
ORIGIN AND CONTROL OF INSTABILITY IN SCR/TRIAC

THREE-PHASE MOTOR CONTROLLERS

Prepared by: John J. Dearth, Ph.D.

University of Alabama

XV-i



1982

NASA/ASEE SUMMERFACULTY RESEARCHFELLOWSHIPPROGRAM

MARSHALLSPACEFLIGHT CENTER
THE UNIVERSITY OF ALABAMA

ORIGIN AND CONTROLOF INSTABILITY
IN SCR/TRIAC THREE-PHASEMOTORCONTROLLERS

Prepared by:

Academic Rank:

University and Department:

NASA/MSFC:
(Laboratory)
(Division)
(Branch)

MSFC Counterpart:

Date:

Contract No:

John J. Dearth, Ph.D.

Temporary Assistant Professor

University of Alabama
Dept. of Electrical Engineering

Information & Electronic Systems
Guidance, Control and Instrumentation
Control Electronics

Frank J. Nola

August 6, 1982

NASA-NGT-OI-OO2-O99
(University of Alabama)

XV-I



ORIGIN AND CONTROLOF INSTABILITY IN SCR/TRIAC

THREE-PHASEMOTORCONTROLLERS

by

John J. Dearth, Ph.D.
Temporary Assistant Professor of Electrical Engineering
University of Alabama
Tuscaloosa, Alabama

ABSTRACT

An SCR or triac three-phase motor controller employs three

sets of antiparallel SCR's or three triacs, one connected in

series with each stator winding of the motor. Normally no

neutral connection is made to the motor windings. The SCR's

or triacs are gated by an electronics package in response

to one or more feedback signals. The controller is typically

designed to perform soft starting and provide energy

savings and reactive power reduction during partial load-

ing, at idle, and during high line voltage conditions.

An unusual phenomenon is known to occur in motor controllers

of this type. Specifically, if the firing angle is fixed,

that is if the feedback loop is opened, the system can go
unstable, with low inertial loads.

The energy savings and reactive power reduction functions

were initiated by the power factor controller (PFC) in-

vented by Frank J. Nola of NASA. A three-phase PFC with

soft start (MSFC size D drawing number 50M28222), de-

veloped by Mr. Nola, is examined analytically and ex-

perimentally to determine how well it controls the open

loop instability, described above, and other possible

modes of instability. The detailed mechanism of the

open loop instability is determined and shown to impose

design constraints on the closed loop system. The Nola

design is shown to meet those constraints.

In addition, the Nola design has a pole near 50 Hz and

another pole near 200 Hz, neither of which can be moved

to a significantly higher or lower frequency without

adversely affecting stability. The modes of instability

which place the double bounds on these poles were not

understood. These are examined and explained and the poles

are shown to be located for optimum stability. The Nola

design also delays the timing ramps by 6° to allow the

firing angle to be adequately delayed at idle without an

undesirable change in mode of operation. The details

of this are also examined and explained.

Although not part of the stability study, the PFC is

shown to reduce the power factor as measured by utilities.
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INTRODUCTION

A solid-state three-phase induction motor controller,

of the type examined in this report, employs three sets

of antiparallel SCR's or three triacs, one connected
in series with each stator winding. No neutral

connection is made to the motor windings. This con-

figuration provides a practical means to rapidly control

the rms voltage applied to the motor. However, an

unusual phenomenon is known to occur in motor controllers

of this type. Specifically, if the time of the gate

trigger is fixed, that is, if no feedback is employed,

the system can go unstable with low inertial loads.

The instability is characterized by a growing oscillation

of the current amplitude with a frequency on the order

of 10 Hz. This phenomenon will be referred to as the

open loop instability.

Motor controllers of the type defined above were

originally considered for speed control [I], but the

most common applications today are soft starting and

energy savings. The solid-state switches in the controller

can also economically serve additional functions, which

functions in themselves would not require the speed

and proportional control of a solid-state switch.
Examples of such functions are over/under voltage

protection, overcurrent protection, phase reversal/

loss protection, and programmed or remotely controlled

operation. It is significant to note that solid-

state starters for large motors have been reported

to be often cheaper than other reduced voltage starters

and in some cases cheaper than full-voltage electro-

mechanical starters [2].

The design of motor controllers was radically

altered by the invention of the power factor controller

(PFC) by Frank J. Nola of NASA. It was the PFC that

introduced the energy-saving function into motor

controllers. The PFC produces energy savings and re-

active power reduction by reducing the rms voltage

to the motor during conditions of partial load and

idle. A large reduction in idle current is achieved

which directly reduces the reactive power drawn at

idle and reduces the iron and copper power losses.
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Although other systems are briefly considered,
and although the material concerning the open loop
instability is applicable to all controllers of
this type, the bulk of this report examines a
particular controller referred to in this report
as the Nola design. It is a three-phase PFC with
soft start capability. A complete schematic of this
circuit (MSFC size D drawing number 5OM28222) is
available by contacting Mr. Nola.

