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1.0	 Introduction

a
This Interim Report summarizes the work performed under Modification

7 of Contract NAS8• . 13691 entitled "Study of Tethered Satellite Active

Attitude Control." Under this modification, SAO adapted existing software

for the study of tethered subsatellite rotational dynamics to its present
r

data processing system, developed an analytic solution for a stable con-
a	

figuration of a tethered subsatellite, compared the analytic and numerical

integrator (computer) solutions for this "test case" in a two-mass tether

model program (DUMBEL), modified the existing SAO multiple-mass tether

model (SKYHOOK) to include subsatellite rotational dynamics, verified this

modification with the analytic "test case," and demonstrated the use of

the SKYHOOK rotational dynamics capability with a computer run showing

the 'effect of a single off-axis thruster on the behavior of the sub-

satellite.

SAO is now in a position to develop subroutines for specific

attitude control systems and to apply them to the study of the behavior

of the tethered subsatellite under realistic on-orbit conditions. Such

studies could also include the effect of all tether "inputs," including

pendular oscillations, air drag, and electrodynamic interactions, on the

dynamic behavior of the tether.

tr

r.
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A Simplified Model of the Motion About the Center of Mass of a
l
	

Tethered Subsatellite

2.1
	

Introduction

r
pin

^	
l

2.2	 The Simplified Model	
i

s
d

We consider the shuttle in a circular orbit (nominal low orbit at 150

n.m, = 270 km altitude here, but this is not a very critical constraint) and

assume that the orbit is polar or equatorial. The orbital plane is therefore

invariable in an inertial frame.

We also assume that the subsatellite is axially symmetric with the point

of attachment of the tether (0) being a point on the symmetric axis of the sub-

satellite different from G, the center-of-gravity of the subsatellite. We also 	 a

call C the moment of inertia of the subsatellite with respect to the symmetry

axis and A, the moment of inertia with respect to an equatorial axis. In

this model we neglect the dynamics of the tether induced by the rotational

motion of the subsatellite and we assume also that there is no significant

in-pla-ne or out-of-plane oscillation of the tether and subsatellite.

2.

The dynamics of a tethered subsatellite about its center of mass is

quite complex in the general case and required sophisticated changes to the

SKYHOOK program.. SKYHOOK has been rewritten to deal with any tethered sub-

satellite mission requiring high accuracy attitude prediction and control

such as astronomical or earth observation missions or, more generally, any

mission which depends heavily on isolation of the package from the noise coming

from the connection to the Shuttle through the tether. For acquiring experience

and physical insight into the dynamics of this system and for providing an

analytical solution against which the program changes could be checked, we

have studied a simple configuration which can be solved analytically.
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WO neglect also the longitudinal oscillation of the tether-subsatellite system.

Th4 motion of the subsatellite is therefore equivalent to the motion of a	 ,y

axis-symmetric rigid-body about its center of mass when a force constant

in magnitude and rotating uniformly about an axis normal to the force and

A	 constant in orientation (in this case normal to the orbital plane) is

applied to a point, P, of its symmetry oxis. Other torques and the effects

t	 of the precession of the orbital plane may be introduced into the computer
f
f	 model but are difficult to deal with analytically.

_	 e

2.3	 Notation and Reference Frame

In figure 2-1 E is the center of Earth; S, the Shuttle considered

a$ a point; O, the attachment point of the subsatellite; a, the unit vector

from E to S to 0; c, the unit vector normal to the orbital plane; b - c x a,

the unit vector tangent to the orbit; G the center-of-mass of the sub-

satellite; d, the distance from 0 to G; k, a unit vector in the direction

from 0 to G; i and J_, two orthogonal unit vectors in the plane normal to the

symmetry axis 0-Gwhich equals kd; N, the nodal line intersection of the plane

O, i, j_ with the orbital plane; *, 0, e, the Eulerian angles of the frame 0,

i, ,Z, k, with respect to the frame 0, a, b, c and F, the gravity gradient

fora acting on G which is equal to the tension in the tether. We neglect

the gravity gradient torque acting on the body which is negligible if the

dimensions of the body are small with respect to the length of the tether (k)

and which is true for virtually all subsatellites. In good anornyimatinn wp
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Here g(0) is the acceleration of gravftyat 0, M is the mass of the subsatellite;

n, the orbital mean motion,a(X) is a coefficient of magnitude X with respect to

Z, and where the quantities denoted by a are infinitesimally smell. As an

example, if d n 0.5m, t * 50 km, C-A a M(0.5m) 2 0 n 0 10- 3 9 g(0) n 9 m/sect,

we have

UT • 10
-5	

{2-1)

and

,[(C-9)n2a- , 0.205 • x 10-6xx 6.7,x9106 . 10-
5 	(2-2)

}

This evaluation gives an idea of the magnitude of the terms which are neglected.

If k is of the order of l km and d is of the order of 1 cm, a(A) is of magnitude,

10- 5 , while the second term is on the order of 2.5 x 10- 2 . Only if d is down

to the mm level and R is down to the 0.1 km level, is the second term on the

same order as the main term.

A ;second reference system (see Figuwe 2-2) is obtained by displacing

the center of the frame to the point G. This is done when we want to consider

the motion of the subsatellite, in the classical way, about its center of mass.

The only torque affecting this motion in the system being analyzed here is

the torque T_due to the tension applied by the tether to the subsatellite.

It's value is

7 = (-dk) x (-3g(0) aR 	
a) = 3g(0)^ad k x a	 (3)

Before passing to the equations of motion we define the Eulerian angle since

different notations are used here than in the li terature.

The angle is the angle measured in the plane a, b, from a to N (nodal

line) counterclockwise (c.c.w.) with respect to an observer standing along c
I

e is the angle from c to k measured c.c.w. from an observer oriented along N;

is the angle between -N and i measured c.c.w. from an observer oriented as k.

5.

s
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Concerning the torque given by (3), notice that we neglect the feedback

'	 effect of the tether mass on the motion that we are analyzing. 	 We also

neglect the possible variation of the orientation of the tether from the

vertical direction. 	 1'he general computer model includes both these effects.

k

24	 Dynamical Equations

The following is the standard procedure for writing the expression of

kinetic energy with respect to an absolute frame

T = 2	 A [ 62 + (^+n) 2sin 2e] + C [j+(^+n)cose]2^ (4)

The work done by the force -F 1s given by (see Figure 2-1)

-F60 	 6(-dk) - I	 I da -	 A
0	 —	 —

(FI	 d 6(sinesin*) (5)

_ (FI d (0cosesin	 ► + s sinecos*)

where 6 denotes a small variation in the quantity. 	 The modules of the vector

F are denoted by F, below.

The Lagrangian equations become:

dFt 	 - A(^+0 2sinecose + C[¢+(^+n)cose] (i+n)sine = FdcosesinV (6-1)

ddt, [A6+n)s-1n 2e + C[j+(^+n)cose]cose, = Fdsinecos+ (6-2)
i

[C[i+G+n)cose] = 0 (6-3)k	 dt

From the last equation we have }

+ (^+n)cose = ro (7)

This relation means that the component of the angular momentum along the

symmetry axis and of the angular velocity with respect to an absolute frame

is constant.	 The equations (6-1) and (6-2) become:

f	 7.
t
z
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' 	 Ae - A(j+n) 2sinecose + Cr (j+n)sine n Fdcosesin*	 (8-1^o	 ,
- Arsine + 20 (^+n)cose ; Croe n Fdcos*	 (8-2)

Equations (7) and (8) give the general solution. It should be noticed, 	 s

howovers that equation (8-2) becomes singular for e n 0, and therefores the

numerical integration may "blow-ur," at this point, 	 .y{

2.5 Stationary Solution

One may search for stationary solutions. For instance, one may search

for solutions that satisfy the relation

eaeo#0	
(9)

_	 a

Equations (8-1) and (8-2) become
a

A(^+n) 2sine
0
cose

0
 + Cr

0
(00sineo - Fdcoseosin* 0	 (10-1)	 ;g

A*sineo - Fdcos* - 0	 (10-2)	
k

1,	 !

