labeled by q, then the hodo-

scope sampling correction for RANGE 0, CORRI i k , is

CORR, I k = '	 N' ((I — P.„i,(M1,Er,(9)) )(1 — Ph w(M2,Ej;(4)) ),-
i
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For RANGE 1.

CORRtt r = -A!-- 
a-

^ 	 ^.(1 -	 r.(M2,Ex¢(q)),-

and for RANGES 2-5,

CORRI t 1, = 1 0

For "iron" events CORR = 1.0.

Here, Ph". (,V 1,Ey,(q )) is the probability of a double strip trigger in detec-

tor M1, for a particle q that dep: N 9i 7Led an energy Ey l (q) in detector Mi. The
I

Pte, function is described in appa;: cix A.

3,9. FIta to the Mement Spectra

To determine a spectral fors. f (z), with which to compute isotope abun-

dance ratio corrections, we averaged data over the 78:266 flare. For the time

period 78:266:10 to 78:272 00 and for elements C. N, 0, Ne, Vg, and Si, average

fluxes were computed in two energy bins per RANGE. for RANGE;s 0 to 4. All six

sets of data were fit to a common spectral form by the chisquare technique.

The average flux for element j, between v t, and vj•11 energy/nuc is Fy

The spectral form. f (z), was defined by ten free parameters The parameters

were the value of f, jyt ;, at 10 points, Jzj, equally spaced in lug energy from 4

to 60 MeV/nuc f was interpolated log-linearly between the energy points,

if

	k = integer port of f fog (z) —tog (4)J/ logdel	 (3.9 1)

log"? _ (fog (60) - log (4))/ 9 ,	 (392)

log (f (z)) = 
to (z) k lo^deI _ !°g	

( og ( y4.1) — log ( 
Y1,))	 '3_9 3)logdal

+ log ( yj )

with

then
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The abundance of each element was normalized to silicon The tit Aux of

e,emeni, j, at energyroue z, was given by P)f (a), with #jt - 1.0. The 15 free

parameters, ty,I and 1,6,{, were found by mLninuzing the x' function.

XO = 1. 2 ^1Da — )PV )I/ a4	 (394)
j.ct.i

where

9141 1
= f f (_) CLZ / (vt.1.1 — v#j )	 (39.5)

4
and ay is the statistica! uncertainty in the flux Fq.

The data end the resulting fits for all the elements fit are shown in figures

39.1a-f. Pj f ka) is plotted as a solid line, A,gq is plotted as a dotted line, and

the fluxes F. are plotted as error bars. The data support the hypothesis of a

common sp-ctral form The main systematic deviations from the fit are the

higher energy points of the eivnunt silicon, wfich show higher fluxes than the

c.)notion spectral form would allow Figure 3 9 2 shows the data points super-

posed, we plotted Fj l pj v' energy/nue to show the common spectral shape

For the element helium. the fiuxe y averaged over the 78 288 flare were fit

to a spectral form f (p) = A a.rp(—p/p.), where p is in units or niomentum per

nucleon, using two free parameters. A and p, We found p. = 25 54 t 0 43 The

t1t and data are shown in tlgure 3 9 3

''hese spectral fits were used in section 3 8 to compute isotope abundance

correction factors Fits to '-he element abundances on a daily basis are

reported in section 4 3
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figure 3.9.1&-f - A plot of the average spectral Aux, FV , pe,

c+n^ - sr - sec - .WQ V/ nvc , for the time interval 78 266:10 to 78 272 00

The solid lines are the spectral form, #jf (E/n). Tt'.e dotted lines are the

LI t integrated over the experimental energy bins, fl, jq, TZe experimental

points, Fq, are plotted with error bars

I

i^
1
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Agure 3.9.2 - A plot of the average spectral flux for elements C, N. 0, Ne, 'fig,

and Si, Ftj l flj . for the time interval 78:266:10 to 76:272:00. The fluxes of

elements C, N, O, Ue, t,nd Mg are normalized to silicon.
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It

	
figure 3.9.3 - 4 plot of the average spectral flux per

1 rmi — Sr — sec — (Me V/c)/nue, vs. momentum per nucleon for helium, in

the time interval 78266:10 to 78.272-00 The plot symbols are the same as

for figure 3.9.1a-f.
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Chapter 4 - Observations

4.1. Ovemew

The HIST instrument was operational from 1978225 UT to 1978335 UT On

1978:335 LTT ,a failure occurred in the digital electronics (see Mawaldt 1980)

that read out events into the telemetry .stream The failure made KIST unus-

able ay an isotope spectrometer after 1978:33,). using the nwthods of this

thesis. Ireneman (1980) has analyzed a methodology that allcws one to make

measurements with the degraded MST instrument, at reduced elemental and

isotopic resolution, and over more li, ul.ed energy rac ►ges

FUures 4 l.ln-c show the HIZ rate, corrected for live time, in RANGNs 0, 2,

and 4, for the time interval 78.225 to 78 335. The HIZ rates primarily count C

and 0 nuclei and table 4.1.1 lists the energy intervals :or the HIZ rates, assunr

mg that all of the particles incident are oxygen. The carbon energy intervals

would be about 15% lower

TaNe 4.1.1 -

(MeV /nuc)
NANCK Oxygen enc rgy interval

0	 48- 69
1	 69-  101
2	 :0.1 - 14.2
3	 142-24.3
4	 Z4.3 - 45.3

In flguret, 41 la-c there are several sharp increases in the counting rate,

or particle events, superposed on a relatively constat.t background There are

two very sn><tll particle events that occur on days 76 278 and 78 283 Two larger

events occur starting on days 78268 and 78314 All of the measurements

reported in this thesis will be from t}.e particles event that begins on day 78 2'86

The event on day 78 314 has too few parLicles in its high resolution data set to

allow us to make meaningful conclustana nboi:t its isotopic con4,ositlon r'or

example. for days 78 314 1 hrough 783 11 -'. the high re solution delta gel contains



- 108-

about 30 RANGE 1, 7 RANGE 2, and 5 RANGE 3 carbon events, compared to

almost 900 RANGE 1, 600 RANGE 2, 600 RANGE 3 carbon events for the days

78266 to 78 272

Figures  4 1.2a-c show the Hl'h rate in RANGF.9 0, 2, and 4 for days '78.265 to

78:275. The event is characterized by a fast rise, an almost flat peak, and an

exponential decrease The shape of the particle event is approximately similar

in each range, though the rate of decrease after day 78:268 is faster for the

higher ranges. All of the isotope and element observations reported in chapter

4 are for the time interval from 78-1266 10 to 78:272:00. For that time tnterval,

the RANGE 0 HIZ rate is higher than the levels before and after the particle

event b y at least a factor of two

Slightly before the particle event, a large solar flare of importance 3B in Ha

was observed on the sun, from 78 266 09 44 to 78:266 12:15 (The data to this

paragraph are from the Solar Geophysical Data Bulletin 1979, March, April ) The

flaring activity was observed in the McMath plage group 15543, from which

other smaller H. flares were recorded in the time interval from 78.266 05 to

78 269:12. From 76-067 02.07 to 267 02 47 a flare of importance IN was seen

and from 78.267.06.23 to 78 26706.29 a flare of importance 213 was seen in plage

group 15543. The Deep River neutron nx)nitor, with a 1.03 GV geornagnette

cutofT, recorded the onse e_ of a ground level event at about 78 266 10 30 X-rays

from 0 5 to 4 A show a sharp increase of a factor of about 600 at 78 266 10 and

a smooth decline until 78.266 20. Electrons from 1 to 5 MeV increase from

about 5 x 10 3 / cmp sr sec Aire V before the event to a peak of about

2 x 10' i / crnl sr svc Ale V They remain over 1 x 10' i / CM 2 sr sec We  until

day	 78268,	 then	 decrease	 approximately	 exponentially	 to

1 x 10" 1 / cop sT swc :Wl' on day 78 272 McMath 1)54.3 was located at 3;i° 1V,

50• W on the sun on day 78 266, and at a solar wind spend at earth of
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a 350 Anil sec, it was well connected by a Parker spiral magnetic field to the

Earth.

In figure 4.1.2, there is a sharp decrease in the particle co.. iting rates in

the hour before day 78:268, which may be associated with the arrival of a sud-

den storm commencement on 78:268:07:18 (Solar Gecphysical Data Bulletin

1979, March, April ). Sudden storm cou ►mencements are associated with the

arrival at Earth of interplanetary shock waves in the solar wind plasma, travel-

ling from the Sun (Svestka 1976). If the sudden commencement was associated

with she 3B flare of 78:266:09:44, then the flare shock travelled at an average

speed of 910 km/sec to reach the Earth, fairly typical for a flare shock.

All of the above data are consisteaL with the occurrence of a large solar

flare on the Sun.
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figure 4.1.1n-c - The HIZ ra,.e for RANGLs 0,2, and 4, corrected for live time,

is plotted as a function of time. Figures a,b, and c, correspond to RANGES

0, 2, and 4, rF -pectively.
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figure 4.1.2a-c -'Me till, rate for RANGEs 0,2, and 4, corrected for live time,

is plotted as a function of time. Figures a,b, and c, correspond to RANGES

0, 2, and 4, respectively.

2 (.S	 .2(.7	 ;z a	 171	 ;Z73	 ^7s

DAY of i47g



- 112-

42. Isotope Observations

The mass measurements of section 3.4 and the conndence interval calcula-

i icons of section 3 5 were corrected for energy per nucleon sampling effects with

the factors of table 3 6 1. The results, for the time interval 26& 10 to 272 00, are

shown in table 4.2.1 and plotted in figure 4.2.1. The energ y}+ intervals i ► sted in

table 4 2.1 were calculated for the most abundant isotope in the respective iso-

tope abundance ratio. We also list isotope abundance ratios computed from a

compilation of solar system isotope abundances (Cameron 1981). For all of the

isotope ratios for which we report a finite abundance ratio, we see no statisti-

cally significant disagreement with the Cameron compilation.

