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1.0 Introduction

This Interim Report summarizes the work performed under Modification
7 of Contract NAS8-23691 entitled "Study of Tethered Satellite Active
Attitude Control.” Under this modification, SAO adapted existing software
for the study of tethered subsatellite rotational dynamics to its present
data processing system, developed an analytic solution for a stable con-
figuration of a tethered subsatellite, compared the analytic and numerical
integrator (computer) solutions for this "test case" in a two-mass tether
model program (DUMBEL), modified the existing SAO multiple-mass tether
model (SKYHOOK) to include subsatellite rotational dynamics, verified this
modification with the analytic "test case," and demonstrated the use of
the SKYHOOK rotational dynamics capability with a computer run showing
the effect of a single off-axis thruster on the behavior of the sub-
satellite.

SAO is now in a position to develop subroutines for specific
attitude control systems and to apply them to the study of the behavior
of the tethered subsatelljte under realistic on-orbit conditions. Such
studies could also include the effect of all tether "inputs," including

pendular oscillations, air drqg, and electrodynamic interactions, on the

dynamic behavior of the tether.
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2.0 A Simplified Model of the Motion About the Center of Mass of a
Tethered Subsatellite

2.1 Introduction

The dynamics of a tethered subsatellite about its center of mass is
quite complex in the general case and required sophisticated changes to tlie
SKYHOOK program.. SKYHOOK iias been rewritten to deal with any tetherad sub-
satellite mission requiring high accuracy attitude prediction and control
such as astronomical or earth observation missions or, more generally, any
mission which depends heavily on isolation of the package from the noise coming
from the connection to the Shuttle through the tether. For acquiring experience
and physical insight into the dynamics of this system and for providing an
analytical solution against which thé program changes could be checked, we

have studied a simple configuration which can be solved analytically.

2.2 The Simplified Model

VWe consider the shuttle in a circular orbit (nominal low orbit at 150
n.m. = 270 km altitude here, but this is not a very critical constraint) and
assume that the orbit is polar or equatorial. The orbital plane is therefore
invariable in an inertial frame.

We also assume that the subsatellite is axially symmetric with the point
of attachment of the tether {0) being a point on the symmetric axis of the sub-
satellite different from G, the center-of-gravity of the subsatellite. We also
call C the moment of inertia of the subsatellite with respect to the symmetry
axis and A, the moment of inertia with respect to an equatorial axis. In
this model we neglect the dynamics of the tether induced by the rotational
motjon of the subsatellite asid we assume also that there is no significant

in-plane or out-of-plane osciliation of the tether and subsatellite.

B Y je,w 7t
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Ne neglect also the longitudinal oscillation of thetether-subsatellite system.
Thiz motion of the subsatellite 1s therefore equ1Va1ent to the motion of a
axis-symmetric rigid-body about its center of mass when a force constant

in magnitude and rotating uniformly about an axis normal to the force and
constant in orientation (in this case normal to the orbital plane) is

abplied to a point, P, of its symmetry axis. Other torques and the effects

of the precession of the orbital plane may be introduced into the computer
model but are difficult to deal with analytically.

2.3 Notation and Reference Frame

In Figure 2-1 E is the center of Earth; S, the Shuttle considered
as a point; 0, the attachment point of the subsatellite; a, the unit vector‘
from E to S to 0; ¢, the unit vector normal to the orbital plane; b = ¢ x a,
the unit vector tangent to the orbit; G the center-of-mass of the sub-
satellite; d, the distance from 0 to G; k, a unit vector in the direction
from O to G; i and j, two orthogonal unit vectors in the plane normal to the
symmetiy axis 0-Gwhich equals kd; N, the nodal line intersection of the plane
0, i, j with the orbital plane; v, ¢, 6, the Eulerian angles of the frame O,

i, J» k, with respect to the frame 0, a, b, c and F, the gravity gradient

force acting on G which is equal to the tension in the tether. We neglect
the gravity gradient torque acting on the body which is negligible if the
dimensions of th2 body are small with respect to the length of the tether (1)

and which i: true for virtually all subsatellites. In good approyimation we

ﬁ%ﬁ%—%ﬂh (1)

may write:

E = 3g(MME) [1+a(d) + o

ppoprisciniom ok e o
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Figure 2-1. Reference Frame for Motion of Subsatellite About Tether Attach Point .
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Here g(0) is the acceleration of gravityat 0, M is the mass of the subsatellite;
n, the orbital mean motion,o(X) is a coefficient of magnitude x with respect to
L, and where thg'quantities denoted by o are infinitesimally small. As an
example, if d = 0.5m, £ = 50 km, C-A = M(0.5m)2, n = 10-3, g(0) = 9 m/sec?,

we have

o(%) * 10-5 (2-1)

and

<AYn2 -6 6
of{C-A)nZay _ 0.25 x 1076 x 5.7_x9m = 10-5 (2-2)

Mdeg(0) + b'x

This evaluation gives an idea of the magnitude of the terms which are neglected.
If 2 is of the order of 1 km and d is cf the order of 1 cm, a(%) is of magnitude,
10-5, while the second term is on the order of 2.5 x 102, Only if d is down
to the mm level and & is down to the 0.1 km level, is the second term on the
same order as the main term.

A second reference system (see Figure 2-2) is obtained by displacing
the center of the frame to the point G. This is done when we want to consider
the motion of the subsatellite, in the classical way, about its center of mass.
The only torque zffecting this motion in the system being analyzed here is
the torque T due to the tension applieé by the tether to the subsatellite.

It's value is

T= (-dk) x (-3g(0)% a) = 3g(0)Md k x a (3)

Before passing to the equations of motion we define the Eulerian angle since
different notations are used here than in the literature.

The angle y is the angle measured in the plane a, b, from a to N (nodal
line) counterclockwise (c.c.w.) with respect to an observer standing along c;
8 is the angle from c to k measured c.c.w. from an observer oriented along N;

¢ is the angle between N and i measured c.c.w. from an observer oriented as k.

FL I N
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Figure 2-2, Reference Frame for Motion of Subsatellite about It's Center of Mass (G).
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Concerning the torque given by (3), notice that we neglect the feedback
effect of the tether mass on the motion that we are analyzing. We also
neglect the possible variation of the orientation of the tether from the
vertical direction. The general computer mode) includes both these effects.

2.4 Dynamical Equations

The following is the standard procedure for writing the expression of

kinetic energy with respect to an absolute frame
T= %— {A [62 + (y+n)2sin2e] + C [&+(¢+n)cos€]2} (4)
The work done by the force -F is given by (see Figure 2-1)

F* 80 = - a - 6(-dk) = |F| da - ek
= |F| d s(sinesiny) ‘ (5)
= |F| d (sbcosesin y + éysinocosy)

where ¢ denotés a small variation in the quantity. The modules of the vector

F are denoted by F, below.

The Lagrangian equations become:

%f (A6) - A(j+n)2sinecose + CLé+(y+n)cose] (y+n)sine = Fdcosesiny  (6-1)

ala
ot

[A(@+n)51n29 + C[$+(¢+n)cose]cose:] = Fdsinecosy (6-2)

'n.

£ [cCé+(imcosel]= 0 , (6-3)

[= %

From the last equation we have

¢ + (y+n)cose = o | (7)
This relation means that the component of the angular momentum along the
symmetry axis and of the angular velocity with respect to an absolute frame

is constant. The equations (6-1) and (6-2) become:
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A6 - A(y+n)2sinecose + Cr°($+n)sineA- Fdcosesiny
Aysine + 2A8 (y+n)cose - Crod = Fdcosy

Equations (7) and (8) give the general solution. It should be noticed,
however, that equation (8-2) becomes singular for 6 = 0, and therefore, the

numerical integration may "blow-ur” at this point.

