General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Mns^ Technical Memorandum 84941

Type II Radio Bursts, Interplanetary Shocks and Energetic Particle Events

H. V. Cane and R. G. Stone

NOVEMBER 1982

National Aeronautics and
Space Administration
Goddard Space Flight Center
Greenvelt, Maryland 20771

Using the ISEE-3 radio astronomy experiment data we nave identified 37 interplanetary (IP) type II bursts in the period September 1978 to December 1981. We list these events and the associated phenomena. The events are preceded by intense, soft X ray events with long decay times (LDEs) and type II and/or type IV bursts at meter wavelengths. The meter wavelength type II bursts are usually intense and exhibit nerringbone structure. The extension of the herringbone structure into the kilometer wavelength range results in the occurrence of a shock accelerated (SA) event. The SA event is an important diagnostic for the presence of a strong shock and particle acceleration. The majority of the interplanetary type II bursts are associated with energetic particle events. Our results support other studies which indicate that energetic solar particles detested at 1 A.U. are generated by shock acceleration.From a prelimirary analysis of the available data there appears to be a high eorrelation with white light coronal transients. The transients are fast i.e. velocities greater than $500 \mathrm{~km} / \mathrm{sec}$.

TYPE II RADIO BURSTS, INTERPLANETARY SHOCKS AND ENERGETIC PARTICLE EVENTS
H. V. CANE* AND R. G. STOLE

Laboratory for Extraterrestrial Physics
NASA Goddard Space Flight Center, Greenbelt, Maryland 20771

Besearch Associate - University of Maryland

ABSTRACT

Using the ISEE-3 radio astronomy experiment data we mave identified 37 interplanetary (IP) type II bursts in the period September 1978 to December 1981. We list these events and the associated phenomena. The events are proceded by antense, soft X ray events with long decay times (LDEs) and type II and/or type IV bursts at meter wavelengths. The meter wavelength type If bursts are usually intense and exhibit herringbone structure. The extension of the herringbone structure into the kilometer wavelength range results in the occurrence of a shock accelerated (SA) event. The SA event is an important diagnostic for the presence of a strong shock and particle acceleration. The majority of the interplanetary type II bursts are associated with energetic particle events. Our results support other studies which indicate that energecic solar particles detected at 1 A.U. are generated by shock acceleration.From a preliminary analysis of the available data there appears to be a high correlation with white light coronal transients. The transients are fast 1.t. velocities greater than $500 \mathrm{~km} / \mathrm{sec}$.

The type II burst results from plasma emission generated by a shock as it propagates out through the solar corona. The frequency drift rate of the burst is related to the shock's velocity. Ground-based observations of type II bursts pertain to coronal heights less than about 5 solar radil. A shock typically takes 2 days te reach the earth at 215 solar radii where it causes a sudden comencement geomagnetic storm. In situ observations of shocks provide information about shock properties including the velocity, but such observations have been made primarily by earth orbiting sate?lites. Thus shock properties in the region between 5 and 215 solar radil are not well studied. Satellite experiments operating at low radio frequencies can access this region by remotely observing interplanetary type II bursts. The value of such observations are limited in part by our current understanding of the radio emission process.

Two events were reported from observations from IMP-6 during the previous period of solar maximum (Malitson et al., 1973,1976). Boischot et al. (1980) reported the detection of a number of events from the Voyager spacecraft and there have been accounts of detections from the Prognoz-8 satellite (Pinter et al., 1982). However the ISEE-3 radio astronomy experiment (Knoll et al., 1978), which operates over a frequency range of 2 MHz to 30 kHz , has obtained the most complete and detailed set of observations of interplanetary (IP) t.jpe II bursts thus far available. The experiment is more sensitive than previous experiments and because of its orbit is much less troubled by terrestrial kilametric radiation. In addition the experiment can observe the sun continuously. An initial paper reporting the detection of 12 events was
prepared in 1980 and published in 1982 (Cane et al. 1982).

Cane et al. (1981) reported on a new class of kilometer wavelength bursts, the shock accelerated (SA) events, alsb related to energetic shocks. The SA event is the low frequency continuation of the ievringbone structure associated with meter wavelength type II bursts. At kiloaieter waveleagths these events precede the IP typu II burst. The SA event allows the determination of the start of the type II event low in the corona. The sequence of events is illustrated in figure 1 (from Cane et al., 1981). There is no frequency coverage between about 20 and 2 MHz . The time difference between the end of the meter wavelength type II burst and the observation of a type II burst at 2 MEz is of the order of $1 / 2$ hour. However the rapid drift of the SA event means that the time difference between the 2 MHz SA event and the start of the meter wavelength type II burst is of the order of a minute. Thus associations between meter wavelength and kilometer wavelength type II bursts can be made unambiguously.

In this paper we present information on the IP type II events and associated phenomena. Since the writing of the previous paper our understanding of the data has greatly improved and the sample of events has increased three-fold. It is therefore timely te provide an up-date and more comprehensive description.

> II. DATA ANALYSIS

The ISEE-3 radio astronomy data shows numerous slow drift features in the dyamic spectra (plots of intensity as a function of frequency and time). The
majority of these are short-lived with very slow drift rates and wa have no explaination for their origin. A smaller number last for many he'urs but because they commence in the middle of our frequency range we dave no way O_{i} determining a likely starting time at the sun. Our list of type II bursts has been restricted to those events which drift through the data at a rate consistent with known shock velocities and which are preceeded by an SA event. Thus we can identify the start of the event at the sun. Whereas other events may be related to solar shocks we include only those which are clearly the kilometer wavelength counterpart of the meter wavelength phenomenom.

In table 1 we list the IP type II events. As in our previous catalog there are two categories: Category i events have been unaroiguously identified with a sudden commencement. For the most part the type II emission is discernable over the frequency range at which the events are best observed namely $500-80 \mathrm{kHz}$ and therefore the events are observed for many hours. The reason for these upper and lower frequency bounds will be discussed later. The events marked with an asterisk are not as well observed because of other activity occurring at the same time, which limits the detectibility of the burst.

Category 2 events are those bursts winch are not followed by a sudden commencement or only last for a few hours. Some of the events not followed by a sudden commencement are associated with Pares far from central meridian and the shock probably was not extensive enough in heliographic longitude to intercept the earth.

There exist a number of candidate IP type II events which are not listed.

One event on Dec 5, 1981 was excluded because there was no ground-based data to corroborate the presence of a strong shock. However a particle event was detected as was a sudden commencement and it is likely that the event originated behind the west limb. Another event on May' 10 , 1981 was excluded brcause the start of the event at the sun could not be determined very accurately. It is probable that this event was associated with an east limb coronal transient observed by the P78-1 coronograph. For a number of events there was corroborative ground-based data but the low frequency data was of poor quality or the event was observed only over a very small frequency range.

The table lists a number of phenomena examined in conjunction with the low frequency data. In general we have used data published in Solar Geophysisal Data (SGD) and apart from Culgoora dynamic spectra, have not made use of original data sets. In the main our study has been restricted to phenomena which occur high in the corona. We have not used radio data outside the meter wavelength band. Decameter wavelength information was not used because observatory coverage in this region of the spectrum is at best limited and often rendered unuseable herause of interference.

The time given in the second column is the start of the meter wavelength type II burst or, if no type II was reported, the start of the SA event. In the latter case the time is enclosed in brackets.
(i) Ha observations

Most events bave been associated with an Ha Plare. The Plare was deternined using the start of the meter wavelength type II burst which occurs
within a few minutes of the maximum in Ha (Roberts, 1959). All the events with good identification were bright flares of importance 1 or greater.

The flare location is also shown in table 1 . The question mark denotes an assumed behind-the-limb Plare.The longitudinal distribution of flares associated with IP type II bursts is shown ir table 2 and fIgure 2.

(ii) Soft X-rays

The 1-8 A soft X-ray class mas been estimated from the daily graphs presented in SGD. The majority of the X-ray events are intense and have decays longer than 4 hours 1.0 they are long duration events (LDEs). The 'y' in the colum after the X ray class indicates an LDE event was observed. Thirty-five of the 37 events were seen in soft X-rays. Of the two remaining events, one occurred during an X-ray data gap and the other has been attributed to an event behind the west limb. Iwenty-four of the associated X-ray events have long decays and a further 9 have decays between about 2 and 4 hours. Two events had decays less than 2 hours. These are associated with slow, category 2 IP type II bursts.

For the year 1981 we have catalogued all soft x-ray events whose $1-8 \mathrm{~A}$ class was greater than $M 4$ and with a duration longer than 4 hours. of 18 events 10 were associated with IP type II bursts. Six further events were associated with SA events only ice. not followed by a type II burst. The remaining 2 events occurred during ISEE-3 data gaps. It would appear that fatense LDE X-ray events correlate well with strong shocks, many of which produce IP type II bursts.
(iii) Meter wavelength radio emission

Eighteen of the 37 events are preceded by a meter wavelength type II/IV burst pair, 10 events by a type IV burst and 9 by a type II burst. Reports of continuum are included wader the classification of type IV. The annotations 'W' and 'p' mean 'weak' and 'possible' respectively. Most of the meter wavelength type II bursts are classified as intense. The dynamic spectra for events also observed by the Culgoora observatory exhibit complex behaviour with herringbone structure. We believe that all IP type II events are associated with meter wavelength activity. As discussed in the introduction to this section, the only candidate events not associated with meter wavelength activity are probably behind-the-limb events.

