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ABSTRACT

INSTABILITY OF A SOLIDIFYING BINARY MIXTURE

BASIL N. ANTAR

THE UNIVERSITY OF TENNESSEE SPACE INSTITUTE

An analysis is performed on the stability of a solidifying
binary mixture due to surface tension variation of the free liquid
surface. The basic state solution is obtained numerically as a non-
stationary function of time. Due to the time dependence of the
basic state, the stability analysis is of the global type which
utilizes a variational technique. Also due to the fact that the
basic state is a complex function of both space and time, the
stability analysis is performed through numerical means.
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INTRODUCTION

A great deal of interest has been generated recently in the
possibility of producing newmaterials in the reduced gravity
environment provided during the forthcoming missions of Spacelab.
The range of possibilities extend from producing large crystals of
uniform properties to manufacturing materials with unique properties.
Most of these processes involve the solidification of materials from
the liquid state. Convective motions within the liquid during
solidification can influence the local material composition and the
shape of the solid-liquid interface which may result in solids with
non-uniform properties and crystal defects. The microgravity envi-
ronment of Spacelab is being viewed as one in which the buoyancy
forces are eliminated so that convection driven by thermal gradients
will not occur. It is hoped that this will lead to an improved
solidification process. However,convection mayoccur for other
reasons and whether convection is negligible or not during solidi-
fication constitutes a vital question bearing on the value of future
materials processing in low-gravity environment. Little information
exists presently on convection during solidification under such
ci rcumstances.

The work reported here is a continuation of an analytical in-
vestigation into the nature of convective motion in a binary liquid
layer due to surface tension forces during its solidification. The
onset of convection will be determined through a stability analysis
which is described below.

STATEMENTOFTHEPROBLEM

The occurrence of convective motions in a fluid has been studied

both theoretically and experimentally for approximately a century.

The problem is very well documented in several books and numerous
articles with all of its variations. It is obvious that in order to

study analytically the detailed convective motions in a fluid in any

configuration requires nothing less than the total solution of the

Navier-Stokes equations and Energy Conservation equations. This is

well known to be a formidable, although not an impossible, task re-

quiring considerable amounts of time as well as financial resources.

In certain applications, it is sufficient to be able to know
whether or not under certain conditions a fluid could sustain convec-

tive motions. The answer to such a question requires far less work;

but, again, the information is essentially just of a binary form.

Such information can be obtained through hydrodynamic stability

analysis. Essentially one introduces perturbation into a well-known
basic state and studies the evolutions of these perturbations in time.
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If the perturbations decay with time, then the basic state is said

to be stable and no convective motion will ensue. If, on the other

hand, the perturbations are found to grow with time, then the basic
state is said to be unstable and convective motion will take place.

Fundamental to such a stability analysis is the existence of a sta-

tionary basic state. Unfortunately, the problem under consideration
does not have such a basic. However, it has been shown that it is

possible to carry out a meaningfull stability analysis of such a

basic state through several techniques. We have chosen the energy

stability method as the best suited for the problem under consider-

ation. This technique is elucidated in detail in the monographs of

Joseph [l].

In this work, we consider the stability of a binary fluid layer

which is being solidified from below and has an upper free surface.

The fluid layer is assumed to be of infinite extent in the horizontal

direction. Since it is assumed that the process is being carried out
in the low gravity environment of Spacelab, it is anticipated that

the driving force is the surface tension force at the free surface.

The solution to the basic state has already been obtained in a pre-

vious report (Antar [2]). As is expected, the basic state is a

function of both time and space. Thus, the stability analysis used
must account for the variations of the basic state with time.

The stability analysis starts with the perturbation equations

which may be written in the following form

_w (1)

L r : b 17'y (2)

(3)

where u (u, v, w) is the perturbation velocity vector, _ (U, V, W) is

the basic state velocity vector. _" and C are the perturbation and

basic state concentration and8 and T are the perturbation and basic

state temperature, respectively. _} , D and >-are the kinematic

viscosity, thermal diffusivity and the solutal diffusion coefficient,

respectively. These equations are for a Boussinesque fluid and sub-

ject to the following boundary condition

on the lower surface.
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While at the upper surface, we must have the following boundary con-
ditions:

)--_ _ 0 (4b)

(4d)

where 6-is the surface tension. On all the sidewalls we must have

the perturbation function vanishing.

The governing equations are first non-dimensionalized using

the fluid depth d for a length scale, J_/,_ for a time scale,
K/d for a velocity scale, Tl - To and Cl - Co for temperature and

concentration scales respectively. Upon introducing these scales

into equations (1) - (4) we get the following equations for the
perturbations functions

with the following boundary conditions
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_ --_=)-=0 (8)

on all side except the upper surface and

(9a)

(9b)

_-'_ , ,'-'/._ ,"/cc-_'_ = o (9c)

(9d)

at the upper surface. In these equations we have the following
non-dimensional numbers.

p w_

R

Rc =

L =

Prandtl No. : _/_

Rayleigh No. : //_,_ h,_-(_/v K.

Solutal Rayleigh No. = _//_z 66_/_/_

Lewis No. = _//<

B ..

M =

M =
C

Biot modulus = _J//<

Marangoni No. : (- _°'//_T)Z_T d//_,_

Solutal Morangoni No. -_ (__F//_c)_C_/_

where b_JbT and _/bC are the constants from the surface

tension variations with both temperature and concentrations.

Now to obtain the energy equations we first take the dot product

equation (5) with u and integrate about the volume under consideration

to get
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(lO)

Similiarly it is possible to obtain equations for _TZ and _-_//Z
in the following integral form

: _j/_- a_p'rjj- _d_ " f _"d_- 3 -/vm p_)d_
g" &.--I g"-

(11)

(12)

Now multiplying equation (11) by _e and equation (12) by _r
and adding equatioF6 (I0) - (12) we get

_-
p-

(13)

where

IV-5



Equations (13) can be cast in a symmetric form with the
following change of variables

which after drapping the primes takes the following forms:

W__K f----
if-

a_

(14)

where
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-_ f r \

Ju- "_-,

and

Ct. = -.j _.Aa__c

Now let us focus our attention on Eq. (14). Since then,
the energy of the perturbation will increase or decrease with time
depending on whether f-4M-_Tl_ _ 0 • Of course the direct and
only way of gaining this information is by solving the integro-
differential system explicitly. However Eq. (14) can be written
as an inequality in the following form

t _ I ,,,-i,','# (15)

where
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with

(16b)

where now the problem is cast as a variational problem defined by

(15) and (16).

Let us introduce the lagrange multipliers Ad_{f) and p(×,_,_,_-)
into the variational problem (15) - (16) with the following

optimization procedure resulting

= O (17)

From variational calculus we know that the solution to

(17) is the same as the solution of the Euler-Lagrange equation

resulting from (17). For the present case, the Euler-Lagrange

system of equations are the following

_P 17 z
- q- O (18)

(19)

(20)

(21)
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(22)

u _.d- _)d" - o
(23)

with the following boundary conditions

--.0 (24a)

(24b)

(24c)

(24d)

at z = 1 and

_L ='U'---- (d---- _" -_'--0 (24e)

atz=O.
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Now as discussed earlier since the basic state itself a

function of time then the term II in the energy equation (14)

is a function of time. Also, the lagrange multiplers and the

term in (16a) are also function of time. Thus, the variational

problems (15) - (16) must be solved at each instant of time which

requires the solution of the Euler-Lagrange equations at each

point in time. Thus, the procedure is to solve the system (18)-

(24) at each instant of time and obtaining the optimization
parameter M i. (_) as a function of time.

A_
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