2.5 Stationary Solution

One may search for stationary solutions. For instance, one may search

for solutions that satisfy the relation

6=6,F0

Equations (8-1) and (8-2) becume
-A(i+n)2sine cose  + Cr (i+n)sine, - Fdcose,siny = 0
Aysine - Fdcosy = 0

Multiplying (10-2) by ¥ one yields

J ag2 - _—
5 Ay sineo Fdsiny H0
while equation (10-1) may be written

pi2 o a2 . i i

Ay? ~2AYnsine cose An2sing cose, + Cro(w+n)sineo choseosinw 0
or

)2 - An2 .
Ay< + choseosinw An sineocoseo 0

and

2Ansine°cose° - Crosineo =0

(8?11'
(8-2)

(9)

(10-1)
(10-2)

(1)

(12)

(13)

(14)

et
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For (11) to be identical to (13), one should have

2

: » 7y
ETEE;' = coso,, sino cose, = 2 (3}

which does not have any solution. The only solution 6 = 6, are obtained
with v =y, = & % and

=An2 ! ™
An sineocoseo + Cron sine° + Fdcose, G (16)

where the signs (-) and (+) hold, respectively, when y = & % .

One should notice that any solution y = % » 8 =0, 1s coincident with
the solution y = - %~, 6 = - 0,. Therefore, we shall consider only the case
v = %—. Equation (16), where we hold the sign (-) in front of the term
Fdcose, (v = %). and taking into account (7) yields

2 y - T =
(C-A)n?sing cose,, + €¢°nsine° dcose, = 0 (17)

If 30 >> n equation (17) reduces to

, _ _Fd

If Céo and (C-A)n are comparable, we can solve equation (17). We may write

equation (17) in the form

Q%A n2 sin2e, = - Qsin(eo-so) (19)
where
Q = |(c2g2n2 + F2a2) /2 (20-1)
~ sing, = Fd/Q, coss, = Coon/Q (20-2)

‘ 9'-
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Solution of equation (19) is given graphically in Figure 2-3. The corres-
ponding configurations are illustrated in Figure 2-4, It s clear that

2 ,
when (C-A)-:,_-'- << Q solution of (19) gives o, = 8, and 6, = g, + (2n+1)n.

As an example we take:

d=0,1m C=M0.5m)2, A = M(0.3m)2,
L =10 km, g(0) = 9m/sec2, n = 10°3,

- 0, 2.7
F=3x9xMx 5700 " 67 M,

¢ = 1071,

Then equation (17) becomes

0.16M x 10‘Gsimeocoseo + 0.25M 10'“sine°

2.7 x 0.1 coseo

- =0 (21)
67
which gives, in first approximation
Tane_ ®= 10", 6. = 89°43 ,
0 ' Yo (22)
8y " 269°43
If éo = 10°2 we will have
Tane_ = 10, o = 84929
0 * Yo . (23)
8, = 264929
Now introduce the small angle
B8 = 6, - B, (24)
where 6, is the solution of (19), we have
C-A o, -
=5~ n®(sin2g, + 286c0s28,) = - Qae (25)

10.
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Figure 2-3. Graphical Solution for Stationary Conditions (Equations 17 and 19).

11.
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(C-A)nzsinZBo
A0 = =g ¥ 2(C-A)n? - cosﬁ;

(26)

From which we may evaluate the first order correction.
Considering only the case éo = 10-2, we have for the two steady state
configurations

26 ® - 3-15 xs?'23?03 rad = 0.22 arc seconds (27.1)

bop » - JAEXD1I o, rad = 1,25 arc seconds (27.2)

We conclude by noticing that even if &o = 0,.1n, or one tenth of the mean

motion, the correction is neqligible.

2.6 Stability of the Equilibrium Configurations

Since there are only two configurations of equilibrium, one presumes that
one will be stable while the other is unstable. This may be the case, but,
since we are confronted with the complex behavior of a three degree of freedom
system here, other steady state solutions may exist and one must be careful
in reaching general conclusions from this analysis ‘in order to evaluate the
stability of these configurations. The equations (8) are time independent

as the Lagrangian function from which they are deduced which is:

LeT+U= 1/2{:\[62 + [j+n)2sin2e] (28)
+ C[& + ($+n)cose]2> - Fsinesiny

The system has a first integral (7) which implies the invariability with
respect to time of the component of the angular velocity vector along the

symmetry axis, and the corresponding component of the angular momentum

Cry = Cl$ + (y*+n)cose] | (29)

12.
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Moreover, the energy integral holds

l/2|{A 82 + (y+n)2sin2e + CrOZ} - Fsinesiny = E (20)
Next we consider the linear stability of the steady state solution defined
by the following initial conditions:

8(0) = 8., 6(0) = 0, y(0) = 5. ¥(0) = O,

- A (31)
$ = ¢y = Iy - NCOSO,

where 6 is one of the two solutions of equation (16) or (17), while ¢,

being a cyclic variable, may be choosen arbitrarily.

We consider the equations (7) and (8) and make the following assumptions:

e N — n . L3
6 =0, % by VE=5% ey, ¥=en

b=dytedr=rgten (32)
and substitute these in equations (7), (8), considering ¢ a first order
quantity. Neglecting second order quantities in e we have from (7)

ro *er = &o + 4, + (ey; +n) cos (65 * €0;) (33)
From which we get
ry = ¢y + by cose - neysingy (34)

Since, however, the first integral holds also for the new initial conditions,

we have
¢1 *+ ¥ €OS B, - noysing - (r1), (35)

which implies that if 6;, y;, remain small in the pertrubed motion then ¢,,
will also remain small. Therefore, we have to study the stability with

respect to the two varijables 6 and y because the stability of ¢ is

14,
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derived from (35). As a matter of fact, we consider only the subset of

motions which correspond to the same value of o that in turn defines through
equation (16) the value of 84 and ignore the ¢ coordinate. For other values
of o different equilibrium configurations occur. For each of them the same

assumptions and the deductions obtained here hold.

Consider equations (8) and substitute (32) keeping ro constant. We
arrive at the following equations:
eA.e.l - %(e!iq’rn)zs"'in 2(00 + €6;) + Cro(eth-t-n)sin (90*591)
= Fdcos (9°+€91)Sin(%'+ €y1)
(36)

eAalsin(eo +¢e0,) + 2Aeél(e@1+n)cos(eo +¢€6;) - Croeél

= Fdcos (§-+ vy )

Neglecting second order quantities and taking into account that 90 is a

solution of equation (16) we write the following linear system with constant

coefficients

Aey - (2Ansinegcose, - Crosing,,) &1
+ [Croncosey + Fdsine, - An2cos26,] 6, = 0 , (37)

A@lsineo + (2Ancose, - Cro) él + Fdy; = 0

The linear system (37) has the following characteristic equations

2pcd 2 : - An2
(A2Asine  + Fd)(A2A + Croncose  + Fdsine, - An cosZeo) (38)
+ (2Ancoseo -Cro)zsin agA2

that is, the quadratic equation

ORIGINAL PAGE IS
OF POOR QUALITY
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uzAzsineo +u '{Afd(1+sinzeo) - 3ACnroc056051ne°

+ 3A2 [nzcos?-eosineo + A2n251n3en]+ Czrozsineo} (39)

+ dF (Cr ncose, + Fdsine - AnZcos2e

where we substitute u for A%2. Since th2 system is a Lagrangian conservative
system the characteristic exponents which are solutions of equation (39)
either are real or imaginary; they cannot be complex. Therefore equation
(39) certainly has real solutions u; and u,. Stability occurs when both
solutions are negative which means that the three coefficients of equation
(40) should have the same sign.

