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SUMMARY

A modified stepwise regression is applied to flight data from a light research
airplane operating at high angles of atvack. The well-known phenomenon referred to
as "bucking® or "porpoising” is analyzed and modeled using both power series and
spline expansions of the aerodvnamic force and moment coefficients associated with
the longitudinal equations of motion. The resulting models are validated by numer=-
ically integrating them using initial flight conditions and flight control inputs.
In addition, a one-degree-of-freedom Van der Pol model is used to help explain the
oscillatory behavior, and the possible existence of hysteresis in the lift curve is
demonstrated.

INTRODUCTION

An analysis of airplane flight data which exhibits seemingly spontaneous short-
period longitudinal oscillations occurring at high values of CL is presented. Such
behavior has popularly been referred to as "bucking®™ or "porpoising.® Phillips
(ref. 1) developed several possible models to simulate such behavior on the hybrid
computer. His models involved hysteresis loops in the aerodynamic force and moment
coefficients in the region of maximum lift. Other authors (refs, 2 and 3) have
developed models for self-excited longitudinal motion in the deep-stall condition.
This paper addresscs another example of bucking or porpoising behavior, Oscillations
were encountered at high values of C. by a light airplane modified specifically for
high a operation. A published report (ref. 4) on wind-tunnel tests of a model of a
similar (but smaller) airplane with the same modification indicates that maximum lift
is at a significantly higher angle of attack. By applying a stepwise regression
technique to flight data from a nonlinear operating regime of a light single-engine
research airplane, mathematical models are synthesized and aerodynamic parameters are
evaluated. Two methods, one utilizing partitioning or binning of the data, and the
other employing spline basis functions, are used in the model structure determination
and parameter estimation process. A brief description of each method is contained
herein. In addition, the Van der Pol equation is used to help illustrate and explain
the oscillatory motions of the airplane. The flight data are also analyzed in an
effort to detect possible hysteresis in the 1lift curve,

A better understanding of nonlinear aerodynamic phenomena and the analysis of
such phenomena are important in aviation safety and in the synthesis of flight con-
trol laws for nonlinear operating reqgimes (ref. 5).

SYMBOLS

ayrdyray acceleration along longitudinal, lateral, and vertical body axes,
respectively, g units

b span, m
CL iift coefficient, L/3s
c maximum lift value of 1lift coefficient, U/qS



ORIGINAL PAGE 13
AF POOR QUALITY

c, rolling-moment coefficient, Mx/&Sb
Ca pitching-moment coefficient, HY/&SE
C& defined in appendix

C, yawing-moment coefficient, MZ/QSb
Cy longitudinal-force coefficient, Fxlis
Cy side-force coefficient, F,/3s

Cz vertical-force coefficient, FZ/ES
C.g. center of gravity

c mean aerodynamic chord, m

F F-statistic

Pp FP-statistic used in partial P-test

Fx'Py'Pz force along longitudinal, lateral, and vertical body axes, respectively, N
g acceleration due to gravity, m/sec2

Iy/Iy,I, moment of inertia abgut longitudinal, lateral, and vertical body axes,
respectively, kg-m

Ixz product of inertia, kg-m2
J cost function

X number of spline knots

L lift, N

MX’MY'MZ rolling, pitching, and yawing moments, respectively, N-m

m mass, Kg

N number of data points

P body axis roll rate, rad/sec or deg/sec

q body axis pitch rate, rad/sec or deg/sec
- 12 )

q = E‘pv « dynamic pressure, Pa

R2 squared multiple correlation coefficient

r body axis yaw rate, rad/sec or deg/sec
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S wing area, m2
sz(ej) variance of parameter estimate, Oj
t time, sec
u component of velocity along longitudinal body axis, m/sec
v total airspeed, m/sec
v component of velocity along lateral body axis, m/sec
w component of velocity along vertical body axis, m/sec
xj jth element of n x 1 vector of independent variables
y n x 1 vector of dependent variables
z dummy variable
o angle of attack, rad or deg
a value of angle of attack corresponding to ith spline knot, rad or deg
(@-a)® = {(a-ai)‘“ (a > o)
0 (a < ai)
B angle of sideslip, rad or deg
Aa =a -~ rad or deg
(Aa)crit difference between trim angle of attack and angle of attack at which pitch
damping changes siqgn
6a aileron deflection, rad or deg
ée stabilator deflection (positive for trailing edge down), rad or sec
6, rudder deflection, rad or deg
€ damping coefficient in Van der Pol differential equation
3] pitch angle, rad or deg
e (n + 1) x 1 vector of unknown parameters
ej jth element of vector of unknown parameters
) air density, kg/m3
¢ bank angle, rad or deg
Woge characteristic oscillation frequency, rad/sec
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Subscript:
o trim value
Superscripts:
o derivative with respect to time

optimal estimate
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FLIGHT VEHICLE AND DATA ACQUISITION