Multiplying (10-2) by 0 one yields
G`
a

1 
A^ 2Sineo - FdsinV,	 Ho	 (11)

while equation (10-1) may be written

-Ai 2 -2A^nsineocoseo An 2sineocoseo + CroG+n)sineo - Fdcoseosin^ 0	 (12)

r	
or

42 + Fdcoseosin^ - An2 si'neocoseo = O_	 (13)

and

2Ansineocoseo - Crosi neo 0	 (14)

g
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For (11) to be identical to (13). one should have

2	 cose , sine rose	 2
sine 	 0	 0	 0 (lS)

which does not have any solution. 	 The only solution e n eo are obtained'

with	 to n 	 and

_	 -An2sine0cose0 + Cron sineo f Fdcoseo n G (1G}

where the signs (-) and (+) hold, respectively, when

One should notice that any solution 2 	a n eo is coincident with

the solutioni'	 2 , e _ - e o .	 Therefore, we shall consider only the case

_	 Equation (16), where we hold the sign (-) in front of the term

Fdcoseo (0 = z). and taking into account (7) yields

(C-A)n2sineocoseo + C onsineo - !dcoseo 	 0 (17)

If mo >> n equation (17) reduces to

tane	
Fd

o	 Cron
(18)

a
If C;o and ( C-A)n are comparable, we can solve equation (`17). We may write

equation (17) in the form

n2 sin2eo =	 - Qsin(e o _so ) (19)	 x

where
7

Q _ J(C 2;
0

2n 2 + F2d2 ) 1/2 i (20-1)

r
sineo _ Fd/Q. coso	 = Cjon/Q {20-Z)

t

t 9..
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Solution of equation (19) is given graphically in Figure 2-3.	 The corres-

ponding coni"iguratiom are illustrated in. Figure 2-4.	 It is clear that

when (C-A)2^ « Q solution of (19) gives @o 
a 

so
and eo 

I eo 
+ ( 2n+1)„.

As an example we take;

tl

d = 0.1 m, C R M(0.5m ) 2 9 A - M(0.3m)2, }j

s . 10 W. g(0) - 9m/sec 2 , n n 10-39

F-3x9xMx6100^
	

M'

E ^o n 10'1.
a

Then equation (17) becomes
1

0.16M x 10- 6sinecose	 + 0.25M
0	 0

10-4sine
0

2.7M x 0.1 coseo a
-	 n 0 (21)

67

which gives, in first approximation

Taneo 	10',1	60 . 89?43

(22)
e0 = 269°43

If mo	 10-2 we will have

Y

Taneo 	10, eo = 84°29 9
(23)

e0 - 264°29

Now introduce the small angle

t

Qe s 
e	 -

o	 eo (24)

where eo is the solution of (19), we have

n2 (sin2Bo + 2oecos2Bo) n - Qoe (25)

i

10.	 _
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(C-A)n2sin28o

pe	 - 2 Q + 2 C-	 n	 - cos28o	 (2)

From which we may evaluate the first order correction.

Considering only the case 4o = 10- 2 , we have for the two steady state

configurations

0.16 x 0.034	
rad	 0.22 arc seconds	 (27.1)

,^	 -	
=

A81	
222 x2.51 x 103 

x

r r

: 
_ 0.16 x 0.19	

rad = 1.25 arc seconds	 (27.2)A02	
2 x 2.51 x 103

We conclude by noticing that even if io = 'O.ln, or one tenth of the mean

motion, the correction is negligible.

2.6	 Stability of the Equilibrium Configurations

Since there are only two configurations of equilibrium, one presumes that

one will be stable while the other is unstable.	 This may be the case, but,
T

since tae are confronted with the complex behavior of a three degree of freedom

sysU,,m here, other steady state solutions may exist and one must be careful

in reaching general conclusions from this analysis in order to evaluate the

stability of these configurations. 	 The equations (8) are time independent

as the Lagrangian function from which they are deduced which is:

_ T + U = 1/21 A[d 2 + (W+n)2s'in2e]
t (28)

+ C[; + 6+0cose1 2 } - Fsinesin,y

The system has a first integral (7) which implies the invariability with

respect to time of the component of the angular velocity vector along the a

symmetry axis, and the corresponding component of the angular momentwn

f	 Cro = C[i + Wn)cose]	 (29)
a

;
I
l	 _12.
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.'	 Moreover, the energy integral holds

t

j	 1/2 {A e 2 + (^+0 2SWe + Cro z 	- Fsinesin* R E (30)

Next we consider the linear stability of the steady state solution defined

by the following initial conditions:

e(0) _ eo , e(0) = 0, *(0)	 0.
(31)

a ;o = ro - ncoseo

where eo is one of the two solutions of equation (16) or (17), while,

being a cyclic variable, may be choosen arbitrarily.

We consider the equations (7) and (.g ) and make the following assumptions:

_ + e¢1, r = ro + erq
(32')

o

a	 a

and substitute these in equations (7), (8), considering c a first order

quantity.	 Neglecting second order quantities in c we have from (7)

ro + cr, ° ;o + E;1 + (c^j + n) cos ( eo + ee l ) (33)

From which we get

r,	 01 + ^1 coseo - ne l sineo (34)

1

Since, however, the first integral holds also for the new initial conditions,
i

we have a

;1 + ; 1 cos eo - ne l sineo = ( r i ) o (35)

i

which implies that if 9 1 , * 1 , remain small in the pertrubed motion then 01,
9

will also remain small.	 Therefore, we have to study the stability with

respect to the two variables a and 0 because the stability of f is
s

14' -;
_ ^	 i
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derived from (35). As a matter of fact, we consider only the subset of

L
motions which correspond to the same value of ro that in turn defines through

7^	 y
equation (16) the value of e o , and ignore the ^ coordinate. For other values

of ro different equilibrium configurations occur. For each of them the same

assumptions and the deductions obtained here hold.

Consider equations (8) and substitute (32) keeping r  constant. We

arrive at the following equations:
k

e6l - W E^l+n) 2sin 2 (eo + ee l ) + Cro(c*l+n)sin (eo+Eel)

Fdcos (e +Ee l )sin(n + oi)
i 	 (36)

q	 cA*Isin(eo + eel) + 2Ace l (c* l +n)cos(e o + eel)- Croeel

Fdcos 
( L + 

ell)

Neglecting second order quantities and taking into account that eo is a

solution of equation (16) we write the following linear system with constant

coefficients

Ae l	(2Ansineocoseo Crosine o ) V,

+ [Croncoseo + Fdsineo - An 2cos2eo l e l	 0	 (37)

6 1 sineo + (2Ancoseo - Cro) e l + Fd^ l = p

The linear system (37) has the following characteristic equations

(a2Asineo'+ Fd)(A 2A + Cr0ncoseo + Fdsine o - An2cos2eo)
(38)

+ (2Ancose
0
 -Cro)2sin Aoa2

d

that is, the quadratic equation

j
j

ORIGINAL PAGE IS
OF POOR QUALITY
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u 2A2 sineo + u { AFd(l+sin zeo ) - 3ACnrocose0sineo

	

+ 3A2 [n2cos 2 eo sine 0 + A2 n2sin 3e j+ C2r02sine4	 (39)

+ dF (Croncoseo + Fdsineo An2cos2eo

where we substitute u for A 2 . Since the system is a Lagrangian conservative

system the characteristic exponents which are solutions of equation (39)

either are real or imaginary; they cannot be complex. Therefore equation

(39) certainly has real solutions p , and N 2 . Stability occurs when both

solutions are negative which means that the three coefficients of equation

(40) should have the same sign.