A general discussion of the signs of the coefficients are very complex.
Some 1imiting cases may be treated easily. In particular, let us consider
equation (16) choosing tre negative sign in front of the last term, which

we will rewrite here,

An"’sineoczoseo - Cronsine, + Fdcose, = 0 (40)
and assume that

An? << Cryhs AnZ << Fd (41)
From (40) we have

Cronsine - Fdcose, = 0 (42)

Similarly, equation (39) becomes

242¢0s2 2 29 -
u2AZnZsinZe  + usine {F d2cos?e, + An2Fd (1+sine 3cos20°)} (43)

- 16,
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From (43) we see that for 0, = 8,' the three coefficients are all
positive and the solutjon is stable, while for 8y = eo“. the second co-
efficient is negative and the configuration is unstable. In the same way
we may analyze the limiting case Fd << AnZ, Fd << Cr,n, and the case

Crnn << Fd, and Cron << An2,

2.7 Conclusions

We have in this part of the report considered a very simple dynamic
model which provides a tool for cnecking the numerica)l integratibn program.
For any more complex model analytical treatment will require}g‘larger effort
particularly if we want to take into account possible eccentricities of the
orbit, and the regression of the node (that is, the motion of the orbital
plane). We could have easily found some steady state configuration for a
triaxial body but we thought we would not have learned much more by doing
so. However, we do believe that an extension of this analytical study to
a more sophisticated model would be necessary for a full understanding of
the system. In fact, while the numerical integration of the general system
as described in this report could be quite expensive in the general case
we think that the numerical integration of eguation (6) or of the correspond-
ing equations for a more realistic model (which may take into account
the triaxiality of the body, the orbital eccentricity, and the regression
of the orbital plane) will be much less demanding in term of compuving time

and will lead to a better understanding of the dynamics of the system.

17.



3.0 Rotational Dynamics Software Development and Verification

3.1 TIwo-Mass Tether Model (DUMBEL)

3.1.1 Adaptation of DUMBBELL Rotational Dynamics Model to the VAX

Annex III of the Final Report for NASA Contract NAS8-32199, "Study of
the Dynamics of a Tethered Satellite System (SKYHOOK)," March 1978 (attached
as an Appendix to this report) describes a version of the DUMBEL computer
program which models the rotation of the subsatellite. The program integrates
the motion of two masses - the Shuttle which is considered to be a point mass
and the subsatellite which is modelled as a rigid-body with three moments of
inertia and an attachment point to the tether. The rotation is described by
twelve variables using the method of direction cosines (nine gquantities)
together with the three angular velocities about the principle axes. Six
variables give the state vector of the center of mass of the subsatellite
and another six give the state vector of the Shuttle for a total of twenty-
four variables. The tether is assumed to be a massless visco-elastic con-
nection whose dynamics is not represented by any mass ﬁoints or integration
variables,

The rotational dynamics version of the DUMBEL program was written on
a CDC 6400 computer and has not been used since the original study under
which it was developed. In preparation for the current study of subsatellite
rotation, this program was converted to the VAX computer currently in use at
SA0. Changes have been made to allow the program to be run in an interactive
mode with the necessary input parameters being supplied through an interactive
terminaT. (Batch mode operation can also be done using a prepared file of
input parameters.)

In order to verify successful conversion of this program to the VAX, an

original CDC 6400 run was duplicated on the VAX with initial conditions of

18.
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vy =20°, 6 =0° and ¢ = 0°, A1l initial angular velocities were zero, The
initial angles are converted to direction cosines for the integration of the
dynamics and then the direction cosines are converted back to Euler angles at
each output point. At the beginning of the integration, the output angles
should be the same as the input angles. After debugging, inspection of the
original and new printouts showed only small differences between the output
angles which are assumed to be due to the better numerical precision on the

VAX computeryin double precision.

3.1.2 Verification of Two Mass Tether Models Using Rotational Test Case

The test case (solved analytically in 2.0, above) consists of a special
stationary solution of the equations of motion in which the axis of rotation
of a symmetrical subsatellite maintains a fixed orientation with respect to
the tether. This is accomplished by having the precession rate of the sub-
satellite equal to the orbital angular velocity. The analytic solution was
obtéined in a reference coordinate system rotating with the orbi£ and used
Euler angles to describe the orientation of the subsatellite. The axic of
rotation is contained in the plane defined by the direction of the tether
and the normal of the plane of the orbit. The angle between the rotation
axis and the normal to the orbit plane is fixed and may be either plus or
minus. Assuming the Shuttle is above the subsatellite we can define positive
angles as measured from the normal to the orbit toward the Shuttle, and
negative angles as measured toward the earth. As the angular velocity about
the symmetry axis increases the angle between the rotation axis and the
normal to the orbit decreases. For high rotation speeds, the rotation axis
is nearly perpendicular to the wire (and narallel to the normal to the orbit)
in this special stationary solution. For zero rotation rate the angle to
the orbit normal is either plus or minus 90 degrees. That is, the sub-

satellite is hanging either straight down or straight up. The up configura-

19.
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tion is obviously unstable. With the proper initial conditions in this case,
the subsatellite precesses at the same rate as the orbita) angular velocity
so that the subsatellite maintains a fixed orientation with respect to the
tether. The equation giving the relation between the subsatellite angle ¢

and the spin angular velocity r is
-A n2sinecose + Cnrsineé = Fdcos®

where A is the moment of inertia in the plane of symmetry of the subsatellite,
C is its moment of inertia about the symmetry axis (C>A), n is the orbital
angular velscity, © is the angle between the symmetry axis and the normal to
the orbit plane, F is the wire tension, and d is the distance from the center
of gravity to the attachment point of the tether. For a given angle 6 we

can solve for the required spin angular velocity r to obtain

~_ cose , Fd
rETC (nsine

+ An)

The geometry must be such that the precession is in the right direction to
make the symmetry axis follow the orbital motion. The proper geometry can

be set up using the equation
N=7=dxF
where N is the rate of change of angular moméhtum,-?'is the torque, d is
vector to the attachment point, and F is the force due to the wire tension.
The direction of spin of the subsatellite is shown on the circle around
the vector d (Figure 3-1). The spin angular velocity is parallel to d and
the torque is in the -y direction. Since the Shuttle motion is in the +y
direction, the precession is in the proper direction.
The parameters used in the test run are Shuttle altitude 220 km, Shuttle

L

mass 86.363 metric tons, subsatellite mass 100 kg, tether length 20 km,

20.
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Figure 3-1, Geometry of the Rotational Test Case,
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8, ™ 20°, b * 0°, wo = 90°, orbital angular velocity n = 1,178021398 x 10”3
radians/sec, d = 50 cm, tension force F = ,8342029979 x 10¢ dynes, principal
moment of inertia C = 2 x 10’2, and A = 1 x 10}2 in c.g.s. units. The
moments of inertia have been arbitrarily chosen very large in order to obtain
a small value of r. A fast spin rate would result in very slow numerical
integration. For the values of the parameters, the spin rate is r =
-.04919339283 radians/sec. The initial rates of the Euler angles are io =,
% = "> and 6, = 0. The integration was run for 300 seconds with output
points every 10 seconds. The angle 6 was .3490658 radians at the beginning
and increased to about .3490669 radians at the end, The value of y was
initially 1.5707963 radians and increased to 1,9242006 radians at 300 seconds.
Adding nt to y, gives 1,9242027 radians, The solution was stable to a few
parts per miilion over the duration of the test run.