The test-flight vehicle was a single-engine, low=-wing, four-seat, light air-
plane., Flight control was provided by the throttle, stabilator (all movable tail),
ailerons, and rudder. Flaps were available, but were not used in the tests consid-
ered in this report. The wing leading edge had been modified by extending the out-
board half of each leading edge as indicated in figure 1 and in modification B for
the model of a two-place airplane in reference 4. This was one of sewveral leading-~
edge modifications that were made on this airplane to research the stall/spin charac-
teristics of such a modified airplane. The flight data analyzed herein were obtained
during standard stability and control parameter estimation flights, In these flights,
the pilot attempts to trim the airplane to some steady-state reference flight condi
tion from which he can initiate some perturbation by the movement of controls. All
data analyzed Ln this report are assumed to have equilibrium initial conditions
(p=gq=1x = a= é B=v= w=1u = 0), Data were measured by rate gyros for roll,
pitch, and yaw rates; roll and pitch angles were measured by attitude gyros. Angles
of attack and si. slip were measured by wind vanes mounted on booms on each wing tip
as shown in figure 1., Linear accelerations were measured by accelerometers located
close t the airplane center of gravity with three mutually orthogonal axes pointing
in the directions of the longitudinal, lateral, and vertical body reference axes of
the airplane. Control displacements were measured by potentiometers located close to
the respective control surface so as to eliminate time delays and inaccuracies in the
measurements of displacement due to control-cable sgtretch.

Data were recorded onboard the test airplane as analog voltage signals. The
records of these voltages were filtered by a 6-Hz low-pass filter, and digitized to a
sample rate of 20 per second after each flight, The digitized 20-sample-per-second
data were then corrected for c.g. offset of the instruments, upwash and bias error on
the wind vanes, and bias errors in the a, accelerometer and the angular-rate gyros.

ANALYTICAL PROCEDURE
System Identification

The system identification problem was defined by Zadeh (ref. 6) as "determina-
tion, on the basis of observation of input and output, of a system within a speci-
fied class of systems to which the system under test is equivalent." For the system
identification of an airplane operating at low angle of attack, the mathematical
model structure of aerodynamic forces and moments is linear. Hence, the identifica-
tion problem reduces to a parameter estimation problem, However, at high angle of
attack and in near-stall operating regimes, the form of the aerodynamic forces and
moments must he determined before estimatirg corresponding parameter values. The
general form of the mathematical model structure for the aerodynamic force and moment
coefficients can be written as

y(t) = 90 + e1x"(t) + 92x2(t) + 40 enxn(t) (1)
where
yit) aerodynamic force or moment coefficient (Cx'cv'cz'c ,C ,C ) at time ¢t
xj(t) airplane state plus control variables (a,q,B,p,r, e'6a'5 ) and their com-

binations at time t (j =1, 2, ..., nN)
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ej airplane stability and control coefficients (j = 1, 2, «.., n)
=) constant reflecting any initial steady-state condition

Thus, although it is assumed for the identification prohlem at low angles of attack
that only first-order terms in the state and control variables are required for the
msdel,3the identification problem at high angles of attack can require terms such as
a, o, qa, and § a. Hence, part of the identification problem is the proper
choice of these highér-order terms for which parameters must be estimated. For exam-
pPle, consider the vertical-force coefficient Cz‘ For the linear model,

- ac
cz cz + cz Aax + cz >V + CZ Aée (2)
o a q 6e

where Aq = a - a, and Aée = 6e - beo for steady state (vo =P, =9, =, = 6, = 0)
initial flight conditions. A corresponding nonlinear model for high-angle-of-attack
maneuvers might be written as

= a< 2 ac
cz Cz + cz Aa + cz v * C, Abe +c,, (Ax) ™ + C, Aa >V (3)
o a q ée a aq

The specified class of models from which a nonlinear model may be chosen is given by
the candidate model variables (table 1). ‘Table ! is a set of influence variables for
longitudinal motion. The first column is simply the linear model variables a, g,
and the linear control variable 6e' on which the short-period longitudinal motion
depends. The second column is the variation of the linear terms with changing angle
of attack. The terms 32 and pza in the third column allow for aerodynamic coupl-
ing to lateral motion, and the last column contains the terms allowing strong non-
linear variation with angle of attack, the main longitudinal independent variable.
The list of variables in table 1 can be expanded or changed to investigate any parti-
cular behavior that is a function of a, q, and 6e.

Once a class of candidate model variables is specified, the problem still
remains to select the proper subset of that class. For the work described in this
report, a semiautomated procedure, the stepwise regression; is employed. The step-~
wise regression parameter estimates are actually linear regression parameter esti-
mates predicated on the minimization of the equation error, whose mean square is
given by the ccst function

1 ~ 2
J=5 2 Ilyd) - y(i)] (4)
i=1

where

. . N .
y(i) = 6, + Y x. (i) e

3=1 ?
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and the values of 6, are the equation error optimal parameter estimates (j = O,
1, ¢sss N). In the Btepwise regression, the 's are added to the regression
according to their effectiveness in reducing the equation error cost function J.
This value is represented by the partial P value F_ of the coefficient as
follows: P

Foa—d— (5)

where is the estimate of O, and s2(8,) is the variance of é_. The value of
the stepwise regression in systelh identification is that it not only 3elects a model
from a large class of candidate model variables but it simultaneously estimates the
corregsponding parameters for that model.

