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Abstract

This report consists of a series of papers which concentrate on the
basic problem of understanding the extent to which feedback can alter the
dynamic characteristics (e.g. instability, oscillations) of a control
system, possibly operating in one or more modes (e.g. failure versus non-
failure of one or more components). One problem studied here is to
determine the existence of, and the order q of, a m Xp compensator which
can stabilize a given r-tuple of m Xp plants Gl(s),...,Gr(s) of orders
Myseee,yn . The classical case, r=1, remains one of the most challenging
problems of linear system theory and is studied in several of these papers,
for the case q =0 and the case q 20 and the case q 21, in a geometric
setting, viz. Schubert's calculus of enumerative geometry. This algebraic
geometric approach yields both sufficient and necessary conditions which
improve, sometimes vastly, on the results obtained by more traditiomal
methods. The development of algebraic formulae or numerical algorithms
for finding such a compensator, when it exists, is considered in the context

of Galois Theory and the "homotopy continuation method”.

These geometric methods are also extended to the multimode case, r 21.
Among the results obtained are the assertion that provided r < max(m,p), the
generic r-tuple may be arbitrarily pole-assigned and, a fortiori, stabilized.
This generalizes the only known results, due to Murray-Saeks (m=p=1) and
to Vidyasagar-Viswanadham, which were obtained in the case r =2 and improves
on these results, even when'r =2, by giving an upper bound on the order q
when the condition r €max(m;p). In the case r=1, this implies the celebrated
Brasch-Pearson Theorem, while if min(m,p) =1 both the condition r <max(m,p)

and the estimate on q are sharp.

Subsequent work will be directed toward closing the gap between the
necessary and the sufficient conditiong obtained here, for both the classical
case r =1 and the multimode case r 22, by more sophisticated algebraic geometric
techniques, and towards analyzing the problem of stabilizing a parametefized
family GA(S) cf systems where A is a slowly-varying parameter, not assumed to
be independent of time as in the A€{l,...,r}, representing a degradation of

a: component in the plant Go(s).
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INTRODUCTIONS, NOTATION, AND THE STATEMEHTS OF THE PRCGLINS

This manuscrip® represzrts two of the three lectures which
p

I gave at this Advanced Studv Institute and, for this reaseon, @

- shall give two introductions. (The third lecture is historiczl

and may be found in "Introductory Chapter,” this volume.) In

the first four sections, I shall discuss recent work in algcsirzic

and geometric system theory which centers arcund the cuestion,
"What can be done using state or output fesgback." To Tix the
ideas, it is at least iritiaily sufiicient to consicer a systen

‘0 as being defined by the stats-snace equaticns

x(t) = Fx(t) + Gu{t) y(t) = Hx(%) - (1.1)

*Research partially supported by the NASA-ANES under Grant
ENG-79-09459 and by the NSF under Grant lSG-2265.
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or by the transfer function (the zero initial state Laplace
transform) '

§(x) = T(s)a(s), T(s) = H(sI-F)Te (1.1)"

which relates the_input vector u €U atkw to the corresponding
output y € Y e k', without explicit mention of the (internal
notions of) state. x € X = kP, Thus (1.1)' is an external
description of dJ, as one might see in Ohm's law, where (1.1)
'4s an internal description (i.e., involving states) of =, as
one might see in the non-autonomous differential equations for
” an RLC network being driven by an applied current u(t) and
generating a voltage y(t).

Now, feedback engineering is perhaps the second or third
oldest profession and needs 1ittle introduction. Indeed, any
1ist of well-known examples of feedback systems should {ncluce
the o0i1 lamp of Philon, the water clock of Gaza, Christiaan
Huygens' construction of a regulator for clock mechanisms, and
the centrifugal governor for steam engines, developed by Jares
Watt, followed by a plethora of more sophisticated mocern sys=
tems. In each of these example, some output--or function of
the state--of the system is used to control the evolution of
the state in future time and a rather basic question is to cdatar-
mine how much control over the state one can obtain by feeding
back the output as an input. For a vehicle driven by a stezm
engine, one would like to produce a uniform motion in the venicie
by such a feedback law and this is where the mathematics tegins
to play a role. 1In an often cited paper [34], J. C. Maxwel
linked the intrinsic deviation, of some feedback systems, ¥
uniform motion to the instability of the corresponding diff
ential equations. HNow, a feedback iaw in the linear contex
Just a linear map

K:Y=U

1
om
er-
t

is

and the corresponding closed loop svstem has dynamics given by

x(t) = (F - GKH)x(t) + Gu(t)

y(t) = Hx(t) , (1.2)
or, in external terms, by
T(s)(I + KT(x))™} = N(s)(D(s) + Kn(s))"] (1.2)"

where N(s)D(s)'] is a coprime factorization of T(s) into poly-
nomial matrices. The instability, or rather stability, question
is thus whether
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Xg(K) = det(sI - F + GKH) ' (1.3)

has its roots in the left-half plane. Naturally, the inverse
problem is deeper and more applicable: can one find K so that
(1.3) has it roots in the left-half plane? HMore generally,
can one adjust arbitrarily via output feedback, the natural
frequencies of (1.1)? Since the eigenvalues of F are the
poles of T(s) (provided n is minimal), one refers to this
problem as pole-placement. For the sake of completeness, this
is stated as:

Problem A. Analyzevas explicitly as poSsib]e the algebraic map

Xg : K"

defined by regarding the right hand side of (1.3), via its
coefficients in s, as a point in kM. In particular, is
surjective (pole placement), what are the topological or geo-
metric properties of Xgs OF of image Xo?

In §2, I shall given an exposition of the infinitesimal
analysis of x4, Vviz., a calculation of the Jacobian dx, on

k™ and on a certain submanifold M < k™P, This uses the fact
that x, 1is a polyncmial but, except over algebraically closed
ground ?ie]ds, makes more use of differential calculus than of

algebraic geometry. However, one of the new results is a proof
and sharpening of Kimura's generic pole-placement theorem [29].

This is a simple, geometric proof (taken from [5]) of an honest
output pole-placement theorem under the hypothesis m+ p - 1 2
used by Kimura. The final topic in this section is a classifi-
cation, due to Brockett [3], of the Lie algebras {F,GH}., asso-

ciated to a transfer function T(s) for m=p =1, as well
as a multi-input-output generalization, with application to
Problem A even in the case of time-varying feedback K(t).

In §3, the gecmetric foundation for §4 is developed, the
starting point being the interpretation of graph T(s) as a
curve of m-dimensional subspaces of (™*P; "i.e., as an alge-
braic curve in the Grassmannian variety Grass(m,m+p)--due to
Hermann-Martin. This geometric approach is actually very close
in spirit to Kimura's original proof of this theorem. In this
setting, the degree of the curve so obtained is the intersection
of this curve with a hyperplane, as in Bézout's Theorem, and the
Theorem of Hermann-Martin asserts that the points of one such
intersection are precisely the poles of T(s).

In §4, the output feedback group is brought into play,
whereas in §3 only the identity element is considered. From
this point of view, placing poles by output feedback is the same

n
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as prescribing points of intersection of the curve with a hyper-
plane. This inverse problem in geometry has a long history,

making contact with several basic themes in algebraic gecmetry,

and in this context x; may be regarded as the restriction of

a central projection, about which several important facts are

known. From this "central projection lemma", much in the way

of Probiem A can be deduced, containing in particular some *
rather surprising results--especially in view of negative results
previously obtained. For example, although over T all is well,

Willems and Hesselink [45] have shown that over R, for m=p= ¥

2 and n =4, for generic o it is a fact that x, misses an
open set. Using the Schubert calculus in the case mp = n
Brockett and the author [5] have shown that, for m=2, p =

2" -1 (a Mersenne number), x, 1is generically onto (over R),
although these may be the only such cases (up to symmetries and
excluding the scalar cases).

In the remaining sections, I consider linear systems depend-
ifng on parameters and the corresponding questions of pole place-
ment and stabilization by state feedback. Such parameter depend-
ence arises quite often, through dependence on physical param-
eters such as altitude or attitude of an aircraft or as the value
of a resistor, etc. In these cases, (F,G,H) have entries in
an appropriate ring of functions on the parameter space A and
conversely linear systems defined over rings can be vieved as
Tinear systems depending on parameters--in a slightly more gen-
eral sense. Two remarkable examples are: first, the represen-
tation of linz2ar delay-differential systems, via convolution
with finite measures on R, as linear systems defined over a
polynomial ving [27] and second, the representation of half-plane
digital filters as linear systems defined over 2%, also due to
Kamen [28]. Thus, one may pose the problem of pole-placement
o:er 2 ring R, commutative with identity, such as a ring of func-
tions.

In section 5, I review some of the kncwn positive results,
starting with Morse's theorem for P.I.D.'s, a result of the
author's for very special systems defined over polynomial rings
(or, more generally, projective free rings), and in §6 turn to "
the recent counterexamples to the general question for certain

rings, linking the arithmetic aspects of R with pole-placement. Ly

In section 7, I turn to the more modest question, which is
however sufficient for applications:

Problem B. If (F(A),G(r)) is defined over an algebra of func-
tions and is stabilizable for each fixed A, does there exist
K()A) defined over the same algebra, such that the closed loop
system (1.2) is stable for each A?

o ARSI T T
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In that section, I use a lemma of D. Delchamps' on smooth-
ness of solutions to a smooth family of Riccati equations to
obtain an affirmatﬁv% answer to Problem B in case wvhere

", k 2 0, and cuntrcllable for each ).

In closing, I would like to apologize for having omitted,
primarily for reasons of time and space, recent work which might

,belong under such a title. Some of the work by Rosenbrock,

Fuhrmann, et al. on dynamic conpensation is reported in their
Jectures, while related work has recently appeared in the thesis
of T. Djaferis [15], Djaferis and Mitter [35], and in Emre [16].
It is my intention to report elsewhere on the work of Postle-
thwaite-MacFarlane [37]), et al., which develops roct-locus
techniques for square multi-input, multi-output systems with
respect to scalar gain K = AI., One shculd also mention recent
work by Sastry-Desocer [43], which evaluates the asymptotic
values of the unbounded root loci, for generic systems.

§2. KIMURA'S THEORE!!, INFINITESIMAL ANALYSIS OF Xg? LIE
ALGEBRAIC INVARIANTS OF xc.

———

Now, in order to compute the rank of

dx:To(K™") = TX@, where x = det(sl - F),

it is efficient to change coordinates by use of the frequency

domain. Thus, if N(s)D(s)'] = T(s) = H(sI-F)'1G is a coprime
factorization of the transfer function T(s) and if -K:i¥ = U
is the output gain, the closed loop transfer function is as given

in (1.2)':
1K(s) = T(s)(1-KkT(s))7T = N(s)(D(s) - kn(s))™T .
(2.0)
Thus, to solve p(s) = xU(K). with K€M a subset of
matrices, is to solve for rational functions

p(s)/det D(s) = det(I-KT(s)), (2.1)

with K € M. With this change of coordinates on 5?. X

takes the form: ¢

Keo 14 1f:]ci(-m(s)) . (2.2)

where the ci(R) are the characteristic coefficients of R.
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Ignoring the constant term, Xg is given to first order as
xu(K) = tr(-KT(s)) = <=K,T(s)>

and, since T(s) 1s rational, the Jacobian is given by the
formula ‘

dxgiK) = (<=K, HF'G>)1,o . ©(2.3)

From (2.3) one recovers the calculation

dxo 18 surjective whenever the Jankel matrices
HG, HFGye.s HF"" 16 are independent,

which (since the Hankel matrices are vectors in Kk p) refines
the necessary condition, mp 2 n, for surjectivity of ..
Indeed, R. Hermann and C. Martin combined this calculation with
the dom1nant morphism theorem to obtain, for k = {,

Theorem ([23]). If mp 2 n, then for almost all (F,G,H) <Ze
tmage of Xg 18 open and dense.

Several remarks are in order. First, in any such theorez,
the "almost all (F,G,H)" hypothesis is necessary. Above, the
affine algebraic set which must be excluded is contajned in the
variety defined by the vanishing_ of all minors of order n of
the mpxn matrix (HG,...,HF”'lﬁ) But this is as it should
be, for in general such conditions must in particular excluce
systems which are equivalent to lower order systems, e. g.,
rank G =1, where image Xg is a line. Second, it is in fact

true that, for almost all (F,G,H). Xg is closed. And finally,

over R, J. Millems and ¥. Hesselink [45] have proved that, Tor
me=p =2, for almost all (F,G,H), image Xg is not dense,

which illustrates the absence of the "fundanental openness
principle" over R,

There is, however, a similar result over R, under stroncer
hypothesis, due to H, Kimura.

Theorem ([29]) If m+p-12n, then for generic (F,G,H)
tmage x0 18 open and dense. :

In the latter part of this lecture, I shall turn to Kirmura's
proof, which is quite long. Here, I shall follow a geometric
line of reasoning [5] starting from (2.3). First of a]l,.notice
that m+ p -1 = dim N, where McRWP is the submanifold of
rank 1 matr1ces. Surprms1no1y, it's enough to restrict Xg to
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M and we wish to compute dxa acting on TKM' In (2.3),
this has the effect of restricting K to be of the form
(x+e)(y+s), for x €R™ - {0}, y € RP - {0}, K = xy runk 1,
and we therefore consider the vectors

t - i n-1 .

dx xjyj) (yjHF ij)i=0 (2.4)

where F = F + GKH. As before, one sees that, if m+p-12n,
then generically in (F,G,H) there exists matrices *xjyj.

J =1,...,n such that the vectors (2.4) are linearly independert.
In particular, Xq is surjective to first order and hence, by

the implicit function theorem, image Xg contains an open set,
Moreover, since ci(KT(s)) =0 for § 22 whenever K has rank
one, X, is equal, along M, to 1 + dxo and is therefore sur-
Jjective! MNote that, by combining this observation with (2.1)-
(2.2), one can develop an algorithm for the solution of (2.1).
More recently, H. Kimura [30] has improved the bound to
m+p+ Ky = 1 2 n, where Ky is the largest Kronecker inZsx,
subject to the constraint m 2 u, (the largest observability
index), p 2 Ky This, too, has an amplification to a pole-

"placement theorem.

Now, as an example of an invariant of Xg? which plays a

role in the output feedback problem but which is not captured
by our previous calculations, we consider a Lie algebra deter-
mined by o. Explicitly, by choosing a minimal realizaticn
(F,G,H) of a scalar transfer function T(s), one may form
Z, = {F,GH}L--the Lie subalgebra of g{n, R) generated by

F and GH. In this way, one obtains not only .QL but also a
representation, 12 gi(n, R), and by the state-space isc-

movphism thaorem, any other realization (F',G',H') give rise
to an equivalent representation p'. Of course, ;2; is also

invariant under output feedback, since F + KGH dis contained

_1n .2% for any scalar K, and this accounts for its importance

in the output feedback problem. And symmetries in the represen-
tation pr L - g2(n, R) reflect symmetries in the closed-lccp

characteristic equation. For example, if T(s) = 1/52. then
it's not hard to see that o2 = s2(2, R) = sp(1, R), which
reflects the equivalent facts that tr(F + KGH) = 0, for all
K, and that the closed-loop characteristic polynomial is always
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an even function. These ideas were developed by R. Brockait in
[3), [6] leading to his classification of those <z, whict can
occur:

Theorem ([3]). The following is a list of the £y which emn
ocour together with the corresponding syrmetry propertzes-

Ly symmetries
1. s hR T(s) = T(-s)

2. sp %.R + R | T(s) = T(-s+a), for some a

3. s2(n, W) tr(F) = tr(GH) = 0, and none
of the above hold

4. g2(n, R) none of the above hold

One should also note that this classification gives the
same information for time-varying gains K(t). Now, the multi-
variable case is handled, in part, by a reduct1on to the sczaiar
case by a Temma (see [2]) reminiscent of Heymann's Lemma. Thet
is, for (F,G,H) minimal, there exists a gain K and input e&nd
output channels g and h such that (F + GKH,g,h) is a
minimal triple. And, if one defines £, to be the smallest Lie

subalgebra of g2(n, R) containing {F + GKH:K arbitrary},
this reduction enables one to prove:

Theorem ([4]). If rank T(s) 22, then L, is either

st(n, R) or g&(n, R), depending on the venishing of trf
and tr(HG),

§3. BEZOUT'S THEOREM, THE THECREM OF HERMANN-MARTIN.

There are important external symmetries too, which arise as
subgroups of the (output) feedback group. Now, as far as I am
aware, the applications of algebraic geometry to linear systan
theory arise from Laplace transform techniques, from the exist-
ence of algebraic groups actions in the form of symmetry groucs,
and from the interrelation between these 2 points of view.

Indeed, perhaps one of the least understood contributivns in

the Hermann-Martin series is the recognition of the Laplace Trans-
form as an intertwining map between the actions of the state and
output feedback groups at the state-space level and the classical
actions of these groups as linear fractional transformations. This
This observation is the starting point for our global analysis of

oy, .

O
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T fix the ideas, I shall begin withk a review of Kimura's
proo; of his theorem, in the case m =1, p = 2 » n, Here,
one has

q](s) q!(s)
p(s) qy(s) H(s)
T(s) = » with | ¢ | = Jaeeo (3.1)
qz(s) """ D(s) '
p(s) p(s)

a coprime factorization of T(s). If A]  d Az are complex num-
bers, then the method of proof is to select a non-zero vector
from each of the lines

N(Ai)

Geometrically, one has the set-up in Fig. 3.1 where we cenote
the line through

N(A)
D(2)
by T(X). This is as it should be, for a choice of coprime

Tactors is only unique up to multiplication by a non-zero scalar,
I claim that if one takes the plan 7 spanned by T(k1) and

T(Az). then w = graph(-K), where K 1is a gain for which the
closed-loop poles equals {A],Az}. Notice that to say {A],Az}
is the polar set of T is to say A],Az are the roots of p
in (3.1), Thus, in this case, the Tinear T(Ai) Tie in the

Y-plane (Fig. 3.1) and so K = 0, This, however, is even far
from explaining the minus sign, which occurs for groug-
theoretic reasons. Since the geometry of lines in (3 is at
issue, it's more efficient to rephrase the observation made
above in terms of projective geometry. That is, the transfer
function gives a map,

T:t* - P2,

of the extended complex line (T(=) = U) to the projective .
plane. The lines in the Y-plane form the projective line P',

emuedded in 'Pz. while T(C*) 1is a curve in Pz. Moreover,
since p has degree 2, T 1is a curve of degree 2 and intersects
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the line P] twice, as it should according to Bézout's Theorem
(see Fig. 3.2).

4 U
‘T(Az)
¥
T(x)
<7 > Y
- ~ <
\v\\ -

Figure 3.1
the projec- _
tive plane ! T(T*)

Figure 3.2 4

In fact, the same reasoning shows that, for any such T w1th n f
arbitrary, the MeMillan degree of T equals the degree o] tre
curve T, with

“Nr(e*) nP') = sing(T) . (3.2)

If we now choose any other plane Y] in ¢3. complementary to U,
then Y, determines another line in P° and by Bézout's Theorem
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(or by a 1{ittle algebra), T(C*) intersects this line in n-
points. On the other hand, such a plane Y1 is the graph of

a linear map -K:Y <+ U (and conversely) and from this point of
view, Bézout's Theorem asserts that tne McMillan degree is pre-
served under output feedback, assuming the cliaim made above.
However, the claim is now fairly easy to see. For, any K may
be regarded as an element of GL(U © Y) via the representation,

N
p:K = €EGLU®Y) , (3.3)
K IU

and GL(U@ Y) acts on Pz (the points in 'P2 regarded as
lines in U® Y). One therefore has two possibly distinct
actions of K on T: the first is the standard output feecback
transformation T - TK given in (1.2)', and the second is

obtained by composing the map T:I* 4‘P2 with the classical

action pKﬂPz »'Pz. As one can see, pK 1leaves the line U
fixed and therefore pKoT s a rational function, vanishing &t
o; {.e., pKoT 1is a transfer function. Explicitly,.by combin-
ing (3.3) with (1.2)' one has

Iy O} N K
pKoT = = =T", (3.4)
K IU 0 D+KN

In particular, one may now compute (3.2) acted on by K in two
ways:

sing(TX) = (7)1 (t¥(es) n P! = 171 (T(L*) n (k) PY)
(3.5)

where (-K)'P1 is the linear 'P](= the plane Y in E3) acted

on by p(-K) (= graph of -XK:Y-=U in EB)! Thus, in order tc
compute the closed loop poles, sing(TK), one can alternatively
keep the curve T (see Fig. 3.2) fixed and, instead, move ¥'
through the inverse "rotation" =K.

This proves the claim but in a more general setting, viz.
in (3.3) and (3.4) U and Y could just as well be an m-plane
and a p-plane, with GL(U ® Y) acting as linear transformaticn
on the space of m-planes = Grass(m,U & Y). In this settineg, the
generalization of (3.2) is due to R. Hermann and C. Martin, who

interpreted the McMillan degree as an intersection number ([2<]).

- The codimension 1 s¥bvariety of Grass&m.u +Y) which plays tne
role of the line P’ in the plane P¢ is the Schubert variety

RIS
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of m-planes:
o(¥) = (i n Y2 (0)) . (3.6)

That is, W € o(Y) if, and only if, W meets Y 1in at least
a 1ine. The beautiful (and useful for our purposes) thecrem of

. . R, Hermann-C., Martin is

THT(T*) oY) = sing(T) . (3.7)
[Alternatively, the extended plane C* 1is the Riemann sphere
Sz(or Pl) and

[T(P1)] € nz(Grass(m,U @Y)=Z

corresponds to the Mctillan degree, vwhere the isomorphism is
canonical, by virtue of the Hurewicz isomorphism and a choice of
complex structure.] As before we can act on (3.6) with K, in
two ways, to obtain

T (T(8%) n o(-kY)) = sing(T¥). C (3

Now, as an jllustration of these geometric ideas and in
order to return to some of Kimura's algebraic techniques, I shall
prove a little pole-placement theorem for state-feedback, i.e.,
for the case p = n. [This combinatorial theorem is a special
case of a theorem of Rado ([ 38]) which also generalizes Fh.
Hall's Theorem. Moreover, an elegant application of Rado's
Theorem to pole-placement appears, for the first time 1in Hautus's
proof of pole-assignment by state feedback ([191), published in
1970, I was mistaken in my lectures in ascribing it solaly to
Kimura.] VWhat I wish to give i35 a proof of the ‘onham-Simon-
Mitter-Heymann-Kalman Theorem for distinct poles {A],...,kn}.

The principal lemma in [29] is in fact a celebrated theorem in
combinatorics, in disguise. Kimura calls a collection
V1....,Vn, of subspaces of a vector space V, normal just in

case one can select vectors vj € Vi such that {v]....,vn} is

independent. The lemma asserts that a collection of subspaces

is normal if, and only if, the (general position) condition (*)
is satisfied:

for each selection Vi seees¥. Of distinct V.'s,
1 k 1
dim (vi Fa b, )zk ) (*):
1 'k

Notice, however, that (*) is precisely the diversity condition
in Ph. HHall's theorem on distinct representatives, modified to

4
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include the set (or subspace) function dim(-)--which, after all,
dozcs satisfy a form of the inclusion-exclusion principie.

In order to apply this result to multivariable state-feedback
consider, for Apseeesdn distinct, the subspaces T(Al).....T(An)
of U® X, where T(s) = (sI-F)'TG. By Lemma 2 of [29],

dim(T(Ai]) + s.0 t T(Aik)) 2 zk "

where Y = dim sp(G.FG,....Fk'IG) are the dual Kronecker
ifndices and hence 2k 2 k. Following Kimura, we may select inde-
pendent vectors v, € T(Ai) and as before define the gain K by
the equation

gr(K) = sp{v]....,vn} clU®dx .
Then,
n
det(sl - F+GK) = T (s'-Ai) .

i=] ——
And if {A].....An} is self-conjugate, gr(K) can be taker to
be self-conjugate.

§4. GLOBAL ANALYSIS OF Xq? THE CENTRAL PROJECTION LEM-A, POLE
PLACEMENT BY OUTPUT FEEDBACK OVER R AND €.

Theorem. If mp < n, then generically Xg 18 a proper map, In
particular, over U (or any algebraically closed field) image
Xg 18 a subvariety of t". over R, Xy extends to a mop
)-(G:Smp - " of spheres and image Xg <8 Euclideecn closel in
RA,

If mp > n, then Xg is no longer proper--~i.e., C ='5?
a compact set implies x;1(c) :.Ewp is compact, although one can
still prove that image x  is (generically) closed.

Proof. The proof begins with a study of the map
T:0* = Grass(m,u ®Y) .

Now, GL(U® Y) acts transitively on m-planes in U® Y and
so parameterizes Grass{m,U ® Y), i.e., there is a map

FI— =
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w:GL(U ® Y) - Grass(m,U @ Y)
m:g - gU ;
corresponding to the choice of the m-plane U. w, however, is
an overparameterization since there are many g's which fix .
In fact, in terms of the decomposition
™Pa.yey ,
the subgroup of g's which fix U has the form,
GL(Y) )
g € = ¥, (4.1)
Hom(Y,U) GL(U)

the output feedback group! By dividing out by &, we get an
honest (i.e., 1-1) parameterization of Grass(m,U@®Y),

Grass{m,U + Y) «GL(U @ Y)/&F

This extends the picture in (3.4) quite a bit. In fact, the main
idea of the proof is to extend Xg by evaluating the left-hand

side of (3.7) for all g € GL(U ® Y); that is, we keep T fixed,
as a curve in Grass(m,UeB Y), and intersect it will all oc(gY),
for g € GL(U ®@Y)., HNow, when g € &, gY is complementary to
U and is, in fact the graph of some linear map K:Y = U, In
particular, for such a g :

TN T(8*) n o(gY)) = sing T3 = spec(F-GKH)  (4.2)
is an unordered set {A],....An} of points in (C* =-P1. That is

{A].....An} iiP1 X oeaX 1’1/5n «s'P". the so-called symmetric oro-

duct. For g € &, each Ai is finite, by virtue of (&.2), and

{3\-‘.....%"} € In an
Here lt"/sn o En, where the isomorphism is simply

{A] ’...'An} = (c‘i(x))ri‘:]

with ¢y the elementary symmetric functions. In summary, we have ;

our old picture in this new setting,

xgio(g¥) = r"(T(a*) no(gV) et"eP" ,
via

g » sing(1% ) = (cy(F + KDY,

st
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By conservation of difficulty, one needs more than this restate-
ment of the problem and it is at this point that we consider
o(gY) for any g € GL(U @ Y) or, what is the same o(Y') for
a p-plane Y' not necessarily complementary to U.

Lemma A, o(Y') either contains T8* or intersects it (eouwniing
rmultiplicity) in exzactly n points, In the latier ccse, such =
point is infinite if, and only if, Y' <8 not complemeniary to

Proof. The first part of the lemma is an elementary applica-
tion of value distribution theory and can be found in Charn,
“Complex Manifolds with Potential Theory," D. van Nostrand uncasr
the topic: "Holomorphic Curves in a Grassmannian.," The second
part is, in fact, the condition U € o(Y') and follows from tne
definition (3.6).

To facilitate the discussion, I shall refer to a p-nlane Y
as a generalized feedback (law) while a p-plane Y' cemplermzntary
to U will be referred to as a classical feedback (law). Tne
idea is therefore to extend Xg in (4.3) to all "generalized

feedbacks," i.e., to all points in the dual Grassr:innian,
Grass(p,U @ Y). That is, we wish to define

YO:Grass(p,U @Y)-Pp" (4.4)
via ' - h

Y e T noo(Y) .
Remark. Consider the scalar case and restrict attercion to real

gains K. Then, the real Grassmannian is the space of lines in
'Rz. i.e., the circle S] and

X,:8' - P"
is precisely the root-locus map!

Now the fact that x_ 1is defined at = € S' is just the
fact that xc(w) = {zeros of T(s)}. For m,p arbitrary the

recent formula of Kailath et al. [25], which computes the differ-
ence between the number of closed loop poles of T(s) ard the
number of open-loop zeroes in terms of the left and right Kroneckar
indices of T(s), shows that there may not be enough open locd
zeroes to account for the asymptotic root loci xo(K) as

K-og Smp’ although this may be the case if m=p. In the
Grassmannian compactification K = =  takes on an entirely new
meaning, as «_ is replaced by the whole subvariety
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o(U) = Grass(p,U ® Y). This gives much more freedom in the manner
in which K ‘“becomes infinite (and this is important for potential
applications, allowing for various channels in the gain to grow

at various rates) and Lemma B shows that as K "becomes infinite"
the root locus xo(K) (still) apporaches an n-tuple of points in

the extended complex plane, as in the classical case, for generic
systems provided mp s n. The case mp s n 1is illustrated below

1] gr(Kn)
gr(K,)

gr(Ki) -+ a p-plane Y] not

conplementary to U

—

T(T*)

Grass(m,U ® Y)

Figure 4.1 .Depicting Asymptotic Root Loci as
+  Points of Intersection

-~

l:

seprrionr

ST
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The explicit obstruction to this asymptotic extension is in fact

explained in the lemma, there can exist p-planes Y' such that

g(Y;) > T¢*, Indeed, if mp > n, examples exist in great pro-
usion.

Lemma B. If mp <'n, then for almost all (F,G,H), o(Y') n T(E*) i
tn n points, for all p-planes Y'.

Proof. First of all, the set of (F,G,H) for which there
exists a Y' with o(Y') o T(Z*) is closed in the variety of
all (F,G,H). In fact, if [(F,G,H)] 1is the correspending '

point in the moduli space I then the subset

n
msp
n

Ve zm’p x Gras:e,(p.U @yY)
defined via

V= {([F,G,H],Y"):o(Y"') > T(T*)}

is a subvariety. Since Grass(p,U® Y) is projective (compact)
n

) . e s . N

and zm,p is quasi-projective ([13],[22]) My zm,p x

Grass(p,U @ Y) - 2; 0 is closed. In particular, w](v) is
n

closed in In p? but w1(V) is precisely the variety .we wish
9

to delete in the lemma. To show that, if mp < n, w](v) is a

proper subvariety, one may appeal to the duality

Grass(m,U ® Y) « Grass{p,U @ Y) ,

which is related to the duality between inputs and outputs. By
Lemma A, to say o(Y') = T(T*) 1s to say in particular

TO)see s T), T(=) € oY) (4.5)

for A, distinct, finite points. However, to say T(A) € o(Y')

in Grass(m,U @ Y) s to say Y' € o{T(XA)) in Grass(p,ue®Y), o
by the symmetry of the definition (3.6). But o(T(\)) 1is codimen-

sion 1 in Grass(p,U ® Y) and hence of dimension mp-1. And ‘
(4.5) is the assertion

Y' € iE‘O(T(Ai)) n o(T(=)) .

Since the Schubert var%eties o are hyperplane sections via tha..
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Pllicker imbedding, dim nf,] c(Ui) 2mp - & (this is not true
for arbitrary varieties, see Section I of this introductory
chapter). On the other hand, generically one has dim “%31 G(Ui)
Smp - 2. Therefore Y' must 1ie, generically, on a subvariety

. _of dimension mp - (n+1), which is impossible unless mp > n, =&

It is worth remarking that this gives an independent proof
that, in case mp > n, Xg is generically almost onto, assuming

the field is algebraically closed. Indeed, using an output feed-
back invariant version of (2.3) one can give explicitly, the equa-
tions defining the generic properly given above.

Returning to the proof of the theorem, by our lermata, we
can generically extend the map Xg to the root-locus map

Ya:Grass(p,U ®Y)-P" .

In particular, i; is a proper map and by the second part of
Lemma A, Xg is also proper, i.e., Since -

image x = image i; ne" o, (4.6)

Furthermore, since the real Grassmannian is canonically imbedded
in the complex Grassmannian as a compact submanifold, Xq remains

proper over R. Since the f£-sphere is the 1-point compactificaticn
of 'Rz, Xg extends to a map of spheres, And, by virtue of

(4.6), image Xg is a subvariety of t" and its real points form
a closed subspace of r". X

In case mp > n, one cannot extend Xc to the root-locus

map as above, ifowever, one can replace the Grassmannian by the
closure of the graeph of the rational function Xg viz.

Xo = 9raph x; < Grass(p,u @ ¥) x P .

And cne replaces the map i;
tor,

by the proejction onto the 2nd fac-
— N
TaiXy P .
The analog of (4.6) still holds, although one must work a bit

harder. In this case, one may still deduce the Theorem, excent
for the statement that Xg is proper. This no longer is valid,

¥

i

st et
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as k;](p) is a subvariety of positive dimension in affine space
and therefore admits unbounded analytic functions.

Remarks. Both cases can be treated in a more unified fashion,
but relying on slightly more sophisticated ideas. Denoted by P

. . the Pllicker imbedding

P:Grass(m,U ® Y) -o‘PN

of the Grassmannian and suppose for simplicity that

{x ,....A } = Sing T, for a transfer function T:PT-oGrass(m,ueY)
then T(A ) are distinct'points in Grass(m U®Y) and hence ;%
are the points v, = P(T(x )) in 'P By duality, each peint V,
corresponds to 11near functiona] Ly on EN 1 and hence to a
hyperplane H1 in ‘PN the dual proJective space. Finally,
denote by H_ ., (and Ln+1) the hyperplane (and functional) corre-
sponding to the point P(G(=)) and by B, the variety

n+l N —
B= n Hi in P .
=]

F011owang Lemma A, we consider the central projection u1th base
locus B,

ol

P - B~Pn,

defined via

¢(X) = [Li(x)] » in homogeneous coordinates.

Restricted to S(Grass(p,u ®Y)) - S(Grass(p.U @Y)) n B,
one recovers

x:Grass(p,U ® Y) - B n Grass(p,U® Y) - P" ,

as a central projection, with Lerma B asserting that in the cor-
rect dimension range x has no base lower on Grass(p,U ® Y).
This admits a particularly nice exploitation of Schubert calculus,
especially in the case mp = n (see [5]). For in that case,
generically

x:Grass(p,U ® Y) -P"

is globally defined and dim Grass(P,U + Y) = mp = n = dimP".
The degree of x 1is the degree of the subvariety :

‘;. Iy
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a(Grass(p.U + 7)) ={;N.'
:;nge x 1s a central projection, and this is well-known ([31])
e

11 21 *** (p-1)! !
m! {m+1)1 Eg. 2m+£T$}g . (4.7)

deg x =

Briefly, what this entails is first the observation that the sys-
tem of n equations in mp unknowns,

x(K) = p(s) ,

can be expressed as an intersection of n hypersurfaces in mp
space and these hypersurfaces are well-studied, That(ii, regard-
ing p, via its roots, as a point (Ays...,r ) €PT)M, one

can view p as R HA of n hyperplanes, HA denoting the
= i
hyperplane of (A1.....An) such that A, =}, for some 1.

In this setting, x'1(p) has th2 form

——

q, " N n
x (0 H )= n x" (H )= n ofT(s,))
i=1 % i=1 i i=1

provided Ay = T(si) lies on the curve TGP]). Now, the Schubert

calculus enables one to express such intersections in terms of
basic, or Schubert, varieties. In particular, if mp = n then
a repeated use of one such expression, Pieri's formula, allows us
to count the number of points in

]
n U(T(si))a
i=1

counting multiplicities, as deg x in (4.7). Thus, the main point
of all this is that the output feedback map as a system of equa-
tions is actually a well-studied, ciassical system of equaticns--
about which much is known (see [31]). As a corollary, one can
show that when deg x is odd the map

x:Grass R(p,U ®Y) »RP"

is surjective, hence we can place poles with real gains! It has
been shown ([11) that deg x is odd if,andonly if, either
min(m,p) =1 or min(m,p) = 2 and max(m,p) = 2"-1, a Mersenne
number. ‘

Theorem ([5]). Assume mp = n. It is possible generically in
0 to place arny self-conjugate set of poles by real output reed-
back provided either min(m,p) =1 or min(m,p) = 2 and

et e _
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max(m,p) = 2"-1.

We note that Willems and Hesselink ([451) have ihown that,
generically in o, in Xy misses an open set in R%, if m =

P = 2. This is in harmony with our result but whether the sur-
prisingly combinatorial conditions in this theorem are necessary
is at present an open question. On the more positive side, exten-
sfons and corollaries of the central projection lemma give rise
to sufficient conditions for generic stabilizability in the more
general setting mp 2 n. These take the form of inequalities

cm,p 2n

where (:m'p is a function of m and p. These are, however,
too complicated to give here.

§5. POLE PLACEMENT OVER RINGS, SOME POSITIVE RESULTS: HMCRSE'S
THEOREM, AND FEEDBACK INVARIANTS

In this section and in the last two, I shall be concerned
with the general question of what can be done, particularly in
the way of stabilizability and pole-placement, with state Teed-
back where the coefficients of the system lie in a commutative
ring R with 1. It is very easy to motivate the StuGy C: $-23i~-
Tizability of several classes of systems defined over rings znd
this has, in turn, motivated the study of general pole-assignzbii-
ity questions over an arbitrary R. This route to stabilizebiiity
has the potential advantage (at least over Noetherian R) of pro-
viding finite procedures for obtaining a desired gain. ilcwever,
it is fair to say that, at this point in time, general pole-
assignability questions are, in all honesty, primarily mathemati-
cal questions about the algeliraic structure of dynamical systers,
and the reader who wishes to may skip to §7, which deals with the
more modest question of stabilizability. On the other hand,
pole-assignability questions over a ring are of theoreticaj inter-
est in their own right and, as recent work has shown, such cues-
tions are much harder than anyone had first suspected--even the
elementary examples involve non-trivial topological and arithTetic
obstructions. We begin with a quick review of the main problems
and motivating examples, for the realization theory of such sys-
tems we should refer to Professor Rouchaleau's lectures ([01).

R is a commutative ring with 1, X a:R(n) and U = R(m)
are free R-modules. It is meaningful to distinguish between two
verions of the question: First, the problem of solving the sys-
tem of equations, for K € HomR(X.U). -

det(sI-F-GK) = p(s) , p(s) € Rls) monic‘of(ge?) n,
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.

where F:X =+ X, G:U«» X are fixed, 1s referred to as coefficient
assignability (over R). Second, if

n
p(s) = 1r_l1(s-r1)

with ry € R, then to solve 5.1 for K is to solve a problem
of pole, or zero, assignability over R.

In the general situation, one may think of (X,U,F,G) as
the data defining the discrete-time sys%em,

x(t+1) = Fx(t) + Gu(t) . (5.2)

On the other hand, in specific situations, this data may recresent

continuous~-time systems. Explicitly, if one considers a con»r011ef
heat equation

u

T Au + f (*)

on the n-torus T". then it is rather natural {and frequently
done) todiscretize (*) in the spatial variable relative to a grid
in T, obtaining a "lumped approximation.," If one chooses tha
grid Gl of points of order 2 on T, then (*) reduces to 2
1inear control system with coefficients in the group algebra
"](GL) of the group G, cT" (see [7]).

One important class of eﬁamples is the class of systams depend-
1ng on parameters, say in a C"-fashion,

%(t) = F(Mx(t) + G(A)u(t), r€UcR (5.2)"
where ) 1is the value of a resistor, or an altitute or attituce,
Another class of examples arises in the algebraic theory of delay-
differential systems, where a system,

k(t) = Fex(t) + Gxu(t) , (s.2)"

is regarded as a system defined over a ring of convolution opera-
tors ?[24],[36]). Explicitly, consider the system

x(t) = Fox(f) + F]x(t-l) + Gu(t) . © (5.3)
Introducing the convolution ojierator,

(em)(t) = x(t-1)

»

S ey
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© T R(t) = F(8)*x(t) + Gwu(t) (5.3)"

‘where F = Fo + Fls {s defined over R = R[], as is G. More

generally, a delay-differential system, involving only the com-
mensurate delays by 1,2,... seconds, may be regarded as a system

2(t) = F(8)»x(t) + G(&)wu(t) o (5.4)

defined over R = R[8]. The non-commensurate case, of course,
leads to a change of scalars R thdl.....GN].

In both of these latter cases, it is important to know
whether there exists a gain K, preferably defined over R,
such that the closed loop system (F+GK,G) is asymptotically
stable in an appropriate functional analytic sense. In the
first case, since ideally K ought to depend on the system
(F,6), it is clear that if (F(A)kG(A)) is Ck for 0 sk zu,
in A€U then K ought to be C* in A as welly i.e., K
ought to be defined over the ring R = CK(U)., Now, in the second
case, to ask that K be defined over R -'R[51,....6N] is

natural from the point of view that K should be constructibie
from the same components as the system (F,G). And, if one can
place the poles of (F,G) over R, then for each ¢ > 0,3K
defin?d over R such that (F+GK,G) exponentially stable
(in L') with order ¢ ([27), Theorem 8). On the other hand, one
should remark that, especially in light of §6, the functicnal
approach has been far more successful ([14),[32]1) in obtaining
pole-placement results, at the expense of using more general
operators K (eg. convolution with continuous measures).

Now, motivated by work of A. S. Morse ([36]) on delay~
differential systems, one is led to the

Definition 5.1. Tha system o = {F,G), derfined over R, <s
reachable ovér R jusi in ocuse the conirolladility operator

€= (B.AB,...) i&% U= X (5.5)

i8 surjectiva.

