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SHAPECONTROLOF LARGE SPACE STRUCTURES

By

Martin T. Hagan, Ph.D.
Assistant Professor of Electrical Engineering
University of Tulsa
Tulsa, Oklahoma

ABSTRACT

The development of the Space Transportation System now
makes feasible the erection of large structures in space. Some
of these structures will combine large size with very rigorous
surface figure error requirements. The most stringent
requirements will be made by large optical systems and
antennas operating at very high frequencies.

The shape control of these large structures is made difficult

because of their flexibility and their distributed nature.

Their vibrational modes are numerous, densely packed, and low

frequency. In addition, the characteristics of these systems

cannot be accurately predicted before flight. The control

problem is further complicated by the need to design a

controller which has low enough order so that it can be

implemented on the onboard computer and yet of high enough

order to accurately control the structure.

A survey has been conducted to determine the types of

control strategies which have been proposed for controlling

the vibrations in large space structures. From this survey

several representative control strategies were singled out for
detailed analyses. The application of these strategies to

a simplified model of a large space structure has been

simulated. These simulations demonstrate the implementation

of the control algorithms and provide a basis for a preliminary

comparison of their suitability for large space structure
control.
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SECTION 1

INTRODUCTION

The purpose of this project has been to examine procedures
for controlling vibrations in large space structures (LSS).

This effort has consisted of three major parts:

Q A survey of the literature related to LSS control, and
control theory in general, to identify candidate tech-
niques for LSS control.

• An analysis of the candidate techniques in order to
categorize them and to determine those which have the

most promise for successful LSS control.

Q Simulation studies of representative techniques from

several relevant categories.

This report will present the results of this project.

Section 2 outlines the LSS control problem and describes some
relevant LSS models. Section 3 discusses the various categories

of solution which have been proposed for LSS control. Sections

4 through 8 describe in detail five representative control

techniques which have been sugggested for use in LSS control

and illustrate their application to a common test problem.

Section 9 summarizes the results and suggests areas for future

investigation.

The scope of this project and of this report has been

purposely limited because of time considerations. The control
of LSS is a large field, and this report does not attempt to
cover it completely. In particular, this report is limited
to vibration control and will not consider pointing problems.

In addition, the report discusses only continuous time control
algorithms and does not treat problems of digital control,
sampling rates, etc. Finally, there is no discussion of the
hardware implementation of any of the control algorithms
in terms of specific actuators, sensors, etc.
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SECTION 2

THE MODELS

2.1 The Distributed Parameter Model

The most complete model of a LSS would be a system of

partial differential equations of the form

m(x)utt(x,t)+Dout(x,t)+Aou(x,t ) = F(x,t) (2.1)

where u(x,t) represents the displacement of the structure

from its equilibrium position, F(x,t) is the force distribution,

m(x) is the mass distribution, Do is a differential operator

representing the damping of the LSS, and Ao is a differential

operator representing the stiffness of the LSS.

2.2 The Finite Dimensional Model

There are some control procedures which attempt to deal

directly with the infinite dimensional distributed parameter

model (eg. [1],[2]). However most procedures, including all

those discussed in this report, use a finite dimensional

approximation of the form

M_ + D_ + Kq = f (2.2)

where q is an n-dimensional vector representing the displace-

ments of the structure in some generalized coordinate system,

f is a vector of generalized forces, M is a real symmetric

positive definite mass matrix, K is a real symmetric positive
semi-definite stiffness matrix, and D is the damping matrix.

Because the damping of the LSS is expected to be very low

(_.005), the D matrix will be set to zero for the purposes

of the following discussion. The finite dimensional model

of (2.2) is normally developed by the finite element method

using a computer program such as NASTRAN.

The forces are applied through m actuators in a manner

described by

f = Bu
a

(2.33

where u is an m-dimensional vector of inputs to the actuators,

and B is a matrix which specifies the effects of the actuators

on th_ generalized displacements. There are also k sensors

which measure displacements and velocities in a manner

described by

y = Cdq + Cv_

where y is a k-dimensional vector of measurements, Cd is a

(2.4)
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matrix which specifies the position measurements, Cv is a
matrix which specifies Zhe velocity measurements.

