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SUMMARY OF RESEARCH ADDRESSING THE POTENTIAL UTILITY OF THEMATIC

YAPPER DATA FOR RENEWABLE RESOURCE APPLICATIONS

J. R. ban

Earth Resources Branch — Code 923

ABSTRACT

Landsat-D, scheduled for launch in July 1982, will carry a Multispeetral Scanner Subsystem

(MSS) similar to that flown on earlier missions, as well as a new muldspectral scanner calked the

Thematic Mapper (TM). The TM will offer improvements over the MSS with respect to spectral,

spatial, and ri;►?ometric characteristics. In preparation for the delivery of actual TM data, exten-

sive research has been conducted using simulated TM data. A meview of this research led to the

following conclusions: TM's improved radiometric resolution will be a valuable sensor attribute;

the availability of spectral bands from each portion of the reflective spectrum (visible, near-infrared,

middle-infiared) will be very useful; and TM's finer spatial resolution will enable the identification

of smaller spatial features, but research will be needed to develop improved classifiers which take

NU advantage of finer spatial resolution data. In general, the reviewed research indicates that the

collective effect of the TM's improvements will be an increase in the content and utility of infor-

mation extracted from TM data when compared to information derived from MSS data.
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SUIT MMY OF RESEARCH ADDR8%VM THE POTENTIAL UTILITY OF THEMATIC
.'

MAPPER DATA FOR RENEWABLE RESOURCE APPLICATIONS

ir^11-RVYU(: l-iVPI	 i \ ^ -

Iandeat-D, the fourth in a ndn of satellites dedicated to Earth resource observations, is

scheduled for launch in the third quarter of 1982. In addition to a Multitpectral Scanner Sub-

system (MSS) similar to the instruments aboard the first three Landat sateMtes, Ladat-D will

carry a new sensor, the Thematic Mapper (TM). The TM is also a multispectral scanner, but this

new instrument will offer impro"ments over the MSS with respect to spectral, spatial, and radio-

metric characteristics. 11a characteristics of the two instruments are summarized in Table 1.

A major ,objective of the Lndat-D program, conducted by the National Aeronautics and

Space Administration (NASA), is to assess the capability of the TM and associated support systems

to provide improved information for Earth resources management. In preparation for the delivery

of actual TM data, extensive research has been conducted using simulated TM data. The objectives

of such research have been to famiharire investigators with TM-like data, develop analysis tech-

niques which can take toll advantage of the sensor's improvements, and evaluate the potential

utility of TM date for specific applications. Results of investigations conducted since 1975 are

summarized in this document to provide guidance to the initial users of TM data in such matters

as analysis techniques and potential applications.

BACKGROUND

The development of the Landat-D program in general, and the TM in particular, began for- 	 i

'msily in 1970 when an in-house working group at NASA's Goddard Space Flight Center (GSFC)

initiated planning for Earth observation satellite systems to follow the first series of Landsat atel-

Uses (GSFC, 1971). The final configuration of the program and instrument evolved from a subse-

quent progression of study efforts and advisory groups representing all facets of the remote sensing
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community. The studies and g roups recamm ,aded configuntias on the barb of user informa-

tion and performance needs, the technical fleasibility of system hardwa re cormmemurate with user

needs, economic costs and benefits, recognition of Space Shuttle capabilities, and experience in

the acquisition and analyft of data lkom sensors aboard Landsat 1, 2, and 3, Skylab, and aircraft.
	 ^1

Selomonson et. al. (1980) provide an overview of the Landsat -D program which emerged Eton

the development efforts.

The Lndsat-D satellite will be launched from the Western Teat Range in California during

early July of 1982. The spacecraft will be launched into a sun-tynchrmous, near -polar orbit with

a 98.22 degree inclination to the equatorial plane and a nominal altitude of 70S kilometers. On

each descending (north-to4outh) daylight pass, the satellite will cross the equator at approximately

9:45 a.m. solar time, and the orbit cycle will repeat in a manner which enables the remote sensing

instruments to view a particular ground swath once every 16 days. The spacecraft 's instrument

payload will consist of a four channel MSS and the seven channel TM.

The TM is a nadir-pointing, elelctro -optical scanning radiometer. It will sense energy within

seven distinct spectral bands of the visible, reflective infrared, and thermal infrared portions of the
i

f
spectrum. Table 2 summarizes the principal application for which each band is intended. The

sensor will view the Earth 's surface through a scan angle of 1 S.4 degrees (t 7.7 degrees from nadir)

which will result in the imaging of a 18S kilometer wide swath across the satellite's flight path

given the nominal 70S kilometer altitude. The altitude, the design of the instrument 's optics, and

the size of the photosensitive detectors will produce a 30 meter ground resolution (a 30 meter-by-

j	 30 meter instantaneous-field-of-view) for the visible and reflective infrared spectral bands and a

120 meter resolution for the thermal infrared band (TM6). The electric signal from each detector

will be sampled once per instantaneous-field-of-view (IFOV) and will be quantized to 256 digital

levels. The radiometric sensitivity of the entire system in terms of noise equivalent change in re-

flectance or temperature will range from 0 .5 to 2 .4 percent depending on the spectral band (Ta-

3
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ble i ) Table 3 lists significant TM characterisUc s and Table 4 presents instrument performance

rpuirsments. Engel (1980) describes the TM configuration and performance specifications in

pater detail.

7MM AA1'A SIMULATION

The data used to simulate TM dat a were derived from a variety of sources. For Invest gatim

•	 which did not require digital image data, non-imaging spectrometers and radiometers have been

employed in the laboratory and the field. In some cases, spectrometers such is the Field S pectro

-meter System (Hauer, et. a1., 1979) sensed energy within narrow spectral bands and data from ad-

Jacent bands were integrated ova the appropriate intervals to measure the energy within the TM

bands. Other instruments, such as the hand-held radiometer described by Tucker, et. al. (1981),

were filtered specifically for sensing within TM bands.

Aircraft multispectral scanner data have frequently been used to simulate TM digital image

data. NASA operates three aircraft-borne muldspectral scanners designed for sensing within the

TM spectral band:. An eight-channel scanner called the NS001-MS (Richard, et. al., 1978) has

been flown aboard a C130 aircraft at altitudes of 3,000 to 5,000 meters since 1978. In addition

to the seven TM bands, the NS001-MS records data for a 1.00-to-1.30 micrometer (µm) waw-

length band, and two temperature-controlled blackbodies and an integrating spher' provide in-

flight callbrated reference sources which are sampled once per scan line. NASA's National Space

Technology Laboratory/Earth Resources Laboratory has flown a modified Texas Instrument's RS-

18 multispectral scanner aboard a Gates Learjet aircraft at altitudes near 12,000 meters since 1980.

NASA's Ames Research Center operated a modified Daedalus DS-1260 multispectral scanner aboard

an ER-2 aircraft at 18,000 meters during 1982. All of these sensors acquire data for all seven TM

bands and quantize the data to 255 digital levels (eight bits) as will the TM. The NS001-MS is the

only one of the throe scanners which acquires in-flight calibration data for the reflective spectral

bands. Over the years, investigators have also used data from a variety of other airborne multispec-

tral scanners, with divers: spectral characteristics, for TM data simulation.