11
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Table 4.2.1 -

Il6T Isotope Ratio Results
(corrected for energy /nuc sampling effects)

(MeV/nuc) (1 B80)
Ratio Observation Fnergy Interval	 Cameron value RANGta

ale/ 4 H s 0.0026 4.8	 -32.5 000018 RANGEs 2-5

^He/ "He s 0 0175 3.3	 -4.8 0.00016 RANGEs 1

' SC/ 12 C 0 0095 + 0 0042 6.2	 - 38.7 0.0111 RA-NGEs 1-4
- 00029

"C/ "'C --00014 8.2-38.7 ---- RANGEs 1-4

13 N/ "N 0.008+0010 73	 -42.1 0.0037 RANGES 1-4
-0005 

170/ 160 s 0.0021 69 -  45.3 000038 RANGEs 1-4

1 °0/'°0 0 0015 + 0 0011 69 - 45.3 00020 RANGEs 1-4
-00007

Z ' Ne/ 2O Ne s 0 014 113	 -512 00030 RANGEs 2-4

22 Ne/ 20 Ne 0 109 + 0 026 B 2 - 51 2 0 122 RANGES 1-4
- 0.019

23 Mg/ 24 M8 0.148 + 0 046 12.1	 -55.3 0.128 RANGES 2-4
- 0 026

20 Mg/ 2i Mg 0 148 + 0 043 12.1	 -55.3 0.141 RANGEs 2-4
-0025

i
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I Agure 42.1 - Isotope abundance results for the 288 flare. Plotted as c

Lines are isotope ratios calculated from the Cameron (1981) compilati
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To derive the spectral corrections to the isotope ratios, we had to make the

assumption that different isotopes of the same element had the sarne spectral
. ,

shape. We can now check this assumption. For the isotope ratios 13C/ 12C,

180/ 100, 22Nei 3'Ne, 23Mg/ 24Mg, and 26 Mg/ 24Mg, the isotope ratio for the time

interval 288:10 to 272:00 wag computed in each RANGE separately. We plotted

the abundance ratio results vs. energy per nucleon in figures 42 2&-e. If each

isotope, of a given element, had the sarne spectral shape, then the abundance

ratio should stay constant as a function of energy. We see no evidence of a sys-

tematic variation with energy of the isotope abundance ratios reported here.
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figure 4.2.2a - Isotope abundance ratios are plotted vs. energy per nucleon.

Each plotted point. corresponds to the results from one RANGE. The hor-

izontal dashed lines and the arrow con—aspond. respectively. to the

confidence lirrits and most likely values from table 4.2.1.
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figure 422b - lintope abLmdance ratios are plotted v9 energy per nucleon

Each plotted point corresponds to the results from one P.ANCE. The hor-

izortal da-hed lines and the arrow correspond, respective`y, to the

conflden, a limits end nio•.t likely values from table 4.2.1. Tho dashed

extensions of thf- lower error bars for figure 4.2.2b are the "conservative

error bars discussed in section 1.2.
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figure 4.2.2c - Isotope abundance ratios are Potted vs energy per nucleon.

Each plotted point corresponds to the results from one RANGE. The hor-

izontal dashed lines and the arrow correspond, respectively, to the

conildence limits and most likely values from table 4.2.1
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Agure 422A-e - Isotope abundance ratios are plotted vs. energy per

nucleon. Each plotted point corresponds to the results from one RANGE.

The horizontal dashed Lines and the arrow correspond, respectively, to the

conflderce limits and most likely values from table 42.1.
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Another assumption of the above aaalysis was that the isotope abundance

F.	 ratio is constant as a function of time. ' sC/' Z C, 1s0/'a J, 22Ne/ 2ONe, 25 Mg/ uMg,

and "Mg/ 21Mg abundance ratio observations were binned into one day time

intervals and plotted vs. time, in figures 4.2.3a-e. Isotope abundance correction

factors, calculated using the methods of section 3.8 for an energy/nuc func-

tional dependence, were computed on a daily basis from the daily C-Si fits of

section 4.3. If the abundance of one isotope of a given element had a different

behavior as a function of time than the abundance of another isotope of the

same element, we would see a systematic variation in the plotted isotope ratio

as a function of time. If the propagation of the nuclei from sun to earth was

rigidity dependent as discussed by Scholer at al. (1978) and Witte at al. (1979),

then we might see all of the heavier isotopes simultaneously enhanced or

depleted together at the beginning of the particle event. We see no evidence

for time variations of the isotope abundance ratios.
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dguri 4.2.3a - Isotope ratios are plotted as a function of time. The horizon-

tal dashed lines and the arrow correspond, respectively, to the conndence

limits and most likely values from table 4.2.1.
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1 flgui-e 42.3b - Isotope ratios are plotted as a function of time. The hor-

izontal dashed lines and the arrow correspond, respectively, to the

confidence limits and most likely values from table 4.2.1. The dashed

extensions of the lower error bars for figure 4.2.3b are the "conservative

error bars discussed in section 4.2.

266	 267	 268	 269	 270	 271

Day of 1578

L.A^



ORIGINAL FACE IF;
-123- 	 OF POOR QUALITY

Agure 4.2-3c - Isotope ratios are plotted as a function of time. The horizon-

tai dashed lines and the arrow correspond, respectively, to the confidence

limits and most likely values from table 4.2.1.
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Agure 4.2.9d - Isotope ratios are plotted as a function of titre. The hor-

izontal dashed lines and the arrow correspond, respectively, to the

I
	 confidence limits and most likely aalues from table 4.2.1.
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figure 4.23e - Isotope ratios are plotted as a function of time. The horizon-

tal dashed lines and the arrow correspond, respectively, to the confidence

limits and most likely values from table 4.2.1.
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In figures 4.2.2 and 4.2.3 some of the lower error bars are extended by

dashed lines. This is to show the effect of the assumption made in section 3 5

that the abundance ratio is "a priori" equally distributed along the real axis.

For a very small number of events (s 3) in the numerator of the abundance

ratio, this assumption causes the likelihood confidence integral for the abun-

dance ratio, equation 3.5.2, to be concentrated above the mean value. For

example, on day 266, 2 1°0 and 881 190 nuclei were observed. The value for

1Q (x), where the parameter a is equal to the abundance ratio 1 °0/ 1 °0 and for x

equal to 2/ 881 is 1a(2/ 861) = 0.324.

A more conservative assumption states that the lower error bar for a
L

parameter a, calculated for a given confidence level C, is the value of a such

that the probability of obtaining more events than are observed is (1—C)12

The "conservative" upper error bars calculated by this technique are very

nearly equal to the upper error bars calculated by the likelihood technique of

section 3 5. The difference between the two methods for the lower error bars is

largest for a very small number of events in the numerator of the abundance

ratio, and we have only plotted the "conservative" error bars for the oxygen

plots, figures 4.2.2b and 4.2 3b.

43_ Element Abundance Ratios

The low resolution data set was binned into time intervals of one day and

average fluxes were computed for each day, for the elements C. N. 0, Ne, Mg,

and	 The elements were simultaneously fit to a common spectral form,

(p) = fg^ ezp(—p/p,), where p is mr-rientum per nucleon and p, is a constant,

which is the same for all elements Table 4.3.1 lists the values of p, obtained.

The fits were computed by the chi-square technique of section 3 8. Table 4.3 2

shows chi-squared per degree of freedom as computed each day The results

for day 268 and afterwards show that the hypothesis of a common spectral form

I
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for elements C, N. 0, Ne, Mg, and Si produces a good fit to the actual spectral

form. Figure 4.3.1 shows the data and the fit for day 268. The error bars for the

element tl l txes were computed using only statistical considerations. Figure

4.3.2 shows the abundances relative to oxygen obtained by the daily f:ts as a

function of time. The abundances, #I , on and after day 268 were weigb:ed using

the statistical errors obtained in the fit program, and averaged to give a best

estimate of the flare element abundance ratios. These values are plotted to

figure 4.3.2 as dashed lines and listed in table 4.3.3.
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Table !.3.1 -

Day P. (MeV/c)/nuc

76:286 29.22 t 0.30
78:287 26.25 t 0.19
78.288 22.44 t 0.42
78:269 20.09 t 0.12
78:270 19.36 t 0.96
78:271 22.13 t 2.92

Table 43-2

no. tree
Day no. points parameters X., elements

266 222.2 57 7 4.44 C,N,O,Ne,Mg,%
267 341.2 58 7 6.96
266 43.0 52 7 0.98
269 494 48 7 1.27
270 21.0 35 6 0.73 C,N,0.Ne,Mg
271 4.8 14 3 0.44 C,0

Table 43.0 -

Abundance Ratio	 Average	 Comment

C/O
N/0
Ne/0

I	 Mg/O
SOO

I

He/O

Fe/0
Fe/0
Fe/0

	

0.470 t 0.018	 average of C-Si fits, 78:268-272

	

0.125 t 0 009	 78:288-271

	

0.132 t 0 012	 78:268-271

	

0.198 t 0 017	 78.268-271

	

0.129 t 0 016	 78:268-270

average of lie/0 for

	

52.8 t 2.1	 RANGES 2-5, 78:269-272

76:268-272

	

0.137 t 0 030	 RANGE 0 iron, D 0-10.4 MeV/nuc
0 073 t 0 033 RANGE 1 iron, 118-10 5 '-'PV/nuc
0.034 t 0.033 RANGE 2 Lron, 16 5-24.3 MeV / nuc

. I=

J^
I
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Aaure 42.1 - C. N, 0, Ne, Mg, and Si spectra observed on day 268. The fit to

the data, ; j (p), is plotted as a straight line. The fit integrated over Lhe

energy limits of the data points, P1 gq, is plotted as a dotted 'Line. The data

points are plotted as error bars. The flux is in units of

(csne sr-sec (MeV/ c )/ nuic )-^

11

`

I
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flgure ,E.::.2 - Abundances relative to oxygen from the C-Si flt, Pj , plotted as

a function of time. The dashed lutes are averages of the plotted points on

and after day 288.

I.
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Helium, especially for days 288 and 1287, did not show the same specLz al

shape as the elements carbon through si4con. To obtain a value for the He/O

abundance ratio, we integrated the oxygen spectra obtained in the C-Si analysis

over the energy intervals corresponding to each RANGE for heLiurrL Thus we

obtained an "oxygen" fit flux in each RANGE and ror each day that could be

directly compared to the helium flux. For greater statistical accuracy, Pairs of

RANGES were combined to obtain energy intervals of 2.3 — 4.8 Me V/ nuc for

RANGES 0-1, 4.6 — 11.3 MeV/nuc for RAVGEs 2-3, and 11.3 — 32.5 MeV/nuc for

RANGES 4-5. The data in the C-S: fits do not extend below about 4.5 MeV/nuc

for oxygen, so the RANGES 0-1 He/O abundance ratios are baaed on an extrapo-

lation of the C-Si fit to lower energies.

The results obtained are plotted vs. time in figure 4.3.3. The He/O abun-

dance ratio varies at the beginning of the particle event and is relatively con-

stant after day 269. For a best estimate of the He/O abundance ratio we aver-

aged the abundance ratios in RANGEs 2-5 and for days 269-271 to obtain a value

of He/ O = 52.8 t 2.1. 'This value is plotted in figure 4.3.3 as a dashed line and

listed in table 4.3.3.
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Agure 41" - He/0 abundance ratios are plotted vs time in three energy

intervals.