When applying a stepwise regression to flight data, it should be remembered that
the data are corrupted by measurement noise, and perhaps by process noise, which
appears in the form of modeling error. Hence, the regression, with fewer independent
variables than data measurements, always adds additional terms in order to reduce J.
Though all these terms tend to fit the data better, some terms simply fit the noise.
Hence, some criterion is needed to determine the point at which the adding of vari-
ables should cease. Experience has shown that several criteria should be employed to
ensure an adequate model that fits the data, has good prediction capabilities, and
makes sense physically. (See ref, 7.,) These criteria include:

1. Fp should be greater than 5.

2. F should be a maximum.

3. Rr?

should be close to 100 percent,

4. The residual sequence should be statistically equivalent to white noise.
This determination is made by observing the autocorrelation function for
the residual sequence,

No satisfactory single performance index has heen written as a function of these
separate criteria; hence, the selection of an adequate model is still somewhat
subjective,

Partitioning of Data

It was demonstrated in reference 8 that for large-amplitude longitudinal maneu-
vers the partitioning of data as a function of angle of attack provided a finer
resolution of stability and control parameters for the maneuver range than could be
achieved by analyzing the entire data string intact. This partitioning, or binning,
technique can be applied as follows., Consider a data set consisting of ihe measure-
ments of several variables of 400 time points each. The time history of one such
variable, a, is shown in figure 2., Several bins can be created, each containing
data corresponding to a given range of «a. The lines drawn parallel to the abscissa
in figure 2 represent the bin boundaries. For example, all data corresponding to
0° € a < 4° would be associated with the first bin, a.-a for 4° < a < 8° wourld be
associated with the second bin, and so forth, as shown in figure 2. Then each bin,
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which now contains data corresponding to a limited range of angle of attack, can be
analyzed for aerodynamic stability and control derivatives corresponding to that
angle-of-attack region.

There are, however, several problems associated with identifying parameters from
binned daia. The First is that by arbitrarily assigning bin widths, the a region
may not be 4 vided finely enough. However, one might also divide the region so that
there are too little data in each bin for a proper analysis. Moreover, the location
of the hin enapoints might obscure an important feature of the data if the endpoints
were shifted a degree. Hence, a second technique was applied to the data in an
attempt to alleviate these potential problems. This second technique allows the data
to "bin itself™ through the use of spline functions., This approach is more general
i applicability than the simple binning and can be described as follows. The range
of the independent variable which is most importaat in the determination of the
dependent variable is partitioned into several subsets, each having support on less
of the range than the previous subset. For example, the force coefficient C is
mainly dependent on a. Hence, if g = {zla < 2z < b}, then the a range, [a:b], is
divided according to the spline basis functions as follows:

; (a - ai)m (ax > ai)

(a - “i)I: =
4] {a < ai)

The values of a;, are called knots. An example of the "+" function is given in
figure 3. The four knots in this figqure are at a = 2°, 4°, 6°, and 8°. Hence,

1 for a > a =2° and (a - a,)g =0 for a < ay. Similarly,

L}

(a - a1)2

[}

(ax - “2)2 1 for a » 4°, and (a - “2)2 =0 for a < 4°, and so forth, for the

rest of the "+" functions. If the order of the "+" function, denoted by the super-
gscript m is other than zero, say 2, then (a ~- a,)i = (q - a,)2 for a ? a,

and (a - a1)f =0 for a < Qye For the analysis in this paper, the knots were
placed every 0.5° between a == 10° and a«a = 18°., By placing knots every 0.5° and
then allowing the stepwise regression to determine significant terms, the problem

of choosiwg too narrow a bin in the bianing technique ' . avoided. The longitudinal
force and moment coefficients were then written as follows:

K
* Z Cy (&= “1)2%%

ch

(13 2 i=1
i a 9

<

K
Cy = Cyo* cxaa + i; Cy fa-a), +C,

0 0
e e/7 e/13
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X - X -

- - gc -e )0

Cg=Cz,0*C " L C (@-a) +C 35+ 2 C la~a) 35
a i= ai q i=t qi

0 0
e e/ e/13

K - K -

- - < - a0 &

Cm cm,o + cm ® + Z Cm (a ai)+ + Cm riY + z cm (a ui)+ 2V
« i=? ai q imt qi

!

0 0
+ Cm6 60 + kcﬂ\a ) Be(a = a7)+ + (Cﬂl6 ) ae(a = G,3)+
e el e /13

Only two k 8, a and a at a = 13° and q = 16°, were chosen for the ele-
vator because of a lack of égnputet memory. The locations of these two knots were
chogsen to allow for what appeared to be the three ma‘or areas of elevator
effectiveness.

After a model has been selected and parameters have been estimated, the predic~
tive capabilities of the model must be tested, This is known as validation of the
model, ‘e method of validation used in this report is the numerical inteqgration of
the equations of motion. This method uses the eatimated model and a fourth-order
Ruange-Kutta integration scheme, Starting with the initial conditions of the flight
for which a given model was estimated, the longitudinal output variables a, q, 0,
and V are computed and compared with the actual fliqht values for these variables,
The robustness of the model can ha validated by applying it to another flight with
only similar initial conditions.

