

ENERGY EFFICIENT ENGINE: (NASA-CB-165148) PAN TEST HARDWARE DETALLED DESIGN FEFORT 146 p BC A07/MF A01 (General Electric Co.) CSCL 21E

Unclas 02545 33/07

N83-1634

NASA CR-185148 **R80AEG417**

National Aeronautics and Space Administration

ENERGY EFFICIENT ENGINE FAN TEST HARDWARE DETAILED DESIGN REP

by

T.J. Sullivan, G.W. Luebering, and R.D. Gravitt

General Electric Company Aircratt Engine Business Group

Prepared for

National Aeronautics and Space Administra

RELEASE DATTE:

PUBLICLY RELEASE ON JANUARY 31, 1983

NASA Lewis Research Center Contract NAS3-20643

ORIGINAL PAGE IS OF POOR QUALITY

f

_				
1	Report No. NASA CR-165148	2. Government Accession No.	3.	Recipient's Catalog No.
4	Title and Subtitle		5.	Report Date
	Energy Efficient Engine			October 1980
	Fan Test Hardware Detailed Desi	gn Report	6.	Performing: Organization Code
7	Author(s)		8.	Performing Organization Report No
	T.J. Sullivan, G.W. Luebering,	and R.D. Gravitt		R80-AEG-417
			10.	Work Unit No.
9.	Performing Organization Name and Address			
	General Electric Company		11,	Contract or Grant No.
	Cincinnati, Ohio 45215			NAS 3-2064 3
<u> </u>			13.	Type of Report and Period Covered
12.	NASA-I cuig Research Contex			Topical Report
	21000 Brookpark Road		14.	Sconsoring Agency Code
	Cleveland, Ohio 44135			
15.	Supplementary Notes			
	NASA Project Manager - Carl C.	Ciepluch		
	GE Project Manager - Thomas L.	Hampton		
16.	Abstract			
	A single-stage fan and quarter-	-stage booster were designed for t	he En	ergy Efficient Engine.
	The fan has an inlet radius rat	tio of 0.342 and a specific flow r	ate o	f 208.9 Kg/S-M ² (42.8
	$lbm/sec ft^2$). The fan rotor has	as 32 medium-aspect-ratio (2.597)	titan	ium blades with a part-
	span shroud at 55% blade height	t. The design corrected fan tip s	peed	iz 411.5 M/S (1350
	ft/sec). The quarter-stage is	land splits the total fan flow wit	h app	roximately 22% of the
	flow being supercharged by the	quarter-stage rotor. The fan byp	ass r	atio is 6.8. The core
	flow total pressure ratio is l	.67 and the fan bypass pressure ra	tio i	s 1.65. This report
	contains the design details of	the fan and booster blading, and	the f	an frame and static
	structure for the E ³ fan config	guration.		

17. Key Words (Suggested by Author(s))	18. Distribution St	stement	
Single Stage Fan and Booster Turbofan Engine Energy Efficient Engine			
19. Security Classif (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 138	22. Price*

NASA-C-168 (Rev 10-75)

فيفاردن والمسمحة المتلاد

And Sectors

Foreword

This report presents the results of the fan aerodynamic and mechanical design performed by the General Electric Company for the National Aeronautics and Space Administration, Lewis Research Center, under Contract NAS3-20643. This work was performed as part of the Aircraft Energy Efficiency (ACEE) Program, Energy Efficient Engine (E^3) Project. Mr. Carl C. Ciepluch is the NASA Project Manager and Mr. Lawrence E. Macioce is the NASA Assistant Projecc Manager. Mr. Roy D. Hager is the NASA Project Engineer responsable for managing the effort associated with the fan component design presented in this report. Mr. T.L. Hampton is the Manager of the Energy Efficient Engine Project for the General Electric Company. This report was prepared by Messrs. T.J. Sullivan, G.W. Luebering, and R.D. Gravitt of the General Electric Company, Evendale, Ohio.

PRECEDING PAGE BLANK NOT FILMED

Cinnin h

.

TABLE OF CONTENTS

Section			P.120
	INTI	RODUCTION AND SUMMARY	i
AERODYNAMI	C DI	ESIGN	1
Ι.	FLO	PATH AND VECTOR DIAGRAM DESIGN	3
	A.	Aerodynamic Design Requirements and Growth Considerations	ì
	3.	Design Point Calculation Procedure and Results	7
II.	AIRI	FOIL DESIGN	9
	А.	Fan Rotor Blade	9
	в.	Stator 1	20
	с.	Quarter-Stage Rotor	23
	D.	Inner OGV	28
	Ε.	Bypass OGV Vane-Frame	30
MECHANICAL D	ESI	GN	36
III.	FAN	ROTOR DESIGN	36
	А.	Design Loads and Limits	44
	Β.	Design Goals	48
	С.	Fan Blade Design	48
	D.	Booster Blade Design	60
	Ε.	Rotor Structure Analysis	69
IV.	FAN	STATOR DESIGN	75
	A.	Fan Stator Configurations	75
	Β.	Fan Frame Analysis	77
	С.	Stator Vane Mechanical Design	84
	D.	FSFT/ICLS Fan Casing/Containment Design	101
	Ε.	FPS Fan Frame Weight Status	108
	REFE	ERENCES	111
	LIST	I OF SYMBOLS AND NOMENCLATURE	113
	APPI	ENDICES	117
	А.	E ³ Fan and Quarter-Stage Aerodynamic Design Point Circumferential-Average Flow Solution	118
	в.	Fan Rotor Blade Plane Section Geometry	134
	с.	Stator 1 Plane Section Geometry	135

TABLE OF CONTENTS (Concluded)

Section

D.	Quarter-Store Deter Di	Page
Ε.	Inner OGV Plane Section Geometry	136
F.	Bypass OCV Plane Section Geometry	137
	Syrabb out riane Section Geometry	138

LIST_OF_ILLUSTRATIONS

Figure		Page
1.	ICLS Fan Configuration.	2
2.	Selected Fan Configuration Flowpath.	5
3.	Aerodynamic Design Point Total Pressure Ratio.	8
4.	Growth Fan Total Pressure Ratio.	8
5.	Aerodynamic Design Parameters - Fan Rotor.	10
6.	Aerodynamic Design Parameters - Quarter-Stage Rotor.	11
7.	Aerodynamic Design Parameters - Stator 1.	12
8.	Aerodynamic Design Parameters - Inner OGV.	13
9.	Aerodynamic Design Parameters - Bypass OGV.	14
10.	Fan Rotor Tip Streamline Airfoil Section.	16
11.	Fan Rotor Shroud - Streamline (ψ = 0.58) Airfoil Section.	17
12.	Fan Rotor Hub - Streamline Airfoil Section.	18
13.	Fan Rotor Hub Streamline Cascade.	19
14.	Fan Rotor Hub Streamline Surface Mach Number Distribution.	19
15.	Fan Rotor Chord and Solidity.	21
16.	Fan Rotor Tm/c.	22
17.	Stator 1 Tip Streamline Cascade.	24
18.	Stator 1 Tip Streamline Surface Mach Number.	24
19.	Stator 1 Hub Streamline Cascade.	25
20.	Stator 1 Hub Streamline Surface Mach Number.	25
21.	Quarter-Stage Rotor Tip Streamline Cascade.	26
22.	Quarter-Stage Rotor Tip Streamline Surface Mach Number.	26
23.	Quarter-Stage Rotor Hub Streamline Cascade.	27
24.	Quarter-Stage Rotor Hub Streamline Surface Mach Number.	27
25.	Inner Outlet Guide Vane Configuration.	29
26.	Inner OGV Tip Streamline Cascade.	31
27.	Inner OGV Tip Streamline Surface Mach Number.	31
28.	Inner OGV Hub Streamline Cascade.	32
29.	Inner OGV Hub Streamline Surface Mach Number.	32
30.	Two-Dimensional Stream Surface Geometry, Section P.	33

v

LIST OF ILLUSTRATIONS (Continued)

ALL LAND

III ANNOUNCE

MAN YANG

ALC: NO.

Figure		Page
31.	Circumferential Distribution of Pressure, Section P.	34
32.	Circumferential Distribution of OGV Inlet Air Angle,	
	Section P.	35
33.	Vane Geometry Near Upper Pylon, Section T.	37
34.	Vane Geometry Near Upper Pylon, Section I.	38
35.	Modified Strut Fairing and Cutback Airfoils.	39
36.	OGV Mach Number Distribution, Section T.	40
37.	OGV Mach Number Distribution, Section I.	41
38.	OGV Mach Number, Section H-I.	42
39.	ICLS Fan Configuration.	43
40.	Full-Scale Fan Test Vehicle.	45
41.	Fan Blade Geometry.	50
42.	Fan Blade Effective Stress Contour Plots.	52
43.	Fan Rotor Blade Untwist.	53
44.	Fan Blade Root Stress.	54
45.	Fan Blade System and Fixed Blade Frequencies.	55
46.	Fan Blade Shroud.	56
47.	Fan Dovetail and Post Cross Section.	57
48.	Fan Blade Dovetail and Disk Post Stresses.	58
49.	Fan Ti 6-4 Forging, -30 Properties.	59
50.	Fan Blade Bird Strike Stress Level.	61
51.	Fan Blade Retention/Anticlank System.	62
52.	Booster Blade Design Parameters.	63
53.	Booster Airfoil Stresses.	64
54.	Booster Airfoil Root Stresses.	65
55.	Booster Blade Campbell Diagram.	66
56.	Booster Dovetail Stresses.	67
57.	Booster Dovetail Goodman Diagram.	68
58.	Rotor Structure CLASS/MASS Model.	70
59.	Fan Disk Effective Stresses and Radial Deflections.	71
60.	Booster Spool Stresses and Radial Deflections.	72

LIST OF ILLUSTRATIONS (Concluded)

Figure		Page
61.	Fan Disk - Low Pressure Shaft Bolted Joint.	73
62.	ICLS Fan Stator Configuration.	76
63.	FPS Fan Stator Configuration.	78
64.	Fan Frame Services.	79
65.	Sump Pressurization Air Scoops Located in Core Struts 3, 4, 6, and 7.	80
66.	Fan Frame Bottom Core Strut.	81
67.	Proposed Modifications for ICLS Driveshaft and Fairings.	82
68.	Forward Core Cowl Support/Purge.	83
69.	Fan Frame MASS Analytical Model.	85
70.	Fan Frame Stiffness Comparison.	86
71.	Fan Frequency Response Variation with Frame Stiffness.	87
72.	Fan Temperature Distribution.	88
73.	FSFT/ICLS Fan Axial Defections.	89
74.	Fan Stator Materials.	90
75.	Fan Stator Stage 1 Vane tm/c Distribution.	93
76.	Fan Stator Core OGV.	94
77.	Bypass Vane, SAP-4 Analytical Model.	95
78.	Stage 1 Vane, SAP-4 Analytical Model.	96
79.	Core OGV, SAP-4 Analytical Model.	97
80.	Bypass Vane Campbe'l Diagram.	98
81.	Stage 1 Campbell Diagram.	99
82.	Core OGV Campbell Diagram.	100
83.	Stage 1 and Core Vane Assembly Fasteners.	103
84.	Slave Frame Bolt Selection.	104
85.	Advanced Composite Containment System.	105
86.	Fan Rotor/Casing Interaction.	106
87.	FPS Containment Angles.	107
88.	Low Cost Modification of CF6-50 Case.	109
89.	FSFT and ICLS Fan Casings.	110

Ĩ.

LIST OF TABLES

.....

· INM ADMINIST

Table		Page
I.	FPS Fan Aerodynamic Design Requirements.	4
II.	Growth Fan Requirements.	6
III.	Fan Design - Cycle Performance Parameters.	46
IV.	Fan Design - Aerodynamic Parameters.	47
V.	Fan Rotor List of Materials.	49
VI.	FPS Weight Status.	74
VII.	Fan Stator Geometry Summary.	92
VIII.	Vibratory Stress Limits for ICLS Fan Frame Vanes.	102

viii

INTRODUCTION AND SUMMARY

The detailed aerodynamic and mechanical design of the fan and quarterstage configuration for the Energy Efficient Engine (E^3) is described herein. The fan design was initiated following an extensive preliminary design study of alternate fan configurations. The selected fan configuration (Figure 1) uses a quarter-stage booster to provide the required core supercharging. This design was chosen over a single-stage rotor with a higher tip speed and a more highly loaded hub due to its higher core-stream efficiency potential and an easier growth path for future engine development. The fan bypass stream also has a higher efficiency potential by reason of the lower fan speed. Additionally, the quarter-stage island arrangement provides an excellent means for separating foreign objects from the core flow. The flowpath was made to be nearly optimum for the flight propulsion cycle, with some provisions to accommodate a potential growth application. The aerodynamic design point corresponds to the maximum climb power setting at Mach 0.80 and 35,000feet altitude.

The fan has an inlet radius ratio of 0.342 and a specific flow rate of 208.9 kg/s-m² (42.8 lbm/sec-ft²). The fan rotor has 32 medium aspect-ratio (AR) titanium blades with a part-span shroud at 55% blade height. The design corrected fan tip speed is 411.5 m/s (1350 ft/sec). The quarter-stage island splits the total fan flow so that approximately 22% of the total flow is supercharged by the quarter-stage rotor. Downstream of the booster rotor, the flow is further split with 42% of the booster flow reentering the bypass duct and the remaining flow directed through the core duct into the 10-stage compressor. The total bypass total-pressure ratio is 1.67 and the fan bypass total-pressure ratio is 1.65.

The rotor structure features an aluminum nonstructural spinner with the latest ice-resistant configuration, a titanium high-bore ring disk for coupled blade-disk mode stiffness and internal fan-structure accessibility, a one-piece titanium quarter-stage spool, and a steel fan shaft arrangement that allows for disassembly of either the shaft, the entire fan rotor, or the fan module (rotor and stator) from the high pressure compressor forward face.

The containment ring for the ICLS fan is a slave design consisting of a modified CF6 steel outercasing with bolted-in wooden flowpath panels. A steel slave integral vane-frame supports the casing and ultimately the rotor, through an attached bearing support cone and bearing.

The axial spacing between the fan rotor trailing edge and the bypass outlet guide vanes (which also serve as the fan frame structural members) is approximately 1.8 rotor-tip chords. made large in order to minimize fan noise generation. The bypass vane-frame airofils are grouped into five different camber types positioned circumferentially to minimize the distortion of the flow field, recognizing the presence of the pylon at the top of the engine.

Figure 1. ICLS Fan Configuration.

The airfoils and rotor structure have been designed for a service life of 36,000 missions with two stress cycles per mission. The fan structure is designed to be capable of sustaining stall events with no mechanical damage, and there are no coupled-mode resonances predicted in the operating-speed range between the rotor and fan case. All material-properties data in the fan design are based on average minus three standard deviations properties, including section size considerations.

AERODYNAMIC DESIGN

I. FLOWPATH AND VECTOR DIAGRAM DESIGN

A. Aerodynamic Design Requirements and Growth Considerations

The principal aerodynamic characteristics of the fan at three key operating points are shown in Table I. The aerodynamic design point coincides with the maximum climb condition of the Flight Propulsion System (FPS) cycle. The selected flowpath is shown in Figure 2 with the pertinent aerodynamic design parameters indicated. The fan tip diameter at the rotor inlet is 2.108 meters (83 inches) and the inlet hub-to-tip radius ratio is 0.342. The fan operates at a design tip speed of 411.5 m/s (1350 ft/sec) with a specific flow rate of 208.9 kg/s-m² (42.8 lbm/sec-ft²) of rotor inlet annulus area. A quarter stage, or booster, is added to increase the fan hub pressure ratio and help separate foreign objects from the core flow. The fan rotor has 32 medium-aspect-ratio blades with a part-span shroud at 55% blade height based on the stacking axis. The spinner cone half angle is 32°, and the slightly contoured fan hub approximately follows that angle.

The total fan flow is split by the quarter-stage island with 22.3% of the flow passing under the island and supercharged by the quarter-stage rotor. Before entering the core duct, the flow is further split with approximately 42% of the quarter-stage flow reentering the bypass stream. The flow that enters the core duct has a total-pressure ratio of 1.67. After 1.8% duct pressure loss is sustained, the flow enters the core compressor with a corrected airflow of 54.4 kg/s (120 lbm/sec). The airflow that passes over the upper surface of the island rejoins the flow that is spilled from the quarter stage to give an average total-pressure ratio of 1.65 at the bypass vane-frame exit plane. The total bypass ratio is 6.8 at the aerodynamic design point.

Since it is planned to ultimately provide for 20% growth of the E³ engine by increasing fan speed and quarter-stage aerodynamic loading, the growth fan aerodynamics were considered in a preliminary manner. Table II gives the growth fan requirements as they are currently foreseen. The core stream pressure ratio of 2.05 is substantially higher than the bypass-stream pressure ratio. The design of the fan for the FPS engine has taken into account some design considerations that will allow easy adaptation of the fan to the growth configuration. In the FPS design, the hub radii through the quarter stage are slightly oversized to allow for growth. This introduces a slight weight penalty but without any performance penalty. Hence,

			Iakeult
Corrected Tip Speed, m/sec (ft/sec) 411.5 (1	411.5 (1350)	399.6 (1311)	365.2 (1198)
Corrected Airflow, kg/sec (lbm/sec) 643.6 (l	643.6 (1419)	634.1 (1398)	577.9 (1274)
Flow/Annulus Area, kg/sec-m ² (lbm/sec-ft ²) 209.0 (4	209.0 (42.8)	206.0 (42.1)	187.0 (38.4)
Bypass Stream Pressure Ratio	1.65	1.61	1.50
Bypass Stream Adiabatic Efficiency, percent 87.9	87.9	88.7	90.0
Core Stream Pressure Ratio	1.67	1.63	1.51
Core Stream Adiabatic Efficiency, percent 88.5	88.5	89.2	89.7
Bypass Katio 6.8	6.8	6.9	7.3

Table I. FPS Fan Aerodynamic Design Requirements.

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

3

.

Figure 2. Selected Fan Configuration Flowpath.

*

	Maximum Climb	Maximum Cruise	Takeoff
Corrected Tip Speed, m/sec (ft/sec)	457.2 (1500)	446.8 (1466)	420.9 (1381)
Corrected Airflow, kg/sec (lbm/sec)	659.1 (1453)	647.7 (1428)	612.8 (1351)
Flow/Annulus Area, $kg/sec-m^2$ (lbm/sec-ft ²)	214.0 (43.8)	210.0 (43.0)	198.0 (40.6)
Bypass Stream Pressure Ratio	1.75	1.71	1.60
Bypass Stream Adiabatic Efficiency, percent	86.4	87.2	88.6
Core Stream Pressure Ratio	2.05	2.01	1.90
Core Stream Adiabatic Efficiency, percent	87.6	88.3	68.9
Bypass Ratio	5.5	5.6	6.0

Table II. Growth Fan Requirements.