A general discussion of the signs of the coefficients are very complex.

Some limiting cases may be treated easily. In particular, let us consider

equation (16) choosing tie negative sign in front of the last term, which

we will rewrite here,

	

An 2 sineocoseo - Cronsineo + fdcoseo = 0	 (40)

and assume that

Ant << Cron, An t << Fd	 (41)

From (40) we have

G	 Cronsineo - Fdcoseo = 0	 (42)

y

Similarly, equation (39) becomes

U 2A2n2sin2eo + usineo { F2d2cos 2 90 + An2Fd (I+sin 2eo 3cos2eo))
(43)

+ F2d2n2 _ 0

i

f
16.
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From (43) we see that for eo . eo ' the three coefficients are all

positive and the solution is stable, while for eo . eo ", the Second co-

efficient is negative and the configuration is unstable. In the same way

we may analyze the limiting case Fd << Ant , Fd << Cron, and the case

Cron « Fd, and Cron << W.

2.7 Conclusions

We have in this part of the report considered a very simple dynamic

model which provides a tool for checking the numerical integration program.
6,.

For any more complex model analytical treatment will require a larger effort

particularly if we want to take into account possible eccentricities of the

orbit, and the regression of the node (that is, the motion of the orbital

plane). We could have easily found some steady state configuration for a

triaxial body but we thought we would not have learned much more by doing

so. However, we do believe that an extension of this analytical study to

a more sophisticated model would be necessary for a full understanding of

the system. In fact, while the numerical integration of the general system

as described in this report could be quite expensive in the general case

we think that the numerical integration of equation (6) or of the correspond-

ing equations for a more realistic model (which may take into account

the triaxiality of the body, the orbital eccentricity, and the regression

of the orbital plane) _will ,be much less demanding in term of computing time

and will lead to a better understanding of the dynamics of the system.

Lx„
L
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3,0	 Rotational Dynamics Software Development and Verification
k

f

7

3.1	 Two-Mass Tether Model (DUMBEL)

3.1.1	 Adaptation of DUMBBELL Rotational Dynamics Model to the VAX

Annex III of the Final Report for NASA Contract NAS8-32199 "Study of

the Dynamics of a Tethered Satellite System (SKYHOOK)," March 1978 (attached

as an Appendix to this report) describes a version of the DUMBEL computer

program which models the rotation of the subsatellite. 	 The program integrates

the motion of two masses - the Shuttle which is considered to be a point mass

and the subsatellite which is modelled as a rigid-body with three moments of

inertia and an attachment point to the tether.	 The rotation is described by

twelve variables using the method of direction cosines (nine quantities)

together with the three angular velocities about the principle axes. 	 Six

variables give the state vector of the center of mass of the subsatellite

and another six give the state vector of the Shuttle for a total of twenty-

four variables.	 The tether is assumed to be a massless visco-elastic con-

'.	 nection whose dynamics is not represented by any mass points or integration

variables.

The rotational dynamics version of the DUMBEL program was written on

a CDC 6400 computer and has not been used since the original study under

which it was developed.	 In _preparation for the current study of subsatellite

'-	 rotation, this program was converted to the VAX computer currently in use at s

SAO.	 Changes have been made to allow the program to be run in an interactive

mode with the necessary input parameters being supplied through an interactive-

terminal.	 (Batch mode operation can also be done using a prepared file of

input parameters.)

k	 In order to verify successful conversion of this program to the VAX, an

original CDC 6400 run was duplicated on the VAX with initial conditions of



F	 ,

k

x,, ► n 20°, e = 0°, and 0 = 0 0 . All initial angular velocities were zero. The

initial angles are converted to direction cosines for the integration of the

dynamics and then the direction cosines are converted back to Euler angles at

each output point. At the beginning of the integration, the output angles

should be the same as the input angles. After debugging, inspection of the

original and new printouts showed only small differences between the output

angles which are assumed to be due to the better numerical precision on the

VAX computer in double precision.

3.1.2 Verification of Two Mass Tether Models Using Rotational Test Case

The test case (solved analytically in 2.0, above) consists of a special

stationary solution of the 'equations of motion in which the axis of rotation

of a symmetrical subsatellite maintains a fixed orientation with respect to

the tether. This is accomplished by having the precession rate of the sub-

satellite equal to the orbital angular velocity. The analytic solution was

obtained in a reference coordinate system rotating with the orbit and used

Euler angles to describe the orientation of the subsatellite. The axi_ of

rotation is contained in the plane defined by the direction of the tether

and the normal of the plane of the orbit. The angle between the rotation

w_l

axis and the normal to the orbit plane is fixed and may be either plus or

minus. Assuming the Shuttle is above the subsetellite we can define positive
a

"	 angles as measured from the normal to the orbit toward the Shuttle, and 	 a

k	 negative angles as measured toward the earth. As the angular velocity about

the symmetry axis increases the angle between the rotation axis and the

normal to the orbit decreases. For high rotation speeds, the rotation axis

is nearly perpendicular to the wire (and parallel to the normal to the orbit)

in this special stationary solution. For zero rotation rate the angle to

the orbit normal is either plus or minus 90 degrees. That is, the sub-

satellite is hanging either straight down or straight up. The up configura

f
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tion is obviously unstable. With the proper initial conditions in this case,

the subsatellite precesses at the same rate as the orbital angular velocity

so that the subsatellite maintains a fixed orientation with respect to the

tether. The equation giving the relation between the subsatellite angle e

and the spin angular velocity r is

-A n2sinecose + Cnrsine	 Fdcose

where A is the moment of inertia in the plane of symmetry of the subsatellite,

C is its moment of inertia about the symmetry axis (C>A), n is the orbital

angular velt,,c ty, a is the angle between the symmetry axis and the normal to

the orbit plane, F is the wire tension, and d is the distance from the center

of gravity to the attachment point of the tether. For a given angle o we

can solve for the required spin angular velocity r to obtain

_ so—se (r	
C	 nsine * An

The geometry must be such that the precession is in the right direction to

make the symmetry axis follow the orbital motion. The proper geometry can

be set up using the equation

N=T_dxF

where N is the rate of change of angular momentum, T is the torque, d is

vector to the attachment point, and F is the force due to the wire tension.

j
The direction of spin of the subsatellite is shown on the circle around

the vector d (Figure 3-1). The spin angular velocity is parallel to d and

the torque is in the -y direction. Since the Shuttle motion is in the +y

direction, the precession is in the proper direction.

The parameters used in the test run are Shuttle altitude 220 km, Shuttle

mass 86.363 metric tons, subsatellite mass 100 kg, tether length 20 km,
4

3

t

I
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00 - 200 0 00 M 00 # *0 
a 900 , orbital angular velocity n - 1.178021398.x 10-3

radians/sec, d - 50 cms tension force F w .8342029979 x 106 dyneso principal

moment of inertia C n 2 x 1012, and A a I X 1012 in c.g.s. units. The

moments of inertia have been arbitrari 
I 
ly chosen very large in order to obtain

a small value of r. A fast spin rate would result in very slow numerical

integration. For the values of the parameterso the spin rate is r -

-.04919339283 radians/sec. The initial rates of the Euler angles are	 no

;o - r, and e* 0 a 0. The integration was run for 300 seconds with output

points every 10 seconds. The angle 6 was .3490658 radians at the beginning

and increased to about .3490669 radians at the end. The value of * was

initially 1.5707963 radians and increased to 1.9242006 radians at 300 seconds.