T

/00.

6-

I

Z 66	 67	 68	 264	 270

DRY OF 19-79



i
	 - 136-

Iron does not show the same spectral she-pe as the C-5i elements. Cook

(1961) has also observed large dares in which the ^^on spectral shape was

significantly different than for the C-S! elements. For each RANGE and each

day, Iron duxes were divided by the "0" fluxes from the C-5i fits, to form Fe/O

abundance ratios. The Fe /O abundance ratios are plotted vs. time in %ure

4.3.4. The points for day 266 have a higher value for Fe/O than does the rest of

the data set We averaged the Fe/O abundance -atio results on and after day

286 in RANGES 0-2. We find that for RANGE 0, A/ O = 0.137 t 0.030, RANGE 1

has "/ O = 0 073 t 0.033, and RANGE 2 has Pb / O = 0 034 t 0 033. These

results are not statistically consistent with a common v-'ue for the Fe/O abun

dance ratio. The Fe /0 values are listed in table 4.3 3.
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^s-uro 4.3.4 - Fe /0 abundance ratios in each RANGE are plotted vs. time

The data points shown as crosses are from RANGE 0, 8 - 10 . 4 A&V/mac,

and the points shown as solid circles are from RANGE 1,

11.8 - 18 . 5 Mfe V/ nuc . The points shorn as Xs are from RANGE 2,

16.5 - 24 . 3 Me V/ muc , and the points shown as open squares are from

RANGE 3, 24.3 - 43. 5 Wg V/ nuc .
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Chapter 5 - Discussion

5.1. Overview

Ir the following section We will review the observations of element abun-

dances in SEP events. We will show that the 76:268 SEP event has an elemental

composition that is similar to other large SEP events. We will review the element

abundance variations and average values observed in large SEP events and

speculate about plausible consequences for isotope abundance ratios.

In the third through fifth sections we will review the evidence about the

Sun's composition that comes from the observation of solar electromagnetic

and particle emissions, for the elements He, C, N. 0, Ne, and Mg. In the sixth

section we will review noble gas meteoritic composition and summarize the data

from sections 3 through 5, in order to compare SEP and solar isotope abun-

dances. In section seven we will present our conclusions about the spectral

corrections to the isotope abundance ratios.

52. Solar Energetic Particle Flemental Composition

The elemental composition of large SEP events has been observed to vary

from flare to flare. Since our measurements in this work are limit-d to one

large solar flare, we must use other reported solar flare energetic particle

measurements to establish a context for our observations of the isotopic corn-

position of solar energetic particles. The elemental composition and size of the

78.266 flare and its location on the sun, well connected to the earth by Parker

map .:et ►c fleld lines, place it into a well studied class of the largest solar ener-

getic particle events. The study of a sample of the largest SEP events may pro-

vide the best estimate of SEP abundances. Veron et al. (:980) measured a

number of element abundance ratios in c large data set consisting of daily

averages for the period Oct. 30, 1973 to Dec. 1, 1977, to the energy ranges 0.6-
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1.8 MeY/nuc for H. He, C, and 0, and 1-4.6 MeY/nuc for 0, Ne, Mg, Si, S-Ca, and

Fe. They find that the abundance ratio variation increases with decreasing flux

levels.

Cook (1981) and Cook et al, (1980) have studied seven large solar ener-

getic particle everts. For four events for which the composition and spectral

shape are relatively constant with time, Cook (1981) constructed a four flare

SEP (solar energetic particle) abundance average, SEP(Cook), quoted in table

5.2.1. Figure 5.2.1, from Cook (1981), shows the element abundances measured

in each of the four flares used in the four flare average, relative to the

SEP(Cook) average. The deviation of the element abundances for each indivi-

dual flare about the four flare SEP(Cook) average, `or elements with 6!9 Z s 26,

was systematic and monotonic. For element abundances normalized to silicon,

the abundance of the element group C, N, and 0, was observe' to be anticorre-

fated with the abundance of the element group Fe and Ni. Mc( uire et al. (1979)

observed a sunilar pattern of elemental abundances when comparing SEP event

abundances with a set of average abundances constructed from SEP events

with low ( i-ron group)/0 abundances. Meyer (1981.a,b) has attempted to use all

available data on SEP composition between 1 and 20 MeY/nuc to obtain a "mass

unbiased baseline". Meyer parametrized the data by the Fe/0 abundance

observed, and then selected a particular value of Fe/0 so that the abundance

ratio, SEP/photosphere, for Fe, was approximately equal to the

SEP/photosphere abundance ratio for Mg and Si. Fe, Mg, and Si all have sirru!ar

first ionization potentials. The average element abundances of 5 event classes,

i
i
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figure 5.2.1 - ( from Cook (1981)) The elemental abundances for four solar

flares divided by the average abundance for the four flares, SEP(Cook), is

plotted vs. atomic number. The elemental abundances are given relative to

the abundance of silicon.
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ordered by their Fe/0 abundance ratio, deviate in a smooth monotonic fashion

from the "mass unbiased baseline" element abundances.

Webber (1975) first noticed a systematic difference between SEP element

abundances and the elemental abundances of the solar photosphere. Webber

shove_ that the element abundance ratio SEP/photosphere was correlated with

the element's flrst ionization potential. Cook and Meyer have confirmed this

behavior with their SEP abundance. averages. Figure 52 2 from Cook (1981)

shows the element abundance ratio SEP/photosphere plotted vs first ionization

potential. The SEP(Cook)/photosphere ratio is of the order of 1 or larger, for

elements with first ionization potential, 1, less than 10 eV (including Ni, Fe, Ms,

Si) The SEP/photosphere ratio is less than one hslf for elements with I > ' OeV

(including C. N, 0, He, Ne, Ar). McGuire et al. have noticed a similes behavior

for their sample of bares which have low Fe/0 abundances Another possibility

that has been suggested for the correlation between the SEP/photosphere

abundance ratio and the first ionizat.ion potential, is a systematic error in the

photospheric abundances, organized by I (see eg. Mcguire et al 1979)

Cook (1981) in analysis confirmed by Meyer (198,b) has shown that the

SEP element abundance pattern is more similar to the element abundances

i observed for the solar corona and solar wind than to the photosphere Figure

5.2 3, from Cook (1981), shows the ratios of the SEP(Cook) element abundanceQ

to the element abundances in the photosphere, corona and solar wind Cook

has stated the hypothesis that the reason solar wind, coronal and SEP average

abundances are sinular, is that the solar wind and SEPs are accelerated coronal

material and that coronal elemental abundances are signalcantly different from

element abundances to the photosphere Further evidence supporting this

hypothesis consists of the charge states of heavy tons observed in the solar

wind (Barre Ht al 1979), the charge states c.. low energy SF.Ps of a 10 to 600
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KsV/nuc (Sciambi at W. 1977 and G ► oekler at al. 1976),
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Agum 52.2 - ( from Cook (1981)) SEP elemental abundances divided by

solar photospheric or "Local Galactic" abundances of Meyer (1979) are

plotted vs. the first ionization potential.
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Agure 5.2 3 - ( from Cook(196Q) The four flare SEP elemental abundances

5EP(Cook) are compared to pL otospheric, coronal, and solar wind ele^--n-

tal compositions.
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and the charge stag es indirectly inferred for SEPs of 05 to 5 MeV/nuc

I, (0'Gall,ghe. at aa. 1978) The most consistent explanation of the charge states

observed is that matter accelerated to solar wind or solar energetic particle

energies was once in collisional equilibrium with a gas thet had a temperature

of about 1-2 x IOs 'K. This temperature is about the sam` as observed to the

corona (Athay 1976), and different from the temperature of the photospheric

minimum, which is about 5 x 103 ' K.

The pathlength of matenal that 5EPs have Lravei'sed from acceleration to

obterration, as revealed by nuclear fragmentation, is consistent with the

ituggestion that the corona ;a the SEP particle source McGuire at al. (1979) set

a limit of 0 06 g / CM 2 t. .)in ,̂ hg ervations of the SEP =H/ H abundance ratio and

Cook(1981) reports upper luzits tc H and ; MhtioJances that are consistent with

the gr&mmage reported in McCii:re at al (1979)

If the corona is the -our ce of SEPs and the solar wind. what conclusions

aright we draw for isotope obser ,rr.tto-;s7 Since the difference between the pho-

uisphere and ccrona or ► -` at-und•.nce a.v ,erages seem to be organized by tlrst

for tzation potential, the pro.-ess t-hat dif.erent:ates the elemental abundances

o^ the corona from those _t th_ photosp;ier4 may be Lnfluenced primarily by

whetht- a gcr- n irn is ni"Lre: of singly charged ire the eua,ronrnernt where the

differentiaLLon takes place A way '-c explain the cart elato ri of

ATP/photosphere with i, is to assure that ?IcmenLs with l > 1OeV are neutral

and elements with 1 < ' OeV a ,-t tirng'y charged, which ought =ply that the

efi;ctency of transport from pho!ospt.cro U; corona for neutral atoms is 25% to

407. of the transport efreiency !.i ►.,ns'Vever lt^'Vb;.

Nl. Fe, lag, and Si all have I a 9eV and .hus might -, sin g ly 6., rged in

Meycr's picture of the transport process from ptia:osphere to corona Ni, r'^.

Mg, and 51, all have abo-' the same ratio of SEP/photosphere elemental abun-
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dances. if the mass of the ton was important to the transport process from

photosphere to corona, then we might expect to see a different ratio of

SEP/photosphere for Ni and Fe than for Mg and Si. Cook(1981) observes about

the same ratio of SEP/photosphere for Ni and Fe and for Mg and Si. Thus, a

model that ties the differences in SEP/photosphere abundance Lo first ioniza-

Lion potential would have the isotopic composition of the corona and any SEP

isotopic abundance average be the slime as the isotopic composition of the pho-

tosphere.