\$

this is thought to be a desirable compromise. It is intended that the bypass vane-frame and inner OGV and core duct hardware will remain the same for both engines. In the growth version, the quarter-stage island moves radially outward approximately 1.0 cm (0.4 in.) at the leading edge to accommodate the larger core flow and mates with the FPS vane-frame at the island trailing edge. The FPS engine casing and hub flowpaths remain the same for the growth engine. The total bypass ratio is reduced to 5.5 for the growth fan. The fan rotor and booster stator and rotor will necessarily be new airfoil designs.

The total pressure ratio profile for the FPS fan is shown in Figure 3. The rotor exit profile as well as the stage exit profiles are shown. The booster rotor turns the tip-strong pressure coming out of the fan hub to the radially constant pressure ratio value of 1.683. In the growth fan, Figure 4, the booster rotor is running approximately 11% faster and produces a substantially higher pressure rise in the region of the flow which enters the core. The hub pressure is made significantly greater than the tip pressure in order to supercharge the core with a 2.05 pressure ratio. The tip pressure is kept low in order to minimize the discontinuity of total pressure coming off the island trailing edge. Experience with similar designs has indicated that the resulting ring vortex sheet does not create downstream instabilities or unexpected losses. The circulation gradient implied by the skewed total pressure profile at the rotor exit will set up substantial secondary flows. These have been estimated, and the mixing that they represent has also been estimated. It was concluded that the rotor blade could be satisfactorily designed for the growth conditions, taking account of the secondary flows, and producing the total-pressure profile shown in Figure 4.

B. Design Point Calculation Procedure and Results

Circumferential-average flow calculations were made at the FPS engine fan aerodynamic design point, which coincides with the maximum climb cycle condition, using the General Electric Circumferential-Average Flow Determination (CAFD) computer program. The calculation procedure of this program is described in Reference 1. Briefly, the flow solution is a radial equilibrium solution including the effects of streamline curvature together with axial gradients of blockage, enthalpy, and entropy. The velocity vector diagrams for the fan and quarter stage were calculated at numerous streamlines from tip to hub throughout the entire flowpath. Calculation stations were used at the leading and trailing edges of each blade row and in the upstream and downstream duct areas to ensure an accurate representation of the In addition to the leading and trailing edge stations, seven calcuflow lation stations were located within the fan rotor blade and three within each of the other blade rows. Boundary layer displacement thicknesses on the flowpath walls based on General Electric experience were used. At the internal blade calculation stations, the blockage due to the thickness of the blades or vanes was also included. Flowpath contours, loss coefficients, chordwise work distributions, and spanwise total-pressure distributions were specified; and aerodynamic loadings, velocity diagrams, and fluid properties were calculated for the fan and quarter-stage blade rows.

Figure 4. Growth Fan Total-Pressure Ratio.

Figures 5 through 9 show the aerodynamic design point parameters. Figure 5 is concerned with the fan rotor and displays the blade inlet and exit relative Mach numbers and flow angles and the blade row total-loss coefficients and diffusion factors. The loss coefficients employed were based on General Electric correlations and experience. The FPS booster rotor loss coefficients are shown in Figure 6 along with the calculated diffusion factors. The booster rotor inlet and exit Mach numbers and flow angles are also shown in Figure 6. These figures show that booster rotor aerodynamic loading is light for the FPS engine, allowing (with an 11% blade speed increase) the booster pressure ratio to be increased substantially for the growth engine.

The booster stator aerodynamic design parameters for the FPS configuration are shown in Figure 7. The inlet and exit Mach numbers and flow angles are shown along with the loss coefficients and diffusion factors. The swirl angle exiting the stator varies from 12° at the tip to 8° at hub; this was specified to give a good loading balance between this vane row and the inner OGV. Similar design point parameters for the inner OGV and bypass OGV are presented in Figures 8 and 9.

The calculated vector diagram quantities are also tabulated in appendix A.

II. AIRFOIL DESIGN

A. Fan Rotor Blade

The aerodynamic design of the E^3 fan rotor at the maximum climb cycle condition included the definition of airfoil sections which are transonic in the outer region and subsonic near the hub. The fan rotor blade airfoil shapes were specifically tailored for each streamline section using General Electric's Streamsurface Blade Section computer program. In general, the airfoils were shaped in an attempt to minimize shock losses since the inlet Mach numbers are supersonic for all streamlines above the quarter-stage island. Below the island streamline location, the Mach numbers range from 1.02 at 78% flow value to 0.70 at the hub streamline. The airfoils on the hub streamline were patterned after other advanced fan hub airfoil shapes that have sho m excellent performance. The designs of the rotor blade sections were performed along 12 axisymmetric streamsurfaces with the surfaces viewed along a radial blade axis using the Streamsurface Blade Section program. The considerations which guide and influence the design of high transonic Mach number cascades such as the E^3 fan rotor are presented and discussed in References 1, 2, and 3.

The fan rotor incidence angles at the aerodynamic design point are approximately 5° all along the span. For sections which have supersonic inlet Mach numbers, the blade inlet region sets the amount of flow the cascade can pass, provided the throat area is not limiting. The blade suction surface upstream of the Mach wave which intersects the leading edge of the adjacent blade was offset a small amount from the "free-flow" streamline to account for the effects of leading edge thickness, bow wave losses, and boundary layer buildup. The free-flow streamline is the direction of the flow if

Figure 5. Aerodynamic Design Parameters - Fan Rotor.

Figure 6. Aerodynamic Design Parameters - Quarter-Stage Rotor.

Figure 7. Aerodynamic Design Parameters - Stator 1.

Figure 8. Aerodynamic Design Parameters - Inner OGV.

Figure 9. Aerodynamic Design Parameters - Bypass OGV.

there were no disturbances or blade forces but with the flow confined to stay in the axisymmetric laminae generated by the CAFD full solution. Figure 10 shows the location of the free-flow streamline for the tip streamline airfoil section. Figure 11 shows the streamline at the location of the part-span shroud and Figure 12 shows the rotor hub streamline airfoil section. Other information on Figures 10 through 12 will be discussed later. The difference between the average free-flow streamline angle and the average suction surface blade angle defines an average suction surface incidence angle; these values are approximately 0.5° at the tip and 2° to 3° in the hub region. These values were selected based on General Electric experience with similar designs. After establishing the suction surface of the airfoil for the outer portion of the blade in this manner, relatively little freedom remained for selecting the incidence angle, although there was some latitude in the selection of the meanline angle distribution from the leading edge to the first captured wave.

In the extreme hub region (10% flow) where the inlet Mach numbers are less than 0.90, the leading and trailing edge blade angles plus the meanline angle distribution were selected with the aid of General Electric's Cascade Analysis by Streamline Curvature (CASC) computer program. This program is capable of calculating surface velocity distributions for subsonic inlet flow sections, although low-supersonic flow regions are allowed. To analyze the supersonic airfoil sections in the outer part of the fan blade, the program was still used, recognizing the fact that the solution was incorrect for the inlet supersonic portion of the airfoil. For these tip sections, however, the exit flow was well subsonic and the cascade analysis program was used to predict the exit flow angles. The exit flow angles predicted by the CASC program for all sections were related to the design exit air angles from the axisymmetric flow solution through an empirical adjustment factor. The radial distributions of this empirical factor were derived from data analyses of high speed fans for which the rotor geometry was somewhat similar to that of the E³ fan, and also from calculations of secondary flow effects expected for this fan rotor.

Figures 13 and 14 show the airfoil shape and the calculation-grid network and the resultant surface Mach number distribution for the hub streamline. Meanline angle distributions were adjusted to give velocity distributions of this type, believed from experience to produce low losses. The hub streamline has an inlet relative Mach number of 0.70 and an exit Mach number of 0.75. Except for an initial diffusion that is small enough to avoid boundary layer distress, the suction surface Mach number is nearly constant.

To avoid a choking condition, the passage throat areas for most fan blade sections were set such that the effective throat-to-capture area ratio exceeded the critical area ratio by approximately 5% after accounting for the loss due to one normal shock at the leading edge Mach number. Near the extreme ends of the blade, the throat margins were allowed to be slightly larger than this, resulting in 7.5% at the OD and 8.8% at the ID. In order to ensure operation with an oblique leading edge shock which was desired at the maximum climb design point, the ratio of the contraction from the cascade mouth to the throat must not exceed the critical contraction ratio after sustaining one

.

Constraints and the second s

Figure 12. Fan Rotor Hub - Streamline Airfoil Section.

cast.

A DESCRIPTION OF THE OWNER OF THE

. .

The second second

حأده غنوم

Figure 13. Fan Rotor Hub Streamline Cascade.

Figure 14. Fan Rotor Hub Streamline Surface Mach Number Distribution.

normal shock loss at the mouth Mach number. The amount by which the passage throat area exceeds this limiting contraction ratio is referred to as starting margin. The amount of passage area contraction from the mouth to the throat for all rotor streamline is approximately 2% to 2.5%. The passage throat, mouth, and exit areas are indicated on Figures 10, 11, and 12 for streamline sections at the tip, shroud, and hub locations.

The airfoil shape for each streamline section is dependent upon the chordwise thickness distribution and meanline blade angles. For the fan rotor, the level and radial distribution of the maximum thickness-to-chord ratio is primarily dependent upon mechanical and aeromechanical considerations. The chord, solidity, and tm/c distributions in manufacturing planes are shown in Figures 15 and 16. The location of maximum thickness along the blade chord was specified at 59% chord at the tip streamline. Above the island, this location stays aft of 55% chord and then moves forward somewhat at lower radii toward the hub streamline where the maximum thickness occurs at 42% chord. In the part-span shroud region, the maximum thickness of the airfoil is at 58% chord. The part-span shroud, as previously mentioned, is positioned at 55% blade height. The axial position of a point on the shroud stacking axis is at 65% axial blade chord. The shroud leading edge is at 48% and trailing edge is at approximately 82% axial blade chord. It has a nearly elliptical thickness distribution with a maximum thickness of 0.89 centimeter (0.35 inch).

The blade chordwise thickness varies from leading edge to the point of maximum thickness according to a quarter-sine wave curve and then reverses the distribution from the maximum thickness point to the trailing edge. This distribution holds for all streamlines down to the region just below the island. Here the airfoils are slightly thicker in the leading edge region than the quarter-sine distribution would imply.

The geometric properties of the manufacturing plane blade sections are tabulated in Appendix B.

B. Stator 1

The design of the Stage 1 stator vanes was performed similar to the design of the fan rotor. That is, the vector diagrams were calculated along several streamlines at the leading and trailing edge stations as well as at a number of intrablade stations. Airfoil sections were defined for each streamline by specifying the thickness and meanline angle distributions. Each streamline cascade was then analyzed with the cascade analysis computer program.

The Stator 1 vanes have a chordwise thickness distribution that varies from tip to hub. At the OD where the inlet Mach number is 0.73, a 65-Series thickness distribution was selected. At the ID where the inlet Mach number is 0.85, the thickness distribution is thinner in the leading edge region as it follows the first-quarter cycle of a sine wave to the maximum thickness location at 38% chord and then follows a 65-Series distribution to the trailing edge. A linear blend of these thickness distributions from the OD to the ID is used to define the intermediate airfoil sections. Slightly modified

ORIGINAL PAGE IS OF POOR QUALITY

Figure 16. Fan Rotor Tm/C.

circular-arc meanline angle distributions are employed for all streamline sections. The vanes have a constant chord of 8.10 cm (3.19 in.) and a maximum thickness-to-chord ratio that varies from 0.062 at the OD to 0.049 at the LD.

The castade analysis computer program was used as a guide in shaping the airfoil mearlines. Each streamline was analyzed to obtain a desirable incidence angle and surface velocity distribution. The cascade grid and resultant surface Mach number distributions for streamline sections at the tip and near the hub are shown in Figures 17 through 20. The deviation angles resulted from using the cascade analysis to predict the exit flow angles. These angles were then related to the design exit air angles of the CAFD solution through an empirical factor.

The incidence angles were specified slightly less than 1° for all streamlines except the hub. At the hub streamline, a 3° high inflow angle was intentionally specified to account for the higher swirl anticipated from the rotor hub due to secondary flow effects.

With the passage throat area occurring at the mouth of the cascade, there is approximately 6% to 8% throat margin above the critical area ratio.

The streamline airfoil sections were stacked at 50% chord and plane section cuts were made to define manufacturing sections. The geometric properties of these sections are tabulated in Appendix C.

C. Quarter-Stage Rotor

The quarter-stage rotor airfoils were specified similar to the other blade rows using the stramline section and cascade analysis computer programs. Initially, the vector diagrams are defined for several streamlines at axial stations including the leading edge, trailing edge, and intrablade region.

The rotor airfoil sections have a chordwise thickness distribution for all streamlines which is a quarter-sine wave from the leading edge to maximum thickness and then a 65-Series thickness distribution to the trailing edge. The meanline angle distribution for all streamlines is a modified circular arc. The maximum thickness-to-chord ratio varies from 0.049 at the tip to 0.081 at the hub. There are 56 blades with an aspect ratio of 2.09. The blade chord is linear from 6.35 cm (2.50 in.) at the tip to 7.11 cm (2.80 in.) at the hub. The solidity is fairly low since the design point aerodynamic loading is quite moderate. The passage throat areas for all streamlines were set with approximately 5% to 6% throat margin.

Cascade flow analyses were made for all streamline sections and the tip and hub results are presented in Figures 21 through 24. Figures 21 and 22 show the cascade calculation grid and surface Mach number distributions for the tip streamline, respectively. Only a slight amount of turning is required at the tip and hence the low value of solidity. The Mach number distribution shows the suction surface value skirting just above Mach 1.0 near maximum thickness before diffusing to the trailing edge Mach 0.73. The pressure ORIGINAL PAGE IS OF POOR QUALITY

Figure 17. Stator 1 Tip Streamline Cascade.

Figure 18. Stator 1 Tip Streamline Surface Mach Number.

Axial Direction ----

Figure 20. Stator 1 Hub Streamline Surface Mach Number.

Figure 21. Quarter-Stage Rotor Tip Streamline Cascade.

Figure 22. Quarter-Stage Rotor Tip Streamline Surface Mach Number.

Axial Direction ------

Figure 23. Quarter-Stage Rotor Hub Streamline Cascade.

Figure 24. Quarter-Stage Rotor Hub Streamline Surface Mach Number.

surface Mach number remains nearly constant along the chord. In the hub region, where the blade must raise the low fan hub total-pressure to a 1.68 pressure ratio, a solidity of 1.2 and 32° of camber are required. Figures 23 and 24 show the hub streamline cascade and Mach number distributions. Again, the peak suction surface Mach number is slightly larger than 1.0 but here the diffusion is delayed until the last 40% of the chord.

The deviation angles were again calculated using the CASC predicted exit flow angles. The empirical adjustment included a compensation for the secondary flow that results from the nonuniform loading of this blade row and its incoming free-stream absolute vorticity.

The rotor blade streamline sections were stacked so that the plane section centers of gravity were aligned along the radial stacking axis. Plane section cuts defined the blade for the purpose of manufacturing. The blade geometry for these plane sections is tabulated in Appendix D.

D. Inner OGV

-

The inner outlet guide vane (OGV) blade row shown in Figure 25 was designed to remove the swirl received from the booster rotor and direct the flow into the core duct. To de this efficiently, the 64 vanes were swept aft and leaned with the pressure side facing the fan axis of rotation. The aerodynamic design of this blade row was performed using the procedure described in Reference 4. This procedure consists of cutting the airfoil along streamlines and viewing the sections along the blade axis. The blade axis is a curved line in space, swept aft by 60° from a radial line and leaned circumferentially in an amount that varies from 0° (no lean) at the OD to 20° at the ID. The stacking axis for viewing the cascade projection and for defining manufacturing sections is a straight line between the intersection of the blade axis with the OD flowpath and the intersection of the blade axis with the ID flowpath. The flow and airfoil meanline angles that are observed in this projection are referred to as cascade angles.

The sweep angle (60°) of the stacking axis was selected to be compatible with the shape of the flowpath in the region entering the core duct. The degree of lean was chosen primarily to control and minimize the level of Mach number in the hub region as the flcw enters the core duct. At the entrance to the stator, the downward radial force on the flow imposed by the 20° of lean increases the static pressure, and thereby reduces the inlet Mach number. This eventually leads to a lower hub diffusion rate. The lean angle drops off sharply to 0° at the OD in order to avoid an undesirable acute angle between the vane suction surface and the outer flowpath. Even though there is no lean at the tip, the radial gradient of lean tends to increase the Mach numbers slightly at the tip streamline. The reduced Mach numbers and aerodynamic loadings in the hub, where the flow is the most sensitive because of the flowpath shape, makes the total lean effect favorable.

The airfoil shapes were defined using the quarter-sine wave/65-Series thickness distribution described earlier. The 64 vanes have a chord varying

Figure 25. Inner Outlet Guide Vane.

CRUSTER PARS CO CRUSTER PARS

from 5.44 cm (2.14 in.) at the OD to 9.25 cm (3.64 in.) at the ID. The maximum thickness-to-chord ratio is 0.066 locally at the OD, decreasing to a 0.053 value which is then held constant over the inner 50% of the span.

Cascade flow analyses were made with the sections viewed looking down the leaned and swept axis. Figures 26 through 29 present the cascade projection and surface Mach number distribution for the tip and hub streamlines. The inlet and exit Mach numbers used for calculation purposes and shown on these plots are the perpendicular components of the full Mach numbers that exist in planes perpendicular to the swept and leaned airfoil stacking axis. The surface Mach number plots indicate that most of the turning is accomplished in the front portion of the cascade. The peak Mach number of both streamline sections shown, occurs on the suction surface at approximately 30% of the chord. Uniform diffusion is carried out in the remaining cascade passage.

End-effect adjustments to the camberline shape were calculated using the method of Reference 4, but were attenuated somewhat in application. The maximum adjustment at the tip streamline amounted to a camberline angle increase of 7.8°, occurring at 50% chord. At the hub, the adjustment was a camberline angle decrease of 4.7° , occurring at 40% chord.

Airfoil section coordinates were defined on planes perpendicular to the swept and leaned stacking axis. A summary of the geometry for this vane is tabulated in Appendix E.

E. Bypass OGV Vane-Frame

The aerodynamic design of the bypass vane-frame was complicated by the presence of a pylon having a maximum thickness of 40.6 cm (16 in.) and located at the top of the engine (0°) just downstream of the vane trailing edges. In addition, the overall engine system design required the bottom (180°) vane or strut to be substantially thicker than the rest of the vanes to provide space for a radial drive shaft and accessory pipes. The presence of these bodies relative to the rotor and OGV planes, as shown schematically in Figure 30, sets up a nonaxisymmetric flow field which required circumferentially nonuniform airfoil geometry to be defined using a special computer program analysis.