As observed in [44), if o {s coefficient assignable, then
o 1s reachable. To see this, setting max(R) = M:M a maximal
ideal of R}, recall (see Introductory Chapter) that € 1is sur-
Jjective if, and only if,

c:iE% U~ X mod(M)

-




" 24

l

ORIGINAL PAGE IS
OF POOR QUALITY

is surjective for all M € max(R). For o defined over R,
denote by o(M) the system (F,G) over the field R/M, obtained
by reducing (X,U,F,G) modulo M € max(R). MNow, if o 1is coef-
ficient assignable over R, then o(M) 1is coefficient assignable
over R/M and therefore reachable over R/M for any M € max(R),
as we wished to show, Similarly, zero-assignability implies

‘reachability and the converse, for R a P.I.D., is due to

A. S. Morse.

Theorem 5.2 ([36]) 4 recchzble system o = (F,G), defined over
Xx), 18 zero assignable.

Indeed, Morse's proof applies to reachable systems defined
over a P.I.0. and, in this setting, is the best result know at
present.

In order to study the coefficient assignability question
over R, it is useful to bring in the group of symmetries for
state feedback and the Rosenbrock pencil. Explicitly, consider
the pencil of equations

sx{x) = Fx(s) * Gu(s) ~—  (5.6)

where x(s) = ins‘, u(s) = Zuis’, are polynomial "vectors"

with coeffieicnets in the modules X,U, respectively. Thus, the
pencil (5.6) is a "formal Laplace transform" of (5.2) and, once
again, this transform intertwines the action on systems of tne
state feedback group with a classical action. It is more precis2
to regard x(s) as an element of the R[s] module X{s]xX &Zis!
and u(s) as an element of U[s]. Then, the Rosenbrock pencil
takes the form

R:(X ® U)[s] -» X[s] ,
(x(s),u(s)) = (Fx(s) - sIx(s) + Gu(s)) , (5.7)

and R is surjective if, and only if, (F,3) is reachable over
R. In this case, we are led to the exact sequence,

O~ kerR= (X®U){s] = X[s]=0, (5.8)

where the submodule ker R 1is, at least formally, the Laplace
transform of solutions to (5.2) with zero initial data. ilow,

Just as in the case R = k, one may show that the strict eauiva-
lence of 2 such pencils jﬂ and RZ’ in the sense of linear alge=-

bra, implies the equivalence (under state feedback) of the systems
9 and Tpe That is, to say 'R] -R2 is to say there exists

C:(X ® U)[s) = (X ® U)[s)

-




e .

25

ORIGINAL PAGE IS
--OF POOR QUALITY

* and D:X[s] - X[s] ,
fnvertible maps of R[sl-modules, such that

DR]C ..RZ » (509)
and such that C,D are independent of s (i.e. extended from R-

module maps). Since 'R] (and 'Rz) has block diagonal form, it

follows from comparing degrees (with respect to s) in (5.9)
that C decomposes, with respect to (X ® U)[s] = X(s] @ Uls],

as
L
C= [ 3 ] (5.10)

where B € GL(U) and K € Hom(X,U). 1In particu]a}, B,D, and K
give the desired equivalence of % and o, modulo the state

feedback group J%(R). Conversely, this familiar triangular
matrix representation of ‘ﬁg(R) shows that an equivalence fiod
JE(R) induces a strict equivalence of R, with R, “(see [26]).
This is summarized jn the classical and well-known proposition:
Theorem 5.3 Zhe Rosenbrock peneil R of 0, up to stric:

equivalence, is a corplete invariant for © modulo the sizt
feedback group FS(R).

~ Now, over a field, Kronacker has given a classification
for matrix pencils in terms of the degrees of minimal basis vec-
tors for the submoduie kerRc (X ® U)[s]. These degrees consti-
tute a partition

m
len1.=n.‘ N, 2n,2...2n 20 (5.11)

of dim(X), and in this way one obtains a complete set of invari-
ants for o modulo .ﬁg(g), see Professor Rosenbrock's lectures

([39), esp. §5). How, for general R, one may replace the
arithmetic data (5.11) by the isomorphism class of the submoduies,

0~ kerR = (X ®U)[s], (5.12)

and in some cases this isomorphism class is expressible in a more
intrinsic form, '

Suppose R = 5IA1....,AN]. with k algebraically closed.
Since R in (5.7) 1is surjective R-module map of free R-modules,
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it is not too hard to see that ker R 1is projective as an R-module
and has finite rank, since X and U have finite rank. Recalling
the connection between projective modules and vector bundles (see
Introductory Chapter, Section III), it is quite plausible to seek

a vector bundle characterjzing,the data (5.12). Indeed, consider
the m-vector bundle on /A“ x/A1 whose fiber over (A,s) 1is the
vector space

ker[F(A) - sI, 6(A)) c K" @ k™ . (5.13)
Now, since all m-vector bundles on /ﬁN x,A1 are isomorphic (by

the Quillen-Suslin Theorem) provided we allow isomorphisms depend-

ing on s €/A1, (5.13) is not fine enough. However, the notion
of strict equivalence (i.e., independence of s) suggests an
order of growth at s =« reminiscent of Lionville's Theorem.
That is, by homogenizing all of the above we construct a bundle

My on AN x P!, whose fiber over (A,[s,t]) fis given by
kerltF(A) - sI,t 6(A)1 < k" @ k™. (5.13)"

Theorem 5.4 ([10]) The bundle W_ s a complete itnvariant for
0 modulo staie Jeedback. g

Remarks, For N = 0, this was studied by R. Hermann and C. Martin,
who related the Kronecker invariants (5.11) to the Grothendieck
invariants of W5, thereby proving Theorem 5.4, For N >0, if
one forms the transfer function for the triple (F(X),G(A),I),

then just as in the earlier sections one obtains a map

T;/AN X 'P1 - Gr*ass(m,&n ® E")

exhibiting (5.13)' as the pullback along the transfer function of
the (topological) universal bundle, and Theorem 5.4 follows from
Riemann-Roc (see Professor Martin's Lectures, [ 1).

Now, if o 1is independent of X\ then NU is independent
of A, i.e. W_ 1is a pullback along the second projection
pzyﬂ" x‘P] »'P? of a bundle on 'P]. And, Theorem 5.4 asserts

that the converse in true. Thus, if W, 1is a pullback, then o

is coefficient assignable--since this result is valid for o
defined over the field k. On the other hand, one can express
this condition more explicitly. For each XA, o gives rise to a
system o{A), by evaluation of A, over the field k and therefore
to pointwise Kronecker indices,

‘mz‘ni(x) =n(A)'=n .
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Corollary 5.5 If the ni()\) = n; are constant in \, then ¢

i8 feedback equivalent to a constant system. In particular, o
18 coefficient assignable,

Proof. It foilows from the main theorem of C. C. Hanna's
thesis [18), that constancy in A of the (Kronecker)-Grothendieck
indices implies

* *
W, o JZP1 (V5) @ p,(Ws)

where Vj is a vector bundle on ﬁﬂ{ and W, 1is a bundle on ‘P1
By the Quillen-Suslin Theorem, Vj is trivial and therefore

* *
Wy .3‘:92(%!3-3 = pp(3H;) (5.14)
m
Moreover, ija Zo(ni). (5.14), however, is enough for our
J 1=]
purposes. o

Example 5.6 The use of the Quillen-Suslin Theorem is, in fact,
essential, Consider the following readable pair, definad over

R = C”(Sz). Define U = R(3) as the module of smpoth sections
of a rank 3, trivial vector bundle on 52--viz.. the restriction
of the tangent bundle TGR3) to Sz. If X 4is the R-module of
smooth sections of T(Sg), i.e. smooth vector fields on 52. then
XcU, In fact,

U=X®R(1)

wgere R(l) is the module of sections of the normal bundle to
3

$" «R”. In particular, we are led to the reachable pair
o= (F,G) defined by G Proj]:U -+ X, and F = Id:X = X, (ine

easily checks that for p € SZ, the pointwise Kronecker indices
of o are given by

(n](x),nz(x)) (1,1), for x € 52,

noting that max CQ(SZ) =~ S2 in the canonical way. However, the
spectrum of (F,6) is not arbitrarily assignable, supples

FK:X - U such that spec(F + GK) = {0,1}. Then F + GK 1is a
projection on X and its kernel and image give rise to a decom-
position, X = r-‘l.I ) Mz, corresponding to a décomposition

T(s?) = L, @ L,

.
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of the tangent bundle into line subbundles, How, since dipLi =1,
each L1 is an integrable distribution and, by Frobenius' theorem,

l.1 forms a codimension one folition on 52. as it were, imply-
ing that x(SZ) = 0, contrary to fact.

On the other hand, if one supposes that X and its projec-
tive submodules are free, then it becomes harder (see §6) to =
construct a "counterexample" to pole-assignability for reachable
pairs. tMoreover, as several authors ({11]1,[21b],[411) have noted
since Corollary 5.5 appeared, under these conditions on the
state module X, a reachable pair (F,G) 1is coefficient assign-
able whenever the pointwise Kronecker indices (n1(H).....nm(M))

of o(M) are constant in M € max(R). More generally, if
max(R) 1is given the Stone-Jacobson-Zariski topology, where the
basic closed sets have the form

P

h(I) = (M:1 =M}, for I and ideal of R,

then o is coefficient assignable whenever the pointwise Kronecker
indices are locally constant. Recall that a ring R is said to-
be "projective-free" just in case each finitely generated projec-
tive module over R 1is free, thus the Quillen-Suslin Theorem
asserts that R = ijl....,xN] is projective free.

Proposition 5 Suzpose R <s projective-free and o = (F,G) <is
a reachaole system wita Frze state module and locally cowsiars
Kronecker invariants, them o 18 coefficient assignable.

Remarks.

1. The basic idea in the proof is to note first that con-
stancy of the pointwise Kronecker indices (n1(M),...,nm(H)) is
equivalent to constancy of the rank

ri(M) = rank(G(M),F(M)G(11),... ,FI" 1 (1)G(M))

(as the rj(M) form the dual partition to the partition Zni01)= n

of n) and that hypothesis on R now implies the freeness of the
projective modules
(0) span(G) span(G,FG) ... span(G,GF,...,FG)=X.

A careful choice of basis now puts o = (F,G) in a standard
canonical form, in which form coefficient assignability is immedi- . ¥
ate. For a very careful proof, see [21b]. A

-

2. This is also ‘the route taken in [11], Hcwever, the pro-
posed extension (by working locally and then trying to patch local
solutions) of this argument to cover arbitrary R and projective
X 1is incorrect--as Example 5.6 amply demonstrates.
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3. I would like to raise the question: Can Proposition 5.7
be improved upon by assuming only that
m
EE% in (M) = constant  ?

This is much more applicable, and I know of ro counterexample.

We close this section with a few corollaries to Proposition

‘7.

Corollary 5.8 (Sontag) If R <is semilocal, then to say o <is
reachadble 1s to say © <8 coefficient assignecble,

- Proof ([41]1) A semi-jocal ring has only finitely many maxi-
mal ideals, by definition. Thus, max({(R) is discrete and every
function is locally constant.

Corollary 5.9 (Brockett and Willems) If R s the growp alzeirz
of a finite avelian group, then o say O 18 reachable is to
8ay O 18 coeffietent assignable.

e

This follows, although not historically ({171), from Corcl-
lary 5.8 or from somewhat deeper considerations. That is, one
measure of the complexity of calculations in R is the structure
of set of primes of R,

spec(R)- = {P:P a prime ideal of R} ,

and in particular of the Krull dimension of R--i.e., the least
upper bound of the lengths of chains of prime ideals of R (see
Introductory Chapter, Section VI). HNote that any P.I.D. has
dimension 1, whereas a field has dimension 0.

Corollary 5.10 If R has xXrull dimension 0, ihen to scy o©
18 reachable cver R 1§ to say O 1§ cocfficient assigradie.

One example of such a ring, in addition to the group algebras
of Corollary 5.9, is furnished by the class of Boolean rings.
~ Indeed, for any ring of dimension 0, max(R) 1is a Boolean space
and based on the general (sheaf-theoretic) structure theory for
such rings, we may apply Proposition 5.7.

The present state of affairs is rather intriguing. Morse's
Theorem suggests that zero assignability is perhaps related to
reachability for rings of Krull dimension 1, while Example 6.1
shows that reachability does not imply zero assignability in
dimension 2.

R AR e
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§6. THE COUNTEREXAMPLES OF BUMBY, SONTAG, SUSSMANN AND VASCOMNCELOS.

. In this section we present recent counterexamples ([3]) to
zero assignability {over Rlx,y]) and to coefficient assignabil-
jty (overZ, or R[x]). Indeed, all that we do here is for zys-
tems o with rank X = 2. Note that, in this case, as an easy
consequence ([101, Corollary 4.2) of the results in §5, one knows

let n=2or 3, and suppose G{M) has constant

rank for all M € max(R). Then g = (F,6) 1is

reachable if, and only if, o is coefficient ¥
assignable. (*)

Example 6.1 let R ='R[A],A2] and consider o= (F,G) :
2.2
F(A],Xz) = » G(A]gkz) = -
—  (6.1)
Notice that o 1is reachable over R¢ = E[A],AZ]. Indeed, it is
easy to compute the Kronecker indices (n1(x),n2(k)) of o.
Consider the algebraic sets in U,
¢ 2.2
V] {(A],xz).xl A 1} ,
T _ =
VZ - {(A]’)\Z)c)\z 0} .
With this notation,

2,0) if A€V, uVv, ,
(gm0 = 4 0 172

, (6.2)
(1,1) otherwise .

In either case, n(}A) = n](A) + nz(x) = 2, so o 1is reachable
over RE' However, one cannot find K(A],lz) defined over R &
such that

det(sl - (F+GK)) = s(s*1) . »
For then, as it were, the submodule |

ker(F + 6K) < r(2)
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is complemented and hence gives rise to a splitting of R-modules
R wn en, , (6.3)

with each M1 free of E;?k 1. But, to say "o is free is to

* 'say there exists u € R*“‘, a unimodular element a posteriori,

such that V = F']Gu is a generator for Mo. Computing along
the real points of v“ y viz. S‘.

A (A 2p ] [ug(Ager))
v(y) = = (6.4)
is a non-zero tangent vector field to 51, extendable throughout

‘Rz. By the Poincaré-Bendixson Theorem, v(\) has a zero inside
the unit disc, contradicting unimodularity.

Next, consider the question of coefficient assignability for
2x2 systems over a P.I.D. As an example, consider the following
system o defined over R=Z.

Example 6.2

0o 0 {1 0
F= , G=
3 1 0 8
For p a prime, the Kronecker indices of o(p) are given by
(2,0) if p is even,
(1,1) if p is odd.
Consider the menic polynomial, p(s) = s2 + 1, noting that

neither Theorem 5.2 nor Corollary 5.5' apply. In fact, the sys-
tem of Diophantine equations

(ny(p)sny(p)) = {

tr(F + GK) = (6.4a)
det(F + GK) = 1 ~ (6.4b)
has'no solution

x Yy -
K-[ € My(Z) .
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ro see this, substitute a solution of (6.4a) into (6.4b), obtain-
ng

-

100w% + 10w = 1 = (-y)(3 + 10v) (6.4)"
or
(100w% + 10w = 1) = 0 mod(3 + 10v) (6.5) °

Now (6.5) has a solution if and only if the discriminant & =

500 1is a square modulo |3 + 10v|, if and only if 5 is a square s
modulo |3 + 10v|. It can be shown using Quadratic Reciprocity

that this occurs if, and only if, 3 is a square modulo 5, con-

trary to fact.

One may construct a similar counterexample over R[x]; in
contrast, all reachable 2x2 systems over ([x] are coeffi-
cient assignable ([8]). More generally, if R is a P.I.D.,
then following the matrix operations in [36], (F,G) may be
taken (modulo state feedback) in the form

0 0 1 0 —
F = G =
b 1 0 ¢
where (b,c) = 1. Now following [8], if f(s) = s2 = as + g,

then arguing as above leads to the condition: if there exists
K€ Mz(F) satisfying

det(sl - F - GK) = f(s), (6.6)

then az - 48 is a square mod(p), for any irreducible p divid-
ing b + cv. That is, the solvability of (6.6) implies

the monic f(s) splits modulo p, for each
prime p|b + cv, (6.7)

-

This is in harmony with Morse's Theorem--where f(s) is assumed

to split over R. And, if R has the property for p € max(R), .
char(R/(p)) # 2, then (6.7) is also sufficient, giving a refine-
ment of Morse's Theorem in the 2x2 case. It appears that the
general case lies much deeper. Moreover, the criterion (€.7)

involve the unknown quantity v and for this reason is not

always easy to apply. As a final remark, we may include Z

ks R 448 . B
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but, of course, special care must be taken in including the
prime p = 2. : '

§7. EEGSALIZABILITY OF PARAMETERIZED FAMILIES, DELCHAMP'S

Consider a parameterized family of linear systems,
k(t) = F(A)s(t) + 6(AJult), x(0,A) = x,(A),  (7.7)

real analytic in A € A, an open subset of ‘RN (although we
could, of course, take A to be a real analytic subtmanifold of

R"). We seek a real analytic K(A) such that the force-free
.closed-loop system

k(t) = (F(a) + G(A)K(A))x(t) - (7.2)

fs asymptotically stable, for all A, It is natural to find
such a K(A) by selving a variational problem, in this case a
quadratic optimal control problem leading to an algebraic Ricpati
equation for K(A). MNow, a lemma of D. Delchamps' aoplies the
implicit function theorem--on the manifold of controliable pairs
(F,G)--to show that such a K(A) can be chosen real anaiytic in
A. This also applies to Ck-families. for k21, and by a
little global reasoning we extend this to continuous fanilies

as well. lle begin by giving an exposition of these ideas.

First, suppose A =R and o= (F(2),G(1)) 1ds controllable
for all A. If the Kronecker indices (n](A).....nm(A)) of o

are constant, then we can place the spectrum of F(X) arbitrarily
~ (modulo the constraint that the eigenvalues form a self-conjugate

set) and thus, in particular, find a stabilizing K(1) as in

(7.2). In order to mntivate what follows, we oifer another

proof of this fact. Set

C(n,m) = {(F,G):(F,3) is controllable, anm’anxm}. é".

and denote the state feedback group of Fs = FS(R). Thus, one
has a real algebraic group action

35 x C(n,m) = C(n,m) (7.3)

with finitely many orbits

9r,6) = (9(F.6): g €},

L]
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parameterized by the partition
- v m ’
Eni.'n. "12"22‘"2%20

of the McMillan degree n into the Kronecker indices. Now, a
real analytic family o = (F(A),6())), for X € A, 1is given by
a real analytic function,

fa:A-* Cln,m) , (7.4)

and conversely. In this context, to say that the Kronecker
indices are constant is to say that the function

has its range in a single orbit of the action (7.3). Thus, if
‘%’(F.G) = {g € 353 g(F,G) = (F,G)}

—

one has a real analytic map, for (F,G) a pointon O,

f A= y/«.’f(F G) . (705)

A study of the topology of #, /J*?F 6) was begun in (4], vihere

(for example) formulae, in terms of the Kronecker indices, for the
number of connected components and for the dimension of .ﬁ;?a?(F 5)
' 3

are given., Here, we need only know that ¢ is a homogeneous
space which is the base of an ‘”(F 6) fiber bundle .?s-o ";A’(ZF 6)

. » s
In particular, f_ in (7.5) induces an anF G)-bundTe on A,
viz. 9 ’

and to say (7.6) is trivial is, of course, to say that by using
real analytic state feedback one can put (F(1),G())) into a
canonical form which is independent of A. For example, by
choosing o to be the isotropy subgroup of the Brunovsky norral
form one obtains a global Brunovsky form. In any case, coeffi-
cient ass1ﬁnab1]1ty follows from the result over a f1e1d Assuw-
ing A =R such a bundle is trivial and therefore (F(A),G(A))
is coefficient assignable over the ring R = C=(RN).

With this notation in mind, consider the variational problem
on C(n,m), where L{o) is an arbitrary real analytic, positive

L]

i it -
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definitg form in o € C(n,m): minimize the functional -
ne f (s'(t)L(c)s(t) + u(tiu'(t))dt
o

along trajectories (s(t),u(t)) of the system o,
gt) = Fx(t) + Gu(t)

ifnitialized at some (fixed) real analytic state vector, Xg * Xg

It is well-known that for a single system o = (F,G) the
minimizing control is given by

ua(t) = -G'K(a)exp{(F - GG'K(c) )t} Xg

where K; is the unique positive definite solution to algebraic
Riccati equation

F'K(o) + K(o)F - K(0)GG'K(c) + 4(0) =0 . ™~ (7.7)

D. Gelchamps has shown me a proof that K(o) 1is real analytic
in @, we only need consider the case L(o) = I. In this case,

V = {positive definite symmetric forms on RP"} and consider the
real analyticmap = ‘

C{n,m) x V= C(n,m)
restricted to the subvariety X = {(o,K) satisfying (7.7)}.

Lenma 7.1 (Deichamps) X s a submanifold and w|, s a sub-

mission, which O0-dimerisional fibers. In particular, 7 <3 a
real analytic dijfeomorrhism with irverse K(o) = (c,Kc).
~ Now consider the universal family of systems, o =
(F(o),G6(c)) € C(n,m), parameterized by the real analytic mani-
fold C(n,m). Since for each fixed o, the choice of state

feedback K(o) = G'(0)K(o) renders the closed-loop system

x(t) = (F(o) + 6(0)K(0))

asymptotically stable Delchamps Lemma implies the existence of
a stabilizing gain, for all o, analytic in o. In particular,
if Ac C(p,m) is a submanifol. then restricting K one obtains
a stabilizing gain for (F(A),G(J\))A€A analytic in A. lore

generally,

(1) ]
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Proposition 7.2 If (F(A),G(A)) e €X in A, k20, than

there exists a gain K(A), ¢k in R, for which the closed-
loop system

2(t) = (F(A) + G(AR(A)) x(t) (7.8)

- i8 asymptotically stable, for all M. In fact, K i8 a funetion

of the system (F(A),G(A)).
Proof. (F(A);G(A)) defines a ck-function
f:A - C(n,m)

as in (7.4). By composing the real analytic gain K(o) with f
one obtains a Ck-gain, rendering (7.8) stable for all A.

Remarks.

1. What is surprising here is that the c® case comes out
so easily, indeed much more is true--for exampie, similar cenciu-
sions hold for Lipschitz continuous functions or L*® functions
on a finite measure space, by applying the Gel'fand representa-
tion to the ?anach algebra L*(X) ([12}). In fact, similar cues-
tions for &' arise in recent work by E. Kamen on half-plane
digital filters.

2. D. Delchamps proved a more general form of Lemma 7.1 in
order to construct a metric, the Riccati metric, on the state
bundle of the moduli space {(F,G,H)}/GL(n,R) and to study its
properties. Some of his work will appear in the proceedings of
this conference, published by the A!S.

3. Constancy of the Kronecker indices is, of course, a
very stringent assumption, and it is interesting to study the
limiting behavior of the (ni(x)). Thus, if the (ni(k)) are

generically constant, then
F A - C]osure(c?]) e C(n,m)

where ¢7] is the orbit corresponding to the generic value of the
(ni(k)). As one can see by examining the matrices (F(A),G(A)),

the partition (ﬁi) occurs as a limit, or specialization, of the
partition ("i) on!y'if (ﬁi) P ("i) in the Rosenbrock ordering

as one may observe in Example 6.1, From the vector bundle point

crman ivE

e LT
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of view, this {1lustrates the #2%5?#‘3% Shatz ([43]) that the
Grothendieck decomposition of My rises in the Harder-

Narasimhan ordering under specialization ([43)). It has bheen
proven (independently) by Hazewinkel, Kalman, and Martin that

Oy Closure (0%) iff f2n in the ubiquitous, or preferably
the natural, ordering (*).
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Abstract

Classical control theory is concerned with the topics in our
title in the context of single-input/single-output systems. There
is now a large and growing literature on the extension of these ideas
to the multi-input/multi-output case. This development has posed
certain difficulties, some due to the intrinsic nature of the problem
and some, we would argue, due to an inadequate reflection on what
the multivariable problem calls for. In this paper we describe what
seems to us to be the natural multivariable analogues of these
concepts from classical control theory. A rather satisfactory
generalization of the Nyquist Criterion will be described, and a
clear analog of the asymptotic properties of the root locus will be
obtained in the '"multi-parameter' case. However, an example is
given which illustrates the quite surprising fact that the root locus
map is not always continuous at infinite gains. This calls for a
new ingredient, a compactification of the space of gains, and perhaps
the most interesting new feature in this circle of ideas comes in
the area of pole placement. This problem is difficult in the multi-

variable case, but by establishing a correspondence with a classical

set of problems in geometry we are able to understand its main aspects

and to derive results on pole-placement by output feedback over the

real field.
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1. Introduction

It is commonly felt that the standard ideas involved in the
classical techniques of root locus and Nyquist stability do not have
natural generalizations to thevmultivariable case and that although
partial generalizations of various kinds exist, those methods which
are most useful are often the most ad hoc. In this paper we want to
develop this circle of ideas emphasizing on one hand that there does
exist one, rather natural (from a mathematical point of view) ,
generalization of the Nyquist stability criterion and one rather
natural generalization of root locus. Unfortunately, these mathe-
matical generalizations require constructions in higher dimensional

. spaces and so some of the graphical appeal is lost. However, by
starting with the right "pure' generalization it is easier to
understand what is being gained and lost when one adopts one or more
of the somewhat specialized techniques such as one finds in the

literature of multivariable design.

What we will show here is that the natural analog of the
Nyquist locus is a curve which is plotted not in the complex plane
(or the Riemann sphere) but rather in a certain "Grassmann space"
.consisting of m-dimensional subspaces of an m+p dimensional space
where m is the number of inputs and p the number of outputs. Thus,
this curve is a curve in an mp dimensional space. A feedback gain k
corresponds to a choice of p-dimensional subspace, i.e., a point

in a dual Grassmann space. The analog of the Nyquist locus passing
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through the point -1/k is that of the curve of m-dimensional
subspaces intersecting the p-dimensional subspace gr(k) in a
nontrivial way. Using some elementary ideas from algebraic
geometry, we are able to state a generalized Nyquist theorem
relating the number of poles in the right half-plane after
feedback to the number before feedback and to a winding number.

Root-locus theory also fits into this analysis in a natural
way. With m and p as above, the gain is thought of as a point in
the space of p-dimensional subspaces of an (m+p)-dimensional
space. The root locus itself is the point set consisting of all ;
possible closed loop poles. We show that if the number of gains (=mp)
is less than or equal to the number of poles (=n) then t.heré ‘
is--generically--a version of the asymptotic (k + =) analysis
which one does in single variable root locus theory. However,
even in this case there is not just one '"infinite gain" and this,
in part, explains the controversial nature of what a zero of a

multivariable system should be.

Both the Nyquist ideas and the root-locus ideas have ré,cently
proved useful in understanding the pole placement problem for
output feedback. We discuss this problem from the point of view
outlined above and give some new results based on earlier work
done by algebraic geometers in connection with the Schubert

calculus.
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2. The Nyquist Locus

The point of view we use here results in a very natural and
clean generalization of the Nyquist criterion. However, it does
involve the geometry of the so-called Grassmann manifolds in an
essential way. Since this is essential, and at the same time,
not yet too familiar to many people working in automatic com:ml'.,”

we begin with some background notation and ideas.

Let Cn denote the set of all complex n-tuples, regarded as a
vector space in the obvious way. The set of all complex lines in
cn can be thought of as equivalence classes [xl,...,xn] of points
in QI"‘-{O} with (xl,xz,. ..xn) i:eing equivalent to (‘yl,yz,. ..,yn)
if and only if there exists a € €-{0} such that ax = y. This is
called n-1 dimensional projective space and is denoted by Pl
Likewise, we can consider the set of all complex two-dimensional
subspaces in ¢". These can be identified with equivalence classes
of pairs of linearly independent vectors in m“, {x,x'} whereby two
pairs {x,x'} and {y,y'} are regarded as being equivalent if they
span the same two-dimensional subspace. More generally, we may
consider equivalence classes of p linearly independent vectors in
¢“. say {xl,xz,...,xp},wim the understanding that two such sets
of vectors are equivalent if and only if they span the same sub-
space of ¢'. This set of p-planes in n-space will be denoted by
Grass(p,n). Of course, if p=1 we recover our previous construction,
Grass(l,n) = }Pn'l . Grass(p,n) actually admits the structure of an

analytic manifold and also that of a nonsingular algebraic variety.
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This is the Grassmann manifold of p planes in n-space and we will

need to concern ourselves with its geometry.

To being with, the dimension of Grass(p,n) is np-pz. To see
this, think of Grass(p,n) as being a collection of equivalence
classes in the space of n by p matrices of rank p with two such

being equivalent if for some nonsingular p by p matrix we have

e = 1

Since the n by p matrices of full rank form an np-dimensional
manifold, and since the equivalence relation identifies with one
point a pz-dime'nsicnal family of points, we see that Grass(p,n) is
a manifold of dimension np-pz. A second important point is the

inherent duality between Grass(p,n) and Grass(n-p,n). The formula
dim Grass(n-p,n) = n(n-p) - (n—p)2 = np-pz = dim Grass(p,n)

suggests a possible identification between these spaces. In fact,
they do define the same abstract analytic manifold and Grass(n-p,n)
is called the dual of Grass(p,n). The reason for this terminology
will become apparent: it turns out that a point x € Grass(p,n)

canonically determines a hypersurface o(x) in Grass(n-p,n).

In ordinary calculus a curve is usually a mapping from some
interval I « R to some real manifold M. For our present purposes
it seems best to take the viewpoint found in algebraic geometry
and to call an analytic mapping of any Riemann surface into a

(complex) analytic manifold a cwrve. Of course, this means that
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2 curve is an object of real dimension 2 (or complex dimension one).
For example, any rational function gives us a curve since it maps
the Riemann sphere into itself. Complex, nonsingular, algebraic
varieties are special kinds of complex analytic manifolds which
enjoy the property that they can be covered by coordinate charts
such that coordinates in overlapping meighborhoods are related by
rational maps. An algebraie curve is then a mapping of some Riemann
surface into an algebraic variety which can be defined by rational

functions.
Classically, the Nyquist locus is defined as the image of the
imagainary axis in € under the mapping ¢g: € + € defined by
¢g(s) = g(s)

There is, however, an alternative way of thinking about this which
more readily suggests the generalization we want to use. Consider

the fact that g(s)u = y, which can be written as

[g(s),-l] ui= 0
y

In this form, it defines a mapping of the complex plane € into the

set of (complex) lines in ¢2 according to the rule
s+ Ker[g(s),-1]

Moreover, if we add a point at infinity to € to get the Riemann
sphere then this same relation gives a mapping of the Riemann

sphere into the space of (complex) lines in QIZ, i.e., a mappir_lg

At b a5 e n



‘ 4s
ORIGINAL PAGE IS

OF POOR QUALITY
of the Riemann sphere into pl. Incidentally, and we will make

use of this point of view later, this makes it clear that the
Riemann sphere and the complex projective space Pl are the same

space.

The basic multivariable feedback equations
G(sju=y ; um=-Ky
which we prefer to write as

G(s) -Ip u ) 0

I X ||y 0

have a solution if and only if the kemmels of [G(s) ,-Ip] and
[Im,K] intersect in a nontrivial way. Following the innoVative
paper of Hermamn ancd Martin [11], we now define the Myquist locus
of a p by m transfer function G(s) to be the points, on the

algebraic curve in Grass(m,m+p) given by

s b Ker[G(s) ,-Ip] ,

which are the im;ges- of points on the imaginary axis, Re s = 0.

This conclusion has the distinct advantage that the Nyquist contour
is the image of the closed imaginary axis, which is a circle in PP,
in a space where the transfer function takes its values, viz., the
Grassmannian Grass(m,m+p). It is important to notice that in

general this space is formally different from, but dual to, the

space Grass(p,m+p) where the gains live (i.e., except when m#p).
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Remark. Note that the curve in Grass(m,m+p) defined by

In

G(s)

S p» Image

is the s;me as the curve defined above, since

u I [G(s), -I.] u
€ Image M w © P
y G(s) y
As in many aspects of linear algebra, we find it convenient for
some purposes to work with kemmels and for other purposes to
work with spans. In particular, to get our definition to

specialize to the usual Nyquist locus we need only choose to

~ represent lines in ¢ by

In the paper cited above [11], Hermann and Martin interpreted
the McMillan degree and the Kronecker indices of 'systems in temms
of this algebraic curve. In ¢h# next section we show how these
ideas lead to a clean generaiization of the Nyquist criterion,
and in Section 6 we will use a geometric reinterpretation of the

pole placement problem based on these ideas.

Finally, these ideas also play an important role in our study

of root loci since, at a very primitive level, the Grassmannian

e e o
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setting allows us to precisely define what we mean by an infinite

gain and to study the corresponding questions about asymptotic

and limiting behavior in the presence of compactness. This

description of an infinite gain is new in the control theory

literature and is important in all that follows. Therefore, we

will devote the remainder of this section to an exposition (see

[4]) of this circle of ideas.

Since a real gain K may be regarded as a point K € R™® ; the
real vector space of matrices, it is perhaps at first glance
tempting to use the usual Euclidean picture of a single point
at infinity, with the convention that whenever ||K|| + = , K
approaches infinity. If mp > 1, this is somewhat unnatural, since

for exarmle,

both tend to infinity in this sense but, as relations u=Ky
between outputs and inputs impose different limiting bekavior on

the closed loop systems.

Explicitly, u = KAy is the linear relation

wy= 7 /Ny, =y,
u =Y, /M, =

i
<
[ QM)

and, therefore, as A + =, KA approaches the linear constraint
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yl-yzno

among the input-output variables WUy, and y,. In Section §,
a physical interpretation of such limiting constraints is offered,
but for now it is important to observe that, as linear constraints
among the input-output variables, the families Kk and ;‘:A have
different asymptotic behavior. For, as the reader can check, as

A+w, 'EA approaches the linear velation
U, =y, * 0

It is therefore desirable to allow for many points at infinity,
precisely so as to account for differences in the limiting behavior
of the constrained relations u= K)\y. With this basic consideration
in mind, it is natural to study the set--or as it tums out, the
manifold--of linear relations between u and y. More geometrically,
setting U= R" and Y= P , thé gain relation u=Ky is represented

by its graph, viz., the p-plane
gr(K) = {{Xy,y): y €Y} cUBY .,

Of course, not cvery p-plane in UBY space can be represented as a
graph of a linear function K: Y - U, since such a p-plane is
necessarily conplementary to U, Thinking of a p-plane V as a point
in the real Grassmannian Grassm(p, m+p), we have two altematives:
(1) V is the graph of a linear function (or gain) K: Y = U,
(i) Veo) = Wdim(WnU) »1, WE Grassp(p, m+p)}.

S T R T 880 ¢ g
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In the first case V€ R™ and in the second case V lies in o(U)

--the set of infinite gains. It should be clear geometrically that

R® = Grass(p,m+p)-o(U) is dense and that every limiting value

V € o(U) represents a linear constraint between u and y, just as
in the example above.

For any m-plane W in (m+ p)-space we can define the subset
#(W) of Grassp(p, m+p) defined by

o(W) = {(Vidim(WNnV) 31 ; WE Grassm(m,m+p)’}

Such a hypersurface is known as a Schubert hypersurface (associated

to W). In this language o(U) is the Schubert hypé¢rsurface of

infinite gains [4], [15]. Similar remarks apply to complex gains

in the setting of complex p-planes in CWP, i.e., in Grassm(p,m-r P).

Ve shall now eliminate the subscripts R and €, since whether

we are working with real planes ur complex planes should be clear
from the context.

Example. If m=p=1, we are proposing the consideration of
Grass(1,2) = pl , the space of lines through 0 in R » which is a
circle since each line is parameterized by the angle it makes with

the Y-axis. Note that in this special case o(U) = {U} is just the

line {U} itself, as is shown in the figure below.

U ..
V= graph(K)
A
Y
Figure 2.1

53
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Therefore, if m=p=1, pl . d(U) = R and o(U) represents the point at

infinity, in the standard euclidean sense.

More generally, if m=p and K is invertible then ji is easy to check
that the graph of the function K)‘: AKy =u, approaches {U} as X goes to
infinity. This implies that the closed loop poles approach the open loop
zeroes, as is well known. However, dim o(U) =mp-1 and therefore there
exists (if mp > 1) a continuum of possible limiting values in o(U) - {U},
each corresponding to limiting values of more general l-parameter families

KA' As we shall see in Sections 4 and 5, for non-degenerate G(s) to each

of these infinite gains one can still assign an unordered n-tuple of limit

points on the Riemann sphere and obtain asymptotic expressions for the

corresponding root loci.

—
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3. The General Nvquist Criterion

The basic equality which lies at the heart of Nyquist's application

of the principle of the argument to study stability is
H=p+vV

where U is the number of c¢losed-loop poles in the right half-plane, V
is the number of open loop poles in the right half-plane, and p is a
winding number -- the number of times the Nyquist locus encircles the ~l/k
point in the clockwise direction. Although special techniques are readily
developed to enable one to handle the case where the Nyquist locus is
unbounded, in its primitive form one assumes that the Nyquist locus avoids
two points, the point at « and the point =1/k. In the multivariable version
we present here Y and V will have virtually the same meaning; the Nyquist
locus itself will be as defined above. The definition of the winding
number p will now be given.

As we have seen tl : feedback stability problem i3 concerned with the
palr of equations

G(s) -Ip u] 0
n (3.1)

Iy K Y| 0

Since ambiguity arises when for some value of s=iw this pair has a
nontrivial solution we must eliminate this possibility. Regarding the
kernel of [Ip,K] as a point in Grass(p,mtp) suggests that we introduce
the Schubert hypersurface

o(Rer[T, K1) = (W[V € Grass(mmp)s W N Kex[1_,K] f 0}
since in order to have a nontrivial solution of the above equations we need

to have an intersection between the Nyquist locus and U(Ker[tm,xl).

P P R S T T U
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Our first result describes pole-placement by output feadback in terms

of intersection properties.

Theorem 3.1: The closed-loop poles corresponding to a feedback gain matrix *
K occur at the points Sy where the algebraic curve
Ker(G(s),-Ip) < Grass(m,m+p) intersects the Schubert hypersurface O(Ker{Im,K]). ~

Proof: This is simply a reinterpretation of equation (3.1) above. The
closed-loop poles are values of s where‘(3-1) has a nontri;ial solution but
this occurs where Ker[G(s),-Ip] and c[Ker(Im,K)] intersect.

We now turn to the Nyquist criterion itself. In order to make sense
out of the concept of a winding number we need to be sure we are working
in a space in which the equivalence classes of homotopic closed curves can
be put in one to one correspondence with the integers in such a way as to
preserve the basic idea that traversing a closed curve [' and then a closed
curve "' should result in a winding number which is the sum of the respective
winding numbers v(T')+v(l'') and that traversing a closed curve I' in the opposite
direction should result in the negative of the winding number associated with
the original orientation. More precisely, the fundamental group of the
space should be isomorphic to Z., the additive group of the integers. We
use T, to denote the fundamental group of a space (see [23], [91]).
Lemma 3.2: For i=1,2, let oy < Grass(p,p+m) be Schubert hypersurfagéé
of the form described above derived from m-planes W and W' which satisfy
dim(W N W') = min(0,p-m). (That is, they intersect on a subspace of smallest
possible dimensiop.) Then the fundamental group of G'rass(p,p-i-m)-or1 U~02 is

isomorphic to Z.
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This lemma is, except for language, the same as the following one
which is the form we will actually use in the proof of the Nyquist Criterion.
Thé notation GE(n,C) refers to the set of all nonsingulag n by n complex

matrices--the general linear group of dimension n.

Leuma 3.2 Llet K be a fixed m by p complex matrix of rank r. Then the set

of all p by m matrices G such that

2
is a connected complex manifold diffeomorphic to G£(r,C) x ¢OP7T |
In particular, if r 3 1, the fundamental group of this manifold is
isomorphic to Z.

Proof of Lemma 3.2: The proof follows from the fact that the above matrix

is invertible if and only if KG-!-Im is invertible or, equivalently, GK+Ip

is invertible. Let P and Q be invertible matrices such that

I 0

PKQ = | = I

Then det(GK+Ip) = det:(Q_]'GPm1 }:+Ip). Thus we see that the upper left |
r by r minor of Q.-]‘GP-1 is such that when added to Ir the result is a
nonsingular matrix, the other components of Q'-lGP-1 being completely
arbitrary. Thus we see that the admissible G's are in one to one corre-
spondence with the choice of a nonsingular r by r matrix and a point in
a mp-rz-dimensional vector space. It is well known [7] that T of
6¢(r,C) is isomorphic to Z for every r 3 1. In fact, the determinant

e e
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mapping of Gl(m,t).in:o the nonzero'complex numbers
C*, given by det: GZ(r,f) - €%, gives a means of determining when two
closed curves in G (m,¢) are homotopic-~they are if the image curves encircle
zero in ¢* the same number of times.

We adopt the following convention. If ' is a curve in Grass(m,mifp)-ollch
as in the lemma, if g, = c[Ker(Im,O)] and 0, = U[Ker(xm,K)], then we define

the winding number of I with respect to o, to be the net increase in afgument of

G ~I
P

(o
1
"

= det(GK+Ip) = det(KG+Im)
I K

as W increases from -» to =, divided by 27.