The reported occurrences of type III bursts associated with the meter wavelength type II and/or type IV events have been listed. The intensity class is given and the time interval between the start of the meter wavelength type II burst, or the SA event, and the reported start of the type III activity. The annotation 'D' implies that the type III activity occurred during the meter type II or type IV burst. Nine of the IP type II events are not preceded Within 25 wins by, or associated with, any type III activity. The statistics do not include single bursts (ie. type JIb) or ongoing storm activity. For an additional 4 events the type III activity commenced after the start of the type II burst and may be herringbone structure. Only one event is proceeded by intense type IIIG/V activity. This event occurred on July 23 1980, during Culgoora observing time and an examination of the data reveals the possible presence of two type II bursts. ins first event occurred shortly after the type III/V burst. The second event commenced a few minutes later and is
the event which continued to kilometer wavelengths.
(iv) Coronal transients

As shown in table 2 there were less IP type II bursts in 1980 tan in 1979 or 1981. lone of the 37 events have been associated with a coronal transient observed by the SMM coronagraph. Conversely the P-78 coronagraph; which began operating in late March 1979, has observed many transients of which a number have been associated with IP type II events. We have indicated whether a transient was seen or not with 'y'. The ' g ' indicates a data gap. These gaps will be filled in as additional data is made available. From the comparison to date all bus one If type II event has a fast (velocity grater than $500 \mathrm{kci} / \mathrm{sec})$ transient associated with it. For one event, marked with a question marx, it is unclear whether a transient did occur. A study to determine the correlation between fast transients and IP type II bursts is underway.
(v) Energetic particles

In table 1 we have included the magnitude of the associated particle events. The data is the count rates from the $>18 \mathrm{Mev} / \mathrm{n}$ detector onboard ISEE-3 (T.T. vo Rosenvinge, private communication). Intensity classes $1,2,3$ correspond to count rates greater than $1,10,100$ counts/sec respectively. Thirty-two of the 37 events were associated with energetic particle events even though many of the lire sites were not well connected. For most western events the particle onset time is within an hour or two of the start of the solar activity. for some eastern events the delay is as long as 10 hours.

Three events are considerably delayed (of the order of 24 hours) but have been associated with the solar event because of the absence of otingr candidate flares. These 'delayed events' are mariked with a question mark.

In Pigure 3 we show the xilometer wavelength activity associated with .particle events during a period of 4 minths. The figure suggests that larger particle events can be associated with IP type II bursts whereas smaller events can usually be assisiated with an SA event not followed by an If type II burst. The association of a particle event with an $S A$ event allows unambiguous identification of the associated flare, because of the positional information obtained with the low frequency radio experiment.
(vi) Sudden commencements and shocks

Sudden commencements were associated with all category 1 events by definition and 11 of the category 2 events. Shocks were detecterd at ISEE-3 approximately 30 minutes beforf the $S C$. The radio asironomy experiment also detects the shocks in situ by the increase in the low frequency (LF) continum (Hoang et. al, i980) corresponding primarily to the increase in the ambient deasity at the spacecraft.
(vi1) Transit velocities

The transit velocities of the shocks have been deduced from the time interfal between the start of the event (in column 2) and the arrival of the shock at 1 aU as determined by the sudden commencement.

For the 22 category 1 events a mean transit tim of approximately 2 days
and a kean transit velocity of $840 \mathrm{~km} / \mathrm{sec}$ is obtained. With the inclusion of the 11 category 2 events followed by sudden commencements we find a mean transit velocity of $800 \mathrm{~km} / \mathrm{sec}$. The velocity distribution is shown in figure 4. No event had a transit velocity greater than $1100 \mathrm{~km} / \mathrm{sec}$ (corr, sponging to a transit time less than 1.5 days).

In fIgure 5 we show the distribution of transit velocities as a function of glare longitude. The dashed line shows the mean transit velocity for 6 ranges of longitude. The distribution in longitude is reasonably uniform. The in velocity of shocks from the limbs relative to those from near central. meridian is at most 20%, suggesting that to a first approximation most shocks expand isotropically. Individual events may expand anisotropically such as the event of September 14,1979 . This event had a transit velocity of $440 \mathrm{~km} / \mathrm{sec}$. It was the last of 4 large Mares from the same active region and thus the shock was propagating into a very disturbed corona. The intensity of the event at kilometer wavelengths was comparable to that from events with transit velocities near $900 \mathrm{~km} / \mathrm{sec}$. (We show in another paper that the intensity of an IP type II burst is a function of shock velocity). This suggests that radial above the flare site ($£ 90$) a transit velocity of the order of $900 \mathrm{~km} / \mathrm{sec}$ would have been determined.
III. DISCUSSION

We have examined the correlations between IP type II bursts and other solar phenomena. IP type II bursts and SA events correlate well with energetic particle events and this is consistent with theoretical (Ramaty et al., 1980) and observational evidence (Gloeckler et al., 1976) which suggest that Rare produced shocks are responsible for the production of solar cosmic rays.

ORiGiveil PAGE IS
 OF FOOR QUALITY

The association of LDE's with white-light transients has been shown by Sheeley et al. (1975) and Kahler (1977). The association between coronal mass ejection events and proton events was shown by Kanler et al. (1978). The association between particle events and LDE X-ray events is discussed by Nonnast et al. (1982). Since the current models suggest that energetic particles are shock accelerated all the above phenomena i.e. transients, proton events and LDE X-ray events, should be associated with strong-shocks. Strong shocks are confirmed by our associations of these phenomena with IP type II bursts.

The typical starting frequency of the fundamental of meter wavelength type II bursts is $7 \mathrm{C}-100 \mathrm{MHz}$ (Kundu, 1965). An initial investigation of Culgoora dynamic spectra shows that tue starting frequency of the meter wavelength burst associated with many of the IP type II events and the events producing an SA event alone, is probably well below 70 MHz . This resuit can be deduced from the observation of a number of SA events for which there was n associates meter wavelength type II burst. The observation of an SA event at 2 MHz implies the presence of a shock at coronal heights below the 2 MHz plasma level. The type II burst from which the SA event originates must occur above 2 Mis. See figure 1 for clarification. If no event is detected at meter wavelengith the type II burst must occur in the frequency range between 20 and 2 MHz . This means that for those SA events not associated with a meter wavelength type II burst, whick fncludes about 30% of the events followed by an IP type II burst, the type II commenced below 20 MHz . This result suggests that the shocks which survive to the IP medium are formed inigh in the corona where presumably the atsence of closed field lines facilitates their escape. The alternative possibility that the shocks are formed at lower heights but

ORIGINAL PAGE IS OF POOR QUALITY

are not producing detectable radio emission seems iess likely.

The SA events and IP type II bursts not associated with a meter wavelength type II burst are associated with a type IV burst. We suggest that the observation of a type IV burst is a good indleator of the presence of a shock and that if $x 0$ meter waveleugth type II burst is detected that a type II burst may have commenced below the lowest frequency available to ground based observers.

The standard sequence of events in a large fare is often illustrated as consisting of two distinct stages (Wild, Smerd and Weiss, 1963). A group of intense type III bursts is shown to occur within a few minutes of the start af the flare. These are followed about five minutes later by a type II and a type IV burst. As can be seen from table 1 , the sequence of meter wavelength activity associated with the IP type II events is extremely varied. Although the type II/IV burst pair occurs about 50% of the time there are also events with type II and no type IV and vice versa. In addition the type III bursts can commee before or during the type II burst and are not always a separate eatity. More importantiy, for 9 events type III activity is completely absent. This complete absence of type III bursts was also noted by Svestka and Fritzova-Svestkova (1974) who studied the neter wavelength activity associated with large proton evenis. The diea of a standard sequence of events is misleading.

We interpresed the transit velocity distribution as a function of heliographic longitude as indicating that, on the average, interplanetary shocks propagate isotropically. This agrees with the results of Chao and

Lepping (1974) who found that "the average: shock surface in the ecliptic plane near the earth's orbit lies on a circle centred at the sun with a radius of 1 AU'. The fact that many of the shocks are detected at the earth and yet originate in regions far from central meridian, indicates the huge angular extent covered by such shocks. Essentially unambiguous associations can be made between shecies detected at or near earth ant the responsible flare region because of the presence of the IP type bursts and the SA events.

Figure 2 suggests that there might he an E-W asymmetry in the location of flares associated with IP type II bursts. There were 15 events from sites east of E3O as against 9 events west of W3O. We point out that because of the dependence of shock structure on the Archimedian spiral of the interplanetary magnetic field, we might expect any asymmetry to be in the eastern direction 1.8. to favour eastern flares. The western portion of shocks are expected to have more highly compressed magnetic field than the eastern portion and to be well defined quasi-perpendicular shocks. This geometry has been invoked to explain' the east-west asymmetry in the magnitude of forbush decreases (Baraden, 1973). However the sample of available events is too small to establish the statistical significance of this result as yet.

ORIGINAL PAGE IS
 OF POOR QUALITY

IV CONCLUSION

We have identified 37 If type II bursts and listed the associated phenomena. The following results were obtained;

1. IP type II bursts are associated with meter wavelength type II and/or type IV bursts, intense LDE X-ray and energetic particle events and probably with coronal transients.
2. A number of events have no associated type III activity at meter wavelengths.
3. The starting frequencies of the associated meter wavelength type II bursts may be lower than average.

The unambiguous identification of shocks detected at 1 AU with a source location on the sun provides the following results;
4. The mean transit velocity of the more energetic solar shocks is 800 $\mathrm{l} \mathrm{m} / \mathrm{sec}$ corresponding to a transit time of about 2 days.
5. To a first approximation the shocks propagate isotropically.

We thank T. T. Yon Rosenvinge for providing ISEE-3 particle data,
R. Howard for making available P78-1 coronagraph data and R. T. Stewart for
sending Culgoora dynamic spectra. We are grateful to E. W. Cliver for a critical review of this paper.

ORIGINAL PAGE IS

OF POOR QUALITY

RSFSRENCES

Barnden, L. R. Proc. i3:n Int. Cosmic Ray Conf, :973, 2, 1277.
Bqischo:, A., Riddle, A. C., Pearce, J. B., and harwick, J. W. 1980, Solar Phys, 65, 397.

Cane, H. V., Sione, R. G., Fainberg, J., Stewart, R. T., Steinberg, J. L. and Hoang, S. 1981, Geophys Res, Leṫ亡, 8, 1285.

Cane, d. V., Stone, R. G., Fainberg, J., Steinberg, J. L. and Hoang, S. 1982, Solar Phyg, I8, 187.