Initially, the circumferential-average flow solution was carried out as usual. This flow solution recognizes the vane and pylon blockages and the island trailing edge static pressure match. Next, a two-dimensional stream surface analysis was employed to establish the magnitudes of static pressure and flow angle variations. This two-dimensional analysis was performed at the pitch streamline and the resulting circumferential distributions of pressure and flow angle are shown in Figures 31 and 32. The calculations show a significant circumferential variation at the OGV inlet and exit planes but essentially no distortion at the fan rotor exit plane. A coarse three-dimensional, finite-element analysis was then employed to establish the radial trend of the vane exit flow angles. This analysis was conducted using the five streamline sections: tip (T), near-tip (P-T), pitchline (P), island (I), ORIGINAL PAGE IS OF POOR QUALITY

Figure 26. Inner OGV Tip Streamline Cascade.

Figure 27. Inner OGV Tip Streamline Surface Mach Number.

٠,

Figure 29. Inner OGV Hub Streamline Surface Mach Number.

32

)

a kanan marana marana ang kanan k

Figure 30. Two-Dimensional Stream Surface Geometry, Section P.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 31. Circumferential Distribution of Pressure, Section P.

-

land a service Of Poul of Repair

-

Figure 32. Circumferential Distribution of OGV Inlet Air Angle, Section $^{\rm p}.$

and hub (H). The three-dimensional program calculated the OGV exit flow angles which would be required to circumferentially shift the flow around the pylon and bottom strut bodies. The maximum circumferential variation of these angles was on either side of the pylon location where the calculated flow angles varied from $+7^{\circ}$ to -7° . At the horizontal locations, 90° and 270° clockwise aft looking forward, the calculated flow angles are approximately $+3^{\circ}$ and -3° , respectively. At the bottom of the engine (180°), the calculated flow angle is near zero. The vanes were then grouped into five sets, each of a different camber. With the inlet spacing between vanes held constant, the resulting vane geometry for sections near the tip (T) and near the island (I) at the top of the engine is shown in Figures 33 and 34. The position of the pylon relative to the vanes is also shown. In the bottom segment of the engine, the vanes adjacent to the thick strut and fairing are the nominal type vanes with the chords cut back to minimize the blockage in the passages. This configuration is shown schematically in Figure 35.

Cascade flow analyses were made of airfoil sections with nominal vane passage area distributions and also the airofil types on either side of the upper pylon where the maximum and minimum cambers occur. The results of the surface Mach number calculations for the nominal vane passages are shown for streamlines at the tip (T) and the island upper (I) and lower (H-I) surfaces in Figures 36 through 38. A 3° high inflow angle was intentionally specified at the tip streamline to account for the higher swirl in the boundary layer flow adjacent to the casing. The Mach number distribution for this streamline is shown in Figure 36. The Mach number distributions at the (I) and (H-I) sections show opposite trends; this is a consequence of the need to match static pressures at the island trailing edge with the different total pressures of the two streams. The circumferential-average solutions that dominate this effect are also shown.

The airfoil geometry for the five groups of vanes is tabulated in Appendix F.

MECHANICAL DESIGN

III. FAN ROTOR DESIGN

Figure 39 shows a cross section of the fan design to be used in the integrated core/low speed (ICLS) test. The rotor features a 32-blade fan stage shrouded at 55% span, and a 56-blade booster stage for core supercharging. The reduced aspect ratio improves the fan blade's ruggedness and the lowered shroud position improves aerodynamic efficiency to offset the greater weight of the fan rotor.

Included in the rotor mechanical features are the drop down dovetail slot that permits individual blade replacement and an anticlank system that prevents dovetail wear by limiting blade movement in the slot. Integrated with the anticlank spring, the blade axial retention system prevents fore or aft movement; the toal system is designed so there is no restriction on individual blade replacement.

ting and the second second

in a main whether

39

Figure 36. OGV Mach Number Distribution, Section T.

and the second

ORIGIMAL PAGE IS OF POCR QUALITY

Figure 37. OGV Mach Number Distribution, Section I.

Figure 38. OGV Mach Number Distribution, Section H-I.

Figure 39. ICLS Fan Configuration.

The shafting arrangement connects the fan disk to the forward fan shaft and, through the support shaft, to the No. 1 thrust bearing. The remote connection of the bolted joint to the bearing permits the disk bearing and joint to be designed independently and has these advantages.

- The design of the disk, bearing, and joint are more nearly optimized by not having to be compromised by one another
- Oversizing the bearing or undersizing the flange would be required if the conventional flange under bearing configuration were used
- The bolted joint can accommodate more and smaller size bolts for a lighter design and yet have sufficient torque driving capacity
- With the smaller bearing and eccentric design of the disk, the two can be fitted more closely together to minimize fan overhang.

With the flange of the fan shaft on the forward side of the joint, the shaft can be removed without disturbing the fan rotor thus allowing access to the interior of the engine and making possible modular disassembly of the engine.

The conical shape of the spinner is resistant to ice buildup or damage from bird impact. The production spinner will be a one-piece structure directly mounted to the fan disk.

The Stage 1 stator inner shroud passes over the Stage 2 disk forward sealing element at buildup and thus permits the shroud to be a 360° continuous ring for greater stator stiffness and reduced wear.

The full-scale fan test vehicle (Figure 40) has all of the mechanical design features of the ICLS fan rotor except the connecting shafting which has been modified to conform to facility requirements.

A. Design Loads and Limits

The mechanical loads and limits to which the fan rotor is designed are defined in the technical requirements and are supplemented by GE design practices. Loads are given in cycle cases covering the aero design point and maximum rotor speed (Table III). The fan test vehicle and the ICLS engine hardware are designed to meet FPS conditions in the airfoils and growth case conditions in the supporting structure. Should it be required to demonstrate growth conditions, only the airfoils would require modification. Aerodynamic input to the blading design is shown in Table IV.

Design stresses are limited to minus 3 sigma deviations from average material properties for elastic conditions. In high cycle fatigue, the Goodman diagram indicates an allowable vibratory stress for infinite life. Low cycle fatigue stress levels are based on 36,000 aircraft missions with two stress cycles per mission for a total of 72,000 stress cycles. The disks must show a residual life of 6000 cycles with a 0.01 x 0.03-inch defect.

Table III. Fan Design - Cycle Performance Parameters.

	FPS	Growth		
Flowgath and Clearance Calculation				
• Cycle Case No. 41				
Altitude M _O ∆ T _O Rating Fan Physical Speed	10,668 m (35,000 ft) 0.80 +10° C (+18° F) Max Climb 3539 rpm	10,668 m (35,000 ft) 0.80 +10° C (+18° F) Max Climb 3939 rpm		
Maximum Stress Calculation • Cycle Case No. 72				
Altitude M _O ∆ T _O Rating Fan Physical Speed (at 1.2% Overspeed)	5791 m (19,000 ft) 0.30 +15° C (+27° F) Takeoff 3611 rpm (3653 rpm)	5791 m (19,000 ft) 0.30 +15° C (+27° F) Takeoff 4079 rpm (4126 rpm)		

and a statistic second

Sec. Burnet and

t.

Tip Diameter 210.8 cm (83.0 in.) 133.8 cm (52.66 in.) Tip Speed 411.5 m/sec (1350.0 ft/sec) 261.1 m/sec (856.5 ft/se Airflow 643.7 kg/sec (1419.16 lb/sec) 261.1 m/sec (856.5 ft/se Radius Ratio (Inlet) 0.342 261.1 m/sec (316.90 lb/sec) Aspect Ratio 0.342 2.597 0.782 P 1.157 2.12 1.129 Mumber of Rlades 32 56		Fan Stage 1	Booster Stage
Tip Speed 411.5 m/sec (1350.0 ft/sec) 261.1 m/sec (856.5 ft/sec Airflow 643.7 kg/sec (1419.16 lb/sec) 143.7 kg/sec (316.90 lb/ Radius Ratio (Inlet) 0.342 0.342 Aspect Ratio 0.342 2.597 0.782 PR 1.650 1.129 1.129 Number of Blades 32 56	Tip Diameter	210.8 cm (83.0 in.)	133.8 cm (52.66 in.)
Airflow 643.7 kg/sec (1419.16 lb/sec) 143.7 kg/sec (316.90 lb/sec) Radius Ratio (Inlet) 0.342 0.342 Aspect Ratio 0.342 2.597 2.12 PR 1.650 1.129 1.129 Number of Blades 32 56	Tip Speed	411.5 m/sec (1350.0 ft/sec)	261.1 m/sec (856.5 ft/sec)
Radius Ratio (Inlet) 0.342 0.342 Aspect Ratio 2.597 2.12 PR 1.650 1.129 T 1.1757 1.0475 Number of Blades 32 56	Airflow	643.7 kg/sec (1419.16 lb/sec)	143.7 kg/sec (316.90 lb/sec)
Aspect Ratio 2.597 2.12 P _R 1.650 1.129 T _R 1.1757 1.0475 Number of Blades 32 56	Radius Ratio (Inlet)	0.342	0.782
P _R 1.129 T _R 1.1757 1.0475 Number of Blades 32 56	Aspect Ratio	2.597	2.12
T _R 1.1757 1.0475 Number of Blades 32 56	PR	1.650	1.129
Number of Blades 32 56	TR	1.1757	1.0475
	Number of Blades	32	56

Table IV. Fan Design - Aerodynamic Parameters.

7

ORIGINAL PAGE IS OF POOR QUALITY

B. Design Goals

Fan rotor improved durability and ruggedness, and reduction of maintenance were design goals established for the fan rotor. These were to be accomplished by incorporating in the rotor design the following features for greater mechanical reliability.

- Improved vibratory characteristics
 - 15% vibratory margin over 2/rev at maximum rotor speed
 - Improved rotor stiffness to maintain frequency margins in the coupled disk/blade modes
 - Blade attachments stronger than airfoils in the lower vibratory modes.
- Improved mechanical characteristics
 - Good bird strike carability
 - Low dovetail stress for improved life
 - Design dovetail posts to withstand blade loss without further failure
 - Anticlank system to prevent dovetail wear
 - Improved torque transmitting capability of the disk/shaft bolted joint.
- Improved system characteristics of the fan rotor
 - Reduce rotor overhang to minimize unbalance moment
 - Configure shafting to allow modular disassembly of the engine.

Materials

Table V lists the materials selected for the fan test and ICLS rotors; 4340 steel was selected for the forward fan shaft demonstrator because of the unavailability at this time of the primary shaft material (MARAGE 250). Tradeoff studies may show greater advantages in a higher strength titanium in the growth version of the rotor in terms of weight savings and improved fatigue life.

C. Fan Blade Design

Figure 41a and 41b illustrate configuration parameters of the fan blade design. In Figure 41a, the effect of shroud placement can be seen having its effect on the thickness distribution in the blade. The midspan thickening was necessary to obtain flexural frequency margin over 2/rev excitation. The weight penalty associated with the thicker blade and lower shroud is counterbalanced by improved blade efficiency and better resistance to birdstrike.

Table V. Fan Rotor List of Materials.

3

1.1

Fan Blades	Titanium 6A1-4V
Fan Disk	Titanium 6A1-4V
Spinner	7075 Alumiaum
Spinner Cover	7075 Aluminum
Anticlank Spring	Titanium 6A1-4V
Blade Retention Key	Inco 718
Booster Spool	Titanium 6A1-4V
Booster Blade	Titanium 6A1-4V
Fan Shaft 5/8-inch Bolts	Inco 718
Forward Fan Shaft	4340 Stainless Steel

Fan Blade Geometry.

Figure 41.

Original page is of poor quality

50

ないしゃくろうちちちちょうろいろうろくちょうちょう

Figure 42 shows the contour plots of blade surface effective stress at steady state conditions derived from the finite element (TAMP-MASS) analysis. These values were in reasonably good agreement with the Twisted Blade (beam) results. Untwist of the blade (shown in Figure 43) was calculated by TAMP-MASS and was used to pretwist the blade to obtain correct aerodyn. with incidence at operating conditions. The stress plot of Figure 44 shows the stress around the root of the blade at the platform as derived from the Twisted Blade program using scaled CF6 end effects. The stress levels shown in Figures 42 and 44 allow adequate high cycle fatigue capability and are well under the allowable low cycle fatigue stress. These stress levels and distribution will be verified by test as hardware becomes available.

Figure 45 shows the Campbell diagram for the fan blade with the first three modes plotted. The spread of frequencies at each mode indicates the frequency range between the lowest disk/blade combined frequency and the bighest or fixed blade out-of-phase frequency. In first flex, the frequency margin between the lowest in-phase frequency and 2/rev is 14.6% which meets the design goal of providing adequate frequency margin at maximum speed. In addition, the first flex crossing of other per rev lines occurs at low enough speeds to be out of the operating range, or precludes a significant response. The fan blade is stall protected from torsional instability at all operating speeds. Using data from a similar blade and previously developed correlations, the fan blade platform corner frequency was calculated to be well above the stator passing frequency.

Figure 46 presents a summary of geometry and stress and deflection data on the fan blade shroud. Bending stresses at the shroud fillet are approximately 46.9 kN/cm² (68 ksi) as obtained by the TAMP-MASS finite element program. Shroud tip deflections calculated by this program were used to establish predroop of the shroud so that at speed, the shroud deflections match and surface-to-surface contact takes place between each pair of mating shrouds. Shroud cross sections are aerodynamic shapes modified to provide adequate contact surface so that contact stress will be low enough [1324 N/cm² (1920 psi) in this case] to ensure long life for the tungsten carbide hard facing. Line of action of the blade deflection in the flexural modes was checked to ensure it would not be along the contact face of the shroud.

Figure 47 shows a cross section of the fan blade and disk at the dovetail/post interface, the cross section taken through the blade stacking axis. Due to the steep flowpath, the shank is very short at the front of the blade requiring disk relief to clear the blade platform. This view also shows the depth of the slot that is required to drop the blade, clearing the shroud interlock for individual blade removal. In normal assembly, the space under the blade is occupied by the anticlank spring which preloads the blade outward to take play out of the disk/blade interface.

Figure 48 is a summary of the blade dovetail and disk post steady-state stresses. The 10° orientation angle and blade stacking axis offsets were done to balance dovetail corner stresses. A Goodman diagram (Figure 49) shows the relative strength between the fan blade airfoil and its dovetail

- N = 3653 rpm
- Stress in kN/cm² (ksi)

Figure 42. Fan Blade Effective Stress Contour Plots.

Fan Rotor Blade Untwist.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 44. Fan Blade Root Stress.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 45. Fan Blade System and Fixed Blade Frequencies.

.....

Figure 46. Fan Blade Shroud.

...,

¢

Figure 47. Fan Dovetail and Post Cross Section.

.

for the primary vibratory modes. If it is assumed that the airfoil is operating at its maximum vibratory limit (upper curve and points), then the scaled resulting attachment loads should be below their allowable limits (lower curves and associated points). Different property level curves in Figure 49 have to do with property reduction due to forging size.

Figure 50 is an indicator of birdstrike capability as compared to the advanced CF6-50 fan blade. A measure of resistance to damage is the calculated shear stress in the blade resulting from a strike. The dashed curve is the ratio of E^3 calculated shear stress compared to CF6-50 shear stress taken as a level of 1. For comparison, the X points indicate test strikes that the CF5-50 blade has successfully withstood. Aft positioning of the blade shroud ($\approx 65\%$ of chord) is one of the measures employed by the CF6 and E^3 to enhance birdstrike capability.

Figure 51 shows an exploded view of the blade retention/anticlank system. The system is completely interlocking so that all pieces are held by each other, with the complete assembly finally secured by a bolt. The sequence of assembly is as follows: the blade is inserted in the slot and held outward against the dovetail pressure faces; the spring is inserted under the blade and the retainer pins into their slots; the spring is depressed and the key inserted to maintain the spring load, and the whole assembly is held in place by a bolt through the spring and into the key. Radial movement of the retainer is restricted by notches engaging the key; axial movement of the assembly is prevented by the retainer pins engaging notches in the spring. The strength of the retention system is based on birdstrike induced interaction with the casing of a level derived from past experience. Forward plane balance weights may be added under the retention bolts.

D. Booster Blade Design

Figure 52a and 52b illustrate the configuration parameters of the final booster blade design. The tm/c plot in Figure 52a shows the result of thickening the blade tip to avoid stripe mode coincidence with a starter passing frequency. The blade is approximately constant chord with relatively little twist or camber reflecting the low work level designed into this stage.

Airfoil stresses and frequencies were calculated by the TAMP-MASS finite element program. Steady state stresses are shown on Figure 53 and are seen to be very low. Scaling of end effects data from a similar CF6 blade and applying to the Twisted Blade program yielded the airfoil root stresses shown in Figure 54. Maximum stress is on the convex side of the airfoil root and is less than 30 ksi. The Campbell diagram in Figure 55 shows the calculated frequencies of the blade and indicates adequate margin between first flex and two per rev, and between 60/rev (stator passing) and the two stripe blade mode.

Figure 56 gives dovetail geometry and shows the low level of stresses on the dovetail. A Goodman diagram for the booster blade and dovetail for the three lowest vibratory modes (Figure 57), shows that the blade attachment is stronger than the airfoil for a given level of airfoil vibratory stress. The ORIGINAL PAGE IS OF POCR QUALITY

Calculated for 0.68 kg (1.5 1b) Bird at 3600 rpm
X Test Strikes - Advanced CF6-50 - No Fragmentation

Figure 50. Fan Blade Bird Strike Stress Level.

Figure 51. Fan Blade Retention/Anticlank System.

in the later

12/28/10/10

station when the state in the state of the

HARRING MI

OPIGINAL PAGE IS OF POOR QUALITY

4

Figure 52. Booster Blade Design Parameters.

ORIGINAL PAGE is OF POOR QUALITY

Height, percent

64

Figure 54. Booster Airfoil Root Stresses.

Figure 55. Booster Blade Campbell Diagram.

Figure 56. Booster Dovetail Stresses.

ORIGINAL PAGE 13 OF POOR QUALITY

,

CRIGINAL PAGE IS OF POOR QUALITY

Mean Stress, ksi

Figure 57. Booster Dovetail Goodman Diagram.

blade is stall protected against instability in the torsional mode. Balance weights inserted in the booster stage dovetail slot constitute the art rotor balance plane.

E. Rotor Structure Analysis

The rotor structure was analyzed using the CLASS/MASS thin shell portion of the rotor in combination with AFINE for the analysis of the thick shell Stage 1 and 2 disks. The model breakdown is shown in Figure 58. Radial loads and moments due to the blade stages were input at the disk rims and restraints imposed by the bearings input on the shafting. Rotor deflections from this model were used to establish blade lengths for proper clearance and cold component dimensioning; under operating conditions then, the correct aerodynamic flowpath will be established.

Figure 59 shows in detail the AFINE model used to analyze the disk with the significant stresses and deflections noted around the disk and shaft stub. The disk, being sized for growth capability, is not highly stressed at FPS conditions; and at the rim with the dovetail slot stress concentration applied, cyclic life requirements are easily met. In the curved section of the shaft, the configuration has been carefully contoured to avoid high bending stresses by attenuating the disk deflections over several inches of shaft length. To make most efficient use of the material available, the disk cross section was made nonsymmetrical. Blade loading, because of the shank configuration, the aft positioning of the part span shroud, and gas loading produces a forward moment loading on the disk; the restraint of the forward connection of the shaft induces a moment load in the same direction. Positioning the center of gravity of the disk aft of the blade stacking axis produces a countermoment that can be made to balance disk loadings to essentially neutralize disk rolling. The eccentric contouring was also made to accommodate the No. 1 bearing sump wall to permit closer spacing of the fan centerline to the bearing.