The Euler angles of the subsatellite should be constant with respect
to a reference frame rotating with the Shuttle. The integration is done in
terms of direction cosines instead of angles. The direction cosines are
converted to Euler angles at each output point. In order to check the orien-
tation of the subsatellite in the rotating reference frame, the direction
cosine matrix can be rotated by the negative of the orbital angle and then

converted to Euler angles. In the test case, since the orbital motion is

in the x-y plane, the rotated matrix is

a; By vi| " Jeos -sin O
62 B2 Y2 sin cos O

a3 B3 Y3 0 0o 1
where Q is the orbital angle.

When this transformation is applied in the program, the angle y is constant
during the first 300 sec to an accuracy of a few parts per million (see Figure
3-2).
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3.2 Multiple-Mass Tether Model (SKYHOOK)

3.2.1 SKYHOOK Tether Model with Subsatellite Rotational Dynamics Capability

The SKYHOOK computer program has been modified to include the rotation o
of the subsatellite using the method of direction cosines as defined in }
Annex III of the report "Study of the Dynamics of a Tethered Satellite System
(SKYHOOK)," Kalaghan et al. March 1978 (see Appendix). The angular damping
decribed in Annex III has not been included in SKYHOOK. The inclusion of

rotational dynamics involved changing five of the existing routines in Sky-
hook and adding six new routines. The modified routines are the main pro-
gram SKYHOOK, and subroutines MASSPTY, SKYINz, DIFFUN, and TENSION. The new
routines are DIFROT, ANGOUT, CROSS, ATTACHP, GROTAT, and PROTAT. The input
to the program has been changed to read the number of rotational equations
(either 12 or 0), the initial values of the rotational state vector, the
vector from the center of mass to the attachement point of the tether, and
the three moments of inertia about the principle axes of the subsatellite.
The format for reading the initial conditions for the rotational
dynamics follows the general philosophy used in Skyhook of keeping the
input as general as possible. The user is expected to generate the initial

conditions with a preprocessor designed for the particular problem to be

S—

studied. At SAO the initial conditions are generated using a small program

called DUMBEL. The version of DUMBEL which models the rotational dynamics
reéds the Euler angles and their derivatives as the initial conditions.
The program then calculates direction cosines and angular velocities using
the equations on page 13 of Annex III. The initial position and velocity
for the Shuttle and subsatellite are computed in DUMBEL from the orbital
parameters given on input. The state vector for the Shuttle consists of
six quantities. The total state vector for the subsatellite consists of

18 quantities. The state vectors for each vehicle are written onto a file
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in the format for input to the SKYHOOK program. In order to have the
system in tension equilibrium, the offset of the center of gravity from

the attachment point must be taken into account. This is done by computing
the offset in the inertial coordinate system and using this vector to off-
set the center of gravity from the attachment point so that the distance
from the Shuttle to the attachment point is equal to the tether length
specified on input.

The following paragraphs describe the changes made to each of the
five routines that have been changed in Skyhook.

Three changes have been made in the main program SKYHOOK. Some
quantities have been added to the labelled common block MASSES which occurs
in the routines SKYHOOK, MASSPTY, SKYIN2, and DIFFUN. These quantities are
NROTEQ (the number of rotational equations), ATTACH (3) (the vector from
the center of mass to the attachment point in the body fixed coordinates),
XINERT(3) (the moment of inertia about each of the principle axes), ROTMAT
(3,3) (the direction cosine matrix), ANGVEL(3) (the anguiar velocity about
each of the body axes), and ANG(3) (the Euler angles in inertial coordinatés).
The other changes involve the deployment mode of the program. If rotational
dynamics is being included, the initial conditions for the subsatellite must
be taken from input rather than being obtained from subroutine INITAL which
sets up initial conditions for new masses to be deployed.

The changes in MASSPTY consist of adding the new quantities tv the
common block MASSES and processing the additional input data needed for
mode11ing the rotation of the subsatellite. The number of rotational
equations NROTEQ is read, printed and added to the number of equations to
be integrated for the subsatellite. Initial conditions for the subsatellite
are read from input in the deployment mode when rotational dynamics is in-

cluded. The point of attachment and moments of inertia are read and printed.
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The fcllowing changes have been made to SKYIN2. The new quantities have
been added to the MASSES common block as described in the paragraph on the
main program SKYHOOK. Two vectors have been added providing information used
by the numerical integrator. The vector ZMAXR(12) gives the maximum value of
the twelve rotational quantities, and PEROT(12) gives the increment to be used
for numerical differentiation in subroutine FEDERV. These vectors are inserted
into the arrays ZMAX and PEDINC by a new routinc PROTAT. A new subroutine
ANGOUT is called by SKYIN2 to compute and print the Euler angies from the
direction cosine matrix. The Euler angles have also been added to the output
on unit 7 which is used by the plotting routines.

Subroutine DIFFUN computes the rate of change of each variable to be
integrated by the numerical integrator. The following changes have been made.
The new rotational quantities have been added to the common block MASSES. The
new routine GROTAT is called to get the rotational state vector from the master
array. The arrays ATTACH, ROTMAT, and ANGVEL have been added to the call to
TENSION which compute; the wire tension. A new routine DIFROT is called to
return the rate of change of the rotational quantities and the results are
placed in the array DZ by a new subroutine PROTAT.

Subroutine TENSION has been modified to compute the tension from the
position and velocity of the point of attachment of the wire rather than
from the center of mass of the subsatellite. The arrays ATTACH, ROTMAT, and
ANGVEL have been added to the calling sequence. A new routine ATTACHP is
called to compute the position and velocity of the point of attachment of the
wire on the subsatellite. The tension is computed from the difference in
position and velocity between the attachment and the neighboring mass point.

The following six paragraphs describe the new routines that have been

added to SKYHOOK for including the rotational dynamics of the subsatellite.

28.
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The rate of change of each quantity in the rotational state vector is
computed by subroutine DIFROT (ATTACH,ROTMAT,ANGVEL,FTENS,XINERT,DD,IM,BMASS),
where ATTACH is the offset of the attachment point of the tether from the
center of mass of the subsatellite, ROTMAT is the direction cosine matrix,
ANGVEL is the vector angular velocity with respect to the body axes, FTENS
1séthe acceleration due to the wire tension, XINERT is the vector giving
the moments of inertia about the principle axes, DD is the output vector
giving the rate of change of each quantity, IM is the mass number (which
must be 2 or the subroutine returns zero), and BMASS is the subsatellite
mass used to compute the wire tension from the acceleration FTENS. The
subroutine computes the force on the subsatellite due to the wire tension
in the body axis coordinate system. This is then used to compute the com-
ponents of the torque along each body axis. The rate of change of each of
the 12 quantities in the state vector is computed using the equations on
page lzlof Annex III.

The Euler angles corresponding to the direction cosine matrix are
computed and printed by subroutine ANGOUT(TOUT,ZOUT,IPT,NTEQ,NEDEQ,NROTEQ,
ANG) where TOUT is the time in seconds, ZOUT is the totat state vector,

IPT is a vector giving the state of each mass point in the ZOUT array, NTEQ
is the number of temperature equations, NEDEQ is the number of slectro-
dynamic equations, NROTEQ is the number of rotational equations for the sub-
satellite, and ANG is the vector of Euler angles. The Euler angles are
computed using the equations on pages 13 and 14 of Annex III.

Subroutine CROSS(A,B,C) computes C as the cross product of A and B.