Chao, J. K. and Lepping, R. P. 1974, J. Geophys, Res, 79, 1799.

Gloeckler, G., Sciambi, R. K., Fan, C. Y., and Hovestadt, D. 1976, A0. J. (hetzers), 209, L93.

Hoang, S., SEeinberg, J. L., Epstein, G., Tilloles, P., Fainberg, J. and Stone, R. G. 1980, J. Geophys, Res., 85, 3419.

Kahler, S. 1977, Astroonvs. J., 214, 891.

Kahler, S., Hildner, E. and van Hollebeke, M. A. I. 1978, Solar Phys., 57, 429.

Knoll, R., Epstein, F., Huntzinger, G., Steinberg, J. L., Fainverg, J., Grena, F., Mosier, S. R. and Stone, R. G. 1979, IsEE Trans Geosc. Slectronics, GE-16, 199.

Kundu, M. R. 1965, Solar Radio Astronomy, Interscience, New York.

Malitson, H. H., Fainberg, J. and Sione, R. G. 1973, Astrophys Letiers, 14, 111.

Malitson, H. H., fainberg, J. and Stone, R. G. 1976, Soace Sci. Rev, io, 511.

Nonnast, J. H., armstrong, T. P. and Kohl, J. W. 1982, J. Ceophys. Res., 37 , 4327.

Pinter, S., Grigorieva, V. P., Kecskemety, K. and Kudela, K. 1982, Hungarian Academy of seiences, KFK1-182-20.

Ramaty, R., et al., 1980, in Solar Elares, ed. P. A. Sturrock (Boulder: Colorado Associated University Press), Chap. 4, 117.

Roberts, J. A. 1959, Aust J. Phys., 12, 327.

Sheeley, N. R., Jr., Sohlin, J. D., Brueckner, G. E., Purcell, J. D., Scherrer, V. E., Tousey, R., Smith, J. B., Jr., Speich, D. M., Tandberg-Hanssen, E., Wilson, R. M., DeLoach, A. C., Hoover, R. B., and McGuire, J. P. 1975, Solar Physe, 45, 377.

Svestka, 2. and Fritzova-Svestkova, L. 1974, Solar Phys_, 36, 417.

Wild, J. P., Smerd, S. F., and Weiss, A. A., 1963, Ann, Rev, Astron, Astrophys., 1, 291.

(i)

TABLE 1 (cont.)

$$
\begin{aligned}
& \text { に }
\end{aligned}
$$

$$
\begin{aligned}
& \text { E E E E E E E E }
\end{aligned}
$$

ORIGINAL PAGE IS OF POOR QUALITY

Figure Captions

Figura 1. A schematic representation of the relationship between meter wavelength type II activity with herringbone structure and the activity observed at kilometer wavelengths. Only the long wavelength elements of the herringbone structure are shown (from Cane et al., 1981).

Figure 2. Histograms of the distribution of flare longitudes of the flares associated with the IP type II bursts.

Figure 3. Count rate of the $>18 \mathrm{Mev} / \mathrm{nucleon}$ detector on ISEE-3 (courtesy of T. T. von Rosenvinge). I. occurrences of IP type II bursts and SA events are indicated.

Figure 4. Histogram of the distribution of transit velocities of the shocks associated with the Jif iyps II events.

Figure 5. Shock transit velocities shown as a function of the longitude of the associated Plare.

ORIGINAL PAGE is OF POOR QUALTTY

ORIGINAL PAGE IS OF POOR QUALITY

LONG FERIODIC SERPS IN THE SOLAR SYSFEM

P. Bretagnon

(SASE-TE-76994) LOXG PERICDIC TEEES IS THE צ83-17434SOLEE SISTEF (sational Aercmantics and SpaceAdainistration) 26 p HC $A 03 /$ NF 101 CSCL 03B
Unclas

Translation of "Termes à longues périodes dans le systène solaire", Astronomy and Astrophysics, Vol. 30, Fo. 1, Jan. 1974, pp. 141.1 .54.

OREGNAL PREE ES OF POOR QUNLIT

LONG PERIODIC TERAS IN THE SOLAR SYSTEM

P. Bretagnon

Bureau des Longitudes, Observatoire
17. rue E. Deutsch Ge la seurthe

F-75014 Paris, France

Received June 27, 1973

SUMMARY [English language summary from the original text]

We have studied the long period variations of the eight planets of the solar system (Pluto is excluded). We first calculated the Lagrange solution. We then introduced the long period terms of fourth order in excentricities and inclinations in the disturbing function. In a second approximation we took into account the contribution of the short period terms which provide the perturbations of the first order with respect to the masses. We have paid special attention to the problem of the determination of the integration constants.

We began with the expansion of the disturbing function R [formula (1)]. We used the variables $h=e \sin \omega, K=\cos \omega, p=\sin \frac{i}{2}$ $\cos \Omega, q=\sin \frac{i}{2} \cos \Omega$ and obtained expression (3) for the disturbing function and the equations of Lagrange (4).

In the Lagrange method, one retains only the second order terms of the quantities h, k, p, q of the so called long period part of the disturbing function. The resolution of the system of differential equations thus obtained gives the solution of Lagrange (5). The corresponding integration constants are given in Tahles 2, 3, 4 and 5.

We later introduced the long period terms of the disturbing function, of fourth order in the quantities h, k, p, q. These terms give rise to third order terms in the Eq. (6) for the variables h_{u}, for example. We then substitute rumerically the Lagrange solution

[^0]in these thiri order terms and hence obtain the form (8) of the equation for $\mathrm{dh}_{\mathbf{u}} / \mathrm{dt}$.

In a second approximation, we also introduced the short period terns of the disturbing function. The masses are substituted numerically and the terms thus found are indentical in form to those arising from long period terms of fourth order of the disturbing function and are directly added to the Eq. (8).

To solve the systems of Eq. (8) and (9), we used the KrylovBogolioubov method, which consists in seeking a solution of the form (ll) with a modification of the frequencies given by (12). Through (12) and derivation of (11) we obtain (13). In addition, the substitution of (11) into (8) and (9) gives (14), so that we get the two expressions (13) and (14) for $d h_{u} / d t$ and $d k_{u} / d t$; their third order parts are given in (15) by identification. It is then possible to determine the quantities $M_{u, i, f,} N_{u, f, \in,} E_{j}$ and C_{j} introduced in (11) and (12).

The solutions are given by (16) and (17) and in Tables 8 to 13.

The comparison between Tables 3 and 8 shows that the integration constants have been greatly modified, particularly for the planets Mercury, Venus, Earth and Mars. This is due to the importance of third order terms for these planets. Table o gives the modifications B_{i} and C_{i} of the frequencies as well as the new values of these frequencies: $\tilde{g}_{i}=g_{i}+B_{i} ; \dot{s}_{i}=s_{i}+C_{i}$. Tables 10 and 11 show the amplitude of the Lagrange solution calculated with the new constants; Tables 12 and 13 show the amplitudes $M_{u, v,}$ and $N_{u, v, \theta}$ of the arguments of higher order.

This work displays the relative importance of the different contributions: it is, for example, useless to introduce the long period terms of fifth order if one has not taken into account the short period terms. We have included the major contributions; the neglected terms would not introduce large modifications of the
constants of integration. However, the calculation should be repeated including long perioc terms of fifth order and short period terms of higher order.

Key words: planetary theory, secular perturbations

There have been several studies of long period terms in the solar system- stockwell, Harzer (1895), Hill (1897), and more recently Brouwer and van Woerkom (1950) and Anolik et al. (1069).

Brouwer and van Woerkom calculated the Lagrange solution for the eight planets and in particular investigated the Jupiter-Saturn case. This was a continuation of the work of Hill, who had determined a mean perturbation function on the basis of Le Verrier's findings. Brouwer and van woerkom used this perturbation function, which had been extended to sixth order excentricities and inclinations, for Jupiter-Saturn. It is difficult, however, to determine the accuracy of their result because Hill empirically established some of the coefficients.

Anolik et al. dealt with the eight planet case by introducing all the perturbation function's long period terms up to fourth order excentricities and irclinations.

Our goal was to evaluate the significance of the various long period terms according to their origin. We too dealt with only the eight planet problem. Pluto was neglected for several reasons. First of all, the generally accepted mass of Pluto, which previously had been $1 / 360,000$ the solar mass, is now $1 / 1,8000,000$ with a large uncertainty:

$$
\frac{m_{\bar{\tau}}}{m_{p}}=1 \$ 00000 \pm 600000 .
$$

Moreover, Pluto's radius vector can be less than Neptune's, with the result that expansions in α, the ratio of semimajor axes, of the perturbation function, are no longer convergent. Finally, the introduction of Pluto's influence causes the appearance of very large resonances between Neptune and Pluto whose physical character is
unclear.

Lastly, we calcuiated the eight planet Lagrangian solution and then introduced the perturbation function's fourth order terms as well as the contribution of the hort period terms of first order with respect to the masses. In addition, we particulary concentrated on the problem of determining the integration constants because of the significance of the terms modifying the Lagrangian solution.

The expansions of perturbation function R that we used are those constructed by Chapront at the Bureau des Longitudes. They take the fomr of analytical expansions in e and $\sin i / 2$, where e represents the excentricity and i the inclination of the orbital plane relative to the plane of origin.

$$
\begin{equation*}
R=\sum_{\ldots, \ldots j} Q(x) e_{l}^{\prime} e_{E}^{2} \times\left(\sin \frac{i_{t}}{2}\right)^{\prime} \times\left(\sin \frac{i_{E}}{2}\right)^{\prime \prime} \cos \phi_{j} \tag{1}
\end{equation*}
$$

with

$$
\phi_{j}=j_{1} i_{1}+j_{2} j_{E}+j_{3} \varpi_{I}+j_{4} \sigma_{E}+j_{5} \Omega_{1}+j_{6} \Omega_{E} .
$$

λ being the planet's longitude, $\bar{\omega}$ the argument of the perinelion, and Ω the argument of the node. The subscript I refers to the inside planet and E to the outside one. The perturbation function's long period portion is that part for which λ_{I} and λ_{E} are absent, i.e. in which $j_{1}=j_{2}=0$. The summation with respect to the small quantities e_{I}, e_{E}, $\sin i_{I / 2}$, $\sin i_{E / 2}$ is done starting with zero order terms and then 2, 3,...