Figure 60 shows the analytical model of the second stage disk and spacer and the associated stresses and deflections. All are well within the acceptable limits. In the disk, the bore projection was positioned to counteract rim moment input by the blade and the spacer connection to minimize disk rotation; the length of the bore was sized to keep vibratory frequencies of the disk out of the fan operating range.

The disk/forward fan shaft bolted joint is shown in Figure 61. The joint utilizes thirty 5/8-inch bolts preloaded sufficiently to transmit fan torque through flange friction rather than shear loading the bolts and working the bolt holes. Using more and smaller bolts allows the flange joint to be lighter and still transmit the required torque. Tight fitting bolts prevent shifting of the joint and minimize bending of the bolt.

Table VI is the weight breakdown of the FPS fan rotor.

CECT SHORE AND AND A CONTRACTOR

ORIGINAL PACE IS OF POOR QUALITY 0.092 (0.0362) - 24.8 (36) Effective Stresses in kN/cm^2 (ksi) 0.088 (0.0347) Deflections Underlined cm (in.) 17.9 (26) - 0.093 (0.0368) -22.1 (32) 23.4 (34) 0.092 (0.0362) 3653 rpm 個田 L-15.8 (23) -17.2 (25) • • 20.7 (30) 0.092 (0.0364) 0.086 (0.0338) 11.5 (17) 19.3 (28) 17.9 (26) 14.5 (21) - 16.5 (24) 24.8 (36) 26.2 (38) 13.1 (19) 12.4 (18). 13.8 (20) 21.4 (31)-

Figure 60. Booster Spool Stresses and Radial Deflections.

	kg	lb
Fan Blades	232.7	513
Fan Disk	137.4	303
Booster Blade	15.9	35
Booster Disk	42.2	93
Spinner	8.6	19
Disk Seal	2.7	6
Retention and Anticlank System	7.7	17
Forward Fan Shaft	34.5	76
Hardware	14.5	32
Total	496.2	1094

Table VI. FPS Fan Weight Status.

.

. **-**

IV. FAN STATOR DESIGN

The mechanical design of the E^3 fan stator includes the design of the fan frame, the stator vanes, and the casing/containment structure.

Two different fan frame configurations will be developed in the E³ Fan Program. One configuration will be utilized for the Full-Scale Fan Component Test (FSFT) and will remain in the fan module for the ICLS turbofan test. The other configuration will represent the conceptual design proposed for the Flight Propulsion System (FPS). All frame configurations will incorporate an integral vane frame design in which the outer bypass vanes provide both an aerodynamic and structural function. The integral vane frame design will feature five different bypass vane configurations in the vane row to correct for circumferential flow distortions that will be caused by the 12 o'clock engine pylon structure. The frame configuration for the FSFT will mount at the bypass case directly to the test facility hardware. Consequently, no engine mounts or hardware for nacelle attachment will be required. Although no radial driveshaft is required for the FSFT, provisions for the driveshaft will be incorporated to reduce the disassembly and rework required to prepare the frame for the ICLS engine test.

For the turbofan engine test (ICLS), the fan frame will provide the forward engine mount locations on the core frame, hardware for the nacelle inner and outer cowl attachment, and a means to include a radial driveshaft to a fan mounted gearbox. The radial driveshaft will be added in the plane of the bypass vanes by modifying the 6 o'clock vane and one vane to either side.

The fan frame design for the FPS is a study only with no hardware requirements. The FPS frame configuration will feature an integral vane frame aerodynamically the same in the bypass as the frame for the FSFT, but the bypass vanes will be a composite design instead of the metal vanes used in the FSFT and ICLS. Additionally, the FPS design will feature an advanced composite containment design based on work being done under a NASA contract to develop advanced composite containment concepts and work done by the U.S. Army on lightweight armor.

The design of the core frame and bypass vane assembly is complete. The core frame is a welded assembly of the eight finish machined struts to finished flowpath rings which are then final machined at the outer and inner flanges and rabbets. The bypass vanes are individual pieces that bolt to the core frame at their ID and bolt to an outer bypass casing at their OD. The stator vanes and hardware for the Stator 1 and core OGV assemblies have been designed as have been the midcase and fan containment case. The containment case design is now a modification to a CF6-50 steel case in order to hold down costs.

A. Fan Stator Configurations

The fan stator configuration (midcase and containment case not shown) that will be used for the FSFT and the ICLS engine test is shown in Figure 62. The solid 17-4 PH steel bypass OGV's and core struts are nonflight-type

Figure 62. ICLS Fan Stator Configuration.

76

Ę

designs but the Stator 1 and core OGV vane assemblies are representative of flight type hardware. Lightweight 7075 Al will be used for the core OGV's and 6061 Al for the inner and outer shrouds. In the Stator 1 assembly, the flow splitter casing is aluminum with the vanes 403SS (proposed Ti 6-4 for the FPS design) for cost reasons and the inner and outer fairings are steel for FOD protection during the development tests.

The proposed FPS fan stator configuration is shown in Figure 63. This design integrates the fan bypass outer flowpath, the nacelle outer flowpath, and the bypass OGV's as a single structure. The main structure of the casing is a sandwich structure (with graphite/epoxy facings) which forms the outer flowpath of the nacelle. The inner flowpath of the casing is formed by the acoustic treatment and supporting structure. The bypass vanes are formed by graphite/epoxy skins which are bonded to the radial spokes extending from the inner and outer structural wheel rims. The metal core frame is envisioned as a one-piece aluminum casting with the core struts internally stiffened to support the bypass vane/outer casing assembly and the bearing cone loads. This approach is based on technology currently in place on the production TF34 frame. The E³ core frame will be about twice the diameter but of the same order of casting complexity as the TF34 cast frame. The Stage l vanes are shown as Ti 6-4 material for the FPS design as discussed in the ICLS fan stator description.

A cross section of the core frame is shown in Figure 64 with the service requirements for the eight-strut structure listed. The core struts at the +45° location from top vertical will provide attachment points for the forward engine mounts. Seal pressurization air will be provided by air scoops located in the core struts as illustrated in Figure 65. A detail of the bottom core strut is shown in Figure 66 with the direction of the radial driveshaft depicted. Figure 67 shows the proposed modification to the bottom vertical bypass vane and adjacent vanes to incorporate the radial driveshaft to the fan mounted gearbox. A fairing is shown around the shaft to provide a smooth transition to the bypass vane airfoil surfaces and to house the service lines.

One of the ICLS engine fire prevention and fire containment requirements includes the cavity space between the core engine and the fan bypass duct. The current plan to satisfy this requirement is through the method shown in Figure 68. The fan frame will supply a flange to which the core cowl seal support can be attached. As is shown, the core cowl door will provide three scoops around the circumference to gather the purge air which will be directed to the core cavity through holes in the seal support.

B. Fan Frame Analysis

A great deal of analysis has been performed on the fan frame not only for the FPS design but also for the FSFT and ICLS frame designs as well. The slave frame designs for the FSFT/ICLS are studied to ensure compatibility with the other engine components based on static deflection and engine dynamics criteria. Frame flexibility studies have been completed on the preliminary flight frame (FPS) design and the slave frame (FSFT/ICLS) design. Engine mount position

ORIGINAL PACE IS OF POOR QUALITY

Figure 63. FPS Fan Stator Configuration.

ŝ

No.

9

No.

5

No.

No. 8

4

No.

٠

.

Strut No. 1 No. 2 No. 3

Figure 64. Fan Frame Services.

ORIGINAL PACE IS OF POOR QUALITY

San Pranting

ŝ.

Figure 66. Fan Frame Bottom Core Strut.

ORIGIUM PACE IS OF PCOR QUALITY

Figure 67. Proposed Modifications for ICLS Driveshaft and Fairings.

82

and the second second

Figure 68. Forward Core Cowl Support/Purge.

and ovalization studies have also been completed on the FPS design to optimize the effect of the forward engine mount on compressor clearances. Analyses are currently in process on the slave frame to cover critical load conditions such as blade-out and rotor seizure. The normal load design analysis has been completed on the FSFT/ICLS (slave) frame design with the bolted flange analysis to be completed. The final design of the FPS frame is currently scheduled for the late-1980 to mid-1981 time period. The FPS configuration will be optimized relative to frame flexibilities, operating deflections, stresses, and weight. The basic design requirements for the FSFT/ICLS fan stator module are

- Represent, where possible, the FPS structure
- Provide adequate stiffness to minimize deflections to satisfy engine system dynamics
- Provide design flexibility for acoustic requirements.

Figure 69 illustrates the analytical computer model of the E^3 frame. The model incorporates the core frame and bypass vane structural elements as well as the stator assemblies and the outer bypass case. This model was used to determine frame stiffness values for engine system response calculations and to evaluate the frame deflections under various loading conditions. Figures 70 and 71 illustrate the frame stiffness values for shear and overturning moment loading that have been established from the preliminary FPS frame studies and the current FSFT/ICLS analysis and how these values effect the engine system response. The stiffness comparison chart shows the difference between the possible extremes for an FPS frame design utilizing different materials. The FPS-SOFT values represent an all aluminum structure whereas the FPS-STIFF values represent an all steel structure. The comparison shows the solid steel ICLS frame design to be significantly stiffer than the FPS frames, particularly in the bypass portion of the structure. Figure 71 shows the fan frequency response and the No. 1 bearing load variation with a given fan unbalance. The figure shows the critical frequency for each frame design to be outside the maximum operating speed of the fan.

Figure 72 shows the temperature distribution through the fan for the operating conditions applicable to the FSFT and the ICLS engine aero design point. Axial deflections at critical locations on the frame assembly are given in Figure 73 for loading and frame mounting conditions consistent with the FSFT and ICLS engine test requirements. These deflections are used to establish rotor/stator clearances.

C. Stator Vane Mechanical Design

A detail of the Stage 1 stator and core OGV assemblies is shown in Figure 74. Porous Teflon will be utilized at the booster rotor rub tip surface and the rotor seal rub surfaces due to its excellent material properties and potentially lower cost. The Stator 1 vanes are individual vanes assembled radially through loading slots into the 360° inner shroud. This assembly bolts to the 360° cantilevered island casing supported at the bypass vane leading edge. A 360° outer fairing which bolts radially into the island

Figure 69. Fan Frame MASS Analytical Model.

ORIGINAL PAGE IS OF POOR QUALITY

	к ₁ (С	ore)	K ₂ (Bypass)		
E ³	Ρ/δ	M/θ	Ρ/δ	M/0	
	N/m	m-N/rad	N/m	m-N/rad	
	(1b/in.)	(in1b/rad)	(lb/in.)	(inlb/rad)	
FPS - Soft	3.91×10^8	0.84×10^8	7.55 x 10^8	1.21×10^8	
	(2.23 x 10 ⁶)	(0.74 ×10 ⁹)	(4.31 x 10^6)	(10.7 x 10 ⁸)	
FPS - Stiff	11.46 x 10^8	2.44 x 10^8	9.50 x 10^8	3.35×10^8	
	(6.54 x 10^6)	(2.16 x 10^9)	(5.42 x 10^6)	(29.6 x 10 ⁸)	
ICLS	17.31 x 10 ⁸	3.15×10^8	34.32×10^8	10.94×10^8	
	(9.88 x 10 ⁶)	(2.79 x 10 ⁹)	(19.59 x 10 ⁶)	(96.8 x 10 ⁸)	

Figure 70. Fan Frame Stiffness Comparison.

CALL DURL PALE IS OF PLUS CURLITY

Figure 72. Fan Temperature Distribution.

.

	Fan	g Thrust ir Loads	200	in.	-0.001	-0.003	-0.001	
Loading	ICLS	Bearing Plus Ai	10	сш	-0.003	-0.068	-0.003	
External		FT Loads	0%	in.	0.001	0.003	0.001	
		FS Air]	10	Ca	0.003	0.008	0.003	
			6 41	in.	0.007	0.012	0.013	
		ICLS	Case	cm	0.018	0.030	0.033	
		(2)	.%(in.	0.012	0.014	0.016	
Loading	k		100	Cm	0.030	0.035	0.041	
Thermal			se 41	in.	0.011	0.019	0,019	
		rSFT	(4) Ca	CIII	0.028	0.048	0.048	
	1	(1)	200	in.	0.016	0.076	0.024	
				C	170 0	0.061	0.061	
				MASS Model Node		3-00 2-60	800	
		<	- ~	2				

1

N.

- (1) Frame Mounted at Bypass Case
- (2) Frame Mounted at Core Frame
- (3) Deflections for 100% Fan Speed Ambient Inlet
- Deflections for Engine Cycle Case 41 = Mach 0.8/10.7 Km (35,000 feet) (†)

Negative (-) is Aft

ORIGINAL PAGE IS OF POOR QUALITY

Figure 73. FSFT/ICLS Fan Axial Deflections.

Figure 74. Fan Stator Materials.

1487年にご請加加出する自豪主義がありました。

casing attaches to the vane to provide additional support and form the island upper flowpath. The core OGV's are also individual vanes which assemble axially through loading slots into the 360° inner shroud. This assembly bolts to the core frame at the inner shroud with a 360° outer fairing bolting to the vane outer platform and providing the core flow splitter upper flowpath.

Table VII provides a geometry summary for the fan stator vanes. Figures 75 and 76 show the nonlinear tm/c distributions for the Stator 1 vane and core OGV designs which are representative of the proposed FPS designs. The bypass vane distribution is not shown since the design for FSFT/ICLS is a solid steel vane not representative of the hollow composite concept proposed for the FPS design. Figure 77, 78, and 79 represent the finite element analytical models used in the steady state and vibratory analysis of the fan stator vanes. Figures 80, 81, and 82 are the Campbell diagrams for the vanes.

The vane frequencies are shown relative to potential fan blade and booster blade excitations through the fan speed range. The maximum physical fan speed is shown for both the FPS baseline and proposed growth engine cycles. The vane designs for the FSFT/ICLS tests are relative to the baseline fan speed only with the growth engine cycle speed shown for reference. A different vane geometry will be required for a growth engine cycle and will change the vibratory characteristics of the vanes. Therefore, designing the FSFT/ ICLS vane geometries to the growth cycle would be an unrealistic requirement.

The diagram for the bypass vane shows the predicted two-stripe (2S) frequency intersecting the 32/rev excitation line near top speed. This is a result of the slave solid vane design representing the desired aerodynamic configuration. The hollow composite vane design proposed for the flight-type design (FPS) will result in a higher two-stripe frequency that can be tuned to avoid vibratory excitation sources. It is felt that the bypass vanes are sufficiently downstream from the fan blade excitation and have sufficient structural section (solid steel) such that the two-stripe mode resonance should not present any problems during the component (FSFT) or engine (ICLS) testing.

The Stage 1 vane Campbell diagram shows idequate margin at maximum speed between the vibratory modes through two-stripe and the fan blade excitation sources, including twice fan blade passing. The core OGV diagram shows a similar distribution of vibratory modes as for Stator 1 with no resonances at maximum speed through the two-stripe mode. The proximity of the fundamental bending and torsion modes makes separating the modes and maintaining adequate margin over fan blade 32/rev and 64/rev excitation frequencies difficult without a major geometry change to the vane which could reduce the aerodynamic performance.

The major excitation source for the core OGV should be the booster rotor 56/rev with the current vane design exhibiting only lower speed resonance. The fan blade once and twice blade passing per rev is marginally close to the vane IT and 2T modes. But for the reasons mentioned, the vane will be fabricated and bench tested to determine the exact frequency response before any design modification is considered.

Table VII. Fan Stator Geometry Summary.

		Mat	erial
tator	٨٧	ICLS	FPS
ige l	60	403 SS	T1 6-4
ver OCV	64	7075 Al	7075 AT
0 8 53	34	H4 4-L1	Composite

~
5
5
Je o
9

Aspect Katio	1.935	1.39	2.89
, deg. Tip	35.79	62.38	46.54
Camber Root	37.29	55.38	29.20
r, deg. Tip	21.51	21.53	14.71
Stagge Koot	20.27	18.40	14.67
/c Tip	0.062	0.062	0.073
ta Kout	0.485	0.053	0.056
m (in.) Tip	8.10 (3.19)	5.44 (2.14)	27.74 (10.92)
Chord, e Root	8.13 (3.20)	9.25 (3.64)	31.27 (12.31)
L cm (in.)	15.67 (51.17)	11.6) (4.58)	43.18 (17.0)
Stator	Stake I	Inner (XV	bypass

ORIGINAL PAGE IS OF POOK QUALITY

Figure 75. Fan Stator Stage 1 Vane Tm/c Distribution.

ORIGINAL PAGE IS OF POOR QUALITY -

Figure 76. Fan Stator Core OGV.

.

Figure 77. Bypass Vane, SAP-4 Analytical Model.

Figure 78. Stage 1 Vane, SAP-4 Analytical Model.

Ċ,

Ĩ

- Aller

Figure 79. Core OGV, SAP-4 Analytical Model.

Figure 80. Bypass Vane Campbell Diagram.

No dita waatii ilaanii interna dahaa ahaa taa haraha ahaan aksimtii ata

ł.

Frequency, CPS x 10-3

Figure 81. Stage 1 Campbell Diagram.

Figure 82. Core OGV Campbell Diagram.

Frequency, CPS x 10-3

The vane airfoil designs have more than adequate incidence angle margin with flexural and torsional instability boundaries.

Table VIII illustrates the vane steady state stress. The table shows the vane designs to be low steady state or mean stressed which improves the vibratory fatigue stress allowable. All the vane designs will be bench tested to determine the actual vibratory strain distribution for each vane frequency and then instrumented for safety monitoring during the component and engine tests. The instrumentation monitoring provides a means of limiting the vane vibratory stress based upon the material allowable to reduce the chance of fatigue failure during testing.

The design of the fan frame and stator assemblies is complete except for the analysis of the modified bypass vanes that are required for the ICLS configuration. The detail drawings for all the vanes and struts have been issued and fabrication has been initiated. The hardware for the Stage 1 and core OGV stator assemblies (shrouds, fairings, etc.) is also on order.

Figures 83 and 84 show the fastener selection for the stator assemblies and for the core frame and bypass vane assembly.