Table 5.2.1 lists the SEP(Ccok) abundances and the abundance results

obtained in section 4.3. Also listed are abundance measurements by McGuire

at al. (1979) in the energy range 6.7-15 MeV/nuc, for the time interval

78 266.20 - 78'270:00, and a measurement by von Hosenvinge and Reatues (1979)

for day 76 267, in the energy range 6 7-12.4 MeV/nuc. Note that data from the

flare onset in includ-d in the von Rosenvunge and Reames, and McGuire at al_

abundances. Cook (1981) has systemat i cally excluded data in flare onsets from

his SEP(Cook) averages. Von Rosenvinge and Reames (1979) report a large

abundance ra t io variation for Fe/0 as a function of energy on day 78.267. They

report Fe/0 abundance ratios of 0.37 t 0.02, 0.13 t 0.01, and 0 067 t 0.007 for

energy ranges of 2.0-11 MeV/nuc, 3.9-6.7 MeV/nuc, and 6.7-12.4 MeV/nuc,

respectively. Figure 5.2.4 is a plot of the ratio of the abundances observed in

the 78:266 flare to the SEP(Cook) average. The 78:::86 flare element abun-

dances sticw a relative depletion in the elements Ne,Si,S,Ca, and Fe, relative to

SEP(Cook) The magnitude of the depletion is consistent with the flare to flare

variations seen by Cook. Tf.n disagreement between our Measureniem or Ne /0

and He/0 and those of McGuire at al., and von Rosen%iinge aid Reaines is

greater than would be expected from a statistical fluctuation. Some of the

disagreement for He, Ne, and Fe may be due to the fact that McGuire et al., and
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von Rosenvinge and Reames included the flare onset in their abundance meas-

urements. We conclude that the abundance pattern of the r6 2E6 3are is con-

sistent with that measured for cther large flares.

In figure 5.2.4 neon seems to bc • more depleted than nigh t be expected

from t} a smooth flare to flare behavior of figure 5.2.3. To investigate whether

neon was especially depleted in the 78:266 flare, for figure 5.2.5, we plotted

Ne/O vs. Mg/O for the seven flares ilZ Cook (19d!) and two other flares in

McGuire at al. (1979) not reported in Coop (1981). Relative to the other large

SEP events, the 78:266 flare has a typicai value for ire/O and ror Mg/ 0.

i
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SKIP Cement Abundances

(relative to the oxygen abundance)

Table 52.1 -

(197'8) O wm)
(1981) van Roseavinge, McGuire

Cement M(Cook) Reames of al. this work

He 72 ± 3.3 --- 40 ± 3 53 t 2'

C 0.47 ± 0.03 0.40 t 0.03 0.49 ± 0 03 0.47 ± 0.03
N 0.12±0.01 010±001 0.12	 0.02 0.13±0.01
0 = 1.0 = 1.0 = 1.0 = 1.0

Ne 0.17±0.01 0.09±0.01 0.09	 0.01 0.13±0.01
Mg 0.21 ± 0.02 0.21 t 0 02 0.18 r_ 0.02 0.20 ± 0.02
Si 0.17±0.01 0.15±0.02 0.1610.02 0.13±0.02

Fe 0.20 ± 0.01 0.067 ± 0.007 0.08 ± 0.01 0.14 ±0.03°
0.07 ± 0.03`
0.03 ± 0.03d
0.08 ± 0.02'

Energy 5-15 Mev/nuc 6.7-12.4 MeV/nuc 6.7-15 MeV/nuc fits
5-50 MeV/nuc

Time 4 flare average 78:267 78:288:20 - 78:266,00 -
19 77-1978 78:27000 78272-00

• 76:269-76272
RANGE 0, 8-10.4 MeV/nuc

° RANGE 1, 11 8-18.5 MeV /nuc
d RANGE, 2, 16 5-24 3 MeV / nuc
' Average RANGES 0-2

,
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tfgure 5.2.5 - A plot of the element abundance ratio Ne/0 vs the ratio Mg/0

for several flares. The open and filled circles are from Cook (1991). The

flares used in the SEP(Cook) average are drawn as filled circles. The

SEP(Cook) average is an open circle with a dot inside. The open triangles

are from McGuire at al. (1979). The open square is from this work.
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The flare to Aare element abunduzcce variations are a relatively smooth

monotonic function of charge, about the SEP average. The maximal variation of

the Fe /O abum-' ),rice ratio in the Cook(1961) Aare sample is from 0.045 to 0.67,

a factor of about 15. Suppose that Fe and 0 had charges characteristic of a

temperature of 1.5 x , 00 • K, Fe' iOa and 0'0 , as calculated by Jordan (1969).

Suppose that the enhancement of the Fe/O abundance ratio, {(F)3/ 0), was

related to the charge to mass ratios of Fe and O by the relation, with a varying

from Aare to Aare,

log(( fb/ ^ = a logl q/rn( I	 (5.2.1)

Then for ^( Fly / 0) = 15, a = —3.9:. Then the enhancement of the 22Ne/2°Ne

ratio, predicted l,y equation ` _ is t(22Ne/ 20 NO = 1.45. A relation of this type
j

predicts that the `Ne. ' '^,Ne at• —.ds ' 1,,e ratio vari.:.tions :.-e correlated with the

Fe/O abundance ra .:o variations The: --;ign of the e.tect is such that 22Ne/ 20Ne

would be enhanced if Fe/O was enhanced. In the 78:266 SEP event, the Fe/0

abundance ratio is not enhanced, so we would not expect the 22Ne/ 20I4e abun-

dance ratio to be enhanced by this mechanism.

5-& Solar Energetic Particle Isotopic Composition

The isotopic composition of SEPs has been measured directly by instru-

mentation on spacecraft and indirectly by analysis of moon rocks. Direct meas-

urements of the isotopic composition of SEP events for elements heavier than

helium, have also been reported by the University of Chicago charged particle

telescope on IMP-8. The Chicago group has achieved a r.m.s. miss resolution of

a 0.42 amu for neon events and a 0 56 amu for magnesium evens. The IMP-8

instrument has a 750 4 thick front detector, and thus has an energy threshold

for two parameter analysis approximately equal to the KIST threshold for
1

RANGE 4 events.
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To make an isotope abundance measurement of moderate statistical accu-

racy, with such a high energy threshold, the Chicago group sur med )ver a

group of large solar flares. Dietrich and Simpson (1973) report

2ONe/ 22Ne = 7.7 +2.3 —1.5, (equivalent to 22Ne/ 20Ne = 0.13 t 0.03), for a group

of 7 flares, from July 3, 1974 to September 14, 1977. Dietrich and Simpson

(1979) divide the seven flares into two groups, 3 are iron-rich, with Fe/O =

u.80-1.14, and 4 are iron-poor, with Fe/O = 0.031 - 0.22. For the set of iron-poor

flares, they measure 22Ne/ '°Ne = 0.11 t 0.04, and for the set of Fe rich flares,

22Ne/ 20 Ne = 0.15 f 0.06. They find no statistically significant disagreement

between the "2Ne/ 20Ne abundances that they report for the two groups of

flares. The Dietrich and Simpson (1979) measurements would sill be consistent

with the predictions of equation 5.2.1, which would predict an enhancement of

357 for the 2eNe/ Z0Ne abundance ratio in the Fe-rich f'.ares, relative to the

Fe-poor flares. Our measurement of Fe/O in the 78.266 flare would classify the

78:266 flare as an Fe-poor flare.

There is a need for more measurements of SEP isotope abundances to

determine whether the flare to flare isotope abundances also vary in a manner

analogous to the SEP elemental abundance variations.

Dietrich and Simpson (1981) report 2014g/ 21Mg = 0.13 t 0.04, for a group of

10 flares, from July 3, 1974 to April 28, 1978. They do not report results for the

21 Ne/ 20Ne and 23Mg/ 24 Mg abundance ratios, because those isotopes were not

resolved in their data.

Indirect measurements of SEP isotope abundance ratios have been

reported, using moon rocks as collectors for the SEPs Black (1972a,b) has

presented evidence for the existence of a neon component in lunar soils and

meteorites that was implanted by solar energetic particles of 1-10 MeV/nuc.

Black finds isotope abundance ratios for the component, neon-C, of

.J
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sHe/ 4 H = 4.1 t 1.0 x 10 -4 , 22Ne/ 20Ne = 0.094 t 0.003, and s°Ar/ "Ar = 4.1 t O.B.

Yenkatesan et al. (1981) studied etched feldspar separates of lunar soils and

conclude that the long term average solar flare Ne composition is about

22Ne/ nNe a 0.083. Yaniv and Marti (198 1) find 22Ne/ 20Ne = 0.082 t 0.001 in the

near surface layers of a lunar rock and conclude that 20Ne may be depleted in

solar flares. Etique et al. (1981) find " 2Ne/ 20Ne z 0.089 for solar flares, by etch-

ing lunar plagioclase samples. All experimenters measare a 22Ne/ 20Ne abun-

dance that is lower than the solar wind values reported by Eberhardt et at.

(1970), but higher than the direct measurements in this work and by the Chi-

cago group.

The sHe/ 4He abundance ratio has been measured by a number of groups of

experimenters. Anglin (1975) measures 3He/ 4He = 0.027 t 0.005 in a 1969-1972
i 

flare sum Hurford (1975) has 9He/ 4 He = 0.009 t 0.004 in an October 1972 to

November 1973 flare sum For the large SEP events analyzed by McGuire et aL.

(1979), only upper limits, ranging from 0.008 to 0.06, for the sHe/ 4 He abun-

dance ratio were reported. For the large August 1972 series of events, Webber

et al. (1975) report fliute 'He/ 4He abundance ratios that vary with energy,

ranging from about 0.001 at Ib 10 MeY/nuc, to about 0.015 at b 60 MeY/nuc.

'.hey interpret their result as due to spallation in the solar atmosphere.

For another class of SEP event, higher values of 3He/ 4He have been

reported. ^He-rich (Garrard et aL. 1973) events are SEP events in which

'He/ 4 lie  is noticeably enhanced ( 13 He/ 4 He z 0.1) over average values measured

in large SEP events, discussed in the aura e paragraph. The high abundance of

'lie/"He coupled with the low observed abundances for D/H and T/H, means

that high energy nuclear spallation reactions cannot have caused the high

'He/"He abundances (Garrard et a1. 1973). Relative to the average SEP abun-

dances measured in large events, 3He-rich events have lower H fluxes, higher
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4 He/ H ratios and higher ratios of elements with charges Zz6 to "He. 3He-rich

events have generally been observed as small SEP events (Hurford at al. 1975,

Hovestadt at al. 1975, Mason at al. 1980). In two small 3*He-rich events, men-

tioned in section 3.4, 2d 300 He events were observed, while for the 78.266 flare,

over 100 He events were seen.

9l-ie-rich events are of interest here because of the large isotope enhance-

menus observed; Hurford at al. (1975) report sHe/'He 8 for one event, or

2 x 104 times the value reported for the solar wind. It is possible that a 'He-rich

event could occur simultaneously with a large SEP event, or be triggered by it.