The orbit's descriptive elements (the semimajor axis a, the excentricity e, the inclination i, the node argument Ω, and the perihelion argument $\bar{\sim}$ are those of Newcomb. These elements are expressed relative to the 1850.0 ecliptic averaged over short periods, which will serve as our point of departure ($t=0$ for 1850.0) in determining the integration constants of the sought after solutions. Also, we used more recent values for the masses of Venus, Earth, Mars, and Saturn than the ones Newcomb used.

[^1]major axes a_{1} are related to the values of n_{1} by the expression $n_{1}^{2} a_{1}^{3}=$ constant. Now, we need for the mean motions values from which the secular perturbations have been removed. We therefore calculated the secular perturbations in on the basis of Chapront's and Simon's work concerning the construction of planetary theory with secular terms.

In the end, we used for each planet the value n of the mean motion defined by:

$$
n=n_{1}-\delta n
$$

and the value a of the semimajor axis obtained by

$$
n^{2} a^{3}=\text { constant. }
$$

We have assembled the elements adopted for the eight planets in Table 1.

Table 1
Planetary Elements for 1850.0

Frame	$a_{1}(1 / \mathrm{yr})$	a ("/yr)	nj (AU)	$n \cdot(A U)$	c	\square	i	Ω	m m
${ }^{2}$ Naiury	5381016.3893	5381023.1732	0.3870986713	0.3870983460	0.20560396	$750719: 37$	$70007 \% 00$	46 3312:24	60\%OMO)
Vious	2106641.4171	2106651.631	0.7233322169	0.7233298487	0.00684458	1292734.5	32335.26	75 1947.41	4185000
Eart	1295977.4496	12959756094	1.000000021	1.000000968	0.01677126	1002136,30	0		32×400
Mes	689050.9354	689059.2>17	1.523691423	1.5236791387	0.09326685	3331752.37	15102.42	* 482403.40	3099000
mpeter	109256.63954	10920505033	5.203×13945	5.202600424	0.04×25382	115426.72	11841.81	9×5558.16	1114.355
tos Stum	43996.20414	43585.6112	$9.5350+3653$	$9.55+827367$	0.05606075	9006.39 .53	22939.26	1123051.38	$3+10$
${ }^{\text {fa }}$ 'vanus	15426.092 S	15 SaL	19.15:2s185	99.21710613	0.1469055	:68 1546.9	$0+620.54$	731408.0	?2xay
Diptune	7864.698	7845.38	30.057342	30.111791	0.0085082	431943.7	14701.81	1300800.2	10314

[Commas in tabulated material are equivalent to decimal points.]

We chose the following variables to analyze our problem:

$$
\begin{array}{ll}
h=e \sin \pi . & p=\sin \frac{i}{2} \sin \Omega . \tag{2}\\
k=e \cos \pi . & q=\sin \frac{i}{2} \cos \Omega .
\end{array}
$$

This choice was made in order to avoid the appearance of quantivies expressed in e and i in the denominators of the Lagrangian equations. Such quantities could cancel each other out. In addition, this is necessary for the resolving process because in this wav the solutions are expressed formally through the use of these variables and, in the
algorithm of solution's construction, the second members always retain the same polynomial form.

The change in variables defined by (2) yields in the perturbation function in form (1) an expression of the form:

$$
\begin{equation*}
R=\Sigma S(x) h h_{1}^{\prime} h_{E}^{\prime} h_{1}^{\prime} h_{E}^{\prime} p_{i}^{\prime} p_{E}^{\prime} p_{E}^{\prime} \psi_{i}^{\prime \prime} \|_{E}^{\prime 2} \cos \left(i_{1} i_{1}+i_{2} \dot{c}_{E}\right) \tag{3}
\end{equation*}
$$

where the summation is extended to such exnonential values that $r_{1}+r_{2}+s_{1}+s_{2}+t_{1}+t_{2}+u_{1}+u_{2} \leq$, where w is the order $a t$ which it is desired to limit the calculations.

For the variables defined in (2) the Lagrange equations are written:

$$
\begin{aligned}
& \frac{d h}{d t}=\frac{\left(1-e^{2}\right)^{12}}{n a^{2}} \frac{\dot{c} R}{\dot{c} k}-\frac{h\left(1-e^{2}\right)^{2}}{n a^{2}\left[1+\left(1-e^{2}\right)^{2}\right.}=\frac{\dot{c} R}{\hat{i j}}+\frac{k p}{2 n a^{2}\left(1-e^{2}\right)^{12}} \frac{\hat{i} R}{\hat{c} p}+\frac{k q}{2 n a^{2}\left(1-e^{2}\right)^{12}} \frac{\dot{c} R}{\hat{c} q} \\
& \frac{d k}{d t}=-\frac{\left(1-e^{2}\right)^{2}}{n a^{2}} \frac{\dot{c} R}{\dot{c} h}-\frac{h\left(1-e^{2}\right)^{2}}{\left.n a^{2}\left[1+11-e^{2}\right)^{2}\right]} \frac{i R}{\hat{c} \dot{i}}-\frac{h p}{2 n a^{2}\left(1-e^{2}\right)^{12}} \frac{\hat{c} R}{\hat{c} p}-\frac{h q}{2 n a^{2}\left(1-e^{2}\right)^{12}} \frac{\partial R}{\hat{c} q} \\
& \frac{d p}{d t}=\frac{1}{4 n a^{2}\left(1-e^{2}\right)^{12}} \frac{\dot{c} R}{\dot{c} q}-\frac{p}{2 n a^{2}\left(1-e^{2}\right)^{1}} \frac{\bar{c} R}{\hat{c} \dot{j}}-\frac{p k}{2 n a^{2}\left(1-e^{2}\right)^{12}} \frac{\dot{c} R}{\dot{i} h}+\frac{p h}{2 n a^{2}\left(1-e^{2}\right)^{12}} \frac{\dot{c} R}{\dot{c} k} \\
& \frac{d q}{d t}=-\frac{1}{4 n a^{2}\left(1-e^{2}\right)^{12}} \frac{\dot{i} R}{\hat{c} p}-\frac{q}{2 n a^{2}\left(1-e^{2}\right)^{1}} \frac{\hat{c} R}{\hat{c} \dot{j}}-\frac{a k}{2 n a^{2}\left(1-e^{2}\right)^{12}} \frac{\hat{c} R}{\hat{c h}}+\frac{q h}{2 n a^{2}\left(1-e^{2}\right)^{1 / 2}} \frac{\hat{c} R}{\partial k} \\
& \frac{1}{a} \frac{d a}{d t}=\frac{2}{n a^{2}} \frac{\partial R}{\hat{c} \dot{Z}} \\
& \frac{d i}{d t}=n-\frac{2}{n a} \cdot \frac{\hat{c} R}{\hat{c} a}+\frac{\left(1-e^{2}\right)^{2}}{n a^{2}\left[1+\left(1-e^{2}\right)^{12}\right]}\left(h \frac{\hat{i} R}{\hat{i} h}+k \frac{\hat{c} R}{\hat{c} k}\right)+\frac{1}{2 n a^{2}\left(1-e^{2}\right)^{1 / 2}}\left(p \frac{\hat{c} R}{\hat{c} p}+q \frac{\hat{c} R}{\hat{c} q}\right)
\end{aligned}
$$

where $e^{2}=h^{2}+k^{2}$.

LAGRANGIAN METHOD

For a planet of subscript u perturbed by the seven other planets of subscript v, the perturbation function is written:

$$
R_{0}=\sum_{i<u} \mu \frac{m_{r}}{a_{u}} \bar{R}_{u r}+\sum_{1>u} \mu \frac{m m_{i}}{a_{r}} \bar{R}_{u t}
$$

The first summation is extended to the planets inside the one under consideration, the second to the planets outside. We use the following notation:

$$
\bar{R}_{i j}=a_{j} / \Delta(\Delta=\text { distance of the two planets })
$$

and

$$
\frac{a_{a}}{n_{u}^{2} a_{u}^{3}}=\frac{n_{r}^{2} a_{v}^{3}}{1+m_{u}}
$$

Limited to the second order, $\bar{R}_{u v}$ has the following expression:

$$
\begin{aligned}
\bar{R}_{u r}=C_{u:} & +A_{u(}\left(h_{u}^{2}+k_{u}^{2}+h_{v}^{2}+h_{v}^{2}\right)-4 A_{u(}\left(p_{u}^{2}+q_{u}^{2}+p_{v}^{2}+q_{v}^{2}\right) \\
& +B_{u r}\left(k_{u} k_{v}+h_{u} h_{v}\right)+8 A_{u v}\left(q_{u} q_{r}+p_{u} p_{v}\right)
\end{aligned}
$$

where $C_{u v}, A_{u v}, B_{u v}$ are functions of $\alpha_{u v}=a_{u} / a_{v}$, which is constant here. We thus obtain, with the notation:

$$
\begin{aligned}
& {[u, v]=\frac{n_{u} x_{u v} m_{v}}{1+m_{u}} \text { if } v>u} \\
& {[u, v]=\frac{n_{u} m_{r}}{1+m_{u}} \text { if } v<u} \\
& \frac{d h_{u}}{d t}=+\sum_{v=u}[u, v]\left(2 A_{u t} k_{u}+B_{u t} k_{t}\right) \\
& \frac{d k_{u}}{d t}=-\sum_{v=u}[u, v]\left(2 A_{u t} h_{u}+B_{u r} h_{t}\right), \\
& \frac{d p_{u}}{d t}=-\sum_{v=u}[u, v]\left(2 A_{u v} q_{u}-2 A_{u t} q_{v}\right) \\
& \frac{d q_{u}}{d t}=+\sum_{r=u}[u, v]\left(2 A_{u t} p_{u}-2 A_{u t} p_{v}\right)
\end{aligned}
$$

This system is written in matrix form as:

$$
\begin{array}{ll}
\frac{d H}{d t}=E \times K, & \frac{d K}{d t}=-E \times H, \\
\frac{d P}{d t}=I \times Q, & \frac{d Q}{d t}=-I \times P,
\end{array}
$$

where H is the column vector with comporents ($h_{M e}, h_{V}, \ldots, h_{N}$), K the column vector ($k_{M e}, k_{V}, \ldots, k_{N}$), P the column vector ($p_{M e}, p_{V}$, \ldots, p_{N}), and Q the column vector $\left(q_{M e}, q_{V}, \ldots, q_{N}\right)$. The subscripts Me, V, N represent Mercury, Venus, Neptune, respectively. E and I are the matrices of the linear systems in excentricities and inclinations respectively.