D. FSFT and ICLS Fan Casing/Containment Design

Due to fabrication costs, the FSFT and the ICLS engine test will utilize a slave containment system design instead of the advanced composite containment design proposed for the FPS configuration. The containment system as well as the boilerplate aluminum midcase will provide for both hardwall and acoustic panels required for performance and acoustic testing. The proposed design of the fan frame for the FPS features an integrated nacelle/fan bypass structure which supports the inlet and eliminates inlet loads being carried through the containment structure to the frame. Figure 85 illustrates the advanced composite containment system based on work done under NASA contracts for "Containment of Composite Blades" and "Development of Advanced Lightweight Containment Systems." The design features a structural inner steel shell which should provide a good bearing surface for the fan blades during large rotor excursions during unbalance, etc. and should stop small fragments without major damage. The actual containment system utilizes a honeycomb nesting area backed by the dry Kevlar cloth with a composite cover. The honeycomb nesting also provides stiffness to the structure to prevent fan rotor/casing interaction. Figure 86 shows the interaction frequency curve for the FPS design relative to a CF6-50 engine test. The figure shows the intersection of the fan casing traveling waves and the fan rotor traveling waves beyond both the FPS baseline and growth fan speeds which should ensure safe operation during testing. Figure 87 shows the containment angles proposed for the FPS design based upon CF6 commercial engine containment experience.

The calculation for the E³ of the blade kinetic energy that has to be contained results in the thickness of the dry Kevlar cloth required. This relationship of kinetic energy to Kevlar thickness is based on data derived from the whirligig testing of the NASA containment programs previously mentioned.

Table VIII. Vibratory Stress Limits for ICLS Fan Frame Vanes.

4 >

	Bypass Vanes	Stage 1	Core OGV
Material	17-4 PH	403 SS	7075 - T73 Al
Maximum Design Steady State Stress, MN/m ² (ksi) Design Margin	20.7 (3)	203 (29.4)	22.1 (3.2)
Alternating Stress For 10 ⁷ Cycles, percent	200	30	150
Temperature of Maximum Allowable Stress, °C (°F)	121 (250)	121 (250)	93 (200)

Figure 84. Slave Frame Bolt Selection.

1

in the **M**iner me diale

J

ORIGINAL PAGE IS OF POOR QUALITY

AND THE PLACE IS

Figure 86. Fan Rotor/Casing Interaction.

.

WHY BUT THE MENT THE RECEIPTING THE AND

ł

1

فالمتلافية

Figure 87. FPS Containment Angles.

A preliminary calculation of the FPS containment case flange loads based on a fan blade-out condition shows the flange stress under an ultimate load condition to be within the material capabilities of the 304L steel casing.

As previously mentioned, a slave containment system design will be utilized for the FSFT and the ICLS engine test. Figure 8E shows the low cost modification of a CF6-50 production steel case proposed as the containment system. An aluminum shell will be bolted on the forward end for support of the hardwall and acoustic panels forward of the fan and a steel shell will be welded to the aft end of the CF6-50 case for attachment to the midcase. Shown in phantom are stiffener rings that can be attached to the production case to provide sufficient interaction frequency margin as explained earlier. Figure 86 shows the casing interaction frequencies from a bench test of a CF6-50 case and illustrates that the margin above the E³ fan operating range should be adequate.

Figure 89 shows the assembly of the outer midcase and containment case for the ICLS configuration to the fan frame slave outer casing.

E. FPS Fan Frame Weight Status

The E^3 FPS fan frame weight status is summarized below. This weight status will be updated as the FPS frame detailed study, scheduled to initiate in late 1980, progresses.

		kg	<u>lbs</u>
•	Bypass vane-frame	257	566
•	Core frame	129	284
•	Core stators/assembly	7 9	175
•	Containment	<u>196</u>	432
		661	1457

REFERENCES

- Seyler, D.R. and Smith, L.H., Jr., "Single Stage Experimental Evaluation of High Mach Number Compressor Rotor Blading, Part I - Design of Rotor Blading," NASA CR-54581, April 1967.
- 2. Monsarrat, N.T., Keenan, M.J., and Tramm, P.C., "Single Stage Evaluation of Highly Loaded, High Mach Number Compressor Stages, Design Report," NASA CR-72562.
- Reddy, J.L. and Klapproth, J.F., "Advanced Fan Development For High Bypass Engine," AIAA Paper Number 68-563, June 1968.
- Smith, L.H. and Yeh, Hsuan, "Sweep and Dihedral Effects in Axial Flow Turbomachinery," Journal at Basic Engineering, Transaction of ASME, Series D, Volume 85, 1963.

LIST OF SYMBOLS AND NOMENCLATURE

-

- 10

1

.

Symbol .	Descrip	tion	Units
AR	Aspect Ratio <u>Blade height at st</u> Chord at 50% ht	acking axis	
С	Blade Chord		cm (in.)
DFACT or	Diffusion Factor:		
D-factor	$D_{rotor} = 1 - (V'_2/V'_1) + (r_2V_{\theta_2} - r_1)$	$v_{\theta_1})/(2 r \sigma v)$	' ₁)
	$D_{stator} = 1 - (V_2/V_1) + (r_1 V_{\theta_1} - r_2)$	$v_{\theta_2})/(2 \bar{r} \sigma v)$	1)
d	Diameter		m (ft)
i or INC	Incidence Angle		degrees
IGV	Inlet Guide Vane		
ID	Inner Diameter		
М	Mach Number		
N	Engine Speed		rpm
NB	Number of Blades		
N _V	Number of Vanes		
OD	Outer Diameter		
OGV	Outlet Guide Vane		
Ρ	Static Pressure		Kílo-Pascals (psia)
P/P	Total Pressure Ratio		
P _T	Total Pressure		Kilo-Pascals (psia)
PSI (ψ)	Percent Flow Stream Function		
Rorr	Radius		cm (in.)
rpm	Revolutions per Minute		
R1, R2	Rotor 1, Rotor 2, respectively		
r or RBAR	Mean Radius		cm (in.)
SA	Stacking Axis		
S1, S2IN	Stator 1, Stator 2, Respectively		
SL	Streamline		

PRECEDING PAGE BLANK NOT FILMED

ORIGINAL PAGE IS OF POOR QUALITY

LIST OF SYMBOLS AND NOMENCLATURE (Continued)

Symbol .	Description	Units
Stall Margin (%)	$\frac{\left(\frac{P/P}{W}\right)_{\text{stall}} - \left(\frac{P/P}{W}\right)_{\text{operating line}} \sim 100}{\left(\frac{P/P}{W}\right)_{\text{operating line}}}$	
T	Temperature	K (° R)
TMC or tm/c	Maximum Thickness-to-Chord Ratio	
t	Thickness (Blade)	cm (in.)
U	Rotor Speed	m/sec (ft/sec)
v	Velocity	m/sec (ft/sec)
W	Airflow	kg/sec (lbm/sec)
WB	Total Pressure Loss Coefficient	
Z	Axial Distance	cm
β	Flow Angle	degrees
β*	Metal Angle	degrees
γ	Specific Heat Ratio	
δ	Pressure Correction $(P_{T}/1.0133 \times 10^{5} N/m^{2})$	
δ° (DEV)	Deviation Angle	degrees
ə	Temperature Correction (T_{T} /288.15 K)	
σ	Solidity 1	
ψ (psi)	Percent Flow Streamfunction	
¢ (phi)	Slope of Meridional Streamline	degrees
n (eta)	Efficiency	
$\widehat{\omega}$ or WB	Total Pressure Loss Coefficient:	

Rotor
$$\overline{\omega} = \frac{P_{T_2}' - P_{T_2}'}{P_{T_1}' - P_{i}}$$

$$P_{T_1} - P_{T_2}$$

Stator
$$\overline{\omega} = \frac{r_1 - r_1}{P_1 - P_1}$$

and the American State

.

A State A

LIST OF SYMBOLS AND NOMENCLATURE (Concluded)

Superscripts

•

.

' Relative to Rotor

° Degrees

Subscripts	
adia	Adiabatic
poly	Polytropic
1 or LE	Leading Edge
2 or TE	Trailing Edge
Sta	Blade Row Station
m or max	Maximum
r	Radial Direction
T	Total Condition
TH	Throat
Z	Axial Direction
θ (Theta)	Tangential Direction
ж о	Free Stream
0	Total or Stagnation Conditions

.

PRECEDING PAGE BLANK NOT FILMED

1

APPENDICES

- A. Fan and Quarter-Stage Aerodynamic Design Point Circumferential-Average Flow Solution.
- B. Fan Rotor Blade Plane Section Geometry.
- C. Stator 1 Plane Section Geometry.
- D. Quarter-Stage Rotor Plane Section Geometry.
- E. Inner OGV Plane Section Geometry.
- F. Bypass OGV Plane Section Geometry.

Fan and Quarter-Stage Aerodynamic Design Point Circumferential Average Flow Solution. Appendix A:

Paint T A.M. A.L. A.L. A.L. A.L. A.L. A.L. A.L.

OTICTIPL PAUE IS CE POCA QUALITY

ORIGINAL PACE IS OF POOR QUALITY	
FFICLENCY ACC FT ACC TT DIA POLY ACT O RATIO 175 8:253 1.2648 1.2648 853 1.2648 1.2648 1.2648 1.275 8:955 1.755 1.1667 945 8:955 1.725 1.1667 945 8:955 1.653 1.1667 955 8:955 1.653 1.1667 1.552 8:956 1.653 1.1667 1.558 8:956 1.653 1.1667 1.558 1.956 1.658 1.1334 1.558 1.558 1.558 1.1334 1.558 1.1529 1.558 1.1334 1.558 1.1344 1.558 1.13444 1.558 1.13444 1.558 1.1344 1.558 1.1344 1	
人 2 4 4 5 4 4 5 5 4 4 5 5 5 5 5 5 5 5 5 5	
ACT CHORD 445 11.314 458 19.333 458 19.333 458 19.333 458 19.333 458 9.558 491 9.558 491 9.558 492 9.452 493 9.588 493 9.588 493 9.148 7.38 497 8.781 514 8.781 515 8.781 514 7.781 514 7.	
R 8 SOL 855 1 4862 881 4862 881 4862 881 4862 881 4862 881 4789 881 4789 881 4789 881 4789 881 1 5584 881 1 7289 883 1 7289 883 1 7289 883 1 7289 883 1 7289 883 1 9142 883 1 9142 885 1 9142 885 1 9142 885 1 9145 885 1 9155 885 1 91555 885 1 91555 885 1 91555555555	AR 2.56
(HETRIC) UNIT S CANBER STO FF 5. 63 7.18 5. 63 7.18 5. 63 7.18 5. 63 7.18 5. 63 7.18 5. 63 7.11.755 44.71.95 84.75 84	NLET CORR NB RPM 3727.7 32
100 100 100 100 100 100 100 100 100 100	ADIA I EFF J .917
ま し し し し し し し し し し し し し	ТЕМР Ratio 1.1646
	PRESS RATIO 1.6342
LADE ROW PRIN PCT RBAR (1 1 M 184. 481 7.75 59.256 7.32 59.256 28.32 58.419 28.32 58.226 28.32 58.419 28.23 88.419 28.23 88.419 52.23 58.419 52.23 58.419 52.23 58.419 53.255 64 53.27 56.46 52.23 71.64 55.26 59 51.14 59 55.678 77.94 55.678	INLET CORR UTFLOU 643.72

OTAL PRESS TOTAL TEMP In Out In Out	6.76 154.44 328.3 328.3 5.79 153.83 327.6 327.6 4.52 152.89 326.7 326.7 2.18 156.75 325.2 325.2	1.10 149.72 324.6 324.6 9.35 147.79 323.5 323.5 5.91 147.79 323.5 323.5 5.91 143.93 322.5 322.5 1.19 140.63 321.9 322.5 2.87 138.57 322.8 322.9	BLKG NCU IN OUT IN OUT 994 8.994 8.911 2883 994 8.994 8913 2863 994 8.994 9913 2865 994 8.994 9913 2865 994 8.994 9913 2865 994 994 9523 2396 994 994 9556 2236 994 994 9358 2236 994 994 9358 2236 994 994 9358 2236 994 8.994 8831 1863 994 8.994 8641 1728 994 8.994 8681 1423	FFICIENCY ACC PT ACC TT 1A POLY RATIO RATIO 921 8.925 1.524 1.1393 923 8.932 1.569 1.1393 935 8.932 1.569 1.1395 935 8.933 1.478 1.1264 935 8.933 1.478 1.1264 935 8.933 1.456 1.1264 926 8.933 1.456 1.1264 928 8.933 1.456 1.1264 928 8.933 1.456 1.1173 929 8.869 1.398 1.1173 799 8.869 1.398 1.1173
REL ANGLE TO			IN COLUMN COLUMN	ORD AXIAL A 146 L'EL-JA A 146 L'EL
AN STATION DATA Ars angle in out	38, 38 12, 86 38, 86 11, 96 38, 51 11, 56 37, 91 16, 62 37, 91 16, 62	37.73 19.26 37.33 19.26 37.32 9.75 37.32 9.28 37.45 9.89 37.88 8.39 38.79 9.89	ABS MACH NO IN OUT 1 N OUT 2 729 8.599 2 729 8.598 2 737 8.598 2 749 8.599 2 749 8.599 2 782 8.599 2 782 8.599 2 782 8.599 2 829 8.599 2 829 8.599 2 829 8.599	THC 0-FACT CF 4 A C T CF 4 A
UNITS *** EEE F Merid Angle In Out	1.19 2.46 4.97 2.58 6.74 3.46 8.71 4.73 9.98 5.78	9.98 5.78 11.47 7.22 13.26 9.63 14.10 9.98 15.87 11.42 17.51 12.18	BLADE SPEED IN OUT	STGR SOL 21:28 1.1456 9. 221:52 1.1855 9. 28:54 1.2497 9. 28:14 1.2749 9. 28:14 1.2749 9. 29:13 1.3555 9. 19:38 1.4566 9. 19:38 1.4566 9. 19:38 1.5175 9. 18:39 1.5175 9.
(METRIC) STREAM FUNCT IN OUT	8. 8.189 8.188 8.194 8.194 8.328 8.328 8.427 8.427	8.127 8.127 8.555 8.552 8.798 8.788 8.776 8.776 8.988 8.988 8.988 8.988	TANG VEL IN VEL 155.9 43.2 155.3 43.2 155.5 36.5 155.5 36.5 155.9 312.5 156.8 312.5 156.8 312.5 166.8 29.4	LOSS CAMBER COEFF CAMBER 20055 CAMBER 20053 34.69 20053 34.45 2013 34.45 2013 34.45 2013 34.45 2013 34.45 2014 201 2016 2016 2016 2016 2
RADIUS	65.886 65.521 63.657 64.324 61.688 62.568 61.178 61.216	68.178 61.216 58.218 59.457 55.884 57.273 54.587 55.189 55.318 54.895 52.318 54.895 49.892 51.811	REL VEL IN OUT	DEV TURN (C-R) 7.72 26.39 7.72 26.92 7.58 27.49 7.58 27.49 7.46 27.47 7.23 29.42 7.23 29.42 7.23 29.42 7.29 38.79 7.29 38.79 66.989 6.61
INTOUT FOR SI Axial Loc-Z IN DUT	72.859 38.458 22.885 38.458 22.878 38.458 22.878 38.472 22.859 38.494	22.859 38.484 22.847 39.495 22.831 39.495 22.831 39.513 22.832 38.513 22.832 38.513	ABS VEL IN OUT 249.6 547.7 249.6 547.7 251.2 266.9 251.2 266.9 255.6 266.8 256.6 266.8 256.6 266.8 256.6 266.8 256.7 265.9 265.7 251.8 265.7 291.8 265.7 295.9 265.7 295.9 265.7 295.9 265.7 295.9 265.7 295.9 265.9 200 200 200 200 200 200 200 200 200 20	INC X-FACT INPUT) X-FACT 8.88 8.98 8.26 8.26 8.26 8.26 8.26 8.26 1.58 1.58 1.58 1.58 1.58 1.4585 1.12 1.4585 1.12
BLADE ROW PRI PCT EDGE IMM IM OUT	8.44 8.54 16.61 16.52 28.59 28.29 37.69 37.26	37.69 37.25 49.56 48.99 64.21 63.55 72.84 71.38 82.35 84.76 85.35 88.75 188.88 188.87	HERID VEL IM OUT 194.2 283.1 194.2 283.1 194.2 283.1 284.1 282.8 284.1 282.8 284.1 282.8 284.1 282.8 284.1 283.4 213.2 283.4 213.2 283.4 215.2 283.4 215.2 283.6 226.5 283.6	PCT RBAR IMM 66.689 16.57 63.999 16.57 63.999 37.48 68.52 37.48 68.537 37.48 68.537 37.48 68.537 37.48 68.537 37.48 68.537 37.48 53.283 18.53 53.283 18.55 53.55 54 18.55 55 18.55

	TAL TEMP Na 2001 1001 1001 1001 1001 1001 1001 1001	2.2.2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	582 563 572 583 592
	AL PRESS TO 001 17 001 17 001 17 001 17 001 17 001 17 001 12 001 12 0	57 178 53 32 BLKG 001 001 001 001 20 998 8.9998 28 998 8.9998 28 998 8.9998 28 998 22 28 998 22 28 998 22 28 998 22 28	
	AMGLE T01 0UT IN 0UT 154 2 48.15 154 3 29.45 155 5 49 149 5 35.49 149 3 28.51 144 3 28.51 144 3 28.51 144 3 28.51 144	8 18.65 138. MACH MO MACH MO 17 18 19 4 8.738 8.9 5 8.788 8.9 4 8.788 8.9	
TION DATA	MGLE 2017 2017 2018 2019 2019 2019 2019 2019 2012 2012 2012	2011 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 2
EEE FAN STA	001 F ABS A		1111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C) UNITS ***		E 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	X Y
(METAIC		L	361.4 92 361.4 92 361.4 97 39.1 119 27.2 132 27.2 132 27.2 132 27.2 132 27.2 132 27.2 132 27.2 132 28.933 99.933 19.933 19.933 19.12 10.664 27 10.664 27 10.
	KADIUS N. COUT 1. 878 1. 878 1. 852 1. 852 1. 842 1. 842 1. 513 1. 741 1. 513 1. 513 1	L. 559 55. 129 REL VEL REL VEL 0017 382. 6 268. 8 382. 6 268. 8 257. 2 295. 1 248. 6 293. 8 251. 2 293. 9 251. 2 295. 1 205. 2 205. 2 2	Partial Control of the control of th
T FOR R2	AL LOC	69 39.289 54 69 39.471 52 85 VEL 001 13 237.5 217.5 217.5 217.3 217.5 217.3 217.3 217.3 217.3 217.3 217.3 217.3 217.3 217.3 217.3 217.3 217.3 217.3 217.3 217.3 217.5 21	
405 BOU 981N100	TT EDGE THM ANT TT EDGE THM ANT EDGT THM ANT EDGT THM ANT	L 61 95.55 33.8 L 61 196.55 33.8 R 10 VEL A N 0 UT A N 10 10 N 10 10	122.0 199.9 215.1 122.2 281.2 284.2 122.1 284.2 214.1 122.2 281.2 284.2 214.1 122.2 281.2 284.2 214.1 111.2 222.7 289.9 214.1 111.2 222.7 289.9 214.1 111.2 222.7 289.9 214.1 111.2 215.6 214.7 215.9 111.4 51.4 52.7 289.9 111.4 51.4 52.7 299.9 111.4 51.4 54.4 99.9 111.4 51.4 54.4 99.9 121.4 51.4 77.7 299.9 121.4 51.4 52.7 77.7 121.4 51.4 52.7 78.9 121.4 51.4 52.7 78.9 121.4 51.4 52.7 77.7 122.2 52.4 52.7 78.9 123.4 51.4 52.7 77.7 125.6 52.7 77.7