With these preliminaries in hand, we now give a graphical test for
stability which generalizes the classical result of Nyquist [18].
Of course it is important to observe that when counting poles in the right
half-plane one counts the multiplicity of a given pole according to its
contribution to the McMillan degree of G(s).
Theorem 3.3: Suppose thatVG(s) is a proper matrix valued rational
function with no poles on Re s = 0 and suppose that the Nyquist locus does
not intersect the Schubert hypersurface c[Ker(Im,K)] defined by the gain
matrix K. Let p be the number of closed loop poles in Re s > 0 and let v be
the number of poles of G(s) in Re s > 0. Then

= ptv

where p is the number of times the Nyquist locus encircles the Schubert

hypersurface o[Ker(Im,K)] in the positive direction.
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Proof: To begin with we observe that for a given minimal triple (A,B,C) and
a given K we have (G(s) = C(Is-A)-lB)
det(G(s)RHL) = det(KG(8)+I)
= det(Is-A-BKC)/det (Is=-A)
Moreover, by the principle of the argiment

i

# zeros [det(GK+I)] - # poles [det(GK+I)] = net change in argument (3.2)
of det (GK+I)/2m

along the jw axis, where on the left hand side ;nly contéibutions arising in
the right half-plane. Thus we see that the number closed-loop poles in Re s > 0
minus the number of open loop poles in Re s > 0 is the change in argument in
det(GK+I). But from the proof of Lemma 3.2', this is the number of encirclements

the Nyquist locus makes around the Schubert hypersurface c(Ker[Im,K]).

?

Figure 3.1: 1Illustrating the Nyquist Criterion

Remark: This result retains what is in our opinion the basic assets

of the classical Nyquist criterion, viz. the result involves a fixed curve
obtained from the open loop transfer function which does not need to be
changed with changes in the gain. However, formula (3.2) does represent

the easiest route in calculating the appropriate winding number and has been
used extensively in the square case with scalar gain Kk = AL (see [1], (9],

[20]) and in the nonsquare case by Callier and Desoer ([5]).

%ﬁ@ﬁx&%wm
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4, Feedback, Nondegeneracy, and Zeros

Changes of basis in input space, change of basis in output space,
and the operation u p» u-Ky (feedback), taken together yield a growp

of operations on transfer functions. We call this the feedback growp.

Triples (T,S,K) act on G(s) to give
TG(s) (KG(s) +8) 1 .
We denote the group by F and note that it may be represented as a

subgroup of Ge(R™P) < e (g™ Py, given in block form by

F o= ; T EG(RP), S € GL(R™)

Now, any transformation in Gﬂ(]Rm+p) acts by change of basis on an
m plane W to give another m plane W', and in this way the subgroup F
acts on Grass(m,m+ p)--as the subgroup which fixed the m-plane

UcY®U. It is important to note [8] that,

i L 0 G(s) G(s)
= , (4.1)
-x Im_J _Im_i —Im+KG(s)-J

so that the two actions: .

(i) K acting on G(s) by output feedback

G(s) b G(s)(KG(s) + 1)}

(ii) K acting on G(s) by composition (as in (4.1))

1 K

G: P* + Grass(m,m+p) -+ Grass(m,m+p)
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are the same., That is, given a transfer function G(s) and a gain K,

we can either apply the output gain, obtaining the closed loop plant
def
Ks) = GEIKe(s) +DT = (G(s)k+ 1) 7I6(s)

and hence a new curve in Grass(m,m+p) corresponding to GK, or we can
take the curve G(s) in Grass(m,m+p), apply the "rotation" (4.1) cor-
responding to K, and get a new "'rotated" curve in Grass(m,m+p). This
new curve is the curve corresponding to GK In particular, to describe
the closed loop poles, we can either rotate first obtaining GK(s) and
intersect with the fixed Schubert hypersurface c[Ker(O,Im)], or fix

the curve G(s) and intersect with the Schubert hypersurface o[Ker(-K,Im)],
which we get by '"‘rotating" o[Ker(O,Im)] through the inverse ''rotation"
defined by -K as in Equation 4.1. This gives an alternative proof of

Theorem 3.1.

It is also important to notice that F acts on the Schubert hyper-
surface in Grass(m,m+p) as well; that is, each F € F transforms the
Schubert hypersurface o(W) to the Schubert hypersurface o(FW). For
this reason, it is clear that the following definition is invariant

under output feedback.

Definition 4.1 G(s) is nondegenerate if, and only if, no Schubert

hypersurface o(W) in Grass(m,m+p) contains the curve G(s).

Since nondegeneracy plays an important role in what follows, it is
therefore worthwhile to derive alternate forms for nondegeneracy.
Suppose W is a p-plane in (i p,’ so that W is defined as the common zeros

of independent linear functionals ¢1""’¢m on €"P, Let gj (s) denote
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j-th colum of the matrix G(s)

. G(s) =

In

TR L ey

Now, to say that the span of G(so) intersects W non-trivially is to say .

. m
that some non-trivial linear combination, | aigi(so), lies in W, That is,
i=l
m
¢j(i§1aigi(so)) =0, . for j=1,...,m
or, the rational function
o(sg) = det(s;(g;))(sg) = 0 (4.2)

Now, a different choice of defining equations changes ¢(s) by a non-zero
-multiplicative factor. Since So is arbitrary, nondegeneracy of G(s) is

equivalent to
for any ¢(s), &(s) A0 . (4.3)
A third equivalent form is that for no matrix [K1 ,Kz] of rank min(m,p) is

m
o

1 K

For example, any scalar transfer function is nondegenerate, since

for a,8 not both 0,
#(s) = oG(s)+B = 0

only if G(s) is constant. However, if m > 1, any m xm diagonal (or even

block diagonal) transfer function is degenerate. And, since nondegeneracy
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‘is feedback-invariant, any system which may be decoupled is degenerate.

For example,
1/(s2-1) 0
G(s) =
0 1/(s2-4)

is degenerate. If Y1 YarUpsl, denote the cpordinates on a colum
vector in Ca, the choice ¢1(v) = Y2144 (v) = u, leads to

0 0

$(s) = det 0.
1/(s%-4) 1

On the other hand, the generic 2x 2 transfer function with McMillan
degree 4 is non-degenerate. Indeed, part of our interest in non-degeneracy

stems from this property. If n is the McMillan degree of a system, we have

Theorem 4.2 If mp ¢ n, non-degeneracy is generic. If mp > n, then every
transfer function is degenerate.

By generic we mean thaf the set of non-degenerate systems is the
complement of a set defined by algebraic equations in the space of minimal

2
realizations {(A,B,C)} < R® *A™IP

Since G(s) = o(V) is an algebraic
constraint and the space Grass (p,m+p) is compact, degeneracy is defined
by algebraic conditions, so in order to prove genericity it is enough to
find one G(s) which is non-degenerate. Now suppose V or, equivalently,

o= {¢1,...,¢m} is given. To say G(]Pl) c o(V) is to say, in particular, that
G(sl),...,G(an,G(w) € o(V), for s; €C.

We may assume the m-planes G(si) are in general positicit, so that each

by e o

e S =
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tondition
det (¢;(g;)) (s;) = 0

places a non-trivial constraint on V. These are, dually, n independent
condition on V which lies in a variety, Grass(p,m+p), of dimension mp.

The additional constraint,
det($; (g)) (=) =0 ,

then constrains V to lie on an algebraic subset X of Grass(p,m+p) of
dimension, ’
dimX¢m - (n+1) , (4.5)
so that X is empty if mp ¢ n. However, by a special property of
Schubert hypersurfaces, which should not be interpreted as a general
fact (see [22] p. 57), (4.5) is an equality for planes in general
position. Therefore, if mp > n, X # P which, together with the follow-
ing lemma, proves the last statement. In case m=p=1, the lemma
asserts that every nonconstant rational function takes on any given

value the same number of times.

lemma 4.3 o (V) either contains the algebraic curve G(s) or intersects
+ it (counting multiplicity) in exactly n points. In the latter case, at

least one such point is infinite if, and only if, V is not complementary to U.

Proof: The first part of the lemma can be found in {6]. As for the
second part, if V is complementary to U, then V = gr(K), for some
K: Y - U, and the points of intersection are the poles of G'K(s) which

are all finite frequencies. The converse follows from a duality between

SRR

ORI

BN
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Grass(m,m+p) and Grass(p,m+p) and the inherent duzlity in the statement
"V is not complementary to U." That is, to say

V € o(U) = Grass(p,m+p)

is to say U € o(V) < Grass(m,m+p). Therefore, if V is not complementary
to U, then G(») = U € o(V) is in the intersection G(P') no(V). Q.E.D.
This concept is of great importance in studj'ing asymptotic root

loci and pole-placement by output feedback.

Preparatory to our treatment of root-locus, we discuss the question
of how to define what one might mean by the zeroes of a multivariable
system., OQur approach will agree with most other authors in the case where
G(s) is square, but in the rectangular case we argue that it is best to
focus attention on a locus of all '‘potential zeroes' rather .nan a finite
set of points. To state our results’ in a clean way we need a little
further notation. If p(s) is a nonzero polynomial of degree < n, then
by [p(s)]n we wnderstand an equivalence class consisting of all polynomials
of the form op(s) with a # 0. Since multiplying p(s) by o does not
change its zeroes, we see that [p(s)] n defines a set of n unordered points
in the Riemann sphere. (Note that [Os2 +s+ 1]2, for example, defines the
point set {»,-1}.) On the other hand, each equivalence class defines a
line in ]Rn+1 (or le) and hence a point in a projective space P" ,

namely the line span (pn,pn_l, one ,po) .

Definition 4.3 Let (A,B,C) be a minimal triple. Let G(s) = C(Is-A) B

be 2 nondegenerate p by m matrix of proper rational functions having
McMillan degree n. If m 3 p, then we say that a point {[q(s)]n} is a rignt

zero polynomial of G(s) if there exists an m by p matrix K of rank p such

e
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that q(s) = a det(G(s)K) det(Is-A) for some a ¥ 0. We say that {[q(s)]}
is a left zero polynomial of G(s) if q(s) divides det(Is-A)det(G(s)K) for
111 m by p matrices of rank p and q(s) is of maximal degree relative to
all polynomials with this property. If m < p, then we say that {[q(s)]n}
is a left zero polyrnomial for G(s) if it is a right zero polynomial for
G' (s); we say that {[q(s)]r} is a right zero polynomial if it is a left
zero polynomial for G'(s).

As remarked above, [q(s)]n is the same as a point in P" and we know
that the set of m by p matrices K having rank p ¢ m is associated with an
equivalence class [K] = {KP: P € GZ(p)} which defines a point in Grass(p,m).
Thus the above definition of left zeros (right zeros) gives us for
megp (m } p) a mapping of Grass(m,p) to P" (Grass(p,m) to P"). Thus
we see that the set of zero polynomials is, except in the casem =p, a
whole locus of points and not just a finite set.

One desirable property that our definition has is revealed by the
consideration of feedback. Suppose p < m, we say that G(s) is feedback

equivalent to (G(s)K1-+I)'1G(s). Now, if for some K we have
det(G(s)K) det(Is-A) = ag(s)
then an easy calculation shows that the polynomial

det(G(s)K, + 1) Laet((Is-4) + BK,C)+detG(s)K- =
. det(G(s)K-det(Is-A) = ag(s)

Theorem 4.4 Let G(s) be nondegenerate, then each left (respectively,

right) zero polynomial is invariant with respect to output feedback.

S O
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S. Root loci

In this section it is our aim to lay some of the foundations for a
general study of multi input, multi output root loci. Quite specifically,
we are intefested in the asymptotic behavior of closed loop poles with
respect to high gain feedback and, in particular, in making sense of the
concept of infinite gain. We note that, through the work of many authors,
the situation where one studies a (generic) square transfer function G(s)
and the l-parameter family of gains (A\I: A € R) is well understood and
indeed reflects many of the properties familiar in the scalar input-
output setting, e.g., the closed loop poles approach the open loop zeros.
However, this family of gains is rather special and it is rather widely
appreciated that for obvious practical considerations one would prefer a
theory of high gain feedback which allows more flexibility in the choice

of gain.

To fix the ideas, if G(s) is a transfer fimction and K is a gain then
x(K) denotes the unordered n-tuple of closed loop poles, or what is the
same the n-vector of '‘coefficients of the closed loop characteristic poly-
nomial. One general question we have in mind is, given a l-parameter
family KA of gairs describe the linﬁi:x(Kk)as an wnordered n-tuple, and
describe the asymptotic behavior of the closed loop poles as A + =, In
particular, in what sense does this limit exist? For example, if

xk+&eqmamkk+&,ma umﬂg)-nmﬁgn

A+ Ao

Explicitly, consider ' 1/(52_1) 0

G(s) =
0 1/ (s%- 4)

v s neaig e




[P

/

s b P

68 ORIGINAL PAGE IS _
OF POOR QUALITY ;

and the l-parameter family

K = -KO+K
0 1

1

RO

Now, K;\ and 'lt(x = le approach the same infinite gain K , viz., the linear

relation y, = u, = 0 (reflecting the fact that for A >> 0 each frequency -

o s e,

s behaves approximately like a pole for any input with u, (s) # 0). However,

the asymptotics are not determined by the highest order term! Indeed,
x(K) » (%591, x®) » (Fn6=a1,

while the zeros of G(s) are all infinite. We also note that the l-parameter

fami“lies ' 0 A\ 2 AZ

also approach K _, yet

X(LA} ad [54" 452' 3] R X(rx) = [(52-4) (52“ l‘A)]‘* [52_4]4 .

Roughly speaking, this discontinuity reflects the fact that, in the
linit, each s € ]P1 deserves to be called a pole of the 'closed loop
system with infinite gain." More precisely, given any frequency sp € C,

any € > 0, and any ¢ > 0, there exists an input u with ||u(sy)|| < € and an

N(c,e) >> 0, such that Hy(so)ll = ][,Gku(so) |] >c, for A > N(c,e). One ;
cannot satisfy this conditicn unless uz(so) # 0, and for this reason the
discontinuity of x at K_ is tied up with the degeneracy of G(s). In fact,

the equations u,= y,= 0 defining K_ in U®BY are precisely the equations
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used in Section 4 to show that G(s) is degenerate. loreover, these
constraints reflect that fact. that, only under the condition u, = 0
(and therefore y, = 0), will the limiting "transfer function"

1lim Gx(s) yield a finite output from a finite input.
p )

We shall say that asymptotic root loci exist for G(s) provided we

can assign wnordered n-tuple %(K) of points on the Riemann sphere to

any gain K (finite or infinite, as in Section 2) so that y is continuous
at each infinite gain.

Theorem 5.1 G(s) is nondegenerate if and only if asymptotic root loci
exist, for all infinite gains K . In this case, as K, ~ K_ at least

one closed loop pole becomes infinite.

Proof: The key to this proof is to assign to each p-plane V in (m+p)
space an unordered n-tuple of points on lPl in an unambiguous way. If
V = graph(-K) for a finite gain K, Theorem 3.1 asserts that
_ a1 1-
x(X) = G “(G(P7) n o(V))

so it is natural to define, for any V€ Grass(p,m+p),

x = LGP n o)

where V may represent an infinite gain. According to Lemma 4.3, either
G(Pl) n o(V) in exactly n points, or G(]Pl) c o(V), in which case G is

degenerate, by definition.
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Therefore, if K  is an infinite gain, then K, = V for some p-plane

V, and we may define
X&) = 6HGP) now) .

And, with this definition, the continuity of x follows from the continuous

dependence of roots on the coefficients of a defining equation. Conversely,

it is easy to see that the continuity of yx implies nondegeneracy. The

second claim in the theorem follows the second statement in Lemma 4.3. Q.E.D.
In particular, the asymptotic root loci corresponding to the polynomial

family of gains, K, = K0+Kl>‘+" .. ,+Kd2\d, is determined by the asymptotics of

the highest order term. This is not, of course, true when G(s) is degenerate.

In order to compute this asymptotic value, one must compute lim graph().Kd))
oo

in Grass(p,m+p). Let V1 = image Kd < U, and V2 = ker chY, thus

V(K = V8 V, = i’l{: graph (XK ;)
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Corollary 5.3: 1If KA - K°+K1A+...+ded is a polynomial famiiy of gains,
and 1if G(s) is non-degenerate, then the asymptotic root loci are given by

lim x(K,) = iim XK = x(V(K,)) . (5.1)
Q0

A0
R - L3 -

In particular, tHé’ésymptotic values of the root loci are determined by the:

highest order term.
Now suppose Kd is maximal rank. If m = p, then as we have seen in §2,

graph(AKd) +UcU @ Y, so that

lim x(K,) = x(U) = ¢ tecrh noy) .

Ao
But, to say G(so) e o(U) is to say
G(so) 0

span N span 2 (0)

I I
m m

or, that there exists u ¥ 0 so that the equations
N(so)w=0 , u= D(so)w

are satisfied. That is, G has a zero at So° This is the well-known fact
that the closed loop poles approach the open loop zeroes, as A =+ «,
provided det G(s) # 0. However, to say det G(s) = 0 is to say G is
degenerate, in fact it is to say that G(s) <« o(U). More generally
if m 2 p,V(Kd) cU, i.e. V(Kd) ¢ Grass(p,m), and x(KA) approaches a right

zero of G(s)!

Corollary 5.4: If G(s) is nondegenerate and if KA = K°+K1A+...+ded with

Kd maximal rank, then X(KA) approaches the right zero [det(G(s)Kd)(det(sI—A)]n
if m > p, and X(KA) approaches the left zero [det(sI-A)det(KdG(s))]n if

P < m. In either case, the closed loop poles approach the open loop zeroes.

I e e
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Now, by a straight forward modification of the square case ([17], [19],
or [24]), the number n,of closed loop poles which approach infinity is there-

fore generically given by n-r where r is the rank of the matrix

[, ~,n=1 u
KCATB . ... K, CAB  K,CB ]
Z(ky) = ’
K ,CAB 0 - b
| R4CB 0 0 |

and one may ask for the rate of growth of these n_, poles, with an eye
toward sketching the root-locus plots corresponding to the family

K, = K°+K1A+...+Kd)\d. According to Corollary 5.3 the most rapidly |
incr.easing asymptotic arise from the highest order term in KA and there

are at most rank CB of these branches.

Indeed, one may obtain all of the asymptotic expansions of s(}), |
A+ in terms of Puiseux expansions at (~,=) on the Riemann surface |
defining s(A)--this is essentially the technique employed in [20] in
the case of scalar gain AI. That is, consider the subset X ]Pl x Pl

defined as the closure 3{.0 of the subvariety

X, = {(r,s): dec(sI-A-BKAC) = 0} e ¢x¢. (5.2)

S

1
)

C

Figure 5.1 Depicting X« P  x P
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We shall assume that X is a manifold near (»,») and as usual we
shall use coordinates % and -i- near » € P}, Consider the projection

L X« l":l defined on XO via
. Py’ {(A,s) = A . (5.3)

By the implicit finction theorem, if the tangent line to (~,®) € X

is not vertical, there exists an analytic inverse to py near (,®),

Equivalently, there exists an absolutely convergent local expansion

i

- (7) ' (5.4)

1=0 g

for each local branch of X at (»,»). If the tangent to (=,») is

vertical (as depicted in Figure 5.1), then such an expansion is no
longer possible. However, since X is nonsingular at («,=), one

cannot have a horizontal tangent, and applying similar reasoning to
the second projection, there exists an absolutely convergent local

expansion

1_ o '
Yo b b, 1 (5.4)

for every local branch of X.

Choosing one such branch, let ny denote the order at = of })‘- 5
in (5.4)'. Solving for %, one obtains the absolutely convergent

Puiseux expansion

- z ¢ (_)1/n

1-1

nj-

Y e S
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or equivalently, the asymptotic expression (if ) £ 0)

s = dl nj/x + dznjf A% -

where (if = # 0) one has nj such expressions for this branch. In

particular, the unbounded closed loop poles are given asymptotically as

N b
s~d 1/ A , for some integer N '

and, taken together, approach infinity in several superimposed Butterworth

patterns. Such an expansion is also valid when (w,») is a singular point.

Now, Puiseux also derived (1850) a method, based on Newton's
polygon, for explicitly determining the leading exponents i/nj

which appear in (5.5) for each branch. In the case at hand, we consider

F(A,s) = det(sI-A+BK,C) = Zaijxisj (5.6)

and construct the Newton polygon of F. That is, in the (A,s)-plane
construct the smallest convex polygon containing each (i,j) for which

aij # 0, as in the figure below.

b

s

Figure 5.2

Newton Polygon for F(s,A) = 54 + )\353 + Asz + Azs + A4
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Now, each edge of this polygon which faces infinity will contribute
to a family of branches in the following fashion: we shall be rather
explicit here since the literature usually treats the derivation of the
Puiseux expansions in a neighborhood of (0,0), using the edges of the i
Newton polygon which face the origin. Indeed, choose the points PP,
where P1 = (ko,O) is the point on the Newton polygon closest to the origin, .
and P, is the remaining vertex on the edge Ll’ facing infinity, issuing
from Pl' Let -pl/ql be, in lowest common form, the slope of Ll’ and

define m by the equation
Py P/ 8 (PP = MpPy/My (5.7

Then, there are m, "cycles" of branches of s(A) each giving rise to an

expansion, for j=1,... Py

s = pl,/x% (dlj + P1f5e1 * )

z

where each dlj # 0 and differ from one another by a pl-th root of wnity,

and may be obtained from (5.6) by substitution.

Next, one may continue in exactly the same way with the veitices

P,,P; of the next edge L, (as in Figure 5.2) which faces infinity, .
eventually obtaining' all branches of s()) which tend to «» with \. We

note that this algorithm, viz., the method of Puiseux, does not require
eigenvalue/eigenvector calculations, and in fact requires only rational

operations.

It is, of course, generically the case that m, = 1 for each edge l..i

and, in the literature ([17],[19],[21]), if q; = 1 the root loci are said
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to be of inveger order. For K, = AI, the integer order case has been
" studied in great detail and the powers p; are known, generically, to
equal the Morse structural invariants [19] of the system or, again
generically, the Smith-McMillan invariants of G(s) at « [24]. 1In such
cases, the leading coefficient of the asymptotic expansion (5.5)' is
easily expressible in terms of the Markcv parameters of G(s) and these

results generalize to the non-square case and to polynomial gains

d
KA'K0+"'+Kd)‘ .

As an example, we calculate the leading term of the highest order

asymptotic by appealing to the return-difference detemminant

det(I+K,G(s)) = 0 , (5.8)

which also defines the algebraic curve (5.6). Developing G(s)
Gs) = £ Gy/st
i=1
in a Laurent expansion and equating terms, we find that the leading

coefficients of the highest order asymptotic are given as

1)
and in particular Prin = rank (KdCB), generalizing the Owens and

Sastry-Desoer formulae (see esp. [21], VI)‘.

d.. = - eigenvalue of KdGl (5.9
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6. Pole Placement by Output Feedback

The inverse problem of placing the eigenvalues of a linear system
by output feedback. has been studied by many people. The literature
includes the work by Kimura {13, [14] and Willems and Hesselink [26 ]
which we will have occasion to refer to below. Other references to the

li4mrature will be found in these papers. Here we undertake a systematic

general study of the pole placement problem with a view toward clarifying
the geometrical content of the problem. In doing so we are lead to the

rather astounding formula

1121, (p=D) 112! ... (m=1) ! (mp) !
d (=, p) 1121, . . (whp-1) f

giving the number of different (in general complex) gains which yield the
same set of poles. This, rather unexpectedly large, number emphasizes the
nonlinear nature of the pole placement problem and suggests that it is
probably rather difficult to solve algoritimically. It turns out that

d(m,p) is odd if and only if either min(m,p) = 1 or min(m,p) = 2 and

max{m,p) = Zk-l and in these cases we are able to show that typically there
exists at least one real solution to the pole placement problem.
We also give a new and insightful proof (and strengthening) of a result
of Kimura {13 on placing poles in the case where the number of inputs plus
outputs exceeds the number of poles to be placed. This new proof is
completely transparent and yields a set of relatively siﬁple equations which define
the desired gain.
Let G(s) be a p by m matrix of real proper rational functions. 1If

K is an m by p matrix of real or complex numbers then

K (s) = (G(s)k+1) LG (s) (6.1)

DRI I



PR AT

-

VY
i an AN St

78 .
ORIGINAL PAGE i3

is said to be obtained from G(s) by output feedback. In this section
we are concerned with the question of finding K so that the numerator

coefficients of the rational function

det (G(s)K+L) = x(K)/x(0) (6.2)
take on prescribed values. The map of the space of m by p matrices K
into the space of monic polynomials X(s) will be called the pole placement
map .

By counting dimensions, it is glear that mp 3 n is a necessary condition
for pole-placement, over either the real or complex field, and throughout
thig section we consider the first non-trivial case, mp = n.

In what follows, G(s) 1s a non-degenerate transfer function and
K denotes a gain matrix, k represents the corresponding p-plane in (mtp)-space,
i.e. k € Grass(p,m+p). We begin our study over the compliex numbers.

By virtue of Theorem 3.1, the pole-placement problem in the present
setting is the inverse problem of passing a Schubert hypersurface o(k)
through the curve G(s) at the prescribed set of points G(Al),...,G(Xn).

That is, given a set of n points {Al,lz,...ln} in £ find k, a

p-dimensional subspace in Qf"+p

, such that k intersects the n, m-dimensional
subspaces in Grass(m,mtp) defined by evaluating the map of IPI(C) into
Grass(m,p+m) defined by the transfer function G(s) at (Al,kz,...ln). To

see this, note that {(u,Y)I-u+Ky = 0} defines a p~dimensional subspace

in (fH?. It intersects the m-dimensional subspace {(u,y)|Guty = 0}

if and only if there exists z such that GKz+z = 0. A moments thought shows

that this is the same as finding K such that

det (G(A )K+L} = 0; i=1,2,...n . (6.3)
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2

This tacitly assumes that )"1 are regular points of G(s); otherwise one
must use a coprime factorization of G(s).

As we mentioned above, the collection of all m dimensional subspaces
in an (m+b)~-dimensional space is an mp-dimensional space. If we are given
t points in this space when can we expect to find a p-plane which intersects
all n m-planes? Schubert invented a calculus to solve such intersection
theoretic questions and his ideas subsequently came to play a sizeable
role in algebraic geometry; e.g. Hilbert's 15th problem is devoted to the
Schubert calculus [13. Foxr our present purposes it is enough to know that
given mp m-dimensional subspaces in ‘£n+p there exists (generically)

L (1121, (p~1)1 (112!, .. (m=1)! (mp)! ;
d(m,p) 1128... (mp=1)1 (6.4)

p-dimensional subspaces which intersect them all. (See Chapter 1V,

Section 7 of [12] or [15].)

‘At this point it is important to not; that, by the second statement
in Lemma 5.2, if Al,...,kn are all finite then the only p-planes V which
intersect all the m-planes G(Al),...,G(An) are finite, i.e. V = k for some
gain K. Thus, for a generic choice of finite Al""’xn’ there exist d(m,p)

distinct complex gains K for which

n
X(K) = I (s=2,)
i=1

Now, by Theorem 5.1 one can define x at infinite gains V as well, obtaining

X(V) ¢ P = {unordered n-tuples of points on Pl}. This latter idencification

was treated in some detail in Section 4, and it extends the identification
¢" = {unordered n-tuples of points in { }

obtained by factoring monic polynomials

n
s'Heys” Lbe. = 0 (s=Ay) .
n i=1 1

e
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In particular, X extends to a continuous (by Theorem 5.1) function
X ¢ Grass(p,mtp) =+ r" . (6.5)

Now, we know X has a dense image by the Schubert calculus and, since
Grass(p,m+p) is compact, X is onto. But then

X : (:mp >
is alsc onto, by the second part of Lemma 5.2 . Since ¥ is algebraic
we have shown
Theorem 6.1: Let G(s) be a non-degenerate p by m transfer function of
McMillan degree n = mp. For all choices (Al,...,ln) we can find d(m,p)

solutions (counted with multiplicity) to the pole-placement problem,

det(G(Ai)K+I) =0, i=1,...,n . (6.6)

Moreoﬁer, for the generic n-tuple, the solutions to (6.6) are distinct.
It is known in the literature ([10],[26]) that for mp 2 n and for
generic G(s), one can place almost all poles over € - by the dominant
morphism theorem. The full surjectivity of X, as well as the formula
(6.4) for the "degree" of ¥, are both new. Notice that if m = p = 2,
n = 4, then d(m,p) = 2 so that in some sense the problem is quadratic and
one might expect real solutions "only half of the time". Indeed, this
was shown in [26] and we give an independent proof here, based on the following
result.
Theorem 6.2 Necessary and sufficient conditions to be able to solve the
real system of equations

Ax+bQ(x) = v | (6.7)

PN
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for all v € R where Q(s) is quadratic is that A is invertible,
-1 a( '
(A "b) = 0 and ., =0.
Q Egl_m 1

Proof: Clearly to be able to solve for all v the colums of (A,b) must \
span R®. If A is singular, then we can change coordinates to z = Px in

such a way that the equations take the form

zi + biQ(Z) = Vi i'l,z,...,n'l

bQ(z) = v,

I1f these were to be solvable for all v, then bn would be nonzero and we

could use the last equation to eliminate Q(z) from the others yielding

zi = vi i=1,2,...,n-2 and an(z) = V- This set fixes the values of z}_
1

i=1,...,n-1, but Q(z) for Q(z)a quadratic does not map ]Rl onto R~ for all

values of Z4s i=1,2,...,n-1 as one easily sees.

Now suppose that A is invertible. In this case a linear transforma-

tion reduces the quation to the form

1

X+ ela(xl) = v

1 1

= ae,, then X

where e, is the first standard basis vector in K°. If v
must be of the form Bel and we see that to sc;lve g + E(Bel) = o for all
values of q, we must have Q(el) = 0. In terms of‘the original coordinates,
this means Q(A'lb) = 0 is a necessary condition. Now consider vl = ae, + Vé.

1 1

In this case, x™ = gey + v and we must solve

8 + Q(ge, + V) = a
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since a(el) = 0, if
a~
B *0
xlel

then we can’ choose Vg SO that a(Bel + vé) is independent of 8 and hence

B + Q‘(Be1 + Vg) = a can not be solvable for all v, and a. Again, in temms

of the original coordinates this means

& = (
If g%l is not zero, we can choose § so that y + Q(ye1+ Gvo) is
e
1

independent of y. This establishes the neces:ity of the conditions.

Sufficing is easily seen and we leave it to the reader.

Corollary 6.3 If Q(x) is non-degenerate, then (6.7) is solvable for

all v if, and only if, b=0.

This result, together with the formula

6,-n @ (K >(2) = det(GK+ 1) (6.8)
I

means we cannot place the closed-loop poles of G(s) arbitrarily unless

G(s) satisfies certain conditions. In fact since

<[det G(s),8;,2;,83,84,11, [k ky-ksko T,k Ky kg,Kky,1> = det(G(s)R + I)  (6.8)°

the quadratic form Q(w,z,y,z) = wz-yz in (6.8) is non-degenerate we must havé
det G(s) = 0. Thus solvability of (6.8) for all monic polynomials of degree

4, amounts to a non-trivial constraint on G(s). This implies the main result

of Willems-Hesselink [26].

St e
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Corollary 6.4: If G(s) is a non-degenerate 2x 2 transfer function with

McMillan degree 4, then the set of closed loop polynomials which cannot be
achieved by output feedback is a non-empty open subset of ]R4 .

This set is open since the image of x: Grassp (2,4) » .{4, is compact and,

by virtue of the second part of Theorem 5.1, has a closed intersecticn with
R4 c Il’4 , the subspace of polynomials having finite roots. Notice that if
- detG(s) = 0, then

det(I + KG(s)) = 1 + tr(KG(s))

is linear in K and so to say this correspondence is not surjective is

to say there exists K # 0 such that tr(KG(s)) = 0. That is, thinking of
tr(K-) as a linear functional on the space of 2 x 2 matrices, this

implies that G(s) «V g r* , for V some subspace of IR4 . This constraint

fails to hold for the generic G(s) satisfying detG(s) = 0, indeed

s+l 0 (s-1)(s-2) (s-1)(s-2) -1

G(s) =
$+2 0 0 (s-3)(s-4)

satisfies detG(s) = 0 but there exists no proper V > G(s), for all s.
In particular, one can place poles over R for the generic G(s) which
satisfies detG(s) £ 0. By Theorem 6.2, these conditions are necessary

for pole-placement as well.

Corollary 6.5 Let G(s) be a real 2 x2 transfer function of McMillan

degree 4. One can place poles arbitrarily by output feedback if, and

only if, detG(s) = 0, and no real linear combination of the gij vanishes.
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Remark: If one imbeds Grass(2,4) <IP° by the Plucker imbedding, (6.7)
gives the equation for pole-placement in Ehe so-called Plucker coordinates.
(6.7)' represents the fact that in the Plucker coordinates these equations
amount to 4 linear equations - representing the constraint that the hyper-
plane in IPS corresponding to K pass through the 4 points G(Al),...,G(Aa) -
and the single quadratic constraint which defines (the dual) G(2,4) as a
quadric in (the dual) IPS. This 1s quite general, the Plucker equations
define Grass(p,m+p) cIPN as the intersection of quadrics - for example,
ifm=2, p=3and n = 6, the pole placement equations become 6 linear
equations and 3 quadratic equations. In this case, however, they are
always solvable over R since, in this case, the remarkable formula (6.4)
giv;s d(2,3) = 5. Thus, for non-degenerate 2 by 3 transfer functions of
McMillan degree 6, we can always place poles arbitrarily over TMR.

In general if mp = n then the Schubert calculus tells us that there are,
generically, a certain number of feedback gains Kl,Kz,...,Ki which satisfy

det(G(Ai)Kj+I) = 0 i=1,2,...n

and hence place the poles at the locations AI,A3,...kn. Suppose that G(s)

is real for s real and suppose that the Gi = G(Ai) appear in complex

coujugate pairs. Then if Kj is a solution E& is also; the complex
solutions occur in complex conjugate pairs. If the total number of solutions
is odd then, ;f course, one solution must be real. We know that for typical
values of‘Gi in R™P there are solutions. However the set of self-
conjugate Gi is not open in d:m+px cee X cp+p (n factors) and so we must

reason with some care in order to show that for typical self-conjugate sets

of {Gi} we have d(m,p) roots.

i A S A B I 175
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Theorem 6.6: Suppose G(s) is nondegenerate. If mp = n and d(m,p) is odd

then there exists an open dense set of self-conjugate Gi such that

det(GiK+I) =0 {i=1,2,...n (6.9)

has a real solution. Moreover d(m,p) is odd if and only if min(p,m) = 1
or min(p,m) = 2 and max(p,m) = 2k-1 for some k = 2,3,...

!EEE&’ Let J(Ki) denote the Jacobian of the pole placement map evaluated
at Ki' Suppose that {Gi}:_l is given and suppose that the pole placement

map has d(m,p) inverse images KI’KZ""Ra’ then

¥ = det J(K,)det J(K,)...det J(K;)

is a function of GI’GZ"”Gn but not a function of K. We know that ¢ is
nonzero generically. It is also an analytic function of the entries of Gi‘
‘Thus if it vanishes identically for, say, an open subset of real Gi's then

4% vanishes identically which is a contradiction.

I. Berstein [2 ] proves that d(m,p) is odd if and only if the
given conditions are satisfied. Q.E.D.

Corollary 6.7 Suppose G(s) is a 3x2, or a 2x 3, nondegenerate transfer

function. Then, the McMillan degree of G is less than or equal to 6, and
the poles of G may be placed arbitrarily cver R if, and only if, the degree

equals G.

As a final remark, the well known formula for det(A+B) when B is of
rank one provides some insight into the pole placement problem. If b and
¢ are vectors and K = bc', then

det (G(s)K+I) = det(G(s)bc'+I)

= c'G(s)b + 1
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n=-1
+. . -p, 88 an

Regarding the space of monic polyromials x(8) = ln+pn_ls
n-dimensional vector space and writing
c'G(s)b = q(s)/p(s)
ve seé that by inserting a scale factor in front of b the whole pencil
of poiynomials
X(s) = p(s)+kq(s)
may be achieved. This line of thinking leads easily to the following
strengthening of Kimura's result [13]. (It is stronger than Kimura's
results because we show that the pole placement map is onto and not just
almost onto.)
Theorem 6.7: Given G(s) of McMillan degree n the image of the pole
placement map is the whole space if for any given polynomial q of degree
n-1 or less there exists vectors c and b such that
c'G(s)b = q(s)/p(s)

Moreover, if G(s) = C(Is-A)-lB with A, B, C chosen generically this
condition will be satisfied provided mt+p-n 2 1.
Proof: Consider the set of all transfer functions c'G(s)b with
||c[| = 1 and ||b|| = 1. Under the hypothesis this set intersects every
line passing through zero in the real vector space of all polynomials
of degree n-1 or less. Using the above argument we see that this means
that the pole placement map is onto.

To see that this condition is generically satisfied, we note that
it 1s equivalent to asking that n polynomials in the vectors G(s)b and
G(s)c should be independent over R. Clearly this is generically true.
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Abstract

In this note we discuss the continuity of the closed loop
poles of a linear multivariable system with respect to a multidimensional

polynomial family of direct‘output gains K(A Ar). This is based on,

100
and contains an exposition of, the geometric formulation for including
infinite gains which was developed in the lectures [2] and extended
and applied in [1] to the study of output feedback systems. This has
been a basic tool in recent work on the classical problem of péle-
placement by output feedback and in [1] the lack of continuity of the
root-loci, in certain situations, was discussed with special emphasis
on the complex case. Here, after presenting two somewhat surprising
counterexamples to this continuity, we give in Theorem 1 and the
ensuing discussion necessary and sufficient conditions for continuity
of the root-loci at a real infinite géin, This should have significant

i=pact on the problem of constructing graphical tests for the stability

of systems subject to 2-dimensional variations in the gain parameter.
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1. In the past decade, in one sense a fairly conclusive theory for
sketching the root-loci of a (square) mxm, strictly proper rational
transfer function G(s), as a function of the l-parameter direct output
gain K(A) = AI, has been developed (see, e.g. [5], [6j).. The root-loci,
or closed~loop poles, consist of n algebraic functions sl(k),...,sn(k)
which evolve (as A + «©) on the m sheets of a Riemann surface X,

branched over the Riemann sphere. Explicitly, we first take Xo cCxC

to be the locus defiqed by the return-difference determinant

0 = F(A,s) = det(I+K()\)G(s)) OLCP(s) (1.1)

where OLCP(s) denotes the open-loop characteristic polvnomial of (a
minimal realization of) G(s). Since we are interested in the behavior
near A = » we adjoin such points, s? - C U {=}, and consider the
Riemann surface X = i; c S2 % S2 together with the 2 natural projections

pl(l,s) = A and pz(k,s) = s which each exhibit X as a branched cover

Py ¢ X -+ 82 i=1,2

of the Riemann sphere with n (respectively, m) sheets. Since

F(A,s) = CLCP(A,s), for fixed AO the n points sl(Ao),...,sn(Ao)

coincide with the closed-loop poles determined by K(A,). |
Just as in the classical case {(i.e., m = 1), the method for
sketching fhe root~loci consists of determining:
(i) the initial values sl(O),...,sn(O) which are of course
the open-loop poles;
(ii) the final values sl(w),...,sn(w) which in this case are the

open loop zeroes provided det G(s) # 0; and

T R A Y
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(1ii) the angles of departure (A << =) and angles of approach
(0 << 1) eon the appropriate sheets of X.

We shall return to a discussion of (ii) presently, but remark thut
the determination of (iii) is a classical problem in algebraic function
theory, solved by Puiseux in 1850. Explicitly, -suppose we are interested
in the behavior of.those si(l) which tend to = with A. These can occur
in several groups, or cycles, corresponding to the infinite branches of
X over the point A = ». Choosing one such branch, we can obtain a
Puiseux expansion for % as a funeceion of % :

1/q; 1.2/

J
(7) + ajz(i) + ... (1.2)

3

1.,
s, P!
which converges absolutely in a neighborhood of %- = 0.  Here,

j indexes the algebraic function sj in this particular cycle. Inverting

(1.2) one obtains the asymptotic expansion

- . qC—T
5,00 = ay YT +ay, 332+ L. (1.3)

which determines the angle of approach of sj(A) as A + o, For example,
if ajl # 0 then sj(A) tends to infinity asymptotically as a qj-th root
of unity. In other words, this cycle of root-loci tends to ® in a
Butterworth pattern and thus the root-loci tend to « in superimposed
Butterworth patterns. It is a happy fact that the leading fractional
powers appearing in (1.2) can be read off, in a glance, from the Newton
diagram of X - that is, from the Newton diagram of the polynomial F(A,s).
Moreover, the leading coefficients in (1.2) can be obtained from

substituting (1.3) into (1.1) and equating coefficients.
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2. Quite clearly;the analysis above extends to the important case of
l-parameter families K(A) of gains which vary polyncmially with A. The
extension to nonsquare G(s) involves considerably more thought, especially
vis-a-vis (ii), requiring a careful development of the concept of
infinite gain and leading naturally to questions concerning the
robustness of the asymptotic expansions (1.3) and of the root loci

themselves. In this sense, the root-locus theory is far from complete

and, since robustness is likely to play an important role in the
analysis of 2-parameter families of gains, we present here a theory of
robustness based on the notions of infinite gain presented in [1]

and [2]. We shall now give 2 rather surprising examples of this lack of

robustness, the first is adapted from the single variable discussion in [1].