2.3 The Modal Form

Because of the form of the M and K matrices there exists

a unitary matrix U such that

uTMu = I and uTKu = W

where

W

m

2
w I 0 ,.- 0

2
0 w 2 -,, 0

w

; ...;2
n

The values w_, ... , w affe the natural frequencies of vibra-

tion of the _tructure _nd the columns of U are the corres-

ponding mode shapes. It is now possible to represent the

displacements of the structure in terms of the modal

coordinates. The relationship between the generalized

coordinates and the modal coordinates is given by

q = Uv

where v is an n-dimensional vector of modal coordinates.

The model of the LSS can now be written in terms of the

modal coordinates

+ Wv = uTB u
a

y = CdUV + CvU_

2.4 The State Space Model

It will be convenient for later discussions to have the

finite dimensional model of the LSS in state space form. One

possible state space representation would be

= Ax + Bu

y = Cx

where

= C = dU Cv
x = A = B TBW 0

(2.s)

(2.6)

(2.7)

(2.8)

(2.9)

(2.1o)

(2.11)
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2.5 The Reduced Order Model

The LSS model of (2.9) and (2.10) is normally of very
high order and therefore it must be simplified in some way

before applying any control procedures. The standard method

of simplifying the LSS system is to subdivide x into three
parts:

• x will designate the primary states. These consist of
P

those modes of the system which are most critical to the

performance of the LSS (eg. line of sight errors).

• csX_nWill designate the secondary states. These statesist of those modes which can be accurate]y modeled

but which are not as critical to system performance as x .
These states can be used in evaluating the control P

system design.

• x r will designate the residual states. These states
consist of those modes which cannot be accurately modeled.

Vp IV._ vr
_ X

Xp Xs i9 _ r

The state space representatlon of (2.9) and (2.10) can now be
written

B. w

X
P

X =
S

r
i m

"Ap 0 0"

0 A 0
S

0 0 A
r

I m

. -C C
p s r

m I

I". _. p
i

i

[Xs B s
i

x r Br

X
P

X
S

X r

U (2.12)

(2.i3)

where A A and A are defined in a manner analogous to A in
(2.11).P'(A_pendixrA gives an example of such a model for a

simplified representation of a LSS.)

Once the model has been partitioned as in (2.12) and (2.13)

the problem is simplified by ignoring all secondary and re-

sidual modes to obtain the reduced order equations

i =Ax + Bu
P P P P

(2.14)
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y = CpXp (2.15)

It is clear from (2.12) and (2.13) that this reduced order

model has two potential sources of error. First, states other

than Xp influence the output y, and yet the terms CsX s and CrX r

have not been included in the observation equation (2.15).
These terms have been called "observation spillover" [3].
Secondly, the input u affects not only the primary states x

but also x s and x r. The terms BsU and BrU are called P

"control spillover". If control and observation spillover are
ignored it is possible that a controller could be designed
which is stable for the reduced order model of (2.14) and
(2.15) but unstable for the model described in (2.12) and
(2.i3).

To summarize this section, we have divided the modes of

the LSS into the following catigories

• Primary modes - These are the modes which have the largest
effect on system performance.

• Secondary modes - These modes are not specifically con-
trolled but may be used in evaluating the control
design.

• Residual modes - These modes are included in the finite

element model, but their accuracy is suspect and they
would not be included in the design process.

• Unmodeled modes The distributed parameter system (2.1)

is truly infinite dimensional. These are the modes which
are not included in the finite element model.
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SECTION 3

METHODS OF CONTROL

Now that the LSS control problem has been outlined and

the models have been described, this section will provide a

brief overview of the categories of control methodology which

have been proposed for active LSS vibration control. Later

sections of this report will examine several specific control

procedures in some detail.

3.1 Direct Output Feedback

The simplest feedback control is direct output feedback

(DOFB) which is characterized by the following control law:

u = Gy (3.1)

where G is a constant matrix of feedback gains. With this

control law in force the closed loop equations for the

controlled states - ignoring spillover - would be

_p P BpGC Xp

The various methods which use DOFB have the same on-board

computational requirements since they use the same control
law (3.1). They are distinguished by the criteria by which

they choose G. Some methods ([4],[5]) choose G in order to

obtain a desired level of damping in the controlled modes.

These methods are by far the easiest methods to implement

and are the most robust methods in terms of closed loop

stability. Their main problem stems from the fact that they

were designed to obtain relatively small amounts of damping

(up to approximately .2). This may not be a practical

limitation, however, because of the large power reqirements

which would be needed to obtain large amounts of damping with

any method.