The feedback signal in the Nola design is the
time, or angle, between the line-to-neutral voltage
zero crossing and the moment of current shutoff.
This angle will be referred to as the conventional

power factor angle, although, due to the nonsinusoidal

current waveform, this angle cannot be used in the
VlcosO formula. The 0 in this formula will be re-

ferred to as the effective power factor an_le.

In the Nola design, the conventional power factor angle

is sensed for both polarities of all three phases.

The time of current shutoff is determined by de-

tecting the voltage across the SCR's/triacs. The

DC gain of the feedback loop is carefully restricted

to allow the conventional power factor angle to change

under load as required to match the rms motor voltage

to motor load in order to maximize energy savings.
The induced EMF of the motor is also detected and

used to advance the firing angle to provide quick

response from idle and prevent motor stalling in

response to sudden loads. Also, the gain of the

feedback loop is increased at idle to enhance speed

of response. Under idle conditions, the transfer

function of the filter for the feedback signal flat-

tens out below one Hz at approximately IO dB below

its DC gain. A pole occurs near 50 Hz and another

pole near 200 Hz. Above idle, the AC gain is lowered

somewhat. The output of the filter is compared to

timing ramps, one for each phase, to set the time of

gate firing. The ramps begin and end 6° past the zero

crossings of the line to neutral voltages. When SCR's

are used, the gates of both SCR's on a given phase

are triggered for both polarities, a condition

equivalent to using triacs. The gates are triggered

by pulse transformers driven by a 40-kHz "gatepost"

oscillator. The trigger signal persists until the end

XV-5



of the timing ramp for that phase to achieve the
effect of level firing. Photographs of the current
waveform for idle and for various amounts of motor
load are shown in Fig. i. Note that the "double
hump" shape of the current waveform is characteristic
of all three-phase motor controllers of this general
type.

In this report, the Nola design is examined
analytically and experimentally to determine how
well it controls the open loop instability and
other possible modes of instability. To do this,
the nature of the open loop instability is studied.
Variations in time of current shutoff--that is,
variations in the conventional power factor angle--
alter the effective voltage applied to the motor,
which, in turn, alter subsequent current shutoffs.
This was suspected as the mechanism of the open loop
instability [3]. However, single-phase motor con-
trollers do not exhibit the open loop instability
and three-phase motor controllers exhibit the open
loop instability only over a portion of their operat-
ing range extending from a little below full on down
to a point where the current humps separate. There
were problems explaining these observations with
the suspected mechanism, but one observation clear-
ly supports the proposed mechanism. An open loop
system, the three-phase "light-dimmer" circuit,
which tends to correct for disturbances in the time
of current shutoff, is known to be stable [3].
(It is significant to note that the "light-dimmer"
circuit does not operate in the region where the
current humps separate.)

In this report, an improved model for the sus-
pected mechanism is developed by distinguishing
between the motoring and generating portions of the
cycle and by consideration of the interaction of
the three line currents due to Kirchoff's current
law in the absence of a neutral connection to the
motor windings. The improved model is consistent
with the observations listed above, with the observed
effect of inertial loads, with the observed effect
of connecting the neutral and with some observations
made on an antiparallel SCR-diode controller.
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Fig. 1. 

2 

3 

4 

Typical Current Waveforms For  A PFC. 
Photograph 1 is at idle. Load increases 
in order 1, 2, 3, 4 .  
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A modification of the Nola design was constructed
to allow the start of the timing ramps to be
referenced to the time of current shutoff and this
system is stable in the open loop, as predicted
by the improved model. However, this current

referenced system is unstable in the closed loop--

except when a very slow filter is used. The im-

proved model is shown to impose design constraints

on closed loop systems and the Nola design is shown

to meet those constraints.

The second section of this report investigates
the double bounds known to restrict the location of

the 50-Hz and 200-Hz poles. Neither pole can be moved

to a significantly higher or lower frequency without

adversely affecting stability [3]. The improved

model for the open loop instability is used to show

that the lower bounds are required in order to control

that instability. The upper bound on the 50-Hz pole

and the upper bound on the 200-Hz pole are shown to be

necessary to control the ripple in order to prevent

matching of the ripple to the slope of the ramp, a

condition which would result in very high incremental

gain and erratic control.

