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ABSTRACT (TECHNICAL)

This report has characterized performance in terms of attention and
memory, categorizing extrinsic mechanisms mediated by ACTH, norepinephrine and
dopamine, and intrinsic mechanisms as cholinergic. The cholinergic role in
memory and performance has been viewed from within the limbic system and
related to volitional influences of frontal cortical afferents and behavioral
responses of hypothalamic and reticular system efferents. The inhibitory
influence of the hippocampus on the autonomic and hormonal responses mediated
through the hypothalamus, pituitary, and brain stem are correlated with the
actions of such anti-motion sickness drugs as scopolamine and amphetamine.
These drugs appear to exert their effects on motion sickness symptomatology
through diverse though synergistic neurochemical mechanisms involving the
septohippocampal pathway and other limbic system structures. The particular
impact of the limbic system on an animal's behavioral and hormonal responses
to stress is influenced by ACTH, cortisol, scopolamine, and amphetamine.
These agents share a number of neurochemical actions which can be regarded as
neurophysiologically equivalent, differing mainly in a temporal sense and in
terms of the scope of their metabolic influence.

A neurophysiologically defined neural mismatch theory is defined that
integrates preceding discussion on memory, attention, stress, the neuro-
chetitistry of anti-motion sickness drugs, perTormance behavior and the iimbic
system. A parallel is drawn between the ability of scopolamine and stress
hormones to modulate attention, reinforcement, memory and the psychological
stress of neural mismatch that leads to motion sickness. Essentially, neural
mismatch is characterized as a process by which ongoing sensory experience is
associated with a neural store of reality that cannot be satisfactorily
reconciled or habituated, thus causing excessive psychological stress and
eventual sickness and vomiting. Drugs like scopolamine which interfere with
memory and learning are conceptualized to exert part of their therapeutic
action through disruption of necessary associative mechanisms of learning and
memory. Without the association of present sensory experience with past
experience, the psychological impact of the neural mismatch is not as readily
appreciated or channeled into a stress response.

Summarizing, drugs like scopolamine may be of therapeutic benefit to
motion sickness because of sedative or hypnotic properties through which
conscious awareness of stressful novelty is subjectively impaired. Manipu-
lation of the body's stress hormone system may instead be therapeutically
valuable due to an enhancement of adaptive capabilities that allow novelty to
be recognized with greater perspective. This occurs without the disorien-
tation and sickness that attends excessive efforts at neural mismatch in
intensely i;ovel environments. The value of pharmacological manipulation of the
stress hormone system can not be overemphasized in our quest to prophylac-
tically treat motion sickness, after all, this system is designed to serve an
adaptive role in stress situations in the first place.
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ABSTRACT (LAYMAN'S)

Man's performance is dependent upon his ability to attend to and remember
environmental events as well as maintenance of a continuous connection between
long-term memory and ingoing sensory experience. It is through this associa-
tion that he is able to make meaningful judgements about the significance or
survival impact of familiar and novel environmental occurrences. Neurons
located within the brain in a region known as the limbic system have been
shown to be important in the memory process. Those neurons which release a
neurochemical known as acetylcholine are particularly important in short-term
memory and in the establishment of long-term memory. The anti-motion sickness
drugs scopolamine and amphetamine are able to block the transmission mediated
by these neurons. Consequently, they impair short- and long-term memory and
associative processes. Neurons in the limbic system also influence the
activity of neural centers in the hypothalamus which regulate the release of
stress hormones like adrenal corticotropic hormone (ACTH) and cortisol.

The neurochemical processes that result in motion sickness are partially
blocked by drugs like scopolamine and amphetamine. This report has estab-
lished a relationship between the anti-motion sickness properties of these
drugs and the ability of these drugs to interfere with processes of memory,
learning, and the control of stress hormones released by the hypothalamus.

The definition of neural mismatch in unambiguous terms has been
undertaken as well. Neural mismatch has been hypothesized to occur when
ongoing sensory experience is associated with long-term memory such that the
two experiences are found to be grossly discordant. This imposes an adaptive
pressure or stress on the system that can eventually lead to sickness.
Sickness is a normal response mechanism to discordant sensory experience,
especially when a number of sensory systems are involved and when few other
sensory systems can be identified as functioning properly. Therefore, in a
zero-gravity environment, when so many of the major senses are in conflict,
the vomiting response occurs as part of an evolutionary mechanism that may
normally have evolved tv evacuate poisons from the gastrointestinal system.
The main inference of this report is that this vomiting mechanism is initiated
as a result of the association of ongoing sensory experience with long-term
memory and is mediated through the limbic system.

Drugs like scopolamine block the association of ongoing sensory
experience with long-term memory and thus block the generation of a neural
mismatch. The implicit assumption in this argument is that the ability to
retain short-term memory experiences is necessary before any significant
comparison can be made between established reality and moment to moment
novelty. Alternatively, one might hypothesize that mechanisms of attention
and reiteration within the limbic system are necessary to maintain a focus
upon the contrast between short- and long-term memory, a process which also
establishes new memory.

Because zero-gravity is a stressful novelty, it follows that the hormonal
responses to microgravity or any other stress are normal adaptative mechanisms
designed to enable the animal to survive in the new environment. It further-
more stands to reason that these hormones should initiate metabolic and
neurochemical events appropriate to this end. A number of these neurochemical
events have been identifiej and described in detail by this report. This
reasoning and the association of the actions of these hormones with the
pharmacology of the anti-motion sickness drugs clearly underscores the immense
value and need for further research in this area.
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PREFACE

The problems of space motion sickness are related to the inadequacy of
present predictive and preventative methodologies. Although pharmacological
intervention is most effective at present, the utility of this approach is
confounded by intolerable side-effects. The most effective drugs and drug
combinations, namely scopolamine, scopolamine-dexedrine, and promethazine-
ephedrine, are not taken at the appropriate times pre-launch, but instead are
administered after orbital insertion. While this approach eliminates the
possibility of debilitating side effects during critical launch periods, it
also severely compromises the effectiveness of the medications in controlling
motion sickness. Because the issue of performance decrement is fundamental to
the proper use of present medications, the authors undertook a literature
search with the intent of defining the nature and extent of the effects of
these drugs and motion sickness on performance. This information was en-
visioned as supplementary to present efforts to develop ground-based, quanti-
tative measures of performance so that individual astronaut candidates and
subject populations could be evaluated in terms of their responses to parti-
cular medications or general motion sickness.

The 'literature search that was undertaken with the intent of defining the
nature and extent of the effects of these medications and motion sickness on
performance resulted in the generation of this report on the neurophysio-
logical responses of the limbic system to stressful motion and anti-motion
sickness drugs. This was a natural consequence of the discovery of the role
of the limbic system in memory, learning, extinction, and sensory discrimin-
ation; all key components in the evaluation of an individual's ability to
perform.

V
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I. INTRODUCTION

This report discusses performance, memory, learning, extinction, discrim-

ination, reactions to novelty, sensory input, and sensory thresholds all

within the context of a functioning limbic system. It reveals how scopola-

mine, amphetamine, and stress hormones influence the functions carried out by

the limbic system and provides further clues to the mechanisms of action of

our more effective anti-motion sickness drugs. 	 Finally, the experimental

evidence is summarized through the advancement of a neurophysiologically

defined neural mismatch theory of motion sickness.	 The limbic system is

postulated to embody most of the central mechanisms and processes that are

necessary in the recognition of a neural mismatch and essential to the

elicitation of motior sickness symptomatology based upon this recognition.
'i

Neural mismatch itself is defined in broader, terms which allows the inclusion
i

of more experimental findings and the integration of different lines of

evidence from such fields as neuro h siolo 	 neurochemi stry, neuroanatomP Y	 9Y^	 Y^	 Y,

neuropharmacology, the behavioral sciences, and pharmacology. This pt -ticular

description of neural mismatch is regarded as a major objective and finding of

V,is literature search and fills an important gap in our understanding of

motion sickness in physiological terms that are precisely defined. The limbic

system theory of motion sickness, as it pertains to older, more established

conceptualizations such as sensory conflict or neural mismatch must still be

regarded as a heuristic hypothesis, yet one which presently is best able to
1

account for the majority of the experimental findings available.

Figure 1 depicts a flowchart which traces the various lines of inquiry

underscoring the development of this neurophysiologically defined neural

1
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mismatch theory in Oe etiology of motion sickness, or more simply put, the

limbic system theory of motion sickness. The flowchart also clearly indicates

the reasoning behind the advocation of the testing of stress hormones (ACTH

e	
and cortisoi) for prevention of motion sit.^ness, which will be described in

i

detail in this report.

The phenomenon of motion sickness (see Figure 1) has empirically led to

the discovery of a number of pharmacological agents that, while effective in

the prevention or treatment of motion sickness, are derived from notably

diverse classes of drugs.	 Scopolamine (a cholinolytic), amphetamine (a

sympathomimetic) and promethazine (an anti histaminergic and antichalinergic),

for instance, are perhaps the best known and most effective drug agents

available.	 Furthermore, there are data that indicates that changes in

perforrance occur as a result of motion sickness or medication with anti-

motion sickness drugs. It is not at all surprising that a relationship exists

between motion sickness and rerformance. The fact that the neurochemical and

neurophysiological actions of these individual drugs have been well studied in

their own respect suggests logically that the identification of the sites of

action of these drugs might provide clues to new brain regions and mechanisms

which are critically involved in the expression of motion sickness and hence,

the processes underlying the disorder. The search for these critical regions

is facilitated in part by the desirability of finding regions in whic;,

different classes of anti-motion sickness drugs exert therapeutic or pharma-

cologic actions and	 where those	 actions	 are neurochemically	 or

neurophysiologica1iy equivalent.	 Although it is not necessary that this

condition be met, because of the possible involvement of more than one region

in the malady, those areas responsive to all drugs are more attractive. The

z
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septohippocampal pathway of the limbic system and the medial vestibular

nucleus are identified as regions in which both scopol.mine and amphetamine

moderate impulse transmission. The limbic system, howF,ver, is the only region

identified so far and by this report that can account for the behavioral

changes that follow anti-motion sickness drug administration. It also plays

an easily recognizable role in the expression of the symptomatology of motion

sickness.

Having established the limbic system as a possible candidate or partici-

pant in neural mechanisms underlying or modulating motion slickness, further

investigation of the behavioral and physiological functions of the limbic

sy stem demonstrate the imoortant role of this reaion in ada ptive resnonses to

environmental stress.	 The region is found to specifically concentrate the

stress h^rmones, ACTH and cortisol, and to be responsive to physiological

changes in their levels.	 Preliminary data from the Neurophysiology and

Biomedical Laboratories at the Johnson Space Center furthermore suggest that

pituitary-adrenal-cortical hormones may modulate motion sickness suscepti-

bility. The data obtained raises the possibility that those individuals with

high ACTH levels are less susceptible to stressful motion. 	 This report

presents the necessary background allowing interpretation of the significance

of this finding.

Finally, the limbic system is described in terms which indicate its

suitability as a model for the neural mismatch theory of motion sickness. The

actions of our more effective anti-motion sickness drugs on the limbic system

are recognized and interpreted as consistent with this model. Furthermore,

the precise neurophysiological functions of the limbic system, including its

L	 3	
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relationship to the hypothalamus, autonomic nervous system and pituitary

gland, is highly indicative of the importance of this brain region in the

expression of the symptomatology of motion sickness.