The position and velocity of the attachment point of the tether on the
subsatellite is computed by subroutine ATTACHP(ATTACH,ROTMAT,ANGVEL,SV,SVP,
IM) where ATTACH, ROTMAT, and ANGVEL have been previously defined, SV is

the state vector of the center of mass, SVP is the state vector of the
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attachment point, and IM is the mass number. If IM is not 2, SVP equals
SV. The position of the attachment point is obtained by rotating ATTACH
using the rotation matrix ROTMAT and adding the result to the positional
part of SV. The velocity of the attachment point is obtained by taking the
cross product of ANGVEL and ATTACH and adding the result to the velccity
components of SV. The cross product is performed after rotating ANGVEL and
ATTACH to inertial coordinates.

The rotational state vector is extracted from the total state vector
of the system by subroutine GROTAT(A,NDIM,IPT,NTEQ,NEDEQ,NROTEQ,ROTMAT,
ANGVEL) where A is the total state vector for all masses, NDIM is the number
of rows in the matrix A, IPT is the vector of indices giving the starting
location for each mass, NTEQ is the number of temperature equations, NEDEQ
is the number of electrodynamic equations, NROTEQ is the number of rotational
equations for the subsatellite, ROTMAT is the matrix of direction cosines,
and ANGVEL s the angular velocity vector.

The rotational state vector is placed in the total state vector array
by subroutine PROTAT(A,NDIM,IPT,NTEQ,NEDEQ,NROTEQ,DD) where the quantities
are the same as described in the last paragraph for subroutine GROTAT. The
vector DD is of length 12 and includes both the direction cosines and angular

velocity components.

3.2.2 Testing of SKYHOOK with Rotational Dynamics

The new version of the SKYHOOK program with rotational dynamics has been
tested using the special case of Section 2.0 used previously to test the two-
mass (DUMBEL) model. The initial rotational state vector from DUMBEL has
been used as input to the SKYHOOK program. In testing the program it is
helpful to plot the Euler angles to see how they change with time. The DUMBEL

program includes a facility for generating printer page plots of various

30.
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quantities vs. time. The Euler angles were plotted using this facility when
the special test case was run on the program, A similar facility exists for
plotting the quantities written on unit 7 by the SKYHOOK program. This
utility program has been modified to include plots of the Euler angles which
ﬁave been added to the SKYHOOK program output. The SKYHOOK program has been
tested by running the test case on SKYHOOK and comparing the plots from SKY-
HOOK with those of DUMBEL. After correction of various bugs, agreement was
obtained between the two programs. For the test case, the angle 6 is constant
with time and the angle y increases at a rate equal to the orbital angular
velocity (compare Figure 3-3 with Figure 3-2). The angular velocity 3 is

constant.

3.3 Behavior of a Subsatellite with a Single Thruster

A simple test case has been run as an example of a rotational dynamics
simulation with an attitude thruster. The system is assumed to be initially
in equilibrium with the subsatellite hanging at rest at the end of the tether
with no angular velocity except that of the orbital motion. At t = 0 an
attitude thruster applies a constant torque about the body axis which is
aligned with the tether. The parameters of the run are mostly the same as
those used in the test case described in Section 3.1.2. For the thruster
case the initial conditions are 8y = ¥p = 90°, éo = 1.178 x 10 rad/sec (the
orbital angular velocity), and 9o = $o = 0. The Euler angles 6 and y are
shown in Figure 2-1. The torque has been chosen to be 4 x 108 dyne-cm
which would result in an angular velocity of .1 radians/sec in 500 seconds
with a moment of inertia of 2 x 1012 (cgs). A slow acceleration allows
the orbital augle to change significantly before the spin rate has reached

a value which would cause slow numerical 1ntegration. Since the equations

of motion are written as a function of the components of the torque about
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the body axes, this case can be implemented by adding a constant to the
torque about the body z axis. The only other torque currently modelled in
tha program is that of the wire tension,

The thruster case described above has been run on both the DUMBEL pro-
gram and the SKYHOOK program. The initial rotational state vector generated }
by DUMBEL has been used as input to the SKYHOOK program, In each program
the thruster model was implemented by adding a:constant torque about the
body z axis. The Euler angles have been plotted using the printer page as
a graph. The output from DUMBEL differs from that of SKYHOOK in that the
Euler angles are referred to a rotating orbital coordinate system, This
affects only the angle ¢ since the orbit is equatorial. The difference
between the plots from the two programs was helpful for the thruster case
since the angie ¢ is initially constant in the rotating frame and then stops
moving with the orbit and becomes nearly constant in the inertial frame as
the spin increases,

Figure 3-4 shows the Euler angles vs. time for the simple thruster
case as run in the SKYHOOK program. Part a) is the inclination angle ¢,
part b) is the nodal angle ¥, and part c¢) is the spin angle ¢ about the
principle axis. Initially, the rate of change of ¢ is equal to the orbita]\
angular velocity. In the output of the DUMBEL program the angle y was
initially constant in the rotating orbital reference frame. As the sub-
satellite begins to spin up, the nodal rotation is arrested as can be seen
in part b) of the plot. Once the node stops rotating, the tether force F
is no longer aligned with the vector ?'from the center of mass to the attach-
ment point, so there is a torque on the subsatellite. In Figure 3-5 we see
that the torque T is directed toward the +z axis. Since the angular velocity
is in the direction of ?} the torque will cause the principle axes to move

up out of the x-y plane, thereby decreasing the angle ¢ as seen in part e)
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of Figure 3-4. The angle ¢ circulates wiii 1n¢reasing angular velocity as
seen in part c) of Figure 3-4. The angle has not been normalized to a
continuous variable so that there is a discontinuity every time the angle
passes 180 degrees.

4.0 Adaptation of SKYHOOK General Rotational Dynamics Model to Specific
Attitude Control Systems

The SKYHOOK program now provides a basic tool for studying the dynamics
of the tether system including the rotation of the subsatellite. It remains
only to develop suitable models for "real-world" attitude control systems to
convert their input forces and torques into parameters directly readable by
SKYHOOK. The implementation of such models would be done‘by means of routines
that compute the torque on the subsatellite as a function of the observables
available in the program. This torque would be added to the torque from the
wire and the result used in the equations of motion which have been incorpo-
rated in the program for jintegrating the rotation of the subsatellite.
Routines would be developed for each of the various attitude control systems
such as thrusters, magnetic torquers, etc. These routines are straightforward

and do not represent a major development effort.
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Figure 3-5. Subsatellite Torque Vector Conventions.
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RCTATIONAL DYNAMICS OF SUBSATELLITE VEHICLE

I0-1. EQUATIONS OF MOTION OF THE DUMBBELL SYSTEM WITH A
. RIGID BODY AT ONE END

The short dumbbell program integrates the motion of two vehicles connected by
a massless tether, One vehicle is treated as a point mass and the other is treated
as a rigid body attached to the tether. Two types of damping are included: The first

. 1 proportional to the rate of change of the distance between the two vehicles, while

the second consists of angular damping at the point of suspension of the rigid body.
The program has facilities for computing the initial state vector of the system from
parameters specifying the desired orbital and system characteristics. The wire
parameters necessary to achieve the desired initial conditions and the damping con~
stants required for critical damping of the spring oscillations and angular oscillations
of the end mass are also calculated.

II-1.1 Calculation of the Initial State Vector

A ingle particle in a circular orbit in an inverse-square force field obeys the
equation

GMin =m rwz
l'
or
GM = r3w2 ,

where G is the gravitational constant, M is the mass of the central body, m is the
mass of the particle, r is the radius of the orbit, and w is the angular velocity of the
particle.