ORIGINAL PAGE IS OF POOR QUALITY

	TAL TEMP N 0001 7.9 333.9 9.8 3339.9 9.8 339.9 1.7 3341.7 1.7 341.7 343.7 343.7	RCU 0UT 27. 314. 286. 298. 96. 298. 77. 296. 27. 296.	PT ACC TT T10 RA110 668 1.1728 676 1.1734 673 1.1755 673 1.1755 663 1.1859 645 1.1929	
	L PRESS TO PRESS TO 3 169-961 33 3 169-61 33 3 169-61 33 3 166-27 33 3 166-19 34	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ICLENCY ACC POLY RA 2 99101. 2 8.9241. 3 8.9561. 3 8.6551. 3 8.6571.	
	101 101 101 101 101 101 101 101 101 101		▲	
	ANGLE OUT	MACH NG OUT	14-33 1-33 1-33 1-33 1-33 1-33 1-33 1-33	
TA	REL	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	CHORD 2.839 2.991 3.877 3.987 3.132 3.132	
VI NO II	NGLE 0UT 2.55 2.55 2.55 2.55 2.56	ACH NO 0UT 0UT 80.455 80.555 80.455 8	D-FACT 89.275 89.3251 89.4827 89.4827 89.512	
FAN STA	90000000000000000000000000000000000000		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
*** EEE	ANGLE ANGLE -38.0T -38.18 -37.31 -37.31 -37.31 -37.32 -38.18 -39.82 -39.82	SPEED OUT	SOL 1.2918 1.3859 1.49249 1.49249 1.49249	AK 16.03
NITS .	HERIO 1237.28 124.85 124.85 15.45 15.45 15.13 18.33	BL AUE In	STGR 19.46 15.47 13.928 13.928 12.949	N 19 1 1
IETRIC)	F UNCT 60.2.1 60.2.2.1 60.2.2.1 60.2.2.1 60.2.2.1 60.2.5 60.2.2 60.2.5 60.2.5 60.2 60.2 60.2 60.2 7 60.2 60.2 7 60.2 7 60.2 7 60.2 7 7 60.2 7 7 60.2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	VEL 6.7 6.7 5.7 5.7 5.7 5.7	CAMBER 65.95 55.762 45.762 443.738 39.621 39.621	. сокк М 7.7
÷	STRAM B. T. B. S. T. B. S. S. J. B. S. S. S. B. S. S. S. S. B. S. S. S. S. B. S.	TANG 10.9 96.9 160.5 187.9 112.6 112.6	LOSS COSS COSS COSS COSS COSS COSS COSS	INLET RP B72
	us 55.282 53.713 52.113 52.113 52.113 52.113 54.241 49.324	VEL DUT	TURN 37.37 35.82 29.61 29.13 28.47 29.75	A01A EFF 6.60 <i>4</i>
_	RA01 58.593 57.945 55.694 56.594 56.594 56.594 588 52.858	I R E L	0 E C - E C	MP 011 791
OR S21N	LOC-Z 00T 568.661 557.132 557.132 554.321 52.305	VEL 00T 163.2 163.3 164.6 164.6 163.7	ж-FACT 2.666 2.666 2.666 2.666 2.666 2.666 2.666 2.666	16 RA 1.1
NTOUT F	AXIAL 18 56.287 55.995 49.5526 41.992 45.706 43.217	ABS 174.8 174.8 172.4 2289.1 2289.1 2289.1 258.2 258.2 258.2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PRESS RATIO 1.6676
ROU PRI	GE IMM OUT 8. 21.65 44.91 57.68 78.32 188.89	VEL 0UT 163.1 163.4 163.6 163.9 163.9 163.6	RBAR 556.897 556.897 554.351 522.146 522.146 531.535	T CORR FLOU 2.39
BLADE	PCT E0 IM 10.34 11.34 34.93 48.21 71.75 194.93	MERIU IN 145.5 148.1 179.1 179.1 208.4 208.4 212.9	PCT 1MM 16.94 16.94 18.33 75.34 189.86	

	01AL TEMP IN 0UT 48.7 348.7	1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.20000 1.20000 1.2000 1.2000 1.20000 1.20000 1.20000 1.20000 1.20000 1.20000 1.20000 1.20000 1.20000000000	RCU 001 486. 001 817. 8. 682. 8.	C FT ACC TT ATTO RATIO 646 1.1824 1.633 1.1775 441 1.1775	1.638 1.1738	
	AL PRESS T 0UT 0UT 3 63 166.78 3	53 166.52 53 166.23 53 165.74 53 165.14 53 165.14	2 C C C C C C C C C C C C C C C C C C C	FFICIENCY AC IA POLY R 1064 9.851 1 2064 9.851 1 2064 9.851 1	874 6.882 1 874 6.882 1 868 6.877 1	
	IL ANGLE TOT	178. 178.	AACH NO	0R0 AXIAL EI 916 1.167 8.1	677 1.152 4 . 631 1.152 5 . 992 1.148 6 .	
STATION DATA	IS ANGLE RE I OUT IN 91 E.	22 22 8 8 8 8 8 8 8 8 8 8	IS MACH NO RI 4 001 01 537 8.555 337 8.554 537 8.554 549 549 1.546 1.54	4C D-FACT CH 587 8.855 12. 584 8.855 12.	582 8.855 12. 578 8.867 12. 572 8.873 12.	
S *** 225 FAN	ID ANGLE AB	46 4.61 27. 46 4.61 27. 84 5.25 28. 94 4.94 28.		R SOL TI 15 2.5932 (1.0) 84 2.6222 (1.0)	77 2.6421 A.9 13 2.7645 A.9 42 2.8512 A.9	AR 8.18
(METRIC) UNITS	M FUNCT MER	1000 1000 1000 1000 1000 1000 1000 100	N 400 00 € N 400 00 N 400 00 € N 400 0	CAMBER STG F 3 34.45 12.	1 32.81 11. 7 33.72 12. 6 34.18 12.	ET CORR NB RPM 8727.7 34
•	US STREAL DUT JN	69,563 8.23 68,396 8.23 67,276 8.45 65,639 8.75 63,937 1.88	VEL VEL 0UT 1999 1992 1992	TURN LOSS 27.91 8.12	27.22 8.15 28.88 8.15 28.65 8.17	ADIA 144 EFF Ø.865
s 2011F	C-Z RADI OUT IN	996 67.357 996 65.897 996 64.619 996 62.745	L REL 199. 7 199. 7 198. 6 197. 7	-FACT DEV -FACT DEV 	16. 4.76 10. 4.64 10. 4.73 10. 4.67	TEMP Ratio 1.1755
903 INCIA:04	TAIRIOUT UN	75 64.683 94 75 64.683 94 65 64.683 94 75 64.683 94	ABS 46 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1.3 193.7 A INC X- (INPUT) 168 -1.27	146 -1.89 348 -8.95 194 -8.91 127 -8.86	DRR PRESS
	BLAUL KUN PCT EDGE 1	24.18 28. 45.33 48. 76.29 69.	196.80 148. MERIO VEL MERIO VEL 10.00 178.9 178.5 197 178.5 197 197 197 197 197 197 197 197	178.1 195 PCT RRA 1144 88.4	22.53 67.1 43.67 65.5 73.14 64.1 73.14 64.1	INLET CC

sa €

.

ORIGINAL PAGE IS DF POOR QUALITY

	TUTAL TEM- IN 2015 2446.9 2446.9 2446.9 2446.9 2394.5 2446.9 2399.1 239.7 239.7 2393.8 2339.8 2333.8 2333.8 228.6 2333.8 228.5 3291.6 228.3 228.5 228.3 228.5 228.	RCU 041 184339 1911 13911 24657 24657 24657 2656 17422 1626 17422 1626 17422 1626 1626 1626 1626 1626 1626 1626 1	CC PT ACC TT RATIO RATIO 1.602 1.12410 1.602 1.12410 1.602 1.12420 1.602 1.1262 1.602 1.1262 1.653 1.1562 1.653 1.1562 1.653 1.1562 1.552 1.15526 1.5525 1.15526 1.5526 1.15526 1.5525 1.15526 1.5526 1.15526 1.5525 1.15526 1.
	L PRESS 001 001 001 5 169.54 171.82 5 151.71 6 171.71 5 171.71 7 162.44 7 162.44 7 162.44 5 154.53 7 162.44 5 154.53 5 154.54 5 155.54 5 155.54 5 157.54 5 1		
	101 102 102 102 102 102 102 102 102 102	ភពពាល់ព័ល៌ពាល់ពាល់ពីភពិភពិភាព ភពពាល់ពាល់ពាល់ពាល់ពាល់ពាល់ពាល់ ក្រុមចោចចេចចេស់សំសំសំសំសំសំសំសំសំ សំសំសំសំសំសំសំសំសំស	
	ANGLE	MACH NO OUT	X)
ATA	ר שוד מ	REL	CHORE 18 - 403 18 - 403 18 - 403 19 - 404 19 - 404 10 - 400 10 - 404 10 - 4
ATION D		A A CH A CH A CH A CH A CH A CH A CH A C	
FAN SI		ししいごかを発展をあるのの 「、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	
*** EEE	A NGG N N N N N N N N N N N N N N N N N	SPEED	50. 1.45360 1.463664 1.663566 1.663748 1.6663748 2.2663748 2.2766374 2.2766374 2.276674 2.27674 2.27674 2.27674 2.27674 2.27674 2.276744 2.27674 2.276744 2.276744 2.276744 2.27767474 2.27767474 2.27767474 2.27767474 2.27767474 2.27767474 2.27767474 2.27767474 2.27767474 2.27767474 2.27767474 2.277674 2.27767474 2.2776747474 2.27767474 2.27767474 2.27767474 2.27767474 2.27767474 2.27767474 2.277674747474 2.27767474 2.27767474747474 2.2776747474747474747474747474747474747474
STINU	1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	BLADE	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
HE TR IC)	FUNCT CUNCT	N CP OD⊂ Serence and	CAMBER 48.952 48.953 339.38 339.38 339.38 48.79 48.79 48.79 48.79 48.136 41.36 41.36 41.36 41.36 41.36 41.46 41.46 41.46 41.46 41.46 41.46 41.46 41.54 41.56
Ξ	SI TRA TRA TRA SI TRA SI T	TANA 1447 1447 1447 1447 1447 1447 1447 144	L 055 C 0665 B 6 66 B 6
	IUS 162.243 95.543 95.543 95.543 91.658 91.658 91.658 72.559 72.255 72.259 72.259 72.259	VEL	10 RM 335 - 568 335 - 568 34 - 568 35 - 56
	RAD 182 1 182 1 182 1 182 1 182 1 182 1 183 1 183 1 193 1 19	REL	C D E C C C C C C C C C C C C C C C C C
FOR OGV	L C C - Z 95 - 1995 95 - 1995 95 - 1995 95 - 1995 95 - 999 95 - 999 95 - 999 94 - 99	VEL 2001 2167.3 2167.3 2167.3 2167.3 2167.5 2167.5 11695.5 11665.7 1575.7 1575.	×
INTOUT	AX1AL AX1AL BA1AL BB2568.9326 568.78535 568.7853 565.1233 565.1233 555.23458 555.235558 555.234585555555555555555555	× × × × × × × × × × × × × × × × × × ×	INFUT) INFUT) 1.998 1.998 1.988 1.988 1.988 1.988 1.988 1.988 1.988 1.988 1.988 1.988 1.988 1.988 1.988 1.988 1.8888 1.888 1.888 1.8888 1.888 1.888 1.888 1.888 1.888 1.888 1.888 1.888 1.
ROW PR	066 111M 0UT 133.28 233.73 24.53 24.53 24.53 76.23 77.23 76.23 77.23 76.23 77.23 76.23 77.23 76.23 77.23 76.23 77.23 76.23 77.23 76.23 77.23 76.23 76.23 76.23 76.23 76.23 76.23 76.23 76.23 76.23 76.23 76.23 76.23 76.23 76.23 76.23 77.23 76.24 76.25 76.	VEL 2007 2007 2007 2014 2016 2014 2014 2014 2014 2014 2014 2014 2014	RBAR 98.434 94.94.94 94.94.94 94.94.94 91.355 91.355 91.355 72.58 72.59 72.59 72.59 83 72.50 83 75 75 75 75 75 75 75 75 75 75 75 75 75
BLADE	■ ■ 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	MER 10 2010/2010/2010/2010/2010/2010/2010/20	PCT 1.3.20 1

þ

				1.6		5.2	Ø.4	7.8	-			•	2 - N	1 .9	6.9	~		9 0 		8. T	. 2	4.2				9. 6			11	85.															32.		87.	887.	725.	191	. 19.
	ĒČ) (9	5	ġ	- - -	9	6.6	6.0				2 P R	, 66	55	5		n (75 -	7 58	7 58	5.8			201	7 57		scu	3	361	981				507		, , , , , , , , , , , , , , , , , , ,	0								121	121	121	-	-	Ξ
	14101		518./	518.7	518.7	518.7	518.7	518.3					2.813	518.3	618.3				518.	518.	519	2				518.			N		9 9											39 4									3
	2	_	4	86	23	36	23	9				-	6	36	4			1		14.	63	5	9 4 9 4	0	. 16	. 72		6	,	000				21.5	866	966	1975 1975	966	m 66	866	R 6 6	855	866	866	966	966	866	865	865	866	860
	PRES	3	24.	2	26.	25.	25.					2	2	23.			ġ	N	22	22	5			3	2	28		BLK	2							•	•	-,					-		•	•					
	OTAL	Z	4.79	4.78	4.70	A.78	1 78					4.79	4.76	1 78	2.0			4.79	4.78	4.79	. 7.9				4.78	4.79			1				855.9	8 66.2	8765.8	8.998	9 .998	86.998	865.8	8765.18	8.998	866.8	8.998	966.9	8.998	966.0	966.9	966.0	966.8	966.8	a 996
		_	32 1	1 18	65			36			36	2	72 1				- 	62	62	19			2	~4		46	2	NO			2	•	2	88	53	12	36	- 68	81	59	5	5	=	16		36	16	16	2	IE	1
	NGLE	100	ی و و	52.1	. 64		-			38	37.	37	35			2		- 62 - 62	29.	5				2	=	-		N UN		3		3	8			9.7	9.0	9.8	9.0	9.0	9.6	9.6	9.6	9.5	9.9	8.9	9.8	9.0	9.0	9.0	
	EL AI	z	.27		22	5			2	68.	Ŧ	-	55		2	0	25	. 53	. 53					. 79	1.23	2		1.1	-	5		378	342	ISE.	. 252	. 196	.161	. 147	.147	.125	. 1.86	178.	141	. 821	921	186	939	956.	896	817	
	œ		63						2	5	191	191					-	1 46	16				3	-			;	-			-	•	-	9	-	-	9	1 2	8	-	2	2 1	9							. Ct	, e
5	GLE	001	39.65	2.02				19.0	5 . SE	39.7	39.8	40.6	10.0			9.8	41.6	41.9				34.0	39.6	39.3	4.8.8			1		3	9.6	B .66	9.67	3.68	69.0	A.78	0.70	0.79	9.79	17.9	8.71	9.71	6.9	69.9	9.69	9.79		2	96.9	s. 78	
	NY SI	_											_									_						-	2	z	638	666	982	716	721	726	512	612	719	219	219	718	11	114	114	7.05		999	572	500	N 1 0
	A B	N	8						-	<u>ب</u>	9	8				*			8				-	8				•	₹ 7	=	-	-	8	8	6	4	a					4		1	a				•	İ	•
	GLE	001	202					3.62	5.72	7.26	6.67	08.0			2.23	3.77	5.52	4.55			1.17	5.36	5.36	6.98	1			4		DOL	1.9.1	6.0.5	4.88.4	55.3				89.6	9.986	191.7	18.7	94.4						1.00.0			
1	NY O						٥	2	(71	1					-	89	1 5				7	-	33 1	2				1	25		EI 6.	1 12	8 12	2					. ~			, 0	n a		20		0 9	.	• •	•••	
	MER	2				-		2. 8.	م	9				2	80	18.	12.0					28.	28.1	5			35		BLA	X	1346	1282	1228	1155	1 0 0 7									110	276				1 C C Y		800
1 4 5	ст	; =	5	2	1 6 6	PP2	88C	4.8.8	5.8.0	568			78	P 2 B	65.8	708	76.0				821	872	872			105				11	1.9	2 1				•								1.0			7 0 0 1 0				1.21
NGLI	E UN		, [,]													9.					-								: VEL	Ű	4.6				• 1		9 u	U	9 1		3 1	ם כ		a u	n v	0.	<i>.</i> .	ה וה	0	ň.	à
5	LOF AM		z ,		9.1.06	8. 2.68	9.366	8.488	0.5.00	8 5 6 6 6				8.628	0.656	0.766	0.75				8.821	8.873	0 0 0			105.8	1991.1		TANC	N	1		. 3										n d		9		9				
	5	,			29	48	91	25 1	10) - 1 -			PR	- 62	18				2	20	99	46			•	- -	52			,	~	, a		.		.	4			n -	•			3					<u>م</u>		2.7
	311	5	3	4.0.5	38.7	37.1	35.5	33.8	22 0	10			5.96	29.5	28.9	5 1 5			25.4	25.8	24.7	73.2				28.8	18.8		VEL	D	1 4 2 2												Ž	37	29	29	675	69	59	9	
			z	484	EII.	584	523	434	000			977	. 226	277	492	- 2 2		9/9 / 9/9	. 863	. 863	. 468	969		0.0.	*R * .	. 287	. 288		REL	Z				3.95	87.8	6 . BE		7.45	8.97			10.1	2 - 2 +	87.8	86.2	86.2	48.9	92.6	92.6	58.5	178.1
					60 6	5 37	35					5	1 29	5 28	5 27				8 23	8 23	7 22	000			5 - 8	5					31.0			•	8	E :	2 2		2 - 5	21.0		11 2	= E		1.0	7 1.8	2 1.9	6 N	6 ~	4	4
R RI		1	001	6.29	6.41	6.56	6.71	. 8 . 9				6.96	6.97	66.9	7 9.0			99.1	7.88	7.99	7.82				1.91	7.94	7.84		151	110				182.	795.	846.	81	81	1218	813.		815	812.	. +64	785.	785.	8.81.	833.	833.	848.	673
IT F0		ALL	-	₩8	12.0	137	7.8				P	187	187	14	5		200	271	567	567	5.6.0			203	563	538	5.0.0		ARC L	,	2			•	1.2	e . •	5.5		• •		-	7. •	3.6	2.2	9.8	8.6		2.4	2. 4	1.6	y y
INTOU	•	ĬX	Z	9.1	9.9	- 8.1						9						8		- 9	0				. 8 -	. 6	. 8 -				i c		-		76	76	76	16	16	76	20	16	1 76.	76	75	75	75	73	73	2	63
V PRI		Ĭ	001		8.29	5.68				67.6	1 9 7	6.67	7.86	2 A A			8 . A B	4.42	7.63	7.63	Ca c		5 / S	9.76	3.54	8.81	9.9.9		-	1	3	9 . CR	1.2	14.8	527.6	1.263	528.6	126.2	326.2	;26.8	27.9	528.4	125.8	4.581	1.565	1.593.1	511.7	551.1	551.1	568.1	0 00
E ROV		EDGE	2		~	1	• ċ	ч ч ч	- 		•	÷ ~	7	i ui	, u	• •	م م	8	8	2	• •		- '	6	8	5	91.9	2	D VC		•	ם. היים	و	4	9 ~	4	5.5	.76	s.	s.	9 •	. 2	9 9	2	8	ي ه	9	4	4	.1	
BLAD		PCT	Z		5			0.12	5.7	37.5	42.7	44.7	44.7				26.1	61.4	64.4				76.4	76.4	88.5	88.9			1017		2	684.	712.	746.	761.	766.	765.	764	764	764.	764.	764.	763.	762	759	759.	751	732	732	719	31.3