Considering the size and diversity of the scientific information that is

available in each of these fields, it is the plan of this writing to organize

the background material into specific sections. 	 Each section is discussed

thoroughly and written to allow that section to be understood without

requiring extensive understanding of other sections.	 While this approach

tends to make each section more comprehensible, the reiteration of material

within a number of sections cannot b,- avoided and, in fact, tends to highlight

A.
	 more Important background iiic°stcri al s in this report,	 Major sections

include: 1) Memory and Performance, 2) Limbic Systems, 3) Stress, 4) Neuro-

transmission and Anti-Motion Sickness Drugs, 5) The Hypothalamico-Pituitary-

Adrenal Axis, and 6) Neural Mismatch Theory.
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II. MEMORY AND PERFORMANCE

A.	 DEFINITIONS

The wider the range of a drug's effect on behavior, the less its

usefulness.	 It is of primary importance to understand whether a change in

performance reflects a change in memory storage, a change in a biologically

significant system that influences memory, or a change unrelated to memory

that appears only because the drug under study affects a particular measure of

performance (136). Scopulamine and amphetamine are examples of drugs that

exert a wide range of effects on behavior. This lack of specificity derives

1argely f rolml -he fact that bo th scopo 1 am i ne and amphetam i Ile are par t l cul a r l y

potent drugs that act on neurotransmitter systems subserving diverse func-

tional rc i 4^:c ?n the central nervous system (CNS).

Principal concepts that have guided neurobiological investigations of

memory include a distinction between intrinsic and extrinsic neural systems,

the concept of modulation, a distinction between short-term and long-term

storage mechanisms, and the concept of consolidation. The distinction between

intrinsic and extrinsic systems comes from cellular investigations of learning

and memory in invertebrates. The intrinsic system refers to pathways where

representations of information develop, presumably as a result of alterations

in synaptic efficacy; the extrinsic system refers to pathways that can

influence the development, maintenance, or expr pssion of memory, but which do

not themselves contain the memory. For example, consider the case or

habituation of gill withdrawal in the invertebrate Aplysia, in which memory

5



develops as synaptic changes occur along the same pathways that are hard-wired

for performance of the response (136).

The idea of an extrinsic system, which developed from invertebrate

neurobiology, gives meaning to the related concept of modulation. Functions

such as attention, reward, and arousal will necessarily influence memory as we

ordinarily speak of it and must be regarded as modulatory influences. The

concept of consolidation has a broader interpretation. 	 Some refer to

consolidation as the process by which resistance to disruption develops

gradually after training. Consolidation, by this usage, involves long-term

memory and can continue for years. 	 Others refer to consolidation as the

relatively short-lived process of transition from a labile short-term storage

system to a viable long-term storage system, knowing that the time period

after training during which memory can be disrupted need not reveal the time

course of consolidation (136).

B.	 ROLE OF THE CHOUNLRGIC SYSTEM

Extensive literature on the effects of drugs that alter the efficacy of

brain acetylcholine (ACh) suggests that cholinergic synapses may be part of

the intrinsic system that accomplishes memory storage. 	 The results of a

number of experimental findings show that memory storage involves, in part, a

sequence of changes in efficacy at cholinergic synapses that develops with

time after learning (31). Specifically, for a task that can be remembered f^r

weeks, these changes are thought to involve first a gradual increase in

efficacy of cholinergic transmission for several days after learning, and then

a gradual decrease in efficacy during the course of forgetting. One partic-

6
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ularly interesting drug that affects the cholinergic system is physostigmine;

an acetylcholinesterase inhibitor that has been observed to influence memory.

However, on closer examination it has been learned that the effects of

physostigmine treatment depend not only on drug dose and age of the memory,

but also on the efficiency of original learning. 	 Specifically, during the

days after learning, slow learners responded to physostigmine differently than

fast learners.	 It has been suggested that the hypothesized sequence of

synaptic changes subserving memory storage occur more rapidly for the fast

learners, so that this group achieves the stage of retention that can be

disrupted by physostigmine sooner than slow learners. Taken together, the

evidence strongly suggests that synaptic changes occur gradually after

learning and their time course is related to the natural lifetime of the

memory. Because effects of these drugs can apparently be obtained throughout

the lifetime of a memory, and because these effects reveal properties of the

memory storage process, it seems reasonable to localize these hypothetical

synaptic changes to the intrinsic system, i.e., to the ensemble of neurons

actually storing information.

If the intrinsic system for information storage involves the same

neuronal systems required for performing the task that is to be remembered,

then it follows that cholinergic drugs should not produce pure amnesia but

instead should produce a state of cognitive impairment that includes amnesia.

This expectation seems borne out by studies of adult humans (38,40) and

monkeys (7) showing that scopolamine produces a broad impairment in cognitive

functions including memory, which resembles the pattern of cognitive deficits

observed in aging.
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Despite this convergence of supporting data, the idea that cholinergic

synapses store memory, still rests on indirect evidence. Techniques are not

yet available to determine directly either the synaptic hasis of long-tern

memory storage or the neurotransmitters involved. It remains possible that

cholinergic drugs are exerting their effects via cholinergic neurons upon

crucial noncholinergic systems.

Studies of the effects of cholinergic blockers such as scopolamine in man

(24,25,40,47,48,66,82,104) and in experimental animals (11) have revealed that

scopolamine effects acquisition of new information; that is, short-term

memory, but does not influence retrieval or long-term memory. Drugs which

facilitate cholinergic transmission, such as arecholine, choline and

physostigmine, are effective in enhancing learning in individuals that are not

already task-proficient. Hence, poor learners and average chess players are

benefited whereas good performers and expert chess. players (and probably

highly trained astronauts) are not benefited or acTually experience

performance decrements (76,134). These findings gain intuitive meaning when

one considers the analogous situation in which alertness, stimulants, and

depressant drugs are examined. Specifically, a stimulant will increase the

alertness of a dosing individual, but is more likely to confuse and disorient

an already wide-awake individual.

The effects of separate treatment with lecithin or choline have also been

examined.	 Seven early-stage Alzheimer patients received daily incrementing

doses of lecithin for four weeks, reaching an average dose of approximately 75

g per day (44). Three of the patients improved their scores in a test of new

learning ability without changes in immediate memory, remote memory, or other

8



cognitive skills.	 Choline (9 g daily for 21 days) improved memory test

performance to a small extent in three patients identified as exhibiting

early-stage Alzheimer's disease, but did not affect th. test scores of

patient's with more advanced stages of the disease (130). Presumably, late-

stage Alzheimer's disease involves the extensive loss of cholinergic neurons

which by their absence would preclude any beneficial response to choline.

Finally, three other studies of choline involving 3 to 18 patients found no

changes in mental status following one to two months of daily choline

treatment (8 g to 15 g) (45,113,120). Taken together, the available studies

have been largely disappointing. The small number of patients studied, lax

experimental designs, inadequate attention to dosage, and the lumping together

of results from early-sta ge and late-stage patients have made it difficult to

draw any film conclusions about the possible usefulness of cholinergic drugs

in dementia.

More information is known about the effects of cholinergic drugs in

normal adult subjects. Infusions of arecholine (4 mg) (134) or physostigmine

(1.0 mg/hr) (29) facilitated greater word learning in poor learners. 	 Are-

choline	 (i.v.	 2	 mg)	 also facilitated word	 recall when the drug	 was given

immediately	 after	 learning (143).	 A single	 oral dose of choline (10	 g)

improved serial learning in normal subjects (133). All these effects were

small but reliable. Regimens of cholinergic drugs given over longer periods

of time have been less effective.	 Thus, choline chloride (15 g/day for 2

days) had no effect on memory test scores in normal elderly subjects (89), and

no effect was observed in normal young adults, when the same dose was given

for a three-day period (28).

9
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In summarizing these data, it is useful to keep in mind the elegant

animal studies that first demonstrated that the effects of cholinergic drugs

are largely determined by drug dose and by the age of the memory. Efforts to

develop therapeutically us,aful applications of this work will no doubt be

constrained by these two variables.

C.	 ACTH AND ATTENTION

The whole molecule ACTH1 -39 or the fragment ACTH-10 increases resistance

to	 extinction of	 aversively or appetitively	 motivated tasks.	 That	 is,	 it

prolongs performance of a previously acquired behavior after reinforcement has

been withdrawn (16,34).	 Initial acquisition of the same task need not be

affected by ACTH treatment (52,5P).	 Second, ACTH or ACTH fragments can

restore the impaired acquisition of shock-avoidance learning exhibited by

hypophysectomized animals (32). Given prior to retention testing these same

substances can reportedly attenuate the retrograde amnesia caused by CO 2 or

electro-convulsive shock (117). These particular effects of ACTH are believed

to be independent of its classical endocrine action on the adrenal glands

primarily because ACTH4-10, which is virtually devoid of adrenocortical

activity, exerts these same effects (42,56).

Resistance to extinction has been analyzed carefully in other contexts

(80). Changes in attention, arousal, or motivation can underlie variations in

extinction rate.	 It is unclear whether this phenomenon should be taken as

evidence that a drug exerts effects on memory.	 Moreover, it is widely

recognized that whenever a drug is active during behavioral testing, it is

difficult to separate effects on memory from effects on other aspects of brain

I
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function, and to exclude possibly trivial effects. For example, changes in

shock sensitivity or locomotor activity can markedly affect the performance

measure in some tasks (84).

The finding that the restorative effects of ACTH on acquisition perfor-

mance of hypophysectomized animals are short-lived (15,64) suggests that ACTH

may not be influencing learning and memory, since effects on memory might be

expected to endure beyond the acquisition phase. 	 Similarly, the so-cal led

anti-amnesic actions of ACTH and ACTH fragments are consistent with effects on

arousal or on learning ability and without further analysis cannot be taken as

evidence for improved memory.

The available studies on human subjects given ACTH fragments are in

agreement with the animal studies in that these substances do not seem to

exert any direct effect on memory. This conclusion is based on failure, to

observe effects on memory in double-blind, controlled studies of normal

volunteers given single infusions of 15-30 mg of ACTH 4-10 
prior to tests of

free recall (122), paired associate learning (36,124) and short-term retention

of verbal or nonverbal material (87,120). ACTH-like peptides, however, do

seem to affect performance on some tasks requiring detection or vigilance.

These effects have been taken to reflect improvement in attentional processes.

Hormones like ACTH are thought to mediate some of the physiological

consequences of an experience. Brain events initiated by the action of such

hormones are though to influence whether information about an experience will

be remembered. Thus, the role of ACTH is considered to be modulatory; its

action on memory storage occurs via an extrinsic system that operates after

11



information has been reg , stered. This influences whether information should

enter long-term storage.

In contrast to ACTH, vasopressin's effects on behavior appear to be

relatively long-lasting. When given after training lysine-vasopressin (LVP)

prolonged extinction for at least three days (33).	 Similarly, when given

daily for seven days (1 mg/day subcutaneously) arginine-vasopressin (AVP)

improved shuttlebox avoidance learning of hypophysectomized rats and

maintained performance at a stable level for up to seven days after the test

injection (15).	 Post-training administration of AVP or LVP, facilitated

long-term retention of passive avoidance training (1,17,49,72) and long-term

(eten 4C 1 on of sexually mvt i v ated 1 °earning 1114).

D.	 AMPHETAMINE AND THE BIOGENIC AMINES

Pretraining or post-training electrolytic lesions of the locus coeruleus,

which can reduce norepinephrine (NE) by 60-80% in cortex and hippocampus, does

not appear to affect retention (3,71,118,151,152). 	 In the case of dopamine

(DA), lesions of substantia nigra, which can reduce striatal DA to about 5% of

normal levels (105), did not disrupt passive avoidance acquisition or

retention. The evidence indicates that learning and memory can often proceed

normally in the presence of combined or separate depletion of brain NE and DA.

Brain NE levels might relate primarily to the stress associated with training

or to the degree of arousal produced by a noxious stimulus. In this sense

brain NE levels after passive avoidance training may vary with the specific

training and treatment conditions, reflecting the familiar rule that

performance is best at an optimal level of arousal.