(3.2)

Other types of DOFB choose G in such a way as to place

the poles of the closed loop system (3.2) in some desired
locations. There are a number of procedures for pole

placement ([6]-[8]). Their advantage over the damping
augmentation methods would appear to be the increased flex-

ibility in placing the closed loop poles. However, the

number of poles which can be positioned is limited by the
number of sensors and actuators which are used, and there is

no guarantee that those poles which are not placed will
remain stable, Furthermore, even if the reduced order model

of (2.14) and (2.15) is stable there is no guarantee that

the total closed loop system will be stable.
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A third type of DOFB chooses G so as to minimize a
performance index of the form

J = _ _RlX p uTR2uI [x + ] dt

0

where R4 is a symmetric positive semi-definite matrix, and

R_ is alsymmetric positive definite matrix. Procedures of this

type are described in [9] and [i0], and a stochastic version

is given in [ii]. The main advantage of these optimal

output feedback methods lies in the performance index (3.3).

The weighting matrices RI and R_ can be chosen by the designer,
and this allows great fl_xibility in choosing the design

criteria. Each mode can be weighted according to its relative

effect on the performance of the LSS. The main disadvantage

of optimal output feedback is the computational burden.

Although, as with all DOFB methods, the on-board computation

is minimal, the computational requirements for determining

the optimal gains can be prohibitive for problems of the

magnitude of most LSS systems.

3.2 Modern Modal Control

The methods of the previous subsection were characterized

by the minimal on-board computational requirements of (3.1).

This subsection will discuss methods which require more

on-board computation but which hold the potential for

increased flexibility in affecting LSS performance. These

methods, instead of using direct output feedback, estimate

the state of the system and use these estimates for feedback.
For the reduced order model of (2.14) and (2.15) the estimator

(filter/observer) would take the form

Ip = Aplp + BpU + Kf[y - Cp_p]

The control law would take the form

u=Ki
cp

As with DOFB, the various modern modal control (MMC)

design methods [3] are distinguished by the manner in

which they determine the gains Kf and K . There are two
basic methods. The first method calcul_tes the gains so as

to place closed loop system poles in some desired locations.
In contrast with DOFB, in which there are constraints on the

number of poles which can be placed, there is no theoretical

limit on the number of poles of the reduced order system

which can be placed using MMC (assuming that the system is

controllable). In addition, the procedures for pole

positioning using MMC are more straightforward and present

a smaller computational burden than those for DOFB. Of course,

(3.3)

(3.4)

(3.s)
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just because the poles of the reduced order model are stable
this does not guarantee that the total distributed parameter
system will be stable.

The second approach to MMC is to choose the gains in
order to minimize a performance index in the form of (3.3).
This optimal MMC is different from optimal DOFB in that the
computational burden in calculating the gains is decreased
considerably, although the on-board computation is increased.
Both methods have the advantage of choosing the gains based
on a performance index which is very flexible and can be used,
for example, to mitigate the effects of modeling error.
Optimal MMCwill be discussed in detail in a later section.

3.3 Suppression of Spillover

In all of the methods discussed so far the controller has

been designed based on the reduced order model, ignoring all

secondary and residual modes. As was mentioned earlier the

effect of spillover from these modes can degrade the performance

of the system and in some cases may cause instability. This

subsection will provide an overview of some of the methods

which have been designed to reduce the effects of spillover.

The first method is a variation of optimal MMC. It is

called Model Error Sensitivity Suppression (MESS) [12]. In

this procedure the control spillover to the secondary modes

is weighted in the performance index (3.3). In this way the

control gain is chosen so as to minimize spillover to the

secondary modes. Of course there will still be spillover to
the residual and unmodeled modes.

A second type of technique for spillover suppression
is to include filters in the controller in order to reduce the

controller bandwidth. This is done in order to limit spill-

over to the residual modes, which are of higher frequency than

the primary and secondary modes. There are several approaches

to this type of control (eg. [13]-[15]). The value of this

method is that the high frequency modes cannot be accurately

modeled and therefore it is not possible to weight these

modes in the performance index, as is done in MESS. Filtering

enables the designer to suppress spillover to the residual

modes without having accurate knowledge of their character-

istics. The disadvantage of these methods is that they re-

quire more on-board computation. It is necessary to implement

the filter as well as the observer (3.4) (if an observer is
used) .