RESULTS AND DISCUSSION

Flight Data

A typical "flight,™ or experiment, for the determination of stability and con-
trol parameters congists of several "runs.,® Each run consists of about 3 minutes of
data commencing when the airplane achieves some predetermined altitude (usually about
2000 m for a light single-engine airplane), For idle power experiments, after
attaining the predetermined altitude, the throttle is closed. The airplane is then
trimmed to a desired angle of attack. A control input perturbs the airplane from the
trim condition with the perturbation damping out in about 4 seconds for short-period
longitudinal disturbances, After the disturbance has dam.ed, the airplane is trimmed
again to some desired angle of attack and is perturhed again by a control input.

In this manner, five to seven perturbations can be carried out during a single run.
Each run within a flight is designated by an integer - successive runs are designated
by successive integers. Each perturbation within a run is designated by a decimal
point and digit appended on the run number, For example, run 7.1 indicates the first
perturbation in the seventh run of a given flight; run 7.2 is the second perturbation
executed in the seventh run. A run ends when the airplane approaches some predeter-
mined minimum altitude (about 1000 m for the expariment reported herein). The air-



plane then climbs back to the initial altitude (taking about 10 minates) and proceeds

with the next run. The attitude gyros are caged (locked) between runs and uncaged at
the commencement of a run.

Fioc: :+ = presents traces for the longitudinal forces, certain lateral-motion
variah': , an: ‘e longitudinal control variable., The figure shows that after being
pertu =:d from - trim angle of attack of about 13,6°, the stabilator is brought back
to a position th.c is displaced by 1° from its trim position. While the stabilator
remaine in this persition, the induced longitudinal oscillation does not damp out, but
continues z2: ~onstant amplitude until the stabilator is returned to the -5° initial
condition. “ne time histories of the lateral-motion variables indicate that coupling
between the lateral and longitudinal modes is not involved,

Fiqure 5 presents traces of the longitudinal-motion variables and control dis-
placements for runs 7.1 through 7.6 and runs 8.1 through 8.5, all of which exhibit
similar undamped oscillatory behavior.

Confirmation of the oscillatory region is shown in the plot of run 11 in fig-
ure 6. In this run, the ‘airplane was trimmed to an angle of attack below that at
which the undamped oscillations occurred. The stabilator deflection was increased
in increments of less than 1°, The oscillation is centered around «a = 14° and
6 = "7°o

e

Stabilator deflection to trim is plotted against trim angle of attack in fig-
ure 7. This fiqure can be used to check the actual stability of the trim conditions
in the 14° to 16° angle-of-attack range. From figure 7, a loss of stabilator effec-
tiveness to trim is indicated between a = 14° and a ~ 17,5°,

For each run in figure 7, an uncertainty range for §&_ £ was calculated by aver-
aging the 10 sample points for stabilator deflection before and the 10 sample points
for stabilator deflection after the pilot noted that the airplane was trimmed., 1In
the region above a = 14° and below a = 18°, there is a very large uncertainty in
the value of stabilator to trim. This uncertaincy is shown by the bars about the
stabilator to trim values in this region.

The lower bound on this region is further defined by runs in which the airplane
.£ trimmed at angles of attack near 14° but pitched nose down instead of nose up.
The oscillations induced in this manner do damp out. Hence, one is left with a
steady-state short-period longitudinal oscillation which is easily induced from trim
angles of attack in a region bounded by a = 14° and «a = 17° and with stabilator
deflections between ~7° and -9° with the throttle set at idle power.

Comparison of Binned and Spline Analyses
Figure 8 presents the results of the stepwise regression analysis applied to
three of the oscillatory flights. The circles represent linear parameters estimated

from the binned analysis. EFEach circle is plntted according to the mean value of a
for data in the bin it represents. The short-line segments in figure 8 represent the

10
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slope of the parameters, These slopes can be identified when - second-order term
such as

(o)
—2C (7)
o da da za

=1
2

enters the regression equation.

As with the values of the parameters themselves, each slope for a paranmeter is
plotted at the mean value of a for the bin in which it is identified. The ordinate
value at which a slope is plotted is determined by extrapolating a line with the
identified slope from the identified parameter value at the airplane trim angle of
attack. (See fig. 8(a), for - aple.) On the plot of Cz as a function of ¢

q
in this fiqure, a circle is plotted at a = 11.,3° and C; = =22. However, for the
g

next bin, with a mean angle of attack of 12.6°, a slope is plotted. This slope

(-390 rad-1) is given by the value of C, , which is the coeffic.ent of the a %v
qa

term identified for this bin. The value of Cy for the data in this bin is =47 but
q
is referred to a, for the run which is 16.4°. Hence, the extrapolation egquation

for Cy to the bin which has a mean value of a = 12,6° is
q

Czq\u) = =47 - 390(a - ao) (8)

where a = 0.2862 radians and a 1is in radians. Experience has shown that such a
nonzero Yalue for a slope of a derivative indicates a -tion of change in the deriva-
tive value with respect to angle of a tack.