Adding nt to ^o gives 1.9242027 radians. The solution was stable to a few

parti per mi7lion over the duration of the test run.

The Euler angles of the subsatellite should be constant with respect

to a reference frame rotating with the Shuttle. The integration is done in

terms of direction cosines instead of angles. The direction cosines are

converted to Evler angles at each output point. In order to check the orieo-

tation of the subsatellite in 
the rotating reference frame, the direction

cosine matrix can be rotated by the negative of the orbital angle and then

converted to Euler angles. In the test case, since the orbital motion is

in the x-y plane, the rotated matrix is

I

Y, cos -sin 0

02 02 Y2 sin cos 0

U 3 03 Y3 0 0 1

where n is the orbital angle.

When this transformation is applied in the program, the angle ^ is constant

during the first 300 sec to an accuracy of a few parts per million (see Figure

3-2).

22,
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3.2 Multiple-Mass Tether Model (SKYHOOK)

2
3.2.1 SKYHOOK Tether Model with Subsatellite Rotational Dynamics Capability

The SKYHOOK computer program has been modified to include the rotation

of the subsatellite using the method of direction cosines as defined in	 S4 4
4

Annex III of the report "Study of the Dynamics of a Tethered Satellite System
	

1

(SKYHOOK)," Kalaghan et al. March 1978 (see Appendix). The angular damping

decribed in Annex III has not been included in SKYHOOK. The inclusion of
	

r g

rotational dynamics involved changing five of the existing routines in Sky-

hook and adding six new routines. The modified routines are the main pro-

gram SKYHOOK, and subroutines MASSPTY, SKYIN2, DIFFUN, and TENSION, The new

routines are DIFROT, ANGOUT, CROSS, ATTACHP, GROTAT, and PROTAT'. The input

to the program has been changed to read the number of rotational equations

(either 12 or 0), the initial values of the rotational state vector, the

vector from the center of mass to the attachement point of the tether, and

the three moments of inertia about the principle axes of the subsatellite.

The format for reading the initial conditions for the rotational

dynamics follows the general philosophy used in Skyhook of keeping the

input as general as possible. The user is expected to generate the initial

conditions with a preprocessor designed for the particular problem to be

studied. At SAO the initial conditions are generated using a small program

called DUMBEL. The version of DUMBEL which models the rotational dynamics

reads the Euler angles and their derivatives as the initial conditions.

The program then calculates direction cosines and angular velocities using

the equations on page 13 of Annex III. The initial position and velocity

for the Shuttle and subsatellite are computed in DUMBEL from the orbital

parameters given on input. The state vector for the Shuttle consists of

six quantities. The total state vector for the subsatellite consists of 	 f

18 quantities. The state vectors for each vehicle are written onto a file

26.
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in the format for input to the SKYHOOK program. In order to have the

system in tension equilibrium, the offset of the center of gravity from

the attachment point must be taken into account. This is done by computing

the offset in the inertial coordinate system and using this vector to off-

set the center of gravity from the attachment point so that the distance

from the Shuttle to the attachment point is equal to the tether length

specified on input.

The following paragraphs describe the changes made to each of the

five routines that have been changed in Skyhook.

Three changes have been made in the main program SKYH00K. Some

quantities have been added to the labelled common block MASSES which occurs

in the routines SKYHOOK, MASSPTY, SKYIN2, and DIFFUN. These quantities are

NROTEQ (the number of rotational equations), ATTACH (3) (the vector from

the center of mass to the attachment point in the body fixed coordinates),

XINERT O) (the moment of inertia about each of the principle axes), ROTMAT

(3,3) (the direction_ cosine matrix), ANGVEL(3) (the angular velocity about

each of the body axes), and ANO(3) (the Euler angles in inertial coordinates).

The other changes involve the deployment mode of the program. If rotational

dynamics is being included, the initial conditions for the subsatellite must

be taken from input rather than being obtained from subroutine INITAL which

sets up initial conditions for new masses to be deployed.

The changes in MASSPTY consist of adding the new quantities to the

common block MASSES and processing the additional input data needed for

modelling the rotation of the subsatellite. The number of rotational

equations NROTEQ is read, printed and added to the number of equations to

be integrated for the subsatellite. Initial conditions for the subsatellite

are read from input in the deployment mode when rotational dynamics is in- {

cluded. The point of attachment and moments of inertia are read and printed.

2.7



The following changes have been made to SKYIN2. The new quantities have

been added to the MASSES common block as described in the paragraph on the
	 f

main program SKYHOOK. Two vectors have been added providing information used
x

by the numerical integrator. The vector ZMAXR(12) gives the maximum value of

the twelve rotational quantities, and PEROT(12) gives the increment to be used

for numerical differentiation in subroutine PEDERV. These vectors are inserted
r

into the arrays ZMAX and PEDINC by a new routine PROTAT. A new subroutine

ANGOUT is called by SKYIN2 to compute and print the Euler angles from the

direction cosine matrix. The Euler angles have also been added to the output

on unit 7 which is used by the plotting routines.

Subroutine DIFFUN computes the rate of change of each variable to be

integrated by the numerical integrator. The following changes have been made.

The new rotational quantities have been added to the common block MASSES. The

new routine GROUT is called to get the rotational state vector from the master

array. The arrays ATTACH, ROTMAT, and ANGVEL have been added to the call to

TENSION which computes the wire tension« A new routine DIFROT is called to

return the rate of change of the rotational quantities and the results are

placed in the array DZ by a new subroutine PROTAT.

Subroutine TENSION has been modified to compute the tension from the

position and velocity of the point of attachment of the wire rather than

from the center of mass of the subsatellite. The arrays ATTACH, ROTMAT, and

ANGVEL have been added to the calling sequence. A new routine ATTACHP is

called to compute the position and velocity of the point of attachment of the

wire on the subsatellite. The tension is computed from the difference in

it 	 d	 1	 't b t	 th	 4-+ h	 t	 d th	 ' hb	 tpos ion an ve V% i y e wee"	 e a ac men an	 a ne 4 g Wring mass poin .

The following six paragraphs describe the new routines that have been

added to SKYHOOK for including the rotational dynamics of the subsatellite.
k
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The rate of change of each quantity in the rotational state vector is 	 y

computed by subroutine DIFROT (ATTACH,ROTMAT,ANGVEL,FTENS,XINERT,DD,IM,BMASS), -

where ATTACH is the offset of the attachment point of the tether from the 	 j

center of mass of the subsatellite, ROTMAT is the direction cosine matrix,
_i

ANGVEL is the vector angular velocity with respect to the body axes, FTENS

is the acceleration due to the wire tension, XINERT is the vector giving

the moments of inertia about the principle axes, DD is the output vector	 i

giving the rate of change of each quantity, IM is the mass number (which

must be 2 or the subroutine returns zero), and MASS is the subsatellite

mass used to compute the wire tension from the acceleration FTENS. The 	 i

subroutine computes the force on the subsatellite due to the wire tension

in the body axis coordinate system. This is then used to compute the com-

ponents of the torque along each body axis. The rate of change of each of	
W

the 12 quantities in the state vector is computed using the equations on

page 12 of Annex III.