Another method of control system design which can be

used to reduce the effect of spillover is multivariable

XVII 8



frequency domain design [16]. Because the design is done in

the frequency domain it is possible to limit the effect of

the controller on high frequency modes. The disadvantage of

this procedure is that it is difficult to apply to very high

order systems. The design procedure is not as well defined

as those discussed previously, and the design is based to a

larger extent on subjective decisions of the designer. This

process becomes much more difficult as the dimension of the

problem increases.

A further discussion of the spillover problem and
combinations of methods which can be used to control it

is given in [17].

3.4 Adaptive Control

The finite dimensional model of the LSS (2.7), which is

normally developed using the finite element method, often
contains substantial errors in the modal frequencies and mode

shapes. In addition, these system parameters can change

during flight due to changes in temperature, vehicle orientation,
etc. For these reasons it may be necessary to design LSS

control systems which will tune in on the true system

parameters ([18],[19]).

These adaptive control techniques can be divided into

two basic categories. The first is indirect adaptive control.

The indirect methods first identify the parameters of the

system and then use the parameter estimates to adjust the
control law. The second is direct adaptive control. The

direct methods do not explicitly identify the system para-

meters but rather directly adjust certain parameters in the
control law.

Adaptive control has several disadvantages:

• It requires much more on-board computation than other
control methods.

• The stability properties for adaptive control of

distributed parameter systems are not well understood.

• Very little work has been done on the development of

adaptive control procedures for LSS control.

3.5 Conclusions

This section has provided a brief overview of some of the
methods which have been proposed for vibration control of LSS.

It has suggested that there are two, often conflicting,
requrements which these methods must satisfy:
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• The computational requirements of the algorithm must not

exceed the capacity of the on-board computer.

• The procedure must be robust. The controller which is

designed for the reduced order model must perform

adequately when applied to the distributed parameter

LSS system whose characteristics cannot be accurately
estimated.

The methods discussed in this section have ranged from

simple output feedback controllers with small on-board

computational requirements, to adaptive control systems with

considerable computational requirements but with a potentially

increased robustness. At this point in time the LSS control

problem has not been sufficiently analyzed to significantly

narrow the list of potential LSS control systems.

The remainder of this report will investigate in more

detail some representative LSS control systems and will

illustrate their application to a simplified model of a LSS.

The control systems which are covered have been chosen to

have a range of complexity from simple output feedback to

MMC with filters for spillover suppression.
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SECTION 4

MODAL DASHPOTS

This section describes a method for adding damping to
specific modes of a LSS through output feedback [4]. This
is one of the simplest methods for LSS control and requires
a minimal amount of computation - both for calculation of

feedback gains and for on-board algorithm implementation.

Consider again the finite dimensional LSS model of
(2.7) and (2.8)

+ Wv = UTBa u

y = CdUV + CvU9

If we now consider only the primary modes and ignore all
secondary and residual modes we obtain the reduced order
model

9p + WpVp = U_BaU

y = CdUpV p + CvUp_ p

where the primary mode shapes make up the columns of U • The
method of modal dashpots uses velocity feedback only _ that

the closed loop model can be written

or

u = Gy

V + W v = uTB GC U 9
p pp p a vpp

_p - U;BaGCvUp9 p + WpVp = 0

The principle of modal dashpots is to provide a specified

amount of damping to the primary modes• This could be done

by restricting the damping matrix of the closed loop system
to be

-uTB GC U =
p a v p

"2¢ _o 0 ''" 0
1 1

0 2¢ _ -..0
2 2

0 0 "''2¢

_ PP.

=A

The following decoupled controller is chosen

G = _[UTBa]Tp TB T T -i A -I[Up a(UpBa) ] [(CvUp)ZCvUp] (CvU p)

T

(4.33

(4.4)

(4.5)

(4.6)

(4.7)

(4,8)

(4.9)
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It can be shown [4] that if the feedback gain matrix is symmetric
then under minor restrictions the closed loop system will

always be stable. This can be assured by requiring that the

sensors and actuators be colocated, ie.

B = CT
a v

Another restriction is that the number of sensor/actuator

pairs be greater than the number of primary modes. This is
necessary to ensure that the inverse matrices in (4.9) exist.

(4.10)

It should be emphasized that this discussion has ignored

all secondary and residual modes. The spillover from these

modes will cause the damping of the system to be different

than the designed damping in A. However, the system will
remain stable under minor restrictions [4].

