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DEVELOPMENTOFTESTMETHODOLOGYFOR
DYNAMICMECHANICALANALYSISINSTRUMENTATION

By

Vernon R. Allen, Ph.D.
Professor of Chemistry

TennesseeTechnological University
Cookeville, Tennessee

ABSTRACT

The high technology requirements for deep-space exploration,

for extended periods in near-space, and for an over-riding need for

energy conservation demand the development of new materials and for

controlled variability of the engineering properties of these materials.

Dynamic mechanical analysis is the study of the mechanical

properties, e.g. dynamic tensile storage modulus and energy damping,

which define the stiffness and the mechanical energy dissipation

(as heat) of the sample under sinusoidal stress. This project was

designed to utilize the "dynamic mechanical analysis" instrumentation

available for the development of specific test methodology in the

determination of engineering parameters of selected materials, esp.,

plastics and elastomers, over a broad range of temperature with
selected environment.

The methodology for routine procedures have been established

with specific attention given to sample geometry, sample size, and

mounting techniques. The basic software of the duPont 1090 thermal

analyser has been used for data reduction which simplify the

theoretical interpretation. Although clamp hardware was not available

for the testing of 'liquid' resin systems, clamps were developed

which allowed 'relative' damping during the cure cycle to be measured

for the fiber-glass supported resin. The correlation of fracture

energy 'toughness' (or impact strength) with the low temperature

(glassy) relaxation responses for a 'rubber-modified'epoxy system

was negative in result because the low-temperature dispersion mode

(-80 C) of the modifier coincided with that of the epoxy matrix,

making quantitative comparison unrealistic,
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]_RODUCT ION

The exciting technological advances generated by the

space program are evidenced by the development of materials that

operate at the extremes of the thermal environment - from the

high temperatures experienced by the plastic materials which serve

as ablative heat shields to the composite structures in the space

telescope which must exhibit negligible expansion coefficients to

cryogenic temperatures. Achievement of th is vast range of the

en g ineering successes is con_ensurate with the development of

new materials having properties previously thought impossible -

liquid oxygen-compatible high impact elastomeric resins-, of new

processes and new analytical techniques which provide the engineer

the necessary data for full utilization of the material properties

in structure design. Books (1,2) have been written depicting these

"space-age"materials and outlining recent developments in the

synthesis, properties characterization and range of applicability

of thermally stable engineering resins and of cryogenic compatible

exotic plastics and elastomers.

The high technology requirements for deep-space exploration,

for extended periods in near-space, and for an over-riding need for

energy conservation demand the development of new materials and

controlled variability of the engineering properties of these new

materials. Consequently, there remains a continuing need for fast,

reliable accumulation of the materials engineering data to

accelerate design and production of these space-age materials.

The method of dynamic mechanical analysis involves the

study of the mechanical properties such as the dynamic storage

modulus and the energy damping which define the stiffness and the

mechanical energy dissipation (as heat) of the sample under sinusoidal

or other periodic stresses. Since, for viscoelastic resins, the stress

and the strain are not generally in phase (except at very low temp-

eratures where the sample exhibirs brittle-like glassy behavior),

these two parameters yield properties evaluation especially sensitive

to the chemical and physical structures of the resin, to the

influence of the 'thermal history' on the sample properties, and

to the effect of processing conditions, e.g. molecular orientation

and stress anistropy, on material stability (3).

This project was designed to utilize the dynamic mechanical

analysis instrumentation available in the development of specific

test methodology for the determination of engineering parameters

of selected materials, especially for epoxy resins, over a broad

range of temperature with selected environment.
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DYNAMIC MECHANICAL ANALYSIS

The vast range of applicability of polymeric systems is a

direct consequence of the wide variety and range of mechanical

properties concomitant with these materials. These properties vary

from those of viscous liquids to elastomeric solids, through the

viscoelastic region, to hard and tough rigid solids. This behavior

may be represented by graphing the modulus of the sample (tensile or

shear) versus the temperature (or time) as shown.