12



A group of studies has shown that the facilitatory effect of post-

training amphetamine on retention (84) is probably due to peripheral effects

of amphetamine.	 This is because intraperitoneal but not intraventricular

injection-of amphetamine heightened retention (78). 	 Furthermere, dl-4-OH-

amphetamine, a drug that primarily affects peripheral catecholamines,

facilitated retention (79). Lastly, the effects of both 4-OH-amphetamine and

d-amphetamine on memory were blocked by adrenal demedullation (79). A role

for epinephrine in memory is therefore likely. The possibility that learning

and memory in humans might be improved under some circumstances has been

explored using drugs that affect catecholamines. 	 It is well known that

stimulants such as amphetamine and caffeine can improve performance on a

variety of tasks, particularly ones that are boring and fatiguing for normal

subjects. However, these drugs do not appear to be particularly effective for

tasks that require concentrated intellectual effort (144) such as those tasks

performed by astronauts. 	 Studies of amphetamine and methylphenidate on

learning and memory have involved learning-disabled children, healthy aged

subjects, depressed patients, and normal adults. Facilitatory effects have

been obtained most reliably in subjects presumed to be functioning subopti-

mally or in young children, whose information-processing capacity has not yet

fully matured. Thus, 20 mg of d- amphetamine improved word recall in depressed

patients (1651).

It has been suggested that the arousal state of the animal interacts with

a given dose of stimulant drug to determine performance. Facilitation of

performance occurs when the level of arousal associated with training is

inadequate and the drug can promote an optimal level of arousal. By this
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view, facilitation of retention should be difficult to obtain in healthy,

optimally functioning astronauts and the general population.

Neurophysiological studies of the locus coeruleus, the major source of

forebrain NE, have shown that this structure can exert modulatory influences

on sensory input (149). The disruption of short-term memory by scopolamine is

more pronounced during periods of sensory stimulation as if competing neural

activity were competing with rehearsal mechanisms necessary for retention

(135). In addition, post-training lesions of locus coeruleus do not disrupt

retention (151,152).	 Taken together, these considerations emphasize the

possible involvement of catecholaminergic systems at the time of information

input - in attention, organization of new motor programs, and other forms of

information analysis - rather than in post-training, gradually developing

processes required for the consolidation of enduring memory.

E. SCOPOLAMINE AND SHORT-TERM MEMORY

A number of earlier investigations of the effects of scopolamine on

performance have overlooked its influence on the particular measures used 'in

assessing performance. Learning and memory tests are often dependent upon

accurate visual discrimination and yet the effects of scopolamine on visual

accommodation and discrimination are often neglected in interpretation of the

results (61).	 Some studies in monkeys have been performed that were not

confounded by inaccurate visual discrimination and which concluded that

disruption of short-term memory by scopolamine is more pronounced over longer

retention intervals (up to 10 seconds) than after zero second retention (8).
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This implies that the memory of the experience is fleeting and that learning

of the memory trace is blocked.

The fact that the decrement of both memory and cognitive function by

scopolamine can be reversed by physostigmine but not by amphetamine or

methylphenidate argues further that cholinergic transmission iF specific to

memory processes (6,38).	 Because depletion of norepinephrine impairs the

process of memory retrieval but without any loss of the original memory (59),

it follows that NE is most likely operating through the extrinsic system.

Scopolamine impairs memory for tactile, c.ptical, acoustic, and auditory

stimuli. In addition, it impairs performance I.Q. in man (104) in tests that

were designed to overcome the effects that impaired attentional processes

would have on the acquisition of new information. Although the subjects were

well motivated, they still had great difficulty concentrating on the task.

Other investigators have likened the cognitive deficits produced by

scopolamine to aging in which attentiveness is impaired (38,40).

Deficits of human memory may involve impairment of a cholinergic

component in the hippocampus as indicated by the measurement of a loss of

hippocampal cholinergic enzymes as well as studies employing the cholinergic

blocking drug scopolamine (109). Severe memory loss has been well documented

in man after lesions of the hippocampus (39,41,104).	 Newly trained rats

demonstrate a clear elevation of ACh content in the hippocampus with smaller

changes noted in cortex (81). Furthermore, animals that have been character-

ized as having good retention ability also have higher rates of choline uptake

and conversion to ACh in the hippocampus (110). Alzheimer's disease which is

often referred to as senile dementia, is characterized by a decreased level of
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ACh in the neocortex and by reduced levels  of chol i ne acetyl transf erase, the

enzyme that synthesizes ACh, in neocortex and hippocampus (116). Hereditary

or experimentally induced decrement of choline acetyltransferase-specific

activity weakens both long-term retention and the facilitatory effect of

post-trial stimulation on learning and yet paradoxically improves short-term

retention (65).

F. MEMORY END PERFORMANCE - LAYMAN'S SUMMARY

The data are consistent with a view of memory whereby information storage

occurs through alterations in connectivity along neural pathways already

specialized for different kinds of information processing. 'these intrinsic,

information-containing neural ensembles are not fully established at the

moment of learning, but develop and change with time in a way that reflects

their modulation by extrinsic systems. Extrinsic systems, for example, might

signal the significance of previously occurring events by providing

information about their consequences.	 Choiinergic drugs appear unique in

their ability to influence memory of a particular event throughout the

lifetime of the memory. Accordingly, these drugs seem best understood as

affecting synaptic substrates of information stor-dge. Other substances (e.g.,

vasopressin, ACTH, NE, and DA), which are most effective shortly after

learning, seem best understood as exerting modulatory effects on memory.

Furthermore, the putative effects of these substances on arousal, fear and

attention raise the possibility that modulation reflects specific and

different influences on memory, rather than some single influence.
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III-LIMBIC SYSTEMS

A. ANATOMY AND PHYSIOLOGY

1. Introduction

This chapter describes the structure and function of the limbic.. system.

Special attention is afforded to those components of the limbic system which

are influenced by anti-motion sickness drugs like scopolamine and amphetamine,

and by stress hormones like cortisol and ACTH.	 All of the figures and a

portion of the descriptive text accompanying these figures have been taken

`r	 "^* °"+ entitle,{ "The Human Central Nervous Svstem" (97).1 t Vin a r cl^"	 t.Cn ^	 cn ^. c^ ^. ^ V ^ ^. ^.	 _

Certain territories of the diencephalon, the telencephalon and the

mesencephalon are structurally and functionally so closely interrelated that

they may be considered a single functional complex, which has been designated

as the limbic system. This system is represented at the diencephalic level by

the hypothalamus. 	 its telencephalic components include the preoptic and

,septal regions, the hippocampus, some adjacent cortical areas, and the

amygdala. The midbrain area of the limbic system is formed by a number of

cell masses all of which lie in or close to the median plane. 	 Figure 2

presents the various moieties of the limbic system and their fiber connections

in an extremely schematised fashion.

The hypothalamus encompasses the most ventral part of the diencephalon

(Fig. 3). Caudally the hypothalamus passes gradually over into the periven-

17



carte
orblti

C
bulbL

cortex

J

M

a

{

01faetory and Limbic Systems

ORIGINAL PAGE 13
OF POOR QUALrTY

Fig. 2 Summary of the limbicohypothalamic complex. Subdivision of the area into central
units and linibic rings, H. hypothalamus: LVA, limbic midbrain area; PO. preoptic region;

S. septum



1.j

C	 ^

Q

4

V

i^

' 	 01faetom, and Limbie Systems

A ORIGINAL. PAGE 13

PO

21

PO

23

24

r.

y

,^	 y

1 k,	

t

k

h	

t

4

16

22 t 
p
t7^^^ 1 ^

r

ti

1 Columna fornicis
2 Nucleus paraventricularis
3 Area latcralis hypothalami
4 Nucleus posterior hypothalami
S Area tegmentalis ventralis
6 Nucleus pracopticus mcdialis
7 Nucleus antcrior hypothalami
8 Nucleus dorsomcdiulis
9 Nucleus ventromedialis

10 Fasciculus mamillaris princcps
I I Corpus mamillarc
12 Nucleus pracopticus latcralis

Plow-

^ tit	

tee ~}^w

s	 ^

13 Nucleus supraopticus
14 Nucleus infundibularis
15 Arteria hypophyscos superior dextra
16 Infundibulum
17 Pars infundibularis l Lobus anterior
18 Pars distalis	 fhypophyseos
19 Pars intcrmedia 	 11
20 Lobus posterior hypohyscos
21 Sinus intcrcavernosus posterior
22 Sinus intercavcrnosus antcrior
23 Artcria hypophyscos inferior sinistra
24 Artcria hypophyscos irfuror dextra

s

Fig. 3 ; he hypothalamic nuclei and the relationship between the hypothalamus and the pituitary
M-imA 1d11 -,-I



tricular and tegmental grey of the muesencephalon. It is, however, customary

to define the posterior margin of the hypothalamus as a vertical plane passing

just caudal to the mammillary bodies. The infund'ibular stalk, which is sit-

uated directly poster;or to the optic chiasm, connects the funnel-shaped ros-

troventral part of the hypothalamus with the pituitary gland. The lateral

hypothalamic zone is partly separated from the medial zone by the postcom-

missural fornix, a large bundle connecting the hippocampal formation with the

mammillary bodies (Figs. 3 and 4).

The preoptic region is of telencephalic origin, and is closely related

structurally to the hypothalamus. The septal region borders on the nucleus

nrllumbo , enp+i a large cell mace that in locatio and function OCCIMniGc a
%A IrV III G11J JG NI ,	

ma	 n
U I {+1 G	 G 1 ii JJ VII V 111 I VVY 	VII	 rr • vv

position intermediate between the limbic and striatal or extrapyramidal

systems. The septal region is well developed in the human brain. The so-

called limbic midbrain area (Fig. 5) encompasses the regions in the lower

right corner of the figure but also includes the dorsal raphe nucleus.

Taken together these fibers constitute one large functional system, which

has been designated as the "limbic system-midbrain circuit". 	 Schematising

somewhat it may be stated that the septal, preoptic, and anterior hypothalamic

areas form the rostral pole of this circuit, whereas the paramedian midbrain

area represents its caudal pole. The hypothalamus may be characterised as a

nodal way station interposed between these rostral and caudal poles. 	 Two

large telencephalic parts of the limbic system, namely the amygdala and the

hippocampal formation, as well as the olfactory system are reciprocally

connected with the rostral pole of the circuit (Figs. 2 and 4). The caudal

pole of the circuit may be considered as a paramedian subdivision of the brain
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stem reticular formation. The centers forming this pole are to a large extent

integrated into both ascending and descending pathways. The ascending path-

ways connect the lower parts of the reticular formation and the visceral sen-

sory centers situated in the caudal part of the medulla oblongata with the

hypothalamus. The descending pathways convey impulses from the hypothalamus

to the visceral and somatic motor centers in the brain stem and spinal cord.

These descending pathways are particularly important in that they probably

mediate the production of motion sickness symptomatology including, changes in

heart rate, respiration, temperature, sweat, nausea, and vomiting.

2. Hypothalamus

Focussing now on the hypothalamus, it should be emphasized that this

center, apart from its bidirectional linkages with the various parts of the

limbic forebrain-midbrain continuum, entertains several other important func-

tional connections. The following four may be mentioned:

(1) The lateral preoptico-hypothalamic zone is reciprocally connected

with the medial and certain midline nuclei of the dorsal thalamus. The

nucleus parafascicularis is one of the midline nuclei of particular interest

in this report (see later) because of its special function in the behavioral

effects and binding of ACTH. The midline nuclei are also unique in their

diffuse projection to all areas of the cerebral cortex.