A similar equation can be written for two particles of mass m, and m, in circular
orbits of radius r and r, connected by a massless tether. Assuming Ty > Xy, the
particles obey the simultaneous equations

o
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which can be solved to obtain the angular velocity w and the wire tension T. We can
eliminate T by adding the equations. This gives the equation

m, m, 2
GM(—2-+-T) =(mlrl+m2r2)o>
r r
1 2
or
mr +mr, :
GM = 1°1 22_ 2 .

(m,/x]) + (my/p)

Comparing this to the equation for a single particle, we see that the system orbits
ltke a single particle in an orbit of radius T given by

= m T +tmyr,

B (ml/ rf) + (mz/ rg)

The equation for the angular velocity is

(GM

wiv?.

Solving for the tension, we obtain

(ry/ "21)), - (r,/%3)
("1/’“2) + (rzlml) ’

T=GM

nI-2
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The velocities of the particles are

Vz =r2w .

The initial state vector for particles in circular orbits lurﬁng out on the x axis with
inclination I is

X\ =rp o, K=0
ylgo R yl=vlcosl ’
g, =0 , :zl=vlsin1 ,
Xp=Ty »  X=0,
yzr-O y yznvzcosl ’
z2=0 y zz=vzsinl .

If a slight eccentricity e is desired in the orbit, we can obtain an initial state
vector from the following simple approximation. In polar coordinates, the equation
of an ellipse is given by

el - e
1+ecos(9-90) ’

where a is the semimajor axis. Differentiating with respect to time, we have

. a(l-ez)esin(e-eo)'e
r= ———

[1+ecos(®-0y°

If e « 1, the maximum value of r i8 approximately

i'max =ged .
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Therefore, we can obtain a small eccentricity in the orbit by setting X, = X, = Tew in
the initial state vector.

III-1.2 Calculation of the Wire Constants
The cross-section area A of a wire of diameter D is

A= n(g)z .

If the natural length of the wire is £, and the elasticity is E, the spring constant k is

EA
k= .
To
When the distance between the ends of the wire is £, the tension T is

T=kit -2y L>4, ,

=0 , 1<ty .

For a dumbbell system starting out with an initial separation £ and tension T, the
natural length of the wire is calculated from

T = k(! -zo)=§£%(z -1y .

Solving for £ o We get

N
Jto‘1+' (T/EA) °

- III-1.3 Critical Damping for the Dumbbell System

The dumbbell system shown in Figure 1 oscillates gbout its center of mass
(CM). ‘

-4
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Figure 1.
The distances of each particle from the CM are
. mzl
’
1 m, + m,
and
L, = ™
2 ml + m2
If the spring constant of the entire length is k, the spring constants of each section
are ‘
T iy
k,=k=—==k
1 11 m, '
and
‘ =k ml v mz
: "z m, '
: m-5
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{ The equation of motion for each section with damping is

ml, +bp +kt =0 ,

where b‘ is the damping constant. For criticai damping, the determinant of the
characteristic equation is zero, which gives

be- - '4“‘-!"1- =0

or

bl =2 mikl .

The damping term biii can be rewritten in terms of £ to give

m.f
biil=(2 Ty i)("—j_!nﬁm,) L 14y

I-1.4 Critical Damping for Angular Oscillations

A slmp’lé pendulum with angular damping executing small oscillations obeys the
equation

nI-6

—
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18 +bd+Tre=0 ,

where I is the moment of inertia, b is the angular damping constant, T is the vertical
force on the pendulum, r is the length of the pendulum, snd 0 is the angular rotation

of the pendulum from equilibrium. The characteristic equation obtained by substituting
the solution

0= A e

is
LZ+batTr=0 ,

which has the solution

ooz Vb2 - arrr

21 !

To obtain critical damping, the radical is set equal to zero, giving

b2 - 4ITr = 0
or
b = 2VITr

This value of b can be used efficiently to damp out certain oscillations of the rigid
body at one end of the dumbbell system, If the rigid body is not symmetric about

the point of attachment, the damping constant cannot provide critical damping for

both moments of inertia simultaneously. Motions that do not change the angle between
r and T will not be damped. It is assumed that the last section of wire is rigid in
order to provide a torque for the damping to work against.

Figure 2 shows a dumbbell system with a rigid body at one end. In the diagram,
'ﬁl is the position of the center of mass of the rigid body, ﬁz is the point of attachment

o1-7
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of the wire, 133 is the position of the point mass, M is the mass of the rigid body,
m is the mass of the point mass, T is the vector from ﬂl to B,, T 1s the wire force
acting on '52, and 6 is the angle between ¥ and T. |

Figure 2,

The force ¥ is given by

-53 "Bz
£ ’

T = [k(t - £) + bi]

where £ = I'ﬁa - 32‘ The derivative of £ is given by

P=§ V@,-Bp - By-Bp =g 2By~ By - @B - )

_(%3‘%2) * (p3 "'lﬁz)
= - —— .




The equations of motion of 31 and Ba are

?F—'M:ﬁ and -‘F-:m‘]'Sa )

while the equation of motion for the angular momentum is
N=-T
where T is the angular momentum and ﬂ, the applied torque, is

-
+ N

e ) =
N=N D

w

in which the wire torque is Nw =7 x'f The daiiping torque ﬁ is parallel to ﬂ
if'ﬂ # 0 or para.leltoé F+9>\9if'ﬁ =0,

The applied force T 1s
- Tf
where T is the tension in the wire and

- -
p. P~ Pa

ln 3 4

|p3-92l

where ‘52 = '61 + T,

The damping torque is

b

v}

X
X

ﬁD= b

2]

i)

The quantity 8 can be obtained from differentiating either

1710
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oo-e-Q.ﬁ ’
or
min6=lg)<£‘| y

where

= A

AT 3'13'
S

Using the cos 6 expression, we have

( A A
S(cos0)=% (- F) ,
: ; A
bsmno=9. F+2. F ,

g bofet b
Y S Y I
erFI

">

The above formula is not good near 6 = 0° and 180° y for which we use

For critical damping of simple pendulum motion, the damping constant b is

m-10
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b=2/MTr ,

where I is the moment of inertia, T is the tension, and r is the distance from the
oenter of mass to the point of attachment. The quantity r is given by

Aadxh

EV

’

. A
where B is the angular velocity of the subsatellite. The vector F is given by

A 1 [=> 2 2p
F=—(3p-3p- =) ,
ap |35 |
where
- S
Ap*pa pz ’
L] -‘ :.
Ap:pa-"pz ’

a - A
=B3"‘(pl+r) ’

iAo a
=pg- (P twxD .

The vector T is fixed with respect to the principal axes of the subsatellite. The
orientation of the subsatallite with respect to a set of inertial space axes can be given
by specifying the nine direction cosines that give the transformation from the space
axes to the body axes. The components x, y, and z of a vector with respect to the
inertial axes are thus related to the components, x’, y’, and 2’ with respect to the
principal axes of the body by the matrix equation

, v
x' a, pl yl X
y = nz pz Yz y .
z! ag pa Y3, z

m-11 | | D
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The reverse transformation is

’
X\ a g, ag x
Yy | pl pz pa y' .
2/ N Yp g/ \F

The components of the angular velocity @ with respect to the principel axes are
@), Wy, and “’3’ and the principal moments of inertia are I,, I,, andI,. The com-
ponents of L with respect to the principal axes of the body are given by the Euler
equations

2.7 1)6) - wgug (I - Iy)
=L = 12“’2 - Waly (13 - Il] .