The third section of this report determines why the

6° delay of the timing ramps is required. It was

known that the 6° delay was necessary to allow

operation in the region where the current humps do not

overlap [3]. Operation in this region is essential to

achieve maximum savings at idle [3, 4]. If the 6V

delays are removed from the circuit, it is observed

that at the point where the humps are expected to

separate, the second hump apparently ceases to flow

and the first hump remains with a somewhat higher

amplitude. This posed a paradox, because the same

effect is observed in all three phases, and the second

hump of any phase is the return current for the first

hump of another phase. In this section, it is deter-

mined that the gate signal must persist past the zero

crossing of the line-to-neutral voltage in order to re-

trigger the SCR/triac after the first hump has reached

zero. Without the delayed turnoff of the gate signal,

both humps disappear at the point in question, and the

controller suffers an undesirable change to a new

"single hump" mode of operation. The paradox is re-

solved by noting that the first hump does not actually
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remain after the second hump has ceased; instead,
both humps cease and a new hump forms in accordance
with the new mode. It is significant to note that
large delays in gate turnoff would result in pre-
mature firing, or misfiring, of the next polarity of
current, since the gate signal activates both polarities
with this design. However, the 6° delay allows optimum
savings at idle, and it is significantly less than the
delay at which misfiring commences. Separate polarity
triggering is discussed in the section on the optically-
coupled trigger option.

The neutral point for measuring line-to-neutral
voltage in the Nola design is derived by connecting
equal impedances from each line to a common point.
Since voltage dividers from this point are also
connected to the lines after the SCR's/triacs to de-
tect current shutoff and induced EMF, some noise is
introduced into the derived neutral point. This is a
consequence of the fact that opening one of the SCR's/
triac switches allows the instantaneous sum of the three
motor line voltages to be nonzero. Since a suitable
neutral line may not be available in a typical appli-
cation, the capability to operate with a derived
neutral is needed. Another possible source of noise
is stray coupling of the gatepost oscillation into
the input of the voltage comparators which control
the gate firings. The Nola design has been observed
to be noise resistant and no significant effect was
observed to be produced by noise. However, since
these noises could be detected by careful observation
with the oscilloscope, the fourth section of this
report examines them and lists suggested noise re-
duction techniques which could be used if required by
a particular application.

The Nola design was implemented with optically
coupled gate trigger circuits in order to experimentally
prove that the open loop instability was not a mani-
festation of the gatepost oscillator. In the fifth
section of the report, the open loop instability is
shown to occur with optically coupled trigger circuits
which use no gatepost oscillator. Also, some design
considerations for implementing optical coupling with
the Nola circuit are discussed.

During the study covered by this report, the author
was shown a copy of a paper which claimed that since
the utilities measure power factor at peak demand, the
PFC does not reduce the power factor penalty charged
by the utilities [5]. While this might be true for
a single motor, a typically plant has many motors,
some of which would be idling at the time of peak
demand. A calculation was made for two motors, one
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at full load and one at idle to determine the effect
of the PFC on the power factor of the combined load.
In the sixth section of this report, the PFC is shown
to reduce the power factor for the case described
above.

The last section of the report discusses areas for
future work.

OBJECTIVES

The basic objectives of the study reported here

are to analytically and experimentally investigate the

stability of the Nola design--with emphasis on the open

loop instability phenomenon--and to analytically verify

the choice of some empirically-determined parameters in

the design. Some useful incidental information generated

during the study is also reported.

OPEN LOOP INSTABILITY

The Nola design can be converted to open loop--to

demonstrate the open loop instability phenomenon--by

open circuiting the 15K resistor at the input to the

feedback-filter amplifier. Although the induced EMF

feedback is not designed to function in the operating

region which is of interest here, this feedback can also

be disconnected from the filter amplifier. The system is

now open loop. If the grounded end of the "PFC adjust"
potentiometer is, instead, connected to +15 volts, and

if the soft start sequence has finished, the firing angle

can be set with the PFC adjust potentiometer, as needed.

To observe the instability with an unloaded motor, one

gradually lowers the PFC adjust from its full negative

position until the firing angle is delayed sufficiently

to enter the region of instability. The unstable region

is observed to begin at a hold-off angle of 5 to 20 °

depending on the motor observed.

The other side of the unstable region is observed

to be precisely limited by the point where the current

humps separate as shown in the second photograph of

Fig. I. It should be mentioned that although the open

loop instability will not initiate outside the region just

described, the instability, once initiated within the

region, can grow to where the extremes of the current

swings extend beyond the region. A photograph illustrat-

ing the buildup of the instability is shown in Fig. 2.

Vibration of the motor and jerky rotation of its shaft

accompany the current swings. Often the power must be
shut off to protect the motor. Sufficient inertia

added to the motor shaft prevents the spontaneous

growth of the instability, and still more inertia
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quickly damps the instability in response to a torque
impulse. However, loading the motor does not stop the
instability, unless the load contains sufficient inertia.
Although all motors exhibit the instability to some
degree, some are more unstable than others.