The Puler angles corresponding to the direction cosine matrix are
	 i

computed and printed by subroutine ANGOUT(TOUT,ZOUT,IPT,NTEQ,NEDEQNROTEQ,

ANG) where TOUT is the time in seconds, ZOUT is the totat state vector,

IPT is a vector giving the state of each mass point in the ZOUT array, NTEQ

	

	 i

i
is the number of temperature equations, NEDEQ is the number of electro-

dynamic equations, NROTEQ is the number of rotational equations for the sub 	
ti

r
	

satellite, and ANG is the vector of Euler angles. The Euler angles are

F,	
computed using the equations on pages 13 and 14 of Annex III.

Subroutine CROSS(A,B,C) computes C as the cross product of A and B.

The position and velocity of the attachment point of the tether on the

`	 subsatellite is computed by subroutine ATTACHP(ATTACH,ROTMAT,ANGVEL,SV,SVP,

IM) where ATTACH, ROTMAT, and ANGVEL have been previously defined, SV is

the state vector of the center of mass, SVP is the state vector of the

29._.
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attachment point, and IM is the mass number. If IM is not 2, SVP equals

SV. The position of the attachment point is obtained by rotating ATTACH

using the rotation matrix ROTMAT and adding the result to the positional

part of SV. The velocity of the attachment point is obtained by taking the

cross product of ANGVEL and ATTACH and adding the result to the velocity

components of SV. The cross product is performed after rotating ANGVEL and

ATTACH to inertial coordinates.

The rotational state vector is extracted from the total state vector

of the system by subroutine GROTAT(A,NDIM,IPT,NTEQ,NEDEQ,NROTEQ,ROTMAT,

ANGVEL) where A is the total state vector for all masses, NDIM is the number

of rows in the matrix A, IPT is the vector of indices giving the starting

location for each mass, NTEQ is the number of temperature equations, NEDEQ

is the number of electrodynamic equations, NROTEQ is the number of rotational

equations for the subsatellite, ROTMAT is the matrix of direction cosines,

and ANGVEL is the angular velocity vector.

The rotational state vector is placed in the total state vector array

by subroutine PROTAT(A,NDIM,IPT,NTEQ,NEDEQ,NROTEQ,DD) where the quantities

are the same as described in the last paragraph for subroutine GROTAT. The

vector DD is of length 12 and includes both the direction cosines and angular'

velocity components.

3.2.2 Testing of SKYHOOK with Rotational Dynamics

The new version of the SKYHOOK program with rotational dynamic, has been

tested using the special case of Section 2.0 used previously to test the two

mass (DUMBEL) model. The initial rotational state vector from DUMBEL has

`.	 I

been used as input to the SKYHOOK program. In testing the program it is
I

helpful to plot the Euler angles to see how they change with time. The DUMBEL

program includes a facility for generating printer page plots of various

30
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quantities vs. time. The Euler angles were plotted using this facility when

the special test case was run on the program. A similar facility exists for

plotting the quantities written on unit 7 by the SKYHOOK program. This

utility program has been modified to include plots of the Euler angles which

have been added to the SKYHOOK program output. The SKYHOOK program has been

tested by running the test case on SKYHOOK and comparing the plots from SKY-

HOOK with those of DUMBEL. After correction of various bugs, agreement was

obtained between the two programs. For the test case, the angle a is constant

with time and the angle 0 increases at a rate equal to the orbital angular

velocity (compare Figure 3-3 with Figure 3-2). The angular velocity ; is

constant.

3.3 Behavior of a Subsatellite with a Single Thruster

A simple test case has been run as an example of a rotational dynamics
z

simulation with an attitude thruster. The system is assumed to be initially

in equilibrium with the subsatellite hanging at rest at the end of the tether

with no angular velocity except that of the orbital motion. At t = 0 an

attitude thruster applies a constant torque about the body axis which is

aligned with the tether. The parameters of the run are mostly the same as

those used in the test case described in Section 3.1.2. For the thruster

case the initial conditions are e o	 00 = g0°, $o = 1.178 x 10 rad/sec (the

orbital angular velocity), and 00 = ;o = 0. The Euler angles a and 0 are

shown in Figure 2-1. The torque has been chosen to be 4 x 10 8 dyne-cm

which would result in an angular velocity of .1 radians/sec in 500 seconds

with a moment of inertia of 2 x 10 12 (cgs). A slow acceleration allows

the orbital angle to change significantly before the spin rate has reached

a value which would cause slow numerical integration. Since the equations

of motion are written as a function of the components of the torque about

31.
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1,	 the body axes, this case can be implemented by adding a constant to the

'f
	

torque about the body z axis. The only other torque currently modelled in

the program is that of the wire tension.

The thruster case described above has been run on both the DUMBEL pro-

gram and the SKYHOOK program. The initial rotational state vector generatedi

by DUMBEL has been used as input to the SKYHOOK program. In each program

the thruster model was implemented by adding atconstant torque about the	 R

body z axis. The Euler angles have been plotted using the printer page as

a graph. The output from DUMBEL differs from that of SKYHOOK in that the

Euler angles are referred to a rotating orbital coordinate system. This

affects only the angle 0 since the orbit is equatorial. The difference

between the plots from the two programs was helpful for the thruster case

since they angle 0 is initially constant in the rotating frame and then stops

moving with the orbit and becomes nearly constant in the inertial frame as

the spin increases.

Figure 3-4 shows the Euler angles vs. time for the simple thruster

case as run in the SKYHOOK program. Part a) is the inclination angle e,

part b) is the nodal angle ^, and part c) is the spin angle ^ about the

principle axis. Initially, the rate of change of * is equal to the orbital_

angular velocity. In the output of the DUMBEL program the angle * was

initially constant in the rotating orbital reference frame. As the sub-

satellite begins to spin up, the nodal rotation is arrested as can be seen

in part b) of the plot. Once the node stops rotating, the tether force F

is! no longer aligned with the vector r from the center of mass to the attach-

ment point, so there is a torque on the subsatellite. In figure 3-5 we see

that the torque T is directed toward the +z axis. Since the angular velocity

is in the direction of r. the torque will cause the principle axes to move

up out of the x-y plane, thereby decreasing the angle a as seen in part a)

35.
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of Figure 3-4. The angle f circulates wit:, increasing angular velocity as

seen in part c) of Figure 3-4. The angle has not been normalized to a

continuous variable so that there is a discontinuity every time the angle

passes 180 degrees.

4.0 Adaptation of SKYHOOK General Rotational Dynamics Model to Specific	
1

Attitude Control Systems
i

The SKYHOOK program now provides a basic tool for studying the dynamics

of the tether system including the rotation of the subsatellite. It remains

only to develop suitable models for "real-world" attitude control systems to

convert their input forces and torques intp parameters directly readable by
.	 a

SKYHOOK. The implementation of such models would be done by means of routines

that compute the torque on the subsatellite as a function of the observables
1

available in the program. This torque would be added to the torque from the

wine and the result used in the equations of motion which have been incorpo-

rated in the program for integrating the rotation of the subsatellite. q

Routines would be developed for eachof the various attitude control systems 	 o

such as thrusters, magnetic torquers, etc. These routines are straightforward

and do not represent a major development effort.

R
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ROTATIONAL DYNAMICS OF SUBSATELLITE VEHICLE

III-1. EQUATIONS OF MOTION OF THE DUMBBELL SYSTEM WITH A
RIGID BODY AT ONE END

The short dumbbell program integrates the motion of two vehicles connected by
a massless tether. One vehicle is treated as a point mass anti the other is treated
as a rigid body attached to the tether. Two types of damping are included: The first
is proportional to the rate of change of the distance between the two vehicles, while
the second consists of angular damping at the point of suspension of the rigid body.
The program has facilities for computing the initial state vector of the system from
parameters specifying the desired orbital and system characteristics. The wire
parameters necessary to achieve the desired initial conditions and the damping con-
stants required for critical damping; of the spring oscillations and angular oscillations
of the end mass are also calculated.