Ipig = wywy [ = L]

The equations for the nine direction cosines are as follows:

Q) +wylg - g8y =0
&2‘4- Wgly ~wjag=0 ,
Gyt wjay - wpa) =0

By tugBy -ughy =0 ,

By +wghy Py =0 ,

By twBy = wpPy =0

YI + WoYg = WaY, = o ,

Vg tugy) m0¥3=0

Y3t oYy w0y =0,
sfving a total of 12 equations that must be integrated to get the orientation of the sub-
satellite as a function of time by using the method of direction cosines.

m-12
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I initial conditions are given in terms of Euler angles and their first derivatives,
we can use the following conversion equations:

o.t:cosz,bcos(b-cosesinzbsmw ,
u2-=-sinwcos¢-cosesin¢costp ,
a5j=smesin¢ ,
plr=cos¢sm¢+cosecos‘¢sm¢ R
pz.=-smwsm¢+cosecos¢cos¢ R
Bg=-sinBcos ¢ , 3 ‘
yl=sin¢sin,9 ,

Yy =cosPsin® ,

y3=cose ’

w =bsinBsiny+6 cosy ,
w2=$sinecostp—ésinw ,

Wg = ¢ cos 0 + zp .
To intexrpret the results in terms of Euler angles, the following equations are used:

3 ___sinfsing _sing
(33 -sin@cos ¢ cos¢ ?

Y
tan Y =m== y

[27 32 :
0= Y1+Y2 ___Vsmztpsinze-&-coszgpsinze=|8m9]_

tan Ya Cco8s co8

There is an unavoidable abiguity in the sign of 6, which has been chosen to be positive
here for conven.ience.

m-13
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¢
&

If 6= 0°, the angles ¢ and ¥ cannot be determined separately. However, the sum
of the angles can be computed from

By
tan (¢ + ¢ ';;'

gcos¢sm9+cosecos¢sm¢
CO8 § cos b - cos O sin ¢ 5In ¥

_ cos ¥ sin ¢ + cos ¢ sin | -
'cos%cos%-sﬁisﬁ% (0=0)
_sin (¢ +

"cos(%+9) .

As a simple test case, let us use a solid ball of mass M and radius r. The
moment of inertia I is

mM-1.5 Test Runs of the Short Dumbbell Program with a Rigid Body at One End

- As puct of the process of testing the short dumbbell program, various cases have
been run with different initial conditions. The program plots the tension in the wire
plus the in-plane and out-of-plane motion of the point of attachment.

The simplest test run was that of a subsatellite with no initial anrgular velocity
and no initial angular displacement; linear and angular damping were included. An
in-plane displacement developed initially as the wire rotated at the orbital angular
velocity. Within about 15 sec, the subsatellite acquired the orbital angular velocity

- and followed the angle of the wire. o

- Next, the subsatellite was given a 20° in-plane rotation from equilibrium with

linear and angular damping. As the angle returned to equilibrium, the tension at first
decreased to a minimum value in about 2 or 3 sec, increased to a maximum value at

M4



about 9 sec, and returned to the initial value in about 20 to 25 sec. When the same
case was rerun, leaving out the angular damping but keeping the linear damping, the
subsatellite executed an angular oscillation of slowly decreasing amplitudss. The
slight damping observed results from the linear damping term, since ine oscillation
causes periodic changes in the length of the wire.

Next, the subsatellite was given a 20° rotation from equilibrium in a diagonal
direction from the orbital plane (i.e., both in-plane and out-of-plane displacement)
with both linear and angular damping. A plot of the in-plane versus out-of-plane
displacement of the point of attachment skows that it returns nearly to equilibrium
and then executes a small amplitude rotation about the equilibrium position with con-
stant wire tension., The same case with no damping shows an up-and-down spring
oscillation combined with a rotational sscillation in the plane of the initial rotational
displacement.

In the last case run, a 20° initial diagonal rotation was combined with in-plane
and out-of-plane initial angular velocities with linear and angular damping. The
point of attachment ended up rotating in a small circle around the equilibrium, and the
center of mass acquired a velocity diagonal to the orbital plane,
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m-2, SOFTWARE DOCUMENTATION

This program integrates the motion of two bodies connected by a massless tether.
One body (the Shuttle) is assumed to be a point mass, and the second (the subsatellite)
is free to rotate about the point of attachment of the wire. The program does not
normally read any data cards. Instead, Fortran is compiled each time the program
is run. In this way, any parameters or formulas can be changed as needed. k
Generally the subroutines remain unchanged. The following list describes the variables
that are most likely to be changed:

TFINAL = number of seconds for which the motior is to be
integrated.

DELT = interval at which the results are to be printed (sec).

E = elasticity of the wire material (cgs).

DIAM = diameter of the wire (cm).

RLO = initial distance between the ends of the wire (cm).

RM1 = mass of the subsatellite (g).

RM2 = mass of the Shuttle (g).

RMGAL = value of a gravity anomaly covering 1° X 1° on the
earth's surface (mgal).

XA, YA, ZA = coordinates of the gravity anomaly on the earth's
surface (cm).

HEIGHT = height of the Shuttle above the earth (cm),

ECC = orbital eccentricity. |

B = linear damping coeificient.

STRETCH = initial stretch of the wire (cm).

CDRAG1 = drag coefficient of the subsatellite.

CDRAG2 = drag coefficient of the Shuttle.

AREA1l = cross-section area of the subsatellite.

AREA2 = cross-section area of the Shuttle.

RO = atmospheric-density coefficient (g/cc).

HH = atmospheric-density scale height (cm).

HO = reference height for atmospheric density.

RJ2 = Jy gravitational coefficient.
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RINC = orbital inclination (rad):

THETA, PHI, PSI = {nitial Euler angles of the subsatellite (rad).
D'i‘HETA, DPHI, DPSI = {nitial time derivatives of the Euler angles.
RADIUS = radius of the subsatellite (cm).

X1, Y1, ZI = principal moments of inertia of the subsatellite.

unit vector directed from the center of the subsatel-
lite toward the point of attachment of the wire.

RB

At each output point, the program prints the following variables giving informa-
tion on the translational part of the motion:

TOUT = time.
JSTARY = order of the integration polynomial.
ey _ coordinates of the subsatellite and Shuttle with
' oo’ respect to the center of the earth.
zl, Z2
Rl, R2 = distances of the vehicles from the center of the
: earth,
ALONG, = along-track, across-track, and radial displacements
ACROSS, of the point of attachment of the wire with respect to
RADIAL the Shuttle.
RL = separation of the Shuttle from the point of attachment
of the wire.
TEN = wire tension.
RLP = geparation rate of the vehicles.
NSTEP = integration step number.
FRICT = linear damping force.
H = integration step size.

~ The angular information is printed by subroutine ANGOUT. The final state vector
is printed and punched. The program plots the tension, along-track, and across-track
displacements as a function of time using the printer page as a graph. It also plots
the along-track versus the across-track displacements to give a visual display of the
swinging motions of the subsatellite.
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I-2.1 FUNCTION DOT (A, B)

This routine returns the quantity Z . B as the value of the function.

Input Parameter )
K, B = the vectors whose dot product is to be computed.

Output parameter
DOT = the dot product of A and B.
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M-2.2 FUNCTION XMAG (A, U)

This routine returns the magnitude of the vector & as the value of the function,
and a unit veotor parallel to 2 as the vector U,

Input Parameter
Yy

Output Parameter
i

XMAG

= any vector,

the vector A divided by its magnitude.
the magnitude of the vector 2.
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mI-2.3 SUBROUTINE CROSS (A, B, C)

This subroutine computes the vector o} by the equation

T=2x8B .