An open loop control system with a damped oscillatory
response is, of course, not unusual, but the open loop
system, just described, has a negatively-damped
oscillatory response--that is, it is an oscillator, and
it has no apparent feedback path nor any negative
resistance devices. (Although an SCR or a triac exhibits
negative resistance when its forward breakover voltage
is exceeded, this does not occur for this system.) There-
fore an unusual mechanism must be responsible. Since
the phenomenon does not occur in induction motors alone,
it must be an interaction between the SCR/triac switches
and the motor. Because the turn-on time is fixed,
interaction can only occur via variations in the turn-
off time. Consequently, the oscillations were postulated
to arise in the following manner: [3]:

If an inevitable noise disturbs the turn-off of
a particular SCR or triac to a time, say, earlier
than the previous turn-off, then the earlier
opening of the switch means that less rms voltage
is applied to the motor. Less voltage, in turn,
lowers the slip and reduces the conventional power
factor angle as measured at the next current zero,
that is, the next turn-off is shifted earlier in
time. If its shift exceeds the original disturbance,
then the conditions for instability are met.

The most obvious difficulty with the proposed
explanation is that it apparently also applies to single-
phase motor controllers which are observed to be open
loop stable [3]. In addition, the proposed explanation
does not allow for the stable portions of the operating
region that are observed to exist for three-phase motors,
nor for the stable operation that is observed i_ the
motor windings have a neutral connection [3]. (It is
important to mention that the neutral connection is
normally omitted, because it increases the stator currents
required for a given torque [I].)

The model is improved, if one distinguishes between
the motoring and generating portions of the cycle. The
single-phase case is shown in Fig. 3. Observation of
Fig. 3 reveals that at the time of current shutoff the
voltage and current have opposite polarities, which
implies that power is flowing from the motor to the
supply line. Thus an earlier shutoff of the current
returns less power to the line and supplies more net
power to the motor. This is equivalent to a higher

XV-I i



Fig. 2. Photograph Of The Open Loop Instability,
Current Vs. Time. Time scale is 0.I sec/cm.

Fig. 3. Voltage And Current Vs. Time Waveforms for
Single-Phase PFC.
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effective voltage instead of a lower voltage as assumed
above. The slip and the conventional power factor angle
are now seen to increase and resist the original
disturbance for this case, and the model is now consistent
with the observed open loop stable behavior of the single-
phase system. A stability test based on the improved
model can be stated as follows. If the machine is
acting as a generator at the moment of current shutoff,
then the system is open loop stable. If the machine
is acting as a motor at the moment of current shutoff,
then the system has the potential to become open loop
unstable.

The waveforms for the three-phase case with the
motor neutral connected, are the same as the single-
phase waveforms shown in Fig. 3, if the voltage wave-
form is redefined to be the line-to-neutral voltage
and if the time axis is appropriately shifted for each
phase [3]. With the neutral connected, a disturbance
of a current shutoff affects the switching of the
voltage applied to only the phase in which the disturbance
occurs. Consequently, the stability argument is
identical to the single-phase case, and the improved
model is thus also consistent with the observed open
loop stable behavior of the three-phase neutral-
connected system.

When the neutral is not connected, Kirchoff's
current law can be applied to the three inward-flowing
stator currents i A, i B, and i c to give

i A + i B + i C = O. Eq. 1
This equation clearly shows that a disturbance in
the time of current shutoff in one phase also affects
the current in at least one other phase. The problem
can be stated in terms of voltage as follows. A
disturbance in the time of current shutoff in one
phase affects the switching of the voltages applied to
all of the stator phases which are connected at the
time. The model must be further refined to include this
interaction. In other words, the effect of a disturbance
in the time of current shutoff must be evaluated in
terms of its total net impact on all three phases.
The total net power supplied to the motor at any instant
in time is given by

p(t) = (vAx)(iA) + (vBx)(i B) + (Vcx)(ic), Eq. 2
where A, B, and C are the terminals of the motor, X is
an arbitrary reference point, and the currents are
defined as before. For ideal SCR's/triacs, no distinction
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is necessary between the motor terminals and the power
supply lines in Eq. 2, because, with ideal switches,
these points differ only when the current in a phase
is zero. A distinction must, of course, be made between
the power line neutral and the motor neutral; that is,
if point X is selected to be "the" neutral, then the
line neutral, or the motor neutral, must be consistently
used in all three terms of Eq. 2.