5



'w"^f^P'W=J•k••sa•-^a---a.arT+.+sn n^pt'°""w3.r-".^—mss'°° ^_	 _, ."•s^^'^'^t'^-r:±e•+^'R`..,^., ^-.r....y.}.,.+.r .— 	 ^e.or- Trr;v,-	 ,^,. _. .. ;:^	 .^t ^#.-#•,-

'S

T" 3. Sipciflcant TM Panmeten M0. 1980)•

Orbit Sun Synchronous

70S.3 km Altitude
98.9 min Period
98.2 Inclination
16 Day Repast Cycle

Scan 185 im Swath
7.0 Hz Rate
8SS Efflciency
t 7.7 depees from wdir

Optics 40.6 cm Aperture
f/6 a► Prime Focus
42.S µrail IFOV, Banda 1-4
f/3 at Relay Focus
43.8 grad IFOV, Baods S,7
170 grad IFOV, Band 6

i
S Pal S2 kHz, 3 db, Bands 1•S,7

13 kHz, 3 db, Band 6
1 Sample/IFOV t
8 ats/Sample
84.9 Mbps Multiplexed Output

r

r'
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Table 4. TM Miaaion Raquieaa ats (Htancb1" and Weinstein, 1980).

Sgaars-Wave Response

Heads I to 5,7

Hand 6

Hand-to-Band Re istration

Scan Profile Repeatability

AkgHrm* O ierlap/Underlap

Swath Width

Radir metric Resolution

Hands 1 to S,7

Band 6

Absolute Radiometric Accuracy

Band-to-Pmd Radiometric Precision

Channel-to-Channel Radiom!^tric Precision

kectral Coverage

Sirul-Quantization Levels

Data Rate

Wei=ht

Power

Envelope

0.35 at30m

0.35 at 120 m

<6m

<6m

<6m

185 km

0.5 to 2 .4% noise-equivalent reflectance (NEp)

O.S rioiae-equivalent temperature difference (NEM)

10%

2%

< ans noise

4

0AS to 12.5 in

2S6

84.9 Mbps

< 243 ks

< 300 W

0.6 by 1.1 by2.Om
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Akaat't nwldweetral scanner data have nqukW exta si piocessing to approximate the

spectral, spatial, and radiometric characteristics of TM data and to compensate for radiometric

and geometric distortions inherent in aircraft scanner data. Commonly applied procmft steps

Include: averaging data from narrow spectral bands to simulate TM spectral bands; adjusting data

for the radiometric effects of the wide scan angles employed by aircraft scanners; spatially degrad-

ing data to the TM resolutions by various methods including the use of filters whore Modulation

Transfer Functions (MTFs) match :he MTFs of the TM; geometrically adjusting the data to remove

distortions caused by wide scan angles and to reporter the data to cartographic reference systems;

transformingcalr'brated data to simulate TM radiometric response; and adding soles to approxi-

mate the radiometric sensitivity of each TM spectral band. Examples of rigorous applications of

these processing steps are provided by Morgenstern, et. al. (1976, 1977), by Landgrebe, et. al.

(1977), and by Irons and Labovitz (1982).

METHODS OF EVALUATING INFORMATION EXTRACTED FROM SIMULATED TM DATA

A fiequently used approach to the evaluation of potential TM utility was to classify simulated

TM digital image data into land cover categories. The evaluatiio w were then based on classification

accuracies or the accuracies of area mensurations for the various categories. Classification accur-

acies were usually expressed as the ratio of correctly classified pixels to the total number of pixels

in an image. Often, only pure pixels (i.e., pixels which did not fall on the boundary between two

categories) were considered. In some cases, matrices were produced which displayed omission and

commission errors by category.

Several indices of mensuration accuracy an be found in the literature. For instance, the

root-mean-square (rms) error of category proportion estimates is a useful indice described by Swain

(1977):	 N

F, 	 - 7,)2
nns	 i = I

N

6



N - Number of ategodes in the image;

Pi s Aropordon of pixels classified m category i in the image;

ri - This proportion of the study area covered by category i.

Frequently, the clud&att—lan and mensuration accuracies obtained by the analysis of simulated

7M data were compared to rmdts derived from the analyses of spatially or radio metrically de-

Waded data in order to evaluate the effect of spatial or radiometric: resolution on information ex-

tracted from dyital image data.

LrMRATURE REVIEW

Several of the Landsat-D design studies and advisory groups reviewed research literature per-

taini to le determination of optimum sensor characteristics for various appliadons, particularly

the remote sensing of vegetation (NASA, 1973; H wage and Iandgrebe, 1975; Application Surrey

Croup, 1976; CORSPERS, 1976). This body of literature will not be revisited here. This paper

cites literature published after 1975 which specifically addresses the anticipated perforaance or

potential utility of the TM by way of the analysis of simulated TM data. 'Thus, the research sum-

marized herein was conducted after the configuration of the TM was tentatively established and

the characteristics of TM data could be anticipated.

Many of the papers cited herein compare results obtained with simulated TM data to results

obtained with actual or simulated MSS data. The major differences expected between the MSS

and the TM are: (1) the number, location, and width of the spectral bands; (2) the spatial resolu-

tion; (3) the radiometric sensitivity; and (4) the number of quantization levels. Some investigations

considered the individual effect of a single TM characteristic while other studies have addressed

the coHective impact of all the TM improvements. Considered together, the investigations provide

useful insight to the probable advantages and limitations of TM data for agricultural, forestry, and

land cover mapping applications.

9



iAariculture

Due to the impetus of the interagency program for Agriculture and Resource Inventory Sur-

veys Thmugh Aarospace Remote Sensing (ASRISTARS), a significant portion of the research con-

ducted wish simulated IM data has been directed towards apicultural applications. A mow

AgRISTARS objective a to inveatigate and evaluate the application of TM data to the acquisition

of accurate mensumbon statistics for maim trade crops (wheat, corn, soybeans, noe, barley, sor-

ghum) on a worldwide basis throughout the growing season. The crop mensuration task se. 	 as

a mMor justification for the implementation of improved spatial, spectral, and radiometric resolu-

tions into the TM design.

To assess the impact of the improved resolutions on the imaging of an agricultural scene,

spectrometer data were used in co*nction with aerial photography to synthesize simulated TM

digital image data (Badhwar, et. al., 1981)• The spatial configuration of an agricultural area in

Kingsbury County, South Dakota, was described by drawing field boundaries on an overlay of an

aerial photograph. The field boundaries wen digitized, and the crop within each field was iden-

dfied during oa-site inspections. The digitized representation of the scene was converted to a grid

cell format when each cell was equivalent in area to a TM pixel. For each grid cell, a TM response

value for each of the six visible or reflective infrared bands was estimated on the basis of Field

Spectrometer System (FSS) data acquired over the appropriate crop species.