(2) The lateral preoptico-hypothalamic zone receives a direct input from

the orbitofrontal part of the neocortex. This input from the frontal cortex

may embody volition«1 influences on the limbic system.	 Impulses from this
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cortical region probably mediate the conscious experience of motion sickness

and zero-gravity thus representing the psychological components of the

experience.

(3) The mammillary body, which is situated in vhe caudobasal part of the

hypothalamus, receives a large projection from the hippocampal formation and

sends most of its efferents to the anterior nucleus of the thalamus. These

two connections form part of a closed hippocampo-mammillo-thalamo-cingulo-

hippocampal system known as the circuit of Papez (Figs. 4 and 6).

(4) The effector mechanism of the hypothalamus includes, apart from fiber

systems descending to the brain stem and spinal cord, two hypothalamus

hypophyseal pathways. ' By way of one of these, the partly neural and partly

humoral tubero-infundibulo-hypophyseal system, the hypothalamus controls the

production of the various hormones of the anterior pituitary (Fig. 3) (37).

This particular aspect of hypothalamic function will be discussed at length in

subsequent chapters dealing with stress and the hypothalamic-pituitary-adrenal

axis.

3. Physiological Functions

The limbic system is known as the visceral brain because it is

functionally associated with emotional aspects of behavior related to survival

of the individual and the species, together with visceral responses accompany-

ing these emotions, and the brain mechanism for memory. The visceral respon-

ses to activity within the limbic system are mediated mainly through the

hypothalamus and include changes in respiration, gastrointestinal movements
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and secretion, piloerection, and pupillary dilation. Understanding of neuro-

physiologic regulation of visceral functions is primary to elucidation of the

neural components of motion sickness and the neuropharmacological bases of

anti-motion sickness drug therapy. Behavior associated with survival of the

species; that is, adaptive responses of the organism to novel or changing

environments, may be closely tied to memory and new learning. Furthermore,

the visceral responses accompan ying odjustment to novel environments may

include the vomiting response whenever the organism's perception of the

sensory world is dramatically changed such as by the ingestion of some

poisonous or hallucinogenic plant product.

Money (91) has proposed that emesis is a natural response to sensory

mismatch. He hypothesizes that this mismatch occurs during motion sickness,

while contending that the underlying survival-related mechanism is part of a

response mechanism to poison. 	 The possibility that the limbic s ystem is

intimately associated with these behavioral functions is highly likely.

Further aspects of the limbic system will be discussed below.

4. Hippocampus

The hippocampus or hippocampal formation is a large C-shaped structure

that forms part of the medial wall of the cerebral hemisphere. The retro-

comissural hippocampus is well developed and represents the main portion of

the hippocampal formation. 	 It constitutes the archipallial part of the

cerebral hemisphere and contains a relatively simple three-layered allocortex

throughout its extent. The fascia dentata is laterally continuous with the

cornu ammonis, which in turn passes over into the subiculum (Fig. 7). The
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fascia dentata contains a granule cell layer of small neurons, whereas large,

pyramidal elements prevail in both the cornu ammonis and the subiculum. The

subicular cortex is contiguous with the juxtallocortex or mesocortex.	 The

latter represents a type of cortex that is transitional between the hippo-

campal allocortex and the neocortex. 	 This transitional cortex covers the

parahippocampal gyrus and is also found in the supracallosal cingulate gyrus.

The hippocampus, the parahippocampal gyrus and the cingulate gyrus constitute

a large arcuate convolution known as the limbic lobe. 	 The allocortical

hippocampus forms the inner ring, whereas the mesocortical parahippocampal and

cingulate gyri form the outer ring of that lobe (Fig. 2)

The hippocampus receives afferent fibers from: (1) the area entorhinalis,

(2) the septum, (3) the hypothalamus, and (4) the rostral brainstem (Fig. 7).

These connections may be documented as follows:

(1) The most conspicious and quantitatively most important input to the

hippocampus is formed by afferents from the area entorhinalis. The fibers

terminate in the fascia dentata as well as in the cornu ammonis. The ento-

rhinal area, in its turn, receives a large projection from the subiculum as

well as from the cornu ammonis and is also in communication with other

widespread areas of the cerebral cortex. Subcortical afferents of the

entorhinal area include a large projection from the anterior thalamic nucleus

which, like the cingulate fibers, passes through the cingulum.

(2) The medial septal nucleus sends fibers by way of the fornix to the

cornu ammonis and the subiculum.
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(3) In the rat the hippocampus receives a direct input from the dorsal

raphe nucleus, and the locus coeruleus.	 Several of these connections have

been demonstrated to contain monoaminergic fibers (Figs. A and 9).

The axons of the dentate granule cells terminate in a highly ordered

manner within the cornu ammonis; the latter sends fibers to the subiculum

(Fig. 7). These connections presumably constitute a directionally polarized,

sequential pathway, whereby input to the hippocampus passes successively

through the fascia dentata and cornu ammonis to the subiculum where, as has

been recently established, the majority of all hippocampal efferents, both

cortical and subcortical, originate.

Describing the hippocampal formation in less precise but more meaningful

terms, one might regard the hippocampal formation as a conduit through which

conscious experience reaches and influences centers controlling autonomic,

emotional and instinctual processes. 	 Memory, and therefore learning, is

definitely dependent upon an intact limbic system. It can be conjectured that

the highly circular and positive feedback circuits contained within the limbic

system, such as the circuit of Papez (Fig. 6), reinforce or maintain a

conscious perception at the cortical level as long as the associative and

integrative centers contained within the frontal lobes signal the significance

of that associative process. Provided that these associative processes are

continued, the entrainment of new memory (i.e., learning) occurs along with

the elicitation of any behavioral, hormonal or autonomic actions that are

appropriate. For example, the novel sensory experience of zero-gravity traces

its pattern across the cerebral cortex, is perceived through associative

processes as a survival-stress that cannot be reconcilliated or habituated by
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conventional means and which manifests itself through diverse sensory

modalities. Finally, the sustained adaptive pressures exerted in large part

through the influence of the frontal cortex on the hippocampus, hypothalamus,

pituitary, and reticular formation result in the systemic sickness character-

ized as motion sickness. The continual release distribution and accumulation

of neurotransmitters, their metabolites, and other compounds may be factors in

causing this sytemic sickness.

5. Reticular Formation

It is clear that the level of arousal of an animal or man is important in

determining if extensive attention will be afforded to any conscious percep-

tion including the perception of zero-gravity. It is known that the general

population and astronauts do not get sick when asleep and that drugs like

promethazine and scopolamine indu ce drowsiness and impair short-term memory.

Amphetamine, although it stimulates the cortex and elicits stereotypic

locomotor behavior, still impairs limbic system function, an action not

necessarily fully appreciated at a conscious level. It is important to

understand how the reticular system stimulates the limbic system because there

is evidence that anti-motion sickness drugs may impair the ability of this

system to alert or activate cortical and limbic structures.

Electrocortical arousal by reticular stimulation of hippocampectomized

cats is difficult and, unlike the arousal obtained in normal animals, lasts

only for the duration of the stimulus. Figure 10 depicts the ascending fiber

systems of the reticular formation; revealing the pathways through which

vestibular input is registered (#26) and the limbic system structures

24



Ascending Reticular System

1	
OLMr7iIa I L P. ,,	 r.'

15

1 Neocortex
2 Corpus striatum
3 Nucleus lateralis poste
4 Nuclei intralaminares

5	 Nucleus ventralis la
Nucleus ventralis at

6 Nucleus ventralis post
7 Nucleus centromedian
8 Zona incerta
9 Commissura anterior

10 Nuclei septi
11 Nucleus praeopticus
12 Area lateralis hypotha
13 Area tegmentalis vents
14 Nucleus lateralis eorpi
15 Tractus olfactorius
16 Colliculus superior
17 Formatio reticularis rr
18 Tractus spinoreticulan
19 Tractus tectobulbaris-
20 Nucleus reticularis pontis oralis
21 Fasciculus uncinatus cerebelli
22 Nucleus fastigii
23 Nucleus reticularis pontis caudalis
24 Trigeminal input
25 Acoustic input
26 Vestibular input
27 Solitarian input
28 Nucleus gigantocellularis
29 Nucleus medullae oblongatae centralis

Fig. 10 Ascending fibre systems of the reticular formation



receiving input from the reticular formation (#10, 11, 12, 13 and 14). It is

likely that these hippocampal effects are achieved by influences acting on

some part of the brain external to the hippocampus, rather than as an

intrinsic property of the hippocampus itself (75). 	 Stimulation of the

reticular formation leads to the production of the theta-rhythm (or regular

slow-wave activity, RSA) characteristic of the limbic system (148). 	 The

frequency of this rhythm is proportional to the intensity of stimulation;

lower frequencies are associated with behavioral reactions to novelty or

frustrative non-reward whereas higher frequencies indicate initiation of

performance of learned behavioral patterns (13,135). Sensory stimuli generally

initiate these theta waves, most likely through stimulation of the reticular

formation. Theta waves represent arousal reactions of the hippocampus and are

behaviorally analogous to desynchronization or arousal 'of the cortical EEG

which also follows stimulation of the reticular formation (21). 	 During the

theta-rhythm both pyramidal and granule cells increase their firing in phase

with	 the	 rhythm. Input to thi:se	 hippocampal	 and dentate cells	 from

cholinergic neurons located in the medial	 septal	 nuclei (Fig.	 7) is necessary

for the rhythm_	 Drugs which block cholinergic transmission, such as

scopolamine or atropine, attenuate the theta-rhythm (22) and prevent

sensory-induced desynchronization	 of the neocortex.	 Although superficially

both	 nicotine and	 miascarinic	 agonists induce	 an	 alert	 EEG, their	 effects

diff— in several important aspects. Nicotinic arousal of the EEG may depend

on the intactness of the reticular formation, as compared with the more

diffuse arousal of the EEG caused by muscarinic agonists (35,57). 	 A major

output from the hippocampus (Figs. 4, 6 and 11) passes directly through a

relay in the mammillary body to the anterior thalamus which connects directly

with medial cortex or, through links with the ascending cholinergic reticular
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system, with the lateral cortex of the cerebral hemispheres (22,30,69,75,107).

Additional linkage is made directly with the entorhinal, temporal and frontal

cortex as well (Fig. 11). Thus, the limbic system may be critical to main-

taining alertness.

6. Fornix

Further understanding of the fornix is warranted because of the

importance of the cholinergic septo-hippocampal pathway which runs with the

fibers of the fornix and because of the influence of anti-motion sickness

drugs on impulse conduction through these fibers and the neurochemistry of the

septum and hippocampus. Considerable investigation of the behavioral effects

of lesions of the fornix has been undertaken and in large part demonstrates

that lesions of the fornix mimick -the pharmacological effects of scopolamine.

Considering the efferent connections of the hippocampus, it should be stated

that the entire postcommissural fornix and a considerable part of the pre-

commissural fornix originate from the subiculum rather than from the cornu

ammonis.