A disturbance of the no-neutral system is easier
to evaluate when the current humps are separate,
because no more than two phases are connected at any one
time during this case. This is the case defined as
mode 2 by Lipo in Ref. i. Typical separate-hump
current waveforms, along with the corresponding line-to-
neutral voltages are shown in Fig. 4. The quantity
p(t) can be found by summing the products of current and
voltages for each of three graphs in Fig. 4. This
evaluates Eq. 2 with point X as the line neutral.
If this is done for a point just before the shutoff
of the first positive hump in Fig. 4, the A component
of the power is positive, the B component is negative
and larger than the A component, and the C component
is zero. Since the B current hump is the return
current for the A hump, the magnitudes of both currents
are reduced identically by a left shift in the!time of

shutoff. It is thus shown that a early shutoff increases

the net power to the motor, because the B term in-
creases more than the A term decreases. Therefore, the

shutoff of the first hump is open loop stable. Due

to the symmetry of the waveforms, the calculation need

not be repeated for the other shutoffs. For:example_-_he

second positive hump in A is the return for the first

negative hump in C. The improved stability model is thus
shown to be consistent with the observed behavior

for the separate humps case.

The same calculation is more easily accomplished,

if point X is taken to be point A. The waveforms

are shown in Fig. 5. The A component of the power

is now zero. The B component is negative, and the C

component is zero. The disturbance of the A current

enters the sum only through the B phase, and the same

result as before is obtained directly from the B graph.

Additional insight can be obtained by repeating

the calculation once more--this time with point X

taken to be the motor neutral. The necessary voltage

and current waveforms, along with the electrical

torque, are shown in Fig. 6 for one phase. These

waveforms are taken from Fig. 4B of Ref. i. Only one

phase needs to be shown, because the power is negative

just before every shutoff. Since the symmetry means

that this is true for all three phases, all nonzero

terms in Eq. 2 are shown to be negative just before

shutoff. This again leads to the same result as before.
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A

B

Fig. 4. Three-Phase Separate Current Humps Mode.

Line-to-neutral voltages are also shown.

Fig. 5.

B

C

Three-Phase Separate Current Humps Mode.

Line-to-A voltages are also shown.
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Observation of Fig. 6, shows that the torque is
positive for both the motoring and generating portions
of the cycle. This implies that the energy returned
to the line during the generating portion of the cycle
is energy from the inductors in the machine, not kinetic
energy from the motor. Thus, the term "generating portion"
is misleading, since it could be confused with the case
where the rotor is driven above synchronous speed to
produce actual generation.

It is interesting to note that, although a steady-
state solution is obtained for the separate-humps, or
mode 2, case in Ref. I, the author of Ref. 1 in 1971
regarded this mode as useless, because it produced
little torque. This mode is, of course, essential
to achieving maximum power savings, at idle with a PFC.

A disturbance of the no-neutral system is harder
to evaluate when the current humps overlap, because all
three currents are affected by any shutoff disturbance.
The difficulty arises, because a disturabnce in, say,
i A is split between i B and i C. The problem can be
illustrated by the waveforms shown in Fig. 7. Near
the positive A shutoff, i B is positive and i C is negative.
Consequently, Eq. 1 can be rearranged for this case to
obtain

!
I ic iB_iA = i i - . . Eq. 3

A left shift in the A shutoff reduces the magnitude of iA,

and therefore by Eq. 3, the magnitude of i C must decrease

or the magnitude of i B must increase. Since opening
one of the lines to the motor causes the potential
of the motor neutral to jump away from ground potential,
it is expected that both of these possibilities could
occur. If both do occur, then the waveforms in Fig. 7
imply that the A and B terms in Eq. 2 have stabilizing
effects, and that the C term has a destabilizing effect
for _ less than 60° . Therefore, if the splitting factor
favors the C term, in this manner, the system has the
potential to be open looPoUnStable with the humps over-
lapped and _ less than 60 . Theis agrees reasonably
well with the experimentally observed open loop unstable
region.

Although definitive verification of the proposed
open loop instability mechanism is not possible without
better knowledge of the splitting factor, the argument
for the proposed mechanism is persuasive, because this
mechanism is the only apparent mode by which the motor
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Fig. 6. Three-Phase Separate Humps Mode. Line-to-

motor voltage is shown (After Ref. l.)

A

B

C

Fig. 7. Three-Phase Overlapped Humps Mode.
Line-to-neutral voltages are shown.
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can affect the switching of the voltage applied to
itself, and because the shutoff time is experimentally
observed to vary during the occurrence of the instability,
and because the qualified predictions of the refined
model agree with the observed stable and unstable cases.

The observed effects produced by adding inertia
to the shaft can be readily explained by the model as
follows. Sufficient inertia limits the change in
slip that is initiated by a shutoff disturbance such
that the shift in each successive shutoff is less than
the one before and the disturbance is thereby damped out.