Despite the low flux levels of sHe-rich events, the extremely large isotope

enhancements might bias the isotope measurements in large SEP events, if a

sHe-rich event occurred at the same time as a large SEP event.

According to a model by Fisk (1978), selected ions can be preheated at the

flare site, prior to the flare, when the ions satisfi , an electrostatic ion cyclotron

wave resonance condition. The conditions necessary for the Fisk model to

apply are that nH3 nH Z 0.2, T./ Tt z 5, and that P, the ratio of thermal energy

to magnetic fleld energy, satisfies j6 s 10 -3 , at the flare site. The resonance fre-

quency lies between the H and lie gyrofrequencies, and only the 'He gyrofre-

quency satisfies the resonance condition with its first harmonic,

loos other than 9 11e can also be preheated in this moael if the second har-

monic of the ion gyrofrequency C1i satisfies the equation (!Mason of al. .960)

1.05<211/D,* <1.19+0.13(my/m,) 2	 (5.31)

Nure 5 3.1, modified from figure 10 in Mason of al (1980), is a plot of the fre-

quency of the second harmonic of the ion gyrofrequency for the various charge

states of abundan t, solar isotopes. Selective isotope enhancements for heavy

elements in the Fisk model may not be plausible First, the equation 5 3.1 reso-

nance condition selects a wide band of frequencies,
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figure 5.3.1 - (adapted from Mason et al. (1980) A plot of one halt of the

second harmonic of the gyrofrequency for various charge states of several

ions, as a function of f, -/ QM.
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and different isotopes of the same element are separated by much less than the

width of the allowed frequency band. Secondly, in a realistic model of the dare

site, the charge state distribution for the heavy ions would be spread over

several charge states due to inhomogeneities in temperature at the flare site.

For neon the prunary charge state varies from +8 to +10 as the temperature

varies from a 5 x 109 'K to a 5 x 100 'K, according to the charge state calcula-

tion.° of Jordan (1969). In particular, a large 2' Ne/ 20Ne enhancement could

only be produced if most of the neon was in charge state ;", at a temperature

of a 5.6 x 1 DO * K, and very little neon was in charge state +8, and if the upper

Limit to the enhanced gyrofrequencies was about 21) / OK = 1.3. Our upper

Umit for the 51ie/ 4fie abundance ratio in the 78:266 SEP event is

3 He/ 4 H s 0.0026, measured in RANGES 2-5.

Thus we believe that the 78.266 flare is not described by this type of flare

model. The narrow range of flare site temuw ratures required to produce a

22Ne/ 20Ne enhancement and the absence of any measurable enhancement in

the 3He/ 4 He abundance ratio argue against the Fisk (1978) model for flare site

preheating in this flare

5.4. Solar Isotope Ideaaurementa

Direct measu^ements of the solar isotopic composition are rare. Some stu-

dies have looked at the spectra of molecules in sunspots, which are a cooler

environment than the photosphere. Hall (1973) and HaIL Noyes, and Ayres

(1972) have investige.ted the infrared spectra of the molecule CO The abun-

dance of 19C/ 12 C was found to be 0.94 t 0.1 of the "terrestrial" value. ' 90/ 190

was measured as 1.06 t 0.35 of the terrestrial value. With Cameron's (198:)

values	 for	 the	 the	 above	 terrestrial	 abundance	 ratios,	 then

13C/ 12 C = 0.0:04 t 0 0011 and 19 0/ 10 0 = 0 0021 t 0.0007

I
i
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Boyer, Henoux, and Sotirovski (1971) observed absorpt!on lines due .o the

molecule MgH in sunspot spectra and obtained 25 Mg/ 24 Mg = 0.125 t 0.038 and

"Mq/ 24Mg = 0.125 t 0.038. Their results conflict with Branch (1970) who

obtained ^Mg: 2°M_g 21I Mg of 60:20:20. Branch's work was criticized in 1 ambert,

Melia, sad Petford (1971), who set limits for the abundance ratios 231,./ 24Mg

and 20 M g/ 24 Mg, that they believe are con!r:stent with the terrestrial abu ndance

ratios of 24 Mg: 21 Mg: 2°Mg of 80:10:10.

Hall (1975) has measured solar Ne/'He abundance by fitting the shape of

a helium spectral line feature at 10850 A, observed in emission in a pror- i ence.

Hall obtains 4 t 2 x 1O' for the s'He/'He abundance ratio.

5..5. Solar Wind Isotopic ConVcsiLum

The solar wind provides a sample of material from the sun. The isotopic

composition of the solar wind has been measured by instrumentation flown on

satellites, and by mass spectroscopic means, after collection on the surface of

moon rocks, or on special foils deployed by the Apollo astronauts. For selected

isotope ratios, the composition of the solar wind has been experimentally meas-

ured to an accuracy' of a few per cent. The major problem is to relate the isoto-

pic composition of the solar wind to the isotopic composition of the sun.

The elemental and isotopic composition of the solar wind is not constant as

a function of time. The He/H obundance ratio in the solar wind can vary on

time scai::s from years to minutes, the magnitude of the He/H values reported

have ranged fro ►n B.1 x 10 -' to 0.42 (Neugebauer 1981). The ^He/'He abun-

dance ratio is also observed to vary O^Jvie et al. (1980) find that 3 He/ "lie is

correlated with 4 H bulk velocity and varies from greater than 5 x 10 -3 to less

than 2 x 10^. Thus time variable mas , fractionation effects occur in the solar

wind.

,E
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The long term average abundances of elements and isotopes in the solar

wind do not show such a large range of variation. Ogilvie and 11 rshth erg (1974)

IInd a solar cycle variation to the He/H ratio of only 0 01 t 0.01, from 0 035 to

0.045. The abundance ratios, though relatively stable, may still be appreciably

fractionated and different from the Sun's composition The solar He / H abun-

dance u not well known. Heasly an i Milkey (1976) measure He/ H = U.1C t 0 025

in gwescent solar prominences. Ross and Alter (1976) have

He/ H = 0.063 ( + 0.037 - 0.023), based on lambert's (1967) analysis of the pho-

tospheric O/H abundance and the He/0 abundance from SEPs.

If the He/H abundance in the outer parts of the sun has not been altered

by auclear processing, then it should be equal tv the He/H ab-. indance at the

time that the sun formed. Geiss and Reeves (1972,1981) set an upper linut of

2 x 10 -5 for the D/H ratio in the material out of which the sun was fcm,ed. This

upper lumt to D/H, according to a standard model of bg-bang nucleosynthesis,

(Wagoner 1973), sets a lower limit to the He/H abundance of lie/H = 0 075, 3s

the stellar destruction of lie since the big bang is negligible

A reliable value of He/H in the solar neighborhood is He/H = 0.:01 t 0 005

(Piembert 1975), obtained by analyzing H Il regions of the Onon nebula. '''hus,

the sun probably has a value of He/H of about 0 1 and He/H is very likely to be

greater than 0 075 The ratio of these estimates of the solar lie / H value to the

long term averages of solar wind He/H ratios is at least 0 075/0.045 = 1.67, and

probably greater t,`ian 2 Further evidence for hell ,-Hn depletion in the solar

wind may come from the helium enhancements observed in the post-shock

solar rend plasma, after the passage of a flare ,— -)crated shock way° (Q.—_

n1 u. :979. Hundhausen

Models of the solar wind are not yet very successful at explainini

^}le/ •}le and He/H GFsons for the fluctuating abundance ratios 
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(1970) have considered a model of the solar wind in which a proton fluid

a a 
expands out from the solar corona, dragging the ions by dynamical friction. In

that model ions are accelerated in the solar wind or—'y if the proton fluid has a

certain minimum flux, which is a function of the ion's charge and mass. For

charge states characteristic of the solar corona, if 4 H is accelerated in the

solar wind, then so are all other ions heavier than 1 H, with the exception of D.

Ogilvie at al. (1980) h ave searched for a correlation, predicted by the

model of Geiss at al., between the 3He/ 4 H abundance in the solar wind and the

H flux. They do not find such a corre:at^on. but instead find a correlation

between'3 He/ 4 H and 4 H flux. Schmidt of al. (1980) measure the speeds of H',

He", and Oe+ in the solar wind and flnd v (He") - v (H + ) and v ( Oe+ ) - v (H +) to

be on average equal and in the range 0 to +60 km/sec. Ions with velocities

greater than hydrogen require a means of acceleration in addition to dynamical

friction (Schmidt at al. suggest solar wind plasma waves) which could change

Geiss at zl.'s (1970) conditions for fractionation effects.

We can conclude that a consistent theoretical and exper'mental framework

to explain the helium element and isotope abundance variations in the solar

wind does not yet exist. In particular whether or not there is a difference

between the long term solar wind sHe/ 4He abundance and that of the sun is not

known. Geiss of al. (1972) measure eHe/ 4He = 43 t 0.2 x 101 to the solar wind

and Hall (1975) obtains sHe/ 4 H = 4 t 2 x 101 for the spectra of a solar prom-

inence. If the difference between solar wind and the sun's He/H abundances

depended only on the charge to mass ratio, then the 9Hc/ 4He abundance might
r1

be a '^3% larger than on the sun. We based this estimate on equation 5.2.1 and

an assumed depletion of the He/H abundance ratio in the solar wind relative to

the Sun of a factor of 2. The data coo not exclude this possibility.

The solar wind noble gases nave been extensively measured after collection
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on special foils and )n moon rocks. Grtss at al (1972) everaKed the results of

several	 Apollo	 foil	 collection	 experiments	 and	 obtained

s tle /''He = 4.3 z 0.2 x 10 -4 ,	 12Ne/ 1O Ne = 0.073 t 0 002,	 and

"Ne/ O"Ne = 0 033 t 0 004. Eberhardt at al. (1970,1972) analyzed trapped solar

wind noble gases in lunar soils and obtain 'Ile/ M lle = 3.7 t 0 1 x 10 -4 and

:^2 Nr/"O Ne = 0.079 t 0.001 for the present day solar wind. There is a slight.

d.tTerence between the t wo sets of values, which is evidence Lhal the lighter )so-

Lopes are slightly depleted in the moon rocks.