To estimate the multivariate statistical distributions of TM data, FSS data were acquired at

several locations for each crop. The FSS data wen expressed as percent reflectance within narrow

spectral bands and were converted to radiance values using estimates of incident solar radiation

obtained from Thelkaehara, et. al., (1974). The radiance values were then integrated over the TM

spectral bands and transformed to TM digital response values using preflight specifications of sen-

sor response for each TM band. At each grid cell in the image, the response value for each TM

band was generated using a uniform random number generator and the estimated response value

10



1

distribution for the crop indicated to exist at the call by the ground refhtence data. This pmce&

ure revolted in a digital onape simulating TM data acquired in July over an agricultural area given

a solar zenith angle of zero dues and an absence of atmospheric effects. Efforts are continuing

to incorporate efficts of atmosphere. temporal changes, and dUhrent solar zenith angles into the

simulation.

Pitta and Badhwar (1980) examined the advantages of TM's finer spatial resolution by deriv-

ins husth. width, and area distribution for agricultural fields in the U.S. Great Plaint and Corn

W. Field size distributions were determined for several crops (corn, wheat, soybeans, grass) and

used in coglunction with a theoretical model to estimate the proportion of pure pixels (i.e., pixels

which do not overlap field boundaries and thus represent a aims% cover type per OW) wltbim an

agricultural scene as a Ainctioi of spatial resolution (Figure 1). On the basis of the authors' esti-

mate, approximately 40 pet t of the 80 meter Landsat MSS pixels from an sp:cnitund scene

within the Great Plains or Corn Belt can be expected to be pure. The 30 meter resolution of TM

wig increase the expected proportion of pure pixels to 75 percent. Since mixed pixels (i.e., pixels

which overlap field boundaries and thus integrate energy reflected from more than one cover type

per pixel) confound data classification and area mensuration, increases in clarssificatien and men-

suration accuracies were anticipated from the use of TM data.

The suitability of the first four TM spectral bands (TM 1 TM4) for the sensing of vegetative

parameters was addressed by Tucker (1978). The placement of the TM bands was compared to

the placement of spectral bands on several proposed or operating spaceborne sensors: the Undsat

MSS, the Return Beam Vidicon (RBV) of Landsat 1 and 2, the three band sensor of the French

Systems Probatoire d'Observation de la terre (SPOT), and a three band system proposed by Colvo-

coresses (1977). Narrow band (0.005 inn) spectrometer data within the 0.350-to-1.000 inn wave-

length interval were acquired over field plots of blue Varna grass on two occasions; September.

1971 and June, 1972. The total wet, total dry, dry green, and dry brown biomass, the leaf water

content. and the total chlorophyll content of each plot were determined by destructive laboratory
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Figure 1- Proportion of a Crop in Pure Pixels as a Function
of Senior Resolution for the U.S. Great Plains
(Pitts and Badhwar, 1980).

methods after each occasion. The spectrometer data were integrated over the appropriate intervals

to simulate the spectral bands of the sensors under consideration. The integrated data were trans-

formed from reflectance values to radiance values by multiplication with a solar irradiance func-

tion, and the 4ata were f wdw modified by passing the radiance values through a model atmos-

phere to the appropriate sensor altitudes. The utility of the spectral bands were then compared by

predicting each vegetative parameter as a function of the data for each band using regression anal-

yses. On the basis of these analyses (Table S), Tucker concluded that the first four TM bands

are well suited for the' sensing of vegetation.

The September spectrometer data for the blue grama grass plots were also applied to an eval-

uation of the number of quantization levels required to monitor vegetative parameters (Tucker.

12
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Table S. Coef kknt of Dew 02 ) V" Rauldn fan dw Rsvud n
Detw	 Integrated Radiattoe end the Canopy Variable (' &sr. 1978).
(a) June Data
(b) September Data

(a)

TOW	 Total	 Laf	 Dry	 Dry	 Told
Dendwiddt	 Net	 Dry	 Water	 Green	 Etown adomp4yl

Seneoc	 (M)	 8ioia.a Dio aess Content Dlaaees Dioaeen	 Content

REV 1 047S-0.S7S 0.73 066 0.76 0.67 0.94 0.77
REV 2 O."" 680 U.88 0.81 0.91 0.82 032 091
REV 3 0.6904.800 OAS 063 OAS 0.63 0.31 OAS

MSS 4 0300444 0.78 0.71 041 0.73 0.27 031
MSS S 0.6004000 on 0.80 0.91 022 0.32 0.91
hm 6 0.7004.800 063 042 063 061 0.34 OAS
MSS 7* 0.800-1.100 0.72 0.71 0.73 0.71 061 0.73

TM 1 OAS0-0.S20 0.69 061 0.72 063 0.19 0.74
TM 2 03204.600 0.79 0.72 0.82 0.74 0.28 0.83
TM 3 OA304x690 on 0.80 091 042 032 091
TM 4 0.7604M 0.78 0.76 0.78 0.76 043 0.78

SPOT 1 0304.59 0.76 049 0.79 0.71 0.26 0.81
SPOT 2 061-069 0.88 0.81 0.91 0.82 032 0.91
SPOT 3 0.79490 0.77 0.75 0.77 0.7S 0.63 0.78

Colvo 1 0.4704LS70 0.71 OAS 0.7S 0.66 0.23 0.76
Cairo 2 O.S70-0.700 OAS 0.80 0.91 0.82 032 0.91
Cairo 3' 0.760.1.OSO 0.74 0.73 0.74 0.72 062 0.7S

•	 ^	 fordo 1.00-1.1 µs itlatval. The dmbdom foe MSS7 sad Cobro 3 mM 1.00 am o doir mor

(b)

Totd	 Totd	 Loaf	 Dry	 Dry	 Toni
Bandwidth	 Net	 Dry	 Water	 Green	 Brown	 Chlorophyll

Stneor	 (UM)	 Biomass Blomsu Content Biomes: Blomea 	 Content

RSV 1 047S-0375 031 028 0.41 0.21 0.10 0.25
RBV 2 0380.0.680 0.40 038 064 0.24 0.07 033
RBV 3 0490-0300 048 031 041 OA3 0.29 0.39

MSS 4 0.500-0600 02S 0.22 0.37 0.16 0.07 0.20
MSS S 0600.0.700 039 038 063 0.23 0.06 033
MSS 6 0.700-0.800 033 OSS 0.48 0.47 0.30 044
MSS 70 0.800-:.100 - - - - - -
TM 1 0.450-0320 036 O.S4 0.69 0.41 0.19 OAS
TM 2 0.320-0600 0.22 0.20 033 0.14 0.06 0.18
TM 3 0630-0690 043 02S 0.70 0.41 0.07 036
T1►1 4• 0.760-0.900 - -
mm 1 O.SO-0S9 0.25 0.17 0.3S 022 0.08 0.20
SPOT 2 061-069 042 0.24 068 041 0.07 03S
SPOT 3 • 0.79-0.90 - - - - - -
Coho 1 0.470-0.570 033 023 046 030 0.11 026
Cairo 2 0370-0.700 037 0.22 062 03S 0.12 032
Cobo 3 0 0.760.1.OS0 -

'ib Sepmodw den coated adr the 0.350 . 0450 rm rweim Sonx »mots, darefara, aouM not be dmalaad.
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IM). The reflects= data won integrated over the spectral bandwidths of T1(3 and TM4, con-

verted to radiance values, and passed through the model atmosphere to the 70S kib-,r oter T11 al-

titude. The radiance values were then quantized to 16, 32, 64, 128, 256, and 512 levels using

the specified saturation radiance values for TAG and TM4 to define the quantization functions.