Perhaps the strongest experimental evidence to
support the model, is that if the firing time is re-
ferenced to the previous current shutoff, the system
becomes open loop stable. This is demonstrated by both
the light-dimmer circuit shown in Fig. 8 and the current
referenced modification of the Nola design shown in
Fig. 9. This stable behavior is precisely predicted by
the model as follows. A left shift of a current shut-
off, for example, results in an earlier start for the
next timing ramp, which in turn results in a left
shift of the next current turn-on which nullifies the
effect of the original shift.

As an additional test of the model, some observations
were made on an antiparallel SCR-diode controller. No
spontaneous initiation of the open loop instability is
observed in this system [3]. The waveforms for this
system are considerably different, and beyond the
scope of this report, but the system is observed to
operate in either of two modes. In one mode, no more
than two phases are on at the same time and both phases
are generators at the moment of shutoff. The waveforms
of this mode are not the same as those of the separate-
humps case of the SCR's/triac controller, but an almost
identical argument can be used to show that this mode
is stable. In the other mode, only one current shutoff
occurs per cycle per phase. That is, the positive half
of the current is not switched off at the zero crossing.
Although the waveforms are again different, an almost
identical argument can be used to show stability for
this mode for _ greater than 60° , where _ is measured
at the negative current shutoff. However, a
potential for instability appears to exist for @ less
than 60° . This is, of course, inconsistent with the
observed behavior of this system. Either some other
mechanism inhibits the instability or something is
wrong with the model. The most obvious difference
between the two s_stems is that the current shutoffs
are spaced by 120 in the SCR-diode system, instead
of the 60° of the SCR's/triac system. Perhaps the
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Fig. 8. Light-Dimmer Circuit for Controller.
A unit is required for each phase.

I

*Phase

detector

911K I

" _7_

_) -15 volts

r_*Filtered feedback

*16OK y signal

__'_--,-_Signal

J _ to fire

_'_SCR/triac

*O.12_F Voltage

T comparator

Fig. 9. Current-Referenced Modification of Nola

Design. A unit is required to modify each

phase. The modified timing-ramp waveform
is also shown.

* Parts with * are part of Nola design.
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additional time between current shutoffs allows the
motor speed to restabilize sufficiently to limit the
shift in the next shutoff to less than the original
disturbance. This idea is supported by the experimental
observation that the SCR-diode system with no added
inertia reacts to a torque impulse the same way that the
SCR's/triac system does with some inertia added to it;
that is, they both exhibit similar damped oscillations
in the expected unstable region [3].

The proposed open loop instability mechanism
imposes two constraints on a closed loop system:
(I) the times of current shutoff, or a parameter which
quickly reacts to them must be sensed, and (2) the
response of the feedback path must be rapid enough to
correct the next gate firing. These design rules are
particularly important for a PFC, since many important
PFC applications involve operating conditions that could
evoke the open loop instability mechanism. Note that
the design rules imply that it is best to sense both
polarities of all three phases and to independently
time the gate firings of each phase. Note also that an
optical tach with only one "blip" on the shaft is
predicted to provide too slow a sample for the feed-
back signal.

As described in the introduction, the Nola design
clearly meets the first design constraint. The Nola
design is shown to meet the second constraint by the
graph shown in Fig. 10. The graph is a computer plot
of the response of the feedback filter from the Nola
design when the input is a 33.3% duty cycle square wave
interrupted by a single period with a 16.7% duty cycle.
This input simulates a I0 ° left shift in an otherwise
steady-state power factor of 20° . The output clearly
responds to the disturbance within the 60° "subcycle"
in time to correct the next gate firing, if the slope
of the timing ramps is correct. This is verified in
the next section.

BOUNDS ON THE 50- AND 200-HZ POLES

Comparison of Fig. iO with Fig. Ii, which is the

same as Fig. IO, but without the 2OO-Hz pole, indicates

that the 200-Hz pole acts to smooth (integrate) the

points off the ripple. Closer comparison indicates that
the 200-Hz pole also reverses the curvature of the

"straight" portions of the waveform. The significance

of this can be illustrated if the 2OO-Hz pole is

removed from the actual system by disconnecting the

O.O56,_F capacitor. An operating region can then be

found where a ripple slope matches to the slope of a
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timing ramp and the firing point is observed to jump
erratically from end to end of the ripple. A photo-

graph illustrating this is shown in Fig. 12.

Since the downward portion of the ripple cannot

match to an upward timing ramp, the function of the 200-

Hz pole is to shape the upward (on the normalized plots)

portion, which lasts some 50 ° or less for normal

"PFC adjust" settings. This response is set in the Nola

design by the O.O56_F capacitor and the 12K ohm
thevenin resistance which charges it. At the end of 50 ° ,

the response of this pole is down to 6%, which is large

enough to shape the ripple, yet small enough not to

slow the overall response of the filter unnecessarily.