Eberhardt at al (1972) report that for trapped Ar in lunar soils, the abun-

dance raLio is 1eAr/ "Ar = b 33 t 0.03, in agreenienL with terrestrial 1 W J°Ar

values They report. Lrapped Kr isotope abundances in lunar soils that. are frac-

donated by about 0 1% per &M a relative to terrestrial values, but corsider

solar wind and terrestrial Kr to be consistent within the accuracy of the

method. The lunar trapped Kr isotopic abundances also agree with the average

value of trapped Kr in carbontu • eous chondr)les Tho agre.ernent of Ar and Kr-

isotope abundances with Lerrvstrtal valutts argues against solar wind mass frac-

Uonntinn of (tit, noble Kasen, unlo.-s all of Lhe Lerrestrial Ar and Kr was

deposiLed on the earth by the solar wind if Lhere was solar wind isotope fractio-

nation. then the terrest.r)t ► I pattern would have) to exacLl y m.%Lch the solar wind

pattern, to reproduce the expcnniental results

The ►solopes of Xe do not agree with the above picture (Podosek i978,

EI)erhardt et al 1972). Compnrrd with terrestrial v.dtivs, the trapped solar Xe

isotope abundances show miss 'ractionation of about .1% per a m.0 , di(N-111L to

expinin at Lhe sarnx) t.tmr as the Ar crud Kr results The average isotopic crnipo-

sitton of carbonaceous chondrites tigrees with solar trapped Xe for mass

nunibc• rs ,''-"4-130 Xe mass minibus 132-1;16 for the ehondrites's abundances

show an excess compared tO the solt^r trapped Xr, which has been attributed to
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fission fragments. However. Uie iiiass spectrum of the Xe is not that expected

from common fission parents. Xe then may question the internal consistency of

the above picture that the solar rind has undergone minimal miss frtictiona-

Lion

Other elements have been idenLifled on the surface of moon rocks as hav-

Lig possibly been implanted there by the solar wind There is evidence that the

surface component of lunar nitrogen has had its 1 °N/ 14 N abundance ratio

increase in the past by about lb-2U% (Kerridge at at 1977, Hecker and Clayton

1975) For samples in which both 15N/ 14N and 2'Ne/ "No were measured, the

change in the '"N/ "N abundance is not correlated with the "No/ 40 Ne abun-

dance Hecker (1980) finds a weak correlation between the 1°N/ 14N abundance

and ' 3C/' IC abundance, though the .hange in "t'/ "C abundance is about 10

as large as the change in the t °N/ "N nburioar.ce Kerridge sit al (1977) find no

convincing explanation of the variable ' s ':: ' 4 N abundance ratio, and they con-

sider both effects at the lunar surface and niechan,snis that change the solar

wind composition with Lime

Epstein and Taylor (197 11) have found Lhat carbon in lunar soils has a total

carbon content that is correlated with the hydrogen content. Samples with

high carbon content have isC/ te C enriched by about ;)ti over soils with a low

ca.rboa contrnt. They do not believe that they hAVe prsitivvly idvntifled the

source of the isotopically heavy carbon. though cne of the possibilities thAL

they mention is that the heavy carbon conics from the solar wind.

Thus, for carbon and nitrogen, incomplete physical understanding of the

source of lunar carbon and nitrogen prevent a sure identification of the isoto-

pic coaiposit.ion of solar wind carbon Ar.d nitrogen We can distinguish several

possibilities. For the first, we MAV suppose that n, Aher the 1 °N/ ' 4 N nor the

' st'/ 1 °C' abundance ratios measured IIh0Vc Accurately reflect the conip,"sili011 of
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the solar Mind. For the second, it either the carbon or the nitrogen i,otopLc

abundance accurately reflects the solar wind, then that would be strong evi-

dence against a simple linear mass fractionation process operating in the solar

wind acceleration process. lithe nitrogen results accurately measure the solar

wind and solar wind compositional time variations, and are not a resn; It of a

changing solar surface composition, then the problem becorzes more complex.

L some unknown effect can cause the 15N/ "N ratio to vary and not otter Iso-

tope ratios, like 22Ne/ EO Ne and ' 3C/'2 C, then we cannot predict the behc.vior of

one isotope ratio by observing another isotope ratio. The nitrogen results, like

the Xe results, might tend to question the internal consistency of of a simple

picture suggesting the absence of solar wind mass fractionation for sotope

ratios in the solar wind.

Zinner et al. (1977) analyzed surface enhancements of Mg that may be due

to the solar wind. They flnd isotopic abundances that are consistent with ter-

restrial values within the experimental uncertainties estimated (Zinner 1979) to

be about 20%.

5 B. Con4arnson of S I and Solar Isotope Abundances

The goal of our analysis is to compare solar and SEP isotope me asure-

merits. That task is made difficult by the scarcity of direct solar isotope meas-

urements. As discussed in section 5 4, the direct measurement of the , sotope

ratios "He/ 'He, 13 C/ 12 C. 1 e0/ 10 0. 25 Mg/ 24 Mg and 2eMg/ 2"Mg, have uncertainties

of 50%. 10%. 35%. 30%. and 30%, respectively We could not find direct solar

values for the isotope ratios 22 Ne/ nNe and 1 °N/ 14 N Table 5 8.1 contains a list

of measurements of the isotope ratios of the elcnnwnts lie, C, N. 0, Ne, end .Leg,

discussed in this chapter, along with our SFP measurements.

A source for indirect information about the isotopic composition of the Sun

L9 the composition of the carbonaceous chondnte class of ineteorite. As
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discussed in Wasserburg et a.L. (1980), the isotopic composition of meteorites

n . and terrestrial materials is characterized by its homogeneity, the isotopic coM7

positions of any two samples of solar system material are likely to be the same

to an accuracy of mucl; better than a per cent. This was thought to be strong

evidence for the view that the solar system at "birth" had a uniform isotopic

composition, and that the small variations in isotopic composition. seen today

on the Earth are the result of various physical and chemical fractionation

processes. Recently, as discussed in Wasserburg et aL. (1980), evidence of pri-

mordial inhomogeneities has been found, in the anomalous isotopic composition

of parts of certain meteorites. Except for some noble gases, the maximum
C

difference between the anomalous and terrestrial isotopic abundances that has

!	 been seen is about 5-67.

The best accuracy that we report for our 5EP isotope ratio results in tables

4.2.1 and 5.6.1 is about 207. For our purposes we can take as "solar" the ter-

restrial and meteoritic abundances for the elements which are not noble gases,

C. N. 0, and Mg. We have used the terrestrial and meteoritic abundance compi-

lation or Cameron (1961) as a source for these values, also listed in tables 4.2.1

and 5.6.1.

i}1

f

i
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Table 5.8.1 -

	

abundance ratio	 value	 source

	

slie/ "He	 4.3 t 0.2 x 10-4	 solar wind

	

4.0 z 2.0 x 10 -4	 solar spectra

3.7 t 0.1 x 101 solar wind
implanted in

lunar soils

4.2 t 0.8 x 10 -* meteorites
(He-B)

1.3 t 0.8 x 10 -4 meteorites
'He-A)

0.027 t 0.005 SEPs

0.009 t 0.004 SEPs

.900026 SEPs

reference

Geiss et al.
(1972)

Nall (1,973)

Eberhardt at al.
(1972)

Mazor at al.
(1970)

Mazor at al
(1970)

Anglin ('975)

Hurford ( :975)

this wirk

Ulu 12 C	 0.0104 t .0011	 solar spectra
	

Hall (1973)

	

0.0111
	

Cameron (: 981)

	

0.0095 + 0 0042	 SEPs
	

this work
-00029

1O N/ 14 N	 It' + 10% to	 solar wind

	

a - 5% of	 implanted in

	

terrestrial	 lunar soils

00037

	

0.008 + 0 010	 SEPs
- 0.005

Kerridge at al
(1977)

Cameron (1.981)

this work
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Table 5-6.1 -
(cont

	

abundance ratio	 value	 source	 reference

	

' SO/ 1 °O	 0.0021 t 0.0007	 solar spectra	 Hall (1973)

	

0.0020	 Cameron (1981)

	0.0015 + 0.0011	 SEPs	 this work
-0.0007

"'Ne/ 20Ne	 0.0026 t 0.0001 Ne-B Black(1972a)

0.0024 t 0 0003 solar wind Geiss et at.
(1972)

0.0025 t 0.0001 solar wind Eberhardt et al.
implanted in (1970)
lunar rocks

0.0030 Cameron (:981)

s 0.014 SEPs Mewaldt ct at.
(1979)

s 0.014 SEPs this work

22 Ne/ 20Ne	 0.073 t 0.001 solar wind Geiss et at.
(1972)

0.078 t 0.002 solar wind Eberhardt et at,
implanted in (1972)

lunar soils

0 H BO t 0.001 Ne-B Black (1972a)

0.122 t 0.006 NC---A Pepin (1987)

0.122 Cameron (1981)

0.13 t 0.03 SEPs Dietrich and Simpson
('1979)

0 1 1± 0 04 SEPs, Fe-poor
0.15 t 0 06 SEPs, Fe-rich

0 13 + 0 04 S.̂_.Ps Mewaldt at al.
- 003 ("979)

0.109 + 0 026 SEP9 this work
- 0.0.9
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Table 5.d.1-
(Cone)

abundance ratio

201W a4M8

reference

Boyer at al.
(19i1)

Zinner (1977)

	

vale	 source

	0.125 r 0.038	 solar spectra

	

terrestrial t 20%	 solar wind
irriplanted in a

lunar rock

0 129

0.15 + 0.05
-0.02

0.148 + 0.043
-0.025

Cameron (1981)

SEPs	 Mewaldt at al.
(1981)

SEPs	 this work

2111W E4 h'-$	0.125 t 0.038	 solar spectra

	

terrestrial 1 20%	 solar wind
implanted in a

lunar rock

Boyer at al.
(1971)

Zanner (1977)

0.142	 Cameron (1981)

0.15+0.04
-0-03

0.13 t 0.04

0.148 + 0.048
- 0.028

SEPs	 Mewaldt at al.
(1981)

SEPs Dietrich and Simpson
(1981)

SEPs	 this work
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The noble gases are a more complicated story. For the elements He and Ne

observed in meteorites, two primary components have been discovered, "A or

the "planetary" component and "B", or the "solar" component. He-A has

9He/ 4 H a 1.5 x 10 -4 and He-B has 9He/ "He a 3.9 x 10 -4 , while Ne-A has

72Ne/ 2ONe a 0.122 and Ne-B has 22Ne/ 2°Ne a 0.080 (Podosek 1978). "B", the

"solar" component, is thought to have been implanted in the meteorites by the

solar wind. This idea is strengthened by the analysis of trapped solar wind

gases in lunar scils, where 22Ne/ EONe = 0.078 t 0.001 and

sHe/ 4 He = 3.7 t 0.1 x 10 -4 (Eberhardt et al. 1970) is obtained. It has been sug-

gested that the difference between the present day solar wind neon measure-

ments of Geiss et al. (1972), with E2Ne/ 20'Ne = 0.073 t 0.002, and the two meas-

urements of solar -rind neon trapped in lunar soils and in meteorites may

reflect mass fractionation that occurs in the trapping process. At argon the

difference between the "solar" and "planetary" components becomes much

smaller. In meteorites Vazor et al. (1970) have found that there are only small

variations to 9e r/"Ar. 3OAr/ 3BAr varies from 5.3 to 5.5, as the 22!Ne/ 20 Ne com-

position varies from ^— 0.125 to a 0.080, or from the "planetary" to "solar" corn-

positions.