Example 1 Consider the transfer function and the 2-parameter family

of gains, respectively, defined by

1/(¢s%-1) 0 { 1) A
o) = | X ,OROWW = |,
0 1/(s"-4) U A-uU PA=-1

JO T

We shall compute the root-loci, as a function of (A,u), along the 2
asymptotic curves, Yl: 4 =0 and Yp ¢ gA = 1, in the direction of
increasing A. Along Yy s we see that the root-loci is constant and
coincides with the roots of 52(52-5), yet along Y, the root-loci is
constant, given by the roots of (52—1)(s2-4). Furthermore, along

Yq ¢ uzi = 1 which is also asymptotic to Yl,'the root-loci depend on A and
tend to the roots of 54-552-1. This ekample shows that the final values

of the root-locus are not continuous with respect to the gain! Furthermore,

TN A R e A
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it can occur that along one curve a systemvappéars stable in the high
gain limit but along a slightly perturbed curve, the system is unstable
for high gains. We note that this pathology is not due to:

(1) 1inequalities m > p or p < m, or to

(2) the absence of diagonal dominance in G(s), or to

(3) the vanishing of det G(s).

The second cxample is deceptively trivial.

Example 2.  Given G(s) and K(A,u) defined by

1 1 A 0
G(s) = s, KO, = )
1 1 0 A=22.u

Along Y, we have the root locus given by s(A) = -A, yet along Y, one
- 1 2

computes s(A} = 0.

N.B. The condition det G(s) = 0 is generic (indeed, always satisfied)

for 2x2 transfer functions of McMillan degree 1.

These examples can be interpreted in the following context.
A polynomial family of (mxp) gains K(Al,...,kr) is said to have dimension
r just in case the Jacobian of the function K : ®R" +®R"P is not
identicallyrzero. Thus, dim K € mp. Here, and in the following sections,
G(s) is a pxm real transfer function having McMillan degree n and the
variety Z;’p of all such functions is coordinatized by the Hankel

paramefers of G(s) as in [3]. In particular, a generic set of G is a.

complement of a proper subvariety in the corresponding space of Hankel matrices.

(-
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Theorem 1. If dim K € n, then for the generic transfer function G
and any curve Y in IRr along which K tends to infinity, the root-loci
are continuous. 'That is, for Yy asymptotic to Y the root-loci agree
in the high gain limit. If dim"K > n, then there exists some curve Y
in d:r along which the root loci are discontinuous. Moreover, there

exists some real family K for which Yy may be taken to be real.

Note that Example 1 illustrates the necessity of the generic
hypothesis on G in the first statement, while Example 2 illustrates

the remaining assertions.

3. Returning to Example 1, we investigate the asymptotic behavior of

the gain K(X,u) itself along v,. Here, u = K(A,u)y is the linear

relation
. =yy1+Ay2 ’ uy = =¥, (3.1
or, equivalently, for A # 0
ul/l = yl/X + Yo u, = -y, 3.1
As A + ®, this linear relation approaches the linear relation B
(3.2)

0= y,2., uz = =Yg

that is, the linear relation (also of rank 2), uy = yév=ﬂg. It is

easily seen that this relation is also the limit of K{A,u) along Yy and Y5
The system-theoretic interpretatidn of the discontinuity at this infinité
gain is simply that for A >> 0 each frequency s € ¢ behaves like an
approximate pole, so that "in the limit" each s € € deserves to be called

a pole. Explicitly, given any s € ¢, any € > 0 and any ¢ > 0 there

SR EmE e e
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exists an input u with llﬁ(so)‘l < £ and an N(c,e) >> 0, such that the

resulting output y(so) of the closed-loop system corresponding to

K(\) defined by (3.1) satisfies : *

||§(so)l| > ¢ for A > N(c,€)

For this condition to be satisfied, one must choose uz(so) # 0 which
will then amplify ﬁl(so) and hence ?l(so) in the closed loop equations.
In this light, the infinite gain constraints (3.2) reflect the fact
that, only un&er the condition u, =0 (and therefore yé = 0), will

the limiting "transfer function'" yield a finite output from a finite

input.

4. We can make this precise in the language of classical algebraic
geometry. Consider, for K : IRP-+Ugn the graph of K as a dimensivnal
subspace

gr(K) = {(y,Kky) : y e R’} cr?P @ r"

We may alsc comsider K as a linear map, Kg : {3p > (Em and therefore
define gr(Km) as a subspace of PP C ™ 0f course gr(Kgp )

determines K@ . Now consider the set Grass(p,mtp) of all p-planes in

C}) C) €¢™. This set may be naturally regarded as a compact manifold,
indeed a variety (see [4]), the Grassmannian variety. The generic p-plane
. m P m . ,

is complementary to & < @ € and is therefore the graph of some

linear function K : €? -+ €™, 1In this way, Grass(p,mtp) is a compactification

P,
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of the space of (finite) gains and therefore has dimension mp. For example,
the 2-plane in ‘ﬁ“ defined by (3.2) is an (infinite) point of Grass(2,4)
which iz not the graph of a linear gain Ky = u, but which is the limit

of the 2-planes gr(K(A)g ) where K(}) is defined by (3.1). Thus,
Grass(p,m+p) is a model for the space of finite and infinite gains,

with p-planes V cP @ em falling into these 2 classes according

to whether V is complementary to " of not. We shall denote this

latter subvariety by a(e™.

Graas (romre)

Figure 1

In Figure 1, we have depicted an infinite gain V € o(€™ together
with 2 asymptotic sequences Yy5Y2 of finite gains approaching V in the

(high gain) limit.

5. In this model for including high gain limits, we can ask whether

the root-loci are continuous at infinite gains. Referring to Figure 1
and examples 1 and 2, it is not hard to see the difficulty involved.

In the standard context of this problem, the methods by which the root-
lori are defined at V is by choosing some sequence, say Y, approaching v
and defining the root-loci as the corresponding limiting n-tuple on

the Riemann sphere (which exists, by Bolzano-Weierstrass). The analytical
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question which remains is whether this limit is independent of Y.
This was determined in [1] and [2] by defining the root-loci at V
intrinsically - in the case when the limits will agree.

Lemma ([1]) Let K be a finite gain, defined over IR or €, and
let ¢ = {¢1,...,¢m} be a set of linear functionals which define
gr(kq) < €P ® €". Then the poles of the closed-loop system

G(s)(I-ﬂ‘l(G(s))-1 are the :zeroes of the rational function
F¢(s) = det(¢i(gj(s))) (5.1)

where gj(s)t is the j-th Tow of [G(s),Im].
N.B. (5.1) is proportional to the return-difference determinant
det(I-KG(s)), in particular its zeroes are independent of the choice
of ¢~ a fact which “*n also be checked directly.

Turning to infinite gains V, choose ¢ = {¢1,...,¢m} ‘so that
vV = 'R ker ¢i,,and form F (s) exactly as above. Provided F¢(s)
doesl;ét vanish identically, we may define the infinite root-locus
X(V) as the n zeroes, finite or infinite, of F¢(s). Moreover, continuity
of the root-loci at V follows from the continuity of the roots of’a
{non-zero) polynwmiai.on its coefficients. However, when F¢(s) =0
this is nonsense.ﬁ
Theorem 2 ([1], [2]) The root-loci are continuous at an infinite géin
V if, and only if, F¢(s) £ 0.

6. Example 1'. Consider the infinite gain V defined by (3.2), thus
2

V= N ker ¢i where, for example,
i=1

.

sl BRI TV i
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¢1(y1.)'2,u1,02) = y2’ ¢2(Y1o}'2ou1nuz) = UZ
while
t 2 N\t 2
81(5) = (1/(5 "1),0,1,0) and 82(5) Ld (0,1/(5 "4)'.0,1)
Thus,
0 1/(s-4)
F¢(s) = det =0 ,

0 1
as claimed.

Example 2'. Along Y0 K(A,u) = )\12 so that u = K()\)y is simply

u, = )\ui, or ui/A =y, for A$0

In the limit A -+ <, we obtain the infinite gain V = €P defined by
vy = 0, for i = 1,2 or equivalently by the linear functionals

0, (y1¥prupoug) = Yy
Thus

Fy(s) = det G(s) = 0 !

Example 3. TFor any square System G(s), the root loci corresponding to
RK(\) = )\Im will be continuous at V = ;,\i: K(}), defined as in (6.3)',
if and only if the well-known condition det G(s) # 0 is satis®i~d.
Alternatively, the technical condition that open-loop zeroes should

exist coincides with the condition that these particular final values

of the root locus should be independent of the high gain limit

V=1lim XK, det K# 0

-0
This gives additional insight into the condition (6.4) as well as
Theorem 2. As a special case (m=1), note that root loci are always

continuous in the scalar case for nonzero g(s).

101

(6.1)

(6.2)

(6.3)

(6.3)"

(6.4)
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7. Now, to derive Theorem 1 from Theorem 2 we note that ([2], Lemma 4.A)
FQ(s) = 0 if, and only if, F¢(si) = 0 for i=1l,...,n+l and where s, are
distinct points in € . Furthermore, for any fixed s, and V € Grass(p,mp)
arbitrary, the equation F¢(s°) = 0 defines a hypersurface on Grass(p,mtp) -
indeed, a Schﬁbert hypersurface (see [1], [2]). For generic G these may

be chosen i/t general position for distinét 54 and therefore ([7], p. 57)

for any svbvariety X < Grass(p,mtp) the intersection

n+l
n {v: Fplsy) = 0} N x
i=1

is emyty if, and only if, dim X € n. Finally, the condition dim K < n

on & family of gains K(Rl,...,lr) is the condition that the algebraic

dimension over ' of K(ﬂr) < Grass(p,m+p) is less than or equal to n,
but over € this coincides with the geometric dimension of X = K(fr).
This shows that if r > n, there exists some point V of discontinuity
iﬁﬁf?j‘c Grass(p,mtp). However, V must also be a point of discontinuity

since we may choose the n+l points s to be real, and in that case
G(s;) NV # (0) iff G(sy) NV # (0) .

Indeed,

G(s;) NV NV +# (0  for

X

=1,...,n+1.
Choosing a real p-plane w, such that V N V'C:w, one has
'G(si) Nw # (0) for i =1,...,n+1

and hence for all s. Such a w is therefore a point of discontinuity
~for the root-locus map and also lies in the closure of the family
K: RP + R™

defined by K(x) = x.

L s am ae
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ABSTRACT

We consider questions of Pole placement and stabilization for
generic linear systems with prescribed state, input and output
dimensions, where the controller must be implemented by linear
memoryless output feedback. We present a criterion, in terms of
a special pole-placement property, for genmeric stabilizability and
apply this to describe constraints on the dimensions which are
consistent with generic stabilizability. We also discuss the
rationality and solvability by radicals of stabilizing or pole
positioning gains, and we describe how decision algebra can

theoretically handle existence questions for generic systems.
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et g ooy ¢ it A S TP < -



AIGINAL PAGE 13
83 POOR QUALITY 109

1. INTRODUCTION

In this peper, we are concerned with questions of pole-assignability

and stabilizability for real linear input-output systems

ax
dt Fx + Gu

y = Hx (1.1)
or

x(t+l) = Fx(t) + Gu(t)

y(t) = Hx(t) (1.1)~

where we allow constant gains u = Ky as feedback. The equations of
pole-assignability are real polynomials and it is natural to attempt to
solve these equations by eliminating the unknown variable K. Similar

remarks apply to the equations of stabilizability which include, however,

algebraic inequalities arising for example from the Routh-Hurwitz criteria.

In what follows, we shall use various results from classical algebraic
geometry, including elimination theory and the Schubert calculus of
enumerative geometry, which apply to the equations of pole~placement.

Put geometrically, elimination theory consists in the study of a

projection
P : X xY-+X ' (1.2)

restricted to an algebraic, or semialgebraic, set Z c X x Y, where X
and Y can be taken to real or complex vector spaces, e.g. X = RN,

Y =R. The main problem in elimination theory consists in finding a

PRECEDING PAQE BLANK NOT FILMED
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description of the set
pl(Z) = {x:3y such that (x,y)€z}
in terms of Z. A basic example is given by
Z={(x,y) : x= yz} (1.3)

which is algebraic but for which p;(2) is only seﬁialgebraic if we

*
take real coefficients .

In relation to the pole assignability question for a prescribed
F, G, H, we can identify the entries of K with the space Y and
the coefficients of the closed loop characteristic polynomial, call

them Pi, ooy P, with X. Then

n .
z ={(p;, oo, p_, K): det(sI-F~GKH) = s" + Ip sn-i}
n i
i=]
and pole assignability of a generic closed-loop polynomial holds if

and only if p;(Z) coincides with all of R"™ save a proper subvariety.
P

Among the results we obtain using classical algebraic geometry
are: the condition mp <n is necessary for the stabilizability
of the generic (F, G, H). This condition is well known to be necessary
for pole-assignability of the generic (F, G, H), and our result raises
the question as to whether or not, in terms of the values, m, n, p,
these two questions might not be equivalent. As unlikely as this may
be, at the time we write there is no counterexample (although there is
evidence in this direction for m=2, n=9, and p=6, see [5]). We
also show that if a stabilizing gai; exists, then such a gain can be

found by a rational procedure. On the other hand, we show that if

*Semialigebraic sets are defined in Section 3, equation (3.4).
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mp=n a rational procedure for finding a gain K which assigns a given

characteristic polynomial (assuming such a K exists) does not exist

unless min(m,p) = 1, in which case a linear formula can be found.
Moreover using square roots as well as rational operations only helps
if min(m,p) = max(m,p) = 2. This is of course in contrast with pole
assignment by state feedback, and answers in the negative a question
raised in [1].

We also argue that one can in principle determine by rational
calculations whether, given m, n, p, generic F, G, H are pole
assignable, generirally pole assignable, or stabilizable. We say "in
principle" since the number of calculations required is enormous.

We use several tools to prove the results. One of the theorems
ix due to Tarski~Seidenberg, which asserts that if Z d1is semialgebraic,
then p,(Z) is semialgebraic. This theorem can be used iteratively to
reduce the question of the existence of a solution x e R® to a set of
semialgebraic equations to the question of existence of a solution to
another set of semialgebraic equations in, for example, the unknown
x, ¢ R. Such existence can be decided by a rational procedure in the
coefficients of the resulting semialgebraic equations. The Tarski-
Seidenberg theorem is extremely qualitative, and "worst-case" analysis
([7)) shows that such a decision procedure takes at least 2k'n steps,
where k > 0 is a constant and n is the length of the input formula.
We also use a classical form of elimination theory, over T:

if 2z x ot

is defined by equations which are homogeneous in vy,
then p,(2) < BN is definable by polyncmial equations.. In particular,

pl(Z) is closed.
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A topological form of this elimination theorem also holds over R, and
is crucial in showing that (for mp €n) the image of the pole-placement
map {s Euclidean élosed in R" for the generic system ([4]). Our
proof of Theorem 1 relies on this result.

We must aiso use rather explicit eliminaticn arguments which
have appeared in the literature. Among these are the works by Willems-
Hesselink [23) and, more recently, Morse-Wolovich-Anderson [19] which *
treat the case m=p=2, and m=2; p=3, These authors, after
considerable calculation, obtain a single explicit equation in a single

unknown and it is possible to obtain some quantitative and qualitative

results from the form of the equations. Finally, we use the results of
Brockett-Byrnes [ 3 ] who determined the degree of this equation, for
general m, p, using methods of the Schubert calculus. This calculus
was developed in the 19th century in order to deduce the degree of the
final equation one would obtain in certain problems of enumerative
geometry, without going through the elimination theory first. It is a
fortunate fzut that the return difference equation corresponds to a
classical equation of enumerative geometry, enabling one to determine

this degree as a function of m and p.
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2. _ STATEMENTS OF THE MAIN RESULTS

Let us suppose that (F, G, H) 1s a triple of matrices which
correspond to either a discrete or a continuous time system having
m inputs, n states, and p outputs. We consider the questions,

for m, n, p fixed:

Question 1: Is it true that for all (F, G, H), except perhaps
those contained in a proper algebraic set, one can arbitrarily assign
the (closed-loop) eigenvalues of F+GKH by suitable choice of outpul

feedback K?

Question 2: Is it true that one can stabilize all (F, G, H),
except perhaps those contained in a proper algebraic set, by some

output feedback K?

Concerning Question 1, it is known ([13], [23]) that mp 3n is
a necessary condition on the parameters m, n, p. In Section 3 we
derive a stabilizability criterion as a limiting form of the equivalence
of generic stabilizability for continuous and for discrete time systems.
This can be thought of as an equivalence between generic stabilizability
and the generic existence to an output feedback deadbeat control problem

for nondegenerate systems (in the sense of [3], [4]):

Theorem 1: If mp<€n, the following statements are equivalent:

i) m,n,p are such that the generic (F,G,H) is stabilizable
ii) wm,n,p are such that for any nondegenerate (F,G,H) theré

exists a gain K such that the closed loop polynomial is s".

Sl S
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This result holds for mp >n as 'well, with nondegenerate replaced
-
by the weaker term generic. Since we do not need the general result

here, we shall only prove it in the case mp<n. From Theorem 1 we

obtain

Theorem 2: mp 2 n 1is necessary for generic stability.

This result of course implies that mp 2 n is necessary for
Question 1 as Qell, but also raises the question as to whether the
answers to questions 1 and 2 might not agree, as functions of the
parameters m, n, and p. On the one hand, if max(m,p) 2 n then
generically either G or H 1is of rank n so that one is in the
state feedback situation where the answer to Question 1, and therefore
to Question 2, is well krown to be in the affirmative under the generic
hypothesis of reachability. On the other extreme, Theorem 2 shows that
for mp < n the answer to both questions is in the negative, so that explicit
calculations for mp~ n are therefore quite interesting. However,

aside from a few special cases, our knowledge is incomplete.

Example 1 (m=p=2): If n =4, it has been shown by Willems-Hesselink
({23)) that pole placement does not hold for an open subset of (F, G, H).

In [3 ] it is shown that pole placement does not hold unless the

transfer function  T(s) = H(sI-—F)-IG has rank 1. 1In particular, -

pole placement does not hold for (F,G,H) in an open, dense set. In
[19], necessary and sufficient conditions for generic pole placement,
for a particular system of this dimension are derived.

Thus, by Kimura's Theorem [16] and the Willems-Hesselink counter-

example, the answer to Question 1 is yes if, and only if, n < 3.

Sonrtvma w0 ey
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In [23) it is asserted that a modification by P. Molander of the
techniques in [23) shows that the answer to Question 2 is in the
negative if n = 4, Thus, the answers to Questions 1 and 2, if
m=p =2, are yes if, and only if, n £ 3. Since this result is
unpublished, in section 4 we present a verification of Molander's
conclusion as a corollary to our generic stabilizability criterion.

‘This of course gives another proof of the Willems-Hesselink theorem.

Theorem 3 (Molander): There is a nonempty open set of (nondegenerate)

2 x 2 systems of degree 4 which are not stabilizable by constant

cutput gain feedback.

Example 2 (m = 2, p = 2k~1): It is known in this case that the answer
to Question 1, and therefore to Question 2, is in the affirmative ([ 3 ))
provided mp > n. By Theorem 2, the answer to both questions, for

these values of m,p, 1is therefore yes if, and only if mp > n.

Example 3. (m = 2, p = 4) At present, one is able to deduce from the
results proved in [ 3] and more refined topological methods that

the answer to Question 1, and therefore to Question 2, is in the
affirmative whenever n < 7. Theorem Z then asserts that the only case
which remains to be analyzed is n = 8, where it has been conjectured ([en

that the answer to Question 1 is in the negative.

We should mention, however, that there are cases (e.g. m = 2, p=6,
n =9) where generic stabilizability is known to hold; but where

Question 1 remains unanswered ([5]).

el SR o et
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Until now, we have only discussed the existence of solutions to
the problems of pole positioning and stabilization. Equally important
is the consideration of what kind of algorithm might exist for finding
a gain K which places the poles, or stabilizes the system, pgpvided
such a gain exists. In Sections 5 and 6 we analyze each of these

questions and prove

Theorem 4: Suppose there exists a gain which stabilizes the
system (F, G, H), Then, one can find such a K by an algorithm

which is rational in the coefficientsof (F, G, H).

In [1] the question was raised as to whether rational formulae
exist for a gain K which places the closed loop characteristic
pclynomial at p(s) = sn-fplsn-l-+...-+pn. That is, provided such a
gain K exXxists, can one find K as a rational function of
(F,G,H,p;s «:vy pn)? This holds for the case of state feedback and,
in particular, where min(m,p) = 1 and max(m,p) = n. In this case,

a linear formula for K follows from consideration of the phase-variable
canonical form. However, as the equation obtained by Willems-Hesselink
(see also [3 ], [19]) shows for the case m=p=2, n=4, there exist

precisely 2 gains (possibly a complex conjugate pair) counted with

multiplicity which place a given real monic polyriomial
s“vbpxs3 + ...t Py

Moreover, the coefficients of such a 2 x2 gain K are given by the
solution formula for a quadratic equation. Thus, in general, a rational
formula does not exist. If mp=n, we can give a more precise answer

to the question raised in {1 ]:
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Theorem 5: If mp=n, the following statements are equivalent

for the generic (F,G,H) and monic polynomial p(s):

(a) there exists a rational formula, in the coefficients of
p(s) and entries of (F,G,H), for some K which places the
closed loop polynomial at p(s);

(b) there exists a linear formula, in the coefficients of p(s)
and entries of (F¥,G,H), for such a K;

(¢) min(m,p) =1 and max(m,p) =n.

Theorem 6: If mp = n, the following statements are equivalent

for the generic (F,G,H) and monic polynomial p(s):

(a) There exists a formula, involving rational expressions and
square roots, for some K which places the closed loop
polynomial at p(s);

(b) either min(m,p) = 1 or min(m,p) = max(m,p) = 2.

Indeed, if mp = n we conjecture that the only cases for which

117

there exists formulae for K involving rational operations and radicals

are

i) min(m,p) = 1 and max(m,p) = n; or

ii) min(m,p) = max(m,p) = 2,

This conjecture appears natural in the light of our techniques

(Section 6), which are an application of Galois theory and of the

methods used in [ 3 ] enabling one to express the number d of

my P

(perhaps complex) gains K which place the poles of a given generic

(= nondegenerate) system at a given monic polynomial if mp = n.

In fact
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s el G-Di@p!
m,p m! ... (mp-1)!

This agrees with the Willems~Hesselink calculation ([20]), that d2’2=‘2

and with the recent calculation made by Morse-Wolovich-Anderson ([19]) .
= = 5%,

2,379,277

Our methods for proving Theorem 4 rely quite heavily on the

that d

Tarski-Seidenberg Theorem (Prop. 3.2). In the course of the proof we
need several other results from "decision algebra'. With these results
in hand, it only requires modest additional effort to show thét the
question raised in this paper, i.e. whether or not Questions 1 and 2
are equivalent for any fixed m,n,p triple, can in fact be answered

by decision algebra. This is shown in the Appendix.

The actual application of a decision algebra based checking procedure
is of course extremely impractical to implement but we should emphasize
that, at preseht, this is the only method which is even in principle
capable of answering this equivalence question for arbitrary m,n,p.
For this reason, we feel it is worthwhile ﬁo give a proof of this

statement.

*Based on our techniques and those in [12], the authors of [6] have
confirmed our conjecture in the case m=2, p=3 by showing that the Galois
group of the output feedback problem is the full symmetric group, SS‘
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3. PROOF OF THEOREMS 1 apd 2:

We shall begin by proving that, for m, n, p fixed, stabilizability for

Z4n (m+p)

the generic (F, G, H) ¢ R" is equivalent to the property that

(s-p)n, p ¢ R, may be assigned as the closed loop characteristic

2
polynomial for the generic (F, G, H) ¢ R" +“(m+P)'

It is intuitively
clear that Question 2 should not distinguish between continuous time
and discrete time stabilizability. This follows from the first lemma

where € =1 and p=0,

Lemma 3.1: The following statements are equivalent:

i) m,n,p are such that for all (F, G, H) ~ except perhaps
those contained in a proper algebraic set - there exists a

stabilizing gain K.

ii) m,n,p are such that for all (F, G, H) - except perhaps
those contained in a proper algebraic set- for all real p and
all € > 0, there exists a gain K such that the eigenvalues of

F+GKH are contained in an e€-disc centered about p.

Proof: We first note that to say (1.1) is stabilizable is to

say the system
i = Fx+Gu, y = Hx+Ju, , (3.1)

with J arbitrary but fixed is stabilizable. For, if K is a
stabiliziﬂg gain for (1.1), and I -KJ is nonsingular, then the gain

u = Ky, where

K=( —KJ)-]'K,

e
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stabilizes (3.1). If I-KJ 1is singular, we may choose K sufficiently
close to K so that K is a well-defined stabilizing gain for (3.1).
Now consider the conformal transformation
$(2) =[(z-p)/e+1] [(z-p)/e-1]""
and define the rational matrix valued function
V(z) = W(§(2)) = B(zI -F)"1G +7 (3.2)
where W(z) 4is the open loop transfer function,

W(z) = H(zL ~F) lg+J (3.3)

Now let K be a gain such that the closed-loop poles of
-1
W(z) (I +Kw(z))

are at  z;, ..., 2. Then, generically, the poles ¢(z;), ..., ¢(zn)

of
V(z) (I +Kkv(z)) "t
will be finite. Since
Refz] <0 1f, and only if, l¢(z) -p| ;e

K stabilizes W(z) with respect to Re[z] < 0 if, and only if,

it stabilizes V(z) with respect to the ¢€-disc centred about p.

Ay
AN
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We claim that, consequently, a generic (F,G,H,J) is stabilizable with
respect to Re[z] <0 if, and only if, a generic ('F,E,ﬁ',?l')‘ is stabilizable
with respect to the e~disc B(p;e). Assuming the claim, by our first
observation the "direct part" J may be omitted, and the Lemma is
proved.*

To verify the claim, we first develop W(z) in a Laurent series

m.
W(z) =J+ ) L,z
i=1

i

and form the n Xn, p Xm-block Hankel matrix

By = [Lyys!

Then W(z) determines, and is determined by, a point in the set

n

J?m,p = {(J,Ll,e..,LG) :rank‘hw==n}
Jfg p is, by definition, an open subset of an algebraic set of matrices.
»

Moreover, 3?2 p is the image of the rational map
H
n2+ (mrbp )+
I: Mc R ™" “‘p-n;r;p
9

defined on the open dense set .# of minimal systems by

1(F,G,H,J) = (J’Ll""’LZn)
where of course
1 T i
B(sI-F) "G+J = J+ | L.z *
i=1

*Argument along these lines has been developed independently by
J.C. Willems.

S ewmee
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Therefore, J?: p is irreducible, as the image of an irreducible
»

algebraic set ([21]). In this language, we have:
(1) ¢ induces, via (3.2), a rational map

R n ) n
e ‘”m.p *‘#m,p

with singularities on the algebraic set
{hw :W has a pole at 1}, since V(z) = d(W(2z)) =W(d(2))

is proper if, and only if, W(1) is finite.

I3

; n
(i1) image O = xm’p - {hv

reasons as in (1).

:V has a pole at €+p} for similar

Furthermore, since stability of minimal systems is an input-output
property, if @ is a self-conjugate subset of ¢, then
(ii1) the set
U= {o=(F,G,H,J) :0is stabilizable with respect to %2}
is open and dense in .#, if and only if,
) < w;’p

is open and dense in >

The claim then follows from (i), (ii), and (iii).
Q.E.D.

Remark: A similar, perhaps well-known, result is that for
fixed m,n,p stabilizability is generic if, and only if, for generic
(F,G,H) there exists a gain K such that the closed-loop spectrum

lies in Re[s] < 0 or Re[s] > o, with 0 ¢ R arbitrary.

The next proof relies on the following result which is stated in

the notation of (1.2). For f, g polynomials, set:
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U{fi} - {x Ekn:. fi(x) > o; ui})
vig,} = {x eR™: gy (x) 20, Wi}, (3.4)

A subset 2 cR" is called semialgebraic if it is finite uniou of finite

intersections of sets of the form (3.4). For example, the algebraic set
z={x eR": g(x) =0}

is semialgebraic. A subset of the form U{f,} is called a basic open
semialgebraic set, and those of the form V{gi} are called basic closed

semialgebraic sets.

Proposition 3.2: If 2 c X XY is a semialgebraic set, then

p1(Z) = X 1is a semialgebraic set. Thus, the existence of Y such that
P1(Xo, ¥) = Xg
can be checked by a finite number of rational operations in x;.

This theorem is of course a version of the Tarski-Seidenberg Theorem.
It is worth noting that a recent improvement on this result has been made
(8], [9]), viz. 4if it is known that p,(2) is Euclidean closed (or open),
then p;(2Z) 4is a finite union of basic closed (or open) semialgebraic

sets. Of course, p;(Z) 1is not necessarily closed, even if Z is closed.

Lemma 3.3: If mp £ n, then the follewing statements are

equivalent
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i) m,n,p are such that the generic (F,G,H) is stabilizable.

ii) m,n,p are such that for all real p and for the generic

(F,G,H), there existsa gain K such that the closed loop

characteristic polynomial is (s-p)n.

Proof: Statement (ii) obviously implies (i).

consider the function, for o= (F,G,H),
Xg ¢ m"‘"-»m“, defined via
Xg(K) = (Pyseeespy)
where

Sn+plsn-l+ ceatpy ® det (sI - F - GKH)

For the converse,

(3.5)

If statement (i) holds, then for each r there exists an open

2

dense subset U R" xR™ x ®R"P = ®Y Such that for (F,G,H) ¢ U

(‘pl,---.pn) € image (X,)

n n-1
where the roots of s + Py + ...-Ppn

about p. By the Baire category theorem,

is a dense subset of RN such that for (F,G,R) € U,

(pl, i ’;n) € image ()(O-)_

where

s, + ;s +"'+;n = (s-p)™.

lie in a 1/r-disc centered

e R M T S e o
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Now, according to Theorem, Section 4, of [ 4 ] provided mp < n there
exists an open dense subset W CRN - the set of nondegenerate systems -

such that image (Y) 1is Euclidean closed for (F,G,H) € W. Thus, if

(F, G, H) e U=U'NW

then

(Ei, cee 55) € image(xc)

Now, any real gain K may be regarded as a point in R™ and we may

consider the real algebraic set

v’ = {(F,G,H,K) : det (sI-F~CKH) = (s-p)"} < R x ®™, (3.6)
By the Tarski-Seidenberg Theorem (Proposition 3.2)
N

pl(vp) c -~ 9

N
the projection onto the first factor, is a semialgebraic set in R ;

i.e., pl(Vp) is defined by a finite set of equations and inequations

as in (3.4).
Since
vep, () = B

is dense, it follows that pl(Vp) may be defined by algebraic conditions

(perhaps disjunctive).

T RS RN e RO S
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£,(F,G,H) > 0,...,f (F,G,H) > 0

from which it follows that pl('Vp) is open and dénse. Since
(F,G,H) ¢ pl(Vp) if, and only if, there exists a K such that the
closed loop characteristic polynomial is (s-p)n, the lemma is proved.

Q.E.D.
For the more precise assertion in part (ii) of Theorem 1, we
need the following.
L.emma 3.4: TFor any p= (pl,. ‘e ,pn) € IRn, the subset
vp = {0= (F,G,H) €W : X4 (K) =p for some K}
is closed in W.
Remark: The corresponding assertion for (F,G,H) minimal can be
false. This is quite analogous to the fact that the set
{x€R: 3y €R suck that xy=1}
is not closed in IR, while the set
{x€ R- {0} :3y € R such that xy =1}
is closed in the open dense subset W=R~ {0} < R.

Proof: As in [4], we may think of K€ R as a point in Grass(p,m+p) -

the set of p-plane in IRMP - via the assignment

K k= graph(X) = {(y,Ky)} € R & R".

b 5 e e
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It is known (see e.g. [4) and references cited therein) that Grass(p,m+p)

may be regarded as a compact manifold of dimension mp. Moreover,
Grass(p,m+p) = RPU g(=)
where 0(=) is the closed subset defined by
o()={Il € Grass(p,arrp) : dim(TI N lRm) 1}

That is, N€o(») if, and only if, Il is not complémenta‘i:,'v ro U. Thus,

N¢a(») if, and only if,
M =graph(K), for some linear K: R+ R
On the other hand, one may regard the monic polynomial
n-1

. . U
p(s) =s +pls -+-...+pn

as a, point (pl,...,pn)em“ and therefore ([4]) as a point, via the

homogeneous coordinates
[Pl’ vee :Pnnll € mpn,

in real projective n-space. Of course, RP" = Grass (1,n+l) by definition.
According to ([4], Remarks, p. 103), for nondegenerate O the map Xg

extends continuously to a map
Xg ¢ Grass(p,mtp) + IRPn,
satisfying:

XO(H) - [Pl""npn)o] (3.7a)
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if, and only if,
€ o() (3.7b)
Matters being so, consider the continuous function
X ¢ W xGrass(p,mp) > RP"
defined via
X(F,G,H,I) = y(o,Tl) = xU(H)
Therefore, if p = [1,0,...,0,1] corresponds to p(s) -sn,
Z= x-l(;) i X Grass (p,mp)
is a closed subset. Since Grass(p,m+p) is compact,
pl(Z)cw
is closed and, by virtue of (3.6),
PI(Z) = {0 = (F,G,H) : XO(K) =p, for some K} = V-p—

Q.E.D.

On the other hand, IJﬂWc:VF is dense in W by the Baire Category

Theorem, and therefore

V.=W
P

from which (ii), and Theorem 1, follows.

Q.E.D.

We now turn to a proof of Theorem 2. Clearly, it suffices to

e A e 1t e

ot 1 np i e
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consider the case mp€n; thus, the preceding lemmata and Theorem 1
are applicable.

Consider, then, the algebraic set of nilpotent n Xn real matrices

k

W= {N:N =0, for some k}

LY

and the algebraic set V=V’ obtained by setting p=0 in (3.6). We

define the polynomial mapping
2
Ot AR RR™P xR™ . ®Y xR x ROP (3.8)
via
@(N’G,HQR) - (N"‘ GRH.G,“)

From Theorem 1, we have:

Lemma 3.5: If mp&n and if the generic system is stabilizable,

the image of ¢ contains an open, dense set,

Denota by "% the algebraic set of nXn complex matrices. It is
known (see e.g. [17], [20]) that eft-’(-: is an irreducible algebralc set.
Thereforae there exists an open dense subset U of aﬁft which is itself

a complex manifold and therefore has a dimension. Indeed ({17], [20)),
2
dimc(U) » n-n

The points of U are called simple, and one of the thorny points
in real algebraic geometry ([18]) is that in general an irreducible

real algebraic set VJR may contain none of the simple points of V¢,.
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This, for example, is the ‘reason for the failure of the Hilbert
Nullstellensatz over IR, and the most well known example of this

phenomenon is
2.2
W = {(x,y) : x“"+y" = 0}

1f VIR cositains a simple point of VE’ then for example dimm(vm)

is defined as above and
dim]R(V]R) = dimc(vc) (3.9)

It is an elementary computation to check that the real matrix

0 1 ]
o . o0
N = .o
0 |
n Q]

is a simple point of ._/Vc. Thus, dimmN exists. We will now give a

self-contained proof of
2
Lemma 3.6: dimm(./f’) =n -n.
Proof: Since the matrix N consists of a single Jordan block, the
dimension of the centralizer

Z(N) = {TEGL(n,R) : TN =NT}

is n, according to the Frobenius dimension formula ([15] Vol. II,

Thm. 19, p. 111).  Now consider the orbit of N under GL(n,IR)

S —
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o) = {I8T 1 : T€GL(n, R)} ~GL(n,R) /Z(N)
In particular,
giny, O(N) = dinCL(n,R) - dinZ(N) = nZ_q

We claim @ (N) =4 from which follows:
(1) A#is irreducible, since @(N) is irreducible; and

(i1) dim]R o(N) =dimm(aV), by the c¢losed orbit lemwz and (3.9).

Following [20], note that if Ni is any nilpotent Jordan canonical form,
then clearly there is a l-parameter diagonal subgroup T}\€GL(n,]R) such
that

-1
lim TANTA = N

Yoo i
Therefore, ?TN_)- =N .
Q.E.D.
Now suppose that m, n, and p are such that thé generic systen
is stabilizable, and mp€n. By Lemma 3.5 and ([21], Thm. 7, p. 60)

one has

dim ./Vn+n(nr0~p) +mp 3 n2+n(m+p) (3.10)
In thé light of Lemma 3.6 and‘ (3.10),
n2-n+mp 3 n2
yielding
mp 3 n
In conclusion, if mp £n then mp =n is necessary for generic stabilizability,

whence Theorem 2.
Q.E.D.

T R
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4. Proof of Theorem 3.

In the proof of Theorem 1 (cf. Lemma 3.2) we made use of certain
facts concerning pxm systems of degree n which also allow us to
show, together with Theorem 1, that for n = 4, m = p = 2, generic
stabilizability is not possible. Specifically:

(1) 4if wmp < n, then the cla;s W of nondegenerate systems

is open and dense in ]Rn x R™ anp sy and

(i1) for any monic polymonial p(s) of degree¢ n, the set

Vp = {(F,G,H) € W: det(sI-F-GKH) = p(s) , for some K}

is closed in W (Lemma 3.4).

In light of Theorem 1, if p(s) = s" then generic stabilizability
implies that VE is dense and closed in W, hence coincides with W.
Therefore, to find one nondegenerate system for which p(s) is not
assignable as a closed loop polynomial is to prove that stabilizability
is not generic.

We shall now give a "frequency domain" criterion [3 ] (which can
be taken as a definition, compare[ 4 1) for nondegeneraéy. If T(s)
is the transfer function

T(s) = H(sI-F) 1g (4.1)
of the system, denote by ti(s) the i-~-th column of the - (p+m)xm matrix.

T(s)
F(s)y =]~
I
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If ¢(y,u) 1is a complex linear functional on T € T,
then we can form the scalar rational function

¢(ti(5)) for i = 1,...,m .
Now suppose @ = {¢1,...,¢p} is any linearly independent set of linear
functionals on (m+p)-space, and form the determinant

O(s) = det[¢i(tj(s))] (4.
(F,G,H) 1is said to be nondegenerate provided

®(s) £ 0 in s (4.

for any choice of @.

Remark 1. If (F,G,H) is scalar, then (F,G,H) is nondegenerate

since (4.2-(4.3) reduces, for ¢(u,y) = au + by, to

ag(s) + b ®# 0 ins .
2. The zeroes of the set @ = {¢l,...,¢m} defines a

p-plane in (u,y)-space which is the graph either of a

133

2)

3)

linear function u = Ky, i.e. a finite constant gain, or

of a linear relation between u and y, i.e. an infinite

constant gain. The zeroes of (4.2) are then, modulo

pole-zero cancellation, the closed loop poles at this

gain and (4.3) just asks that these zeroes be finite in
number, i.e. that the root-locus map X be defined and

continuous at this gain.

e
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Example 4. Suppose m= p = 2, n = 4, and consider

and

We claim (F,G,H) is nondegenerate, to this end we compute (clearing

denominators) _ -
53 -1 - s
3
s s
.7'(5) = 4
: s #+s-1 0
0 sa+s-l

and consider 2 linear functionals

¢1(y,u) = aly1+a2y2+a3u1+aau2, cpz(u,y)-blyl+b2y2+b3u1+b4u2 .

Thus,

dll(s) qlz(s)

O(s) = det [¢,(t,(s)] = det | 4.4)
g 1) "22()
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where
all(s) = 3354 + als3 + (az+a3)s -257a,,
4 3
0,,(s) =a,s +a,s” + (a,-a,)s +a ,
12 - 4 2 4 71 4 (4.5)

aZI(s) = b3s4 + b153 + (b2-b3)5-+b3-bl,

4
“22(5) =b,s’ +b,

3 ;
s” + (bé-bl)s-+b4
Now, (4.4) vanishes just in case there exists c, - a priori depending

on s = such that

csall(s) = a21(s)
(4.6)
csalz(s) = azz(s)

for all but finitely s e U. Comparing coefficients shows that cg

is constant for all but finitely many and hence all, s and therefore

an inspection of (4.5)-(4.6) shows that
¢ ¢ = ¢

contradicting linear independence of the functionals ¢i'

Recall, in the proof of Lemma 3.3 the fact that image (¥) is

closed for all nondegenerate (F,G,H) was used rather crucially. If
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it is readily verified that

~det (sI~F-GKH) = s“ + (-xl-xa)s3 + (x )52

X, =X.X
174 7273 4.7

+ (l-x2 + x3)s + (l+x1)

By the quadratic formula, it is easily verified that image(y)
is a closed semialgebraic set. Furthermore, if (4.7) is to be
4

s , we require

X, + X, = X X, = X Xg = l1-x,4+%x,=14+x%x, =0 G.7)

174 2 3 1
wherice

3 = - ] , X, = 1+ Xq s

whence

x2 +x,.,+1=0 (4.8)

This equation (4.8) cannot be satisfied by any real X35 i.e. there
is no real gain producing closed loop poles at s = 0. Since (F,G,H)
is nondegenerate our previous remarks imply Theorem 3, thereby

verifying Molander's conclusion.

i e s
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5. PROOF OF THEOREM 4:

In addition to the Tarski-Seidenberg Theorem (Proposition 3.2),
we shall also need a somewhat different result from decision algebra,
which deals with the question of describing the set of X, for which

le(xo) nz= {xo} XY; i.e. for which (x_,y) €2 for all y. In the
course of deriving this result we also will state the Tarski-Seidenberg
theorem in what is perhaps a more familiar form ([15] Vol, III, [22]).