The conventional resolution of the two Lagrangian systems gives the eigenvalues:

$$
\begin{aligned}
& \mathbf{g}_{i}, i=1,2, \ldots, 8 \text { for the excentricities; } \\
& \mathbf{s}_{i}, i=1,2, \ldots, 8 \text { for the inclinations. }
\end{aligned}
$$

One of the eigenvectors in the system of inclinations in zero. We will assume $s_{5}=0$.

We determine the eigenvalues $\lambda_{i j}$ associated with g_{j}, and $\mu_{i j}$ associated with s_{j}, which gives the Lagrangian solution:

$$
\left.\begin{array}{l}
h_{i}=\sum_{j=1}^{8} \lambda_{i j} M_{j} \sin \left(g_{j} t+\beta_{j}\right) \\
k_{i}=\sum_{j=1}^{8} \lambda_{i j} M_{j} \cos \left(g_{j} t+\dot{\beta}_{j}\right) \tag{5}\\
p_{i}=\sum_{j=1}^{8} \mu_{i j} N_{j} \sin \left(s_{j} t+\delta_{j}\right) \\
q_{i}=\sum_{j=1}^{8} \mu_{i j} N_{j} \cos \left(s_{j} t+\delta_{j}\right)
\end{array}\right\}
$$

Lastly, we calculate the 32 constants of integration M_{j}, B_{j}, N_{j}, δ_{j} from the values of h, k, p, q at $t=0$.
g and s in Table 2, and in Table 3 we show the 32 constants of integration M, B, N, δ. Lastly, Table 4 gives the amplitudes of the Lagrangian solution multiplied by $10^{8}: \lambda_{i j}{ }^{M} j_{8} \times 10^{8}$ for the excentricities, and similarly in Table 5, $\mu_{i j} N_{j} \times 10^{8}$ for the inclinations. Frequencies g and s are expressed in seconds per year. $\lambda_{i h}{ }^{\prime} \mu_{i j}, M_{j}, N_{j}$ are dimensionless numbers.

Table 2
Table 3
Constants of Integration
(Lagrangian Solution)

Frequencies in "/yr (Lagrangian Solution)

Table 4
$\lambda_{i j} M_{j} \times 10^{8}$. Amplitudes of Lagrangian Solution

$\mu_{i j} N_{j} \times 10^{8}$. Amplitudes of Lagrangian Solution

-	1	2	3	4	5	6	7	8
Mercury	6274851	-1781583	204668	58171	1383974	1390	-166549	- $7236 i$
Vėnus	591896	506380	-1341594	- 343391	1383974	$60: 2$	- 95883	- 66215
Earth	426404	408232	1222166	226117	1383974	1+10699	- 86614	- 64905
Mars	90534	90894	-179150	2519918	1383974	-Sこと17	- 62850	- 61488
Jupiter	1038	655	9	88	1383974	-315S78	- 47977	- 58.45
Saturn	- 1328	- 925	- 241	- 916	1383974	786-99	- 39034	- 5638
Uranus	1112	477	20	86	1383974	- 3490	8802S6	54715
Neptune	28	27	2	9	1383974	- SEss	- 103566	5883.6

INTRODUCTION OF HIGHER ORDER TERMS

We are now going to introduce the perturbation function's long period terms of fourth order h, k, p, q, as well as the perturbation function's short order terms.

Fourth Order Leng Period Terms

By differentiation, these terms yield third order terms, and the Lagrangian equation for variable h_{u}, for example, then has the following form:

$$
\begin{equation*}
\frac{d h_{0}}{d t}=\sum_{i=v}[u, t]\left\{2 A_{w 1} k_{u}+B_{w t} k_{t}-P_{w t}\left(h_{4}, h_{1}, k_{w}, k_{t}, p_{w}, p_{t}, q_{w}, q_{v}\right)\right\} \tag{6}
\end{equation*}
$$

where $P_{u v}$ is a homogeneous third degree polynomial.

Into polynomial $P_{u v}$ we substitute the Lagrangian solution (5), whose numerical values are given in Tables 2, 3, 4, and 5:

$$
\begin{aligned}
& k_{u}=\sum_{j=1}^{8} \lambda_{u j} M_{j} \sin \psi_{j}, \quad k_{u}=\sum_{j=1}^{s} ; ;_{j j} M_{j} \cos \psi_{j}, \\
& \text { P }_{4}=\sum_{j=1}^{8} \mu_{w_{j}} N_{j} \sin \theta_{j}, \quad q_{v}=\sum_{j=1}^{8} \mu_{\psi j} V_{j} \cos \theta_{j},
\end{aligned}
$$

where we have made ${ }_{j}=g_{j} t+\beta_{j}$ and $\theta_{j} s_{j} t+\delta_{j}$. Therefore only the numerical values of amplitudes $i_{u j}{ }^{M}{ }_{j}$ and $\mu_{u j} N_{j}$ appear in this calculation.

Among the values of the i and j subscripts of arguments ψ_{i} (i $=1,2, \ldots, 8$) and ${ }_{j}(j=1,2, \ldots, 8)$, such a substituţion makes combinations appear in which at most only three values of subscripts i and j are involved. For example, there will be combinations of the type $\left(\psi_{1}+\dot{\theta}_{2}-\theta_{4}\right),\left(2 \psi_{5}-\psi_{6}\right)$.

The expression $\sum_{i * u}[u, v] P_{w 1}$ therefore has the form:
where

$$
\xi_{u, i_{1}} \ldots i_{8}, j_{1} \ldots j_{8} \text { is a numerical coefficient. }
$$

The summation over integers i and j is such that:

$$
\sum_{i=1}^{i}\left|i_{m}\right|+\sum_{m=1}^{8}\left|j_{m}\right|=1 \text { or } 3
$$

We will designate that:

$$
|r .6|=i_{1} v_{1}+i_{2} \psi_{2}+\cdots+i_{8} \varphi_{s}-i_{1} \theta_{1}+j_{2} \theta_{2}+\cdots+j_{8} \theta_{3}
$$

and hence equation (7) takes on the form:

$$
\sum_{\because 0}[u, r] P_{u v}=\sum_{n, 0} \xi_{u, c, 0} \cos (\psi,(l) .
$$

We also make:

ORIGINAL PAGE 路
 OF POOR QUALITY

$$
\begin{aligned}
& \varepsilon=+1 \text { if } \sum_{m=1}^{8} i_{m}-\sum_{m=1}^{8} j_{m}=+1 \\
& \varepsilon=-1 \text { if } \sum_{m=1}^{8} i_{m}+\sum_{m=1}^{\infty} i_{m}=-1 .
\end{aligned}
$$

Equation (6) is then written:

$$
\begin{equation*}
\frac{d h_{u}}{d t}=\sum_{i=u}[u, t]\left\{2 A_{u t} k_{u}+B_{u k} k_{v}\right\}+\sum_{i, \theta} j_{u, v} \cdot \cos (\psi, \theta) . \tag{8}
\end{equation*}
$$

Substituting the Lagrangian solution into the equation in $\mathrm{dk}_{\mathrm{u}} / \mathrm{dt}$ similarly yields:

$$
\begin{equation*}
\frac{d k_{u}}{d t}=-\sum_{v=u}[u, v]\left\{2 A_{u v} h_{u}+B_{w t} h_{v}\right\}-\sum_{v, \theta} \varepsilon \times \sum_{S_{u, v, \theta}} \sin (\psi, \theta) . \tag{0}
\end{equation*}
$$

We also calculate:

$$
\begin{aligned}
& \frac{d p_{u}}{d t}=-\sum_{i=1}[u, v]\left\{2 A_{u v} q_{u}-2 A_{v v} q_{v}\right\}+\sum_{v, \theta} \eta_{u, v, \theta} \cos (\eta, \theta) .
\end{aligned}
$$

Short Period Terms

Substituting the Lagrangian solution into the short period part of the perturbation function yields only short period terms that are first order with respect to the masses. It is only with the second mass order that we come across long period terms again.

This time we have to consider for each planet the complete system of Lagrange equations (4), which we will write for a planet of subscript u in the form:

We determine the short period effects argument by argument. For a short period argument $i \lambda_{u}+j \lambda_{v}, i$ and j being given integers, the functions F have the form:

$$
F_{c} \cos \left(i i_{u}+j j_{7}\right)+F_{,} \sin \left(i j_{u}+j i_{,}\right)
$$

where F_{c} and F_{s} are polynomials in $h_{u}, k_{u}, q_{u}, h_{v}, k_{v}, p_{v}, q_{v}$, whose coefficients are functions of $a_{u v}=a_{u} / a_{v}, n_{u}$ and n_{v}. (In the special case in which one of the two integers i, j is zero, i.e., in the case in which the short period argument takes on the form $i \lambda_{u}$, the functions F_{c} and F_{s} depend on $h_{v}, k_{v}, p_{v}, q_{v}, n_{v}$ for $v=1,2, \ldots, 8$ and on the seven quantities $\alpha_{u v}=a_{u} / a_{v}$ for $u \neq v$.)