For each number of the levels, the quantized data for each TM band and for two band ratios

(TM4/Th13 and the normalized difference, 7M4-TM3 /TM4+TAi3) were individually regressed

against leaf water content from the grass plots. On the basis of regression results (Table 6), Tuc-

ker concluded that either 128 or 256 quantization levels should be used for the orbital monitor-

 of leaf water content.

Table 6. Coefficients of Determination (rt ) Values Resulting from the Regression
Between the Spectral Variables for Five Solar Zenith Angles and Leaf
Water Content for the September 1971 Data (Tucker, 1980).

Spectral
variabie

Sdar
unith angle

(degrees) 16

Number of quantizing lewls

32	 64	 128 256 512

Radiances
at

706 km
Input

reflectencea

TbI3 54.2 0.63 0.77 097 0.99 1.00 1.00 1.00 1.00
TM 3 40.27 0.58 0.91 0.98 0.99 1.00 1.00 1.00 1.00
TM 3 34.62 0.83 0.91 0.98 0.99 1.00 1.00 1.00 1.00
TM 3 27.68 0.76 0.92 0.99 0.99 1.00 1.00 1.00 1.00
TM 3 17.65 0.67 0.94 0.98 0.99 1.00 1.00 1.00 1.00
TM 4 54.2 0.76 041 0.97 0.99 1.00 1.00 1.00 1.00

TM 4 40.27 0.70 0.91 0.98 0.99 1.00 1.00 1.00 1.00
TM 4 34.62 0.76 0.94 0.98 0.99 1.00 1.00 1.00 1.00
TM 4 27AS 0.86 0.93 0.98 0.99 1.00 1.00 1.00 1.00
TM 4 17.65 0.66 0.92 0.99 1.00 1.00 1.00 1.00 1.00

ND 54.2 020 0.90 M98 0.99 1.00 1.00 1.00 1.00
ND 40.27 0.74 0.96 0.98 1.00 1.00 1.00 1.00 1.00

ND 34.62 0.91 0.93 0.99 1.00 1.00 1.00 1.00 1.00
ND 27.68 0.91 195 0.99 1.00 1.00 1.00 1.00 1.00

ND 17.65 OAS 0.98 0.99 1.00 1.00 1.00 1.00 1.00
Ratio 54.2 0.81 0.89 0.% 0.98 0.98 0.98 0.98 098
Ratio 40.27 0.73 0.94 0.% 0.98 098 0.98 0.98 098
Ratio 34.62 0.90 095 0.97 0.98 098 0.98 0.98 098
Ratio 27.68 093 0.91 0.98 0.98 0.98 0.98 0.98 0.98
Ratio 17.65 0.70 0.97 0.98 0.98 0.98 098 098 098

le

g
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Mw TM middle htiiraed bands OW and TM7) not used by Tucker (1978 and 1980) were

included with bands TM3 and 7M4 in a comparison of band ratios by Ungar and Bradley 0 981).

Data wars acquired by the previously mentioned Field Spectrometer System over winter wheat

fields in Finney County, Kanses during the 1974/75 growing sesson. These narrow-band data

were ala integrated over MSS and TM bandwidths, and atmospheric effects were simulated. The

investigators then tracked the development of the wheat using the following band ratios: MSS7/

MSSS, TM4/TM3, TM4/7MS, and TM4 /TM7. The MSS7 /MSSS and TM4/TM3 ratios contrasted

high wheat canopy reflectance in the near -infrared due to leaf structure with low visible -red reflec-

tance cawed by chlorophyll absorption. Since leaf structure and chlorophyll content vary as a

plant grows, the MSS7 /MSSS ratio has often been used as an index of vegetational development.

Ungar and Bradley found the TM4/TM3 was highly correlated (0.99) with the MSS7 /MSSS ratio.

Thus, the TM4/TM3 ratio was useful as a development index, but the authors concluded that the

TM4/TM3 ratio offered no clear advantage over the MSS7 /MSSS ratio. The TM4/TMS and TM4/

TM7 ratios also proved useful for tracking wheat development because energy within the middle-

infrared bands (TMS and TM7) was absorbed by leaf water content and water content also varies

sa a plant develop:. Again, the authors concluded that the ratios of data from TM bands demon-

strated no improvements as development indices when compared to data ratios for the MSS bands.

The fact that Ungar and Bradley (1981) addressed only the spectral resolutions of the TM and

MSS and did not considered the effects of TM's improved spatial and radiometric resolutions on

development indices bears emphasis here.

The information content of reflectance data from all six of the TM reflective spectral bands

was considered by Staenz, et. al. (1980). Field reflectance data were gathered with a narrow-band

spectrometer for nine crops and bare sand-loam soil. The spectra were collected for a range of

instrument view angles (zero to 30 degrees from nadir), solar elevations, solar and viewing azimuths,

and crop development stages. The data were integrated over the appropriate bandwidths to esti-

mate reflectance within the TM bands, and then correlations between data for each possible pair

15
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of TM bands were determined. The date for the three visible bends wets highly correlated (71111

TM2, TM3) for all crop and soil spectre, while the near-Infrared data (TM4) won not well corre-

lated with any other reflectance data. Data for the two middle-infrared bands (TMS and TM7)

wear correlated to each other, but did not relate well to data from any of the other bands. Cor-

relations amongst the visible band data were attributed to leaf pigment absorption, while the rele-

tion between TMS and TM7 data was attributed to water absorption. The authors suggested that

one band from each portion of the spectrum under consideration (i.e., visible, near-inilrared, and

middle-infrared) could be chosen as a first step in feature selection during the analyses of actual

TM data.

A group of related studies conducted by Morgenstern, et. al. (1976, 1977), General Electric

(1977), and Swain (1980) investigated the potential impact of several TM characteristics on agri-

cultural applications. All of these studies utilized aircraft multispectral scanner data collected for

the 1971 Corn Blight Watch Experiment (MacDonald et. al., 1972). The data were acquired by

the Environmental Research Institute of Michigan's (ERIM) 12-channel M-7 scanner over two In-

diana locations on three occasions during the 1971 growing season. The predominant ground

cover types in the areas were corn, soybeans, and forest.