SH) UNITS *** EEE FAN STATION DATA

AIAU DUILA RA	THC D-FACT CHORD AXIAL EFFICIENCY ACC PT ACC TT		8252 8.435 11.314 8.855 8.776 8.791 1.078 1.2930	.#275 86.438 11.4838 48.857 48.841 49.853 1.7494 1.1948	<u>4205 4 440 10 023 0 924 2 903 6 961 1 719 1 1878</u>		.032.0 6.456 16.554 8.824 8.929 6.935 1.123 1.101	.0358 0.468 1.06.187 .06.824 .06.945 .06.949 1./1/1/1/09	. 64.63 8 483 9.863 8.828 8.947 8.951 1.694 1.1718	.8424 8.488 9.658 8.818 8.951 8.955 1.673 1.166/	.8429 8.489 9.586 8.817 8.952 8.956 1.663 1.1645	.0430 8.491 9.580 8.814 8.952 8.956 1.663 1.1645	.8439 8.492 9.452 8.812 8.954 9 457 1.646 1.1685	8448 8.491 9.344 8.813 8.956 8.954 8.491 8.491	.04463 03.493 9.148 09.0009 06.958 09.950 1.602 1.1508	.8484 6.567 8.921 6.783 6.958 5.956 1.568 1.54	.6503 6.514 6.781 6.788 6.956 6.956 6.960 1.520	. K5KK 8.514 8.781 K.78K 8.958 4.95K 1.55K 1.1394	1921 (1976) (1923) (1926) (1926) (1926) (1929) (192	.0589 0.44) 8.238 0.31 0.300 0.300 0.307 1.1204	.8583 8.447 8.238 8.917 8.908 8.968 8.964 1.964	. 10518 19.419 8.875 19.966 19.958 19.9619 1.4/4 1.1/20	.0714 0.369 7.847 1.084 0.931 9.934 1.440 1.1142	.#955 #.119 7.7848 1.391 8.881 8.386 1.418 1.11/3		
E FAN SIALLUN UALA	THC D-FACT CHOI		2 8,8252 8,435 11.3	1 8.8275 8.438 11.8		0 01 514 01 C670 01	2 49.493249 46.456 149.5	/ 29.6358 39.468 136.11	18.64.83 8.483 9.81	1. 4. 4424 4. 488 9.6	3.8.6429 8.489 9.5	2 8 8438 8.491 9.5	18.8439 8.495 9.4	2 8.8448 8.491 9.3	2 8 . 8463 8 . 493 9.1	1 6.9484 6.567 8.9	2 6.6508 6.514 8.7	2 8 8588 8 514 8 7	6.9 (61.97 18.5	8 66.105183 18.447 18.2	0.06.0583 09.447 8.2	3 49.14618 49.419 8.49	5 8.9714 8.368 7.8	5 JB. JB 955 JB. 119 7.7		
ISH ON ISH	BER STGR SOL		.43 55:55 1.406	29 52 69 1.434		.14 5.00.04 1.4/8	.84 47.28 1.513	.58 44.42 1.542	75 41.51 1.589.	.93 39.74 1.622	47 38.99 1.636	.64 38.94 1.638	.43 37.68 1.664	.28 36.64 1.687	.86 35.83 1.728	.82 33.56 1.773	.69 32.50 1.798	.69 32.56 1.798	.16 29.79 1.842	.53 26.48 1.914	53 26.481.914	.86 24.46 1.962	. 66 20.15 2.188	.79 13.72 2.397	RR NB	
(ENGL	URN LOSS CAM	COEFF	7.96 8.178 5	в 94 и 127 7		8.87 8.68/ /	9.91 8.859 7	1.31 14.047 9	2.89 0.647 11	3.76 8.844 12	4.11 8.643 13	4.25 8.843 13	4.82 8.042 14	5.38 8.841 15	6.16 8.839 17	6.31 8.839 17	6.91 8.839 18	0.91 0.039 18	9.89 10.1039 22	25 25 4 . 4 . 4 . 5 . 5 . 5 . 5 . 5 . 5 . 5	32 968 8 71.61	15. H7 B. B42 29	11.33 8.817 35	10.66 U.167 49	ADIA INLET COL	EEF RPM
0R R1	-FACT DEV T	(C-R)	8 2 48	2 00		B . 3.22 (6 . 3.43				1 dù, d	4. 5.85 F	e 5.26 L	<i>b</i> . 5.45	B. 5.98	Ø. 6.27 1	8.461	8.461	J. 6.80 J	J.48 2	1.4B	2 60.7 . U	ີ 9.5.8	b . 12.63 4	TEMP	OTIO
ROW PRINTOUT F	RAAR INC X	(INPUT)	A 4 4 7 1 4 4 6		00.4 100.55	37.326 4.95	35 52 8 5.58	23 624 5 66			29 H24 1.68	24.782 B.65	7.11.9.76 5.65	28.24 28.24	26.959 5.68	25.625 4.75	24.87.0 4.68	24.876 4.68	73.583 4.65	21.921 4.72	1.4 1.6.15	Di 1 400.00	d., d d. b. 51	16.526 3.50	T CORR PRESS	DITION DITIO
BLADE	PCT	MMI	8			14.93	22 22	12.20	10.10	22.25	19.47	15.74	11. 67	52.23	47 33	62 29	65.88	65.88	11.14	10.71	16.11	91.89	89.78	88.88	1 141	

ORIGINAL PACE IS OF POOR QUALITY

.

in Casada

127

.

CRIGNAL PARE IS OF POOR QUALITY

OTIONAL PAGE (S OF POOR QUALITY

.

	TEMP 083.3 603.3 608.6 618.2 618.7 618.7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ACC TT RATIO RATIO L.1228 L.1234 L.1234 L.1265 L.1265 L.1994 L.1929	
	TOTAL 1012 6.000 6.000 6.16 6.15 6.16 6.18 7 6.18 7	KC 7528 7528 7528 7528 7528 8131 8625 9873	ACC PT KATIU KATIU 1.668 1.676 1.673 1.673 1.673 1.668 1.668	
	PRESS 0UT 24.59 24.59 24.55 24.17 24.17	BLKG DUT BL 0UT BL 9998 BL 9978 BL 99778 BL 9978 BL 9978 BL 9978 BL 9978 BL 9978 BL 9978 BL 9978 BL 9	IENCY POLY 8.918 8.928 8.896 8.896 8.896 8.856 8.856	
	T01AL 1N 24.73 24.73 24.73 24.73 24.73 24.73 24.73 24.73 24.73	88888 88665 86655 88655 886555 88655 88655 88655 88655 88655 88655 88655 88655 88655 88655 88655 88655 88655 886555 886555 886555 886555 886555 886555 8865555 8865555 8865555 88655555 88655555555	EFFIC ADIA 6.912 6.912 6.849 6.889 8.882 8.839 8.793 8.3939	
	ouT ouT	IACH NO OUT OUT	AXIA Vertar 8498 1.869 1.869 1.862 1.822 1.622 1.623 1.623 1.6333 1.6333 1.6333 1.6333 1.6333 1.6333 1.6333 1.6333 1.6333 1.6333 1.6	
17	IN IN	7 N N N N N N N N N N N N N N N N N N N	CH0R0 2.839 2.991 3.877 3.1867 3.132	
TION DA	MGLE 2.55 2.55 2.55 2.55 2.55 2.55 2.58 2.58	ACH NO 001 NO 000 NO 000 NO 000 NO 000 NO 000 NO 000 NO 000 NO 000 NO 000 NO 000 NO 000 NO 000 NO 000 NO 000 NO 000 NO 000 NO 000 NO 000 NO 000 NO NO NO NO NO NO	0-FACT 66.275 66.392 66.427 66.427 66.484 6.512	
FAN STA	ABS A 10 39.93 39.93 31.65 31.65 31.65 31.65 32.35	ABS 185 6.42 6.585 6.585 6.585 6.585 7.685 7.685 7.685 7.682 7.682 7.662 7.662 7.662	1 MC 1 MC 1 MC 1 MC 1 M3 1 M3 1 M3 1 M3 1 M3 1 M3 1 M3 1 M3	
	ANG: E 001 -38-28 -38-28 -37-16 -37-31 -37-39 -39-39 -39-82	SPEED OUT	501 1.2918 1.3859 1.4649 1.5418 1.5418 1.5815	
• SLIND	MERID IR ID IR ID IR ID IR ID IR ID IS ID ID ID ID ID ID ID ID ID ID ID ID ID I	BLADE In	0168 16.45 16.45 14.92 13.92 12.93 12.94	N 8 6 4
(HS I 19	FUNCT GUT & . & . & . & . & . & . & . & . & . &	VEL 0UT 18.7 18.7 18.7 18.8 18.8 18.8 18.3	CANBER 65.95 53.62 45.78 45.78 45.78 45.78 45.78 45.71 39.68	CORR M
(EN	STREAM 6	TANG 17.5 329.7 3554.8 482.1 482.1	LOSS COEFF 8.066 8.066 8.039 8.039 8.639 8.631 8.631	1NLE7 RP 372
	US 21.733 21.733 21.147 29.517 29.517 19.612 19.612	VEL OUT	TURN 37.37 35.62 29.61 28.43 29.75	ADIA Eff Ø.88ø
	RADI 10 22.668 22.613 22.279 221.986 21.448 21.448 28.816	2 2 2 2 1	DEV C-R) 16.988 12.858 13.568 13.568 13.568 13.568 13.558 13.558 14.7	MP 0111 791
OR SZIN	L 0C - Z 0UT 23,882 23,286 23,286 22,493 22,493 22,493 22,493 22,593 28,593	VEL 535.55 535.55 536.3 536.3 536.3 537.1	X - FACT 2.968 2.968 2.968 2.969 2.969 2.969 2.969 2.969 2.969	
NTOUT F	AXIAL IN 22.129 28.864 19.499 118.895 117.995 17.815	ABS 573.4 565.5 565.5 723.6 723.6 821.8		PRE 59 RATIC 1.6676
ROW PRI	IGE 1MM 0UT 8. 21.65 44.91 57.66 78.32 188.88	VEL 535.1 535.1 536.6 537.7 536.8 536.8	RBAR 22.481 21.988 21.398 21.398 21.398 21.338 21.338 21.338 21.338	T CGRR FLOW 11.65
BLADE	PCT ED 10 10 11.3% 34.93 48.21 48.21 71.76 71.76	MERID IN 477,3 459,6 587,7 587,7 583,9 583,9 595,6	PCT PCT MM MM PG PG PG PG PG PG PG PG PG PG PG PG PG	1 N L E 1 - 1 1 -

MATTER CONTRACTOR

(ENGLISH) UNITS *** EEE FAN STATION DATA

BLADE ROW PRINTOUT FOR S20UT

TEMP 0UT 613.3 618.8 689.2 688.4 688.4	1 10 10 10 10 10 10 10 10 10 10 10 10 10	ACC TT RATIO 1.1824 1.1275 1.1275 1.1245 1.1245 1.1245	
TOTAL 1N 613.3 618.8 688.4 688.4	RCI 7861. 7513. 7339. 7339. 7339.	ACC PT A RATIO 1.646 1.645 1.643 1.643 1.636	
PRESS 0UT 24.19 24.15 24.15 24.11 24.61 23.95	8LKG 0UT 8.973 8.973 8.973 8.973 8.972 8.972	ILENCY POLY 0.851 0.876 0.888 0.882 0.877 0.877	
101AL 1N 24.73 24.73 24.73 24.73 24.73	8655 8655 8655 8655 8655 8655 8655 8655	EFIC AUIA B.848 B.868 B.868 B.872 B.872 B.872 B.872 B.872 B.872 B.878 B.872 B.878 B.878 B.878 B.878 B.878 B.878 B.868 B.877 B.778 B.878 B.878 B.878 B.878 B.878 B.878 B.878 B.878 B.878 B.878 B.878 B.878 B.878 B.878 B.878 B.878 B.878 B.778 B.778 B.778 B.778 B.778 B.778 B.778 B.778 B.778 B.778 B.778 B.778 B.778 B.778 B.788 B.778 B.788 B.878 B.878 B.7888 B.788 B.7888 B.7888 B.7888 B.7888 B.7888 B.7888 B.7888 B.7888 B.7888 B.7888 B.7888 B.7888 B.7888 B.7888 B.7888 B.78888 B.7888 B.7888 B.7888 B.7888 B.78888 B.	
ANGLE OUT	MACH NO OUT	AX [AL VEL-R L. 167 1.157 1.152 1.152 1.152	
REL	REL T In	CHORD 12.916 12.818 12.677 12.631 12.631 12.992	
ANGLE 0017 88. 88. 88.	(ACH NO 0UT 8.556 8.554 8.554 8.554 8.552 8.549	D - F ACT 8 - 855 8 - 855 8 - 855 8 - 855 8 - 855 8 - 87 3 - 87 5 - 8 5 - 8 5 - 8 5 - 87 5 -	
ABS 27.91 27.29 28.65 28.65 28.65	ABS B.537 B.537 B.537 B.537 B.533 B.541	TMC 86.8584 86.8584 86.8584 86.8582 86.8578	
ANGLE 0UT 4.31 4.61 5.25 5.25 4.94	SPEED OUT	SOL 2.5932 2.6222 2.6421 2.6421 2.6421 2.6421 2.6421	
MER MER MER MER MER MER MER MER MER MER	BLADE In	STGR 12.15 11.84 11.77 12.13 12.42	8N 8
FUNCT 0UT 8.234 8.234 8.234 8.234 8.234 8.255 8.255	VEL 00:T 88. 88. 88. 89.	CAMBER 34. <i>8</i> 5 33.88 32.81 33.72 34.18	совя М 7.7
STREAM B. IN B. 234 B. 234 B. 234 B. 269 B.	TANG 18 296.4 289.6 288.5 297.4 383.8	LOSS COEFF B.123 B.132 B.141 B.157 B.157	INLET RP 372
US 0UT 27.387 26.927 26.487 25.487 25.487 25.172	VEL OUT	TURN 27.91 27.29 28.08 28.08	ADIA EFF Ø 865
RADI 26.519 25.5519 25.441 25.141	REL	0 E V C - R) 4 . 87 4 . 54 4 . 57 4 . 57 3	MP 755 755
LOC-Z 0UT 37.488 37.4888 37.4888 37.4888 37.4888	VEL OUT 655.3 651.6 648.5 648.5 648.9	Х. – F. A. С. ⁻ F. A. C. ⁻	TE RA
AXIAL AXIAL 10 25.466 25.466 25.466 25.466	A85 634.2 632.7 632.7 633.7 633.7 633.7	INPUT) -1.27 -1.27 -89 -86.95 -8.91 -8.91	PRESS RATIC 1.6393
166 IMM 0UT 28 75 48 65 48 65 48 65 188 88	VEL 0UT 655.3 651.6 648.5 645.1 648.9	RBAR 26.953 26.436 25.954 25.273 24.656	T CORR FLOW 5.25
PCT ED IN 24.18 45.333 76.29 1999.899	MERID 18 568.6 562.6 552.6 553.4 558.1	PCT - MT - MT - MT - MT - MT - MT - MT - M	INLE VI 13

TOTAL PRESS TOTAL TEMP IN OUT IH OUT 24.54 24.51 619.7 619.7 25.27 22.457 619.7 619.7 25.27 22.498 616.1 616.1 25.23 25.498 616.1 618.1 25.23 24.57 619.7 619.7 25.23 24.98 612.9 618.1 25.33 23.56 687.8 618.1 25.33 23.56 687.1 618.1 25.33 23.56 687.9 618.1 24.33 23.56 687.9 618.1 24.33 23.56 687.9 618.1 23.95 23.44 688.1 688.9 23.95 22.41 593.1 259.9 23.45 598.9 593.1 253.1	BLKG RCU 1N 0UT IN 6017 IN 0UT 80936 89936 19588 809936 89936 19588 809936 89936 17568 809936 89936 17368 809936 89936 17368 809936 89936 17368 809936 89936 15564 809936 89996 15564 809936 89996 15564 809936 89996 15564 809936 89996 15567 809936 89996 15567 809998 89996 15567 809998 89996 15567 809998 89996 15107 809998 89996 137256 809998 89996 133725	EFFICLENCY ACC F ACC T ACC ACC ACC T ACC ACC I ACC I ACC ACC <t< th=""></t<>
A IRE ANGLE IN OUT	REL MACH NO IN OUT OUT	CHORD AXIAL CHORD AXIAL CHORD AXIAL Sc 481 91 1011 Sc 481 9955 86571 90955 1.1294 90955 1.12553 80957 1.553 80957 1.553 809487 1.553 809487 1.715 809487 1.715 809487 1.715 809487 1.715 809487 1.715 809487 1.759
5 TATION DAT 6 CLL N 6 ANGLE 7 ANGLE 6 CLL 7 ANGLE 6 CLL 7 ANGLE 6 CLL 7 ANGLE 6 CLL 7 ANGLE 6 CLL 7 ANGLE 6 CLL 6 CLL	MACH NO MACH N	
A A A A A A A A A A A A A A A A A A A	PEED 0 UII 0 UIII 0 UIII 0 UIII 0 UIII 0 UIII 0 UIII 0 UIII 0 UIII 0	SOL THG 45589 8.873 46589 8.873 5172 8.873 56854 8.873 56854 8.873 56854 8.873 56854 8.867 5782 8.867 8334 8.865 8334 8.865 8335 8.865 8334 8.865 8334 8.865 8334 8.865 8334 8.865 8334 8.865 8334 8.865 8334 8.865 8334 8.865 8335 8.865 8335 8.865 8335 8.865 8335 8.865 8335 8.865 8335 8.865 8335 8.855 8335 8.855 8355 8.855 8355 8.855 8355 8.555 8355 br>8355 8355 8355 8355 8355 8355 8355 8355 8355 8355 8355 8355 8355 8355 8355 8355 8355 83555 83555 83555 83555 83555 83555 83555 835555 83555
0 C V V V V V V V V V V V V V V V V V V	BLADE S In DE	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
(ENGL 15H (FRCAI FUNC 1NA FUNC 1NA FUNC 1NA FUNC 1NA 601 129 61 129 61 1	TANG VEL IN OUT 1882.3 00 1881.5 00 1881.5 00 1881.5 00 282.0 0 282.0 0 282.0 0 282.0 0 282.0 0 282.0 0 280.0 0 200.0 0000000000	COSS CAMBE COFFF CABE COFFF
	v EL out	8 ■ 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2
00000000000000000000000000000000000000	10000000000000000000000000000000000000	ACT CC-RC-RC-RC-RC-RC-RC-RC-RC-RC-RC-RC-RC-R
INTOUT FOR AXIAL LO AXIAL LO AXIAL LO 25.948 37 25.148 37 27.148 37 27.148 37 27.148 37 27.148 37 27.148 37 27.148 37 26.158 37 26.158 37 26.158 37 25.986 37 25.986 37 25.988 37 27.148 20 27.148 2	11 11 11 11 11 11 11 11 11 11	X 7 X X X X X X X X X X X X X X X X X X
BLADE ROW PR PCT EDGE IMM IM IM IM IM IM IM IM IM IM IM IM IM	MERID VEL IN 001 712.3 569.7 712.3 765.7 715.4 7	PCT RBAR 19.28 38:753 23.89 37:388 34:28 38:753 24.85 35:978 34:48 35:978 71:55 31:554 71:55 31:554 71:55 31:554 71:55 31:554 76:86 38:357 76:86 38:357 76:88 38:557 76:88 38:557 76:88 38:557 76:88 38:557 76:88 38:557 76:88 38:557 77:558 88:38:577 76:88 38:557 77:558 88:38:577 76:88 38:557 77:558 88:38:577 76:88 38:557 77:558 88:38:577 76:88 38:557 77:558 88:38:577 76:88 38:557 77:558 88:2758 88:2758 88:2758 75:558 88:2758 88:2758 75:5587 75:5587 75:5587 75:5587 75:5587 75:5587 75:5587 75:5587 7

i i

ار موجع

.