1
i

III-1.1 Calculation of the Initial State Vector

A 4ngle particle in a circular orbit in an inverse-square force field obeys the
equation

GMin	 2
= = m rw-

or

GM = r3 w2 ,

a
where G is the gravitational constant, M is the mass of the central body, m is the
mass of the particle, r is the radius of the orbit, and w is the angular velocity of the

}	 particle.

µ	 A similar equation can be written for two particles of mass m l and m2 in circular
orbits of radius rl and r2 connected by a massless tether. Assuming r2 a rl , the

1 particles obey the simultaneous equations

[}	 A	 f

III-1
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GM m
^2 _TRm1r1W2

r1

and

GM m2	 2rz	 T m2 r w2 

2

which can be solved to obtain the angular	 ^lar veloci w and the wire tension T. We cano_	
, r

eliminate T by adding the equations. This gives the equation
^a	 -

GM
 C,

+ T = (m i rl + m2 r2) w2
rl	 T2

or

ml r l +m rz
GM=	 w

(ml/rl) + (m2/r2)

Comparing this to the equation for a single particle, we see that the system orbits j

like a single particle in an orbit of radius T given by

m l r l + m2r2
P

(M rl) + (m2/r2) .
i

The equation for the Angular velocity is

i

w- GM
-	 ',r

Solving for the tension, we obtain

(r2/rl)` - (ri,/r2)
T = GM (rl m2) + (r m 1)	 £

J
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The initial state vector for particles in circular orbits starting out on the x axis with
Inclination, I is

E

x =r ,	 x =01 1 1
Yl ` 0	 s Y1 'Vi cos I
t l = 0	 , zl = V  sin I
x2 =r2	, x2=0	 ,
y2 =0	 , y2av2cosI
z2 =0	 , z2 = v2 sin I

4
i

e	 t 	 *	 Yr

The velocities of the particles are
r

vi rl W

and
vZ r2 w

ORIGINAL PAGE (S
OF POOR QUALITY

If a slight eccentricity a is desired in the orbit, we can obtain an initial state
vector from the following simple approximation. In polar coordinates, the equation
of an ellipse is given by

a1-e2r — l+ecos(	 )0

where a is the semimajor axis. Differentiating with respect to time, we have

all - ez) a sin (0 00) B
r	 r=	 2

[1 + e cos (0 8o)I

t



F

i

t

ORIGINAL PAGE (g
OF POOR QUALITY

Therefore, we can obtain a small eccentricity in the orbit by setting x1 = x2 M OL

the initial state vector.

M-1.2 Calculation of the Wire Constants

The cross-section area " of a wire of diameter D is

A n( )2

If the natural length of the wire is 10 and the elasticity is E, the spring constant 1

k=
To—

When  the distance between the ends of the wire is f , the tension T is

J	 T = k(1' 10) ,	 1 >10

f	 =0 ,	 1 <10
g

For a dumbbell system starting out with an initial separation 1 and tension T, the
natural length of the wire is calculated from

T = k(1 - 1 0) _ - (1 -10)
0

Solving for 1 0, we get

^j,t

r^	 f_

1 0 - 1 +(T EA)

}

III-1.3 Critical Damping for the Dumbbell System

1e
The dumbbell system shown in Figure I oscillates rbout its center of mass

(CM).

M-4
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M

,Q	 kI

CM
s

12	
k2

M?

Figure 1.

The distances of each particle from the CM are

m2 1	 a
l l - m— — s

and

mll
1

	

2^ml+m2	 s

t

If the spring constant of the entire length is k, the spring constants of each section
are

1

m+ m2
kl k7- - k —m—

1	
2

and
A

m +M1	 2=k	 ;
k2	 m

	

1	

^
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The equation of motion for each section with damping is

mid' l + bil i + kil l 0

where bi is the damping constant. For critical damping, the determinant of the
characteristic equation is zero, which gives

JbT7 , m_ ki = 0

or

bi 2 ii ki

The damping term b? 
l 

can be rewritten in terms of L to give

m^
bil 2 mi i) M̂̂ j l0jc

mi + mi m̂ .l_ 2 mi k m3	 mi + m^

mi m3
2 ti nli + m^ f

Therefore, the damping force can be written as bl, where b is defined as

mlm^
b_ 2 k m +m	 3

1	 Z	
i

M-1,4 Critical Damping for Angular Oscillations
f

s

F

	

	 A simple pendulum with angular damping executing small oscillations obeys the
equation a
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16 +bA + Tre=0

where I is the moment of inertia, b is the angular damping constant, T is the vertical
force on the pendulum, r is the length of the pendulum, and 6 is the angular rotation
of the pendulum from equilibrium. The characteristic equation obtained by substituting
the solution

e - Asst

is

.Ia2+ba+Tr=O

II

	

which has the solution

-b t_ NO - 41Tr
° =	 2I

To obtain critical damping, the radical is set equal to zero, giving

	

b2 - 41Tr =_0	 a

or

b=2 1Tr
B

This value of b can be used efficiently to damp out certain oscillations of the rigid
a

body at one end of the dumbbell system. If the rigid body is not symmetric about
the point of attachment, the damping constant cannot provide critical damping for
both moments of inertia simultaneously. Motions that do not change the angle between
r and T will not be damped. It is assumed that the last section of wire is rigid in
order to provide a torque for the damping to 'work against.

Figure 2 shows a dumbbell system with a rigid body at one end. In the diagram,
pl is the position of the center of amass of the rigid body, ^g is the point of attachment

a
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I

of the wire, 3 is the position of the point mass, M is the mass of the rigid body,	 .;

m is the mass of the point muss, r is- the vector from 
0, 

to 020 is the wire 'force

acting on p2 , and 8 is the angle between r and 1W.	 L

	

tr
	 T P3

I

e

F

Fq

P2

r =,

M	 PI

Figure 2.	
^	 1

The force F is given by	 )

F _ Ik(X - 1 0)
 
+ b!) p3 I P2

whore I _ p3 p2 I. The derivative of 1 is given by

	

t	 1 = (p3 - p2) • (P3 - p2) _ ,i-1 123 - Vii) (03 - p2)l

(p3 - P2) (V3 - V2)

	

$^	 z

a

	

j
cj	 '
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The equations of motion of 01 and 03 are

M p	 and	 _ m 3 r

while the equation of motion for the angular momentum is

I= i
where is the angular momentum and l^, the applied torque, is

N = N W + N D
r

In which the wire torque is NW r ,x "P. The da;,11xping torque ID is parallel to 11W

It IW # a or parallel to '^ it F + h g if&t
. 
 8.