We therefore substitute the Lagrangian solution into equations (10), which after integration yield a short period increase in the Lagrangian solution. Then by doing a Taylor expansion of the second members of equations (10), we obiain second order terms with respect to mass after substituting the first order that we have just found. We will retain only the second terms' long period parts.

Since the masses are always substituted for numerically, the terms thus found in the second members of the Lagrangian equations have the same form as those coming directly from the perturbation function's fourth oruer lony period terms.

In contrast to the case of the perturbation function's long periods, for which we kept the fourth period terms, the criterion for choosing short period terms is numerical. What we did was to retain the beginning of the h, k, p, q expansion of all the arguments
causing changes in the Lagrangian solution frequencies of more than 10^{-3} "/yr.

RESOLUTION OF THE SYSTEMS OF DIFFERENTIAL EQUATIONS

We saw that the contribution of the short period terms took on the same form as the terms coming directly from the perturbation function. We therefore have to resolve a system of differential equations having the form:

$$
\begin{align*}
& \frac{d k_{v}}{d t}=-\sum_{r * u}[u, v]\left\{2 A_{u r} h_{u}+B_{v i} h_{r}\right\}-\sum_{v . \theta} \varepsilon \times \xi_{v, v, \partial} \sin (v: \theta) \tag{8}
\end{align*}
$$

as well as a similar system for variables p_{u} and q_{u}.

For that, we are going to use the Krylov-Bogolyubov method. This method consists of finding a solution of the form:

$$
\begin{align*}
& \dot{r}_{i}=\sum_{j=1}^{8} \lambda_{i j j} M_{j} \sin \varphi_{j}+\sum_{v, 0} M_{u, \ldots, \theta} \sin (\psi . \theta) \\
& t_{d}=\sum_{j=1}^{8} \lambda_{\mu j} M_{j} \cos \varphi_{j}+\sum_{v .0} M_{\mu, \ldots, v} \cos \left(\psi \cdot \theta_{1}\right) \tag{11}\\
& P_{6}=\sum_{j=1}^{8} \mu_{u j} N_{j} \sin \theta_{j}+\sum_{w ., \theta} N_{u . L .} \sin (y .0) \\
& \left.\rho_{i=1}^{s}=\sum_{j=1}^{8} \mu_{u j} N_{j} \cos \theta_{j}+\sum_{v, \theta} N_{u, 4 . \theta}^{\prime} \cos (4.0)\right\}
\end{align*}
$$

By differentiating system (11) and taking account of (12), we obtain:
where

$$
\left.\begin{array}{l}
\frac{d h_{u}}{d t}=\sum_{j=1}^{s} j_{u j} M_{j} \cos \psi_{j} \times\left(g_{j}+B_{j}\right)+\sum_{v, 0}(g . s) M_{u, v .0} \cos \left(t_{i}, \theta\right) \tag{13}\\
\frac{d k_{u}}{d t}=-\sum_{j=1}^{s} j_{w j} M_{j} \sin \psi_{j} \times\left(g_{j}+B_{j}\right)-\sum_{v, 0}(g, s) M_{u, v, 0} \sin \left(\psi_{i}, \theta\right)
\end{array}\right\}
$$

$$
(g . s)=i_{1} g_{1}+i_{2} g_{2}+\cdots+i_{8} g_{8}+j_{1} s_{1}+j_{2} s_{2}+\cdots+j_{8} s_{8}
$$

Furthermore, equations (8) and (9) yield, by plugging in (11):

$$
\begin{align*}
& \frac{d h_{u}}{d t}=\sum_{r=u}[u, r]\left\{2 A_{u r}\left[\sum_{j=1}^{8} i_{u j} M_{j} \cos \psi_{j}+\sum_{v \cdot 0} M_{u, c: \theta} \cos \left(\xi_{i}, \theta\right)\right]\right. \\
& \left.+B_{\mathrm{ur}}\left[\sum_{j=1}^{8} j_{i j} M_{j} \cos \psi_{j}+\sum_{v .0} M_{t \cdot w, \theta}^{i} \cos (\psi, \theta)\right]\right\}+\sum_{i . \theta} \xi_{u . c \cdot \theta} \cos (\psi, \theta) \\
& \frac{d k_{u}}{d t}=-\sum_{r \neq u}[u, t]\left\{2 A_{u t}\left[\sum_{j=1}^{8} i_{\psi j}, M_{j} \sin \psi_{j}+\sum_{v . \theta} M_{u, u, e} \sin (\psi \cdot \theta)\right]\right. \tag{14}\\
& \left.+B_{u i}\left[\sum_{j=1}^{8} j_{i j}, M_{j} \sin \varphi_{j}+\sum_{\psi, \theta} M_{r, v, \theta} \sin (\varphi \cdot \theta)\right]\right\}-\sum_{i, \theta} \varepsilon \times \bar{\zeta}_{u, 6, \theta} \sin (\psi, \theta) . \quad
\end{align*}
$$

Hence, we have two expressions, (13) and (14), for $d h_{u} / d k$ and $d k_{u} / d t$. We make equal their parts that are of third order with respect to variables h, k, p, and q :

$$
\begin{align*}
& \sum_{j=1}^{s} B_{j} j_{u j} M_{j} \cos \varphi_{\psi j}+\sum_{v, \theta}(g, s) M_{\nu, \psi, \theta} \cos (\psi, \theta) \\
& =\sum_{v=u}[u, v]\left\{2 A_{u} \sum_{i, \theta} M_{u, c, \theta} \cos (y, \theta)+B_{v i} \sum_{v, \theta} M_{r, v, \theta}^{\prime} \cos (y, \theta)\right\}+\sum_{v, \theta} \xi_{u, c, \theta} \cos (v, \theta) \tag{15}\\
& \sum_{j=1}^{8} B_{j} i_{u j} M_{j} \sin _{i_{j}}+\sum_{i . \theta}(g . s) M_{u, k, \theta} \sin (\psi, \theta)
\end{align*}
$$

The method now consists of establishing argument by argument identities within each order. Two cases arise:

1) The case in which the argument (i, θ) is equal to ψ_{j}, i.e. we have:

$$
\sum_{m=1}^{8}\left|i_{m}\right|+\sum_{m=1}^{8}\left|j_{m}\right|=1 .
$$

ORIGINAL PAGE IS
 OF POOR QUALITY

Here, we once again come across the Lagrangian solution arguments, and establishing identities between coefficients makes it possible to determine the new frequency values. The solutions then are expressed in Fourier series of these new arguments. Establishing the identities yields:

$$
i_{u j} M_{j} B_{j}+g_{j} M_{u, 6 j}^{\prime}=\sum_{r * u}[u, r]\left(2 A_{u v} M_{u, v_{j}}^{\prime}+B_{u t} M_{t, v j}^{\prime}\right) \div \xi_{u, 6 j}
$$

and

$$
i_{u,}, M_{j} B_{j}+g_{j} M_{u, i}=\sum_{r=u}[u, i]\left(2 A_{u r} M_{u, w}+B_{u t} M_{r, 4}\right)+\sum_{u, w,},
$$

For a given ψ_{j}, subtraction of these two equations furnishes:

$$
\left(\sum_{r * v}[u, v] \times 2 A_{u r}+g_{j}\right)\left(M_{w, v}^{\prime}-M_{u, v}\right)+\sum_{r=u}[u, r] B_{w r}\left(M_{r, v}-M_{r, v}\right)=0 .
$$

The fact that
and $[u, v] B_{u v}$ are not zero means that $M_{u, \psi_{j}}=M^{M^{\prime}}{ }_{u, \psi_{j}}$ whatever u and j are.

We can then write:

$$
\left.\sum_{r=v}[u, c] \times 2 A_{u r}-g_{j}\right) M_{u, u} \div \sum_{r=u}[a,: i] B_{u t} M_{t, w_{j}}=i_{u,}, M_{j} B_{j}-\xi_{u, w_{j}} .
$$

In the first member of this expression, we once again come across matrix E of the Lagrangian system. Subtracting the eigenvalue g_{j} from the principal diagonal means that the $M_{u, \psi j}$ values $(u=1,2$, ..., 8) will not be independent. We then let:

$$
M_{j, \psi_{j}}=0
$$

mis is an arbitrary step in the Krylov-Bogolyubov method. It reduces to changing variables over the integration constants M_{j}, N_{j}. The choice of $\mathrm{A}_{\mathrm{j}, \mathrm{j}}=0$ does not specify the solution but imposes the choice of a certain type of expansion for the coefficients of arguments ψ_{j}.

Having made this choice, we then have for each ψ_{j}, j fixed, a system of eight equations in eight unkowns: B_{j} and $M_{u, \psi_{j}}$, $(u \neq j)$.
2) Case in which the argument (ψ, θ) is random, i.e. such that:

$$
\sum_{m=1}^{8}\left|i_{m}\right|+\sum_{m=1}^{8}\left|j_{m}\right|=3 .
$$

Establishing argument by argument identities in equations (15) yields:
and
ment (ψ, θ) is.
By subtraction, we obtain $M_{u, \psi, \theta}=\varepsilon M^{\prime}{ }_{u, \psi, \theta}$ whatever u and argu-

We can then write:

$$
\left.\sum_{i=v}[u, v] \times 2 A_{v v}-\varepsilon(g, s)\right] M_{v, u, \theta}+\sum_{r=v}[u, r] B_{u t} M_{r, v, \theta}=-\varepsilon \xi_{t, v, 0} .
$$

This time there is no arbitrary step and the resolution of the system of eight equations in eight unknowns gives for each argument (ψ, θ) the eight values $M_{u, \psi, \theta}(u=1,2, \ldots, 8)$.