Input Parameter
x, ﬁ = any vectors.

Output Parameter
(o} = the cross product of the vectors 2 and ﬁ.

o1-20
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m-2. 4 SUBROUTINE DIFROT (T, ¥, DD)

This subroutine computes the derivatives of the nine direction cosines and three
components of the angular velocity. The time T is not used.

Input Parameters
T
Y

time (sec).
rotational part of the state vector,

Output Parameter

DD derivatives of the quantities in the state vector Y.

it

Subroutines called are CROSS, XMAG, and DOT.
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-2, 5 SUBROUTINE DIFFUN (T, Y, DD)

This subroutine computes the vector.DD from the state vector Y., The time T
is not used. The forces included are the central gravitational force, the tension, if
any, in the tether and optional perturbations due to atmospheric drag, a gravity
anomaly, and J,.

Input Parameters
T
Y

time (sec).
positional and angular state vector

"

Output Parameter
DD

i}

the derivatives of the quantities in the state vector Y.

This subroutine calls SETUP, and DIFROT.
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1I-2,6 SUBROUTINE SETUP (Y, IFLAG)

Thie #ybroutine does a variety of intermediate calculations necessary either for
output or for calculiting forces in subroutine DIFFUN. The results are placed in

common.

Input Parameters
Y
IFLAG

Common Variables
RB

RK
RIO
B
GM

RM1
RM2
RO
HO
HH

Output Parameters

Common Variables
RS

DX, DY, D2

w

DVX, DVY, DVZ

positionel and rotational state vector.

14f Y is a one-dimensional array
2 if Y is a two-dimensional array.

the components along the body axes of the vector
from the center of the subsatellite to the point of
attachment of the wire.

the spring coastant of the wire.
the natural length of the wire,
the damping coefficient for the spring oscillations.

the product of the gravitational constant and the mpis
of the earth.

the mass of the rigid body.

the mass of the shuttle.

the atmospheric density at height HO (g/ cm3).

the height at which the atmospheric density is RO.
th¢ fcsle height for the atmospheric density.

the components along the spa'ce axes of the vector

from the center of the subsatellite to the point of

attachment of the wire.

the components along the space ;axes of the vector
from the point of attachment of the wire on the sub-
gatellite to the Shuttle,

the components along the space axes of the angular
momentum,

the components along the space axes of the velccity
of the Shuttle minus the velocity of the point of
attachment of the wire on the subsatellite.
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RL = the; distance between the ends of the wire.

TEN = the elastic force in the wire.

RLP = the time derivative of RL.

FRIC'I‘ = the damping force due to the rate of change of RL.

FWIRE = éthe tension in the wire due to elasticity and damping.

RISQ = the square of the disiance from the center of the
earth to the center of the subsatellite.

R285Q = the square of the distance from the center of the earth
to the Shuttle.

R1 = the square root of R15Q.

R2 = the square root of R25Q.

FGl = the central gravitational force on the subsatellite -
divided by R1. i

FG2 = the central gravitational force on the Shuttie
divided by R2.

V1sQ = the square of the velocity of the subsatellite.

V2sQ = the square of the velocity of the Shuttle.

V1 = the velocity of the subsatellite,

V2 = the velocity of the Shuttle.

CONS1 = the atmosphleric drag on the subsatellite divided
by V1.

CONS2 = the atmospheric drag on the Shuttle divided by V2.

This routine calls CROSS,which computes the cross product of two vectors,
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II-2.7 SUBROUTINE ANGOUT (Z, XI, YI, ZL, TOUT, JSTART, NSTEP)

This subroutine prints the angular part of the subsatellite state vector, The
output information is the time, order of the integration polynomial, step number,
Euler angles, a modified set of Euler angles consisting of successive rotations about
the x, y, and z axes, the components of angular momentum along the space axes,
the components of angular momentum gbout the body axes, the components of angular
velocity about the space axes, and the components of angular velocity about the body axis.

Input Parameters

z = the nine direction cosines giving the orientation of
the body axes with respect to the inertial axes, plus
the three components of the angular velocity with
respect to the body axes.

XI, Y1, 2I = the principle moments of inertia.
TOUT = time.
JSTART = the order of the polynomial used on the current

integration step.
NSTEP = the step number.

No other subroutines are called by this routine.
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II-2,8 SUDROUTINE ROTSTAT (THETA, PHI, PSI, DTHETA, DPHL _DPSL, Y, A)

This subxroutine computes the nine diveotion cosines and three angular velocitios
from the Euler angles and their dorivatives. Also computed are the components of
the vector from the center of mass of the satellite to the point of attachment of the
wire in tho inextial coordinate system,

Input Parameotors

THETA = 0,
PHI - = &,
PSI f = Y,
DTHETA w B,
DPHI - .
DPSI -

0, ¢, and { are the Eulex angles defining the orientation of the body axes with
rospeot to the inertial axes, 4, c}, and ¢ are the time derivatives of the Euler angles,

Common Variables

RADIUS = the distance from the contor of mass of the rigid
body to tho poiut of attachment of the wire,
RB = a unit vector pointing from the centor of mass of

the subsatellite to the point of attachment of the wire.
The components are taken along the body axes.

Output Parametoers

A = nine direction cosines relating the body axes to
tho inoxtial axes, plus the three components of the
angular veloeoity on the body axes.

Y w a matrix containing the translational state veotor
plus the rotational state veotor A.

Common Variable

RS = the vootor from the conter of mass of the subsatellite

to the point of attachment of the wire. The components
are along the inortial axes.

No other subroutines are oalled by this routine.

M-26

P R AR Ak S RTINS TP ST

v

R AN L g P

S A R PR LK L35 R S ML



	GeneralDisclaimer.pdf
	0043A02.pdf
	0043A03.pdf
	0043A04.pdf
	0043A05.pdf
	0043A06.pdf
	0043A07.pdf
	0043A08.pdf
	0043A09.pdf
	0043A10.pdf
	0043A11.pdf
	0043A12.pdf
	0043A13.pdf
	0043A14.pdf
	0043B01.pdf
	0043B02.pdf
	0043B03.pdf
	0043B04.pdf
	0043B05.pdf
	0043B06.pdf
	0043B07.pdf
	0043B08.pdf
	0043B09.pdf
	0043B10.pdf
	0043B11.pdf
	0043B12.pdf
	0043B13.pdf
	0043B14.pdf
	0043C01.pdf
	0043C02.pdf
	0043C03.pdf
	0043C04.pdf
	0043C05.pdf
	0043C06.pdf
	0043C07.pdf
	0043C08.pdf
	0043C09.pdf
	0043C10.pdf
	0043C11.pdf
	0043C12.pdf
	0043C13.pdf
	0043C14.pdf
	0043D01.pdf
	0043D02.pdf
	0043D03.pdf
	0043D04.pdf
	0043D05.pdf
	0043D06.pdf
	0043D07.pdf
	0043D08.pdf
	0043D09.pdf
	0043D10.pdf
	0043D11.pdf
	0043D12.pdf
	0043D13.pdf
	0043D14.pdf
	0043E01.pdf
	0043E02.pdf
	0043E03.pdf
	0043E04.pdf
	0043E05.pdf
	0043E06.pdf
	0043E07.pdf
	0043E08.pdf
	0043E09.pdf
	0043E10.pdf
	0043E11.pdf
	0043E12.pdf
	0043E13.pdf
	0043E14.pdf
	0043F01.pdf
	0043F02.pdf
	0043F03.pdf