The applied force F is

TP ,

where T is the tension in the wire and

P3 -P2	
j1

P3 P2

where 'p2 pl + r

The damping torquer is

t -be rxF
D IT—XFI

The quantity g can be obtained from differentiating either

t

..III-9
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Cox 6r• g ,

or

grin 0 _ ( r X F {
where

A r	 '

Using the cos 0 expression, we have

T (cos 0) = a (r • F)

-6 sin 6 =Q• F+r• F

	

A n n x	 1

9	 r- F+r ' F
{r' AXF --

r i

The above formula is not good near 0 = 0' and 180', for which we use

3 ( sin A) = at r X F {

6 cos 0 =	 (r X F) • (r X 
A)]111

 
-L 

. 
nn l	

1	
A n d n ^6X;r • F = 2

	

	 [2r X F	 (rXF)]
{rXFI

E3 —A- T A X Al (rXF +rXF)
r • F (rXF{

G	 For critical damping of simpleP B 	 P Pendulum motion, the damping constant b;is

f{

%€

e
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b - 24 r ,

where I is the moment of inertia, T is the tension, and r
A
 is the distance ft

center of mass to the point of attachment. The quantity r is given by

rnwXr
.

where d is the angular velocity of the subsatellite. The vector F is given by

Ap
Op	

"p

wherewhere

&p'= p2 p2 ,

J r Jpp ps - p2 0

=p3-(pi+r)

sp4- (pl +Wx 'r)

The vector r is fixed with respect to the principal axes of the subsatellite. The
orientation of the subsatallite with respect to a set of inertial space axes can be given
b e ci in the nine direction cosines that 	

r

	

Y Pe ^Y B	 give the transformation from the space
axes to the body axes. The oomponents x, y, and z of a vector with respect to the
Inertial axes are thus related to the components, x , , y', and a' with respect to the
principal axes of the body by the matrix equation

6	
xr	
axY1

	

YI	 a2 	 02	 Y2	 Y	
-	

y

	

Z+	 ag	 p3	 ysr	 Z

IA

t

i
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The reverse transformation is

(

x	 a1 a2 	 3 (X'
Y _ 1 02 Pa yo
Z zii 	 y2 Y3 	

^*

The components of the angular velocity ' with respect to the principal axes are

w10 w2, and w30 and the principal moments of inertia are 1 1 , I2, and 13 . The com-
ponents of L with respect to the principal axes of the body are given by the Euler
equations

1'1w1 - w2w3 [L - I31

I2w2 w3w1 [I3 Y
I3P3 wlw2 tI1 I2I

The equations for the nine direction cosines are as follows:

al + w2a3 - w3a2 = 0 ,

a2 + 13a1 - wla3 = 0 s

a +wa -wa =0
3;	 1 2 W2' 1

A l + w2P3 - 42 0	 j

Ali + w3P l '1P 3 - 0

^1 + w2y3 - w02 0 ,	 y

Y2 + '3'y - w1y3 0 ,	 8

Y3 + w1y2 - w2y 1 = 0

giving a total of 12 equations that must be integrated to get the orientation of the sub-
E	 satellite as a function of time by using the method of direction cosines.

4
{

,i
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If initial conditions are given in terms of Euler angles and their first derivatives,
we can use the following conversion equations:

a l l= Cos o cos ^ - cos O sin + sin o

a2 = -sin o cos ^ - cos A sin + cos o

413 sin 8 sin ^ ,

P1 cos O sin + + cos 9 cos + sin o

P2 = -sin 0 sin + + cos 6 co" cos 0

P3 = -sin 9 cos

Yl=sin 0sinO

V2 = cos 0 sin 8

N3, = cos 6 ,

wl ^ sin 8 sin o + 6 cos o

w2= sin 0 cos 0 -6 sin 0

W
3
 c¢cosO+ i

a^

To interpret the results in terms of Euler angles, the following equations are used:

tan + = - a3 = _ sin 0 sin	 sin
R	 -sin 8 cos + = cos	 '3 

Y1_ sin sin 9 _sintan	 {_ -- —
Y2 cos sin _cos

py, 
2	 j

tan 8 -	 - sing sing A + cos2 sing 9	 sin 8^'
Y3	 cos a	 cos a	 4

a

There is an unavoidable abiguity in the sign of o, which has been chosen to be positive
here for convenience.

a
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if 0 0 6 , the angles and cannot be determined separately. However, the sum

of the angles can be computed from

tan (++0)=al
1

G	 _ cos 0 sir. +cos 0 cos t s in
M 

'r	 cos cos Z cos a sin ip sin

coo sin + cos 4S sin 0 (g = 0)
`	 os 0 cos qi - sin 41 sin

_ sin +
cos ( + ) •

As a simple test case, let us use a solid ball of mass M and radius r. The
moment of inertia I is

I=*9M r2

III-1.5 Test Runs of the Short Dumbbell Program with a Rigid Body at One End

As psrt of the process of testing the short dumbbell program, various cases have
been run with different initial conditions. The program plots the tension in the wire
plus the in-plane and out-of-plane motion of the point of attachment.	 j

The simplest test run was that of a subsatellite with no initial angular velocity
and no initial angular displacement; linear and angular damping were included. An
in-plane displacement developed initially as the wire rotated at the orbital angular
velocity.; Within about 15 sec, the subsatellite acquired the orbital angular velocity 	 q
and followed the angle of the wire.

Next, the subsatellite was given a 20° in-plane rotation from equilibrium with
linear and angular damping. As the angle returned togu	 equilibrium, the tension at first
decreased to a minimum value in about 2 or 3 sec, increased to a maximum value at

III-14



about 9 sec, and returned to the initial value in about 20 to 25 sec. When the same
` g	 case was rerun leaving out the angular damping but keeping the linear damping, the4

	;a	 subsatellite executed an angular oscillation of slowly decreasing amplitu&). The

	

f '	 slight damping observed results from the linear damping term, since icue oscillation	 ^.
r ;.

i
causes periodic changes in the length of the wire.

Next, the subsatellite was given a 20° rotation from equilibrium in a diagonal
`

	

	 direction from the orbital plane (i.e., both in-plane and out-of-plane displacement)
with both linear and angular damping. A plot of the in-plane versus out-of-plane

	

F	 displacement of the point of attachment shows that it returns nearly to equilibrium
and then executes a small amplitude rotation about the equilibrium position with con-
start wire tension. The same case with no damping shows an up-and-down spring
oscillation combined with a rotational o>cillation in the plane of the initial rotational
displacement.

i
In the last case run, a 20 ° initial diagonal rotation was combined with in-plane

and out-of-plane initial angular velocities with linear and angular damping. The
point of attachment ended up rotating in a small circle around the equilibrium, and the
center of mass acquired a velocity diagonal to the orbital plane, 	 a

I

s

L	 s

6
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III-2. SOFTWARE DOCUMENTATION

This program integrates the motion of two bodies connected by a massless tether.

One body (the Shuttle) is assumed to be a point mass, and the second (the subsatellite)
is free to rotate about the point of attachment of the wire. The program does not

normally read any data cards. Instead, Fortran is compiled each time the program

is run. In this way, any parameters or formulas can be changed as needed.

Generally the subroutines remain unchanged. The following list describes the variables
that are most likely to be changed:

TFINAL	 = number of seconds for which the motion Is to be
integrated.

DELT	 = interval at which the results are to be printed (sec).
E	 = elasticity of the wire material (cgs).
DIAM	 = diameter of the wire (cm).

RID	 = initial distance between the ends of the wire (cm).

RMI	 = mass of the subsatellite (g).

RM2	 = mass of the Shuttle (g).
RMGAL	 = value of a gravity anomaly covering 1 * X V on the

earth's surface (mgal).

XAq YA, ZA = coordinates of the gravity anomaly on the earth's
surface (cm).

HEIGHT = height of the Shuttle above the earth. (cm).
ECC = orbital eccentricity.

B = linear damping coefficient.
STRETCH = initial stretch of the wire (cm).
CDRAG1 = drag coefficient of the subsatellite.
CDRAG2 = drag coefficient of the Shuttle.

AREAl = cross-section area of the subsatellite.

AREA2 = cross-section area of the Shuttle.
RO = atmospheric-density coefficient (g/cc).
HO = atmospheric-density scale height (cm).
HO = reference height for atmospheric density.
I*_T9 — _T_ ff"a%r4+a+4o%ma1
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RINC

z

= orbital inclination (rad)';

T
META, PHI, PSI a initial Euler angles of the subsatellite (rad).