The fornix is a compact fiber bundle connecting the hippocampus with the

hypothalamus and with various other structures (Figs. 12, 13). 	 Its fibers

first form the alveus, a thin white layer on the ventricular surface of the

cornu ammonis, and then converge as the fimbria along the medial aspect of the

hippocampus. Running posterosuperiorly, the fibers of the fimbria enter the

crus of the fornix, a flattened structure that arches upwards and medially

under the splenium of the corpus callosum. In this region a number of fibers

decussate to the opposite side, thus constituting the commissure of the fornix
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3 Corpus callosum
4 Fornix
5 Tacnia fornicis
6 Gyrus fasciolaris
7 Gyri Andreae Retzii
8 Hippocampus praecommissuralis
9 Gyrus dentatus

10 Alveus hippocampi
11 Fimbria hippocampi
12 Cornu ammonis
13 Digitationes hippocampi

14 Gyrus cinguli
15 Sulcus corporis callosi
16 Stria longitudinalis medialisl Hippocampus
17 dndusium griscum	 }supra-
18 Stria longitudinalis lateralis J commissxrcrlis
19 Gyrus fasciolaris
20 Fasciola cinerea
21 Gyri Andreae Retzii
22 Cornu ammonis Hippocampus
23 Subiculum	 retrocommissuralis
24 Gyrus dentatus
25 Sulcus hippocampi
26 Sulcus fimbriodentatus
27 Fimbria hippocampi
28 Gyrus intralimbicus
29 Urnbus Giacomini
30 Sulcus hippocampi
31 Gyrus uncinatus

Fig. /Z Dissection showing the hippocampus and some related structures in oblique view from
behind and above (2/1 x)
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I Stria longitudinalis medialis
2 Stria longitudinalis lateralis
3 Indusium griscum
4 Fornix praccommissuralis
5 Commissura anterior
6 Columna fornicis
7 Corpus amygdaloideum
8 Nucleus anterior thalami
9 Tractus mamillothalamicus

10 Subiculum
I 1 Ventriculus lateralis, cornu

inferius
12 Cornu ammonis (gyrus

uncinatus)
13 Limbus Giacomini
14 Cornu ammonis (gyrus

intralimbicus)
15 Cornu ammonis (digitationes

hippocampi)
16 Corpus fornicis
17 Fimbria hippocampi
18 Gyrus dentatus
19 Crus formicis
20 Commissura fornicis
21 Site of corpus callosum
22 Gyrus fasciolaris

Fig. 15 The limbic structures isolated from most of their surroundings, seen from above (2)1 x)



jig. 13). Proceeding rostrally over the thalamus, the two crura converge and

An to form the corpus of the fornix, which lies immediately beneath the

)rpus callosum. However, at this level of the anterior pole of the thalamus

ie fornical corpus separates again into two bundles, the columns of the

)rnix, which curve ventrally in front of the interventricular foramen and

iudal to the anterior commissure to enter the hypothalamus. 	 Immediately

behind the interventricular foramen a considerable number of fibers leave the

column and pass backwards to the anterior nucleus of the thalamus and to the

bed nucleus of the stria terminalis (Fig. 11). Other fibers split off from

the fornix just above the anterior commissure and constitute a small

precommissural portion of the fornix (Figs. 11 and 13). The main bundle of the

fornix or postcommissural fornix finally transverses the hypothalamus, where

most of its fibers terminate in the mammillary body (Figs. 4 and 14). The

distribution of the fibers of these four groups is diagrammatically

represented in Figure 11 and may be documented as follows:

(1) The precommissural fornix fibers originating from the cornu ammonis

terminate exclusively in the lateral part of the septum.

(2) The precommissural fornix fibers originating from the subiculum are

distributed to the lateral septum, the nucleus accumbens, the commissural

hippocampus, and the frontal cortex.

(3) The postcommissural fornix exclusively contains, apart from some

hippocampal afferents, fibers originating from the subiculum. Most of these

fibers terminate in the mammillary body, anterior thalamic nucleus, and the

ventromedial hypothalamic nucleus.
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I Gyrus cinguli 13 Crus fornicis
2 Indusium griseum 14 Gyrus fasciolaris
3 Stria terminalis 15 Fasciola cinerea
4 Nucleus medialis thalami 16 Fissura choroidea
5 Nuclei habdnulae 17 Gyrus dentatus
6 Nus:ieus ruber 18 Subiculum
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8 Corpus mamillare 20 Sitc of limbus Giacomini
9 Septum verum 21 Nucleus corticalis amygdalae

10 Area subcallosa 22 Nucleus anterior amygdalae
11 Gyrus diagonalis 23 Nuclei basalis+iateralis amygdalae
12 Fibrae amygdalofugales ventrales 24 Cortex praepiriformis

Fig. N The structures of the limbic and olfactory systems and some input-output pathways
as seen in a medial view (3/2 x ). Some displacement of structures serves to bring other structures
in view. The walls of the third ventricle and the brain stem have been omitted almost completely;
-P tt,u thalam„c r%nl y the antPrinr merlinl and hnhen i lnr niinlei are illnctraterl

1

f
r

4
C



(4) The subiculum projects to various cortical areas, including the

entorhinal area and parts of the adjacent medial temporal cortex, the

retrosplenial and caudal cingulate areas and the caudal part of the medial

frontal cortex. It is known that bilateral lesions of the hippocampus lead to

a dramatic loss of recent memory. Lack of this disorder following bilateral

fornix destruction may well be indicative of the relative importace of the

direct subiculocortical efferents just mentioned. 	 In addition to these

cortical efferents the subiculum sends fibers to the amygdala.

The postcommisural fornix forms part of a closed system of centers and

connections in which both the inner and the outer ring of the limbic lobe are

involved.	 This system, which has already been discussed, is known as the

circuit of Papez (Fig. 6). The structures constituting the outer ring, i.e.,

the cingulate and parahippocampal gyri, receive impulses from wide areas of

the neocortex and convey these impulses by way of the cingulum towards the

inner ring. Thus, it appears that the mesocortical outer ring positionally,

structurally, and functionally represents a zone of transition between the

neocortex and the allocortical, hippocampal inner ring.

B.	 Scopolamine and Amphetamine: Effects on Limbic Structures

Scopolamine increases ACh outflow in the cerebral cortex by an action on

subcortical limbic structures. Cortical release of ACh by scopolamine is

blocked by lesions in the septum, fornix, or fimbria of cats and rats

(77,95,98) and by cortical undercutting (98).	 Lesions of the septal nuclei

destroy the major cholinergic cell bodies that send afferents to the hippo-

campal limbic structures (Fig. 7). Lesions of the fornix (and fimbria) block
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the non-cholinergic output of the hippocampus. It is believed that this non-

cholinergic outflow eventually reaches the ascending cholinergic reticular

system which projects to the cortex. It is reasonable to suggest that this

interaction of the limbic system with the ascending reticular system is

essential to the cat's ability to maintain arousal (92). Such a mechanism may

involve in part, a pathway originating from the hippocampus that travels with

the fibers of the fornix to the mammillary bodies in the hypothalamus. The

major efferent connections of the mammillary bodies are via the mammil-

lothalamic tract to the anterior thalamic nuclei. The nuclei of the anterior

thalamus are non-specific nuclei that have extensive reciprocal connections

with the association cortex (cingulate gyrus) (4,5,93,94). Lesions of septum,

fornix, fimbria, and cortical undercutting may all impair the role that this

thalamic radiation plays in maintaining arousal.

Amphetamine increases ACh outflow in the cerebral cortex by an action

that also is dependent on an intact limbic system because septal lesions

prevent the increase (98). Amphetamine induces short term increases in the

level of ACh in the striatum and cerebellum and simultaneous decreases in the

level of ACh in cortex and hippocampus (125). This is consistent with

amphetamine-induced changes in the turnover of ACh. Although amphetamine can

activate EEG by stimulation of the midbrain reticular formation, an intact

reticular formation is not necessary for the drug effect. Ablation of the

septum, which prevents amphetamine elicited release of ACh in the cortex, does

not block the EEG activation. Apparently, at least two mechanisms exist for

EEG activation by amphetamine.
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.Many collateral pathways are derived from the pathways linking hippo-

,	 campal efferents with the anterior thalamus (Fig. 11). Fibers that leave the

fornix and terminate in the anterior hypothalamic nuclei and the nucleus

intercalatus in the mammillary bodies are of particular interest to the study

of motion sickness. The anterior hypothalamic nuclei exert a major influence

on the visceral organs. The predominantly parasympathetic outflow from this

region will increase sweating, vasodilation, salivation, and peristalsis of

the gastrointestinal tract while decreasing heart rate and blood pressure.

All of these peripheral effects can and do occur in motion sickness. 	 The

nucleus intercalatus sends efferent fibers to the area postrema which in turn

innervates the vomiting center (112,141).	 The apparent blockade of the

septohippocampal pathway by scopolamine could both diminish the peripheral

symptoms of motion sickness and block neuronal pathways to the vomiting

center.

C.	 Neurochemistry

1. Cellular Neurochemistry

Cholinergic input from cell bodies located in the septal area is

distributed to basal or apical dendrites near the somata of pyramidal and

granular cells. Electrophysiological evidence has confirmed that this input

is	 excitatory. Hippocampal	 neurons also	 are excited by glutamate via other

excitatory pathways such as the perforant pathway from the entorhinal cortex

(Fig. 7) and the hippocampal commissural fibers.	 Inhibitory axosomatic

terminals are present on these neurons and probably are derived from the

basket cells which most likely employ GABA as their inhibitory neurotrans-
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mitter (126). Lesions of the hippocampus will reduce the concentrations of

glutamate by 25% in the septum along with significant decreases in entorhinal

cortex, nucleus accumben septi, mammillary bodies and in the contralateral

hippocampus as well. These investigations support a role for glutamate as a

transmitter in the limbic system (99).

The hippocampus contains bursting-type (pyramidal) cells which display

atropine-sensitive muscarinic excitation and both bursting and non-bursting

(interneuronal) cells which display d-tubocurarine-sensitive nicotinic

inhibition (128).	 Hippocampal muscarinic receptors appear before the

development of any cholinergic input from the septum. 	 Amygdala kindling

results in a ;decrease in the level of hippocampal cholinergic muscarinic

receptors which occurs with and without septal lesions that destroy

cholinergic input to the hippocampus. Septal lesions, however, do not cause

loss of muscarinic binding capacity. Considering these findings, it has been

suggested that muscarinic receptors are down-regulated by depolarization of

the hippocampal neurons (26) and not dependent upon the integrity of

cholinergic innervation.

	

Nicotinic cholinergic receptors have been identified in rat hippocampus 	 ,

in the polymorphic cell layer of the fascia dentata and the stratum oriens.

They have not been identified in the outer molecular layer of granular cells

of the fascia dentata, in the pyramidal cells of Ammons, the fimbria or

fornices (106) (Figs. 7 and 12). 	 Other investigators have concluded that

hippocampal pyramidal cells are responsive to muscarinic and some nicotinic

agents and that these agents are not acting at two independent receptors (12).
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2. Neurochemical Mechanisms

Stimulation of hippocampal muscarinic receptors with the cholinergic

agonist oxotremorine causes a rise in the content of ACh in the hippocampus

and a decrease in its rate of synthesis, implying decreased release of ACh.

Because this action is blocked by drugs that interfere with noradrenergic

transmission, the apparent oxotremorine-induced increase in the turnover-rate

of NE in the region has been implicated as a mediator of the drugs' effect on

release of ACh in the hippocampus (74). Presumably, stimulation of cholin-

ergic receptors in the hippocampus results in the inhibition of the release of

septal ACh or a decreased responsiveness in hippocampal cells to ACh through

an intermediary release of NE. Further support for this scheme comes from the

work of Segal and Bloom (129) who reported that the activity of hippocampal

neurons was inhibited by loud auditory stimuli (stress) or electrical

stimulation of the locus coeruleus, which is the origin of a well established

inhibitory noradrenergic input pathway (Fig. 8) to the hippocampus (62). The

stimulatory effects of amphetamine as an anti-motion sickness drug on

noradrenergic transmission in the hippocampus is similar to the effects of

scopolamine in that both drugs ultimately block excitation of hippocampal

neurons. The fact that each drug possesses nearly equal anti-motion sickness

properties, has entirely different neurochemical effects, and yet, exerts

synergistic effects when combined, supports the hypothesis that the limbic

system is a critical center in the CNS for initation of motion sickness.