We want to know the isotopic composition of the Sun, for He and Ne, i9 it

similar to the "solar" or "planetary" meteoritic compositions, or is it something

else entirely? We will explore the views that the Sun is either "solar" or "plane-

Lary" in its noble gas isotopic composition, and examine the consequences of

r each.
r	 .

r	 The argument that the Sun has "solar" noble gas isotopic composition isr

r

I

	

	 suppor^ed by the ncble gas elementa, abundance patterns in "solar" and

"planetary" gases Relative to the "solar" gases, the "planetary" noble gas ele-
r

mental composition pattern shows a depletion of about 4 orders of magnitude
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for the light noble gases relative to the heavy noble gases (Podosek 1978). This

elemental depletion could have been accompanied by isotope fractionation.

The lighter isotopes of the "planetary" component of He and Ne are depleted

relative Cc the "solar" component.

The close agreement between the -isotopic composition of the "solar"

meteoritic gases for the elements He and Ne, and the solar wind measurements

of He and Ne, support the identification of the "solar" meteoritic component as

implanted by the solar wind. Then the Sun would have " solar"noble gas isoto-

pic abundances if the solar wind was an unfractionated sample of the Sun. In

section 5.3 we discussed the evidence for the absence of a simple linear mass

fractionation bias in the long term average isotopic composition of the solar

wind. In general the evidence was consistent with a lack of a simple linear mass

fractionation bias, but the elements aitrogen and xenon were not explained by

the sunple picture. If there is no mass fractionation bias to the solar wind, then

the solar isotopic compositon for the elements helium and neon would be that

measured b^ Geiss et al. (1972), with 'He/ "He = 4.25 t 0.22 x 10', and

22Ne/ 2QNe = 0.073 t 0.002 Our SEP measurement of

-2Ne/ 2°Ne = 0.109 + 0.026 — 0.019 disagrees with the solar wind measurement

and we would then have to look for bias in the solar flare acceleration process.

The view that the Sun is made of "planetary" noble gases seems to require

some type of mass fractionation in the solar wind acceleration process, for the

elements helium and neon. "hat view assumes that the depletion of lighter

noble gases in the "planetary" 2omponenL of meteorites did not affect the isoto-

pic composition of the gases left behind in the meteorites The ''planetary" iso-

topic compositions for helium and neon then more closeiy reflect the isotopic

composition of the Sun, than does the isotopic composition of the solar wind.

This view is supported by Cameron ( 11981) who uses "planetary" isotopic compo-
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sitions for his noble gas isotopic composition-a . Mewaldt of al. (1979,1981), in

an earlier presentation of this work, have argued that their SEP measurements

support the "planetary" view. Their SEP measurement of the 22Ne/ PO Ne ratio is

much closer to neon-A than to neon-B. The other isotope abundance ratios

that they measure for i;, N, 0, and Mg, do not show any evidence for a simple

SEP mass fractionation bias that would explain the '"Ne/ 2ONe result

The isotope abundance ratio results in this work do not represent a statist-

ically significant difference between this work and Mewaldt et al. (1979, 1981).

I do net find their suggestion that the Sun is made of neon-A attractive, pri-

marily because I find no convincing evidence of solar wind mass fractionation.

We have seen in the previous section that Ar and Kr isotope abundances for the

solar wind implanted in moon rocks agree with terrestrial abundance ratios

This is a strong argument against R simple linear aolar wind mass fractionation

According to the theory of Geiss et al (1970). Ar requires a higher flux of H in

the solar wind to be "pulled along" in the solar wind than does Ne, and so should

be even more susceptible to mass fractionation. To me it is more plausible that

an isotopic mars fractionation accompanied the observed depletion of the light

noble gases in L-be format , on of the "planetary" noble gas component of meteor-

ites.

In the following discussion we will compare our measurements with our

best estimate of the Sun's isotopic composition We wil; take the position that

the solar wind isotopic composition is identical to that of the Sun. The direct

measurements of Geiss et al. (1972) will be used for the He and Ne abundance

ratios. For C, N. 0, and Mg. we will use the meteoritic and terrestrial isotope

abundances from the Cameron compilation (1981).

Table 5 B 2 contains the comparison between our measurements (corrected

for energyinuc) and the solar values. The "reduced difference SEP - solar" is
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the difference between our SEP measurement and the solar abundance ratio

given in the table, divided by the error in the SEP measurement. There is good

agreement between our SEP measurements and the solar abundances, except

for 22 Ne/ 2oNe. The isotope abundance ratio for which the best solar wind and

SEP measurements exist, shows a marked disagreement between the solar wind

and SEP values. Our likelihood confidence interval calculations give a 2 5% pro-

bability that the SEP isotope ratio could be as low as 2Ne/ 21 N = 0 073, meas-

ured in the solar wind.

We can investigate the possibility that a simple linear mass fractionation in

the S-E-Ps produced the distribution of isotope abundance ratios that we meas-

ured. We define a normalized isotope abundance ratio for element Z as the

ratio of our SEP isotope abundance ratio for element Z divided by the solar iso-

tope abundance ratio for element Z. Figure 5.8.1 shows the normalized isotope

abundance ratios for our measurements of ' 3C/ 12C, "0/ 18 C). 22 Ne/ nNe,

!°Mg/ 241',g, and `°Mg/ 24Mg, plotted as a function of the ratio of the isotope

masses, A,/ Ai , where Aj is the heavier isotope. For a simple linear mass

fractionation process, the enhancement, ^V ,i), of isotope ! relative to isotope i,

is

l
A

^	 {^,i)=a (At)-

It a linear moss fractionation process had operated on SEPs, the plot of

reduced abundances vs Aj / Ai would be a straight line. 71he line's intercept

would be a normalized abundance equal to 1 at Aj /A, = 1 The data for ele-

ments; C, 0, and Mg seem to be consistent with an absence of SEP mass

fractionation. Tlie Ne point does not follow the trend of the other data
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- A plot of the normalized isotope ratio abundance

(A/Xj ) Sxp/ ()^/Xj).,Lr as a function of the ratio of the masses of iso-

tcpes i and j, A/Aj.

1.05	 I.10
Isotope Moss Roto Aj/AI
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Mewaldt et at. (1979) investigated the possibility that the '2Ne/ 20Ne abun-

dance ratio was al tered by nuclear spallation reactions, which might have

occurred as the SEPs pass through the solar atmosphere. They found that

nuclear spallation reactions in I-he solar atmosphere were much more likely to

produce 21 Ne than 22Ne. Then the observed upper limit to the 2 'Ne/ 2O Ne abun-

dance ratio of 21 Ne/ 20Ne 5 0.014, implies t7nt much less than

0.014/ 0.109 = 13% of the 22 N events could have been produced by high energy

nuclear reactions as the SEPs propagated from the flare site to MST. It is then

not likely that nuclear spallation reactions by the SEP particles have caused

the difference between the solar wind and the SEP 22Ne/ 2ONe measurements,

Thus, the neon seems to be a puzzle If neon is fractionated in the solar

wind, the fracLmation process must be cherrucally selective, it must produce

wretch more severe fracLionation for neon than for argon and krypton. Tae

same consideration apphes Lo SEP9. If neon is fractionated in our SEP meas-

uremer.Ls, then it must be fractionated more than the isoLupes of C, 0, and Mg.

There is a model of the solar flare preacceleration process that seeks to

explain the values of 22Ne/ 20 ''e repor;.ea to solar flares in thin work and by

'	 Dietrich and Simpson (1979) a9 a solar flare preacceleration enhancement of a

solar wind - like neor comf osition for the Sun.

Mulian and Levine (1f8l) have introduced a theoretical model that seeks to

explein the abundance enhancements observed in solar flares. They model a

flare preacceleration process that takes place inside a collapsing neutral

current sheet, in a magnetic flux tube look They assume that in such a struc-

ture the maximum temperature of the loop may regulate itself so that the col-

lapse time scale, tB, irn only slight], smaller than the proton Coulomb less tin-

tp . In such a situation, tons with atomic charges, Z2 -A, are preheated along

with the protons bee ause they gain energy from the collapsing magnetic fleld at
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a rate, 1/ tB , and lose energy at a rate, tj , such that t1 s ty s te. The popula-

tions of preheated ions might bij converted to element abundance enhance-

rnents in SEPs by a SEP acceleration process that accelerated only particles

above a certain energy threshold, for example.

The Mullan and Levine model predicts that the SEP abundances for charges

in the regions around Si and Fe will be enhanced compared to elements in the

charge regions S-Cl and C-0. The abundance enhancements in this model may

vary depending on assumptions made about conditions at the i9are site. Mullan

ano Levine do not propose specific models for the possible flare to flare abun-

dance variations.

Mullan ( 11982) has appiied Mullan and Levine's (1981) model to SEP isotope

enhancements. Mullan finds enhancements of neutron rich isotopes of various

elements for certain values of a in the relation

tr = (1 — c) to	 (5.8.2)

that defines the relaLion be'weer_ the magnetic collapse time and the Coulomb

energy loss time. Mullan introduces a measure of in-homogeneity into ttie

preflare conditions at the flare site by integrating the fractions of various ions

that are preheated over a distribution of E values. For a distribution for r that

LQ constant for I t j s do and zero for I r I z dc, and for de --^ O.:,J, Mullan finds

that the preheat mechanism would enhance the 22 11le/ 20Ne ratio more than for

other measured isotope ratios.

The theory predvAs that enhancements in the abundance ratio 19 C,' t2C will

be produced for the same flare sitz conditions that produce the 22Ne/20Ne

enhancements. PuLure high precision encasurements of correlations between

15f.'/ 12C end 22 tie/ 2o Ne would be strong evidence for the Mullan and Levine, and

W11an models. Unfortunately, the Mullan and Levine theory has too many free

parameters for a precise element by element comparison with SEP meas-,re-

i

i
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me nts.
f

There is a need for more measurements. SEP measurements of isotope

abundances should be made for more flares, to assess the extent of variability

of Lhe isotope abundances. Dif Icult measurements of the present jay solar

wine isotopic compositice for C, N, 0, Mg, and other common elements that are

not noble gases, should be attempted.