DTHETA, DPHI, DPSI = initial time derivatives of the Euler angles.
RADIUS a radius of the subsatellite (cm).
Xi, YIP ZI = principal moments of inertia of the subsatellite.
RB = unit vector directed from the center of the subsatel-

lite toward the point of attachment of the wire.

At each output point, the program prints the following variables giving informa-
tion on the translational part of the motion:

TOUT = time.
JSTART = order of the integration polynomial.
xi X2,
Yl	 Y2, _ coordinates of the subsatellite and Shuttle with
Z10 Z2 respect to the center of the earth.

R1, R2 = distances of the vehicles from the center of the
earth.

ALONG, = along-track, across-track, and radial displacements 	 iACROSS, of the point of attachment of the wire with respect to
RADIAL the Shuttle.	

f

RL separation of the Shuttle from the point of attachment
of the wire.	 _ 1

TEN - wire tension.
RLP _ separation rate of the vehicles.
NSTE P = integration step number.
FRICT = linear damping force.
H = integration step size.

'	 The angular information is printed by subroutine ANGOUT. The final state vector

r	 is printed and punched. The program plots the tension, along-track, and across-track
displacements as a function of time using the printer page as a graph. 	 It also plots
the along-track versus the across -track displacements to give a visual display of the
swinging motions of the subsatellite

-

}
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M-2.2 FUNCTION NAG (A. U)

f

	

	 This routine returns the magnitude of the vector 'x as the value of the ihnction,
and a unit veotor parallel to as the vector ^.

I	 Input Parameter
E

any vector.

a:
Output Parameter

= the vector X divided by its magnitude.
XMAG	 the magnitude of the vector.

d

z

s

r

I

a

_5

1

9
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III-2.3 SUBROUTINE CROSS (A, B, Q

This subroutine computes the vector Ls by the equation

"e X1ft

Input Parameter
J^,

any vectors.

Output Parameter

= the cross product of the vectors and ^.

'-



x

r

M-2.4 SUBROUTINE DIFROT (T, Y, DD)

This subroutine computes the derivatives of the nine direction cosines and throe

components of the angular velocity. The time T is not used.

Zn...&t Parameters

T	 - time (sec).
Y	 = rotational part of the state vector.

Output Parameter

DD	 - derivatives of the quantities in the state vector Y.

Subroutines called are CROSS, XNAG, and DOT.

i

{

a



III-2.5 SUBROUTINE DIFFUN (T, Y. DD)

This subroutine computes the vector. DD from the state vector Y. The time T

is not used. The forces included are the central gravitational force, the tension,- if
any, in. the tether and optional perturbations, due to atmospheric drag, a gravity

anomaly, and J2.

Input Parameters	 ur

T	 = time (sec).
Y	 = positional and angular state vector

Output Parameter

DD	 the derivatives of the quantities in the state vector Y.

This subroutine calls SETUP, and DIFIR T.



sz

M-2.6 SUBROUTINE SETUP (L IFI AG)r

This, :abroutine does a variety of intermediate calculations necessary either for
output or for calculating forces in subroutine DIFFUN. The results are placed in
common.

Output Parameters

Common Variables
RS

= positonal and rotational state vector.
1 if Y is a one-dimensional array

e 2 if Y is a two-dimensional array.

= the components along the body axes of the vector
from the center of the subsatellite to the point of
attachment of the wire.

- the spring co nstant of the wire.
= the natural length of the wire.
= the damping coefficient for the spring oscillations.

the product of the gravitat!onal constant and the msss
of the earth.

= the mass of the rigid body.
= the mass of the shuttle.
= the atmospheric density at height HO {gf cm3).
= the height at which the atmospheric density is RO.

tbo fiale height for the atmospheric density.

= the components along the space axes of the vector
from the center of the subsatellite to the point of
attachment of the wire.

= the components along the space axes of the vector
from the point of attachment of the wire on the sub-
satellite to the Shuttle.

= the components along the space axes of the angular
momentum.

= the components along the space axes of the velocity
of the Shuttle minus the velocity of the point of
attachment of the wire on the subsatellite.

Input Parameters

Y
IFLAG

Common Variables
RB

RK
R LO

B'

Ty

	 GM

RM1
RM2
RO
HO
HH

DX, DY, DZ

W

DVX, DVY, DVZ

r
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M	 RL - the, distance between the ends of the wire.
TEN - the elastic force in the wire.
RLP = the time derivative of RL.
FRICT _ the damping force due to the rate of change of RL.
FWMFI =

i

the tension in the wire due to elasticity and damping.
RlBQ - the square of the distance from the center of the

earth to the center of the subsatellite.
R2SQ = the square of the distance from the center of the earth

to the Shuttle.

R i = the square root of R 1 SQ.

R2 = the square root of R29Q.

FGi = the central gravitational force on tho subsatellite
divided by Rl.

FG2 = the central gravitational force on the Shuttle
divided by R2.

r-,	 V1SQ = the square of the velocity of the subsatellite
V2SQ = the square of the velocity of the Shuttle.

Vi = the velocity of the subsatellite.
V2 = the velocity of the Shuttle.
CONSI = the atmospheric drag on the subsatellite divided

by vi.
CONS2 = the atmospheric drag on the Shuttle divided by V2.



III-2.7 SUBROUTINE ANGOUT M M. YI. ZI. TOUT. JSTART. NSTEP

This subroutine prints the angular part of the subsatellite state vector. The
output information is the time, order of the integration polynomial, step number,
Euler angles, a modified set of Euler angles consisting of successive rotations about
the x, y, and z axes, the components of angular momentum along the space axes,
the components of angular momentum about the body axes, the components of angular
velocity about the space axes, and the components of angular velocity about the body axis.

Input Parameters

Z	 - the nine direction cosines giving the orientation of
the body axes with respect to the inertial axes, plus
the three components of the angular velocity with
respect to the body axes.

XI, YI, ZI	 = the principle moments of inertia.
TOUT	 time.
MART	 the order of the polynomial used on the current

integration step.
NSTEP	 = the :step number.

No other subroutines are called by this routine.
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M-2.8 SUDIAOUTIN1,r ROTSTAT tT118TAe PM, PSI, DTIiETA, bPM, DPSI, Y. A)

This subroutine co ►nix► tes the nine direction cosines and three angular velocities

from the Lulor angles and their derivatives. Also computed are the components of

the vector from the center of mass of the satellite, to the point of attachment of the
wire in the inarUal coordinate system.

1►̂t Par ►ems
	 ^t

THVTA	 d.

Pill

PSX ^.
DTHETA

DPlli ► .

DPSI	 *^

ti, ^, and 4) are the Eular singles defining the orientation of the body arcs with

redo►c►t to ti ►e inertial axes. d, ; ^ and ,̂ p :ere the titne derivatives of the Euler angles

- the distance from the center of mass of the rigid
body to the point of attachment of the wire.

it unit vector pointing Bonn they center of mass of
the suusotullito to the point of attachment of the wire.
The components are taken along the body ayes.

nine direction cosines relt►ting the body axesaxes to
the inertial axes, plus the three components of the

Common Variables
RADIUS

RD

Mtlxit Parameters

A

i

angular velocity on the body axes.
a inatrLv e'ontai►iing the translational state vector
Plus the rotational state vector A.

Common 'Va;rtablo
lift	 the vector from the center of mass of the subsatellite

to the point of attachment of the wire. The components	 x
tire along the inertial axes.

a
9

No other subroutines are called by this routine.

I
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