Morgenstern, et. al. (1976, 1977) rigorously processed the data to simulate the spectral, spat-

ial, and radiometric characteristics of TM data and assessed the impact of varying several TM para-

meters on crop discrimination. Results were evaluated in terms of both probability of misclassify-

ing pure pixels and area mensuration errors. Each of three parameters (spatial resolution, radio-

metric sensitivity, and spectral band placement) were varied while the other two parameters were

held constant to TM specifications. The researchers found pure pixel classification accuracies to

be independent of spatial resolution, but observed a decrease of area mensuration accuracy as spat-

W resolution was degraded (Figure 2). In particular, increasing the spatial resolution of the ther-

mal channel (TM6) from 30 meters to the 120 meter TM specification while holding the resolution

16
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Figure 2. Mensuration Accuracy Versus Resolution (Morgenstem et. al.. 1976).
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of the other bands at 30 rankers sigailkwatly decreased mensuration accuracy. These results were

attributed to an increase in mixed pixels as spatial resolution was coarsened. For the other analy-

aes, the resolution of the thermal data was left at 30 meter.

Morgenstern, et. a1. (1976, 1977) did report a decrease in expected pure pixel classification

accuracies when the radiometric sensitivity of the data was degraded from TM specifications by

the addition of random noise (Figure 3). The impact of sensitivity degradation was most severe

for data acquired early in the growing season when the major classes, corn and soybeans, were

$pectrully

With the radiometric sensitivity held constant, Morgenstern, et. al. (1976, 1977) regarded the

TM spectral bands as effective as the six optimum original M-7 scanner spectral bands for class

dv lie ination. This conclusion was based on avenge pairwise probabilities of misclassification for

all pairs of dissimilar classes. TM3 (0.63-0.69 pm) was considered the most important band for

discriminating between blight levels of corn.

Tim results obtained by Morgenstern, et. al. (1976, 1977) were used in the support of the

General Electric Company (1977) Sigma Squared study. The objective of the Sigma Squared study

was to evaluate the performance of remote sensing systems for global agricultural crop production

forecasting. The study compared an MSS-based system to a theoretical system based on TM data.

The measure of performance was the coefficient of variation of forecast error as a function of time.

The evaluation assumed the use of a methodology developed by the Large Area Crop Inventory

Experiment (LACIE) for global wheat production forecasting (MacDonald, 1976).

The Sigma Squared study identified three sources of error in the LACIE methodology: crop

classification, yield estimation, and sampling. A theoretical model simulated the impact of TM

data on wheat and corn classification within several countries, and the theoretical simulations were

compared to the empirical results obtained by Morgenstern et. al. (1976, 1977) for validation.

18
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Classification errors wen then agpegated with independent errors in yisid eadmation and aaaapliog

to predict the coefficients of variation for the total crop production fore :nst scrota. TM data pit,

wally reduced the coefficients of variation oe 'oncast ew w when compared to predicted results

from a forecofts system bead on MSS data. The predicted vaults for wheat production fore-

casts in the United Sates are shown in Table 7.

Table 7. Predicted production Forecast Errors for U .S. Wheat
(General Electric, 1977).

JAN FED MAR AOR MAY JUL A 

93a

NOV DBC
ERROR

CV8
2A4 2.03 2.02 2.02 2.02 2.02 2.330 2.10 20

YIELD ERROR

CVr

8A 7.12 5.84 4.56 -28 2.0

CLASSIF. ERROR
CVO

MSS 1.71 1.70 1.70 1.70 1.70 1.70 1.93 1.76 1.72
'mi ss N .83 1 43 1 .97 .88

TOTAL ERROR,

CVP

MSS 8.81 8.81 7-" 6,41 S.27 .21 331 8.92 8.84 8.82

TOTAL ERROR,
CVP

TM 8.69 8b9 7AS 6 .94 297 8.76 8.70 849

TABLE ENTRIES ARE COEFFICIENT OF VARIATION E7QRESSBD IN PERCENTAGE. DATA PREPARED
15 NOVEMBER 1976.

The simulated TM data from the Corn V=et Watch Exjwriment were used by Swain (1980)

to investigate the affects of pixel misregistration. The non-cooled detectors of the visible and

nearinfrared spectral band: (TM 1-TM4) and the cooled detectors of the middle- and thermal-

infrared bands (TMS-TM7) are located on physically separate focal planes in the TM. the separa-

tion creates a potential for band-to-band spatial misregistration, and Swain investigated the impact

of misregistretion on the cissdRcation of the simulated TM data. The data corresponding to TM

bands 3, 4, 6, and 7 at a 30 meter spatial resolution were class.itied into three categories: corn,

soybeans, or "od w." Classification was repeated for data sea with varying levels of misregistra-

tion (no misregistration to three pixel along-track misregistration) between the non-cooled detector
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bands (TM3 and TM4) and the cooled detector bands (TM6 and TM7). The classification accur-

ary with aspect to pun pixels within test fields was then determined. Accuracy generally de-

crewd with increaft ndsreght d a - (Figure 4). For example, the classification accuracy for

soybean wed 11 percent for a data at with 0.3 pixel mia+egistradon when compared to a

registered data set.

100-1

90

	

70	
/.I^	 Class	 Corn

00 - 000010

	

0	 ^""^^ Other

50-

40

—3	 —2	 _1 —3 —.3 0 +.3 +is +1	 +2	 +3

Mbrpbt"adon (Pixeh)

Figure 4. Classification Accuracy Versus Misregistration (Swain, 19fl;;j.

Swain (1980) also mnsidered the 120 meter resolution of the TM thermal band. Using spat-

ially registered data from the research discussed &bow, Swain classified three data sets: one set

consisted of 30 mete: resolution data for TM bands 3, 4, 6, and 7; the thermal data (TM6) were

degraded to a 120 meter resolution for the second set; and the thermal data were excluded from

the third data set. TaLle 8 summarizes the classification accuracies for pure pixels within test

fieica. - n this expoiiment, the inclusion of coarse resolution thermal data significantly impaired
5	 ^

44pabil, es for discriminating corn.

Aircraft scanner data collected over several othe r agricultural areas have also been used to

simulate TM data. Landgrebe, et. al. (1977) acquired data with a 24-channel multispectral scanner

on July 6, 1975 over Finney County, Kansas and on August 1S. 1975 over Williams County, North

Dakota. Thirty -six distinct data sets were derived from the original two data sets by spatially de-

. 3
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Fading the data to four resolution (30, 40, S0, and 60 meters) ad by adding e*t di hMM

levels of random noire to the data at two spatial mKdudon (30 and 40 meters). 'fire data were

od mwise processed to simulate the TM spectral reaolutiom, and the spatial resolution of the

thermal infrared band (TM6) was left at 1:0 meters for all of the dedwed data sets. The dal

within each set were then dmified into crop categories using a supervised training approach and

a per pixel maximum-likelihood classification algorithm. As the spatial resolution of the data

grew more coarse, the classification accuracy of pure pixels incremed slightly while mensuration

accuracy decreased significantly. The increase in clusifk:ation accuracy was attributed to hirer

signako-noi ratio: at coarse resolutions, and the reduction in mensuration accuracy was attri-

buted to the incmm in boundary pixels. At a constant spatial resolution, the degradation of

radiometric sensitivity by noise addition significantly impaired classification performance.