Notational conventions are as follows: x, y, z denote collections
of indeterminates, with each of x, y, z considered to be shorthand for
a number of indeterminates x;, ..., xn etc. Particular real values
taken by these quantities will be denoted by ;. ;, ;; Py 9, T, S,
perhaps with subscripts will denote polynomials in x, y, z with real
coefficients. We shall regard p(x, y) = 0 or q(x, y) 2 0 as examples
of equations or inequations, (i.e. descriptions of problems for which
solutions are sought, should they exist), and we shall regard p(§, §) =0
or q(§, ;) 2 0 as examples of equalities or inequalities (i.e. state-
ments of fact that can be verified by arithmetic, and which show that
§, ; are solutions of p(x, y) =0 or q(x, y) 2 0).

We shall reserve script letters S, P, ete. to denote collections

of a finite number of equations and inequations or equalities and

inequalities of the following type. S{(x) is an abbreviation for:

either {pil (x)=0 and qjl(x) >0 and rkl(x) #0 and sgl(x) 2 0}
or {piz(x) =0 and qu(x) >0 and rkz(x) =0 and s, (x) = 0}
or

or {pit(x) =0 and qjt(x) >0 and rkt(x) 20 and sh(x) > 0}

Gl o e
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where it is understood that pm(x) =0 1is shorthand for pla(x) =0 and
onz‘(fx) =0 and ... and piaa(x) =0, and similarly for qja etc.
Naturally, ,S(;) is an abbreviation for the associated set of equalities
and inequalities. We can talk of the problem of solving S(x) and of
S(X) holding, or of x being a solution of S(x).

The above type of S5(x) 1is more or less standard in decision algebra.
However, we shall sometimes use a simple modification. Each saB 2 0 1is
a disjunction: S48 >0 or Sag ™ 0. This means that any S(x) and

thus any S(:’E) can be rewritten to exclude inequations or inequalities

of the 2 type.

Lemma 5.1: The statement S(:’E) does not hold is equivalent to a
statement §(§) holds where S(x), termed the negator of S, is
itself a collection of equations and inequations of the standard

form.

Proof: "S(;Z;) holds" is a disjunction ("or'" statement) of
conjunctions ('"and" statements) of formulas of the type p(x) =0,
q(X) 50, r(X)=0 and s(ﬁ‘) >0. Hence "S(X) does not hold" is
a conjunction of disjunctions of negations of these formulas, i.e. of

p(;;) =0, -q(J’E) =0, r(;E) =0 and fs(ﬁ) >0. Any conjunction of disjunctions

can be rearranged as a disjunction of conjunctions, and in this way, o

S(x) 1is defined.
Obviously, S=85. .
Next, we recall the main result of decision algebra, the Tarski-

Seidenberg theorem. We break it into two parts.

e o s b
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Proposition 5.2: A) Consider an equation/inequation set

S(x, y). Then one can determine by a finite number of rational

calculations a second such set T(y) such that 7(y) holds if

and only if there exists at least one X such that S(x, ¥)

holds.

set

B) The solvability of any equation/inequation

I(y) 1is determinable by a finite number of rational

calculations.

We remark that the set 7T(y) in part A may be empty: this would

imply that there are no pairs 2, ; for which S(ﬁ, §) holds.

Proposition 5.3: Consider an equation/inequation set 5(x, y).

Then the set of values ; of y such that for all x, S5(x, y)

holds, is definable by an equation/inequation set T(y).

Proof: Let 35(x, y) be the negator of S(x, y), existing by

Lemma 5.1. By Proposition 5.2A, we can find T(y) such that f(§)

holds if and only if there exists at least one X such that §(§, y)

holds.

Let T be the negator of T. Then T(?) holds if and only if

there exists no x such that §(§, ;) holds, i.e. if and only if for

all ﬁ,

S(X, ¥) holds.

The following algorithm, in conjunction with Propositions 5.2 and

5.3, gives a proof of Theorem 4. We find it convenient to break this

into two parts.
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Part I: Find a cube containing a stabilizing gain K.
I.1 Choose N>0, and consider the semialgebraic set

mp~-1 "

Z <R R

defined by 2 = 2, n Z2;, with
Z; = {K: det(sI-F-GKH) is Hurwitz},
Z2, = {K: Z(kij)2 < N}.

From the Routh-Hurwitz criterion, it follows that Z; is a
(basic open) semialgebraic set and it is then clear that 2 is semi-
algebraic. Using Proposition 5,2 inductively, we can decide by rational
operations whether there exists a gain K e 2. If 2 = ¢, go to Step

IT.1. Otherwise, go to step I.2.

I.2 Replace N by 2N and go to Step I.l. Since § stabilizing

gain exists by hypothesis, we will eventually move to Part II.

Part II: Find a cube contained in the set of stabilizing gains K.

II.1 We suppose there is a stabilizing gain K in the cube
I]K|i < N. Using Proposition 5.3 inductively, we can decide by rational
operations whether all such K are stabilizing. If so, choose any K

such that ||K|| < N. 1If not, go to step II.2.

I1.2 Divide the cube into 2™P cubes with sides of length N.

Return to step I.l with this list of cubes.

This algorithm will stop at some stage, since the set of stabilizing
gains is open and therefore contains a cube of sufficiently small size.

Q.E.D.




LS ke Sl mSemcl | £ DT F T SNSRI SIS E Ae A o W s e . - 2%

141

Example 5. One might ask whether ome f&n bound the number of steps in this

program simply in terms of m, n, p. The answer is no, as we now

illustrate. Consider the open loop system with transfer function

1
- —y—————
w(s) s +as” +bs

where a,h > 0. For negative feedback with gain k, the closed loop
characteristic polynomial is s +as? +bs+k and therefore is Hurwitz
if, and only if, k ¢ (0, ab). It follows that the size of a cube (here,
an interval) contained in the open set of stabilizing gains can be made
arbitrarily small by suitable choice of ab. In turn, the number of steps
in Part II of the algorithm can be made arbitrarily large; though for

fixed (a, b) it is of course finite.

P — e
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6. PROOF OF THEOREMS 5 AND 6:

Since we have already demonstrated the existence of 1ineér formulae
for the appropriate values of m, n, p, it is enough to show that these
are the oq}j values for which such formulde can exist. Moreover, it
sufficesto prove this last assertion over L = R(/:i). Ccnsider the closed
loop characteristic‘coefficient map ¥, defined in (3.4), extended to ¥

gains with complex coefficients
Xgi ET o+ EY 6.1)

where (F, G, H) 1is understood to be a generic, but fixed, system with
n=mp., We first analyze the question as to whether there exists a
formula for (kij) € x-l(p) which is rational in the coordinates of
p= (pz) ¢ €', Thus, we consider the field K, of all rational
expressions (or functions) in the Py and the field K, of all

rational functions in the (kij):

Ky = T(py), K, = E(kij) 6. 2)

Since Xg is polynomial, if f ¢ K; then foXm e K. For generic

(F, G, H), image Xg contains an open set ([13]) so that
foXc =0== f =0, (6.3)
By virtue of (6.3), we can think of K; as a subfield of K;, 1i.e.
* E
K1 = an'l c K2 (6'4)

*
where th = f°xn' and an easy dimension argument shows that (6.4) is

a finite field extension. That is K, as a vector space over the

e e B At
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field of scalars K;, is finite dimensional. For example, to say

rational formulae for (kij) € x;l(pg) exist 1s to say the dimension

of this vector space
= K2 t Ky) = K ' 6.5
$ [Ka 1] dimxx( 2) (6.5)

is equal to 1, i.e. K; = K;. We shall now give a formula for &, in
terms of m, p. In [4] 4t was shown that Xt is proper and it follows

from the proof in [4 ] that
®
Ry = XgRi = Ra
is an integral ring extension, where

Ry = n[pg]a Ry = B[kij]-

In this case (since the field T has characteristic zero), § 1is
given by the number d of solutions, counted with multiplicity, to the

equation
XEO\') =Pp

({18 ]pp.116-117). On the other hand, d has been computed using

methods of the Schubert calculus in [3 ] to be

J 11 ... (p=1)!(up)!
d = T (mp-D) ! (6.6)

Thus, Theorem 5 follows from the following elementary observation.

Lemma 6.1: In (6.6), d =1 <= min(m,p) = 1.

R R e e *
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As for Theorem 6, from the explicit form of the solution to the
pole-placement equations, derived via elimination methods by Willems-
Hesselink [2 3], it is clear that (over R or T) quadratic formulae
and rational expressions are sufficient to express K as a function of
(pl,...,pn) for generic (F,G,H) when m=p=2, and n = 4. We shall now
prove that, except for the linear cases min(m,p) = 1, this is the only
case when formula -~ involving square roots and rational operations -
for K in terms of (pl,...,pn) exist.

To this end, we consider a Galois extension

K, €K, (6.9)

that is,a minimal normal extension of Kl = E(p ) which contains
all of the roots to the equation

XE(K) = (p ). (6.10)

If a solution expressible by square roots and rational operations
alone exists, then
§* =K : K

1!

is a power of 2 ({ 2 ]). On the other hand, by Artin's Theorem of

the Primitive Element [2], we may regard K2 < K and therefore

§ =1XK, : K] divides [K : K] s

from which it follows that

r
§ = dm,p = 2", for some r.

Theorem 6 therefore follows from the following result:

.

PRSP
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Lerma 6.2: If min(m,p) 32 and m+p 25, then dm p is divisible

by an odd prime.

Rema min(m,p)t+l
Remark: It is known [14] that any prime q € min(g-l )+l

divides clm p? so that only the cases min(m,p) =2, 3 or 4 remain.
’

The proof we présent here, however, is valid for all m,p and is based

on an application of the strong form of Bertrand's postulate ([11],

p. 373) shown to us by W.H. Gustafson.

Proof: By the strong form of Bertrand's postulate, there is a

prime q satisfying
m+p=1<gq < 2(mtp) ~ 4, (6.11)

under the hypothesis m+p 35. Clearly, q does not divide the denominator

of dm o’ On the other hand, if min(m,p) 32, then
»

mp > q

so that q divides the numerator of dm,p' Hence, q ldm,p'

Q.E.D.
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APPENDIX: "IN PRINCIPLE" ANSWERS TO QUESTIONS 1 AND 2 BY DECISION ALGEBRA

In [1 ), indications of the applicability of decision algebra
to problems of systems theory were given. In particular, it was shown
that one can determine, at least in principle, by rational operations
qhether a given system (F, G, H) can be stabilized. We shall extend
these results to show that one can answer Questions 1 and 2 by rational
operations using decision theoretic techniques, but we emphasize that
such results are very qualitative. In fact, a "worst-case'" analysis
([ 7]) shows that any decision procedure takes at least an steps,
where k > 0 1is a constant and n is the length of the iﬁput formula.
However, in the absence of any other technique which allows one
for example, even in principle, to distinguish between Questions 1 and

2, we thought it worthwhile to point out that this is a question which

can be answered by the Tarski-Seidenberg theory. An interesting special

case is whether or not we can place poles for generic 2 x 4 systems
with McMillan degree 8. One does know that there exist 14 complex
solutions to the pole-placement equations, but at present one does not

know whether any of these are real.

The new ingredient here is the consideration of the generic system
(F, G, H) rather than a particular choice of system (Fp, Gg, HB),
and we shall need to present some further results from decision algebra.

The notation is as in Section 5.

Lemma A.1: Consider an equation/inequation set S(x, y, z).
Then there exists a set T(y) “such that 7T($) holds if and only

if for all 2z, there exists vﬁy depenaing on §, z with

S(X, ¥, 2z) holding.
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Proof: By Proposition 5.17, there exists R(y, z) such that
R(§, 2) holds if and only if S(x, §, £) 4is solvable, i.e. if and
only if there exists at least one X, depending on ¥ and £, such
that S(ﬁ,k§, z) holds. By Proposition 5.3, there exists T(y)
such that T(y) holds if and only if R(y, z) holds for all z.
Then clearly, T(;) holds if and only if for all Zz, there exists
% such that S(;, ;, 2) holds.

In Proposition 5.3 and Lemma A.l, the set T(y) may be empty.
The following Lemma replaces the "all x" in Proposition 5.3 by
"almost all", and in this sense may enable one to get a practical

result when the ZT(y) of this proposition is empty.

Lemma A.2: Consider an equation/inequation set S(x, y).
Then there exists an equation/inequation set T(y) such
that T(y) holds if and only if S(X, y) holds for all

%X save a set contained in a proper variety depending on

<>

Proof: Given a polynomial p(x, y), it is clear that there
exists a possibly empty P(y) such that P(§) holds if and only
if p(x, ¥) is the zero polynomial, i.e. p(X, ¥) = 0 for all X.
Further, if p(ﬁ, §) = 0 for all X save those 1ying in a proper
variety, p(X, y) = 0 for all x.

Given a polynomial r(x, y), it is clear that there exists . F(y)
such that R(Y) holds if and only if r(x, y) = 0 is solved by all

~
X save those on a proper variety depending on .

147
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Given a polynomial s(x, y), it is clear that there exists S(y)
such that 35(y) holds if and only if s(X, 9) < 0 for some x. Hence

S(y) holds if and only if s(%, ¥) = 0 for all x. Further, if

v
o

s(ﬁ,'?) 2 0 for all X save those in a proper variety, s(ﬁ, §)
for all Xx.

Given a polynomial q(x, y), it is clear that there exists
Q1(§) such that q(ﬁ, ;) >0 for all x and Q2(§) such that
q(§, §) = 0 for all X save those in a proper variety. Let g(y)
denote the conjunction of @;(y) and &,(y). Then &(¥) holds if
and only if q(X, §) > 0 for all x save those in a proper variety
depending on §.

Suppose now that S(x, y) 4is the disjunction of equation/inequation

sets Si(x, y) where each Si(x, y) 1is a conjunction of

Pui (o) = 0 g (x,y) >0 r  (x,y) 20 s5,(%y) 20

By the discussion above, it ié clear that there exists _Ti(y) such
that Ti(§) holds if and only if si(ﬁ, y) holds for all x save
those in a proper variety depending on ;. T(y) 1is obtained as the
disjunction of the Ti(y).

Now consider the system (1.1), subject to output feedback u = Ky.
The coefficients of the closed loop characteristic polynomial, as a

function of K, give rise to the polynomial mapping (3.4)
X: R™P +R"

and we write ¥ to emphasize the dependence on the open loop
(F,G,H)

system (1.1). Then, Question 1 asks whether X(F G.H) is surjective
b 2 9

4

1 ampbar

e
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for the generic (F,G,H) and we claim that this question can be answered
within the scope of decision algebra. To this end, let X = R7P
*+nminp

Yy =R" and Z =R®, so that (K, (F,G,H), () € X XY x 2,

and consider the algebraic subset W c X x Y x Z defined by the equations

S(x, y, 2): X(F,G,H) (K) = (pz) (A.1)

By Lemma A.l, there exists an equation/inequation set 7T in
y = {F, G, H} such that T(y) holds if and only if for all 2z, i.e.
for all Pg» there exists ﬁ, i.e. a value of K, such that
S(§, §, 2) holds, i.e. such that (A.l) holds.

Let T(y) denote the negator of T, and write T(y) as a
disjunction of conjunctions Ti' As observed in Section 4, we can
assume without loss of generality that each ii contains equations
pai(y) = 0, and inequations qBi(y) >0 and rYi(y) z 0, without
inequations of the type Séi(y) 2 0. We can determine, see Proposition
5.2B, whether any Ti defines an empty set of solutions; if so, we
discard it.

Now with Ti of the form just noted, and with each possessing a
solution, we can readily answer Question 1.

1f Ti(ﬁ, G, H) holds for any i, pole positionability for all

o, via choice of K 1is not possible, and conversely. It follows

i
that if each fi includes one or more equalities, then the set of

f, 6, ﬁ for which pole-positionability is not possible lies within a
proper variety, and that for almost all F, G, H, pole positionability

for all P, can be achieved.

On the other hand, if Ti contains no equalities then it is

gy

T



150

ORIGINAL PAGE 12

OF POOR QUALITY
clear that there exists a neighbourhood of any one solution of Ti(y)
which consists entirely of solutions. (The fact: that ii contains
no inequations of the type s&i(y) 2 0 is crucial). 1In this case,
it cannot be true that for almost all ?, &, ﬁ, pole positionability
can be achjeved for all pz .

This analysis of the Ti answers Question 1.

Now one can also ask whether image X is almost all of lf’, for
almost all (F, G, H). Let us identify K with x and F, G, H and
the P, with y. Equations (A.l) yield a collection S(x, y) of
polynomial equations. - By Proposition 5.2A, there exists
T(y) = T7(F, G, H, pg) such that T(;) holds if and only if S(x, ;)
is solvable. Using arguments like those above, it is easy to check
whether or not the set of § for which 7(§) is true is contained in
a proper variety. If it is, then and only then will it be true that
for almost all F, G, H, the map X is almost onto R",

We shall now turn to-an analysis of Question 2.

If the closed loop characteristic polynomial has all roots in the
half plane Re[s] < 0, certain polynomial inequalities in the Py
obtainable from the Hurwitz determinants, see [4], must hold, and

conversely. Accordingly, we have

Pi(F’ G, H, K) = Pi i= 1, esey N
(A.2)
qj(pi) >0 . j= 1, ..., n

Identify K and p with x and F, G, H, with y. Regard (A.2)

as an equation/inequation set S(x, y). By Tarski-Seidenberg - A, there
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exists T(y) such that T(§) = 7(F, G, H) holds if and éﬁly if (A.2)
can be satisfied by some K, Py- If the set of ; such that T(?) holds
is contained in a proper variety, then and only then Question 2 has an
affirmative answer. The discussion of Question 1 described how one
could check whether the set of y such that T(y) holds is or is not

contained in a proper variety,
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AND THE CONSTRUCTION OF ROOT LOCI
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Abstract

In this paper the local behaviour of Root Loci around zeros and
poles is investigated. This is done by relating the Newton diagrams
which arise in the local analysis to the McMillan structure of the
open-loop system by means of what we shall call the ¥McMillan polygon.
This geometric construct serves to clarify the precise relationship
between the McMillan structure, the principal structure, and the
branching patterns of the root loci. In addition, several rules are
obtained which are useful in the conéﬁruction of the root loci of

multivariable control systems.

* -
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The well known root locus method for SISO feedback-systems, as first
proposed by Evans [4], gives a set of simple rules which permit the graphical
estimation of the-loci of the closed-loop poles as & function of the feedback
gain.

When trying to generalise this method several problems arise. First of
all, the orders of the Butterworth patterns, which determine the branching
pattern of the root loci at the open-loop poles and zeros, do pot always
correspond to the McMillan orders of the system. Secoﬁdln Butterworth patterns
of nonintegér order have been observed in [13,21] and this has led to several
open questio;s concerning the nature of the actual branching patterns.

As far as the éuthors are aware, only when a simple null structure
condition is put on the system, has a satisfactory analysis been presented
and this has primarily been concerned with the problem of determining the
asymptotic behaviour of the root loci [7,8,11,17]. In this paper we show that
the aforementioned condition is also necessary and we analyse what happens
in absence of the condition. The principal tool in this analysis is the
Newton diagram, which has been pioneered in this context by Postlethwaite [25],
Postlethwaite and MacFarlane [15] in the case of square systems and scalar gain
K(A) = AI (the case of nonsquare systems and polynomial gain K()\) is treated in [2]),
and which has also been used to a large extent in the recent book by Hahn [23],
to which the referee was kind enough to draw our attention. It seems remarkable
that Newton polygons, which were introduced three centuries ago by Newton [10]
as a graphical tool to compute the exp&nents of the leading terms in fractional

power series expansions, have received so little attention as a tool for developing

PRECEDING PAGE BLANK NOT FILMED
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asymptotic expansions. Newton first derived the binomial series for fractional

powers of (1-x) by regarding such a function as a root of the algebraic

equation

y? - f(x) =0 .

In general, he gave an algorithm - based on the Newton polygod - for finding

the branches of any algebraic relation
f(x,y) =0 .

According to Abhyankar {1], this method was apparently forgotten until it
was revived by Puiseux [16] in 1850.

At any rate, the method of the Newton polygon is a simple and efficient
algorithm for determining the branching patterns of root loci, and it
requires only rational operations. For a feedback system, the relationship
between the Newton diagrams which arise for both finite and infinite branches
" of the root loci,and the McMillan ordrs of the open loop system seems to be
best expressed geometricall’ . Accordingly, we introduce the McMillan poly ion
of a system and relate this to the corresponding Newton polygon. This gives
rise to a geometric explanation of several points which have often seemed to
require a very sophisticated and detailed analysis. We shall also derive a
number of rules which we believe will be helpful wheu estimating the
behaviour of multivariable root loci. ‘

For simplicity, we have considered throughout this paper the case of
a squa.e transfer function G(s) "acted" on by the proportional gain
K(A) = AL, subject to the condition det G(s) # 0. The main result§
do hold,’mutatis mutandis, for rectangular G(s) and polynomial gain

K()A) - subject, however, to an important constraint. Explicitly, if
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r

i.r

then one would expect the asymptotic limit of the closed-loop poles to
coincide with the limit of the closed-loap poles obtained by using the
highest order term N

K(A) = K AT
provided KrG(s) has maximal rank. Of course, the asymptotic rates of
the root-loci will change due to .l factot, but this change is easily
accounted for and does not affect the limiting values of the root loci,
viz. the McMillan zeroes of KrG(s)Sﬁ If mp € n, then for generic G(s)
the highest order term Krkr does détermine the limiting values of the
root-loci. Perhaps surprisingly, £f mp >®n this is not the case: for
every G(s) there exist maximal rank'Kr fo¥® which this is nov the case,
even if r = 1. Indeed several examples of'this discontinuity are given
in [2] and [3]. For any given Kr and G(s)%, there exists an explicit
algebraic criterion for this degeneracy €d occur ([2], [3]). 1In the
case of square G(s) and maximal rank Kr’ this turns out to be the familiar
constraint i

IS

det G(s) = 0-. =

1 .

In general, the condition for the resulanéiven below to extend to the
rectangular (and polynomial) cases is that'the root-locus map be non-
degenerate for lKr. Again in the cases éﬁeated below, this amounts
to: det G(s) # 0. i

3c I

pos i
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2, Statement of the problem and main results.

Consider the feedback system of Figure 1, with

GER" ,y€ER"
Go(s) eﬁm(s)mxm, strictly proper, with det Go(s) £0

KerR™, 1emnrt

(T ) Go(s)

Figure 1.

The open loop system G,(s) is assumed to be linear, time invariant and finite
dimensional. If {N(s),D(s)} is a left coprime factorisation of G,(s), the

the open, respectively closed loop characteristic polynomials are given by

OLCP(s) = det [D(s)] ' (1)

CLCP(s,)) = det [D(s) + AN(s)K] , (2)

and both are related by the return-difference determinant

i

r(s,)\) = det [ I+ AG(s) K] | (3)

CLCP(s,)) . .
B — (4).
OLCP(s)
As the feedback gain )\ varies, the closed loop poles are given by the

algebraic functions si(A), defined as the zeros of the closed loop characte-

ristic polynomial. The root locus is the locus of these solutions as A runs
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through the positive real line [0,»].

A gfaphical estimation of the loci, very,simply stated, should allow
one to answer the natural questions : (i) where do the loci start ;
(i1) where do the loci end ; (iii) how do they behave in between.
In the present setting (K(A)=AI), the answer to the first two questions has
been known for some time and is the same as in the SISO'case : the closed
loop poles start at the open loop poles and move to the open loop zeros.
However, only in answering the third questio; does the precise meaning of
this statement.become clear. The behaviour of the root loci in between the
initial and final points is estimated by means of a number of rules and the
most important rule predicts the local behaviour at the poles and zeros.
More precisely, it predicts the angles of apﬁroach and departure at the

finite points and also predicts the asymptotic directions.
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As stated earlier the main tool used in analysing the branching

. behaviour is the Newton polygon. Consider the closed loop characteristic

polynomial, where A is substituted for 1l/g :

CLCP(s,\) = det [D(s) + AN(s)K ]
CLCP(s,g) = det [gD(s)+ N(s)K]
~Ic, gts 5,

with CLCP(s,g) = 1/A® CLCP(s, ) , (6).

Instead of the expression (5), it is also possible to express the CLCP at

any point of interest s, as :

CLCP(s,g) = I c;j gi (s-s‘,)j 7.

‘Definition 2.1.

The Newton polygon of the closed loop characteristic polynomial at

the point s, is the polygon obtained as the convex hull of the points (i,j)

where i and j are the exponents of the nonzero terms c;j gi (s-s",)j in (7).0

Definition 2. 2.
The Newton bouﬁdary is the lower boundary of che Newton polygon.o
As an example consider the polynomial
r(s,g) = s3 + 34g3 +sg + 52g2 + sg4 + g3 ok gz - (8)

Denoting the exponents of s and g by s

and E respectively, we get at s=0, the

|
//// éé;{;// Newton polygon and boundary (thick liue)
v/Ne

/

Figure 2.
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The Newton boundary determines the leading exponents of the Puiseux
expansions : the SW boundary corresponds to expansions of (s,g) around (0,0), the
SE boundary to expansions around (0,®). More precisely, the negative reciprocals of
the slopes of the line segments.of the SW and SE Newton boundaries yield the branching
patterns of the.é;riving and departiyg branches respectively, at the point s,.
In the example above there is one second order and one -first order pattern

for the arriving branches : $1.2 A e g , sy v B g. There is one first

order pattern for the departing branches : s, vyl/g vy .

Definition 2.3.

The McMillan ;olygon of a transfer matrix G(s), at a pole-zero location
So» 1s obtained as convex hull of the points (m—i,8; - c;), where m is the
size of G(s), 6; the polar degree of s, and c; the maximum content at s, of
the [ixi] minors of G(s). o
For the definition of the content of a rational matrix and its relationship ..
with the McMillan structure we refer to [19,20,22]. Recall that the following
simple relationships hold : let o; denote the McMillan orders of s,, arranged

in decreasing order (for a pole o is positive, for a zero ¢ is negative),

Thus the polar degree and the zero degree are given by

§° = ¥ o (9)
P is.t. g° 50 1
i
§° =¢ o’ (10).
z is.t. ¢° <0I il :
i
The i-minor content §atisfies
¢t =zt o (11)
j=1
o o _ .o : ot .
whence 62 GP c ‘ (12).

o

7N R
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The McMillan boundary is the lower boundary of the McMillan polygon. O

As an example consider the 4x4 transfer matrix, whose McMillan form at s,

is given by [ 1/ (s-s,)

G(s) Vo

(0,6;

-

Figure 3.

Before stating the first result, we recall the

(s~s,)

(s-30) 2

(13).

The polar degree is 1, the zero degree

15 3 and the
ci =1, cg =1,

The McMillan

(thick line)

contents are : c; = o,

(-] - 0’ ‘No. = _2.

C3 Ca

polygon and boundary

are shown in figure 3.

simple null structure

aésumptions that were used in several papers [7,11,17], in the course of

deriving computational methods for the evaluation of the exponents and

coefficients of the leading term in the Puiseux expansion. Around the point

s = » it is shown in-[7,11,17] that, as far as the asymptotic expansions of

the root loci is concerned, the system is equivalent to a block diagonal

matrix

Go(s) K v

-

' i
rQ1 /s’ 1

i
Q, /s 2

0, 1/s"

(14),

provided the matrices Qi have simple null structure. It is easy to see (cfr.

section IIT) that the above equivalence also holds at finite pole-zero

locations
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FQ]. 1/(3'30)11
Go(8) K @as).

. Qz (s-s,) 17

Theorem 2.1.

The branch pattern of the roof loci at a pole or zero (including
infinity) consists of a superposiiion of Butterwéich patterns, with orders
equal to the McMillan orders at that point if, and only if, the matrices Qi
which arise when block-diagonalizing.the transfer matrix as in (15) have

simple null structure. Furthermore this condition is generically satisfied.

proof : cfr. section IIIL. : D
The above theorem determines those conditions under which the orders
of the Butterworth patterns formed by the branches at a pole-zero location
correspond to the McMillan orders. Expliéitly, it shows that the simple
null structure conditions not only are sufficient, but necessary as well.
In view of the definitions above, Theorem 2.1 also can be interpreted as
. giving necessary and sufficient conditions for the Newton and McMillan
boundaries to coincide.
As an immediate crnsequence of the semicontinuity of the Newton boundary,
the following important result holds.
Theoreﬁ 2.2.
The Newton boundary of an invertible system, subject to a full rank
feedback matrix, is contained within the McMillan polygon of the system. ©O
Theorem 2.2 thus gives a priori bounds on the possible branching
patterns which can arise when the conditions of Theorem 2.1l are not satisfied.

For the example of Figure 3, all additional Newton boundaries are given in
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Figure 4. Indeed, for a given McMillan structure it can now be investigated

which of the possible Newton boundaries actually correspond to some feedback .
system. A conjecture in this spirit ‘-has been made by Owens [11] for the

asymptotic branches of the root loci : " The mxm linear, time-invariant,

invertible system G(s), having McMillan orders N = {nl,...,nm} at =, can

only have zeros of orders equal to arithmetic means of svhseis of N." ‘
This conjecture, however, turns out to be too gtrong. The fcllowing example

shows that different orders are possible:

2

z z .
G(s) ~ [ 4 ] , where z formally represents s-s, in _,
z 0J

expansions at g,, or 1/s at =, (16)

The McMillan polygon and the

Newton boundary for the scalar

feedback matrix A 12 are shown

in figure 5. Clearly, the

pattern (2,3) is not obtained

as an arithmetic mean of (1,4).

g

Indeed, in general the following
Figure 5. is true :
Corollary 2.3.

For a given McMillan structure, every ﬁossible Newton boundary, in

the sense of Theorem 2.2, corresponds to some invertible linear system G(s)

subject to a scalar feedback A I . . 0
m

Corollary 2.3 shows that the class of possible Newton boundaries is much

wider than the one suggested by Owens. Returning to the example of Figure

4, Corollary 2.3 guarantees the existence of systems that hiave the Newton
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boundaries of the diagrams 1 through 9 of figure 4. For example :

1 21 o0 o 1 2zt o o
o o 1 o 6o o 1 0

6 = lo =z o z|'% “Jo o o =z|OD:
o o o 2 o z o0 0]

For the general construction of these examples we refer to the proof of the
corollary in section III. At this point it is worth remarking that the
existence of so-called "noninteger order' branch patterns is in harmony with
this analysis. 1In particular, in this case the end points of a line segment
with noninteger slop will have integer coordinates for which there will exist
a number, equal to an integer multiple of q, of p/qth order patterns, where

p and q are coprime (cfr2]).

Instead of fixing only the McMillan structure and varying the transfer
matrix, the following more practical problem can be considered: for a given
transfer matrix, which Ngwton boundaries correspond to some choice of the
ferdback matrix? A first result in this sense was stated by Kouvaritakis
and 5haked [7]. In the present terminology, this may be stated as:

Corollary 2.4.

For any system, the McMillan boundary is attaiiable as the Newton boundary
through an appropriate choice of the feedback matrix. o
In section III, it will be shown how this result easily follows from the
proof of Theorem 2.1, and that it holds for both finite and infinite
branches of root loci.

The next result formalises the intuition behind the conjecture made

by Owens [13]:

raReps

N e
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Corollary 2.65.
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When the syuzcem is diagonalisable by a suitable choice of the feedback

matrix and by constant similarity transformations, then branch patterns

correspi:nding to arithmetic means of the McMillan orders are attainable

through an appropriate choice of the feedback matrix. o

Some hypotheses on G(s) are necessary in order that the above result holds,

as the example (16) shows. Clearly the transfer matrix (16) is not diagonal-

isable by constant transformations. A.straightforward calculation shows that

only the patterns (1,4) and (2,3) are attainable, e.g. the straight line of

figure 3, corresponding to the arithmetic mean (5/2,5/2) is not attainable.

On the other hand,

the conditions of Corollary 2,5 are not necessary

as the following example shows. Consider

Figure 6.

G(z) = 3 (18).

The McMillan polygon is showm

in figure 6. Although the system
is not diagonalisable, both

the patterns (1,3) =nd (2,2)

are attainable.

To conclude this section we will show how the above results simplify

in the case of scalar systems.

z

\

60
P

Due to the linearity of the CP with respect
to the feedback gain, the
McMillan polygon reduces to
one line segment. As _a result

- the Newton boundary always

must coincide with the McMillan .
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boundary and the root loci always branch according to the McMillan orders.
Furthermore, poles and zeros never coincide, which 1s also reflected in tiwe
McMillan polygons of figure 7 : the boundary is either downsloping for a
rero or upwardsloping for a pole.

» 1

This aimplicity of the McMillan polygon for scalar systems ultimately

accounts for the existence of necessary and sufficient conditions for rules such as

(18] : 1. the center of gravity rule :§ si(k) = constant ,

2. the product rule : ? si(A) NoOA

]

to hold. However, one can easily generalise the sufficiency of these :rules
using the McMillan polygon. ‘
Proposition 2.6.

The center of grawvity of the root locus remains fixed if the system
has m zeros at infinity, each of order at least equal to 2. ]
Propostition 2.7.

In order for the p;oduct of the closed loop poles to vary propor=-
tionally to A" it is sufficient that there are w poles at the origin, each
of McMillan order at least equal to 1. ‘ o

In appendix-A, it will be shown how some further insight can be gained
from the McMiilan polygons. As a specific application, propositions 2.6
and 2.7 will be proved in appendix B. Finally appendix C will introduce a
further notion, namely the principal Boundary, and investigate its relation-

ship with the Newton boundary.

ST
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3. Proofs of the main results.

Theorem 2.1.

The branch pattern of the root loci at a pole or a zero (including
infinity) consists of a superposition of Butterworth patterns, with orders
equal to the McMillan orders at that point if, and only 1f, the matrices Qi
which arise when block-diagonalizing the transfer matrix as in (15), have
simple null structure. Furthermore this condition is generically satisfied.
Proof
(1) Sufficiency.

The closed loop characteristic polynomial satisfies

CLCP(s,\) = r(s,)A) . -OLCP(s) (21),
or after a change of variables A = 1l/g

CLCP(s,g) = det| gl + G(s)] * OLCP(s)

= r(s,g) * OLCP(s) (22).
In (22) we set, for notational convenience,
G(s) = Go(s) K : (23).
Of course the McMillan structures of G(s) and Go(s) are the same. Expanding
the first factor in the righthand side oé (22)
CLCP(s,g) = ULCP(s) * g™ + OLCP(S)'tr[G(s)]'gm-l + ..

+ OLCP(s) *det[G(s) ] (24).

At the point of interest s,, the OLCP can be written as
. \ 50 .
OLCP(g) = (s = so) P - p(s) , with p(s,) # O (25).
Recall also that the zero-polynomial satisfies

zG(s) = OLCP(s) * det[G(s)] : (26),




;x
[f

-

Do A

e e & D 4 e —————— T P

ORIGINAL pa¢;
GINAL PAGE 7
OF PooR QUALﬂgs '

Again, at the point of interest s,, this can be writteh as

zG(s) = (s - s°)5z * q(s) , with q(s,) # 0 27).

In (25) and (27), 6; and 5; represent the polar and zero degree of s,,

respectively. Substituting (25) and (27) in (24) gives

CLCP(s,g) = (s--s,)apvp(s).‘gm + vee + (s-s.)sz-q(s) (28).

From p(se) # 0, q(so) # 0
it follows that the Taylor expansions

P(S) = 21:0 pi(s"so)i ’ 'yqtsj - zj:b qj<s ‘so)j (29),

have non zero leading coefficients

Po * o, Qo ¥0 ‘(30).
§~S,
, Part of the Newton diagram of
r equation (28) hence looks as
? in figure 8, where (.) stands
-]
(0’62) for the exponent associated
{
(m,5°) with the variable (.) . Since
?
P o
l [ -

Figure 8. behaviour around s=s,, g=0,®

only the lowest points in the diagram are of "iriterest. In view of (30), the
lowest points on the lines g=0 and g=m are 6; and 6;, respectively. This
fixes the initial and final points ©f the Newton boundary.

Next we will compute the lowest exponents in (s-s,) along the inter-

mediary lines §==1,...,m-1. Consider the return-difference

r(s,g) = g" + tr[G(s)] g™ M+ ... + det[G(s)] ' (31).

From (21) or (24) it follows that in lieu of the CLCP, we may also use the

we are investigating the local

JR b e e G e S
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return-difference (31) to compute the lowest exponents; i.e. the difference
of degree in (s -s,) between (24) and (31) is fixed and equal to 6;.

Now, consider the Laurent expansion of (23) at s,
<, -, :
G(s) = Gl(s—s,) + G, (s - se) + eee 32),
with -0’15 -02_<_

Our determination of the lowest degree terms in the characteristic coefficients
wi[G(s)], i=1,...,m (here ri(T) is the coefficient of En-i in det{£I ~T],

so that ri[G(s)] is the sum of the principal i-minors of G(s) ) is identical

to Owens method of dynamic transformations for computing the asymptotic
directions [11]. Owens showed that the local expansions éf G(s) are the same

as the expansions for
-1
L(s~so,) T G(s) T (33),

wvhere L(s-s,) is a unimodular "left dynamic" transformation which preserves
vthe structure of G(s) at (s-s,), or equivalently has no poles at s, (for
asymptotic directions s-s, is repiaced by l/s). T is a constant similarity
transformation. Briefly this result was derived in the following way :
consider

detlgl_+ G(s)] = det[ gI_+ L(s-s4) T™F G(s) T L™ (s-s,) (34).

By Schur's lemma, the local expansions of the root loci of G(s) and

L(s- so)T_lc(s)T, at s, coincide (cfr {11],formulas (38)...(45); it is

however our belief that at most one dynamic transformation is needed. That -
is, in the equation (38) of [11], the effect of the left transformation

cancels and in fact only the effect of the right transformation is actually

used) . Recall, the essence 6f such dynamic transformations is that by'

suitable choice of T and L(s-s,), the Laurent coefficients
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may be put into upper triangular form
rql 0 0... Q, ¥ X... Q, X X ...
0 00 | 10 Q0 [ fO QX (35)
0 00 0 0 O. 0 0 Q.

In order for the transformations to exist, however, the blocks Ql’ Q3, Q6""
are assumed to have simple null structure. From (35), it is now clear

how to construct the lower boundary of the Newton polygon. Let
rank {Q,] = p, , rank [Q3] = p, , etc. (36)
Along the following vertical lines we get as minimal exponents :

§-m-p1 —> 5-s, = -0, p1+6;

$=Se E‘m-pl-pz ——P S-S, ==-0 pl-cz p2+6; 37.

The corresponding Newton
- —— 1 ——p—— ?(m, ;) diagram is shown in figure
1°1 9. At this point the
relationship between the

Newton and the McMillan

"’Q

Figure 9.

ol

boundary also becomes

clear. As is shown by

Vandooren et al [19], the rank increments p, of the following Toeplitz

i
matrices
( 1
G1 G2 G3 GZ
¢, 6
1=1,2,...
G1 . .
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determine the McMillan structure of the system (23) at (s-s,). Explicitly,

- the McMillan structure is given by

diag { (s~ so)'ol.. cey(s = So)-ol, (s - s,)'°2,. cey(s= s,)""z,,,}
\_~——-——J Nt prmrimatn—
Pi-times ps=-times (39).

Under simple null structure assumption the rank increments 51 , are, however,

equal to the ranks Py introduced for the Newton boundary, since the Toeplitz

Matrices (38) take on the special form

r : 1 T 1 1
Q 0 0‘ Q, ¥ X% Q, ¥ X

0 0 0 0 Q3 0 0 Q5 0 ..

o 0o of [0 0 of [00 q]

po 1 -
Q, 0 0] o, % %
0 0 0| [0Q0} -

0 0 of] [0 0o

- - | (40)."
Ql 0 0

00 0]+~

0 0 O

In terms of the contents of the rational matrix G(s), it also follows ([17])
that

o (6™ %P1 %9 P (1)

P, +P ~ -
l 2 = e - = e L
(G2 D) =010 70,0 =01 P "% 0

Along the vertical lines corresponding to the abscisses mj-pi, the Newton

and the McMillan boundaries coincide; Since these points are the vertices

s
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of the boundaries, they have to coincide entirely. Note that,indeed, only the
vertices of the linear segments of the McMillan boundary were considerea.
Whether or not an intermediate integer point (i,j) corresponding to some non

zero coefficient c actually occurs on such a line segment cannot be inferred

ij
from (35). However, as far as the orders are concerned, those intermediary
points are irrelevant.

Finally, we should also remark that due to the property
[-]
GP -z -0, < 0I %y pil (42),
it follows that the McMillan boundary has to touch the E-axis.
(ii) Necessity.
Recall that Owens' method of triangularizing the system matrix
inductively considers higher order terms in the Laurent expansion. Suppose now

that at some point in this algorithm, say at the f£-th Laurent term, the

submatrix QZ does not have simple null structure. The transformed transfer

matrix at this point looks like

diag {Ql, Qs +ee s QZ}

where QZ can be put into Jordan form :

p e
Q
J 01
1 , whete 62 has full rank and J, =| -1

s e

! -

Clearly, the rank of QZ satisfies

Py = d; = 1; , where d, stands for the size of Q; - (43).

TR
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From the results of Vandooren et al. , it follows that the vertex of the

McMillan boundary will occur

at the abscis corresponding

to pz. However, no nonzero
principal minors with the
McMillan content exist. By
convexity of the Newton pelygon

the Newton boundary hence must

lie above the lcHillan boundary

Figure 10. as is shown in figure 10.