The modal dashpot method has been applied to the CSDL

tetrahedral model which is described in [21] . The

feedback gains were computed for three values of damping in

the primary modes - .i, .2 and .3. As an example, for

.i damping the desired damping matrix would be

i.27 0 0 0 1

A = 0.33 0 0
0 0.51 0

0 0 O.68

and the gain matrix was calculated from (4.9) to be

(4.11)

g

-1.o

_.38 2.1
_'l.e 2.1 7.4
_ _'o.sl _4.s

:t I 4.2 l "1.8

:;,.,e.o 4.,

For each of the three values of damping the response of

the closed loop system to an initial disturbance in the first

mode was simulated. The response of the first mode for each

case is shown in Figure 4.1. Notice that the actual maximum

damping occurs for the system designed for .I damping. This
occurs because of increased spillover. The secondary and

residual modes were ignored during the design process, and as

the design attempts to obtain more damping in the primary

modes spillover from the other modes degrades system performance.
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Figure 4.1

Response to Initial Disturbance - Modal Dashpots
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SECTION 5

LOWAUTHORITY CONTROL

Low authority control (LAC) [5] is a method for adding
a moderate amount of damping to the primary modes of the
system. It is similar in concept to modal dashpots.

Consider again the reduced order state space model
(2.14) and (2.15)

i =Ax + Bu
P P P P

where

y = C xP P

_- B

Xp VP Ap -Wp 0 P Ba

Cp -- [ 0 CvU p]

(s.3)

with output feedback

u = Gy = GC x
PP

(5.4)

Combining equations (5.1), (5.2) and (5.4) we obtain

-- + BpGCpXip ApXp P
(s .6)

or

i =Ax
P P P

where

Ap Wp U BaGCvU

LAC considers the changes in the eigenvalues of A

of A when the feedback gain G is small.
are p

(5.6)

(5.7)

from those ,
The eig_nvalues of A

P

= -+j_o n = 1, ... , p)'n n

Aubrun [5] has shown that the changes in the eigenvalues for

small gains will be approximately
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d_ i [U_BaGCvUp]nn

where [ ],n denotes the n,n element of the matrix. Because
the matricgg in (5.8) are all real, it follows that the new
root _ +dX now has a real part. The definition of the
dampin_ r_tio now gives

-[U!BaGC U_]2_n_n v v v nn

To illustrate the method for computing G, let

B* T *
= UpB a C = CvU p

Then (5.9) can be written

Z Z Bnj Ckn Gjk = -2_n_ n
j k

There is in general more than one solution for G which

satisfies (5.11). By using a psuedo-inverse it is possible
to compute G in such a way as to minimize

E E G 2• o

i j ij

The gains were calculated in this manner for the CSDL

tetrahedral model. Three values of damping in the primary
modes - .1, .2 and .3 were used. The gain matrix for .1
damping is

[ j.4;. ",., -,.t ".:n .,.|
If.lID 4.0 4.3 -11.111 "3 I.

"l.g 4.3 6.4 l.l "lh? "II.II

"O:H .t.l 4.l 2.0 "II.T
"l.l "l.ll "II.? l.ll 4.4

Notice that this matrfx is significantly different than the

modal dashpot .1 damping gain matrix (4.12).

For each of the three values of damping the response of
the closed loop system to an initial disturbance in the first
mode was simulated. The response of the first mode in each
case is shown in Figure 5.1. The results here are very
similar to those for modal dashpots. Spillover causes a

deterioration in performance if one tries to obtain large
amounts of damping.

(5.8)

(s.9)

(5.10)

(5.11)

(s.xz)

(5.13)
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Figure 5.1

Response to initial disturbance - LAC
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SECTION 6

OPTIMAL CONTROL

The theory of optimal control is well described in many

textbooks (eg. [20]). This section will state the problem

and the principle results in order to introduce the

appropriate notation.

The theory of linear optimal control assumes that the

system can be characterized by the differential equation

= Ax + Bu + w I

y = Cx + w 2

where wI and w 2 are disturbance vectors containing white,
Guassiafl noise processes with intensities V. and V_

respectively. With the exception of the diSturbanCe vectors
this model is the same as the LSS state variable model

(2.9), (2.10).