MODULUS

G(t)

or

E(t)

GLASSY

VISCO -_ _ _'_ LEATHERY

ELASTIC _I\ --"

"\

LOW 1,N\

\ VISC
\

T(or t)

A number of microstructural and compositional factors influence

the magnitude of the moduli and the phase transition temperature,

such as the molecular weight, the degree of branching, and the extent

of crosslinking, the degree of crystallinity and the crystallite

orientation (fibers), and for graft and block copolymers versus the

polymer blends, to name a few. For example, the elastic response

would not be observed in a low molecular weight sample which has no

crosslinks and few chain entanglements (dashed line). The presence

of crystallites would tend to mask out the glassy to elastic transi-

tion as shown by the (-----,) curve above.

In addition to the behavioral factors given, the measured

mechanical properties of a given system will be dependent on the

type and on the speed of testing, the processing conditions and on the

thermal history (stored internal stresses), and on the environmental

conditions (humidity induced stress cracking in fatigue). The sensi-

tivity of polymeric systems to temperature (or time) and to the rate

of measurement is chiefly a result of the blend of viscous (segmental

motion) behavior, in which the strain is proportional to the rate
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of strain with viscosity being the constant of proportionality,
and of elastic chain coil deformation behavior, in which the
strain is proportional to the stress magnitude with Young's
modulus (in tensile strain) representing the coefficient of
proportionality. It is becauseof this viscous componentof
polymeric systems with someof the mechanical energy being
converted to heat energy that comparison of mechanical properties
and predictions based on such properties must always consider the
magnitude of this energy dissipation by including correlation of
the rate of strain with the specific stress-strain relaxation
mechanismunique to the system.

The concept of 'dynamic mechanical analysis' (DMA)was
originally developed more than forty years ago by Mooneyand
Gerke (4) in which a torsion pendulumwas used to investigate the
adiabatic heat buildup phenomenonin tires. Nielsen and Buchdahl(5)
studied the effect of plasticizers on the glassy transition in

polyvinyl chloride and the dampingbehavior in high-impact poly-
styrene somethirty years ago using a similar torsion pendulum.
The use of the pendulum-basedtype of instrumentation has been
expandedprimarily by Gillham and Lewis (6) using glass-fiber
braids as mechanical support for uncured liquid resins to allow
indepth analysis of the complexmechanismof thermoset cure reaction.
The early use of the torsion pendulumby McCrum(7) and by
Sinnott (8) of DuPont has evolved into the development of the current
modular system for thermal analysis by DuPont Instruments (9-11).

The DuPont 982 DynamicMechanical Analyser used in
conjunction with the DuPont 1090 Programmer/DataThermal Processor
and with included software provide a system characterized by
simplicity of operation with a wide range of materials from soft
elastomers to metals and ceramics. A scope of temperature (-150 to
500 C) and time selections maybe programmedwith marked selectivity
of instrument readout (temperature, time, fundamental resonant
frequency, and mechanical damping) conversions through preprogrammed
software calculations yielding quantitative values of storage and
loss moduli, tan delta, and logarithmic functions of these parameters.
The software routines allow automatic compensation for sample end
effects,instrument compliance, and instrument damping.

The thermal processor system collects and stores real time
data in a separate disk drive unit and then plots continuous print-
outs or tabulated data on command.The complex data analysis routine
calculates the standard viscoelastic properties such as tensile
storage and loss moduli, tan delta and allows calculation of compar-
able shear moduli as well. The graphical reports and the tables of
calculated or real time data are obtained in a form suitable for
publication. The prinouts maybe further customised using a custom-
plotting format. Examplesof both types are presented as Figures 1-3.
In Fig. i there is represented the preprogrammedprintout of the
real time data for a standard reference sample of an ABSterpolymer.
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There is displayed in Fig. 2 the calculated tensile modull and

tan delta for the same sample. The capacity to make comparison plots

by recalling real time of calculated data from the disk storage

unit for different samples and plotting on fixed axes is shown in

Fig. 3 including custom modification to fully identify the samples.

Another feature is given in Fig. 4 which contains calculated data in

tabular form and with identification of axis specifications. Many

other features of this analyser system are described in reference Ii.
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EXPERIMENTAL

In this section there is described the materials used in

this work together with a brief description of the equipment employed.

Also, there is included a step-by-step outline of the operation of the

DuPont Dynamic Mechanical Analyzer instrumentation.