Also plotted in fiqure 8 are the results from the application of the gtepwise
regression with the spline candidate model. The dats are not girtitioned prior to
the application of the spline model., Any change in parameter values with angle of
attack is noted by the entry of a knot near the region of change. Here again, the
plot of Cz as a function of a in figure 8(a) provides an example. The "stair-

q

case" or step-shaped line is the result of a spline analysis in which the stepwise

regression selected zero-order splines in (a - ai)g-%% with knots at a = 13.5°

and 14.5° or a model for Cy given (for the entire maneuver) by
q

c, (@ = -23. - 5.5(a - 0.2356)2 - 5.0(c - 0.2530)3 (9)

q

11
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where a is in radians. An examination of the plots for each derivative in figure 8
is included in the remainder of this section.

Both the binning and spline technique show C (figs. 8(a), 8(c), and 8(e})
2q

to consist of at least two levels. For all three runs, Cz is about -2.2 between
a

a~12° and aq ~ 15,5°. Above a = 15.5°, Cz decreases in absolute value to
a
about -1. This corresponds to a flattening of the lift curve at about a = 15.5°.
In addition run 7.6, which contains more data from the low-angle-of-attack regicn,
gives rise to a third level. At this level, Cé = -4,5 for a < 12°, Overall,
a
C; is strongly and consistently identified.
a

The derivative C, (figs. 8(a), 8(c), and 8(e), decreases in the region
q

between a ~ 12° and a =~ 16° fcr all three runs. Run 7.6 contains an extra step
in the low-angle-of-attack range. This is probably caused by a relatively large
amount of data in that region, as was the case with the parameter Cz .
a
The derivative C; (figs. 8(b), 8(d4), and 8(f)) is the third strongly and
q
consistentlv identified derivative. Both the binned and the spline analyses indicate
positive values of C; between ¢ »~ 12° and g ~ 17°., Run 7.6 (fig. 8(f)) again
q
gives the best results in the low-angle-of-attack range, where the spline technique
showed that C; = =13 for a < 10.5°.
q
The derivative C& is not identified consistently across the three runs. In
a
run 7.1, the binned result is scattered, and the spline picks out no structure. The
fact that the splire result simply averages the binned results indicates that the
scatter is probably not a function of the choice of bin width and/or bin boundaries.
Run 7.3 yields a bi-level wvalue of C; , and the binned-value analysis indicates a
a

drop in Cp from -1.7 tu ~-2.8 at ¢ ~ 16.6°. The spline analysis of run 7.3 shows
&
& similar drop (but to ~3,6) at a =~ 18°, The difference in the angle of attack at
whicn the C; change cccurs could be explained by aliasing due to bin width and bin
al a -
boundaries. Run 7.6 shcws another slightly different result., The data for the low-
angle-of-attack range have again resulted in better identification of C& at
a

@ < 12°, The binned analysis indicates a trend from about C; = -1 at a =~ 10°
a
to C& s -2 for a > 16°. The trend is shown to s.pport a type of double break in
a

Cé when analyzed by the spline technique. Each of the breaks identified by the
a

spline model gives C& = - 1.

a
The derivative Cz is estimated consistently for g > 16° by both techniques
e
as Cz6 = -1,2. At lower angles of attack and in the g = 12° to g = 16° region,
e

12
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the three runs yield different values. Run 7.6 again yields the result most in
agreement with other data from the low-angle-of-attack region. An aliasing problem
could exist with the estimation of C26 since, as pointed out previously, only two

e
knots (at a = 13° and a = 16°) could be chosen for 6e'

The derivative C& showed the same characteristics as Cz +« Run 7.6 pre-
e e
sented the best low-angle-of-attack values, and all three runs yielded similar values
of ~1.,2 for C;G for a > 16°,

e

Interpretation of Derivatives

Because each derivative can be interpreted as a coefficient in the differential
equations describing the motion of the ajirplane, each derivative can be interpreted
as representing some characteristic behavior in that motion. The derivative C'

a
repvresents the static margin of the airplane., A large negative increase, as seen in
the analysis of runs 7.3 and 7.5, usually indicates wing stall and the resultant
shift of the aerodynamic center. A positive value of C& , which was identified in

q
ali three runs for the region hetween a =~ 12° and a = 17°, indicates positive
pitch aamping. Positive pitch damping indicates ar unstable or divergent pitch rate
in this angle of attack region. The decreasing value of Cz can be interpreted
a
as indicating a flattening of the lift-curve slope, This can also be interpreted as

a loss in damping in q. The derivatives G and CA indicate control effec-
8

e e
tiveness, At low angles of attack, as indicated from run 7.6, the ratio of C& to

e
026 should he propc—-tional to the moment arm for the stabilator. However, for
e
a > 10°, the values of C& and CZ approach one another. These values are
e e
predicted on only a few data points overall, particularly in the oscillatory region,
where the stabilator was held at 6e o for about 90 percent of the time,
r

validation

After a model has keen selected by an identification technique, it still must be
validated in some manner. Several methods of validation are commonly used in system
identification., One method compares the model derived by using one technique with
th:- derived by using another technique. Fer example, the model selected by using
an equation error technique can be compared with one derived by using a maximum-
likelihood output error approach, Another method of validation is the testing of
the predictive capabilities of the model. Given the initial conditions and forcing-
function time history, the model equations can be numerically integrated, and the
output va:.ables can be compared with the actual measurement time histories of the
system output variables, Another method of validation, and one which demonstrates
the rnbustness of the model, is the combination of the initial conditions and
forcing-function time histories of an experiment similar to (but not the same as)
that used for the identification. Again, the output of the model should be close to
the output of the actual system.