Amphetamine not only facilitates noradrenergic transmission, but also is

a potent releaser of dopamine (DA). It turns out that DA also exerts a tonic

inhibitory tone on the cell bodies of septo-hippocampal cholinergic neurons
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(Fig. 15). Release of DA in the septum is probably the mediator of prolac-

tin's effects in decreasing the turnover rate of ACh in the hippocampus,

striatum, and thalamus. DA is believed to be the prolactin inhibitory factor

so its release in the medium eminence by prolactin would constitute a negative

feedback loop. Clearly, both NE and DA, as released by amphetamine, exert

inhibitory influences on hippocampal cells.

Stimulation of the (mesencephalic) reticular formation (Fig. 10)

increases ACh release from the hippocampus. Section of both fornices does not

alter spontaneous release of ACh from the hippocampus, but does prevent

release mediated by the reticular formation. The administrat;on of

amphetamine acts exactly like stimulation of the reticular formation; the

increased release of ACh is also prevented by section of the fornices.

Scopolamine also increases ACh release from the hippocampus. 	 This release

occurs following topical applications of the drug and occurs with or without

cut fornices.	 It appears that the pharmacological action of scopolamine is

not dissimilar from section of the fornices.

Wood and Cheney (146) have attempted to distinguish whether a neuronal

feedback loop or a presynaptic muscarinic receptor mechanism could be invoked

to explain the actions of scopolamine on the turnover rate of ACh in the

septo-hippocampal	 cholinergic pathway.	 ,hey concluded	 that	 the	 cholinergic

systems	 of	 the	 hippocampus and	 thalamus possess	 self-regulating feedback

mechanisms	 (Fig.	 6)	 that	 * ;^e	 markedly perturbed	 by	 muscarinic receptor

blockers.	 The	 perturbation is	 expressed by	 a	 two-fold	 elevation in	 the

turnover of ACh in the hippocampus. 	 They described experimentation in support

of this conclusion that:	 (1) ruled out the presence of presynaptic muscarinic
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binding sites in the hippocampus, (2) negated any role of inhibitory

cholinergic neurons in the septum, and (3) demonstrated that the blockage of

the stimulatory noradrenergic input to the septum (Fig. 8) does not influence

the increased turnover rate of ACh in the hippocampus that follows scopolamine

adminis,ration.	 'he authors suggested that axonal collaterals of the

cholinergic septal neurons may activate noncholinergic inhibitory interneurons

which in turn act on the cell bodies.

3. Regional Metabolism

The deoxyglucose technique has been employed to determine which brain

regions become metabolically active after stimulation of limbic structures.

The technique uses elaborate radiotracing methodologies to identify changes in

the cellular uptake of glucose which are used as a measure of metabolic

activity. Stimulation of the ventral subiculum demonstrated increased

activity in the amygdala, hypothalamus, and basal forebrain. 	 Specific

hypothalamic regions included the ventromedial, dorsal, posterior, lateral,

premammillary, and preoptic nuclei. Earlier work using older axonal transport

methodology has revealed the presence of direct projections to the ventro-

medial region and mammillary nuclei (Fig. 11). 	 Presumably the additional

hypothalamic regions are activated by secondary projections from these

centers.	 Stimulation of the ventral or dorsal hippocampus demonstrated

increased activity in the lateral septal nuclei by the deoxyglucose technique

(69). Projections from the hippocampal gyrus have been reported as excitatory

(111).
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One of the consequences of hippocampal cell discharge, as induced by

cholinergic stimulation, is the large rise in the levels of cortisol in blood

that occurs regardless of the phase of the animal's circadian rhythm.

Application of other neurotransmitters such as 5-hydroxytryptamine (5-HT) or

NE into the dorsal hippocampus does not lead to a change in the concentration

of glucocorticoids in the blood. 	 B1ockers of choline uptake, such as

hemicholinium-3, will inhibit the noise (stress) induced rise in circulating

glucocorticoids, presumably via interference with necessary cholinergic

mechanisms (2).

The value of drugs that	 inhibit	 the	 uptake	 of syr^aptosomal	 choline by

presynaptic cholinergic terminals, particularly those terminals located in the

hippocampus, has been indicated by the experimental finding that stimulation

of the septum for one hour (60 Hz) did not lead to a change in the concen-

tration of hippocampal ACh, but if 10C ag of h ,^-micholinium-3 was first given

intraventricularly, a 50% reduction in ACh resulted within 7.5 minutes.

Recovery to normal levels occurred three days later (129).

D.	 Limbic: Systems (Layman's Summary)

The limbic system embodies a number of specialized brain regions which,

through extensive interconnections, give meaning to such concepts as memory,

learning, attention, emotion, stress, and autonomic behavior. Centers of

volition and consciousness (front.cl cortex) directly influence the processes

of memory and learning (hippocampus) which in turn exert control over centers

mediating stress (pituitary), autonomic functions (hypothalamus and brain

stem) and attention (reticular formation). 	 While these relationships are
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complex there are, nevertheless, sufficient clLes to identify those region!

that may be particularly critical to the etiology of motion sickness. For

example, transmission between the septum and hippocampus is especially

sensitive to anti-motion sickness drugs like scopolamine and amphetamine, and

to the physiological actions of such hormones as ACTH and cortical.

Modulation of the flow of nervous impulses to the hypothalamus and midbrain

reticular formation (area postrema and chemotrigrar zone) may underscore

changes that occur in an individual's motion sickness susceptibility or in his

expression of motion sickness symptoms after the administration of these

drugs. The limbic system may be described as a nervous system through which

the significance of environmental stresses are translated into hormonal,

adaptive, and autonomic responses.
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IV. STRESS

The general adaptation syndrome has been introduced and defined (73) as

an integrated complex of adaptive reactions to cope with changing or stressful

external conditions.	 It's not merely a. transitory emergency adjustment to

changes in environment, but an adaptive reaction which comprises the learning

of defense against future exposure to stress, and helps to maintain a state of

adaptation once this is acquired.	 The hypothalamic-pituitary-adrenal 	 axis is

central	 to the physiology of stress. The main metabolic effects of gluco-

corticoids have been known for years. They involve tissue and enzyme-specific

changes, mediated by induction of new protein synthesis at the gene level,

which elevates blood glucose, free amino acids, and free fatty acid levels via

breakdown of principally muscle and fat tissue. This apparently supplies the

organism with the necessary energy and building blocks to affect whatever

adaptive or repair responses are required. We are interested in understanding

the roles of the hypothalamic-pituitary-adrenal axis in adaptive learning and

behavior. Thus, we will focus on the actions of these hormones on the brain.

There is no reason to assume that changes in the constitution of normal blood

components, as mentioned above, do not play definitive roles in brain

metabolism. Consideration of these factors, however, is outside the scope of

this report.

It has been stated that the primary mediator underlying the pituitary-

adrenal cortical response to	 a variety	 of	 stimuli	 may simply	 be	 the

psychological apparatus involved in emotional or arousal reactions to

threatening or unpleasant factors in the life situation as a whole (13).

There is no doubt that a reciprocal connection exists between septo-
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hippocampal and pituitary-adrenal systems. The response of the pituitary-

adrenal axis to changing external environments is definitely modified by the

hippocampus, but the actual role of the hippocampus in controlling ACTH

release seems to be determined by a variety of known and unknown modalities of

the external environment, and the milieu interieurre of the hippocampus

itself. The adaptive role of the hormones seems to be to enhance remembering,

if the contingency of the situatiol requires retention or repeated retrieval,

and then to enhance forgetting, unlearning, or extinction of the experience in

order to make a place for acquisition of new adaptive responses when

environmental c l nges make them necessary. The large number of observations

on hippocampal function suggest that the system must be intact in order to

adjust behavior to new requirements under circumstances of environmental

uncertainty. In other words, the hippocampal formation, by suppressing older

memories allows new actions to be taken, new memories to be formed. The

hormones seem to modulate the motivational properties of conditioned external

and internal modalities.	 Thus, increasing the motivational value of

conditioned stimuli results in doing the response again, while decreasing this

value results in not doing the previous pattern in order to make a place for

acquisition of new experience (13).
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V. HYPOTHALAMIC-PITUITARY-ADRENAL AXIS

A. Introduction

It is important to understand the relationship between the limbic system

and the hypothalamic-pituitary-adrenal axis. 	 This chapter will discuss how

limbic system stimulation or lesions change the responses of the hypothalamic-

pituitary-adrenal axis to stress and novel environments (e.g., zero-gravity).

It will indicate the specific locations within the limbic system that bind the

stress hormones (ACTH, cortisol), how these hormones modulate limbic system

activity, and in particular, the modulatory effect this has on the hypothal-

amus. The behavioral effects of these hormones, lesions, and various envir-

onmental stresses also will be considered. Taken together, the data further

define the role of the limbic system as a center of adaptation, learning, and

sensory integration.	 More completely, these data establish the merit of

manipulating and understanding the pituitary- adrenal cortical system in the

prevention of motion sickness.

B. Physiological Role in Stress

The hypothalamic-pituitary-adrenal axis can be stimulated by stress,

direct electrical excitation of the hypothalamus, or by humoral agents such as

epinephrine (EPI) or histamine (HISM). The influence of the limbic system on

the hypothalamus generally has been regarded as inhibitory because stimulation

of the hippocampus, the dorsal hippocampus, hippocampal fields CAI and CA2, or

the dentate fascia results in a diminution of the hypothalamic-pituitary-

adrenal axis response to stress, to stimulation of the hypothalamus, or to

r
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application of these humoral agents (13,60). Stimulation of the hippocampus,

however, does not affect the basal secretory levels of the pituitary-adrenal

hormones. This obse'rvatior, ma y distinguish the limbic system as a mediator of

the impact that psychological stress has on the hypothalamic-pituitary-adrenal

axis as contrasted with basal, circadian or blood-borne mechanisms.

Glucocorticoids exert potent modulatory influences on the activity of the

limbic system. Particularly high levels of cortisol bind in the hippocampus,

especially in the ventral hippocampus and hippocampul CA1 and CA2 subfields

(60,83). Some glucocorticoid binding occurs in the amygdala, lateral septum,

induseum griseum, anterior thala
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attenuates the rise in ACTH release that ordinarily follows stimulation of the

reticular formation. The theta wave is also diminished by cortisol (83).

Pyramidal cell output declines along with electrical activity in both the

dentate fascia and dorsal hippocampus (13,60). Cortisol implants into the

reticular formation, amygdala and medial thalamic nuclei curtaii the rise in

ACTH that follows stressful environmental change but implants into tree ventral

hippocampus reportedly augment this response (60,83). It appears that stimuli

enhancing secretion of ACTH are modulated by the levels of glucocorticoid in

the limbic system and possibly other brain regions as well. The system

apparently does not function strictly in a negative feedback capacity in that

adrenal cortical hormones released by ACTH modulate limbic mechanisms that

influence ACTH release by complex and as yet poorly understood means.

Ablation studies have tended to support the notion that most limbic

structures exert inhibitory influences on the responses of the hypothalamic-
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pituitary-adrenal axis to different stressful environments or stimuli.

Hippocampectomy intensifies an experimental animal's reaction to stress and

exaggerates this animal's adrenal response (96). The afternoon rise of ACTH

in the rat following hippocampal lesions has been interpreted as support for

an inhibitory role for the limbic system (145). Other researchers have

likened dorsal hippocampectomy with lesion of the fornix (the principal output

of the hippocampus) in that both lesions impair the ability of dexamethazone

to attenuate stress-induced and basal responses of the adrenal glands (46).

Interestingly, ventral hippocampal lesions were without effect. A number of

investigators have shown that fornicotomy blocks the normal rise in cortisol

that occurs during extinction or in response to a novel environment

zero-gravity:) .	 Furthet^more, to 1 S l es i on blocksocks 1i aC L,1 vn v nCT1 i,

ordinarily inhibits extinction of a conditioned avoidance response (102).