We therefore have expansions of h_{u} and k_{u} :

And similarly we find:

ORIGINAL PAGE IS
 OF POOR QUALITY

RESULTS AND DETERMINATION OF THE CONSTANTS OF INTEGRATION

In Tables 6 and 7 we give the integration constants and frequencies of the solutions obtained solely from the second order h, k, p, q long period terms. Comparison of tables 3 and 6 show how great the contribution of the perturbation function's fourth order long period terms is, especially for Mercury, Venus, Earth, and Mars. Table 7 contains the frequency modifications B_{i} anc C_{i}, as well as the frequencies' new values: $\tilde{g}_{i}=g_{i}+B_{i}, \check{s}_{i}=s_{i}+C_{i}$.

Table 6
Constants of Integration (According to the Solution Based on the Perturbation Function's Second and Fourth Order Long Periods)

i	M_{i}	$\beta 1$	N	$\dot{\Delta}$
1	0.18454867	833294.16	0,05887664	11514.62
2	0.01864278	1912615.44	0.00323843	30: 5926.61
3	0,01204101	3181813.08	0.00967327	$\therefore 3314.4$
4	0.06311073	3070146.20	0.03227762	- -5653.61
5	0,04297488	271743.13	$0.0138+057$	$11600^{-5} 34.95$
6	0.04842782	1272949.50	$0.00786+57$	$125+911.16$
7	0.03210686	1004443.97	0.00880119	3160016.25
8	0.00932559	$6+5+28.20$	0.00592089	S 911107.71

[Commas in tabulated material are equivalent to decimal points.]

Table 7
Modifications and New Frequencies in "/yr
(According to the Solution Based on the Perturbation Function's Second and Fourth Order Long Periods)

i	B.	g_{1}	c	$3{ }_{1}$
1	-0.258373	+ 5.202996	-0.443495	- 5.645943
2	$-0,000721$	+ 7,.345860	-0.220510	- 6.-91897
3	-0,130032	+17.201263	-0,15-94	- 15.898909
4	-0.169168	$+17.835+16$	-0.231362	
5	+0.01805 7	+ 3.729488	0	,
6	$+0.322115$	+22.608667	-0.606907	- - 6.348083
7	$+0.078 .361$	$+2.780148$	-0.08:305	- 2.93733
8	+0.009180	+ 0.6+2296	-0.009136	- 0.685656

[Commas in tabulated material are equivalent to decimal points.]

Table 8 Constants of Integration (Complete Solution)

i	M	β_{i}	N	d
1	0.17791613	870302009	0.059627	1205 17.15
2	0.02104749	1933504.97	0.00315338	3051317.14
3	$0.009888 \geq 9$	3194316.64	0.0100235	$2 \therefore 0459.07$
4	0.06115173	3074839.56	0.03130279	こ- 5606.16
5	0.04341616	28.3011 .60	0.01383939	Iok (0) 11.5
6	0,04814727	1274254.52	0.00785328	$13: 383+23$
7	0.03126134	1144631.5 s	0.00850038	$3161^{-35.94}$
8	0.00890181	720525.03	0.00588806	20: 1715.59

[Commas in tabulated material are equivalent to decimal points.]

Table 9
Modifications and New Frequencies in "/yr (Complete Solution)

i	B_{i}	$\overline{\mathrm{g}}$,	C	3,
1	-0.262こ90	- $5.199\left(10^{-9}\right.$	-0.1109-y	-. 5.61c9:
2	$-0.000+90$	+ 7.3460191	-0.1996 0	- c.-1027
3	-0.110749	+ 17.220546	-0.083094	-18.S29299
4	-0.147321	+17.857263	-0.18265s	$-1^{-S .818: 69}$
5	+0.495804	+ 4.207205	0	0
6	+3.930206	+26.216758	-0.525894	- 26.267070
7	+0,363394	$+3.065181$	-0.095511	-- 2.9998 .37
8	$+0.034747$	+ 0.667863	-0.013911	-0.691431

[Commas in tabulated material are equivalent to decimal points.]

Tables 8 and 9 give the constants of integration and the frequencies for the complete solutions, i.e. the solutions that take the short periods into consideration. By comparing tables 6 and 8, we can see that the integration constants are once more greatly altered. Comparison of Tables 7 and 9 show that while the short period terms hardly change the frequencies related to the inside planets, the g_{5} and g_{6} frequencies on the contrary are changed to a much greater extent by the short period terms than by the perturbation function's fourth order long period terms.

The modification of the constants of integration originates in the magnitude of the nonlinear terms found in particular in the
expressions of the elements related to the inside planets. Of course, we began by calculating these terms by numerical surstitution of the Lagrangian solution in Tables 4 and 5. We then determined an analytic form of the expressions found so as to calculate the new integration constants. With the help of this analytic form and by making a first order Taylor expansion about the first values of the integration constants, we obtained integration constants of sufficient accuracy after several iterations.

$$
\lambda_{i j}{ }^{M_{j}} \times 10^{8} . \quad \text { Lagrangian Solution Amplitudes }
$$

	1	:	3	4	5	6	7	8
Mercury	17791613	- 5 54954	145862	- 142815	2426473	11310	62320	708
Vens	-19702	$=104749$	-1193243	1254088	1632845	- 55183	61366	1076
Farth	398077	1642622	985839	- 1250360	-163:798	246415	64990	1250
Mars	65007	$=91694$	2813123	6115173	1879988	1609341	36222	1998
Jupiter	689	1163	89	46	4341616	-1555604	217360	5809
Satum.	615	- 1200	702	703	3421845	4814727	198300	6557
liranus	266	293	41	38	-4407122	- 181041	3126134	137298
Sepruse	3	11	3	2	161243	- 13497	- 337321	899181

$\mu_{i j} N_{j} \times 10^{8}$. Lagrangian Solution Amplitudes

| j | 1 | 2 | | | |
| :--- | ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

Lastly, we give the totality of our solution in Tables 8 to 13. Hence, Table 8 contains the 32 integration constants. Table 9 gives the B_{i} and C_{i} frequency modifications as well as the frequencies' new values: $\grave{g}_{i}=g_{i}+B_{i} ; \grave{s}_{i}=s_{i}+C_{i}$. The amplitudes of the Lagrangian solution corresponding to the new constants are given in Table 10 for
$\lambda_{i j} M_{j} \times 10^{8}$ and in Table 11 for $\mu_{i j} N_{j} \times 10^{8}$. Finally, Tables 12 and 13 contain the amplitudes $M_{u, V, \theta}$ and $N_{u, \psi, E}$ of the higher order arguments (ψ, θ). When computing these terms, we retained only the arguments whose amplitudes are higher than 10^{-4} for the planets Mercury, Venus, Earth, and Mars, and 10^{-6} for Jupiter, Saturn, Uranus, and Neptune. The zeros found in Tables 12 and 13 are amplitudes less than the retained percisions.

> Table 12 $u, \psi, \epsilon \times 10^{6}$

Argument	Mercury	Vénus	Earth	Mars
V	151	0	0	0
$5 r_{4}-\theta_{3}+\theta_{0}$	0	0	0	- 199
$\gamma_{6}-\theta_{3}+\theta_{4}$	0	0	0	453
$v_{6}-\theta_{4}+\theta_{6}$	0	0	0	287
5.	0	981	-1064	-13379
$y_{6}+\theta_{3}-\theta_{4}$	0	0	0	762
$r_{5}-r_{6}-\psi_{7}$	0	0	0	134
$r_{3}-2 \theta_{i}$	254	0	0	0
bs $-\theta_{1}-\theta_{2}$	- 114	0	0	0
$\mathrm{F}_{3}-\theta_{1}+\theta_{7}$	102	0	0	0
$r_{3}-\theta_{1}+\theta_{2}$	- 275	0	0	0
$r_{5}-\theta_{3}+\theta_{4}$	150	0	0	0
Vs	14547	3918	$こ 280$	1092
$r_{1}+\theta_{1}-\theta_{2}$	-2172	0	0	0
$r_{3}+A_{1}-\theta_{3}$	0	-216	1×2	50.3
$r_{5}+r_{6}-r_{7}$	0	0	0	105
${ }^{2} r_{5}-r_{7}$	- 118	0	0	0
$\nu_{4}-\nu_{5}+\nu_{1}$	0	0	0	- 180
- $F_{4}-\theta_{1}+\theta_{4}$	1644	0	0	0
$F_{4}-\theta_{1}+A_{3}$	- 598	0	0	0

Argument		Mircury	Vénus	Earth	Mars
$\psi_{4}-\theta_{3}-\theta_{4}$		0	0	0	177
$v_{4}-\theta_{3}+\theta_{c}$		0	0	0	- 240
$4_{4}-\theta_{3}+\theta_{4}$		0	- 536	276	6177
$V_{4}-2 H_{4}$		0	0	0	176
$\psi_{4}-\theta_{4}+\theta_{6}$		0	0	0	370
$4 \cdot 5$	-	120	456	-503	0
$V_{4}+\theta_{4}-\theta_{0}$		0	0	0	- 354
$V_{4}+\theta_{3}-\theta_{4}$	-	519	4126	-3367	-14852
$V_{4}+\theta_{3}-A_{0}$		0	0	0	211
$\psi_{4}+\psi_{5}-v^{\prime}$		0	0	0	118
$2 r_{4}-r_{0}$		0	0	0	286
$v_{3}-2 V_{4}$		0	465	- 378	- $\quad 26$
$v_{3} \cdots v_{4}-v_{0}$		0	0	0	- 133
$v_{3}-v_{4}+v_{6}$		0	0	0	184
$v_{3} \cdots O_{1}+\theta_{4}$		396	0	0	0
$\psi_{3}-\theta_{1}+\theta_{3}$		312	0	0	0
$v_{3}-\theta_{2}+\theta_{3}$	-	237	0	0	0
$H_{3}-\theta_{3}+O_{4}$	-	275	2457	--2354	8864
$V_{3}-\theta_{4}+\theta_{6}$		0	0	0	148
V 3		0	0	0	- 3.3

Table 12 (cont.)