It can be shown that the control

u = -Kcx

is optimal in the sense that it minimizes the performance
index

oo

J = E { ; [xTRIx + uTR2 u] dt )
0

where R1 is positive semidefinite and
if the Control gain

-I T

Kc = R 2 B P

R 2 is positive definite,

is computed from the algebraic Riccati equation

ATp + PA - PBR21BTp + R 1 = 0

Because x is not measured directly it cannot be used in

(6.5). For th_ason an estimate of x is found from the

filter/observer

= A_ + Bu + Kf[y - C_]

where the steady state filter/observer gain

Kf = QCV21

is computed from the algebraic Riccati equation

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)

(6.6)

(6.73

(6.8)
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ATQ + QA QcTv21cQ + v I = 0

The estimate i is optimal in the sense that it minimizes

the mean sqare estimation error.

The optimal control law was found for the reduced order

model (primary modes only) of the CSDL tetrahedral structure.

The following weighting matrices were used

R 1 = 18 R 2 = PcI6 V 1 = 18 V 2 = pfI 6

Where p_ is used to change the relative weighting, in the
performance index, of control energy and regulation error.

As p_ is decreased the system regulation error will decrease

whil_ the required control energy will increase. The p
parameter serves an analogous role for the filter/obserVer.

Optimal gains were computed for a number of values of Pc
and p# using the reduced order model. The response of the
full Order closed loop system was then simulated for

various combinations of p and p#. The results show the
same major effect that wa_ seen *ith the method of modal

dashpots and LAC. As one attempts to achieve decreased

regulation error (more damping) there comes a point at which

the spillover from secondary and residual modes begins to

cause a degradation in system performance and limits the

actual damping which can be obtained.

Figure 6.1 shows the response of the system to an
initial disturbance in the first mode for three combinations

of Pc and p_. It is clear that as the control energy is
allowed to Increase (decreasing pc) the damping actually
decreases after a certain point. Note that the initial

peak does decrease with decreasing p_, but as the secondary

and residual modes are excited the s_illover causes

subsequent peaks to remain high.

A comparison with Figures 4.1 and 5.1 show that optimal

control, even though it requires significantly more on-

board computation, does not significantly out-perform the

simpler LAC and modal dashpots methods. Of course these

results are of a preliminary nature, since the simulations

performed were not exhaustive.

(6.9)

(6.1o)
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Response to Initial Disturbance - Optimal Control
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SECTION 7

MODELERRORSENSITIVITY SUPPRESSION

Model Error Sensitivity Suppression (MESS) is a method
for reducing spillover from secondary modes. It is essentially
the same as the optimal control method of the previous section
except in the manner in which the weighting matrices R2 and
V2 are determined.

Consider the primary, secondary and residual modes of
(2.12) and (2.13) taken sepQrately

i =Ax + Bu
P P P P

i s = AsXs + BsU

= A x + BrUir r r

We want to include in the performance index some penalty on
control spillover to the secondary modes - BsU. Therefore
the performance index (6.4) is changed to

= E { I [x (Bsu)TWs(BsU) ÷ uTR2 u] dt }J2
0

In terms of implementation this will require a change in the

R 2 matrix to be used in (6.5) and (6.6)

R 2 = R2 ÷ B WsB s

It is also possible by using a dual argument to develop a

similar procedure for penalizing observation spillover

by changing the V 2 matrix which is used in (6.7) and (6.8).

As with the other control methods MESS was simulated on

the CSDL tetrahedral model. The spillover weighting matrix
which was used was

(7.1)

(7.2)

(7.3)

(7.4)

(7.5)

W s = 16

The R_, R 2, V, and V_ matrices were the same as those of
(6.9)_ Fzgur_ 7.1 ghows the response of the system to an
initial disturbance in the first mode for three combinations

of Pr and p_. Notice that by comparison with Figure 6.1 the
MESS_techni_ue has reduced the spillover problem significantly.

It is now possible to acheive a greater level of damping. It

should be emphasized that these are preliminary results, and

that there are many possible combinations of weighting matrices

and disturbance inputs which have not been investigated.