That is, the 200-Hz pole is just low enough to shape the

ripple without unduly restricting the bandwidth of the

filter. The "2OO-Hz" pole, incidently, is at 189 Hz
with the diodes off and at 237 Hz with the diodes on.

The 50-Hz pole needs to be high to provide the

fast response required to control the open loop in-

stability, but it cannot be raised too high or the

200-Hz pole cannot shape the ripple. For the necessary

curvature, the following inequality must be satisfied:

(2_f2)2exp(-2_f2 t) =_ (2_fl)2exp(-2_flt), Eq. 4

where fl is the 50-Hz pole, f2 is the 2OO-Hz pole, and

t is the longest expected time for the normalized

upward (actual downward) portion of the ripple. For f2

set by 12K ohms and O.O56_F as before, and fl = 50 Hz,

the curvature will be correct for up to 57 °, which

means that the 50-Hz pole is properly located to obtain

the fastest response while maintaining the curvature.

Observation of Fig. IO shows that the slope of the

ripple is the response of the filter to a shutoff

disturbance. Since the response of the 2OO-Hz pole is

virtually over after five time constants, and since

the ripple slope is approximately constant, the slope

is approximated by:

ripple slope = 27[flGaVhexp(-5fl/f2) , Eq. 5

where G is the AC gain of the "flat" portion of the Bode

plot between 0.7 and 50 Hz, and Vh is the height of the

square wave whose duty cycle represents the power factor

angle. For the plot in Fig. IO, V h is normalized to +I
volt, and the DC gain is normalized to +i. Therefore

GaVh, for the normalized plot, is about 0.22, and Eq. 5
predicts a normalized slope of 20. The slope of Fig. I0

is 17_ therefore, Eq. 5 is a reasonable approximation

as long as fl and f2 are related properly to control the
slope as described above.

The graph in Fig. IO shows that a IO ° left shift
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in the time of shutoff results in a 0.025 normalized
voltage drop. This corresponds to an actual drop of
0.297 volts. (The DC gain times Vh is 11.7.) The
slope of the timing ramp is 781 volts/sec, resulting
in a correction of the next firing angle by 8.2 °.
This means that the slope of the filter is properly
set.

FUNCTION OF 6° DELAY

Observation of Fig. 4, which shows a typical

idle current waveform, reveals that the second

hump starts after the zero crossing of the line-

to-neutral voltage. The second hump in the A

phase starts when the first hump is triggered in

the C phase, but the A phase SCR's/triac must have

a gate signal at this time to allow it to switch

on and provide the return path for the C phase.

This requires the timing ramps to be delayed 6°

past the line-to-neutral zero crossings. The

necessary delay is provided in the Nola design

by the O.O39_ F capacitors in the voltage dividers

that sample the line-to-neutral voltage.

DISCUSSION OF POSSIBLE NOISE REDUCTION TECHNIQUES

The photograph in Fig. 13 shows a typical wave-

form for the noise voltage observed between the
derived neutral and the line neutral. As mentioned

in the introduction, this noise is not observed

to produce any significant effect on the operation

of the system. This noise could be reduced, if

desired for a particular application, by lowering
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Fig. 12. Matching Of Ripple Slope To The Slope Of The
Timing Ramp. Note that the voltage is in-
verted from the normalized plots. Ground re-
ference is at the top of ramps. The firing
point changes on the fourth ramp shown.
Vertic_l scale is I volt/div, and the ramps
are 60v wide.

Fig. 13. Typical Noise Observed On The Derived Neutral.
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the size of the resistors in the line-to-neutral voltage
dividers. The O.O39_ F capacitors should be raised
as needed to maintain the 6 shift. Alternatively,
the derived neutral could be grounded to the line
neutral to eliminate the noise, if a suitable line
neutral were available (It should be mentioned that
the open loop instability is observed to occur even
with the derived neutral so grounded.) Also, it is
significant to note that the noise on a not-entirely-
firm derived neutral might serve a useful function.
This is based on the observation that when some
faults are deliberately introduced into the circuit,
the resulting imbalance of the derived neutral tends
to limit the consequences of those faults.

A small amount of noise from the gatepost
oscillator can be detected on the inputs of the volt-
age comparators which control the gate firings.
The noise is barely visible on the scope, and it
produces no observable effects, but it can be reduced
by placing O.OI_F capacitors from these inputs to
ground. A significantly larger capacitance should not
be used, because it would undesriably alter the
feedback filtering. The inputs from the timing ramps
of course, need not and should not be filtered.