Materials: The epoxy resin used throughout this work was Shell Epon 828,

a low molecular adduct of bisphenol A with diglycidyl ether having an

epoxide equivalent of 5.1 equivalents per kilogram. The hardener,

Shell Z, a misture of m-phenylene diamine and methylene dianiline, was

added in stoichiometric amount. Both reactants were preheated to

60-70 C, mixed vigerously by stirring, evacuated several minutes under

forepump vacuum, and poured into preheated aluminum molds which had

been sprayed with Teflon mold-release agent. Samples for cure studies

were poured directly into aluminum pans. The resin was allowed to set

at room temperature for around sixteen hours, and heated for variable

times with a standard cure for mechanical analysis of two hours at I00 C

and two hours at 150 C. Samples were removed from the molds after

cooling, machined or ground to the desired form and polished with

600 sand paper.

A rubber modified sample was prepared by mixing into the above

system 25 phr of WC-8006 (Wilmington Chemical Co.), an epoxy-terminated

acrylonitrile-butadiene rubber, and given the same cure cycle.

Equipment: Test sheets of the resin were made by casting into and

curing in aluminum molds measuring 20 cm by i0 cm by 0.32 cm (0.125 in)

inside dimensions. The milled-out section of the mold was one cm

thick and was faced with a 0.64 cm polished slab of aluminum plate.

These were secured with four C-clamps, heated to 41C in an air oven

and the warm resin was slowly poured into the slightly tilted mold.

The instrumentation for the measurement of dynamic mechanical

analysis was the DuPont 1090 Thermal Programmer/Data Processor, the

DuPont 1091 (dual)Disk Drive unit, and the DuPont 982 Dynamic Mechical

Analyzer (see reference II) with appropriate software (AdvDMA VI.0

data reduction program).

Brief Manual of Operation: Power should always be supplied first to

the 1091 Disk Drive unit to prevent disk drive hangup which may

occur if the 1090 Processor unit is turned on first. Shutting down

and turning back on in proper order will eliminate the hang up

should it occur. After a rapid internal self-analysis of the instru-

ment, the display board shows date and time which must be accepted by

depressing the Yes key (not Enter). The display then leads the opera-

tor through the necessary steps required to provide the required

information for real time data obtainment. The final step in this

programmed sequence in the Y-axis shift. The New File key is

depressed which will automatically add one file unit to the last one
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used in either obtaining real time data or in data analysis. Should
this new file number already contain data, an error notation will be
displayed and the basis for this error will be presented by activation
of the Help key. If the operator is uncertain of the correct file
number, depressing the File Control key and following the indicated
steps allows data files to be identified, deleted, method or sample
identificationto be changed, and files to be protected from errant
deletion. At any time the file contents maybe displayed or printed
with the identified keys in the List section of the board.

Once the file numberhas been correctly entered, chart paper
must be in place with the chart load red light out before plotter
will operate. Depressing the chart Label key will print out and label
the axes as entered during the sequenceabove and will print sample
identification, date and time (see Fig. I). Then the Pen-up key is
depressed, which activates the pen to start plotting at the start
of the run. The steps in this paragraph maybe bypassed if a plot
of real time data is not desired. It will be stored and can be
recalled as soon as the run is complete.

Actuating the Store key will involve the data storage system.
(Should the display already showSt or Store on the right side under
indicated temperature, depressing the Store key will negate data
storage - press again to reactivate). It is mandatory that all entered

information be correct at this point because it cannot be changed

once the test procedure has been activated by the SET-UP key.

Before the Set-up key is activated, the sample obviously

must be in place, centered in the clamps and torqued to i0 in-lb

for hard samples and 5 in-lb for soft elastomers. The metal shield

must be placed around the sample and the thermocouples - CAUTION -

placed very close (1-2 mm) from the sample near the driving arm.

WARNING! The clamp screw holding the ceramic thermocouple leads

should be carefully tightened with sufficient force ONLY to make if

difficult to slide the ceramic rod. Then locking pins are removed

from the arms after making sure the arms are parallel - use Length

Adjust which slides the driven arm to make parallel - and replace the

cover and slide into place the Dewar-type oven assembly and finger

tighten connection screws.