Lesions of the medial septum destroys the theta rhythm after 30 days, whereas,

a month after lesions of the lateral septum a conspicuous rise	 in	 glucocor-

ticoid receptors in the hippocampus can be noted along with an inability of

the animal to acquire conditioned avoidance responses (100).

It is difficult to reconcile these data and make any specific and definite

assertions concerning the functional interconnections between the limbic

system and the hypothalamus. It is likewise difficult to understand the

specific modulatory roles of cortisol and ACTH in the central nervous system

on the basis of these data alone. There are a few observations that may serve

to guide us in understanding the functional role of the limbic system.

Specifically, the projection of the limbic system onto the hypothalamic

centers often inhibits the stress response and this influence is modified by

cortisol and ACTH.

._19
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C. Neurochemical Theory

Our knowledge of the actions of specific pharmacologic agents on neuro-

transmission in the limbic: system and hypothalamus is useful in determining

how our more effective anti-motion sickness drugs work at a neurochemical

level. Cholinergic involvement along the hypothalamic-pituitary-adrenal axis

is well documented. Nicotine elevates circulating levels of both ACTH and

cortisol (23,27) whereas carbachol, when applied to the dorsal hippocampus,

raises the concentrations of cortisol in the blood. Carbachol can counteract

the effects of dexamethazone which otherwise reduces the level of cortisol

(2). The effects of stressful noise on enhancing the release of cortisol can

k^ 4'^" ;11 1 VGbiWU 	 by ^vII1gC
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blockade of choline uptake (e.g., hemicholinium-3) (2). Cholinergic mediated

release of corticotropin releasing factor (CRF), although it can be partially

blocked by muscarinic blocking agents like atropine, is inhibited in a dose

dependent manner by nicotinic antagonists (27). 	 Because ACTH and cortisol

affect many aspects of neurotransmitter metabolism, it is important to

understand these effects and to correlate these effects to the neurochemical

actions of such proven anti-motion sickness drugs as scopolamine and

amphetamine.

The cholinergic tract that connects cholinergic cell bodies in the medial

septal nuclei with pyramidal cell bodies in the hippocampus is one of the best

studied cholinergic tracts in the CNS and is refer-ed to as the septo-

hippocampal pathway. 	 Scopolamine blocks muscarinic cholinergic receptors

located on the pyramidal cells causing a compensatory increase in the release

of ACh by the septohippocampal trart in a futile attempt to overcome that
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blockade. The exact mechanism of this compensatory rise in the turnover rate

of ACh in the hippccampus is not completely understood (146). Stimulation of

inhibitory noradrenergic or dopaminergic input to the septai nuclei by

feedback neurons somewhere downstream from the hippocampus may be blocked by

scopolamine.	 The muscarinic agonist, oxotremorine, ordinarily enhances the

activity of these feedback neurons (74). 	 Amphetamine-induced release of

dopamine (DA) and norepinephrine (NE), according to this scheme, should and

actually does attentuate septohippocampal transmission, althouqh it does so by

a different neurochemical mechanism than scopolamine.

These observations represent our best understanding to date of anti-motion

sickness drug mechanisms at a neurochemical and -Wurophysiological level and

allow us to explain why such pharmacologically diverse drugs as scopolamine

and amphetamine are both effective by themselves and synergistic when

administered simultaneously. This point can not be overemphasized, it has and

will be reiterated throughout this report, for it embodies the essence of

neurochemical theory as it is used to understand brain function. Essentially,

once a particular neurochemical event has been identified and correlated with

the phenomenom of motion sickness in any capacity, then it follows logically

that the determination of other means to effect the underlying neurochemical

events will naturally hold promise, representing new approaches to the same

end of modulating motion sickness susceptibility. Specifically, we know that

scopolamine blocks transmission in the septohippocampal pathway. This

particular neurochemical event has been identified and negatively correlated

with the phenomenon of motion sickness. 	 Because scopolamine exerts a

pharmacological action at many other locations, it is necessary to correlate

activity in the septo-hippocampal pathway by additional means with other
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phenomena of motion sickness. This has been done. Amphetamine releases DA

and NE which in turn inhibits transmission in the septo-hippocampal pathway.

Furthermore, blockade of this pathway by scopolamine or amphetamine impairs

the ability of the limbic system to influence key hypothalamic centers

involved in the expression of the symptomatology of motion sickness and the

hormonal responses to stressful motion. 	 'That has been done here is to

correlate certain pertinent physiological and hormonal counterparts of motion

sickness with transmission through the septo-hippocampal pathway. 	 This

directly links specific aspects of the pharmacology and physiology of motion

sickness in terms of this central pathway.

The side effects that follow the administration of scopolamine include

loss of short-term memory, amnegia, an inability to concentrate, focus

attention and learn, and modification of normal w phavioral reactions to

novelty (119,139). Anticholinergic drugs apparently attenuate habituation to

novelty (51,54) and reduce preferences for, and reactions to novelty (63).

Stated differently, novelty does not motivate the scopolamine- treated animal

or individual, in effect, the novel environment is not really well learned or

remembered, and is not given too much attention. Stimulation of the septo-

hippocampal pathway, therefore, might be critical to man's reaction to the

microgravity of space and, Just like the sleeping individual, when man is

somewhat detached from his sensory world he is less likel y  to react strongl y

to it, to be motivated by it, or become motion sick in response to it. The

psychology of motion sickness is linked to the neurophysiological and adaptive

responses of motion sickness and to the septohippocampal pathway by this

reasoning. This connection is more abstract than those previously made, but

this is to be expected when one stops talking in terms of molecular and
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cellular events and instead addresses particular qualities of mind and

conscious experience.

D. Stress Hormones, Neural Mismatch and Adaptation

Now that most of the available data has been directly tied to septo-

hippocampal transmission within the limbic system and now that we have

intimated a possible intrinsic psychological mechanism in the expression of

motion sickness susceptibility, it is appropriate to introduce the concept of

the limbic system as a neural mismatch center or sensory-comparator center.

The hypothesis, stated most simply, states that the limbic system is a center

in which incoming sensory information is compared with stored, past experience

and from which the appropriate behavioral and physiological responses t^ that

comparison are elicited. Depending upon the polarity of the comparison, the

appropriate response may range from unmotivating familarity to stressful

novelty. When the disparity is great, the individual will have to learn to

adapt to the new environment, hence, mechanisms of memory and associative

learning will be initiated. 	 It is the intention of the authors in the

remainder of this chapter to investigate the precise mechanisms of actions of

ACTH and cortisol in these mechanisms of memory and associative learning, in

the regulation of septo-hippocampal transmission and in effecting the neuro-

chemical changes within specific neuronal systems.

Following exposure to a stressful environment, the usual sequence of

release of stress hormones proceeds according to a specific pattern. First,

corticotropin releasing factor (CRF) is released from the hypothalamus,

presumably by stimulation of certain cell bodies in the region. The hormone
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is released from axonal	 terminals	 located on or near the median eminence, a

highly vascularized portal	 system communicating with the anterior pituitary

gland.	 Second,	 CRF	 stimulates	 release of ACTH from the anterior pituitary.

The whole molecule of ACTH (ACTH 1-39 )	 can then be carried	 via	 the	 systemic

circulation	 to	 the adrenal glands	 where the release	 and	 production	 of

glucocorticoids is enhanced. The principal glucocorticoid in man is cortisol;

in the rat it is corticosteroid. Finally, cortisol exerts a wide range of

actions on most tissues of the body, mainly through an interaction with the

genetic, apparatus of the individual target calls. 	 Generally, this action

results in	 changes in	 the	 biosynthesis	 of	 particular cellular proteins or

enzymes; an	 effect realized	 over	 a	 period	 of	 days. This outlines the

classical sequence of events.

The classical understanding of the hypothalamic-pituitary-adrenal axis is

oversimplified. It does not account for the fact that ACTH and other peptide

hormones reach and have actions on the brain itself (43,50,55,88,123) or that

certain peptide fragments such as 
ACTH1-10' 

ACTH 
4-10' 

and ACTH 4-7exert

actions on the central nervous system and yet are devoid of peripheral

(adrenal) activities (15,42,121).	 Specifically, ACTH administered

intraventricularly or directly onto the hippocampus will enhance the turnover

rate of ACh. This action is not expressed following direct application to the

septal nuclei (147). A decrement in the turnover rate of ACh in the

hippocampus actually has been reported following intraseptal application of

ACTH (19).

ACTH or adrenalectomy (which elevates ACTH) is known to increase the

turnover rate of NE, whereas, removal of the pituitary gland causes a decrease
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in the turnover rate (142). Behaviorally, ACTH improves acquisition of

conditioned avoidance responses and diminishes extinction (13). 
ACTH4-10 

and

ACTHl-24 accelerate the turnover rate of DA (9,42) and increase the specific

activity of tyrosine nydroxylase and dopamine-beta-hydroxylase (in hypothal-

amus).	 Cortical dopamine-beta-hydroxylase declines (42).	 The effects of

cortisol on the septo-hippocampal pathway have been described as generally

inhibitory.

Cortisol is known to exert an influence on the metabolism of a number of

different neurotransmitters in the CHS. Cortisol will significantly reduce

the biosynthesis of choline acetyl transferase, the enzyme responsible for

synthesizing ACh. This action is opposed by insulin which by itself heightens

enzyme-specific activity.	 Levels of tyrosine hydroxylase, the enzyme

responsible for the synthesis of DA and necessary for the eventual

biosynthesis of NE and epinephrine (EPI) as well, are expanded by cortisol at

the same time (127). The absolute levels of dopamine-beta-hydroxylase, the

enzyme which converts DA into NE in noradrenergic neurons, also are increased

by this glucocorticoid and decline after adr ,9nalectomy (60). 	 Furthermore,

phenethyl amine-N-methyl transf erase (PNMT), which converts NE into EPI in the

adrenal medulla and in epinephrinergic neurons also is augment:	 by the

presence of cortisol (60,83).

Summarizing these data, the effects of cortisol on the metabolism of DA,

NE, and ACh are consistent with the actions of the anti-motion sickness drugs,

amphetamine and scopolamine, in that both enhance DA and NE impair cholinergic

transmission. The difference is that cortisol acts over a period of days as

an adaptive influence whereas the anti-motion sickness drugs are acutely
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active in less than one hour. It should be noted that the drug action is not

natural, indeed, there is evidence that scopolamine elicits a compensatory

rise in the turnover of ACh (146) and in the number of postsyneptic receptors

in an attempt to overcome the blockade (68,108,131). In addition, amphetamine

induces a compensatory decline in the levels of tyrosine hydroxylase (70).

Other transmitter systems are impacted by cortisol as well. The levels of

tryptophan 5-hydroxylase are elevated and an increaser± ability to convert

tryptophan into 5-hydroxytryptamine (5-HT, serotonin) has been measured

(13). Removal of the pituitary gland will cause turnover of 5-HT to decline

(42). Because tryptophan 5-hydroxylase, the enzyme limiting the rate of 5-HT

synthesis, is not saturated in vivo with its substrate, tryptophan, variations

in the levels of blood tryptophan, or more specifically, variations in the

ratio of blood tryptophan to other amino acids competing for uptake into

brain, directly influence 5-HT synthesis (90,138,150).	 There has been one

report that NE, but not EPI can inhibit induction by cortisol of hepatic

tryptophani pyrollase (132). Other work (53) has shown that hydrocortisone

decreases brain tryptophan and 5-HT concentrations. This is due to increased

activity of the hepatic enzyme tryptophan pyrollase, which metabolizes trypto-

phan and ca ses a decrease in the concentrations of free and total plasma

tryptophan, which in turn, results in decreased concentrations of tryptophan

in brain.