13



The second method, that of pnredictive ability, was used to validate the models
derived from oscillatory data. This technique is particularly suited to the problem
congidered in this report, because the model was determined by minimizing the mean-
square error between the measured and computed acceleration. The integrated equa-
ticns of motion, however, compare output variables - total welocity V, angle of
attack a, pitch rate q, and pitch angle @, An inadequate model would fit the
data to the acceleration time history, but would not, from initial conditions and a
forcing-function time history, correctly predict the motion of the system.

The flight time histories for selected longitudinal variables from run 7.1, as
well as the simulated time history for that run from the integrated longitudinal
equations of motion with a linear aerodynamic model, are plotted in figqure 9(a).
Figure 9(b) shows simulated results using the spline model estimated from run 7.1.
This model gives slightly better results for the angle-of-attack prediction, although
it is no better than the linear model in predicting the time histories of the other
three variables., Both models fail to match the total airspeed by about 10 percent at
the worst points. However, the short-period oscillation in the airspeed is predicted
by both the linear and nonlinear model.

As a measura of robustness of the nonlinear model, the initial conditions and
forcing-function time history of run 7.3 were integrated using the nonlinear model of
run 7.1. The results are presented in fiqure 9(c), where the simulation result is
shown with the actual time history of run 7.3. Run 7.3 is a good test of the model,
as it was excited with a smaller and less persistent stabilator input, and consists
only of the free-oscillation response of the airplane. The model seems to be overly
dependent on the forcing function, in that it predicts the first oscillation well but
then allows the oscillation tc damp too quickly. The model does, however, simulate
the free oscillation qualitatively.

Correlations With Theoretical Models

The comparison of models estimated from flight data with those identified from
wind-tunnel experiments or with those synthesized theoretically is complicated by
several factors. These factors include a difference in Reynolds number, possible
gust effects in flight, less repeatability of exact initial conditions in flight than
in the wind tunnel, and, very importantly, an inability to separate the plunging
motion of the airplane from its pitching motion in flight. The inability to separate
these two motions is demonstrated in figure 10, where both & (plunging) and q are
plotted against time for one of the oscillatory flights. The values of & for fig-
ure 10 were calculated by applying a cubic spline under tension to the angle-of-
attack time history, which was indicated by the wind-vane angle-of-attack sensor on
the airplane. The correlation between these two variables means that aerodynamic
derivatives with respect to @ and ¢ cannot be estimated separately, but rather
some combination must be estimated. The actual combinations that are estimated are
derived for the pitching-moment derivatives in the appendix. Within the framework of
the above difficulties, the models estimated from the flight data were compared with
two theoretical models., The first type of model was developed by Phillips (ref. 1).
The model demonstratas that the dynamic effect of & near Cy, . max ©Of the wing and
the associated hysteresis in the lift curve can produce an oscillatory longitudinal
motion. Hence, this first model deals principally with the effect of the wing, The
second model considered here places the cause of the oscillation mainly on the *ail,
In this second model, when Cm 2 0 in a small a region, a total loss of damping

q

in pitch is indicated. Hence, a longitudinal oscillation develops to a limit cycle.
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Both models are considered individually. The Phillips models are of interest in
light of the results of Winkelmann (ref, 9) and the new wind-tunnel results of
Newsom, Satran, and Johnson (ref., 4). These results indicate either hysteresis or
uncertainty in the lift-curve slope in certain angle-of-attack regions. This section
of the present report is an investigation of existence of hysteretic behavior in the
actual flight data.

Phillips models.- To apply the stepwise regression for the purpose of estimating
a model structure similar to the Philliips models, the set of can.idate model vari-
ables was modified to include the variables {E and {: a. The 12 and ¢§ a
terms were restricted to § » 0, in that it was only for these positive va)-es of a
that the augmentation of the lift curve is postulated. The values of & < 0 are
ignored by the program when creating the data string for the JE and V& a terms.
Of the 11 oscillatory runs that were analyzed, only 3 yielded a Cz parameter pro-

portional to Y& In each case, the identified parameter was Curs and C,
\@ a \&

was zero. A typical value for CZJT was -12.5 + 2.0, This vaiue of Cz -
aa ‘; o

implies an increase in CL,max as a linear function of the difference between flight
reference angle of attack and stall angle of attack.