(iii) Genericity

First we shall make precise what is meant by generic. Intuitively, this
means that almost all systems have this property. Algebraically, genericity
is defined in the following way. Let Z:’p denote the set of all systems
with m inputs, p ouputs and McMillan degree n. By passiﬁg to the Markov, or

Hankel, parameters

)
G(s) = Zi=l H, s (44)

we get a new parameterization of Z; , viz. we thirk of G(s) as being
’ s

determined by the string

H,) (45)

H, = ( Hl, Hz, vee s Hoo

G
of p*m matrices. A generic property is then a property P for which the

set SP of systems which do not have P is defined by polynomial equationms,i.e.

HG € Sp <=> fk(HG) =0 (46)

for some set of polynomials f . For example, the property that the (truncated)

K

Vbt by s 4

e
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Hankel matrix

]n
i+j-1 “i,j=1

H, = [

has rank n is a generic property. And, the simple null structure hypothesis
is also generic in exactly this sense. Since the zero set of a set of .
polynomials has empty interior, a generic property holds for an open,

dense set of systems, . o
Theorem 2.2.

The Newton boundary of an invertible system, subject to a full rank
feedback matrix, is contained within the.McMillan polygon of the system.
Proof '

The proof of the second part of Theorem 2.1 shows that the McMillan
boundary forms a lower .boundary for the Newton polygon. Since the Newton
polygon is convex and since the initial and final points (0,6;);(m,6;) resp.
are the same for every Newton polygon the result follows immediately. o]
Corollary 2.3.

For a given McMillan structyre, every possible Newton boundary, in
the sense of Theorem 2.2, corresponds to some invertible linear system G(s),
subject to a scaiar feedback AIm.

Proof

S=S,
(0,82)

Gonsider a McMillan polygon
as in Figure 11, and suppose
we want to find a system whose
Newton boundary is given by

the segments Si of figure 11.

Formally the segments S1 are

Fegure 11. defined as those subsegments
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of the Newton boundary that link points with integer coordinates. Each segment

1s characterised by a dimension p1 and by a degree d,. Consider the transfer

i
matrix
¢ -
0 201 :
-7
z 2 -
. -
:o z Pyl |
i T |
| Y 47
12"2 o) 2 pi1+p2
O D
‘10 .
! .« T
: ".o z- m-l
! znz 0
b J )
where
p.+p, -1
- i Ti+l
ny d, + zj=pi+l cj (48).
In words : we take a matrix with McMillan terms just off the main diagonal.

Per segment we introduce a term to adjust the degree of the corresponding
block, such as to agree with the change in ordinate along the segment.
It can be checked that :

1. The matrix has cMillan structure (cl, Ohsy see s Um).

2’
2. The matrix (47) has the Newton boundary corresponding to the

segments Si' =]

Corollary 2.4.
Through an appropriate choice of the feedback matrix, the Mcliillan

boundary always is attainable for every system,

As in the proof of Theorem 2.1, we will again apply the algorithm
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of Owens, namely triangularise the system by dynamic transformations '
G(s) —> L(s-s,) T G(s) T (49).

If the matrices Qi occuring on the block diagonal (cfr.(14)), have simple
null structure..cﬁen the Newton and McMillan boundaries will coincide. So -
suppose that for some Laurent coefficient GZ’ the submatrix Qz does not
have simple null structure. Explicitly, the dynamic transformations and the

transformed system matrix take on the forms

L 0 }r

L= » T Epto..ps (50)
L, I_|}nr 1 i-1
mT,
[0, =
LTigrt- 1 2 (51),
H, H,

vhere the entries of the first r rows, below the diagonal, have a degree in .
(s -s,) that is sufficiently large to be irrelevant in the local analysis
around the point s,. Tpe lowest degree term in H& is by construction

Q, (s-s)° ' (52)

Multiplying (51) on the right by a suitable permutation matrix

1. ¢ |
K= r - (,53) ’
0 K

will render Qiﬁ simple null. Furthermore, since

£ "
78, H K
L T 1G TK = :iv» 2_
lH3 HQK

it follows that the properties of the first r columns are not changed,

therefore the inductive hypothesis of the algorithm is maintained.
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It remains to check that the permutation matrix (53) corresponds to a choice
of the feedback matrix. This, however, follows from the constancy of the

entries of the similarity transformation T :

L(s-8) T1G() TK = L(s-8,) TYGs) R T o (54),
where

¥ = k1! Q

Corollumy 2.5.

When the system is diagonalizable by a suitable choice of the feedback:

matrix and by constant similarity transformations, the branch patterns
corresponding to arithmetic means of the McMillan orders‘are attainable
through an appropriate choice of the feedback matrix,

Proof

L

By assumption.

'r'lc(s) T " *. (55).

First consider the case where Butterworth patterns do correspond to

the McMillan orders, except for two patterns of ordéers OZ and Gk, that are to be

replaced by two patterns of(Oi4-Gk)/2 -th order. This is achieved by permuting

the corresponding entries in (55), which becomes after reordering

. - N
(s -s,) ¢

0 (s~ s,)-cl

56),
(s-5.)"7k 0 e

B —
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It is easily checked that the matrix (56) has the desired Newton boundary.

The permutation matrix P

K=TP T 1%

corresponds to a feedback matrix

(57).

In general the transfer matrix (55) can be put in the form

diag {Qly ta eee 5 Q }

g S
where 0 (s-s,)°1
Qi -

L(s - s,)-oéi

q

L i
(s - s¢) Yai-1
0 *

(58),

by some permutation matrix, which corresponds to a feedback matrix_according

to equation (57). The Newton boundary of the system (58) has segments, that

correspond to branches of orders equal to the arithmetic mean of the

McMillan orders that occur in the blocks Qi'

Remark

For notational simplicity the system was assumed to be diagonalisable.

It can be checked, howevzr, that it is suffigient that the off diagonal

terms have a degree in {(5-s,) which is high enough, such as to be of no

importance in the local analysis. From the results so far it can be seen. that,

Fre——

for instance, max { 6;, 6;}, certainly is an upper bound.

Lo




ORIGINAL PAGE __!?
182 OF POOR QUALITY

APPENDIX A : Some further properties of root loci.

1. The asymptotic behaviour.

The results of section II can be specialised to analyse the asymptotic
behaviour of a strictly proper, invertible system. The McMillan structure at
infinity is defined as the McMillan structure at the origin after performing
the substitution s = 1/z ([20],{22]). As in ([11]), the Laurent expansion

reduces to a Taylor expansion in .the variable z

. _ 2 ;
G(z) = G1 z + Gy 2" + ..t , (59),

where the Gi are the usual Markov parameiers. Because of the properness of
the sytem, there are no poles at tnfinity,i-e-éz = (O, which is reflected

in the absérnce ofvnegative powers in (59). In terms of the McMillan polygon

z
this implies that there is rio

SE boundary. A typical McMillan
polygon is shown in Figure
12. From this diagram it is

- clear & poles must go to

infinity, for all full rank
Pigure 12. feedback matrices.

Uniform rank systems are defined by the generic condiéion that the
first term in the Laurent expansion must have full rank. As a result the
z (0,6:) McMillan polygon collapses to
a straight line. The Neuwton

boundary hence coincides, for

Figure 13. with the McMillan boundary -~

g all full rank feedback matrices,

e s ot o e
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illustrating the robustness of uniform rank systems.

2. Branching behaviour at finite poles and zeros.

A typical McMillan polygon at
i finite pole-zero location
is shown in figure 14. Non-
coincidence of the Newton and

McMillan boundaries not only

implies that the branching

Figure 14.

behaviour is différent from
the one predicted by the McMillan orders, but also implies that the

total number of branches can be less than 5; + 6;. Indeed, a factor (s-é,)i,
with i equal to the distance of the Newton boundary to the g - axis, 1is

common to all coefficients and hence

CLCP(s,g) = (s--so)i p'(s,g) ' (60).

As a result there is a fixed point of multiplicity i : i arriving and i
departing branches disappear. In Appendix C we shall return to this

phenomenon.

puce
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APPENDIX B : Proof of propositions 2.6 and 2.7

Before proceding to the proof of the propositions, recall that in
section II two Newton diagrams, nl. one for g and one for 1/g, were combined.
In the same way, we can combine the Newton diagrams for s and 1l/s. For

strictly proper systems, this gives rise to a Newton polygon as in figure 15.

S

The NW-boundary corresponds
to the asymptotic behaviour
(zeros at infinity). The

SW boundary corresponds

to the arrival of the root

loci at the zero s=0, and

nil

m the SE boundary to the

N

Figure 15. departure at the pole s=0.

Proof (Center of gravity and product rules)

Because the open loop system is assumed to be strictly proper, the

0l

CRSES) | CLCP will be monic in the
variavle s. As a result a

] necessary and sufficient
x\\\\\ condition for the center of
) | gravity rule to hold, is that

the coefficient of sn_1 does

not depend on A. This is

1 m
Figure 16. depicted. in Tigure 16 : the

upﬁer shaded afea should not intersect the Newton polygon. A sufficient

condition for this to be true, clearly is that the NW boundary of the

T
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McMillan polygon , which contains the Newton polygon, has a slope at least
equal to 2.

A necessary and sufficient condition for the product rule to hold, is
that the coefficient of s° only depends on A". This condition again can be
displayed graphically : the lower shaded area of figure 16 should not inter-
sect the McMillan polygon. A sufficient condition for this to be true
clearly is that the SW boundary is absent and that the SE bou&dary has a

slope at least equal to 1. o]

Remark

The conditions of propositions 2.6 and 2.7 are only sufficient. In
view of the results of secticn II, these propositions could be rephrased
as : "A necessary and sufficient condition for the center of gravity
(product) rule to hold, for all full rank feedback matrices K, is
that the open loop system has m zeros (poles) at infinity (s=0), each

having an order not less than 2 (1). o

o me e
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APPENDIX C : The principal polygon.

Consider again the return difference :

m-1

det(g I+ G(s) ) = gm + trG(s) g + ... + det.G(s) .

Each coefficient constists of a sum of all principal minors of a certain

dimension. The relationship between che McMillan and Newton boundaries hence

can also be explained in the following way : if the i-minor content of G(s)
at s, is c,(Gi), then generically some principal i-minors will have a
content c,(Gi). Furthermore, generically no cancelations will occur when
summing these principal minors. As a result both boundaries gumerically
coincide and the two phenomenon that can cause a difference between the
boundaries, are :(l) the content of every principal minor is smaller than
the i-minor content,(2) cancelaﬁions occur when adding the principal

minors.

Definition C.1 ([20,22])

The content of a rational function g(s) at s=q, is : +k, if g(s)
has a pole of order k at s=q; -k, if g(s) has a zero of order k at s=q. O
Definition C. 2.

The principal i-minor content of-a rational matrix G(s) at q,
denoted by pnq(Gi), is defined to be the maximum of the contents at q of the
principal i-minors of G(s). . u’
Definition C. 3.

The principal polygon of a transfer matrix is defined in the same way

as the McMillan polygon, but replacing contents by principal contents. O

e

LS

7

it e
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Definition C.4.

The principal boundary is the 1owgf boundary of the principal polygon.o
Proposition C.1.°

The Newton boundary is contained within the principal polygon.
proof

Follows immediately from the introductary diséussion.

Remark

Unlike the McMillan boundary, the points generating the principal

boundary need not in general lie on the principal boundary.

The importance of the principal polygon is that, for low dimensional
systems, it allows one to estimaté the Newton pdlygon by hand: one
only has to scan through.the principal minors. We empﬂasize, however that in
accordance with (2) quoted above, the actual Newton bouﬁdary might be
different from the principal boundary. As a result the principal structure

cannot predict the number of fixed points of the root loci, as one might have

thought (see also [24], esp. pp. 26 and 56). The following exaﬁple

illustrates this: consider

52/(s+s°)3 1/s 0

G(s) = 1/s 0 -1/s

0 1l/s 0

with s2
det[gI+G(s)] = g3+g2 + g(l/s2-1/52)+1/(s+s,)3
(s+s°)3
1 3. 22
x i { (s+s°)3g + g7s” + 1]
(S+So:'3

and '
CLCP(s,g) = 52 [(5+s°)3g3+-(35,-+1)5232 +17] .

T
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InFigure 17 the Newton and the principal boundaries are shown. From jpgpection

of the Newton boundary it follows that there is a fixed point, 52 =0, This

fixed point is, however, not predicted by the principal boundary.

To summarize, the principal polygon can be helpful to estimate the
Newton polygon and this estimate will be better than the McMillan
polygon. However, the principal structure is not invariant under
multiplication by the feedback matrix, nor nced the estimate actually

coincide with the Newton boundary.

S

Newton

principal

a9 3

Figure 17.
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ABSTRACT

A necessary and sufficient condition for simultaneous
stabilization has been obtained for an r-tuple of m input p output
plants under the restriction r < mtp , min{m,p) = 1. In particular
if r < mtp., a generic r-tuple is stabilizable and if r = mtp,only
a semialgebraic set [2] of plants is stabilizable. The general case
min(m,p) > 1 a@n be vectored down to the above case so that in
general a sufficient condition " r < max(m,p) " may be written
down for generic simultaneous stabilization. This generalization
supports special cases due to Saeks et al [8] for m=p=1, r=2
and Vidyasagar et al [12] for max(m,p) > 1, r=2 .
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1. INTRODUCTION OF POOR QUALITY

We consider a set of r real,linear,time-invariant,proper
dynamical systems,each of a given fixed Mcmillan degree ni.i-l,r vith o
inputs and p outputs and ask the fcllowing question:

" When does there exist a non-switching, m input, p output
real,linear,time invariant,proper compenisator of arbitrary large but
fixed Mcmillan degree q, vhich stabilizes each of the r given plants ? "

In this paper we give an a2nswer to the above question for
pin(m,p)=1 and r < m+ p . In fact an r-tuple of min(m,p)> 1 plants can
be vectored down to the min{m,p)=1l case ( as shown by Stevens [10]) so

that in this way one obtazins a sufficient condition for genmeric,simultaneous

stabilization given by ' r < max(m;p) ', This inequality however has also

been derived by Ghosh and Bvrnes [5). Note that cne can use this inequality
to prove corollary 4.3 due to Vidyasagar and Viswanadham [12] on a result

about the generic stabilizabilitv of a pair of multi input-cutput plants.

Coming back to the case min(m,p)=1, we topologize the set 'S'
of r-tuples of plants in the topology ‘of section-2. If'q is apricrily fixed
we know thzat (see [4] ) the set ¥ of r~-tuples of plants which admit a
stabilizing compensator is an open semialgedbraic [2] subset of S. A
semialgebraic set is a finite union and intersection of sets defined by
algebraic equations and inequations, and it is a classical result by Tarski ([11]
and Seidenberg [?], that the property of being semialgebraic is preserved ty
a rational map. Indeed it was a pioneering idea of Anderson et al [1] to
apply these concepts in system theory and show that the set of plants
whiqh can be stabilized by some non-dynamic compensator is an open

semi-algebraic subset in the space of all plants.

In this paper we allow q to be arbitrarily large but finite and
a,
show thzat for min(m,p)=l, r < mtp, S is an open semi-algebraic subset of
n
S. Moreover for r < m+p , we show that S dis dense in S, so that simultaneous

stabilizability is generic for the case min(m,p)=l , T < m + p.
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Without any loss of generality, we assume that m 2> p. Consider
an r-tuple of 1 X m plants to be stabilized by an m X 1 compensator. In
section 4, the solvability of the generic simultan:zous stabilizability problem
has been shown equivalent to a problem of interpolation by rational
functions. These problems have Been described in seccion 4 as PR1,PR2,PR3.
Indeed we have the following general theorems :

ORIGINAL PAGE IS

Theorem 4.1 OF POOR QUALITY »

Under- generic hypothesis (3.5), an r-tuple (r < mtl) of

+ 1 X @® plants is genericzlly simultaneously stabilizable.
Theorem 4.5

Under generic hypothesis (3.5), an r-tuple (r = m%l) of
1 X m simultanecusly statilizable plants form a semialgebraic

set.

Theorem 4.7

Under generic hypothesis (3.5), an r-tuple (r > m+l) of
1 X m plants is simultaneously stabilizable iff the problem

PR3 (see section 4,case II1 ) has a solution.

The above theorems have been proved by using an interpolation
result due to Youla et al [l4,corollary 2,pplb5) referred to in this paper
as "Youla's lemms'. Notice the important distinction between r < m+l and
r > m+l. This might be expected from the necessary and sufficient condition
derived in [5]. As an illustration of the results obtained in section 4,
we consider in Example 4.6 the case ¥=3,m=2,p=1 ané obtain the semialgebrzic =

set of stabilizable plants.

In section 5, we analyvse the casem=p = 1. Forr =1,
ofcourse the problem always hazs a sclution. For r = 2 the statement of
‘corollary 5.3 can be used to describe the scmialgebraic set of plants that

may be stabilized by some cowmpunsator. This

m
o

proves results due to
Saeks et al [8], Vidyzsagar et 2l {12]. Fer r > 3, the protlem of

simultaneous stabilization reduces to the problem of existence of a

ik o A A i
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stable,minimun phase compensator as described by ccrollary 5.4 . Thus a
necessary condition for simultaneous stabilizabilitvy of three single input
single output plants may be obtained (see theorem 4.8) and we have the
folklore example 5.5 of a triplet of simultaneously unstabilizable single
input single output plants every pair of which, however, may be simultaneo-
usly stabilized. (see [15])

2. BASIC SET UP AND NOTATIONS

For details about the basic mathematical set up, the reader
is referred to Vidyasagar et al [12]},[13], Saeks et al [7],[8] and

Desoer et al [3]. The following notations are used :

: Ring of all stable rationzl functions with real coeffici
Set of multiplicative units in H.
Quotients field of H [ 6, pp 88-90]

¢ Closed right half complex plane.

O = o X
“+ %

Non-negative real line including infinity.

As per the above notstion, H is an integral dewrain and the
class of single input single output unstable systems considered are the
elements of the quotient field F of H.

Thus every single input single output piant can be written as
n/d where n,d € H. An r-tuple of m input 1 output plant of Mcmillan depre

n can be written as

N
[ nél)/ dp , néz’/ dp y eeene ném)/ dp ] (2.1)
73 3 3 b ‘ h| h
where n(i) . dp € H, and Mcmillan degree of néi) , d_ < n ,i=1,2,..,m
3 ] h| ]
j=1,2, .. , r. llence an r tuple of plants may be topologized in IRN for

N = r[ (ntl ) (ml ) -1 ]. ( see [5] for details. )

A 1 input m output compensator of Mcmillan degree q can be

written as

(1) 2y , (m) , T
! R / dc. T / dc. »oceer 0 B / dc ] (
J J - ] J h|

R
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where h“’). d. € H and Mcmillan degree of a{d , d < q
1i=1,2, ..., m; j=1,2,...,r., with the restriction
nii) / dc = n(i) /.4 Jok=1,2,...,r (2.3)

3 3 " "

_ For notaticnal simplicity, we define the following quantities

Fix integers r,m and s, 1 < s < min (r, m2)
(1) ey (m+1)

Let n - , n = d s i=1,2,...,m 3
1 3
3 Py 1] Py
j=1,2,...,(r=-s+1). Define recursively the following :
N CUN ¢ (i+1) e (i+1)
Sl,j - 51—1,1 sl-l,j‘fl sl-lgj"’l sl—l,l
(m+l) , (1)
Ts,3 = s i-1,50 gsl—l
(L (2.4)
vhere, E. 4 n 7’ E. 1 » & =1
Sy Sy 1,1 S, 1 1 ‘
fOr all, i = 1,2,..--.,!1! ; S] = 1,2’0 ....,S ; j = 1'2’otoou’ r'5+1 .

3. THE SIMULTANEOUS STABILIZATION PROBLEM

Following Vidyasagar et al [13], a necessary and sufficient
condition for simultaneous stabilization of r plants given by (2.1) by a
compensator (2.2),(2.3) is the solvabilitv of the equations

m

Y T T T Y (3.1)
i=1 Py % P3 % J

for d_, n(i) €H and A, €J 3 for all i =1,2,...,m;

, Cj cj J ‘

j=1,2,...,7 . with the restriction (2.3)

In the notation of (2.4), the equation (3.1) mav be written

ORIGINAL PAGE IS
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3} m+l
W @ b i}
1.,.:1 Ystj s SyJ3 * 1.51+1 Asvj + Aj 65 0 (3.2)

vhere rlwm-s+2 i 03 * 1,2, cvves , Testl
and the condition (2.3) may be written as the following :

1) 4y

(11) (11)
1 1.2,.....:1 and As /As

"5, 1 Ve,

3y s,
sre the same for»il ’ i2 in the respective domains and for a fixed

31 ’ 32 (1 _f_: jlnjz < r-stl ) (3.3)

By (3.1) we have the following

SINULTANEOUS STASILIZATION & 2y} en; alt) ey
’ 'y

Aj € J satisfying (3.2),(3.3) for s=1 (3.4)
The purpose of this section is te show thar (3.4) is true for
all s=1,2, ..., min(r,m#2) under the following generic assumption :

" For a fixed s, such that 1 < s < min(x,m+2) ;

207

’ 12 - !‘1‘!"1,...,!&0'1-

(1; and nélg have no root in common in ¢t for every i,,3, € {1,2,...
» 1 » 2 E
ey T=8+1 } iy ¥ 3, (3.5)

Note that iz particular for r <m#l , s = r 3
(3.2) is just a single equation as oppcsed to r

equations in (3,1) . Ve have the following Lemma :

LEMMA 3.1

Under hypothesis (3.5), the of equations {3.2),(3.3; has
a solution for j = 1,2 for \'513 s Aé'J iff the equation (3.6) given
l 5
below have a solution for some 4 , .'s; ]\ € J, YS% € H.
’
B!
(1) - (1) (1) 1) ) _ 1) @) .
s 5,1 8 EsNg.2 ¥ 15 Yop INg1ngs Ng2 Ng,1]  (3.6)
artl s
(1) (1) (1) : (1) (1)
+ I A [ n = Mgy Mg
i'r 4_1 J’l s 1 S’Z u,l

1

o w2 AN AEELSSARIN A R oy

AR et

S e i
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THEOREM 3.1

Under the generic hypothesis (3.5), a set of r, 1 x m plants
is simultaneously stabilizable by a non-switching compensator iff (3.2),
(3.3) have a solution for Y(i) i=1,2, ... , r, and AT +1,....

6,3 1 5,3 1
ee, 1l Vs = 1,27...,min(r,m2).

Proof :

We prove this theorem by induction over s. Note that the
theorem is true for s = 1 by (3.1). Assume that the theorem is true for
some s. To prove the theorem for ¢+l, the strtegy is as follows :

Consider the pair of equaticns defined by (3.2) for j=1
and j = jl 1 < jl X r-s+l . There would be'r-s'pairs of equations
andé by lemma 3,1, each pair can be reduced to a single equation (of the
type (3.6)). Thus under the generic hypothesis (3.5)’che set of squations
(3.2) is equivalent to a set-of equations obtéiﬁed by ;eplaciné';'by
s+l in (3.2) upto multiplication by a stable,minimum phase rational
function.

4. THE INTERPOLATION PROBLEM
Our result on simultanecus stabilization (Theorem 3.1) can be
posed as an interpolation problem. We pose the interpolation problem for

each of the following cases seperately :

Case I (r < m + 1 )

Chooée the maximum value r cf s. From (3.2) r, = m~r+2, j=1

so that (3.2) may be written as
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Since Yﬁli € B, we have the following interpolation problem :
»
' ’ ORIGINAL PAGE IS
PR 1 " Find 7‘2) € H which intersects OF POOR QUALITY
T m+l
L RN P B
o 1
at those points sg € C+ where n(l) vanishes. "
Froof of Theorem 4.1 ( Solution of PR 1)
i
Assume, Al =1, : i = 1 is= r1+1, cee 5 mHl,
(i) - 1 4
’1 i 3,6y «u L
The problem thus reduces to obtaining ?é i € i which interp-
olates a symmetric set of complex tuples. It is therefore sufficient

(2)

to choose a real polynomial 75 1
9

of sufficiently large degree.

CORDLLARY 2.7

A sufficient condition for simultaneous generic stabilizati-

on for min(m,p) > 1 dis given by r < max(m,p)

¥ oee e - . —

Proof : distinct
Givern a set of r, p Xm (m 2> p, say) transfer functions, with, simple
noles, Gl, 62....,Gr « & plant C has the decomposition
n g
G, = I LY
i .
j=1 —
s = A
J 3
i
where n is the Mcn,llan degree of G Tj is a rank one matrix of order

i i

. 1 . .
P X m and A shp eeee A 2T the poles cf Gi' Now consider an artitz-

ary non-zerc 1 X p vector v such that v.T, # 0V i=1,..,r; j=1,..,n}an¢l~

H.

i

consider the mapping Gi — G; = v.G, YV oi=1l,...r

)
Since Gi coastiture a set of Ty 1 % m plants they can be

generically simultaneously stabilizable by some cepmpensator if
r < mex(m,p) + 1 ( By Theorem 4.1). Moreover the generic condition in

L

ol » :
Gy pulls back to thati in G;. Finally (see [5]) any r tuple of plants have

a constant gain output feedback K such that the closed loop systems hzve

distinct simple poles.

FEENIORR . s
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COROLLARY 4.3 ( Vidyasagaw.Viswanadham [ 12 1)

A pair of max(m,p) > 1 plants is generically, simultaneousi-
y stabilizable.

Proof : Immediate from corollary 4.2

Case 11 (r = m+1)

[

Choose the maximum value r of s. Hence s =r = m <+ 1

r, - 1, =1 and (3.1) may be written as

okl

Q) 1) (1) . )
Yol Meed, 1t B fned, Toed,1 B S 0 (4.2)
Since Ygii 1 € H , we have the following interpolaticn problem .
»
‘ 1] : (2) ‘ :
PR 2 Find Am+l,1 € J, which intersects
m+l
- 1) (1) (2)
[153 Ari,1 Mwnn 8 Bwnd Y/ Moyin

. + (1) - "
at those points s, € C where Ml vanishes .

Solution of PR 2

We waut conditions on the plant parameters for which PR 2

has a solution. First of all we consider the following lemma :

LEMMA 4.4 "
Let Ey,Ens «».. 5 E, € H be given and Tet s,,5,, ... ,S ‘
+ 1vee C té ' 1°°2 t .
€ C be a symmetric set of complex numbers. Then 3 A1 » 1= 1,000t
such that t;
z Ai Ei = 0 3 J=l,...,t | (4.3)

i=] s'sj
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A 1
if and only if, 3 non-zero real numbers ry s T ’“”“’rt'l such that
tl 51
Z L7 Ei - 0 (4.4)
i=1 s-sj )
| ' 1 + J'I
where 5 € { 8y 0855 cee 5 8, } A R . such that ry has the
saine sign for fixed i and Vv j.l ‘
Proof :
Writing (4.3) as
tl |
A = - L A E, / & (4.5)
1 =5 i=2 i 1 5%5
h| k|
it may be concluded that (4.5) holds if and only if 3 Al € J, which
interpolates the points .
1
( sj » - iz" Ai gi / 61 ) (ans)
=L S=5
k|
By Youla's lemma [14] a necessary and sufficient condition is given by
the following : j €y
" 3 A, i=2 t, such that rl--)".AE/é:-l
g oo T W
i=2 iy
have the same sign, V j, such that s, € {s,,Sqppeccc-..
1l j1 172
4
> eay St } n P\ " (a'7)
From the condition (4.7) we have
Jl tl . .
\ = - £ - 7 \
& [-x 8 - 28y 807 & | g @B
s=s i=3 3
i 1
We apply Youla's lemma repeatedly and the proof follows.

PROQF OF THEOREM 4.5

We now obtain th: solution of the interpolation problem PR 2.

By Lemmz 4.4, i: i clear that a necessary and sufficient

condition is the existence of non-zero rezl numbers ril such that

B adhiiitac il L

e T
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J h
1 (1) 1
St Mmla Yo Tm2 e | 07O (4.9)
3
\ 4 jl such that sj € { s.,,z, cees 98, }n R+ ; where si € C+,
such that, n;l% 1 (Si) = 0 (4.10)

and where for a fixed 1 , ril has the same sign for all jl .

Let us define

Vis) o [ 1) W) o023 e ‘"‘*”,(1)"‘*‘

Mme,1° UMCIRRTE Ene1]

It is now straightforward to show the following (see [4] for details)

" SIMULTANEOUS STABILIZATION <=> 3 integers
1 s €y 5 sere em+1 such that all the vectors
V(s (s, as defined in 4.10 ) have at least one

J] 3
pegative component. (4.11)

The above condition clearly defines a semialgebraic condition.

EXAMPLE 4.6

For m=2,p=1,r=3 consider the triplet of plants

2 ,. -

[ n /d né 7d_ 1.0 nl /d 2 /4 1.0 n /d n /d ]
i PP p2 P2 Pa P2 p3 P3

2 .
L n /d n® /d. J=[ n /d /d 1= n /d n /d. ],
i.e. n. /-d = n / d i#3 s=1,2; i,j€{1,2,3}
i i J J
For simultaneous stabilization we need to solve the equation (see (4.2)

n + A0 4+ & n =6«

21 1 13 2 23
for 4,8 € J; & € H
= = 1 2 1T .2
v J

2 e e e o——

L bR Pt b i A e ]
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Let 31.32,53,...,.,st be the set of points in R+ where
K vanishes. By (4.11) the set of simultaneously unstabilizable plants is
given by the following condition

' For everi triplet e1, €, €4 € {o0,11}

DT (5. )50, (D 2F (6.) >0, 1) 37 (s.) >0
nz: tl ’ 13 tz ’ 32 'tl

for spme t € {1,2,00000000,t} "

Case III (r > m + 1 )

Choose the maximum value m+2 of S. Then (3.2) reduces

to
o+l
(1) (1)
151 An+2 nm+2,j + Aj Em+2 0 (4.12)
wvhere we have normalized Aéi;,k to satisfy
a0 @) V i%1,2,....,m and i,k € {1,2,..,r-u-1}

2,3 T Cmt2,k

From (4.12) we may now state the interpolation problem as

follows
PR 3 ' Find Aéﬁ% € J which iﬁtersects
- 3.1 G
- ' _ (1) (1) (2)
-4 840 L, 2 "mt2,39 /Mot2, 3 (4.13)

at those points s% € C+ and only those in the closed right ha"%

(1)
plane where Mp42 4

vanishes V j =1,2,....,r=0~1 "

Proof of Theorem 4.7
Immediate from the ergument given above.

EEm
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Note :
A solution of FR 3 would involve finding a stable, minimum
phase rational function, Aéi% , which intersects the graphs of r-m-l
rational functions, given by(4.14) as specified in the statement of PR3

In particular, since‘A;i; is stable we have the fcllowing :

Theorem 4.8 (Necessary condition)

A necessary condiition for simultaneous stabilization of r
plants [r > mp, min(m,p) = 1] is given by the existence of non-zero
real numbers rgl such that

—-"

™l 9 ) ho :
L5 miygMmzg b Tmeg fme 1) @7 O
Vi=1,2, oo , r-n-1 : I
¥ 3§, such that _(j) + (D 1)y
} ) .sjl € R and nm+2,j(sj1 ) 0
J
and where for a fixed 'i' , ri; _has the same sign for all j,

31 defined above and for a fixed j, r;lz j has the same sign for all

‘51 as defined above.

Proof :

Straightforward and follows from the proof of Theorem 4.5
(see [4] for details)

S. THE'SINGLE'INPUT SINGLE OUTPUT CASE

The case m=p=1 has been studied extensively by Saeks et al
' i7],[8] and also by Vidyasagar et al [12]. For our purposes we restate
Theorem 3;1 for this special case and reprove as corollaries, some of the
~ results known. Refer back to the plants and compensators in the notation
of (2.1) , (2.2) and (2.3). T

it b e 3 e
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Theorem 5.1
For m=p = 1, SIMULTANEOUS STABILIZAION <>
" the following set of equations in H, has a solution for 4, € 4

f=12,.....r and nél). dc] € H "

( r> 2 ) A-l n]i + Az nz.i = Ai nlz M 1=1 ,29..-,"‘2 (5.])

(r= 2) ngl) ngy * dpz = dp1 4, (5.2)
(r= 1) ngl) “ngl) + dc] dp1 =4 (5.3)
where ."ij - n;:) dpj - né;) dpi if3 .Sfif)

The proof is immediate from that of Theorem 3.1 (see [4] for
details)

Corvilary 5.2 ( Saeks et al [87)

A necessary and sufficient condition for a pair of single
input single output plants to be simultaneously stabilizable is given by
the following condition :

"4 /d has the same sign for all s4€ R
P2 Pils=s
' 0

where N2 vanishes "

Proof :

Writing (5.2) as n£:) = ( dp] &y - dp2 ) / nyy and

using the argument of Theorem 4.5 the result follows.

Corollary 5.3 (Assume r > 2 )

Let p;, i=1,2,...,r be generic plants (satisfying (3.5))

with coprime representation nfl“!d . There exists a corpensator whicgh

: Pi P4
simultaneously stabilizes the r plants Pirizliceaur iff there exists a
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stable, m1n1mum phase dynamic compensator A / A which places the po}eé
of ny,/ ”h at those poin:s in ¢t where n12 v;.nishes and places the
rest of the poles in the left half plane. v 1 = 1,2,...,r-2 . '

Proof : .
Immediate from (5.1) and section 4 case III.
Note : ‘ Even fqr r=3 the existence criterion c¢f a stable, minimum

phase compensator satisfying the above condition is not known.
.

Example 5.5 —_—
In this example we construct a triplet of plants which are
stabilizable in pair but unstabilizable simultaneously. '

Let s + 1 s + 3 - 8 4+ A
Py = — Py ® — , P = —mm
1 s - 2 2 s = 1 3 s + B

"From Corollary 5.2 and Theorem 4.8 the required algebraic conditions
which A,B need to satisfy may be constructed. The choice A==1.1,B==4.5
satisfies these conditions. The details have been omitted.

6. CONCLUSION
This paper addresses the question of simultaneous stabiliza-
tion under the restriction min(m,p)=1, r < mip. A sufficient condition for

simultaneous stabilization has been obtained by using these techniques,

for the general case min(m,p) > 1l.The case min(m,p)=1, r > mtp still
remains open. Future research might be in the direction of finding an
appropriate necessary condition for min(m,p) > 1.
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Proof of Lemma 3.1
Scaling (3.2) for 3j=1,2, with Ay = -1 and by a slightly
tedious but straightforward algebraic manipulation the following set of
, equations have been obtained : '
( r o+l
1) _ O IO R (1) (1) a
Y1 " 05 - L Y1 N, i§Fi+1A RS AR N A ¢ 28
Y - W@ .

.' W(s) "1 s 1 Es i 1,......:1 ' (12)
) - @ @) . .
A 5,2 W(s) As.l g1 & 1= r+l,.00,ml ‘__513)

vhere, T, )

. (1) NCO RPN DR CY ) @
WO = 8 Mgzt D Ve [M1 M52 T Mgz M1 ]
wrtl
(1) 1) ) (1) (1) ‘
+ if;'+1 As,l ns,l ns.2 r‘3,2 ns,l 1 (14)
1
Sufficiency o
By assumption 3 Y( ) € H 1-2,3’--,:1, A(Ti € H i-r1+1,oou.m+1
which satisfies (3.6) o -
- | éro; iIé) (13) and (3.6)-v?-£;ve
:*; - yéii N T N (15)
A“; - Aii; O . ITSOE | (16)
«) ’
provided GE P* (1) + .
To show that Y € H, let S € C be such that
(1) (so) = 0. From (14) and(3.6) W(so) = 0 and
o+l .
(1) 1) @) (1) (i)
W(s,) = ng o [ & Y n - ) A 1 (17)

0 1_2 s,1 ''s,l i-r1+1 8,1 s 1%

By generic assumption (3.5), nil)
9

.

2 $ 0 so that

By St iiae 18
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1 CORNCY - ( T
- i i _ 1) (1) -
& - EY%1 M, Lo B Ml °o an
1l 5°8,

By (I1),(17) 7(1) € H .

Necessity ' ’
" 77 "Assume that (3.2) has a solution. Define A by (3.6). We
wvant to show that A € J : T T T

y et ———

Lef 366 C+ be such that

‘1’ ey = 0 - (18)

._—

0
‘Since by assumption Y(l) € H, we have the equation 17 from Il1. By (18),
(17), and (3.6) W(so) 0. Let sl€ C be such that E (s ) 0. If£ s> 1,
(I3) = either W(sl) =0 or A(i) (s ) = 0. However since A(i; €J
we have w(sl) = Q . If s=1, on the other hand Es(sl) cannot vanish
by definition. Thus we conclude that A € H

To show that A-l € |H we proceed as follows :

Let s, € C+ be such that W(s ) = 0. Then either Es(sz) =0 or

<1) (sz) = 0 for if not by (12) (13)

Yer 0 11, (19)
(1
8¢ iugr 0 &= H,....,oH (110)
However by (3.2),(19),(I10) we have Aj(sz) = 0 which is absurd since
A, € J . Hence A.l € H )

b
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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

The "simultaneous stabilization problem" - in either discrete or

continuous time - consists in answering the following question:

\
Given an r~tuple Gl(s),...,Gr(s) of pXm proper transfer

functions, does thére exist a compensator K(s) such that the closed-
loop systems Gl(s)(I +K(s)Gl(s))-l,...,Gr(s) (I-',!-K(s)Gt(s))-l are
(internally) stable? ’

As pointed out in [13], this question arises in reliability theory,
where Gz(s),...,Gr(s) represents a plant Gl(s) operating in various
modes of failure and K(s) is a nonswitching stabilizing compensator.

Of course, for the same reason, it is important in the stability analysis
and design of a plant which can be switched into various operating modes.
The simultaneous stabilization problem can also apply to the stabilization
of a nonlinear system which has been linearized at several equilibria.
Finally, it has been shown [14], [20] that to solve the case r=2 is

to solve the well-known problem considered by Youla et al in [21]: When
can a single plant be stabilized by a stable compensator? This corres-
pondence also serves to give some measure of the relative depth of this

problem.

In oxder to describe the results obtained via this correspondence,
we need some notation. First, set ni-McMillan degree of G (s). In
the scalar input-output setting (m=p=1), we regard each G (s) as a

point in TR "1 y viz. if

Gi(s) = Pi(S)/qi(s,) , where

ni n-l n
pi(s)-a°i+...+aniis , and qi(s)=bli+..-.-+bnis +8

PRECEDING PAGE BLANK NOT. FILMED
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2
. . n,+l
then Gi(s) corresponds to the vector (aoi""’anii'bli""’bni) R "1 ",

Moreover, since pi and q zanrf ?elatively prime, this vector lies
in the open dense set Rat(ni) SR (see [ 3] for the strictly
proper case). In [14), Saeks and Murray used the techniques of fractional
representations [ 8] and the correspondence mentioned above to give
explicit inequalities defining the open set

Uec Rat(nl) xRat(nz)

of pairs (Gl(s),Gz(s)) which are simultaneously stabilizable. 1In
[20] Vidyasagar and Viswanadham showed, using similar techniques, that

provided max(m,p)> 1 the open set U of pairs (Gl(s),Gz(s)) which
can be stabilized is in fact dense.

This can be made precise by topologizing a point Gi(s) in the set

Eg’p ={pxm Gi(s) ; degree Gi(s) 'ni}

(n +1) (mp)
as a vector in 1R via its Hankel parameters: If

.5 =
G, (s) jZoHiJ'S

then G, (s) corresponds to the n+l p*m block matrices {HiO""’Hi,n-l-l}

which determines G(s). It is known that 22 p is an (n(m+p) +mp)-manifold
H]
(see [71, [12], [5]), although this is not important here. What is
important is that 2:‘ b is a topological space.
1

One of our main results concerns the gemneric sgabilizability problem;
that is,

Question 1.1. Fix m,p,r, and n,- Is the set U of r-tuples

Gl(s)""’Gr(s) which can be simultaneously stabilized open and dense

n n
in Em%px"f' X mep ?
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It is also important to ask, for reasons of global robustness of
algorithms finding such a compensator, for compensators with a fixed
degree of complexity.

'

Question 1.2. Fix m,p,r, and n,. What is the minimal value of q

i
(1f one exists) for which the set’ Wq of r-tuples which can be simul-
taneously stabilized, by a compensator of degree <q, is open and dense
n n
1l r
i X oo X ?
n zm.p *” Llm,p

It should be noted that, in the case r=1, Question 1.2 is an

outstanding, unsolved, classical problem. In this paper, we prove:

Theorem 1.1. In either discrete or continuous time, a sufficient cordi-

tion for generic simultaneous stabilizability is

max (m,p) 2 T (1.1)

Indeed, if (1.1) holds, then the generic r-tuple can be stabilized by

a compensator of degree less than or equal to q, where q satisfies:

r
qlmax(m,p)+l-r] > ] n, -max(m,p) (1.2)
i=1

In the case r=1J, it is unknown whether generic stabilizability
implies generic pole-assignability; that is, whether or not these
properties of m,n, and p are really different (see [ 4]). Perhaps
not surprisingly then, Theorem 1.1 follows from:

225

IR e e




226

ORIGINAL PAGE 1S

Theorem 1.2. A sufficient condition for generic simultaneous pole-
assignability is (1.1), where the compensator K(s) can be taken to
be of degree q satisfying (1.2).

Here, simultaneous pole-assignability means the assignability of
r sets of self-conjugate sets of numbers {sli""'sni-*-q,i} c .