ŧ

NOMENCLATURE FOR APPENDIX A

Ale Contract of

17

11

10

L

PCT Edge IMM	Percent Immersion from OD
Axial LocZ	Axial Location (Z) of Leading and Trailing Edge Station \sim cm (in.)
Radius	Inlet and Exit Radii, cm (in.)
Merid Angle	Inlet and Exit Slope, degrees
Stream Funct	Inlet and Exit Streamline Percent Flow from OD
Merid Angle	Inlet and Exit Meridional Angle of Streamline, degrees
Abs Angle	Inlet and Exit Absolute Air Angle, degrees
Rel Angle	Inlet and Exit Relative Air Angle, degrees
Total Press	Inlet and Exit Total Pressure, Kilo-Pascals (psia)
Total Temp	Inlet and Exit Total Temperature, Degrees Kelvin (° R)
Merid Vel	Inlet and Exit Meridional Velocity, m/sec (ft/sec)
Abs Vel	Inlet and Exit Absolute Velocity, m/sec (ft/sec)
Rel Vel	Inlet and Exit Relative Velocity, m/sec (ft/sec)
Tang Vel	Inlet and Exit Tangential Velocity, m/sec (ft/sec)
Blade Speed	Inlet and Exit Blade Speed, m/sec (ft/sec)
Abs Mach No.	Inlet and Exit Absolute Mach Number
Rel Mach No.	Inlet and Exit Relative Mach Number
Blade Blkg	Inlet and Exit Station Blockage
RCU	Inlet and Exit Radius x Tang Vel, cm-m/sec (inft/sec)
Efficien y Adia	Accumulative Adiabatic Efficiency
Efficiency Poly	Accumulative Polytropic Efficiency
RBAR	Average Radius, cm (in.)
INC	Incidence Angle, degrees
XFACT	Empirical Adjustment Factor to Carter's Rule Deviation, degrees
DEV (C-R)	Carter's Rule Deviation Angle, degrees
TURN	Turning Angle, degrees
Loss Coeff	Total-Pressure Loss Coefficient
CAM	Camber Angle, degrees
STGR	Stagger Angle, degrees
SOL	Solidity
TMC	Maximum Thickness-to-Chord Ratio

.

ł.

NOMENCLATURE FOR APPENDIX A (Concluded)

D-FACT	Diffusion Factor
Chord	Airfoil Chord Length, cm (in.)
Axial VEL-R	Exit/Inlet Axial Velocity Ratio
ACC PT Ratio	Accumulative Total Pressure Ratio
ACC TT Ratio	Accumulative Total Temperature Ratio
Inlet Corr ^{Wt} Flow	Fan Inlet Corrected Weight Flow, kg/sec (lbm/sec)
Press Ratio	Accumulative Average Total Pressure Ratio
Temp Ratio	Accumulative Average Total Temperature Ratio
ADIA EFF	Accumulative Average Adiabatic Efficiency
Inlet Corr RPM	Fan Inlet Corrected Revolutions Per Minute
NB	Number of Blades

,

_

									-	*	
				Chor	P	Stagger	Camber		B F F F F	bre dep	
	Percent plade Hr	Sectio	on HC in.	cm	in.	deg	deg	Tm/c	geg	0,5	
	Diaue ne					r \	91 28	0.1286	39.59	-41.80	
		-	076 6-	18.771	7.390	10.7-	00.10	1000	10 27	-30.34	
	6-	060.0-	017.7	10 068	7.507	6.18	10.69	0.1002	30.00	-22 84	
UL V U	0	0	>	12.000	7 645	10.79	62.09	0.0802	12.40		
0.A. LU	. v	3.117	1.227	19.418	1.040	15 15	52 BO	0.0728	39.42	-13.30	_
_		526 7	2 454	19.881	1.821	11.01		0.0650	39.84	-5.16	_
	10	rr7.0		20 401	8.032	19.19	44.77		10 46	2.71	
	15	9.350	100.5	101.03	0 731	22 65	37.75	0.0603	40.40		-
	00	12.466	4.908	20.90/	0.471	25 40	31 83	0.0561	41.15	7.72	
	7	15 503	6 135	21.394	8.423	00.02		0.574	41.87	14.38	_
	25	coc.cl		10.08	8.633	28.35	27.49	170.0		18 90	_
	30	18.700	7.362	21.720	96.9	30 92	23.86	0.0494	47.11	10.00	
		21 815	8.589	22.449	0.0.0		20.83	0.0473	43.85	29.02	
	5		0 815	22.941	9.032	10.00	10.02	0.0457	45.02	25.71	
	40	76.42		0/7 66	9 232	35.46	16.41	0.040.0		17 54	
	45	28.047	11.042	23.447	101.0	37 46	18.58	0.0443	40.13	LC . 17	_
		31 164	12.269	23.955	104.6			0 0429	47.01	29.48	
	00 	101.10	907 61	24.425	9.616	39.29			70 67	31.52	_
	- 55	34.200	024101	300 10	0 813	41.21	16.42	0.0414		23 57	-
	60	37.397	14.723	74.42	210 01	12 23	15.59	0.0387	49.10		_
		AD 513	15.950	25.441	10.010		11, 63	0.0357	50.40	35./8	-
	6		17 177	25.946	10.215	45.27	70.91	1200 0	51 57	38.33	
	20	43.030		077 70	10 421	47.47	13.24	1000.0		.1 03	
	75	46.746	18.404	204.07		19 07	11.88	0.0310	16.20		-
		A0 867	19.631	26.990	10.020		10 67	0 0294	54.44	43.11	
	00		20 958	27.483	10.820	11.20		0000	56 02	46.53	
	85	616.70		17 035	10.998	54.20	9.40	1070.0		AC 01	
	06	56.095	CON.22	CCC · 17	11 156	55 99	8.27	0.026/	rc. / c		
	05	59.211	23.312	28.336	001.11		6 75	0.0252	58.99	C7.2C	
		20 378	24.538	28.715	CUE.11			0 0746	59.56	53.35	
S.A. 0D	(101	070.20	060	78.880	11.370	58.27	17.0	2770.0			Т
	102.5	63.63	000.02	000.07							
NB = 3	(
				0 0 7 7	() () () () () () () () () () () () () (
Srackin	e Axis:	ROD =	103.901		(.ui 665,						
	2	RID =	101.0		2253 in.)						
		2 =	0.174								
			!								

Appendix B: Fan Rotor Blade Plane Section Geometry.

L

134

ORIGINAL PAGE IS OF POOR QUALITY

Appendix C: Stator 1 Plane Section Geometry.

T		
^B TE deg	-0.60 -0.25 -0.25 -0.23 0.36 0.94 1.53 2.13 2.13 2.13 2.13 2.13 2.13 2.66 4.97 4.97 4.97	
βĽE deg	40.88 38.92 36.83 36.48 36.54 37.10 37.10 37.54 38.23 38.23 38.23 38.36 38.35	
Tm/c	0.0463 0.0486 0.0518 0.0541 0.0558 0.0558 0.0584 0.0593 c.0601 0.0614 0.0621 0.0622	
Camber deg	41.48 39.17 37.06 35.12 35.18 34.97 34.88 34.20 33.84 33.84 33.84	
Stagger deg	19.48 19.01 18.53 18.50 18.92 19.66 19.25 19.66 20.15 20.15 21.10 21.10 21.10	250 in.) 23 in.) 305 in.)
rd in.	$\begin{array}{c} 3.190\\ 3.190\\ 3.190\\ 3.190\\ 3.190\\ 3.190\\ 3.190\\ 3.190\\ 3.190\\ 3.190\\ 3.190\\ 3.190\\ 3.190\\ 3.190\end{array}$	т (26.22 т (20.05 т (10.50
Cho cm	8.103 8.103 8.103 8.103 8.103 8.103 8.103 8.103 8.103 8.103 8.103 8.103 8.103 8.103	66.612 c 50.933 c 26.671 c
on Ilt in.	-0.408 0.617 1.235 1.852 2.469 3.086 3.703 4.321 4.338 5.555 6.173 6.248	ROD = RID = Zsa =
Secti cm	-1.037 0 1.568 3.136 4.704 6.271 7.839 9.407 10.975 12.542 14.110 15.679 15.869	Axis:
Percent Blade Ht	$\begin{array}{c} -6.6 \\ 0 \\ 10 \\ 20 \\ 20 \\ 30 \\ 40 \\ 40 \\ 50 \\ 60 \\ 60 \\ 70 \\ 80 \\ 80 \\ 90 \\ 100 \\ 100 \\ 100 \end{array}$	NB = 60 Stacking

ORIGISIAL PARE IS OF POOR QUALITY

Appendix D: Quarter-Stage Rotor Plane Section Geometry.

	ല രാ	2.2		00	47	19	67	81	37	28	50	70.	.98	.17	.08	76		.02						
*	de	`	- t	· ·		13.	17.	21.	25.	98			32	34	36	36		ŝ						
*	bLE deg	00 01	40.04	40.40	40.47	40.70	41.03	41.41	16 17	10 50		43.00	43.63	44.17	44 61	11.02		45.22						
	Tm/c		0.0826	0.0813	0.0805	0.0781	0 0752	221200	0.0670	0.00.0	0.0024	0.0586	0.0553	0.0525	0.0503		0.0480	0.0490						
Camber deg			35.75	33.40	32.00	27.51	23 36	05.04	12.00		14.22	12.23	10.65	07 0		0.0	8.27	8.21						
Stagger deg			22.65	23.91	24.78	26 93	20.02	29.04	10.16	32./8	34.45	36.18	37 53		ro. 00	39.65	40.38	6L 07			30 in.)	95 in.) 34 in.)		
	rd in.		2.816	2.796	7.83	121.0	+(1.7	2.121	2./01	2.675	2.649	2 621	2.02	C 6 C • 7	100.2	2.540	2.514	007 6	2.4.2		am (26.3)	cm (20.7)		
	Choi Choi		7.153	2 102	1010	1.005	666.0	6.927	6.861	6.795	6.728	6 657		0.280	6.520	6.452	6.386		0.340		66878 c	52.813 (1 TOC. CC	
	in.		10 293		0.004	0.207	0.707	1.207	1.707	2.207	2.707		3.207	3.707	4.207	4.707	5 207		152.5		RoD =	^R ID =	n 7	
	Sectić		772 0		0.010	0.527	1.796	3.066	4.336	5.606	6 876		8.146	9.416	10.686	11 956		077.01	14.065		Axis:			
	Percent	Blaue nt		67.0-	0	3.74	12.77	21.80	30.83	30 86		40.04	57.92	66.95	75.98	05 01	10.00	94.03	100.00	NR = 56	Stacking)		

ORIGERAL PAGE IS OF FOOR QUALITY

.
Appendix E: Inner OGV Plane Section Geometry.

bTE deg	-5.78 -5.22 -4.63 -3.98 -3.28 -3.28 -1.71 -1.71 -1.71 -1.51 -2.69 -4.51 -1.68	
BLE deg	52.13 52.13 51.46 51.46 51.40 51.40 52.14 52.14 52.79 53.96 53.79 53.79 53.79 53.79	
Tm/c	$\begin{array}{c} 0.0552\\ 0.0544\\ 0.05364\\ 0.0530\\ 0.0526\\ 0.0526\\ 0.0526\\ 0.0535\\ 0.0563\\ 0.0563\\ 0.05664\\ 0.0566\end{array}$	
Camber deg	57.91 57.91 55.09 55.03 55.02 53.71 54.70 54.70 57.76 59.17 57.76 59.17 57.76 57.76	
Stagger deg	14.77 16.04 17.26 19.41 19.41 20.22 20.93 20.60 20.08 19.80 19.80 21.53 24.48	
rd in.	3.682 3.682 3.672 3.661 3.661 3.643 3.643 3.643 3.643 3.643 3.643 3.643 3.643 3.643 3.643 3.224 1.233 3.244 1.2333 3.244 1.2333334 1.2443345354 1.24433554 1.244355554555555555555555555555555555555	
cm Cho	9.353 9.353 9.253 9.253 9.177	
lon Ht in.	-1.510 -1.510 -0.50 0.50 1.60 1.60 1.50 3.00 3.00 4.00 4.58 4.00	
Secti cm	-3.835 -2.54 -1.27 -1.27 0 1.27 2.54 3.81 5.08 6.35 6.35 6.35 8.89 8.89 10.16 11.63 12.70	
Percent Blade Ht	-33.0 -21.8 -10.9 0 10.9 21.8 32.7 4.3.7 4.3.7 4.3.7 54.6 65.5 65.5 87.3 100 100	NB = 64

ORGENAL PART OF OF POOR QUALITY

137

ORIGITIZE I ALL J

	Section cm	Radius in.	Cho cma	ord in.	Stagger deg	Camb tr	Tm/c	[*] ^B LE deg	BTE	
Vane I	60.96	24	31 255	12 205	1 1/ 50	+	+			_
	66.04	26	31,103	12.305	12.30	16.20	0.0561	25.92	9.72	
	68.58	27	31.440	12 378	15.39	14.56	0.0574	25.40	10.83	
	76.20	30	29.804	11.734	13.97	24.90	0.0572	35.32	10.37	
	36.36	34	27.722	10,914	12 27	24.25	0.0619	35.83	11.57	
	93.98	37	26.581	10.465	11.90	23.33	0.0686	36.49	10.96	
	104.14	41	27.734	10.919	14.78	38 77	0.0734	37.26	8.78	
					1	50.75	0.0/25	41.71	2.98	
lane 11	50.95	24	31.262	12.308	14.57	22.40	0.0561	35 61		
1	55.04	26	31.110	12.248	13.46	20.78	0.0574	25.91	3.51	
	58.38	27	31.440	12.378	15.39	30.57	0.0572	35 42	4.03	
	70.20	30	29.804	11.734	13.87	30.22	0.0619	35 88	4.85	
	30.30	34	27.722	10.914	12.27	32.27	0.0686	36 46	5.00	1
	10/ 1/	3/	26.581	10.465	11.90	36.48	0.0734	37.16	0.69	
1	10-114	41	27.734	10.919	14.78	42.14	0.0725	41.43	-0.71	
Vane III	60.96	24	21.070						0.71	
nominal)	66.04	24	31.278	12.314	14.67	29.20	0.0562	25.86	-3.34	
	68.55	20	31.079	12.236	13.55	27.52	0.0575	25.42	-2.10	1
	76.20	30	29 904	12.378	15.42	36.92	0.0572	35.64	-1.28	
	53.30	34	27 722	11.734	13.86	37.39	0.0619	35.98	-1.41	
	93.98	37	26 581	10.914	12.36	39.02	0.0686	36.42	-2.60	
	104.14	41	27.734	10.403	12.18	41.97	0.0734	36.98	-4.99	
		-		10.919	14./1	46.54	0.0725	41.18	-5.36	
Vane IV	50.96	24	31.295	12 321	14 00	25 0.2				
	66.04	26	31.140	12.260	13.68	35.83	0.0562	25.85	-9.98	
	58.58	27	31.440	12.378	15.66	34.06	0.0574	25.43	-8.63	
	75.20	30	29.804	11.734	13.89	42.98	0.0572	35.71	-7.27	
i	83.36	34	27.722	10.914	12.28	44.00	0.0619	36.03	-8.03	
	93.98	37	26.581	10.465	11.91	47 55	0.0080	36.37	-9.43	
1	104.14	41	27.734	10.919	14.78	50.83	0.0734	10.8/	-10.68	
"ana "	(0.0)						0.0725	41.00	-9.77	1
(and)	50.95	24	31.300	12.323	14.83	41.90	0.0561	25 80	-16.00	
	55.04	26	31.145	12.262	13.73	39.85	0.0574	25.39	-16.00	
	76 20	20	31.440	12.378	15.46	48.37	0.0572	35.84	-12 53	
İ	83 36	30	29.804	11.734	13.90	50.19	0.0619	36.39	-14.10	
1	93.98	37	2/./22	10.914	12.29	51.91	0.0686	36.31	-15.60	
	104.14	41	27 734	10.465	11.91	52.62	0.0734	36.68	-15.94	
	<u>-</u>			10.919	14./8	54.82	0.0725	40.88	-13.94	
	No. of Var	nes = 34	4							
		Vane 1	Type Van	e No. C	ircumferen	ntial Loca	tion (deg)		
		I	2-6	ł	10.6 - 52.9					
		II	7-1	2	63.5 - 116.5					
		III	1,	13-23	0, 127.1 - 232.9					
		IV	24-	29	243.	5 - 296.5				
		v	30-34		307.	307.1 - 349.4				

Appendix F: Bypass OGV Plane Section Geometry.

FILMED

MAR 29 1983