Table 1;
$\mathrm{N}_{\mathrm{u}, \ldots, 1} \times 10^{6}$

Argument		Mercury	Vinus	Earth		Mars	Argument		Jupiter		Saturn	L'ranus	Nep. lune
θ		0	0	0	-	iso							
OH_{4}		306	-1138	997		0	A_{3}	-	2	-	2	12	11
${ }_{31}-2 \theta_{4}$		0	0	0		1101	0.		0		2	0	- 12
O_{3}		275	0	0	-	$1 \times 3 \mathrm{~s}$	20. - θ_{8}		0		0.	1	0
$\boldsymbol{H}_{3}-\theta_{4}$		0	457	- 378	-	207	A_{6}		0		0	- 9	0
$\mathrm{B}_{2}-A_{3}+\theta_{4}$		175	0	0		0	A_{1}	-	3	-	4	3	0
${ }^{5} \mathrm{O}$	-	46.95	0	0		11	4. -ip-0.		0		0	:	1
$\theta_{1}-2 \theta_{2}$		172	0	0		0	$r \cdot \cdots H_{n}$	-	0	-	1	13	2
$\theta_{1}-\theta_{3}+\theta_{4}$		166	0	0		0	$v^{2}+\cdots v_{n}+\theta_{n}$		0		0	- 1	1
i		0	2637	14.8		± 2	$v_{0},-v_{s}+\theta$.	-	3	-	3	5	31
$2 \theta_{1}-\theta_{2}$	-	879	0	0		0	26, - 0		0		0	3	2
$\theta_{5}-4 \theta_{0}-\theta_{0}$	-	105	0	0		11			0		0	1	1
		0	0	0	-	205	$r_{n}-\psi_{-}-\theta_{n}$		0		0	1	0
$\mathrm{H}_{4}-\psi_{4}-\theta_{3}$		0	0	0	-	416	$V_{6}-V_{0}-A^{*}$.	-	1		3	3	0
$\mathrm{F}_{4}-\mathrm{V}_{6}-\mathrm{O}_{4}$		0	0	0		537	$r_{n}-v_{-}+\theta$.		0		0	3	0
$\mathrm{V}_{4}-r_{0}-\theta_{0}$		0	0	0	-	145	$V_{6}-V_{2}+A_{+}$.	- -	1		0	17	1
$\mathrm{F}_{4}-r_{0}+\theta_{4}$		0	0	0		6015	$v_{6}-4 x+\theta_{0}$		0		0	2	0
$\mathrm{F}_{6}-v_{6}+\theta_{3}$		0	0	0	-	251	$\psi_{0}+4=-\theta_{0}$		0	-	1	1	0
$r_{3}-r_{4}-\theta_{1}$	-	233	0	0		11	$4_{0}+4 \cdot-\theta-$		0		0	1	0
$r_{3}-r_{4}-\theta_{3}$		0	280	- 499		745	$\underline{2} 6_{0}-\theta_{6}$	-	10		26	1	0
$i_{3}-r_{4}-\theta_{4}$		0	0	0		375	$2 V_{0}-\theta \cdot$		0		0	2	0
$r_{1}-r_{4}+\theta_{4}$		320	- 2029	1-11		11.36	$v_{s}-v_{6}-\theta_{0}$		1	-	22	16	0
$b_{3}-r_{4}+\theta_{3}$	-	206	1392	-1192		0	H5- $\mathrm{V}_{6}-\mathrm{A}$.		0	-	1	9	0
$r_{1}-r_{4}+\theta_{1}$	-	207	0	0		0	$45-40+H_{8}$		0		0	1	0
$r_{3}-r_{3}+\theta_{3}$	-	221	0	0		0	$4 s v_{0}+4$	-	3		9	9	0
$v_{3}-r_{6}-\theta_{3}$		0	0	0	-	110	$r r^{\prime}-V_{0}+H_{0}$		8	-	11	4	0
$i r s^{\prime}-r_{5}-\theta_{4}$		0	0	0		19\%	$45-4:-A_{0}$		5	--	13	- 3	0
$\mathrm{F}_{3}-V_{4}+\theta_{4}$		0	0	0		214	$V_{5}-4-\cdots$ -	-	11	-	8	235	30
$r:-r_{4}-\theta_{3}$	-	114	0	0		0 .	- 4: 4: 0_{8}	-	2	-.	\geq	.12	16
$r:-r_{5}-\theta_{1}$		170	0	0		0	$\cdots s-r_{+}+\theta_{8}$	-	1	-	1	- 2	18
$v_{2}-v_{s}+\theta_{1}$		117	0	0		0		-	13	-	11	230	15
$r_{1}-v_{2}-\theta_{1}$	-	3777	0	0		0	$v_{0}-v_{0}+\theta_{0}$		5	--	14	5	0
$r_{1}-r_{2}-\theta_{2}$		\$170	176	124		0	$r_{s}-v_{s}-\theta$,		0		0	- 1	1
$r_{1}-V_{2}-A_{3}$		117	0	0		0	$V_{5}-\psi_{5}-\theta_{5}$		0		0	8	1
$r_{1}-r_{2}+\theta^{-}$	-	232	0	1		0	$4: 4 s+\theta_{y}$		0		0	1	0
$v_{1}-r_{2}+\theta_{2}$		787	0	0		0	$v^{\prime}-v_{s}+\theta$		0		0	0	8
$r_{1}-r_{2}+\theta_{1}$	-	7950	1062	$9: 3$		306	$4 \cdot+4 \sim \theta_{0}$		0		1	1	0
$r_{1}-r_{3}-\theta_{1}$		117	0	0		0	$4 \cdot+4, ~ 11$.		0		0	- 13	5
$r_{1}-r_{3}-\theta_{3}$	-	413	0	0		0	$v_{0}+v_{0}-\theta_{0}$		0		0	3	3
$r_{1}-r_{3}-\theta_{4}$	-	-39	0	0		0	$v_{5}+v_{0}-\theta_{0}$		10	--	23	$\rightarrow 5$	0
$r_{1}-r_{3}+\theta_{1}$		126	0	0		0	$V_{5}+V_{0}-\theta_{0}$		0	--	1	8	0
$r_{1}-r_{1}-\theta_{1}$	-	115	0	0		0	$\underline{T r s}-\theta_{0}$	\rightarrow	5		14	- 2	0
$r_{1}-r_{4}-\theta_{3}$		277	0	0		0	24, - $\mathrm{H}^{\text {- }}$		0	-	1	21	$\cdots 3$
$r_{1}-r_{4}-\theta_{4}$	-	1021	0	0		0	$\underline{2 r s}-\theta_{8}$		0		0	0	3
$r_{1}-r_{4}+\theta_{1}$	-	13.4	0	0	-	cos	$\mathrm{H}_{3}-V_{4}-\mathrm{H}_{3}$		0	-	2	0	0
$r_{1}-t_{s}-\theta_{1}$	-	33.53	477	411		0	$v_{3}-v_{4}-v_{4}$		0	-	1	0	0
$r_{1}-5 ;-\theta_{2}$		282	0	0		0	$v_{3}-v_{4}+H_{4}$		0	-	1	0	0
$F_{1}-F_{3}+\theta_{2}$		13×7	0	0		0	$i_{1}-42-\theta_{1}$		0		0	- 1	0
$W_{1}-v_{3}+\theta_{1}$	-	1358	0	1)		0	$\varphi_{1}-\psi_{2}+\theta_{1}$		1	-	1	0	0
$r_{1}+r_{s}-\theta_{1}$		396	0	0		0							
$v_{1}+v_{2}-\theta_{1}$	-		0	0		1							
51- $r_{1}-\theta_{2}$		1.18	0	0		0							
$\mathrm{ir}_{1}-\theta_{1}$		1746	0	0		0							
$2 r_{1}-\theta_{2}$	-	401	0	0		0							
$\mathrm{Fr}_{1}-\theta_{3}$		140	0	0		0							

ORTCINAL PAGE I OF POOR QUALTTY

CONCLUSION

In this study of the long period variations of the planetary elements, we added to the Lagrangian solution the terms of third order excentricity and inclination arising from the long period portion of the perturbation function calculated for the planets as a whole. We also took into consideration the influence of short period terms of second order mass. We particularly concentrated on determining the integration constants that make the solutions agree with the mean elements when $t=1850.0$ is used as time zero.

The terms calculated with these constants are grouped together in Tables 8 to 13. Notice in these results the very strung coupling that exists, for a long period problem, in the planetary system. The magnitude of the terms arising from the short periods shows that there is no point to extending a theory to the fifth order on the basis of the perturbation function's long periods if the short periods are not taken into account.

This work's essential task was therefore the comparison of the various effects according to their origin so as to have an overall view of this problem and to be able to embark on the complete corstruction of a long period theory. Our solution is in fact still incomplete. Even so, we should take into account the direct terms of fifth order that must have an influence, especially formercury, Venus, Earth, and Mars. We have yet to calculate the influence of short periods of higher orders of excentricity and inclination, and maybe even part of the third order with respect to masses in the case of the resonant argument $2 \lambda_{j}-5$ between Jupiter and Saturn. Such an investigation would be very important. However, since the largest contributions have already been considered, it would no longer present any great difficulties for the determination of integration constants.

original paces is

 OF POOR QUALTTYHill, G.W., Astron. J., 9, 89-91 (1889).
Hill, G.W., Astron. J., 17, 81-87 (1897).
Brouwer, D., van Woerkom, A.J.J., Astron. Pap., 13, part 2 (1950).
Anolik, M.V., Krassinsky, B.S., Pius, L.J., Trudy Inst. Theor. Astron. Leningrad, 14, 3-47 (1969).

Chapront, J., Simon, J.-L., Astron. \& Astrophys., 19, 231 (1972).
Kovalevsky, J., Celestial Mechanics, 4, 213 (1971).
Bogolioubov, N. Mitropolski, I., Les méthodes asymptotigues en theorie des oscillations non linéaires [Asymptotic Methods in Nonlinear Oscillations], Gauthier-Villars, Paris, 1962.

[^0]: *Numbers in the margin indicate pagination in the foreign text.

[^1]: The mean motions n_{1} are the average observed values. The semi-