In fact sharper bounds on q can be obtained (see [18], [11]). Our
proof relies on the recent pole-placement techniques derived for r=1
by P.K. Stevens in his thesis [18], which contains an improvement on
existing results in the literature, see also [ 9], [17]. We shall prove
Theorem 1.2 only in the strictly proper case; the proper case involves
more technical argumeﬁts from algebraic geometry which can be found in
[11]. We shall, however, give an independent proof of Theorem 1.1 in
the nonstrictly proper case, based on' the equivalence of generic stabili-
zability and existence of a solution to a generic "deadbeat control"
problem, which we can solve if (1.1) is satisfied. This argument

extends the argument given in [ 4 ] for the case r=1 and q=0.

Note that if r=1, then (1.1) is always satisfied in which case
(1.2) implies

Corollary 1.3. (Brasch-Pearson [2]). The generic pXm plant G(s)

of degree n can be stabilized by a compensator of order q, where ¢
satisfies

(9 +1)max(m,p) 3 n (1.3)

If r=2 and max(m,p)>1, then (1.1) is again satisfied, so we
obtain rather easily: ‘
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Corollary 1.4. (Vidyasagar-Viswanadham [20]). If r=2 and max(m,p) > 1,
then the generic pair (Gl(s),cz(s)) is simultaneously stabilizable.

Moreover, in this case we know an upper bound on the order of the
required compensator. For example, if m=p=2, r=2, then q can be

taken to satisfy

qQ 3n +n,-2

1l
On the other hand, in [20] the explicit conditions defining the closed
set

of pairs not simultaneously stabilizable were derived. Such conditions
can be darived from our proof, but instead we refer to [10], where
Theorem 1.1 (excepting (1.2)) is proved by interpolation methods also
yielding a set of explicit conditions in the range r < max(m,p).

Finally, we prove that the condition (1.1) is sharp in the following

sense.

Theorem 1.5. If min(m,p)=1, then for fixed m,p,r and ng the following

statements are equivalent for proper plants:

r
(i) q € N satisfies q(max(m,p)+l-1xr)+ 3 2 n;
i=}
(ii) the generic r-tuple Gl(s),...,Gr) is simultaneously
stabilizable in discrete or continuous time by a compensator

of degree £ q;

(41i) the generic r-tuple Gl(s),...,Gr(s) is simultaneously

stabilizable in discrete or continuous time.
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In the strictly proper case it follows that (i)-(iii) is also
equivalent to generic simultaneous pole assignability. This holds in

the proper case as well, but requires a separate argument [l1].

Corollary 1.6. If min(m,p)=1 and r < max(m,p) then the generic

r-tuple is simultaneously stabilizable by a compensator of order
precisely given by the least integer q satisfying (1.2).

As a further corollary, we obtain one of the results obtained by

Saeks and Murray in [ ], see also [15]):

Corollary 1.7. (Saeks-Murray). Suppose m=p=1 and r=2. Simultaneous

stabilizability is not a generic property.

We remark that these results hold also over the field € of
complex numbers - in particular, the complex analogue of Corollary 1.7
dispels a folklore conjecture councerning simultaneous stabilization

using compensators with complex cwefficients.

Finally, over any field, the method of proof of Theorem 1.2 gives
linear equations for a compensator simultaneously placing r(n+q) poles

when the generic hypothesis is satisfied.

2. POLE PLACEMENT AND THE GENERALIZED SYLVESTOR MATRIX: A PROOF OF
THEOREM 1.2
In this section we proceed to prove Theorem 1l.2. Note that
Theorem 1.1 and Corollaries 1.3 and 1.4 follow immediately in the
strictly proper case from this theorem. Without any loss of géherality
we can assume that m 3 p, for, if K(s) stabilizes Gi(s) then Kt(s)




S ks ETEEE & apnEIS ovee

229

ORIGINAL ppgg
t :
OF POOR QuaLiTY

stabilizes Gi(s).

Suppose, first of all, that p=], so that we are given a set of
r, m input 1 output plants of McMillan degree & n tepresanted as

n
k i gt

) ph st L pyys 2 p“‘ﬂ’"l L

1-0 ’ 1-0 P trv et rearee (2.1)
n n
ki k i
X P DR L P °
e n+Pi gmg mHpi gmg mPrd

for k=1,2,,..,4, A 1l input, m output, compensator of McMillan degree

£€q is represented as

g i g ! § :
a,,8 a s
4% P2 § on mep-l,i
i 0 ' i 0 ’ % S8 sE N » i 0 (2'2)
i E i § ;
igonmﬂ)is i_oam+pis i_oam-%pisi

Note that in (2.1) and (2.2) the coefficients p?i vV k and aj1
has been defined up to a nonzere scale factor. Moreo%er, for a strictly

iq
The associated return difference equation, dat(Iﬁ-K(s)Gk(s) = 0
is given by

proper plant or compensator, pgh =0, a
i

i
s = L L?_lop ]Lioajis ] (2.3)
Vik=1,2,...,x

A generic r-tuple of plants define a mapping X, via equation (2.3),
between the plant parameters and the coefficient of the return difference
polynomials given by

(q+l) (mip)

X2 ’m( r(ntqtl)

+ R (2.4)

where

=0V 3i=1,..,m+p=1; k=1,...,r.

TR e i
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Pg e+ + o+ Py
PQ Pn
X (Aogoo-’Aq) = (Aogo--'Aq) . ) ’ ) (2-5)
r pO‘ pn
where
Ai = (ali » 8og s cee s am+pi) (2.6)
™1 ! r ]
P1s Pygs = » ¢ Pyy
1 2 r
p, = |P2y Pogr » + = Ppy 2.7)

1 2 T
Potpi  Pmtpi® * ° Pupi]

The matrix in the right hand side of (2.5) is classically known as
the generalized Sylvestor matrix and is of order (q+1) (m+p) X r(n+q+1).
For r=1 its rank has been analyzed by Bitmead, Kailath, Kung in [1].
In particular, for a generic plant, it is known to have full rank. For
r 31, we have the following:

Lemma 2.1. The generalized Sylvestor matrix is of full rank for a generic
r-tuple. '

Proof: See Appendix I.
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Lemma 2.2. Assume min(m,p)=1. A sufficient condition for generic
pole assignment, for an r tuple of strictly proper plants by & proper
compensator is given by

r
(q+1)(m+p-r) 3 ] o -1+l (2.8)
i=1

Proof: We prove this Lemma assuming for notational convariance that
n,=n Vi=1l,...,r and analyze the mapping X as defined by (2.4),
(2.5). Assume '

k

a x'-]- 9 Pm*_p’n

Ty =l Vk=1l,00.,T
]

and that the coefficient of sn+q in all the r return difference
polynomials (2.3) has been normalized to 1.

Thus a sufficient condition for generic pole assignment is that X'
is onto. Here the mapping

X' R(aD (w+p) = 1 p(n+q)

(2.9
is given by
po «. e & o pn _]
po e o a2 0 pn
A yeeesA A'Y=(A,e0e,A A 2.10
X( ot , q_l q) ( 0 9 q_l q) po R R . . R pn ( )
1 ]
| po . . . pn‘
where

A& = (a )

lqan""’am+p-1q

and pi is obtained from Py by deleting its (m+p)th row.

231
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By Lemma 2.1 the matrix in the right-hand side of (2.10) is of
full rank for a generic r-tuple of plants, and has the order
(q+1)(m+p-1) X r(n+q). Therefoce, a sufficient condition for

generic pole placement is given by
(q+1)(m+p)-1 2 r(n+q) (2.11)

which is same as (2.8) for n,=nVi=l,...,r.

The proof of Theorem 1.2 now proceeds by a reduction to the case
min(m,p) =1, which has been treated in Lemmas 2.1-2.2. This procedure,
which is called "vectoring down", is adopted from the case r=1,
studied in P.K. Stevens thesis [18].

Lemma 2.3, Given an r-tuple of p>m plants Gi(s) of degrees n
each with distinct simple poles, there is an open dense set of 1 Xp

vectors Vv € }Rp such that vGi(S) has degree ni.

Proof: If r=1, then we may expand G(s)

n R
oo = § ok

i=1

in a partial fraction expansion, where }\i € ¢ and each Ri has rank 1.

Now, the set U, of real vectors v such that le#O is clearly open

1

and dense in rP . Defining U ..,Un similarly, set

2

n
V= nUi. Thus, V 1is an open dense set of vectors with the required
i=]

property.

If r>1, one obtains, as above, sets Vl,..,.,\lr in IRP having

n
an open dense intersection f\Vi.

i‘l Q.E'D.

i e i et ek A S 7
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Lemma 2.4. Given an r-tuple of pXm plants Gi(s) there exists a
constant gain output feedback k such that the closed loop systems
Gi(s) (I+kGi(s))-1 have distinct simple poles.

Proof: For r=1, the set Wl of K such that the closed loop system
has simple poles is the complement in RP of an algebraic set. It
is well known [ 2] that this set is nonempty; therefore, W, is open

1
r
and dense. Taling any K in the open dense set /’\W i gives the
i=]
desired conclusion. Q.E.D.

[}

Thus, choosing any (v,K) € RP x R™ we have a mapping from an

an open dense set

. 'n n n n
2ok zm,p X, .. xEm’p + Em'l X ... XEm’l

r -1\
LA (6 ()) g = (VG () (®+KG,(8)) Ty

which is rational in the Hankel parameters (Hij) of (Gi)' Applying
Lemmas 2.1-2.2 to the case min(m,p)-il, i.e. 2“ X eue XE“ s

m, 1 m, 1l
gives - via composition with ¢ - an open demse set of

zn X oyo X Zn which can be simultaneously pole-assigned.
m,p m, p Q.E.D.

3. GENERIC STABILIZABILITY CONDITION OF AN y-TUPLE OF PROPER PLANTS

In this section we proceed to prove Theorem 1.1 independent of
Theorem 1.2. We first show that the following three statements are

equivalent.

ki iweerymisiac
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I. A generic r-tuple of proper plants is stabilizable with respect
to the open left half plane by a proper compensator of degree £ q.

II. A generic r-tuple of proper plants is stabilizable with respect to
the interior»of the unit disc, by a proper compensator of degree € q.

II1I. A generic r-tuple of proper plants is pole assignable at the
origin by a proper compensator of degree £ q.

Lemma 3.1. I <=> I1

Proof: Consider the conformal transformation
d(s) =(s+1)/(s~-1) (3.1)

which maps the r-tuple of proper plants gl,gz,...,gr onto the r-tuple
of proper plants gi,...,g; where gi(s)==gi(¢(s)) except for the
algebraic set of plants satisfying - "gi(s) has a pole at s=1 for

some i=1l,...,r". The proof now follows from the two facts.

1. ¢(s) maps the open left half plane onto the interior of the unit
disc.

2. The mapping
—r ' ot
(81,----8r) (gl:"'ugr)

and its inverse, map the generic r-tuple of proper plants to the

generic r-tuple of proper plants.
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Lemma 3.2. I1 <=> I1I

Proof: Sufficiency is clear and follows by an analagous argument of
Lemma 3.1 with ¢(s)=s+a, a>0, a€IR.

To prove necessity, we have the following: For each r=1,2,...
(shown easily by assuming statement II and considering ¢(s) =as, a>0,
a€R). 3 an open dense set of Ut of r-tuple of plants for which
there exist a compensator of degree £ q which places the poles in the
interior of the disc Dr of radius 1/r centered at the origin.
Consider the set

Clearly, U is a dense set by the Baire Category Theorem [13]. Since
the mapping X given by (2.4 is linear, it has a closed image. Moreover,
every r-tuple of plants in U admits a sequence of compensators which
places the poles arbitrary close to the origin. Since image of X 1is
closed, U 1s contained in a set V of all r-tuple of plants for which
there exists a compensator which places the poles at the origin. By
the Tarski [19] -~ Seidenberg [16] theory of elimination over IR, V 1is
indeed defined by union and/or intersection of sets given by polynomial
eqhations or inequations fa>0, fB=O. Finally, since U is dense

in V, fB(U) =( => fBEO so that V is defined by strict polynomial
inequalities. Hence V is open. Moreover, since U is dense, V is

also dense.

Lemma 3.3. For a generic r-tuple (r€&m+p) of min(m,p)=1 plants

IIT <=> (q+1l(m+p-r) 3 r(n-1)+1

sES=Es

T ARG 7
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Proof: The only nontrivial part is to prove sufficiency for the case
r(n+q) < (q+1)(m+p) < r(n+q+1)

(The other cases follow easily from the fact that the associated
Sylvestor's matrix is of full rank for a geneyic r-tuple.)

To prove sufficiency, for the above case we want to show that the
vector

(0,0,c000000.,0 , 51'52"”'""81:)

—r(n+q)=—t r e

indeed belongs to the image of X (defined by (2.5)) for some
%#0,1-1”.”n

Partition the Sylvestor's matrix in (2.5 as [8182] where Sl is
of order (q+1)(m+p) X r(n+q). Clearly we are solving the pair of

equations

[AO,..a,Aqlsl = [0,...,0] (3.2)
[AO"”’Aq]SZ = [Sl’""sr] (3.3)

We claim that for a generic r-tuple of plants (3.2) has a solution for
a nonzero vector Aq for otherwise if Aq =0 we have

[Agsees8y 18] = 0,...,0) (3.4)

where S:'L is of order q(m+P) Xr(n+q) obtained by deleting the last

= '
m+p rows of Sl. From (3.4) (Ao,...,Aq_l) 0 since S1 is of full

rank generically. Thus the only solution of (3.2) is the zero vector
which is a contradiction since the kernel of Sl 1s at least of dimension
l. On the other hand, for Aq#O, for a generic r-tuple of plants

the right-hand side of (3.3) is a vector none of whose entries are zero.
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Theorem 1.1 then follows from Lemma 3.1, 3.2, 3.3 and the
vectoring down technique used in the proof of Theorem 1.2 in
Section 2.

4, PROOF OF THEOREM 1.5

To say there exists q€ N satisfying (1.2) is to max(m,p)
Thus, (ii) follows from (1) by Theorem 1l.1l.

(ii) => (d4i1) since {iii) is weaker than (ii).

By Lemma 3.1, in order to prove (iii)=> (i) it suffices to assume
that Gl(s),. ..,Gr(s) are simultaneously stabilizable in continuous-
time.

Proposition 4.1. The generic (m+1l)-tuple of 1Xm proper continuous

time plants of degree n 1is not simultaneously stabilizable by a proper
compensator of finite (but not a priori bounded) degree.

Proof: Consider the domain of (simultaneous) stability

ni+q .
= . h .
) {(cn,.. SaCprer e ) EERED) ey 48 has ail roots in Dl}
T j=0
nHg n.tq

and its convex hull Q(@) € R Xx...x R' . Clearly, a necessary

condition for generic simultaneous stabilizability is
image ( xn) naL) ¢ 0,

for an open dense set of n. Since

¥ R
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UD) {'(cij) : e, >0}

i3

it will suffice to prove:

Lemma 4.2. If r=m+p, then there exists an open set of r-tuples
n such that image ( xn) contains no vector with only positive entries.

We fix the value of q and construct the associated Sylvestor
matrix S. We claim that the open set 'E of plants defined by

g & {(PO,P ,...,Pn)IPo-]'P V j=1,...,n has all the entries negative}

1 3

cannot be stabilized by a proper compensator of degree € q.

Suppose the above is not true, then there exist n€E, such that
image(xn) n (@) + 9
or in other words ag]ai >0V i=], r(n+q+1) and

asS=aqa (4.1)

has a solution. Writing S as

S é [s' s
where
Po Pl Pq
S' = 0 P0 Pq-l (4.2)
—0 0 PO :

and Pj=0 for all j>n
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Equation (4.1) can be written as
a' 1] s lsyag (4.3)

where st is given as follows

'xo S xq‘]

S'-l . xo ®e00 00 xq-l

LR RS I A L B N R N B B BRI A )

X
. o

where X_ =P

"(P].’Pz’a:ao,Pr+1) !.'-l = xr+1 V t'O,...,q-l

Pj = POle 3 J=1,...,q9

The identity matzix of order (q+1)(m+p) in (4.3) forces a' to have
all the entries positive. Moreover, since nGE,S'—l S" has all its
'(S'-1 S") has all the entries negative which

entries negative so that a
is a contradiction since o is a positive vector.

Finally it is shown that E is not an empty set. For a fixed

*e
16 has all its entries

*
P.=P_  choose the vector § to be so that Po

0 0
negative. Let

p;- (8,8,...,6) jm1,...,n

<—m+p——-*

o e
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80 that

LA *
(Po.pl.oq-,Pn) € E
Q.E.D.

Remark: If image( xn) is affine hyperplane, then the necessary condition
image( X)) N AD) 4 ¢
of course is sufficient, i.e. implies

image(xn) na+9

This fact was used by Chen, together with

Lemma 4.3. (Chen [61]) If r=1, Q(Q)-{(cl,...,cn) : ci>>0}

to give precise conditions for stabilizability in the case

r=1, q=0, min(m,p) =1, and max(m,p)*"n-1. This technique can be
adapted in the cases r 31 to give explicit conditions ~ in certain:
cases - defining the open set of simultaneously stabilizatle plants
when r >max(m,p), see [11].

Note that Corollary 1.6 now follows from our previous results on *
the generic rank of the generalized Sylvestor matrix, while Corollary 1.7
follows either from Theorem 1.5 or Proposition 4.1, , ' .
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APPENDIX I: PROOF OF LEMMA 2.1

The generalized Sylvestor matrix is co-ordinatized by r(n+1)(m+p)
parameters, and it is sufficient to show the existence of one principal
minor with nonvanishing determinant.

By reordering the rows and colummns, the generalized Sylvestor matrix
can be written as

RO PPN I (1)
where
Qi = [Pil’PiZ’. ")Pir] (2)
- pk K -
pjo. J% vesen pjr.l 0
pjk = ) .. ....l L] * L] . :' [ ] (q+1) (3)
0 'k 'k "k
i Pjo le. . e .ij_

*¢————=—(n +q+ 1) ————m—m>

in the notation of (2.7). Moreover, each pjk is referred to as a

'block' of S.

Define a set M of matrices as follows: 'm belongs to M
provided m 1is obtainable from one of the matrices pjk in (3)
either by deleting the first ay columns or the last a, rows

"
otl, Ay s 0.

Proposition A.l. Every element m of M has the property that there

*
exists a principal minor mp €M of m, a coordinate Py and an integer
*

b

m

* * '
jm such that P is a summand in det mp where jm is the order

of the minor.
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Proof: Clear from the structure of pjk.

The following is an algorithm to construct a principal minor
with nonidentically-vanishing determinant.

Algorithm:

Set S=§ » Initialize £ =0

1. Set E=E+1.

2. Look at Pll' Obtain the principal minor m of Pll’ satisfying
Propositionwl. If there is more than one possible choice, choose

* *
the one containing the first colummn. Define ag-pm and jE-jm’

3. Delete the rows and columns corresponding to the coordinate p: from
S. Renumber the blocks of the resulting matrix and call it S.
(Every block of S 1is to be identified as a minor of the correspond-
ing block in S obtained by row or column deletion.)

4. Do the same "delete' operation as in step 3 in s.
S. If S is empty, terminate. Otherwise go to 6.

6. Set k=¢E,
Construct the principal minor ;p of S by choosing those elements

of S whose corresponding row and column has been deleted in Step 6.

Proposition A.2. During the execution of the above algorithm, S can
always be decomposed into blocks belonging to M.

Proof: Clearly S satisfies the above proposition, since each block

P m belongs to M. Each iteration of the algorithm deletes either the
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first dl columns of the first block column of § or the last az
rows of the first block row of S. The proposition thus follows from

the definition of M.

Proposition A.3. -u-xp constructed in Step 6 of the algorithm has a

nonidentically-vanishing determinant.

Proof: We prove the proposition by showing that det ;; has a summand
ﬁ dii, in the notation of the algorithm. This is clear,
however, b;-ibserving that in the Eth iteration the matrix S has a
principal minor, the determinant of which has the summand ﬁg aii,

given by

where. k 1is defined in Step 6 of the algorithm.

243
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CONTROL THEORY, INVERSE SPECTRAL PROBLEMS, AND REAL ALGEBRAIC GEOMETRY*
Christopher I. Byrnes
Department of Mathematics and
Division of Applied Sciences
Harvard University
Cambridge, MA 02138

0. Tuning Natural Frequencies by Feedback

Consider a linear control system
== = Ax(t) +Bu(t) , y=Cx (0.1)

defined for x€'n€1, with control u(t)€ R" for each t, and output or
observation vector yE'Rp. A, B, and C are real matrices of the
appropriate sizes. The oldest problem in mathematical control theory
({11, {27, [21]) is tc understand the extent to which linear feedback,

i.e. a linear function
u = -Ky, ' (0.2)

can alter the dynamical characteristics of (0.1); specifically, the

location of tlie eigenvalues of the perturbed system

£X = (A -BKC)x(t) . (0.1)"

For example, a very important problem arising in applications is
whether or not a real matrix K can be found which stabilizes (0.3).
This condition is necessary and sufficient for the existence of asymp-
totically constant output solutions to the '"closed-loop" system

dx

£X = (A-BKO)x(t) +Bu(t) , y = Cx | (0.1)"

PRECERING; PAGE BLANIC NOF ERMED
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and is for this reason part of the analysis and design of engineering
systems which generate constant motion [21]. It is also an important
problem to produce, via feedback, periodic motions of prescribed fre-
quency or to eliminate such motions ([1], [2]).

These considerations, as well as many others, motivate the follow=-

ing additive inverse spectral problem:

Question 0.1 Given (A,B,C) can one find, for any se¢lf-conjugate set

{sl,...,sn} c ¢, a real mXp matrix such that

spec(A - BKC) = {Sl""’sn}

Since the eigenvalues of A arise as the poles of the function
G(s) = C(sI-A)"'B (0.3)

for an open, dense set of (A,B,C), see [ 7], this problem is often
referred to as 'pole-placement'. 1t corresponds to the physical
problem of tuning the natural frequencies of the system (0.1) by
feedback (0.2).

Evidently, for A,B,C fixed,

det(sT-A+BKC) = s+, (K)s" T L +e (K)
is a system of real algebraic (in fact, polynomial) equations

cl(K) = c ,...,cn(K) =c

1
in K, and Question 0.1 asks if these can be solved for all c.

Alternatively, define the function (for A,B,C fixed)

: "P ., Rr" 0.4a’
Rl ORIGINAL PAGE 18 (0.4a)
OF POOR QUALITY

via

X(K) = (cl(x),...,c'n(m) | - (0. 4b)

Question 0.1 then asks whether, for fixed (A,B,C), ¥ 1is a surjection.

In this paper, I will present some new results in real algebraic

i
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geometry as well as their application to this problem. These results
extend many of the existing results on this problem, some of which I
shall now review.

First, note that mp 2n is clearly necessary. Using an elemen-

tary argument, viz. the dominant morphism theorem, R. Hermann and C.F.
Martin proved

Proposition 0.1 [15] If mp 2n, then for generic (A,B,C) the complexi~
fied map

: ¢™ > ¢" ORIGINAL PAGE IS
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has an open dense image.

Using the "high-gain" techniques introduced in [10), one can
improve this result to

Proposition 0.2 [12] If mp 2 n, the complexified map Xg is surjective.

As it turns out, over ¢ it is sufficient to prove Proposition
0.2 in the case mp=n and in this case it is known [10] that )(¢ is
prcper for generic A,B,C. Indeed, Brockett and Byrnes showed that
its degree is given by a formula well known in several arezs of
mathematics. The Cauchy-Riemann equations imply that degxt actually
counts the honest number (with multiplicity) of solutions to (0.4) over
¢. Thus, this formula has the advantage of giving 'sufficient conditions

for Xg to be surjective, viz. whenever degx¢ is odd (see Corollary 0.5).
Theorem 0.3 (8] If mp=n, then for generic A,B,C (explicitly, for
nondegenerate A,B,C in the sense of j 8], [10]) one has

e (p=1)!(mp)}
mi... (mép-1)!

degxC = (0.5)

In general, the real difficulties, so to speak, emerge when one
asks that K be real. In Section 2, Ikpresent sufficient conditions
for a system of real algebraic equations to have a solution. In the
case at hand, this criterion produces constants C,.p 88 well as

’ N
effectively computable lower bounds c; p ~ yielding for generic A,B,C:

TR
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»
Here we define kEN by 2k<m+p <2k+1 and then set !
2k+1-1 if min(m,p) = 2, max(m,p) ¥ 2k-1
o o 22 i min@m,p) = 2, max(m,p) = 2°-1 0.6)
™P k+1 k
2 -1 if min(m,p) = 3,m+p = 2" + 1
2k+1 otherwise ’
This theorem has several corollaries. For example, over the complex "

_field the analogous inequalities assert that mp 3n is necessary and
sufficient that Xg be surjective for generic (A,B,C). Over the real

field, the crude lower bounds cé P yield
’

Corollary 0.5 (Brockett-Byrnes [8 ]) 1If mp=n, then the conditions

min(m,p) = 1 or min(m,p) = 2 and max(m,p) = 2%-1 (0.7)
are sufficient that X be sutrjective for generic (A,B,C).
Remark: This, however, is only one of the results obtained in [ 8] on
stabilizability and pole-assignment. For example, an explicit
characterization of the open dense set of (A,B,C) for which Corollary
0.5 is valid is given as well.

1 also obtain a stronger version (viz. surjectivity) of

Corollary 0.6 (Kimura [19]) If m+p-13n, then image X containsg an

open dense set in nfﬂ for generic (A,B,C).

1. Systems of Real Algebraic Equations

Our interest is in the following basic problem. Consider the

system of -equations

E G0 =y, x€ERY , i=1,...,n | 1.1

: ‘ N
which is to be solved for all y €ER" subject to the constraint x€XcR,

i a5 05 s

o



w1

#7 5 b — e 4w

251

where X is the real algebraic set defined (not necessarily as a com-
plete intersection) by equations

} ORIGINAL PAGE I3
( 0 i=1,..., ) v B 1.2
By () _ : OF POOR QUALITY -2

That is, we ask whether £ :X-R" is surjective. In what follows we

shall assume

di = deg(fi) is odd, for i = 1,...,n (H1)
We note that (Hl) is not a restriction on the class of problems consi-
dered, only on the form of the equations. For, by the introduction of
“slack variables'", we can render any set of equations in a form satisfy-
ing (H1).
Example 1.1 To solve y=p(x), x€R, is to solve the 'slack equations"

f(,xl,x?_) =y , g(xl,xz) = 0 (1.3)
where

f(xl,xz) = Xy g(xl,xz) = xz-p(xl) ' (1.3)'
Thus, we ask for surjectivity of

f : X- 1R
where XC]R?' is a curve, viz. the graph of p.

We shall also need another hypothesis. One can express any

polynomial F on RN as

F=p4F

where l"h is homogeneous, and deg(Fr) <deg(Fh). Consider the algebraic

sets
h A ,.h-1 h A, h.-1 :
2= ) EHTHO ., XM= DT (1.4)
f i=1 i =1 i

We ask that the '"base locus' condition

i ER S Db
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h ORIGINAL PAGE I3
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be satisfied, where throughout this note we mean geometric dimension.

Remark: (H2) implies the (obvious) necessary condition for surjecti-

vity of f:

dim X 3 n (1.5)

On the other hand, if (1.5) is satisfied, then the generic f (with di
fixed) satisfies (H2). For example, f in (1.3)' always satisfies (H2).

Example 1.2 (no constraints) If X = nﬁ“, then Bezout's Theorem on

CPN implies the existence of real solutions (possibly at infinity) to
(1.1) for any f satisfying (H1). If N=n, then (H2) is the condition
that the base locus of the rational map f be empty and therefore, for

finite y, a finite solution always exists.

Example 1.3 (compact constraints) If X is a compact real algebraic
set, no f can be surjective.

Example i.3 of course cannot occur over ¢, since complex varieties
admit unbounded houlomorphic functions. The main theme which we suggest
is that the topology of the real algebraic set (1.2) influences quite
strongly the solubility of equations (1.1) defined on these sets. And,
the topology of complex algebraic varieties is so remarkably well-

behaved that this issue does not arise over ¢.

2. The Main Theorems on Real Algebraic Geometrv

The key to distinguishing, for example, the real algebraic sets

arising in Example 1.2 and 1.3 is to study their behaviour at infinity.

To this end, we consider the inclusion of the closure
i:X < rPY 2.1)
N v N N :
of X in RP , wher¢e R €cRP via the standard construction

(Xlw--ny) - [xls- --’XN,I]

T s P
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Berstein and Ganea [ 6] introduced a homotopy invariant of maps, the
category of a map, defined in our setting as

cat(i) =min.card. (Ua): (Ua) an open cover of X such that

ORIGINAL PAGE IS i s N
OF POOR QUALITY . ilu : Ua + RP" is null homotopic

o

Note that in Examples 2 and 3, cat(i) is N+1 and 1 respect.ively'. We

can now state our basic existence theorem:

Theorem 2.1 If cat(i) >n, then (1.1)-(1.2) is solvable for any f
satisfying (Hl) and (H2). Indeed, for any yERn

dim £ 3 (y) 2 cat(1) -n-1 (2.2)

If dim X=n, then f is in fact proper in light of (H2), and (2.2)
asserts that f is a finite-to-one surjéction.. If X is smooth, then f
has a well-defined degree, degmf. Using characteristic classes, one

sees that (2.2) works at least as well as mod(2) methods:

Proposition 2.2 If degmf is odd and X is smooth, cat(i)=n+1. In

particular, if degmf is odd, 171(-)?) contains a subgroup of index 2 (and
therefore X is not simply-connected) and the mod(2) Betti numbers

8166) are nonzero for i=0,...,n.

Remark: This last topological conclusion is of course reminiscent of
the Kahler conditions. We dengte by XC’ iC" etc. the objects one
obtains by complexifying. If X¢ is smooth, then the Kahler conditions
together with a theorem.of Eilenberg [13] imply

cat(ic) P dim¢ -ft*fi,

with equality if —}Ec is simply connected [18], [25]}. 1In particular,
cat(i¢) >n is implied by (H2) and is thus superfluous over ¢, illus-
trating our philosophy. In this sense, cat(im) seems to play the role
of dimc for real algebraic sets. Moreover, cat(i¢) >n is implied by
the condition

rank Jf(xo) =n , for some xo€x

T

S
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In this case, the dominant morphism theorem asserts that (l.1l) is-
solvable for almost all yec“, (!"2;5 is a stronger hypothesis, but
strengthens this theorem. Thus, Theorem 2.1 may be thought of as a
"dominant morphism theorem" over R.

Further connections between degm(f) and the topology of} can be

derived in several cases.

Theorem 2.3 Suppose X is a smooth orientable n-manifold.

(i) I1f n is odd, then

- ORIGINAL
degp(f) 1is odd <=> cat(i) =n+1 PAGE 13
OF POOR QuALITY

(i1) 1If n is even, degm(f)= 0.

Remark: In Example 1.1, we have 2 cases. If deg(p) is odd, then

deng =%1, cat(i)=2 and ker(i,)) =2Z cZ ﬂl(.i). I1f deg(p) is even,
deg(f) =0, cat(i) =1 and of course I‘.l(x) = {0}. Nontrivial applications
will be indicated in Sections 3 and 4.

Assertion (ii) has a corollary which seems #f independent interest.

Corollary 2.4 Suppose id: is smooth and has odd degree in ¢1PN. If

dimm(xd:) is even, then le is not orientable.

I now consider the simplest case compatible with the conclusion of
Proposition 2.2. The following result can be obtained from Theorem 2.1
using an'analogue of the Hopf Degree Theorem, for maps to RP" (see
[24] and also [ 5], [25]).

Proposition 2.5 Suppose X is smooth, nonorientable, dimX is even,
and Hl(i) =7 Then

2"
deg.m(f) is odd c=> cat(i)=n+1

Theorem 2.1 applies however in the non-equidimensional cases, and‘
even when X has singularities -~ in particular it applies i'»,i the absence
of mod(2) orientability of X.

In fact, in Section 4 I give an example, with X singular, where

Theorem 2.1 gives a better result than the mod(2) theory. This example
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arises in an &nalysis of Question 0.l. .

3. Applications to Inverse Eigenvalue Problems gg'gg\g‘;;“ gSGE IS

' ALITY
As has been indicated above, any system of real algebraiq equa-

tions can be put in the form (1.1)-{1.2), where f satisfies (Hl), but

major technical problems remain in the application of Theorem 2.1 -

especially the calculation of cat(i) or even explicit knowledge of the
embedding Xe IRIPN. One class of problems for which there is a quite
natural transformation of the basic equations into the desired form
arise in the study of inverse spectral problems.

1f Ao is a fixed n Xn real matrix, consider the effect on spec(Ao)
of an additive perturbation A°+A, where A€X - an algebraic set of
matrices, such as the diagonal or the rank one matrices, The inverse

spectral problem asks, in part, whether the resulting map

v Xy (A) = characteristic coeff's of AO+A (3.1)
o Yo

is surjective. Quantitatively, one has the Weinstein-Aronszajn formula
det(1+A(sT=A)70) = 8(s) (3.2)
where ¢(s) is rational, vanishing on spec(A +A0), having poles on
spﬂc(i\o), and satisfying $(»)=1l. 1In particular, Q‘(so) = 0 whenever
sotspec(l\o) and s°€5pec(A+Ao). The vanishing of (3.2) also has a

geometric interpretation in GIBSSR (n,2n), where we.think of A as a

point (and X as a subset) via the correspondence
A = graph(A) (3.3)

For So fixed, we can consider dually.the hypersurface o(so)ccrassR(n,2n)
defined by |

o(so) = {W:dim(W N graph(sol - Ao)-l) 1) (3.4)
Then, vanishing of (3.2) is the equation of incidence

graph(A) € o(s) : (3.5)

3 Y s
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and, since o(so) is a hyperplane section for the. Plucker imbedding

N

'?n 0’ Grass]R (n,2n) RP (3.6)
ORIGINAL PAGE IS
the inverse eigenvalue equations OF POOR QUALITY '
- ®(sy) =0,...,%(s ) =0 (3.6)"

become linear in the Plucker coordinates of graph(A), which are to be

- solved in IR]PN subject to the constraints
graph(Ao) €Xc GrassIR (n,2n)

Theorem 3.1 The mapping (3.1) is the restriction of a central projec-
tion

N

T: RP'-g, > RpP"

1
to Xc-icGrass(n,Zn). Thus, on an affine open ]RN‘ containing X the
equations (3.1) take the ferm (1.1)-(1.2) and the inclusion (2.1) is
the composition of X cGrass (n,2n) with the Plucker imbedding ‘?n.n'

Corollary 3.2 If dimX=n is even and if the base locus condition is
satisfied, then degp (x)=0 if X is orientable.

In the next two examples, Theorem 3.1 is illustrated in well-known
inverse eigenvalue problems. Although less sophisticated arguments
suffice in each case, these are given in the way of illustra‘ions of a

unified viewpoint and also as a preliminary to Section 4.

Example 3.3 (rank 1 perturbatiomns) Let Ao be a 2 %2 matrix and consi-

der the algebraic set
X={A:rank A1} Su#, (R)

As above, X c Grass]R (2,4) via the correspondence
A +— graph(A) < R @ R’

Indeed, if V denotes 2-plane in 1R2 2] IR2 then
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X= {V:idimVvn (mze{o}) 3 1} ‘ (3.7)

since to say A has rank €1 is to say ORIGINAL PAGE IS
OF POOR QUALITY
ker A = graph(A) N R’ ® {0)
has dimension 31. In particular, X is a singulay Schubert hypersur-

face in Grass]R (2,4). 1In order to compute cat(i) note that
Grassm (2,4) -X is a chart on GrasgIR (2,4); that is,

- 4
Grass]R (2,4) - X~ R

(3.8)
By Lefschetz Duality, the inclusion
X S Grass (2,4)
induces an isomorphism
W' (Grass (2,4);2,) » KU (X;Z,) , &= 0,...,3
In particular, the mod(2) Betti numbers of X are

g =1, B, =1, B,=2 , and 63 =2

By Eilenberg [13], cat(.#, ,
]

in the ring H*(f;zz), of the nonzero element w

°i) is bounded below by the height ht:(wi),
1 of Hl(f;zz). From the
Schubert calculus ([20], [22]) one knows that wi # 0 and therefore

c:at(‘?2 °i) = 3

s 2
Finally, from (3.2) one sees that, for generic Ao, the base locus
condition is satisfied.

4 similar calculation for arbitrary n gives a proof of the well-

known

Corollary 3.3 For generic real Ao and any self-conjugate subset

{sl,...,sn} < ¢ there exists an A of rank £1 such that

\ k3 . 1
spec{Ao+A, {sl,.. s )
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Example 3.4 (diagonal perturbations) Let Ab be a 2%X2 real metrix and
consider the algebraic set of diagonal matrices

X= {A:A= diag(a;,a,) , a, € R}

Again, the correspondence A b= graph(A) induces an inclusion
X < Grass(2,4). Moreover, X is the intersection of 2 Schubert hyper~

surfaces

o, = {v: dim(VNspanfe,,e; }) 31}, and ORIGINAL PAGE 1%
. OF POOR QUALITY

o, = {Vv :dim(vn span{ez,ea}) 31}

where &)1 €9 eqr €, are the standard basis vectors in ]Ra. Elementary

geometry shows

§=olnozzmxplxmm1

so that i is a 2-torus. The base locus condition is satisfied for all

Ao and therefore

degp (X, ) =0

o

for 2ll AO, according to “orollary 3.2. This is in harmony with the
fact that, e.g., Xo fails to be surjective.

More generally, for any n X is an n-torus. Over ¢,
id‘. ~ ¢P 1 x... x¢P’ and one has

cat(i¢) =n+1l

from which one deduces the well-known result:

Corollaty 3.4 ([14], [ 31]) For an arbitrary n *n real or complex

matrix A and an arbitrary subset {s .,sh} c ¢, there exists a

1
diagonal matrix A = diag(al,...,an), with a, € ¢, such that

spec(Ao-+A) = {sl""’sn}
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4. Pole Placement bv Output Feedback

I now turn to the problem of arbitrarily tuning the natural fre-
quencies of a control system (AO,BO,CO) by use of output feedback F
(Section 0). In this setting X is given as .

%= {BKC :B nxm, C pXn are fixed) ORIGINAL PAGE_:s

OF POOR QUAL\

For generic Bo’ Co’ X is itself a Grassmannian
X = Grass (p,me+p) Grassp (n,2n)

1 is the Plucker imbedding, and the base locus condition is satisfied
for generic (AO,BO.CQ). (See [11].)

In this setting, Theorems 2.1-3.1 assert that cm'p-cat(.'?m’p) >n
implies arbitrary eigenvalue placement (Theorem 0.4). Eilenberg's
Theorem asserts that cat(.?m’p) is bounded from below by the height of
the first Stiefel-Whitney class

cat( ‘?m,p) >ht(wl) in H*(Grass(p,m+p) ; 7&2) (4.1)

This height has recently been calculated by Hiller [17] and by Stong
[26], but the sufficient conditions which these estimates yield also
follow, by Poincaré 'duality, from mod(2) intersection theory. Indeed,
starting with the interpretation of the vanishing of (3.2) as an
equation in the Schubert calculus, we can obtain these same results by
constraining the perturbation variety AgX to be a éc!xubert variety
2 < Grass(p,m+p) and applying Pieri's formula {9 ).

These calculations can be refined using Lefschetz Duality and
Theorem 2.1 as in Example 3.3. In the above notation, the inclusion of

the Schubert hypersurface (for s real)
0(s) <+ Grass(p,p +m)

induces an isomorphism in cohomology except of course for degree pm.

Although Poincaré duality fails to hold for «(s), Theorem 2.1 applies
to y restricted to c(s) and one can thergfore improve the estimate in
(3.7) by one, in all cases except min(m,p) = 2, max(m,p) = 2¥ -1 where

ht(wl) =mp |5 1, by first "placing a pole at s" and then considering

Jusaresy oty
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the remaining n -1 constraints. Combining the calculations made in
{17), [26] with this observation leads to the definition of c;,p in
(0.6). Combining this computation with Theorem 2.1, we obtain a proof
of Theorem 0.4.

The first case not treated by Theorem 0.4 (or by Corollary 0.5) is
the case m=p=2, n=4. This had already been studied by Willems and
Hesselink in [27], where they showed that for generic (A,B,C), image
(X) misses an open set of infinite Lebesque measure in ]Ra. This has
since been checked in various ways [ 8], [23]) but it is interesting to
note that one can see this result, within the present framework, by
either part iii) of Theorem 2.3 or by the real algebraic methods.pre-
sented in [ 4 ). Explicitly, take Syv Sp1 S, and s, € ¢ so that

2 € R and consider the submanifold of real points

Si % Si4

Gr:ass]R (2,4) < Grass¢(2,4) (4.2)

Following the technique in [ 4}, note first that
ORIGINAL PAQE I3

OF POOR QUALITY
0 # [GrassIR (2,4)] € HA(GraSSd:(Z.‘&); Z)

This can be seen from the fact that multiplication by V-1 maps the
tangent bundle '1'((31'.:«1351R (2,4)) to the normal bundle of (4.2). Since
GrassIR (2,4) is orientable, the self-intersection number of
[GrassIR (2,4)] in H*(Grassm(Z,A); Z) can be calculated as the Euler
characteristic of Grass]R (2,4); i.e. as 2. For generic (A,B,C) there

exists a real K placing the eigenvalues s if, and only if,

1°° 08,
there is a point in

0(51) n 0(52) n (yrassm (2,4) < Grass¢(4,4)
Moreover, we have the formula

degIR o = #(O(sl) ﬂo(sz) n Grass]R 2,0y €ez

for degIR (x) in the intepgers. An elementary calculation in
H*(Grassc(Z,li); 7Z) shows that

’ ’deg]R (x) =0
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Remark: From the classification of smooth functions in this dimension
range, one can then see that ¥ is not surjective, but this requires

more elaborate argument.