A second feature of the Phillips models was hysteresis in the lift curve., To
identify possible hysteresis €rom the flight data, 2 bins were created for each of
the 11 runs. All data corresponding to a@ » O were put in the first bin. The other
bin contained data corresponding to @ < O. The stepwise regression was applied to
each bin for each of the 11 runs. In 10 of the 11 runs, the bin for & » 0 yielded
a greater lift-curve slope than the bin for & < 0. The results for lift-curve slope
are given in figure 11. It is clear from the figure that for all runs except 7.1,
the lift-curve slope is greater for a » 0 than for @ < 0. For run 7.1, the two
slopes are the same, The dashed lines in figure 11 depict higher-order derivative
information (e.qg., CZa2' Cza3, etc.) extracted by the stepwise regression. When

this same technigue was applied to data from maneuvers by the same airplane trimmed
at lower angles of attack (a = 4° to «a = 5°), there was no significant difference
in lift-curve slope.

Finally, approximate values cf CL' calculated using
Cp = =Cy ~ -czo - Cza(a - a;) + (higher-order term where identified) (10)

are plotted in figure 12 for models f m the *hree representative runs - 7.1, 7.3,
and 7.6. Again, the differences in lift for & » 0 compared with & < 0 for a in
the oscillacory region are evident. When the maneuvers initiated from lower angles
of attack were analyzed using a similar binning as a function of &, no differences
in 1ift curve were evident,

In summary, differences in liit-curve value and lift-curve slope appear in data
from the longitudinal maneuvers initiated from angles of attack near 16°, but not
in data from similar maneuvers initiated from lower trim angles of attack (a = 4°
to 5°)., Moreover, in the region in which the differences exist, the lift-curve
3lope and lift-curve value are greater for increasing angle of attack (a > 0), Such
a result aocrees with the Winkelmann (ref. 9) results for a similar wing in a wind-
tunnel test,
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Van der Pol model.- In reference 2, Thosas and Collinghourne describe a deep-

stall limit-cycle condition by a Van der Pol-type differential equation. The
Van der Pol equation has the general form

z(t) - el1 = z2(t)) 2(t) + 2z(t) = O (1)

The solution to equation (11) is a liw' . cycle because of the change in the =ign
of the damping coefficient ¢(1 -~ 2 2(¢); tret occurs whenever z(t) traverses the
values x1, Por application to the airplane problem, the perturbation Aa, in angle
of attack from a,, can be substituted fur (t) in equation (11) to yield

Ax = @, AX + 6, Ak(A)Z + 6, A (12)

Equation (12) is in a form amenable to solut:on for 6 . 9 , and 0 by the step-
wise regression program with the independent variables Ax and Aa. ‘Then the fre-
quency of oscillation of the system can be 2stimated by

Also, (Aa)crit' the Aa value at which che Gamping of the motion changes sign, is
given by

Applylng the stepwxse regression to the data from run 7.3 yields 6, = =7,.4,

62 = -0,52, and 93 183. These three values are typical of the other oscilla-

tory runs. For these values of &, 92, and 93, t.gc = 2.7 rad/sec, and

(Aa)crit = +3,1° These values are corroboraied by the flight data. The interpreta-~
tion of the Van det Pol results is that the Aa term provid=s no damping and in fact
tends to increase |a - a°| to 3.1°, when the ccefficient of Ag changes sign and
provides damping.

Another derivation of the Van der Pol coeffic nts comes from extracting
pitching-moment derivatives, If the pitching-mr ient equation is written as

e 1 2 a€ 2 gc
1,9 =7 oV Sc(:‘:‘ Ba + C1 5% <p o (Ax) 2V (13)
[+ q aq -
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and if a =q for a single degree of freedom, then equation (13) becomes

py o BUSE ., BaE  pVSE ., ()2 BEE , pVSE ., (14)
21 n 2v 21 m 2 2v 21 |
Y q Y aq Y a
Substituting values from run 7.1, then sc = 2.7 rad/sec and (Aa) .. = £3.0°,

which is again in agreement with the flight data. To validate the sig;ig-degree—of‘
freedom Van der Pol model, the model equation was integrated numerically using a
fourth-order Runge-Kutta integration scheme. A phase-plane plot of the results of
such an integration using the Van der Pol model from run 7.3 and realistic initial
conditions of Ax = 0 and q = -0.16 rad/sec is presented in figure 13{a). In all
parts of fiqure 13, the sense of increasing time is clockwise. This model reaches
its limit cycle trajectory in about two complete cycles. However, in figure 13(b),
a phase-plane plot. of the actual flight data indicates that a wuch more rapid tran-
gsition to the lim.t cycle trajectory (in ahout one-fourth of a cycle) should be
expected. Moreover, (Aa)c it corresponds to the maximum deviation in . In order
to predict this maximum deviation, the damping should change sign at a smaller value
of Aa. In summary, the Van der Pol single-degree-of-freedom equation correctly
predicts the qualitative behavior of the motion but fails to predict correctly the
variation in angle of attack.

For completeness, two additional cases were numerically integrated, and their
phase-plane trajectories were plotted., In fiqgure 13(c), the Van der Pol model from
run 7.3 is integrated from initial conditions Ax = 0 and q = -0.45 rad/sec. These
conditions lead to the same limit cycle trajectory as did the conditions that yielded
the results shown in fiqure 13(a). Finally, a linear harmonic oscillator estimated
from the equation g = 6q1a was integrated, and the resulting phase-plane trajectory
was plotted in fiqure 13{(d). Though it satisfies the range requirement for «, the
harmonic oscillator model fails to satisfy the range requirement for q and, most
importantly, fails to have the qualitative property of converging from any given
initial condition to the same limit cycle trajectory.