(7.6)

It should be noted that no attempt is made to reduce

spillover to residual modes. This is because it has been

assumed that knowledge of residual mode characteristics is
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very inaccurate and therefore that B cannot be accurately
computed. A method for reducing sp_llover to residual modes
will be discussed in Section 8.

i
PC = 0.1

pf = 0,01

Pc = 0.01

pf = 0.001

Figure 7.1

Pc = 0.0001

pf = 0.0001

Response to Initial Disturbance - MESS
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SECTION 8

FREQUENCYSHAPEDCOST FUNCTIONALS

The method of Frequency Shaped Cost Functionals (FSCF) [14]
is an extension of the standard optimal control procedure of
Section 6. The basic purpose is to minimize excitation of
high frequency modes by the controller. To accomplish this
consider the performance index written in the frequency
domain

J = _ _ [x (jW)RlX(jw) + u (jw)R2u(jw)]dw

In its present form the weighting matrices are not a function
of frequency, but we can generalize (8.1)

J = ___ Ix (jw) RI(JW)x(jw) + u (jw) R2(Jw)u(jw)]dw

(8.1)

(8.2)

which will allow us to penalize high frequency activity of x

and u. The problem is to translate this into an equivalent

time domain problem which can be solved using the standard

Riccati equation. Under certain restrictions on R1(jw ) and

R_(jw) this can be done [14]. Assume that Rl(JW) _nd R2(Jw )
c_n be factored:

R l(jw) = Pl(JW) Pl(JW)

R 2(jw) = P2(Jw) P2(Jw)

where P1 and P2 are rational matrices. Define

Pl(JW)x = x+

P2 (jw)u = u+

Equations (8.5) and (8.6) can also be written as differential

equations. For example, let

2
R 2(jw) = I (w 2+w_)/w 0

This would penalize controls at high frequencies. R 2 can be
factored so that

(8.3)

(8.4)

(8.5)

(8.6)

(8.7)

P2(Jw) : I(jw+w0)/w 0

Equation 8.6 can now be written as a differential equation

(8.8)

fI + W0U = W0U +

We now augment our reduced order design model

[:P] = I _wol] I_J +IOwol] u+

(8.9)

(8.1o)
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(To simplify the example we will assume that RI is a constant,
although it can be handled in a manner similar to R2. ) The
performance index can now be written

J = I __ [x (jw) RIX(jW) + u+(jw) lu+(jw)] dw

or in the time domain

J = ; [xTRI x + uIlu+] dt0

which is equivalent to

J = ; {[xTu T] + u+Iu+} dt0 1

Equations (8.10) and (8.13) can now be used to set up the
Riccati equation which will be used to find the control law:

(8.1l)

(8.12)

(8.13)

u+ = -[K 1 K2] [_]

[-j

Combining (8.9) and (8.14)

(8.14)

fi = -w0(I + K2)u W0KlX (8.15)

which is the FSCF control law. Of course _ will replace x when
implementing (8.15).

The FSCF method was applied to the CSDL tetrahedral model.

The R1, R2, V 1 and V 2 matrices were chosen to be the same as

those of (6.9). The filter parameter w 0 was set to .5. For
all values of P_ and Of which have been tested the closed loop
full order system has been unstable. It appears that this
procedure may be sensitive to filter bandwidth, and further
testing needs to be done.
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SECTION 9

CONCLUSIONS

9.1 Summary

The LSS vibration control problem can be stated:

How can one restore figure shape to an acceptable

accuracy within a reasonable length of time when the

structure is subjected to a large impulsive disturbance
(or maintain figure shape at an acceptable accuracy in

the prescence of small continuous disturbances) when
there exists limited computational capacity and limited

knowledge of structural characteristics?

This report has discussed a variety of active control tech-

niques that attempt to solve this problem - from simple

damping augmentation techniques which use direct output

feedback, to optimal control strategies with filtering to

suppress spillover. Preliminary results seem to indicate

that the simple damping augmentation methods provide

performance which is comparable to the more sophisticated

procedures with a fraction of the computational requirement.
The MESS method does show promise, and when combined with

some sort of filtering to suppress spillover to residual

modes (as has been suggested in [13]) it may provide

significantly better performance.

9.2 Future Work

Now that a test procedure has been organized and has been

applied to several control algorithms, it would be useful to

subject other methods to the same test procedure (eg. filter

accommodated control, adaptive control, etc.). This would

allow direct comparison of the methods and would make clear

the relative advantages and disadvantages of each algorithm,

and might suggest improvements. In addition, the test proce-

dure should be expanded to test more aspects of the control

systems. For example, it should test response to initial
disturbances in secondary and residual modes, response to

continuous type disturbances, effect of errors in system

models on performance, effect of changes in system parameters

on performance, etc. In this way a more complete analysis
could be made and a more accurate comparison of their

capabilities would result.
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