This technique will apply whenever Grassm (p,m+p) is or;.tem:able
and has a nonzero Euler characteristic, viz. whenever m and p are even,
reducing the calculation of degp (X) to a problem in the Schubert
calculus. In the present setting, this calculation may be avoided by

appealing to Theorem 2.3-part (ii); i.e.

Corollary 4.1 If m,p € 2Z and mp=n, then for generic (A,B,C),

deg () =0 ORIGIMAL PAGE i3

OF POOR QUALITY
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POLE PLACEMENT BY STATIC AND DYNAMIC OUTPUT FEEDBACK

Christopher I. Byrnes*
Division of Applied Sciences and
Department of Mathematics
Harvard University
Cambridge, MA 02138

Abstract

In this paper, ve give new results concerning
pole-assignability by static and dynamic output feed-
back, based on the interpretation of transfer func-
tions, feedback laws, poles and zerces ([3], [5],
(12], [19])) in terms of the incidence geometry of
s~planes and p-planes in (m4p)=-space. As an illustra-
tion of the most basic ideas, we give a short proof
of the Brasch-Pearson Theorem. A wmore careful analysis
of this proof yields a significant extension of this
theoren, wvhich we then considerably sharpen in the
case of pole~assignment by constant gain output feed-
back. As a final application we introduce a root-
locus design technique for non-square systems:
zeroplacement by pre- or post-compensation. This
zetoplacement problem is then analyzed by methods
similar to those developed for pole placement by
output feedback.

1. Exact Pole-Assignabilitv: "Vectoring Down"

The first problem we consider is: Given a real
p *® transfer function G(s) with McMillan degree
6(C) »n, what is the minimal q such that for any
sglf~-conjugate subset {sl.....s }c¢, there exist a

resl compensator K(s) of order q which places the
prles of the closed loop system at Byseeess 7 We

consider also those poles which have been cancelled
in the closed loop transfer function

G(l)(l+K(c)G(s))-1 by expressing the closed-loop
systen in state space form. We shall illustrate our
techniques by giving a new, elementary proof of the
vell-known Brasch-Pearson Theorem [ 2 ], before giving
more delicate improvements on this theorem and on the
existing results on pole placement by constant gain
output feedback.

Civen vER™, as in [19), we can "vector down"
G(s) by passing the input channels through v, i.e. we
can form the new p x1 transfer function G(s)v. A
partial fraction decomposition shows that the poles of
G(s)v are amrong the poles of G(s); moreover,

.lemma 1.1: For fixed G(s), there is an open
dense set VER® of v such that §(G) = §(G*v) =n.

Remark: This follows from our results in -1
section 2, we see lLemma 2.2 below. If G(s) = {sI-A) °B,

*This work was partially supported by the National
Science Foundation under Grant No. ECS-81-21428,
NASA under Grant No. NSG-2265, and Air Force of
Scientific Research under Grant No. AFOSR-81-0054.

**This work was partially supported by the National
Scicnce Foundation under Crant No. ECS-21428.
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with (A,B) controllable, then Lemma 1.1 i3 & vell-
knowvn consequence of Heymann's Lemma, viz. that
(A,Bv) 1is controllable for almost any input channel
Bv.

Nov suppose a self-conjugate subset {51,...,5 1

g
c¢ is given. Choosing v as in Lemms 1.1, we seek a

1 xp compensator K(s) such that if
G(l)v-N(s)n(-)'1 and K(l)'Q(l)-lP(s)
are coprime factnrizations, then

QOID{sL+P(s)N(s) =0 <> 8 € {8ysunnin b (1.1)

n+q

By equating coefficients on the left~-hand side of
(1.1), ve obtain s linear map - the generalized
Sylvestor resultant [1]:

Pole-assignability by a compensator of the form vK(s)
is therefore equivalent to surjectivity of S _, whose

rank is given in a simple, beautiful formula [1]:

rank S_ = (pH1)(q+l) - ] (1.3)
9 v, <q+l

i

vhere (vi) are the observability indices of G(s)v -

or, what is the same, of G(s) for v as in Lem=a 1.1l.
We then easily have:

(q+1-v1)

Theorem 1.2: Suppose G(s) has observability
indices (v,). Then G(s) can bz arbitrarily pole~
assigned w%th a compensiator of order q where q
satisfies

(q¥l)p- 1} (1.4)

vi<q+1

(q+1-v,) 3n

By duality, the same result holds, mutatis mutandis,
for controllability indices (K‘)

Choosing. for example, q 'an'l we obtain

1 (a¥l=v)e § (g+1-v,) *p(a+l) =n  (1.5)
v <q+l v £q+l
i
Combining (1.4)=(1.5), we have
Corollary 1.3 (Brasch~Pearson [2]): Choose

q-min(xmx,\'mx)-l. Then G(s) can be arbitrarily

pole-assigned using a compensator of order q.

Since the left-hand side of (1.4) is an increas-
ing function of q, achicving 1ts maximum at q '\inx-l'

'PRECEDING PAGE BLANK NOT FILMED
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Theorea 1.2 is in fact equivalent to Corollary 1.3.

2. _Generic Pole Assignability by

Qutput Compensation

In this section ve examine the “vectoring ¢kv\-m"""p
process more closely, investigating the effect of
preprocessing by a vector v which is not in general
position in the sense of Lemma 1.1. We {llustrate

compare [12) and also [ 9]). The right-hand side

‘u&qnnnl in the case of non-simple poles to:

3 Jklemma 2.2 ([19)): 6(G(s))= 6(v G(s)) 1f, and

unl 1£, v 1s not orthogonal to col.span G(s) nt’ for
g'pole of G(s).

Since G(s) csn have only finitely many poles,
‘n 1.1 follows by induction, Moreover, it follows

this in the "generic" case. Our main result is then,, . o"“‘”’y from Lemma 1.2 (for example) that given a p *m

4 strengthening of the Brasch-Pearson result for
' generic (A,B,C). More precisely, a property P of sasl
triples (A,B,C) is generic provided it is satisfied by
all (A,3,C) except perhaps those which lie in a

2
‘proper alevebraic subset of Rr" m(m); that is, »
subset X defined by real polynomial equations

nng

L= {(aA,8,C) =Pr('ij‘bk9.‘°m) «0, r=0,1,:..)

Our main theorem ([19] and also [18)) is then:

Theorem 2.1: The generic triple (A,B,C) 1s output
pole-assignability at the generic set of poles (e.g...
distinct) by a cozpensator of order q satisfying

~

(a+1) (max(z,p)) +min(m,p) - 1>2[“ 1]+1 (2.1)

Here, as is cus:omry [16], [5] for a,b€EZ

devoles the greatest integer leu than or equal to
a/b.

¢ - ——me

tesusfer function G(s), with p ém, one can place
2[m 41 self-conjugate polss {l"} using a compensa~-
tor of order 0, 1.e. a constant gain output feedback

1. The proof of Theorem 2.1 now proceeds as
follows:
(1) given s LCLELEL place the uu-conjullu
o subset (after reordering) o,,...,s, [L'.l.].n
by output feedback.
.2-3 (11) choose v€ RP orthogonal to the planes
col.span G(s,),.. ..col.spnng(sz[ul]ﬂ) .
‘ghe

m&l v G(s) 1s of McMillan degree n - Z[L] 1. By

Lpmps 1.2, 1f w ®G(s) has the generic set of controll~
sbddity indices, ve can place the remaining poles by a

..enscoppgnsatcr of order q, where q satisfies
iR -1 IR £ S} 44

- L‘l}-
The proof reposes on a more careful analysis'of n(q#l).an- 2[ 21 : (2.6)
the effect of "vectoring down" on the poles of G(s). e val
Suppose first that G(s) has distinct simple poles, . - “iuins that p=min(m,p) and m=max(m,p), (2.6)
and consider the partial fraction expansion . ichlies Theorem 2.1.
t Q.E.D.
n .
G(s) = 2 i (2,2) 1 3. Generic Pole Assignabilitv bv Constant
dm] "‘A ) or Gain Output Feedback
er.

Then, G(s)v (or w G(s)) will have a pole at k if, and
Hote

;eneully. suppose, vi'hou: loss of generality, that
p € and consider the coprime factorization

only if, R v (or w R ) does not vanish.

G(s) = N(s)D(s)™2
leading to the matrix

| o
, G(s) =
D(s) 1

I! C(s) has a simple pole m: 8,, a8 in (2.1), :hen
v R1-O if, and only if, e ®P ctP 1s or:hogoml
to the row span of Rl in ¢P. Equivalently, thin}c%ng
of column span G(s) as an m-dimensional subspacerof
C’#t.. ve have

2.3y

vtnl-0<->w.l.¢olumn span G(s) N ¢P 12‘.")‘"'
Such incidence conditions ar> familiar from the
earlier work of Kimura [14] on pole placement, and

the algebraic geometric results of Hermann-Martin [l"]’
and have come te play a afzahle role in the geometric
theory of pole-aasignabilicy ([3), (4 ), [S), [19]).
Note, in particular, that

col.span g_(-") ntP ¢ {0} <e> 5, is a pole of G(s) (2.5)

i

If m=p=2, n=4 then Theorem 2.} asserts tha:
thed generic (A,B,C) can be (generically)pole-assigned
by & compensator of order q=1. By the main result of
wlﬂems-ﬂesselink [22] (see also [ 3], [15]), we know
that one cannot generically assign poles by a compen-
sitdr of order 0. Thus, the bound in (2.1) - or in

""ﬂ\ ‘Brasch-Pearson Theorem - is the best bound possible
2.3)- (gpﬂhe necessary order of complexity of the pole-

gning compensator required for a generic system.
Nonetheless, since the proof of Theorem 2.1, as well
as the original proof of the Brasch-Pearson Theorem
(1 ], employed a q-th order compensa:or of a very

dal form (viz. a "vectored-up" compernsator) it is
nther likely that the bound in Theorem 2.1 is not

’p in all cases. Indeed, if n is even then the

"uedu-known result of Kimura [14) asserts that

b

i1
1s%Bufficient for generic pole-assignability of the
genuic system, wvhile (2.1) only guarantees that

f3n is sufficient. As it turns out, a more deli-

,cq. analysis of the geometric interpretation (2.5) of
poles, allows one to sharpen (3.1) and many other
existing results on polc assignability. Among the new
results one can prove by these methods is the following.

p+p=-13n (3.1)

“et nofine kKEN by 2K <m+ps2**! and set
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2%*3.1 if min(e,p) = 2, max(a,p) 42%-1
. 2%*1.2 1f min(m,p) = 2, max(s,p) =2% -1
’ 2**1) (f ain(m,p) =3, mtp=2®e1
2“”’ othervise

Iheorew 3.1: cy Piz[-'l'-;i]-bl implies arbitrary
’
pole assignability for the generic triple (A,3,C).

Note that, in any case,

s+p-1l¢ Sa,p € w (3.1)
The left-hand inequality implies a strengthened form
of:

Corollarv 3.2 (Kismura): m+p=1 3 n implies
generic pole-assignability for the generic system
(A,B,C)

The right~hand inequality reflects the necessary
condition [(22) mp on for pole-assignability, and one
can ask when o P'lp. Of course if nin(l@-l. then

]
sp 3n is sufficient for pole-assignability of the
generic systes. On the other hand, mp 31 is not
sufficient 1f min(m,p) = max(m,p) *2. The case
c-.p-w occurs precisely in the cases discovered in

{3]:

Corollary 3.3 (Brockett-Byrnes): The generic
P *m system of degree n is pole-assignable provided
%P Jn and

ain{m,p) = 1 or min{m,p) = 2 and max(m,p) = 2f -1

In [ 3] one can find an explicit charactarization
of the generic property alluded to sbove; see also
{15) in the cases nmin(m,p) =2, max(m,p)=2,3.

For example, consider a 3 %3 system G(s). The
technique of "vectoring down" yields, as does Corbllary
3.2, that generic pole-assigrability holds provided
the [izMillan degree of G(s) does not exceed 5. On
the other hand, 1f M is a 2 X2 matrix chosen generi-

. celly, MG(s) 1s & 3 %2 transfer function satisfying

§(G(s)) = 6(MG(s))

Applying Corollary 3,3, ve see that srbitrary pole-
assignability is possible provided 8(G(s)) c6.
Theoren 3.1 asserts, however, that arbitrary pole~
sssignability holds provided 6(G(s)) € 7. This claim
can also be deduced from Corollary 3.3 in the same
way that Theorem 2.1 follows from Lemma 1.2. Indeed,
this example illustrates the spirit of the proof of
Theores 1.1, which we shall now sketch.

First, note that to say 11 is a pole of the
tlosed-1oop system G(s) (Id»i((':(u))':l is to say

det(D(sl)ﬂ(N(lx)) =0 (3.2)

N(l1 .o
D(sl) .

or, equivalently [3],

p ¢
det
K

(3.2
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une; the matrices
1 N(s)
K ' D(s)

are of full rank (at each s €¢), (3.2)' {mplies that

1 l(sx)
i col.span

-K D(ll)

dim col.span 1 (3.3)

Thus, to say X places the poles of G(s) at ;p‘.‘...la

is to say that the p-plane

col.span ccfoc" ' (3.4)
. wy .
intersects each 2 thu n m-planes
N(s,)
col.span e cPoc® v i=1,.,.,n (3.5)
D(li)
nontrivially. This line of reasoning vas the basis

of the original proof of Corollary 3.3, noting
especially that {f sp=n, then the number of complex
p-planes (3.4) satisfying (3.3) for i1=1,...,0 1s
finite. 1In fact this nuxber,

L1l (peD)i(mp)t
mi... ("?"1):

vas derived by Schubert in his study of the enumera-
tive geometry of planes ([ 3]). The Brockett-Byrnes
Theorem follows from determining when (3.6) is odd.

d‘-‘--P (3.6)

The second ingredient in the proof of Theorem
3.1 is a new development [13), [20) in the Schubert
calculus, enabling us to relax the condition mp=n
vhile still retaining quantitative snalogues of (3.6) -
seae also {4 ] for an independent derivation using the
classical methods of enumerative geometry. Those
tesults yleld sufficient conditions involving either

c-.p or c-’p- 1.

Finally, the condition cn P In zan be derived

by developing a modified enume;-ltive geometry for
p-planes vhich satisfy (3.3) for a single, fixed real
pole (see {61]).

4. Results

. There {8 & geometric interpretation of multi-
variable zeroes {19]) which is quite analogous to the
geonetric interpretation (2.5) of poles. The litera-
ture on multivariable zeroes is tovo extensive to be
surveyed here; following Verghese [21], we will think,
intuitively, of a zero as an "absorbed motion.”
Suppose p £m; then a pair (s,u) €C*x (¢"-(0})) is &
zero provided there exists a p-planc Vet™ such that

N(s)
u€ tol.span[ ] nv
pis)

(4.1)

7eroes, then, are also characterized by an incidence
rclation. As an application, suppose G(s) is a p*m
non=square transfer function. In orvder to analyze
the feodhack properties of G(s), it is often uscful
to "square=down” G(x) by cither pre- or post-multi-
sl iention, obtaining a squiare system ME(s), or G(s)M.
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In this setting, one may employ multivariable root-
locus methads - such as [17] - to anslyze the stability
of resulting closed-loop systems. Since, in the square
csse, the root~loci move from the open-leop poles to
the open-loop zerces (under full rank feedback,
provided det(MG(s)) ¥ 0 or dec(G(s)M) ¥ 0, it is of
considerable interest to choose M 8o that the
"gquared-down” system has as many zeroes as possible

in the left half-plane. Thus, we consider the zero-
placement problem:

Cen one place c(G(s)) zeroes of G(s) arbitrarily
by output feedback?

Here, ¢(G(s)) denotes the “content” of G(s),
vhich equals the total number of poles of G(s) minus
the total number of zeroes ({21]). Due to the geome-
tric characterization (4.1) of zeroplacement as a
prodbles in enumerative geometry, Ve can apply the
previous results with appropriate changes [19]:

Theorem &4.1: If °1j is defioed as in section 3,

“aax(m,p)-nin(n,p),nin(z,p) 3c(G(s))

implies zeroplacement. for the generic G(s).

We remark that 1€ n-mp is large, then pole-
placenent is impossible, while in this range zero-
placement can be :ffectively incorporated into a
Joot-locus design technique.

Remark: Similar techniques apparently can be
sppiied to quite general feedback problems. For
example, the results of section 2 have recently been
applied to the problems of simultanecus pole-assigna-
bility and simultaneous stabilizability of a set of
r p*m plants °1(’)"“'°:(‘) yielding, for example,

the result that the generic r~tuple of plants may be
simultaneously stabilized provided r ¢ max(m,p) (see
{10, {11)).
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ABSTRACT

The problems of determining the minimal order of a stabilizing compensator for a
fixed linear, multivariable system and for the generic p *m system of fixed degree
are considered. An elementary geometric argument gives sufficient conditions for
the generic stabilizability by a compensator of order ¢ q. A more delicate
geometric argument; involving pole-placement in the high gain limit, is then used
to derive necessary conditions, obtained jointly with B.D.0. Anderson, for the
lower bound q 31. Taken together, these results determine the minimal order in
certain low dimensional cases. The general upper bound, however, is not always
tight and in many cases can be improved upon by more powerful techniques. For
example, based on a geometric model for finite and infinite gains, sufficient
conditions for q=0 dre derived in this paper in terms of a topological invariantb
(of the "gain space'") introduced by Ljusternick and §nirel'mann in the calculus of
variations. Using the Schubert calculus, an estimate of the Ljusternick-
¥nirel'mann category is obtained, yielding a stabilizability criterion which, to
my knowledge, contains the previous results in the literature on stabilizability

by constant gain output feedback, as spezial cases.

0. INTRODUCTION

The purposes of feedback in system theory are manifold, including (for
example) stabilization, decoupling, optimization, and increased insensitivity to
perturbations. Indeed, the study of the possible effects of feedbacks on the
dynamical characteristics of a control system engaged the interests of the
earlizst quantitative research efforts in mathematical control theory ([ 1], [2],
[31]). Recently, the study of "high gain feedback" has been formalized in several
ways leading to a robust extension ([36], [37]) of the elegant (A,B)~invariant
subspace theory, which is capable of answering questions such as "ylwost distur-

bance decoupling', and to new results in the classical problem of pole-

*Research partially supported by the NASA under Grant No. NSG-2265, the National
Science Foundation under Grant No. ECS-81-21428, the Air Force Office of Scienti-
fic Research under Grant No. AFOSR-81-0054, and the Office of Naval Research ’
under JSEP Contract No. N0O0014-75-C-0648.
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assignability by output feedback ([ 7], [8]).

In this paper, I would like to

illustrate the algebraic-geometric aspects of the analysis of high-gain feedback

in the less understood context of stabilization by static¢ and dynamic output’

feedback. ilore precisely, I would likée to begin by focusing on a specifie¢

problem, which is representative of a genre of classical linear system theory.

i
Vi

McMillan degree

$(G) = n,

Question 0.1. Given a p Xm rational transfer function G(s), strictlyfprOper with

what is the minimum degree, q = §(K), of a proper compensator K(s) which (intern-
ally, in the sense of [38]) stabilizes G(s) in closed-loop:

v(s) .  u(s)
\V) 4 G(s)

y(s)

K(s)

ORIGINAL PAGE IS
OF POOR QUALITY

Equivalently, we ask that the (n+q)~poles (i.e., including the cancelled poles) of

6(s)(1-K(s)G(s))™} 1ie in the left-half plane.

There are several reasons to ask for an upper bound for g, not the least of

which is the desire to stabilize G(s) with a compensator having at most a certain

degree of complexity. Second, the set of m»p compensators of order€q is

naturally an algebraic set of finite dimension, viz. q(m+p) +mp.

Indeed, the set

Z(n,p,m)* of compensators of order q can be parameterized as a smooth finite-

dimensional manifold ([{13], [25]). Thus, the techniques of calculus on finite-

dimensional manifolds can be used on I*(n,m,p) in developing algorithms for find-

ing a stabilizing cowmpensator.

I will also consider the question of whether a given G(s) can be arbitrarily

closely approximated (say, uniformly in sE?Eml) by a transfer function of the

same degree which is stabilizable by a compensator of degree q.

Since stabiliz-

able systems form an open set, this is rhen equivalent to the question:

Question 0.2. Is the set Uq of pXm systems G(s) of degree n, which are

(internally) stabilizable by a compensator of degree ¢, open and dense in the

space L(n,m,p) of all p Xm systems of degree n?

To make this precise, one need only know how to regard Z*(n,qép) as a

i

topological space. Develop G(s) in its Laurent expansion G(s) = iEILisf .
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Li p Xm real matrices. Since 8(G) =n, G(s) determines and is determined by the
entries of

Znmp (0.1)

hc = (Ll""’LZn) € R
where hG must satisfy the constraint
.Ll LZ e Ln -
. g:_?lG'NAL PAGE 19
esen 000 s e P .
rank .2 = n OOR QUALITY (0.2)
{Ln L2n-l_

2
Thus, IZ(n,m,p) is in bijection, via (0.1), with the subset Hank(n,m,p)CIR"“mp of
points satisfying (0.2). 1In this way, I(n,m,p) is regarded as a subspace of

]Ranp’ so that

G;(s) ~ G(s)
if, and only if, Hankel (or Markov) parameters
(1) (1)
(L7 heeesly ) = (Ll,...,LG)

converge. Thus, the meaning of the question, is Uch(n,m,p) open and dense, is

clear.

I will refer to Questions 0.1 and 0.2 as stabilizability and generic stabili-
zability, respectively, by a compensator of degree g. I should remark that the
question of the simultaneous stabilizability of an r-tuple of plants, which arises
in problems of reliability and fault tolerance, has recently been quite success~

fully studied by B.K. Ghosh using extensions of these methods, see ([16], [181]).

It is a pleasure to acknowledge the influence of my friends and coauthors
Brian Anderson, Roger Brockett, Bijoy Ghosh, and Peter Stevens on my thinking
about this problem. Indeed a great deal of this paper (cf. references) is based
on or surveys joint work with these authors. 1In addition, I would also like to
acknowledge interesting conversations and correspondence on this topic with Ted

Djaferis, Sanjoy Mitter, Steve Morse, and Jans Willems.

1. STABILIZABILITY WITH DYNAMIC COMPENSATION

Let G(s) be a p Xm transfer function of degree, 6(G), n and consider v€ r"
as an input channel, leading to the new p *1 transfer function G(s)v. According

to Brasch-Pearson [6 ], there exists v such that

S(G(s)v) = 6(G(s)) (1.1)

Actually ([12], [34]), the set of input channels v such that (1.1) holds is open

poy e W ! S
i 7
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and dense in ]Rm, with the same statement holding for output channels th (IRp)*.

This is easily seen in the case where G(s) has. sl‘m,\le poles, for then G(s)

admits a partial fraction decomposition
n R
G(s) = § s-i , rank R, =1 (1.2)

i=1 7 i 1

Then, G(s)v (or th(s)) will have a pole at )‘i if, and only if, Riv (or thi) does
not vanish. Since the poles of G(s)v are among those of G(s), and since G(s) has

finite degree, the set of such v (or wt) is open and dense.

More generally, consider a coprime factorization G(s) =N(s)1)(s)-1 leading to
the martix

(1.3)

~ N(s)
G(s) = [ ]

D(s)

If G(s) has a simple pole of S1» then w'R =0, if, and only if, w€ RP e P is

1

orthogonal to the column span of Rl in (CP)*. Alternatively,, regarding
column span E(s) as an m-dimensional subspace of Ep &C" and tP as a p-dimensional

subspace,

thl = {0} <=>w L {column span G(s) NcP) (1.4)

Thus [34], if G(s) has poles at Spve
not orthogonal to the subspaces col,sp.E(sl) ﬂmp,...,col.sp.g(sr) neP of
cpcmpecm, then '

ELM and if w€ ]Rp is chosen so that w is

§(wSG(s)) = 6(G(s) (1.5)

Lemma 1.1. ([34]) 6&(G(s)) = G(wtc(s)) if, and only if, w is not orthogonal
to (col.sp.a(s) neP), for s a pole of eP. Thus, the set of w satisfying (1.5) is

open and dense in =P,

The same result of course holds for v€ ]Rm, mutatis mutandis. Incidence
conditions such as (1.4) are familiar from the earlier work of Hautus [22] and
Kimura [26] on pole-placement and from the seminal algebraic geometric interpre-
tation of transfer functions due to Hermann-Martin [30], and have come to play a
sizable role in the geometric theory of pole-assignability ([ 7 ]-[10], [12], [341]).
Note especially that

col.sp.E(si) ne? # {0} <=> s; is a pole of G(s) - (1.6)
Compare [26] and [30].

These concepts can be illustrated in the following:

ORIGINAL PAGE IS
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Theorem 1.2. The generic G(s) can be stabilized by a compensator of order
q satisfying

(q+1)max(m,p) + min(m,p) - 1 2 n. (1.7)

(1.7) improves, by min(m,p) -1, the generic stahilizability result which one
obtains from the generic form of the Brasch-Pearson Theorem (see [ 6], [14]). If
q=0, i.e. if one asks for stabilization by constant gain output feedback, (2.7)

agrees with the condition one obtains from Kimura's Theorem [26].

¢ Proof. Let VER". If K(s) is 1 ¥p compensator, consider coprime factoriza-

tions
G(s)v = N(s)D(s)™* and K(s) = Q(s) " P(s)

Then, the return-difference determinent, as a function of (P,Q), is a linear

function

sq . IR(q+l)(p+l)
sq(P,Q) = Q(s)D(s) +P(s)N(s)

in the coefficients of P(s), Q(s), and QD+PN. According to [ 5], the rank of
"the generalized Sylvestor resultant" is given by the beautiful formula
rank §_ = (q+1)(p+l) - ) (q+1-v,) (1.9)
4 Vv, <q+l
i
where the v, are the observability indices of G(s)v. Therefore, for generic G{s),

Sq is surjective provided
q(p+1) +p 3 S(G(s)v) +q (1.10)

The proof now proceeds as follows, we assume without loss of generality that

pSm:

(i) Choose sl,...,smfleIR and an m>p ho placing the poles 843

(ii) Choose wt, as in Lemma 1.1, orthogonal to E(si)fﬂmp;

(iii) - Since (th(s)) = n-m+1, provided q satisfies (1.7) for generic G(s)
one can find K(s) with 6(K) =q placing any self-conjugate set

{Sm""’sn+q} of poles in R .

Remark 1.3. (Concerning Question 0.1) One can also obtain results on
minimum order compensation for a fixed, not necessarily generic, p *m G(s) by

using the formula (1.9) for the rank of the generalized Sylvestor resultant.

Remark 1.4. (Concerning the Brasch-Pearson Theorem) A more elementary

argument [12] gives a proof of the Brasch-Pearson Theorem [ 6 1. Explicitly,
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simply choose vVER" to satisfy (1.1) and use the identity (1.9) to obtain the °
criterion )
(q¥l)p = ] (q+l-v;) .3 n (1.11)
Vi<q+1

for arbitrary pole-assignability, with a dual criterion in terms of the con-
trollability indices (Ki)' Choosing q=-max(vi) -1 in (1.11), one has the asser-
tion that if G(s) is a p Xm transfer function having controllability indices (vi),
then G(s) can be arbitrarily pole-assigned using a compensator of order q. The
proof of Theorem 1.2 is based on the argument given by Stevens ([12], [34]) which
proves, by choosing v more carefully as above, that for generic G(s) q may be

taken to satisfy

(q+1)max(m,p) + 2 {Eiﬂiﬂ;El:l} > n (1.12)

A form of (1.12) seems to be implicit in the algorithm described by Seraji [33].

Remark 1.5. (Concerning Related Work) I should also comment on the
interesting results obtained by Hammer (esp. [20]), based on an algebraic study
of the interplay between feedback and precompensation (see also [19], [21])
which also has application to the stability of systems. Using this theory one
can prove, for example, that if

(s+1)

G(8) = ToF2) (s43)

and p(s)==sz-+as-+b, with a,b, >0, then there exists a compensator K(s) such

that the (uncancelled) poles of G(s)(Iﬂ((s)G(s))_l are the roots of p(s), while

the cancelled poles are all stable. Although this seems to provide a better

result than the Brasch-Pearson Theorem, which would yield the assertion that an
arbitrary cubic can be assigned using a compensator of degree 1, these two

results cannot be compared since tlepy give solutions to different problems. For
example, a dimension count shows that, also in Hammer's result, 6(K) >1 for an | "
open dense set of such quadratic p(s). Moreover, and more crucial for the

solution of Questions 0.1 and 0.2, no upper bound on 8(K) is given in [20].

2. NECESSARY CONDITIONS FOR STABILTZABILITY

In this section, I will sketch a proof of a theorem, obtained jointly with
B.D.0. Anderson [11], asserting that mp *n is a necessary condition for gemeric
stabilizability by constant gain feedback. Together with Theorem 1.2 this yields,
for example, that the minimum order of a stabilizing compensator for the generic
2Xp system of degree 2p+1 is 1. Before proceeding to the theorem, I will give

some low-dimensional examples illustrating the tightness of the estimate 1.n.




275

For example, it follows from [18] that (1.7) gives the minimum order of stabiliz-

ing compensator if min(m,p) =1.

Example 2.1. Suppose min(m,p) =2. By the above remarks, (1.7) provides the
generic minimum order of a stabilizing compensator provided either m+p-13n or
mp+1=n holds. The case mp=n is rather interesting. If m=p =2, one deduces
that the minimum order compensator satisfying S(K) =q <1 from (1.7). On the
other hand, in [11] a proof is give~ of an unpublished result, attributed to
P. Molander, which is equivalent to 6(K) =q 31. Thus, in this case (1.7) is
tight provided n<5., If m=2, p= 2" - 1, then (1.7) again yields 6(K) €1, while
the pole-placement results obtained in [ 7 ] implies ¢(K) = 0 whenever min(m,p) =2,
max(m,p) = 2f -1,

Theorem 2.2. ([11]) mp >n is necessary for generic stabilizability by

constant gain output feedback.

Proof. All compensators are assumed to have degree 0. First of all, it is
intuitive - from the algebraic system theoretic perspective - that generic
stabilizability in continuous time is equivalent to generic stabilizability.
Indeed {11], the generic system is stabilizable with respect to Re[z] <0 if, and

only if, the generic p Xm system of degree n is stabilizable with respect to the
disc D(0;p) = {lzl <p}.

Assuming that stabilizability is generic, the set ’
Ur = {(A,B,0) : C(sI-A)-lB is stabilizable with respect to m(O;l/r)y N
is open and dense in IRN, N=n2+n(m+p). By the Baire Category Theorem, U= mU
is dense in IRN. Now consider the algebraic subset of lRNX IRmp, =

V = {(A,B,C;K) : spec(A-BKC) = {0}} (2.2)

1f pl : IRNX ]Rmp-*IRN is the projection, pl(x,y) =x, on the first factor, then
V=p1('\7) is a semialgebraic set by the Tarski-Seidenberg Theorem. That is, V is
described by the conditionms,

£,(AB,C) =0, g,(AB,0) >0 (2.3)

for'fi,gj polynomials in the entries of (A,B,C). I claim that Uc<V. Explicitly,

this follows from

Lemma 2.3. ([8)) If mp<n then the polynomial function for o= (A,B,C)

. PP, I .
giteal PAGE 1S Xg ¢ R R, defined by
gg‘L;JOR QUAL‘TY XO(K) = characteristic coeff's of (A"BKC)‘
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has a closed image for an open dense subset of 0€IRN.

Indeed, 0 €U if, and only if, for every £>0 3 Kc such that
spec(A—BKEC) c D(0;e). Taking €=1/k, for O€U there exists Kk€ R™ such that
XG(Kk) + coeff's of {s"}. By Lemma 2.2, there exists K€ R™ such that xo(K) =

coeff's of sn, for generic OEIRN.

Nota Bene 2.4. If m=p=1, then image Xg is a straight line in IRn, so that A
Lemma 2.2 is valid for all OEIF,N. Kimura [26] contains an example, pp. 514-~515:

Example 3, of a 2 x2 system 0 of degree 3 for which image )(G is not a closed set.

Since it suffices to prove the theorem if mp <n we can assume, without loss
of generality, that Uc<V. 1In particular, any ‘Ei in (2.2) must vanish identically,

since U is dense. Thus, V is open and dense in IRN.
Now consider the algebraic subset of n Xn real matrices

N = {N: N is nilpotent}

It is known [28] that ./f’n is an irreducible algebraic subset of dimension nz-n.

Matters being so, generic stabilizability (for mp £n) implies that the function
2

o . anmnm xmnp ><1RmP N an xm“m xmnp

defined via . '
¢(N,B,C,K) = (N+ BKC,B,C)

has an image containing an open, dense subset. In this case, then

2
(nz-n) +nm+np+mp > n +nm+np
Equivalently,

mp 30 » Q.E.D.

Corollary 2.5. 1If min(m,p) =2 and n=mp+1, then the minimal order of a

stabilizing compensator for the generic system is q=1.

'3. A GEOMETRIC MODEL FOR HIGH GAIN FEEDBACK

As has been remarked (Nota Bene 2.4), Lemma 2.3 fails to hold if the generi-
city hypothesis is violated. The major point involved here is the dichotomy:
Suppose for 0= (A,B,C) fixed one has gain Kr such that the rocts of A -BKC lie in
D(0;1/r). As r—+o, either

(1) Kr+K as r+®, in which case xo(Kr) ‘*XO(K); or

i) K e | co .
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Only in the latter case can s" fail to lie in image Xg To analyze this case, I
would like to make the statement, Kx_—*ﬁD, explicit in terms of feedback. Now,
feedback, u=Ky, is just a bilinear relation between inputs u and outputs y,
with a special property, viz, that u is; a function, Ky, of y. If K}‘ is a
l-parameter family of feedback laws, say

u, = Ay ORIGINAL PAGE IS
1o OF POOR QUALITY (3.1)
u, Ayz

then passing to the limit, A+, also defines a bilinear relation between inputs

and outputs, viz.

0=yl

0=y2

3.1)°'

Note that the cquations (3.1) and (3.1)' both define 2-dimensional subspaces of
]R4= Y®U : (3.1) corresponds to the subspace graph(KA), where 9=K)\y=>\y, while
(3.1)' corresponds %o the graph of a bilinear relation which is not a function
u=Ky for any K:Y~+U. In this spirit, I shall consider a feedback law, including
"high gain limits", as the graph of bilinear relation R on Y XU of rank p, i.e.

as a p-plane, viz. graph(R), in Y®U.

Of course, not every p-plane V is of the form graph(K), for such a V must be
complementary to the subspace R"c ®’6 R". 1In this sense, the space of all
p-planes in mm+p Grass(p,mtp) contains the space of feedback laws K, qua
graph(K), as an open dense subspace and one can interpret those p-planes V such

that
. m
dim (VNTR) 31 (3.2)
as infinite gains or as high gain limits.

Following [7 ], [8 ], I shall describe how one might assign a set of '"closed-

loop" poles to the p-plane graph(R)

Modulo=zero cancellations, the poles of GK(s) are given by the return differ-

ence equation

I G(s)|
0 = det(I -KG(s) <=> det =0 (3.3)
K I
Thus, to say s is a pole of GK(s) is to say
I G(s)
> 1 (3.3)'

dim {col.span N col.span

SET RN

$
P
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where ORIGINAL PAGE IS
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col.span = graph(K) < ®P+ R"
K
is a p-plane in nf"?. Note, i€ K=0 then (3.3)' reduces to the Hermann-Martin
identity (1.6).

By definition p=planes V satisfying (3.2) are called infinite gains, those
not satisfying (3.2) are finite gains, in the ordinary sense. In this language,
Lemma 2.3 follows from the complex analogue of

3.1. The High Gain Lemma. For generic G(s), if sl""’%1€]R are such that

n

M 0(s;) # @ in Grass(p,m+p)
i=1

then this intersection contains a finite gain.

Thus, the High Gain Lemma asserts intuitively that if sl,..:,sn%can be placed
in the high gain limit, then Syre+-»8, can be placed by a finite gain. 1If the
root-locus map Xy vere continuous at infinity, stabilizability in the high gain
limit would imply stabilizability by finite gain. However, if mp >n, X5 is never
continuous at © [ 9] and therefore, cf. Theorem 2.2, in most cases of interest
one requires a more subtle argument - such as 3.1. Details will appear in a

future paper.

4. STABILIZABILITY BY STATIS OUTPUT FEEDBACK

’ Using (3.3) one can interpret the vanishing of the return-difference determi-
nant geometrically; in terms of the compact manifold Grass(p,mtp). There is a
classical topological invariant of any space X, discovered by Ljusternick and
§nire1'mann [29] in the calculus of variations, which will play a sizable role
in the present analysis. Explicitly, consider any covering (Ua) of X by open sets
Ua which are contractible in X and define L-S cat(X) to be the minimum cardinality

of such a cover. Set

k(m,p) = L-S cat(Grass(p,m+p)) -1 (4.1)
Theorem 4.1. k(m,p) 3 n implies generic stabilizability.
Pf. If one defines c(si)C:Grass(p,m+p), for sy € R U {«x; and for G(s) fixed, via

G(sy) = {v : dim(V N graph(G(s,)) 31}

then O(Si) is a hypersurface in Grass(p,m+p). Clearly

AT AT AN DRSO . bR i
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Lemma 4.2. Grass(p,mtp) -d(si) ~ R"P,

Now, to say K places the poles of GK(s) at the distinct real numbers
LIERRRTL R is to_say (3.3), or equivalently (3.3)', holds for each s=5,. That

is, graph(K) € mc(si) cGrass(p,m+p), and in particular,
i=1
n -
Qlo(si) P oRiGiAL PRGE I3 (4:2)
| OF POOR QUALITY

Lemma 4.3. Suppose sl,...,snem. Then k{(m,p) >n implies (4.2) for any
G(s).

Proof. If ho(si)#ﬂ, then (Ui)?_ covers Grass(p,m+p)
——— i=1 i%4=1

where UiaGrass(p,m!-p) 'O(Si)' Since Ui'lemp. one has L-S cat(Grass(p,m+p)) €n
and therefore, by definition (4.1), one obtains the contradiction k(m,p) <n.

This tautology does not imply, gy choosing Si<0’ stabilizability by finite

gains, for none of the points V of mo(si) might be of the form graph(K).
i=1
For generic G(s), however, there exists a finite gain by the High Gain Lemma.

In the next section, I will give some applications of Theorem 4.1.

5. APPLICATIONS TO GENERIC STABILIZABILITY BY CONSTANT GAIN FEEDBACK

First, define the integer s by

25 < m+p < 257

Corollary 6.1. If min(m,p)=2, then

max(m,p) +2% - 1 5n

implies generic stabilizability.

For max(m,p) €5, the bound in Corollary 5.1 coincides with the pole-placement
bounds which one can derive, in various cases, from the literature ([ 7], [10],
[26], [27)). However, for max(m,p) =6, Corollary 5.1 asserts that generic
stabilizability holds provided n €9 in contrast to the best known value, viz. 8,

for pole-placement [27].

Corollary 5.2. If min(m,p) =3, then the following equalities imply generic

stabilizability:
@y 25%2_30% Yy 4sn , if mep=25ttoaT 4,
s+2 r-1 +1 r-1

i) 251 -3y -24eon, if mep=2°Tt 2T 424, Ogec2tTN -2

.
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Corollary 5.3. If min(m,p) =4, then the following inequalities imply generic
stabilizability:

@ 25%14+2%-73n , 1 m+p = 2541

1

(i) 25 w28 42" Ly 7, tf mep = 2542 4§ +1, where s> 30

and OstZt-l.
In fact, one can always assert that
m+p-1 < k(m,p) € mp (5.2)

The left-hand side of (5.2) implies that Theorem 4.1 will do at least as well as
any stabilizability result derived from Kimura's Theorem [26] while the right=-
hand side apparently reflects Theorem 2.2.

Proofs. Eilenberg's Theorem [15] asserts, in the case at hand, that
k(m,p) 3> nil (H*(GraSS(iﬁmﬁ‘P):?Zz)) (5.3)

The cohomology ring H*(Grass(p,m-f-p);ﬂz) is given in terms of generators and

relations as

-
R=ZZ[w1,...,wm,v ..,vm]/I , I = ) WLV,

(5.4)
itj=r *J :

1

and nil (R) is the maximum number of nontrivial terms in a nonzero produce in R.
It follows from the Schubert calculus ([ 4 ], p. 130) that one can always find a
nontrivial product of m+p~1 Schubert generators in (5.4), thereby proving the
left-hand side of (5.2). The right-hand side follows from the general fact [24]

cat(X) <dim X+1 for any path connected, paracompact space X.

The corollaries now follow from calculations [ 371, [23], [35] of the order
of nilpotency for the rings in (5.4), in the range 2 ¢ min(m,p) < 4.

It should be remarked that the calculation of the order of nilpotency of the
rings (5.4) is entirely «lgorithmic for fixed m and p and in this way a table,
giving values of n - as & function of m and p - for which generic stabilizability
will hold, can be constructed. Taken together, Corollaries 5.1-5.3 yield such a
table for m+p<9.

oo e -
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