With the Y-axis mode reading in millivolts, the display

(push Display Axis key) will give the residual load on the LVDT and

should be adjusted to zero i i0 mv using the LVDT slide-arm wing-nut

screw on the back of the module with the mode knob reading Align and

2 showing on the Osc Amplitude potentiometer (o.2 mm amplitude) and

35-40 for A/Z Gain. With a rigid sample in place, turning the mode

knob to Cal will cause automatic zero-null of the LVDT. (This step

is ommitted for non-rigid unsupported samples.) The mode knob is

turned to Quant. You are now ready to start the test by depressing

the Set-up key, which brings the sample to the preset temperature

(displayed temperature may not be exactly the same as the control

temperature)and when Ready appears in the lower right corner of the

display, actuate the Start key and sit back and relax. The display

will indicate when the test is complete. The mode knob on the 982
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module should be returned to Align and cooling gas may be introduced
to hasten cooling of the oven. Otherwise it takes about thirty
minutes to cool to allow sampleremoval.

For normal type runs using similar type samples, a short
hand method follows: with measuredsample in clamps, module cover
closed with oven in place, and storage disk in disk drive i

i. Zero LVDTmillivolt readout and turn modeto Quant.
2. Actuate SampleID (Param) and enter data.
3. Actuate Method (Param) and enter data.
4. Enter Axis information (X&Ysignal,range and shift).
5. Newfile selection.
6. Chart paper in place and red light out. Label and Pen-up

if real time plot is desired.
7. Heater button IN (upper panel), actuate store, set-up and start.

The system is now in an automatic modeand will begin the test when
the pre-set temperature is reached.

Low Temperature Operation: When the test involves below ambient

conditions, the DuPont LN 2 tank assembly is attached to the back of

the 982 module and the Tank Pressuriser is opened two full turns to

give 5 7 psi readout - allow 15 min for equilibration. The Liquid

valve is opened one-half turn until the temperature reaches -60 C and

then closed to one-quarter turn open and the Cool Gas valve opened

one-eighth turn. Actuate the Set-up key 30 degrees above start

temperature - Ready will be displayed when the correct temperature

is reached. Try to maintain the Ready condition at preset temperature

for several minutes with the oven heater voltage reading 10-20 volts

by slight adjustments of both valves. Press Start and hope that the

oven heater voltage stays in the I0 - 20 volt range which will give

linear time-temperature dependence. AVOID drastic valve changes. Don't

be disappointed if the desired linearity is not always achieved. For

an example of how bad i_ can get, see Figure 6. GOOD LUCK!

Data Playback and Analysis: Actuate Playback Set-up key and Enter the

(correct) file number. Select the data to be plotted (X and Y - three

Y axis selections)and check for chart load condition. Actuate the

AutoScale key (generally) or Fixed Scale and plotting begins. Autoscale

selects the axes so that all data points are included. The primary

value of real data plotting is for a check of time-temperature

linearity and of transition temperatures because the absolute

magnitude of instrument readout depends somewhat on sample dimensions,

longer and th;icker samples give lower frequency, etc. The calculated

data, tensile storage and loss moduli and tan delta are independent

of sample dimensions - see Figure 7 so these values are used for

sample comparisons.

The data analysis software is actuated by the Data Analysis

Set-up key which leads the operator through the selection of type of

data readout, continuous or tabular printout see Figures 3 & 4 -

and Auto- or Fixed scales. In this sequence the operator may select

all or part of the test information for display so it is convenient

to Autoscale the data and use this printout to set range values for

fixed scale to allow ease of comparison with other data from other
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files or allow expansion of any portion of the test results - see
Figures 8 & 9.

The custom-format of the printout is engagedusing the
Control Paramkey - enter 5 and the desired information and set the
X and Y axis offset. Examplesof custom plottilng is shownin the
Figures 4, 5, 6, 8, and 9.

The manyother options included in this instrumentation are
detailed in the respective manuals with which you should be familiar
and which you should consult whenever questions arise.
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RESULTS AND DISCUSSION

The DuPont Thermal Analyzer system has been demonstrated to

be a reliable means of obtaining DMA examination of a series of

polymeric materials from the thermoplastic ABS resin, Figures I & 2,

the perfluorinated Kalrez elastomer, Figures 3 & 4, the hybrid

graphite-epoxy composite, Figure 5, the glassy and rubber-modified

epoxy resins, Figure 8, and the cure study of an epoxy resin,
Figure I0.