OPTICAL TRIGGERING OPTION

Experimental observations from two optically

coupled trigger circuits are reported in this section.

The first circuit is shown in Fig. 14 and the second

circuit, which is not shown, differs from Fig. 14 only

on the gate side of the coupler, where a DC gate

signal is employed. Observations of both circuits

demonstrate that the open loop instability occurs

without the gatepost oscillator. For example, the

photograph in Fig. 1 was taken with DC optical

triggering and with the derived neutral grounded.
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Switching circuitry to provide separate triggering
for each polarity is shown in Fig. 15, in case this is
desired for a particular application. However, this
circuit is observed to not function properly in the
separate-humps mode. The malfunction is probably due
to confusion of the power-factor-angle sensor when the
off SCR is not triggered between the humps. If so,
supplying a signal to "hold on" the angle sensor
during the time of the gate trigger should correct
the problem. It should be mentioned that optically
coupled SCR's--not triacs--should be used for
SCR triggering, since triacs, in response
to a line transient, might "turn on" the gate of the off
SCR without gating the on SCR and this might exceed
the reverse gate breakdown voltage of the main SCR
and destroy the coupler and/or the main SCR.

CALCULATION OF POWER FACTOR REDUCTION FOR A

MIXED LOAD

A loaded 240-volt motor was observed to draw 2700

watts and 8.7 amps. This is a volt-amp draw of 3616.5 VA,

which implies a power factor of 2700/3616.5 = 0.75.

The same motor, at idle, drew 315 watts and 5.65 amps.

This is a volt-amp demand of 2348.6 VA, which implies

a power factor of 0.13. Forming the phasor sum of the

currents from both motors shows that the power factor

of the combined load would be 0.54.

The same motor, with a PFC, was observed to

draw 2700 watts and 8.8 amps when loaded. This is a

volt-amp draw of 3658, which implies a power factor of
0.74. The same motor with the PFC was observed to

draw 70 watts and only 1.48 amps at idle. This is a

volt-amp draw of 615 VA, which implies a power factor

of O.ii. This is essentially the same power factor as

without the PFC, but yet the reactive current was

greatly reduced. The apparent paradox is resolved

by calculating the power factor for the combined
load with the PFC's. Due to the nonsinusoidal current

waveform, the currents were added point by point as

shown in Fig. 16. The rms value of the combined currents

is 9.7 amps, which implies a volt-amp draw of 4032 VA

and a power factor of O.69--a marked improvement from
the 0.54 without the PFC's. The reason that the PFC

does not appear to significantly improve the power

factor of a single motor, is merely because the PFC

reduces the real power in addition to reducing the

reactive power. However, the calculation based on

Fig. 16, demonstrates that for actual plant conditions

the power factor is reduced. It is significant to

note that the power factor of a plant would need little

power factor correction if some motors were not idling

or partly loaded at the time the power factor is

measured. This is pointed out by Mr. Nola in the re-

buttal published with Ref. 5.
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Fig. 14. Optical
Triggering Circuit.
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AREAS FOR FUTURE WORK

The most obvious area for future work is deter-

mination of the splitting factor for a disturbance in

the time of switching from three lines to two lines.

Since the disturbance seems to imply a nonsymmetric

shift of the currents, three current probes with a storage

scope would constitute a useful means to check the

observed disturbance for nonsymmetry and aid further

understanding of the phenomenon. Additional observation

of the SCR-diode system, perhaps with a specially-

constructed low inertia motor, might resolve the question

of its stability. A separate-polarity triggering system--

probably best implemented with optical coupling--is

expected to simplify modification of the system to

accept a remote control signal. Investigation of the

region where only one line is switched on at a time

should also benefit this application. This operating

region cannot and need not, occur in the Nola design,

but it might occur in a version modified to accept

remote control. Contrary to some opinion, current does

flow in this region--through the snubber circuits--and

this is significant because it might induce violent mis-

firing, just before the intended turnon of the motor.

CONCLUSIONS AND RECOMMENDATIONS

The Nola design meets the design constraints imposed

by the open loop instability mechanism modeled in this

report. The empirically determined parameters are

optimally set between the limits demonstrated in this

report. Equations 4 and 5 might be used to shift

the 50- and 200-Hz poles somewhat and maintain a suitable

slope and curvature, but this is not needed for any

reason considered in this study, and it might

adversely affect the good servo loop response that

the system was experimentally observed to exhibit.

Consequently, it is recommended that the parameters

not be changed. Finally, it is strongly recommended

that the splitting factor be investigated--not only

because it is an interesting academic problem--but

also because the open loop instability phenomenon is

basic to any SCR's/triac motor controller, with no
neutral.
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