CONCLUSIONS

Several examples of short period longitudinal oscillatory flight at high values
of lift coefficient have been analyzed. The data were obtained by a light single-
engine reseacch airplane with outboard leading-edge modifications for operation at
high angles of attack. A stepwise regression was applied to the flight data to
determine aerodynamic force and moment model structure and parameter values. Two
separate applications of the stepwise regression were made, each with different forms
of the candidate models. 1In one application, the candidate model set was comprised
of spline basis functions with knots at 0.5° increments in angle of attack. The
other application consisted of applying the stepwise regression with polynomial
candidate model terms to the data after that data had been partitioned into bins as a
function of angle of attack. An analysis of the results, including a comparison with
theory, indicates the following:
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1. The change in pitching moment with respect to pitch rate C; is definitely
q
positive for the angle-of-attack range over which the oscillations occur, There is a
flattening of the lift curve in the oscillatory region. The values of the change in
pitching moment with respect to angle of attack C; , though not congistent, imply
a

the possibility of a stall in the oscillatory region.

2. Both techniques (polynomial on a partitioned data set and spline) give
similar results.

3. The models simulate the oscillatory behavior qualitatively but provide too
much damping.

4. Analysis of data partitioned for positive and negative rates of change of
angle of attack gives strong support for the existence of a hysteresis loop in the
1lift curve for the angle-of-attack range covered by the oscillatory motion.

5. A one-degree-of-freedom Van der Pol model can simulate the general phase-
plane behavior of the motion but does not properly limit the range of angle of
attack.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

November 30, 1982
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BQUATIONS OF “OTION

The following equations of motion are given in this appendix.

Ceo

gvzs
-qw + rv - g sin 6 + o cx

z
-ru + pw + g cos 0 gin ¢ + 2§;§ CY

2
~pv + qu + g cos 9 cos ¢ + E%EE cz

qcos ¢ -~ r 8in ¢

p+t(gsin ¢ +rc:. ¢) tan 6

Juz + v2 + wz

L J

tan-’ v & ~ v
u "

-1v ) ;

- - Y

sin v 8 v
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- . qc - N
cz cz,o + cz (a ao) + cz 2V + cz (6e Ge,o) + cz (a “o’zv
a q 8 qa

2
) + cz 2(B - Bo)

2
+C, 2(a - ao) +C, (a - ao)(Ge - Gelo ;

§ a
e

2 3 4
+ cZ 2 (B - Bo) (a - ao) + cz 3(a - ab) + cz 4(a - ao)
B a (] a

5 6 7
+ czas(c - ao) + cz 6(a - ao) + cz 7(a - ao) + cz B(Q - ao)

_ . ac . RN =
C& CA,O + q;a(a uo) + q;q 2V + 9;6 (6e Ge,o) + C; (a ao)ZV

e
] - 2 ] & - - [ ] - 2 -
+ Cma2(a uo) + Cmsea(°° Ge'o)(o ao) + cmsza(s Bo) (a ao)
. 2 . _ 3 , - 4 . _ 5
+ Cm 2(8 - Bo) + Cm 3(0 ao) + cm 4(a ao) + cm 5(u uo)
B a a a

7 . 8
m 6 m 7(0 - ao) + cm B(G - ao)
a o a

+C' _(a-a )6 + C*
o

where

c = C + C 8¢ c + cos 0
m,o m,o m& 4m Z,0 2v2 o

pSc
c' = C + —
m5 m6 4m mu ZG
e e e
Vs esc
c Cm + cm° 4m cZ
qa qa a qa
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pSc
c! = C + C - C
"5 a § a mc in ZG a
e e e
pSc
(o) = C + C — C
62a mazq me* 4m ZBZa

Assuming steady-state (Vo = py = Qo = g = ¢ = 0) initial flight conditions, the
longitudinal equations become

2

[ ]
u=-qw-gsine+p_.v-—s-cx
2
. pvV S
= + 6 +
w qu g cos om Cz

2 -
S - PV _Ssc .,
q 2IY Cm
= q

and the longitudinal output can be written as

a, = é(& + qw + g 8in 0)

‘| o
a, = g(w - qu - g cos §)
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and for the equation error form, the aerodynamic coefficients can be written as

ré’
]
(]
(2]

F

2R 1D
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Figure 1.~ Three-view drawing of test airplane showing outboard
leading-edge modifications (not to scale) on top vioew,
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Figure 11.- Values of lift-curve slope for oscillatory runs
indicating possibility of lift-curve hysteresis.
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Figure 12,- Plot of lift-curve values estimated by regression
applied to data partitioned by rate of change of angle of
attack.
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(a) Van der Pol model estimated from run 7.3 showing
attainment of limit cycle.
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Figure 12,- Phase-plane trajectories of several models and measured data.
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(c) Van der Pol model estimated from run 7.3 showing

attainment of limit cycle,
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(d) Harmonic oscillator estimated from run 7.3.

Figure 13.- Concluded.