The sensitivity of this instrument system is shown by the

comparison of two runs on the Kalrez elastomer in which a small loss

modulus peak was observed in the test piece which previously had

been strained to break but the peak was absent in the test piece cut

from the same sample which had no strain history. This result also

illustrates one application of this type of analysis - that of the

effect of processing conditions on the mechanical behavior.

The reprocibility of DMA test data has been thoroughly

examined by testing duplicate samples in the study of the effect of

addition of rubber-modifier to the base epoxy. The curves shown in

Figure 8 represent superposible curves for each system. Also, one

series of test runs on the effect of continued heating on the glassy

transition temperature - not shown - gave superposible data on three

different samples, one of which was markedly different in sample

length. Three different test runs using calibration standards of
DuPont Lexan test bars were identical both for real time and for the

calculated moduli.

Although the reliability of the instrument complex has not

been tested in a long time frame, nevertheless, it is significant

that over sixty different tests have been performed, in duration

from one hour to six hours in the cure study, and over the temperature

range from -150 to +200 C, without any instrumental difficulty.

The self-analysis software programmed into the processor prevents

operator error from generating excess on the components.

In summary, even though the DuPont 1090, 1091, and 982

instrument complex is highly sophisticated, it is, as claimed in

reference Ii, characterized by simplicity of operation, rapid

turnover, a vast range of applicability and accurate and convenient

representation of DMA data - all with a minimum of operator attention

and effort.

The effort to utilize the DMA system to correlate the

fracture surface energy of a series of rubber-modified epoxy resins

was not successful as shown in Figures 8 & 9. The low temperature

(beta) energy dispersion mode occurs at -20 C in the unmodified

epoxy, resulting from the relaxation motions of the glycidyl segments.
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As this also happens to be the glassy transition for the rubber
modifier, the addition of the rubber to the epoxy matrix does not
markedly alter the volume f_action of the low temperature dispersion
segments. In fact, as shownin Figures 8 & 9, the unmodified epoxy
has the highest tan delta, which maybe due to a slight difference
in the extent of cure as the stoichiometric ratio of epoxide/amine
was the samein both systems with th_ rubber serving only to dilute
the system and so retard the crossllnking reaction.

Some effort has been made to convert the clamps of the 982

module to accommodate a resin-coated fiberglass mat in the horizontal

mode. Several variations were used with wire end-clips, bent to form

a 90 degree bend, being most convenient since excess resin tended to

seize the screws used in the more formal type of clamp and the end-

clips were disposible. A typical result of the cure study is shown in

Figure i0. It is clear from these curves that the maximum in the

damping (dashed) curve corresponds to the transition temperature of

the cured resin reaching the cure temperature (150 C). However, it

has not yet been possible to identify the time of gelation, which

should appear as a smaller damping peak at shorter times. The small

shoulder at 15 minutes in Fig. I0 may result from gelation but

additional effort will have to be made to justify this conclusion.
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CONCLUSIONS AND RECOMMENDATIONS

The investigation of dynamic mechanical properties of

polymeric systems is now, with the DuPont thermal analysis modular

system, both irmnediately available and quantitatively reliable. The

ease and speed of operation of this system should now allow almost

routine of the mechanical properties of polymer resins and of

composite materials as they become of interest in the diverse

programs of this laboratory. With the impending arrival of other modules

which utilize the DuPont 1090 and 1091 units, differential scanning

calorimetry (DSC), thermomechanical analyzer (TM_), and thermogravi-

metric analyzer (TGA), the capability of the laboratory to characterize

fully new polymeric systems and to obtain meaningful engineering

parameters for structure design will be maximized.

Because of the significance of reliable characterization

data, it is recommended that every effort be made to acquaint staff

members with the full potential of this valuable thermal analysis

equipment.

Further efforts at cure study should be delayed until the

DSC and TMA instruments can be used since these methods have proved

successful in obtaining positive results in this type of study.
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