Lesion of the raphe nuclei influences the circadian fluctuations in

circulating levels of ACTH. The cell bodies if central 5-HT secreting neurons

are all locates in the raphe nuclei within the brain stem reticular system

(Fig. 9;. The lesion smooths out the rhythm, reducing the amplitude of the

R
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peaks and troughs, without shifting or eliminating the rhythm. The projection
E

from the raphe nuclei to the suprachiasmatic nucleus of the hypothalamus or

mediated by the limbic system and the fornix might be responsible for this

effect (18,137,142). Interestingly, it has been observed that vacillations in

f

the levels of ACTH correlate inversely with those of 5-HT for up to three days

after adrenalectomy (140) and fluctuations in the levels of cortisol and 5-HT

follow a similar rhythm in hippocampus, amygdala and frontal cortex (13).

j
Weiner and Ganong have reviewed the data and raised the possibility that

serotonergic neurons affect circadian fluctuations in ACTH secretion via the

`	 limbic system or suprachiasmatic nuclei (142). 	 However, 5-HT administered
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	 directly into the dorsal hippocampus does not modulate the levels of cortisol

(2). Furthermore, 5--HT does not alter rel4use of C°F.

The influence that ACTH and cortisol have on neurons secreting gamma-

aminobutyric acid (GABA), is particularly important because GABA i .) a

ubiquitous inhibitory neurotransmitter present throughout the brain. Corti sol

increases the level in cortex of glutamic acid decarboxylase (GAD), an enzyme

which directly biosynthesizes GAGA, and increases GABA-transaminase, the

enzyme which catabolizes GABA (50,83). An inhibitory gabaergic input to the

medial septum has been described that when activated attentuates release of

ACh in the hippocampus (60,115). The pyramidal cells in the hippocampus also

are innervated by inhibitory basket cells which employ GABA as their

neurotransmitter (83). It is pos°able that cortisol, by affecting these cells

as well, would also diminish the excitatory influence of the cholinergic

septo-hippocampal pathway on the pyramidal cells in the hippocampus.

Adrenalectomy elevates the number of GABA-uptake receptors in the brain while

cortisol reverses this effect (86). The reduced level of receptors present on

49



r

synaptic terminals means that cortisol prolongs the time wh{Ph GAQA would have

to exert its inhibitory influence on post-synaptic neuront' . This action of

cortisol is consistent with its effect on GAD and GAQA-transami nase in that

inhibitory gabaergic transmission is facilitated. 	 Drugs which increase the

release of GAGA in th.^ septum only, such as del ta-9-tetrahydrocannabinol, the

active ingredient in marihuana, have been shown to specifically reduce the

turnover rate of ACh in the hippocampus (115). It is reasonable to assert

that cortisol acts in part through gabaergic neurons to inhibit impulse flow

through the septohippocampal pathway. The effects of cortisol again appear to

oppose those of ACTH4-10 because ACTH4-10 
is known to reduce the absolute

concentrations of GAQA throughout the hindbrain, midbrain, and cortex (42).

Reduced levels of GAdA would imply impairment of the wide-spread inhibitory

function of this neurotransmitter.

Summarizing this section on stress hormones, neural mismatch and adap-

tation, it has been demonstrated that the stress hormones ACTH and cortisol

eA ert adaptive influences ,o the limbic system through both fast acting

receptor-mediated mechanisms and via slow acting plastic changes in

neurotransmitter metabolism. The modulation, of neurotransmission by cortisol

was likened to the action of the anti-motion sickness drugs scopolamine and

amphetamine and found to differ in tine of action only. The limbic system

model of neural mismatch was further defined and substantiated through elu-

cidation of the adaptive effects of the stress hormones and by recognition of

the relationship between the hypothalamus and the septohippocampal pathway.
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E. Hypothalamic - Pituitag - Adrenal Axis (Layman's Summary)

The hippocampus exerts an inhibitory action on the hypothalamus which

modulates the -influence of stress, adrenaline, and histamine on the hypot-

halamic-pituitary-adrenal axis. These stressors generally lead to increased

release of the stress hormones ACTH and cortisol. 	 Scopolamine and

amphetamine, acting individually or synergistically through different neuro-

chemical mechanisms, can impair cholinergic input to the hippocampus from the

septum which in turn diminishes the hormonal responses of the hypothalamus to

stress.	 Thus, both the behavioral and hormonal components of stress are

reduced, respectively.	 Neurochemically, the actions of scopolamine and

amphetamine appear to be mimicked by cortisol but antagonized by ACTH. The

similarity between the neurochemical actions of cortisol, scopolamine, and

amphetamine is revealed by the complementary influences these agents have on

the synthesis, degradation, and activity within several neurotransmitter

systems.	 Experimental manipulation of the levels of corticol, ACTH or

ACTIH-like peptides may therefore modulate motion sickness susceptibility in

man.
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VI. NEURAL MISMATCH THEORY

The involvement of the hippocampus in working memory has been distin-

guished from reference memory (101). Short-term memory has been defined as a

working memory roughly analogous to consciousness. The information held in

short-term memory may be rehearsed, which will keep it in short-term memory or

move it into long-term memory. Consolidation processes are integrative pro-

cesses which are believed to organize and categorize new information with

previously stored information. A two stage discrimination learning theory has

been proposed which includes: (1) attention, a perceptual process mediated by

sensory analyzers, and (2) response attachments, based on reinforcement (9).

Clearly,  everts with effects hied i atcd by the h i ppocampus relate to the

development and/or violation of expectancies about motivationally significant

stimuli (67).

The hypothesis that the sensory conflict or neural mismatch theory of

motion sickness has a neurophysiologically defined meaning within the context

of the limbic system, as described above, seems tenable. The limbic system

might be imagined as a sensory-comparator, poised at the interface of ongoing

sensory experience and lc:ng-term, stored experience.	 It functions by com-

paring present experience with past and when entrainment of new memory is

intended, this new memory is organized and categorized by association with

past memories.	 An example of this process would be the memorization of a

four-digit telephone extension number wherein the new number is associated

with an identical number already in long-term storage but which originally

represented the street address of a friend. This kind of associative process

is intuitively obvious and practiced by all of us. The essential principle
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here is that new information is learned by identification of its pattern and

by the subsequent association of this pattern with established patterns in

long-term storage. Certainly, -this conceptualization of the memory process,

as well as any other, must be regarded as a working hypothesis at best because

o the lack of definitive evidence in support of these contentions. 	 These

conceptualizations can serve useful purposes, however, in that they provide

frameworks into which additional information can be fit and evaluated for

consistency with the original conceptualizations. 	 This, in effect, is the

scientific method, a deductive process by which a given hypothesis is

continually refined to accommodate the available data. Long-term memory might

even be aptly considered a hypothesis or conceptualization about the nature of

reality, on an individual basis, and whit ► operates and expands by a similar

deductive process. The subsequent paragraphs will present a model of pro-

cesses underlying an individual's reaction to zero-gravity and will interpret

the available information within that conceptual framework.

The model of sensory conflict or neural mismatch which results in motion

sickness might be defined by neurophysio ogical responses of the limbic sys-

tem. Specifically, the limbic system takes immediate sensory information,

compares it with past experience and initiates necessary adaptative responses

on the basis of that comparison. The sensitivity of the system to this func-

tion is of course influenced by such Factors as arousal or attention; factors

which in themselves are part of the adaptive responses initiated. The envi-

ronment of zero-gravity results in a novel sensory experience which, when com-

pared to past experience, stands in conflict with reality. An adaptive re-

sponse is initiated which, because of the strength and extent of the sensory

novelty, is accompanied by the vomiting response. Money (56) has forcefully
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argued that this response is a normal response to being poisoned. The assump-

tion is that gross mismatching of sensory experience underlies this response

and that the mechanism has been preserved in the genome as a survival-related

mechanism of evolutionary benefit because the sensory distortions that often

follow the ingestion of poisonous substances cause emesis, and hence, evacu-

ation of the poisonous substance from the system. While this interpretation

is intuitively  pleasing on a conceptual level,  i t is not amenable to direct

experimental testing. However, the hypothesis that a reduced inhibitory input

to hypothalamic centers, as mediated by the limbic system, may comprise a

major part of the neurophysiological mechanisms leading to the symptoms of

motion sickness, can be directly tested.

It has already been indicated (above) that the proven anti-motion sickness

drugs act by reducing the activity of the cholinergic septohippocampal pathway

by two independent neurochemical mechanisms. 	 Because scopolamine also in-

hibits the establishment of long-term memory from short-term or ongoing sen-

sory experience, it follows that the adaptive responses to novelty might also

be attenuated. This has been experimentally determined through measurement of

the responsiveness of the hypothamic-pituitary-adrenal axis to stress. Spe-

cifically, scopolamine inhibits the rise in cortisol that ordinarily follows

psychological and physical stress (27). Scopolamine therefore appears to be

overriding normal adaptive responses of cortisol to stress and may

neurochemically function in a fashion similar to cortisol.

Because muscarinic cholinergic septohippocampal transmission is directly

blocked by scopolamine, the identification of a neurochemical action of

cortisol that exerts a similar effect would be additional evidence in support
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of the hypothesis that the limbic system embodies a major portion of the

neurophysiological mechanisms responsible for the symptoms of motion sickness.

An action of cortisol on the limbic system has been experimentally and neuro-

chemically defined and involves plasticity changes in inhibitory gabaergic

neurons impinging upon septal cholinergic cell bodies. Adrenalectomy causes a

rise in the quantity of presynaptic GASA uptake receptors, an effect that is

reversed by the administration of cortisol (86). The ability of cortisol to

reduce the specific-activity of choline acetyltransferase, the enzyme which

synthesizes ACh in all cholinergic neurons, further indicates that the

neuropharmacological effects of scopolamine can be functionally replicated by

cortisol.	 The ability of cortisol to increase the specific-artivity of

lCyr	 I[ju^ A•• ' s	 ^'o^ omi rfn— btahy drox ylase and	 henethylamine-N-Tyr osine nyurGnyrao2, u ruo^ ^ ^^ .^̂  n-.+ ^ 3 	 3 	 p

methyl transferase, the enzymes responsible for the biosynthesis of DA, NE and

EPI, respectively, also draws attention to the possibility that the neurophar-

macological effects of amphetamine may be functionally mimicked by cortisol as

well .

_, q
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VII. CONCLUSIONS AND SUMMARY

This report has described the functions of the limbic system in terms of

performance, memory, learning, extinction, discrimination, reactions to novel-

ty, and sensory experience. The limbic system has been characterized as a

neural mismatch center in which present sensory experience is compared to

long-term mew.ory stores and evaluated for internel consistency. Essentially,

environmental cues are recognized as novel or familiar and the complex behav-

ioral reactions of adaptation or extinction are initiated in accordance with

the motivational or attentional state of the animal. Neural mismatch 's not

defined in this report as it has been in previous research on motion sic''ness.

Previous research has referred to such concepts as "a mismatch between vesti-

bular and visual inputs", or "a mismatch between otolith and semicircular

canal organ input" or simply to " the mismatch neuron". While this concept of

sensory-conflict is very popular among researchers in the field, it has not

been properly or realistically evaluated or defined.

This report has presented evidence that the limbic system model of sensory

conflict or neural mismatch theory is a good working hypothesis that may be of

potential value in the development of new approaches to the study of motion

sickness.	 Manipulation of the hormones of the pituitary-adrenal cortical

system is just one example of a new approach to the study of motion sickness

that holds promise. Experimentation with these hormones is recommended on the

basis of our understanding of the neutcchemical actions of these hormones and

the similarity of these actions with the neuropharmacological effects of such

anti-motion sickness drugs as scopolamine and amphetamine.
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