Table 8. Comparison of Classifications With and Without Thermal Band — No
11ti:teghtration (Swain, 1980).

Test-Field Accuracy (Percent)
Spectril Bands	 Corn	 ans	 Omer

4 bands, 30 in 	 91.9	 97.6	 92.4	 93.4

4 bands, 120 thermal	 S6.1	 96.3	 94.2	 723

3 bands (no thermal)	 87.3	 9S.6	 843	 88.8

Number of Pixels	 43SS	 1816	 12S 1	 7422

Landgrebe et. al. (1977) also considered the effect of using a different classification algorithm

called ECHO (Kettig and Landgrebe, 197S). This algorithm employs a homogeneity criterion to

merge adjacent pixels into windows and a likelihood ratio to annex windows into fields. Each

field is then classified on the basis of the spectral properties of the entire field of pixels. The use

of the ECHO classifier diminished the impact of adding noise to the data (Figure S). Apparently,
i

the use of information from multiple pixels somewhat offset the loss of radiometric sensitivity.	 !
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Figure S. Classification Accuracy Versus Added Noise Using a Multiple-

Pixel (ECHO) Classifier or a Per Pixel Maximum-Likelihood
Classifier (Landgrebe et. al., 1977).

Sigman and Craig (1981) analyzed NS001 -MS airc--aft scanner data acquired over Knox and

Lewis Counties, Mksouri on September 9, 1979. Eight distinct digital images were derived from

the raw data by creating all possible combinations of three data parameters given two levels for

each parameter: number of spectral bands (four or seven); spatial resolution (30 meters or 60

meters); and quantization (six bits or eight bits). The digital image consisting of seven bands, 30

meter resolution, and eight bits (256 quantization levels) simulated TM data. The four band, 60

meter, six bit image roughly approximated Landsat MSS data. Each digital image was then classi-

•	 fled in order to mensurate the acreage planted in corn, soybeans, and forest within eleven 130

hectare sites in the two count y area. Three factor analysis of variance was used to compare th-

accuracy of the acreage estimates from the eight digital images. On the basis of the analysis, the

use of the simulated TM data slightly improved area mensuration accuracy for soybeans and forest

23



and significantly increased the corn area accuracy when compared to acreage estimates derived

hom the simulated MSS data. The improvements were attributed primarily to the interaction be-

tween the additional spectral bands and finer spatial resolution of the TM.

Simulated TM data have also been collected for Canadian agricultural scenes. An l l-channel

aircraft scanner was flown over a site in Saskatchewan containing quarter-section (64 hectare) and

larger fields of wheat, rapeseed, barley, peas, flax, and bare soil during July, 1979 (Ahern et. al.,

1980). The data were processed to simulate both TM and MSS data. The effects of varying the

number of quantization levels and the spatial resolution on classification accuracy were then stud-

ied. For both TM and MSS spectral bands, classification accurwies were decreased when the data

were reduced from 2S6 to 64 quantization levels. The degradation of spatial resolution from 30

meters to 80 meters, however, resulted in an increase in classification accuracies. The improved

classifications were attributed to a reduction of within class spectral heterogeneity at coarser res-

olutions.

Median filters were applied to the 30 meter simulated TM data to reduce within class data

variability while maintaining the distinct boundaries depicted in the fine resolution data (Ahern

et. al., 1980). Visual inspection of imagery derived from filtered data confirmed the preservation

of clear boundaries. The classification of filtered data (3X3 filter) resulted in a 3.4 percent im-

provement in accuracy when compared to the classification of unfiltered simulated TM data and

a 6.9 percent improvement when compared to results obtained with simulated MSS data.

Forestry

Landsat MSS data have been successfully applied to the inventory and monitoring of forest

resources, but such applications have been limited by the spatial, spectral, and radiometric resolu-

tions of MSS data. Williams and Stauffer (:979) reviewed research literature which documented i

requirements for higher resolution data in forest applications. Several additional investigations have

specifically addressed the potential Ability of the high-resolution TM to provide data containing in-

formation of adequate detail for these applications.
24
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Sadowski and Sarno (1976) examined the influence of spatial resolution on the identification

of forest categories at levels of detail appropriate to both lope scale surveys and detailed local

inventories. Features of the Sam Houston National Forest in eastern Texas were categorized into

a four lard hierarchy where category detail increased at each successive level. Data acquired by

the Modular Multispectnd Scanner (M2S) at an altitude of 610 meters over the Forest on Novem-

ber 20, 1974 were then analyzed. The data were processed to six spatial resolutions (2, 4, 8, 16,

32 and 64 meters), and all 11 channels, supervised training, and a linear decision rule were applied

to the classification of the data at each resolution into the categories of each hierarchical level.

Signal-to-noise ratios wen maintained at a constant level by adding random noise as the resolution

was degraded. Classification was also repeated for the 32 meter and 64 meter data using only

five data channels which had spectral resolutions approximating TM bands (TM1 to TM4 and TM6,

the thermal band). Classification accuracy generally increased as the spatial resolution was de-

graded to 32 meters (Figure 6). At a constant spatial resolution, the general categories were more

accurately identified than the detailed categories of the hierarchy. The use of only five data chan-

nels resulted in lower classification accuracies.

Training PixNs

i

90

Boundary PixNs
Exclusive Tat
Boundary Pixels
Inclusive Tat

60	

2z	 42	 g2	 162
	

322	642

Spatial Resolution (nv"rs2)

Figure 6. Classification Accuracy Venus Spatial Resolution for Forest Categories of a Detailed
Local Survey (Sadowski and Sarno. 1976).
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Aba aft agruler data odlected over an area just south of Camden, South Carolina were used

to select the optimum subset of 711 spectral bands for focal cover type identification by Latty

sod Hoffer (190). The NSOOl-MS scanner was flown over the area on April 2, 1979 at 6000

meter and the resulting data were processed to simulate TM data. Data were then extracted

am training areas representing the followiag cover types: soil, pasture, row and cereal crops,

pia forest, piafiardwood mix, old hardwood, second growth hardwood, water tupelo, sycamore,

clearcuut areas, marsh vegetation, and water. All possible combinatim of TM spectral bands were 	 i .'^

analysed to determine the most useful number and combination of bands for discriminating be-

tweam these corer types. For each band combination, the average transformed divergence measure

of the statistical distance between all pairs of cover types was computed. On the basis of the di-

wrgences, four bends, 7M1, 7M3, TM4, and TMS, were chosen as the mat useful subset of bands.