5.7. S:ral Correction to Isotope Abundance Ratiotr

A subsidiary issue that has been left unmentioned so far is the question of

making corrections to the isotope abundance ratio , based on considering the

spectra as functions of energy/nuc or total momentum. There ar y two pos°:I)ie

ways to discriminate between the two hypotheses. One method to discruninate

between the energy/nuc and total momentu.-n isotope abur.sance corrections,

is to plot isotope abundance ratios vs. energy and correct in turn for

ene•-gy/nuc and total momentum If one hypothesis produced an isotope abun-

dance ratio that — Aipproximately constant as a function of energy, and the

other hypothesis did not, then a choice could be made Unfortunately, marginal

statistics would make such a test, inconclusive when applied to the isotope

abundance ratios measured for the 78 288 flare.

A second method considers the '..:.!ope abundance ratios integrated over

all energies. The ratio of the energyinuc correction to the total momentum

correction, for the 20 Mg/ 2"Mg abundance ratio in RA.NGEs 2-4, is 0.858/1 444 =

O.Ga, n considerable difference. Table 5.7.1 lists the isctope abundance ratio

rx., su l , 9 for the 288 9are corrected for the toLa, momentum functional depen-

dence. Also listed in table 5.7.1 are the ratios of the correction factors for total

rnrmerturn to the correncc-n 'actors for energy%nuc Table 5 7 1 lists the fac-

tors by %hich to muIL!ply the isotope ratio results of section 4 2 in order to

obti l n isotope abundance ratios corrected for total momentum or equivalently,

i
I



rigidity.

The reduced differences of SEP minus solar isotope abundance are all post-

Uve. when we correct for total monwntum. and much larger than would be

expected from random statistical fluctuations. Then we conclude that the

spectra of the heavier isotopes are better reprevented by a spectral shape that

is a function of energy!nuc.

S8. Canclusions

We have measured isotope abundance in a large solar flare for the c le-

mats of lie, C, N, O, Ne, and Mg The elenwomt abundances to the flare are not

very deferent from the tiY1P avrraje of Cook (1981). The 78 288 flare  is slightly

depleted in lolements heavier than oxygen and in iron, relative to the four flare

nvrrage of Cook(1981) The SEP isotope abundances observed in the flarn agree

i
	 with terrestrial and solar isotope .abundances, with the vxeeption of neon The

i
neon	 isotopic	 abundance	 we	 measure	 for	 the	 flare,

"Ne/ MNe = 0 109+0 028-0 0, 9. is diRerent from the neon isotope ,abundance

nrasured by Geiss at al. (1972) for the solar wind, re tie/'t'Ne = 0 071 t 0 002.

The neon isotopic abundance for this flare is the same as "planetary neon", or

neon-A, which Camoron ( ;981) has adopted as a solar system value

Separate ar-i.ni,•nts appear to rule out simple linear mass fractionation in

the solar wind and in our SEP moasurements as the cause of the discre pancy in

the composition of the nppiarenl compositions of these two sources of solar

hint erial
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MW and Solar Isotope Abundances
(S1' corrected for energy/nuc)

Table 5.5.2 -

reduced`
solar	 SW difference

Ratio abundance	 source	 measurement hE P - solar

die/ 41-le 4.3 x 10 ♦ 	 Gem of al	 --0.0026 ---
(1972)

' SC/ ' E C 0-011i	 Cameron	 0.0095 + 0 042 -0.4
(1980)	 - 0.029

1°N/ 14N 0.0037	 0.008 + 0.010 +0.9
- 0 00;

1 °O/ ` °O 0.0020	 0 0015 + 0 0(1 11 -0.5
- 0.0,107

ZE Ne/ P0 PIe 0.073	 Geiss et al	 0.109 + 1) C26 +1.9
(1972)	 - 0.019

mmg/ 24 Mg 0.129	 Cameron	 0146+  0 048 -,08
(19P))	 - 0 025

`°Mg/ 24 Mg 0.142	 0 1 .19 + 0 043 +0.3
- 0 025

` The reduced difTerence between the SFP !md solar
abundances is the difference between the SFP and solar
abundances divided by the error bar for the SE:P
measurement.
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Corrected for Total Momentum

SEP
(total momentum abundance ratio reduced`

correction)/ corrected for difference
Ratio (energy/nue correction) momentum SEP - solar

13C/ 12c 1.390 0.0132 + 0.0058 +0.5
-0.0040

15N/ 1{N 1.356 0.01U + 0.014 +1.2
-0-005

lep/ le0 1.656 0.0025 + 0.0019 +0.4
-0.0012

22Ne/ "'Ne 1.611 0.175 + 0.043 +3.4
-0.030

25 i	 i24mg
'6^	 6 1.302 0.192 + 0.080 +1.9

-0.034

2qW 24 Mg'`b 1.687 0.249 + 0.073 +2.6
-0.042

° The reduced difference between the SEP and solar
abundances is the difference between the SEP and solar
abundances draded by the error bar for the SEP
measurement.
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Appendix A - Hodoscope Efficiency

To calculate spectra we must be able to compute the efficiency, or the per-

centage of a given type of particle eliminated, for various restrictions placed on

the data set. In detectors M1 and M2, the "signal defect" problem, discussed in

section 3.5.1, makes it difliculL to determine the efficiency of hodoscope coin-

cidence requirements directly from flight data. We identity elements in the low

resolution data set by two parameter analysis. When we must use the matrix

detector energies in the two parameter analysis, for RANGES 0 or 1, the " signal

defect" problem could cause us to misidentify elements. For example, particles

near the carbon track may be carbon nuclei or they may be oxygen nuclei, with

a poise height defer t. Te be sure that we identify Lhe elements correctly, we

must require Lhat only one matrix detector strip be triggered in each plane of

the hodoscope. Then to calculate spectra for each element and RANGE, we need

to know what fraction of the total events have single strip matrix detector

triggers.

If the percentage of events with double strip triggers varies with energy

deposited in the matrix detectors, then analysis of flight data from RANGEs 0

and 1 to determine those percentages would involve a complicated deconvolu-

Lion procedure with simultaneous fits to element abundarces, energy spectra,

and double strip fractions as a function of energy. Flight data from RANGES 2-8

can be used over a portion of the necessary energy range, but suffers from sta-

tistical limitations. Thus we chose to compute the double strip eff.ciency f-om

calibration data taken at the Bevalac in Berkeley. The same silicon detectors

were used for MI and M2 in flight and for the Bevalac run We looked for a rela-

tion between the probability of a double strip event in either plane of a matrix

detector and the energy deposited in that detector.

An 64Fe beam at 5zi 600 MOV/nuc was incident on a target of polyethylene
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( n (CH2)). The 6eFe beam and the products of nuclear reactions in the target

stopped in HISI'. The same procedure was followed with a 1O N beam at

a 800 A&Yl raw.. As a result we collected data on nuclei with charges Z = 7 to 28

that primarily stopped in the back detectors (D5 to DB) of H1ST.

We investigated the hypothesis that the fraction of events with double strip

triggers in M1 or M2 depended on the total amounL of energy deposited in M1 or

M2. Three sets of , 3libration data v(ere considered. SeFe ions that stopped in

RANGES 2-8, 28Si, z°Si and mSi ions that stopped in RANGES 4-8, and 13 N ions that

stopped in RANGES 4-8. Each RANGE was divided up into a number of energy

intervals and a histogram of the M1 energy was accumulated for the single strap

events to each interval.

Figure 3.8.1a is an exampie of a histogram of the M1 energies for events

that stopped in one of the RANGE 4 energy inter vals, for events veth single strip

triggers. Figure 3.8 lb is a histogram of events that stopped in the same RANGE

4 energy interval, and had double stnp triggers in thi, "v plane" of MI The

mean energy deposited in M1 was computed from the histogram for the single

strip events. The enemy deposited in M2 is not read out of HIST, for ".ANGEs 4-

8 We calcti!ate3 the energy deposited in M2 corresponding to the mean M1

energy, using a range-energy relation with the Barkas and Berger correction of

sec tion 2 8 4.

For each energy the percentage of double strip triggers in either plane of a

matrix detector was computed. Figure 3.8 2 shows the results plotted vs

energy deposited in M2 There is a smooth trend with energy and the values

derived using different charges agree in regions where the data sets overlap.

Data POLLits from oxygen RANGE 2 and 3 events observed in flight are also plot-

Led, and agree with the calibration data. The solid line in flgures 3 8 2 is a fit to

the calibration data, consisting of three Lne segmen t s specified by six free
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pa: ameters. A quantitatively similar graph and fit were obtained for detector

M1.

The functional form of the flt to the calibration data is given by the func-

tion Pte,k ( detector, F.,*,), where "detector" specifies M1 or M2, and Falk, is the

energy in MeV deposited in the specified detector. The highest energy for which

this correction is used Mould correspond to a 28Si nucleus that just stops in

50 µ of silicon, the nominal thickness of M1 or M2, and is about 140 Ale V.

The matrix detectors are constructed with ^',J 3/4 mm wide metal charge

collection electrodes or strips and a 2J 1/4 mm gap between the strips When a

particle enters the gap between two strips, the charge divides and part goes to

each strip. We might expect that as the energy deposited in the matrix d-2tec-

for gap increases, it would be more likely for the amount of charge in both

strips surrounding the gap to be above the threshold for triggering. We then

expect the double strip probability to rise s'^wly with the amount of energy

deposited in the rratrix detector. The maximum probability for a do able strip

in either plane of a matrix detector with a 1/4 mm. gap would then be

;:^ (1 — 0.75) 2 a 44%.

We do not understand the reason fcr the fall off in double strip probability

above 100 MeV, but it is observed to be quantitatively sirmtar for detectors M1

and M2.
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figure 3.13.1&-b - Histograms of the energy measured in detector M1, for

6°Fe events that stop in a restricted energy range of RANGE 4. Figure

3.8.1a is for single strip triggers and figure 3.8.1b is for double strip

triggers.
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IIgure 3.8.2 - The probability of a double strip event in detector M2 is plot-

ted as a function of the energy deposited in detector M2. Crosses are 15N

calibration data in RANGEs 4-8, solid squares are 2°Si, 29Si, and "Si calibra-

tion data from RANGEs 4-8, and the solid triangles are "Fe calibration data

from RANGEs 2-8. The open circles are oxygen Bight data from RANGEs 2

and 3.
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