An evaluation of the effect of simulated spatial resolution wu also conducted with the data

obtained over the Camden, South Carolina area. Simulated spatial resolutions of 30 meters, 4S

meters, and 60-by-7S meters were computed from the original 15 meter data. Latty and Hoffer

(1981) found that the overall classification accuracy of pure pixels increased as the spatial resolu-

tion grew cc%= when using a per pixel maximum-likelihood classifier. This trend w.t not ob-

served for all cover classes w ion assessed individually for each cover class. The differences in

motion accuracy achieved with each spatial resolution were significant only for pine-hardwood

mix, old-age hardwood, clear-cut, second growth hardwood, and pine. The decrease in classification

accuracy achieved with the finer spatial resolution was attributed to the increased level of variation

in spectral response level across adjacent areas within the cover class. The data were reclassified

with the previously discussed ECHO classifier which utilizes the spectral information from :multiple

pixels for classification (Kettig and Landgrebe, 197S). Higher overall classification accuracies were

achieved with the ECHO classifier (94.1% training and 75.0% test) than were achieved with the

maximum-likelihood per pixel classifier (89.3% training and 71.0% test) using data at the 30 meter

spatial resolution.
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The selection of optimum 71d bands for forest classification and the idendficados of sate`

pries at difrerent levels of detail were both addressed by DotaYio and Williams (1981). N9001-MS

data were acquired over a forest planation in North Carolina on June 14, 1979. Only flue of the

date channels (TMI to TMS) were operating during the overflight, and these data were processed

for TM data simulation. The processed data were then classified into seven forest categories (dear

cut, hardwood, mixed hardwood and pine, and four developmental stages of pine) using an uneup-

ervbed training procedure and maximum -likelihood classifier. An overall classification accuracy of

60 percent was obtained. Three spectral bands, TV2, 7M4, and TMS, were then chosen on the

basis of a stepwise linear d iscriminant analysis as the most useful of the avabkbb bands for the

identification of the seven categories. Classification was repeated using only the data from these

three bands and a classification accuracy of 63 percent resulted.

Laadsat MSS data collected over the North Carolina forest planation on July 3, 1979 went

also classified into the seven forest categories. The resulting overall classification accuracy was 39

percent. The seven categories were then grouped into four broader categories (clearcut, hardwoods,

young pine, and mature pine) and both the MSS data and the full complement of simulated TM

data were reclassified. The overall classification accuracy for the broad categories were comparable:

77 percent accuracy resulted from the classification of simulated TM data and 71 percent accuracy

was obtained via the analysis of the MSS data.

Land Cover Mapping

A wide variety of potential applications exist beyond agricultural and forestry for TM data.

These other applications have not been as intensively investigated, bu, enough work has been done

to indicate the potential versatility of TM data. Several diverse applications have been addressed

by the analysis of simulated TM data.

Both Clark and Bryan (1977) and Markham and Town;hend ( 1981) studied the effect of

spatial resolution on the ability to identify land cover types using simulated TM digital image data.
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awk saki 9ryan (1977) oomidered an wrban are in Los Angeles, California while Markham and

Towmshend (1981) observed urban cove in Annspolls, Maryland and salt muddand in Dorchester

County, Mayland. Two factors were identified which affect clarification accuracy as a function

of spatial resolution. First, independent of sensor noise, the spectral heterogeneity (variability) of

data associated with a particular category often increased as resolution became finer. This increase

was due to the nsolvirng of category components (e.g., the leaves, branches, shadows, and the un-

de story within a forest) which may have diverse spectral characteristics. 'line increase in spectral

heterogeneity caused overlap between categories in spectral data space and thus impaired per pixel

classification into the categories. At couser resolutions, the reflected energy was integrated over

the category components and with - tegory spectral variability was often reduced. The second

factor affecting classification accuracy was the increase in mixed pixels as spatial resolution was

degraded. The increase in mixed pixels hindered classification at coax resolutions because the

sensor response at a mixed pixel resulted from the reflectances of more than one cover type.

Clark and Bryant (1977) observed the impact of increasing spectral heterogeneity on the iden-

tifxxtion of urban categories. Data acquired by a 24-charnel airborne multispectral scanner on

November 14, 1973 over Los Angeles were spatially degraded to four resolutions (7.5, 15, 30, and

60 neten), and data from spectral bands approximating TM2, TM3, and TM4 were analyzed.

Supervised training and a maximum-likelihood classifier were used to classify the data. Classifica-

tion accuracies for pure pixels decreased as resolution became finer. The difference in accuracies

at the 30 meter resolution and at the 60 meter resolution, however, were small, and the investiga-

tors considered the 30 meter resolution of TM suitable for the identification of urban categories.

Markham and Townslnend (1981) not only reported classification accuracies, but also quan-

tified changes in spectral heterogeneity and the proportion of pure pixels as spatial resolution was

varied. Data for spectral bands approximating 7112, TM3, and TM4 were acquired by the airborne

Modular Multispectral Scanner on April 10-11, 1980. The raw data were degraded to 10, 20, 40

and 80 meter pixel sizes. At each resolution and for each spectral band, the variation and coeffic-
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ient of variation of the data wen determined within training areas repass ft urban and marsh-

land categories. These values provided a quantitative measure of spectral heteropWty, and the

rate of change of heterogeneity with coarsening resolution varied curably between categories

and between spectral bands for particular categories. In most aces, the spectral variability of ur-

ban categories declined more rapidly than did the variability of herbaceous categories a resolution

was degraded. Also, as expected, the proportion of pure pixels in the data decreased a the reso-

lution was coarsened.

The effects of decreasing spectral heterogeneity while increasing the proportion of mixed

pixels offset each other with respect to overall classification accuracy. For the marshland, clad&

cation accuracies for the overall aggrepte of pure and mixed pixels (the predominant category

within a mixed pixel was considered the "correct" category) decreased only slightly a resolution

was degraded; from 89 percent at S meters to 7S percent at 80 meters. The decrease was due

mainly to an inability to recognize narrow features such as roads and streams at coarser resolutions.

Accuracies for categories of greater areal extent (e.g., wetland, forest, grassland) remained nearly

constant for all resolutions.

The potentiai utility of TM data for coal surface mine inspections was addressed by Irons, et.

al. (1980). Landsat MSS data and NS001-MS data were acquired over Pennsylvania surface mines

during 1979. The MSS data were found useful for surface mine inventory, but the spatial and

spectral resolution of the data were insufficient for the recognition of ground cover conditions as-

sociated with mines such as graded spoil, rough spoil, and revegetated spoil. These categories,

however, were identified and accurately mensurated by the analysis of NS001-MS data processed

for TM data simulation (Table 9). Information at this level of detail is required to assess reclama-

don success and compliance with regulations.
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Tabia 9. Ana Musuradon Accuracies for Surface Mine Categories (Irons et. al., 1980).

Category	 Accuracy of Ana	 Ground
Measurement from	 Refeream

Level 11	 Mewl tin	 TM Simulator Data	 (hectares)

Barn	 0.95	 776.8

Graded	 0.89	 413.9

Ungraded	 0.88	 362.9

Revegetated	 0.93	 758.7

Gras	 0.84	 380.0

Trees	 0.71	 378.7

*Accuracy ' 1 — (Maaaw*mnt4 mwW Refemaa/Gmund Refemm)

CONCLUSIONS

The TM is designed to increase the detail and accuracy of Earth resource information extra-

ted from the remotely acquired data of a spaceborne system. In comparison to the Landat MSS,

the enhanced information content is expected to result from the number, location, and width of

the TM spectral bands, fbm the sensor's improved radiometric sensitivity and resolution, and

from the instrument's finer spatial resolution. Investigations conducted with simulated TM data

have addressed the effects of the individual sensor characteristics as well as the collective impact

of the overall instrument design on renewable resource applications. These studies provide insight

to the potential utility of TM data.

Extensive forethought was applied to the placement of the TM spectral bands (Harnage and

Landgrebe, 197S). Data from various combinations of TM bands were found useful for several

applications. Radiometer data corresponding to the TM bands were found suitable for estimating

-oegetative parameters and for monitoring plant development. Digital image data for the TM bands
3

were applied to the accurate discrimination of crop, forest. and various other land cover categories.
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3

Ma availability of spectral bands ftom each m4or potion of the reflective spectrum (visible,

neared, and widdlednf red) was shown to be important by several band selection studio.

Thus, results of the mviewed investigation indicate that data for the TM spectral band: will prove

usefW. and the addition of the middlednitared bands will be beneficial.

Although data from the TM spectral bands have been shown to be valuable, extensive eom- 	 f

have not been made with data from the MSSparbons	 spectral bands for .remote sensing in the

visible and rearinfrared regions. In some studies, eompanVe results were obtained using data

from either TM bands or MSS bands. In most other Investiptions, the effects of the ?M's spec

trai resolution were not isolated from the effects of other sensor characteristics. Analytical justi-

fications for the placement of the TM visible and near-infrared bands remain strong. but the ob-

ssavradonal investigations summarised here Jid not strongly substantiate the advantages of the TM

band placements relative to the MSS visible and near infrared bands.

The utility of the TM thermal band (TM6) has not received extensive consideration. Them

mal data offer several promising capabilities, but these capabilities were not exploited in the analyses

of simulated TM data summarised here. Conclusions regarding the utility I the thermal band should

be rose. v until ha6a investigations are conducted:

The reviewed investigations conclusively demonstrated the value of improved radiometric sen-

sithity and resolution. The degradation of sensitivity by noise addition to simulated TM data con-

slatently reduced classification accuracy. Similarly. the reduction of quantization levels below

eight bits (256 levels) was shown to impair both classification and the sensing of vegetative para-

meters. Than results strengthen the justification for costs associated with the telemetry of eight

bit data.	
t

The TM's 30 meter spatial resolution will enable users to locate and recognize smaller fields

than can be Identified using MSS data. The improved resolution should be of immediate benefit
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to those applications requiring photointerprotation of pictorial imagery. The am resolution, how-

am, presented a dilemma to may researchers in their dtgltal saalysss of jimuhated TM data. The

One resolution otter acressed wiWi^ spectral heterogeneity causing does overlap in spectral

data space and thus reduced pure pixel classification accuracies when per pixel dessi0en were

used. On the other hand, the finer resolution reduced the number of mixed pixels in a scene

thereby improving overall classification &red area mensuration accuracies. Spectral beterogeneity 	 •

and mixed pixel proportions were found to be highly dependent on the specific eoen e , application,

and dam under consideration. The ability to identify small fields will be valuable, particularly

In agricultural applications, but additional research on classification algorithms is required before

hill -dvantage an be taken of the TM 's spatial resolution by way of digital analyses.

The effects of the individual sensor chuacteristics will not be isolated when actual TM data

are acquired. On the basis of the classi0aticu: - f simulated TM digital image data, the 4olleative

effect of the instrument's attributes will be an increase in the information content of TM data

when compared to MSS data. Classifications of simulated TM data were invariably an improvement

over malts obtained by way of the analysis of actual or simulated MSS data when either overall

classification or area mensuration accuracies were applied to the evaluation. Also, analysis of simu-

lated TM data enabled the recognition of land cover and forest categories which could not be occur-

ately identified with MSS data.

The TM data corresponding to a unit area will consist of nearly an order of magnitude more

bits-of-data than the MSS data for the same unit of area. The increased data quantity will cause

or. Increase in the expense of data telemetry, processing, and analyses. Vindication of these costs

will require effective utilization of TM data. Analyses of simulated data have begun to indicate

the potential utility and limitations of the actual data. Perhaps more importantly, the reviewed

research has high"ahted aspects of data analyses which require fti dwr research and development

before !till advanta,e an be taken of Thematic Mapper data.
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Ri MMMENDATIONS	 I
I

Tic above conclusions point to area of research which deserve Nether consideration. For

instance, a miW hinderanee to the use of TM data will be the data quantity per unit am on the

ground. Users will not want the expense and difficulty of processing and analyzing a lull cmnple-

meat of data when a subset will suffice for a specific task. Since a reduction of quantization low

els has been shown to depade results, a more promi ft approach to data quantity reduction is

•	 the selection of a subset of spectral bends. Several studies indicated that data from three or four

TM bands are adequate for the recognition of forest categories. The selection of spectral bands

for a variety of other tasks requires further consideration.

TM thermal data also require Nether study. Research on thermal data applications has been

widely conducted, but few investigators have specif ically addressed the potential utility of TM

thermal data. This utility may be limited by the constant time-of-day of the Landsat-D overpass

and by the spatial resolution of the thermal channel, but then limitations do not eliminate all

potential applications. Since thermal data applications may be quite distinct from reflective date

applications, the potential utility of TM thermal ds.ta deserves further evaluation.

The development of methods to classify fine spatial resolution data is important. Fine resolu-

tion often reduced pure pixel classification accuracies when familiar per-pixel classifiers were used

in past studies. The extraction of features or the use of classifiers which take into account the

spatial, textural, and contextural characteristics of the data are techniques which may improve the

classification of high resolution data. Development and evaluation of then techniques will enable

the effective exploitation of TM's spatial resolution.

Research on TM data utility needs to extend to a wider variety of applications. Past investi-

gations have focused primarily on agriculture and forestry. TM data, however, can potentially pro-

vide valuable information for a wide rar=e of Earth resource management issues. Applied research
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ahcuid be conducted to extend I'M data udky to much emu a land use rd urban plttlniv&

land capal ty aoasment, mg r.rapping, snow mappft and wateshed management.

Mw development of Moue mown can be he iaad by addidond resarch on the dhat

of each enneor parameter on information content and utSity. Sensor desipn bwbes tradeoffs

between engineering or oat limitations and spectral, spatial, and radiometric resolution deseddsta.

The launch of Lndaat-D will afford an opportunity to observe the etrects of upprading the USS

resolutions to the 711 resolutions. Research is needed to both bolan dw effects of each sensor

parameter improvement sad to evahrate tM interactions between sensor attributes.

The launch of Landat-D will be an important event for the remote sensing community. The

Thematic Mapper abowd Lendsat-D will be the Mt sipriticant refinement of speceborne sensors

dedicated to Earth resource observations since the launch of the MSS aboard Landat-1 in 1972.

Analyses of simulated 7W data have demonstrated that the sensor's attributes will effect not only

data utility, but also the manner in which the data are analyzed and applied. Continued research

will prepare tho user community for effective utilization of the data as soon as it becomes avail-vail-
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