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Abstract

This report consists of a series of papers which concentrate on the

r
basic problem of understanding the extent to which feedback can alter the

dynamic characteristics (e.g. instability, oscillations) of a control

system, possibly operating in one or more modes (e.g. failure versus non

failure of one or more components). One problem studied hem is to

determine the existence of, and the order q of, a m x p compensator which

can stabilize a given r-tuple of m x p plants G1(s),...,Gr(s) of orders

nl ,...,nr . The classical case, r =1, remains one of the most challenging

problems of linear system theory and is studied in several of these papers,

for the case q = 0 and the case q >.O and the case q :1, in a geometric

setting, viz,. Schubert's calculus of enumerative geometry. This algebraic

_geometric approach yields both sufficient and necessary conditions which

improve, sometimes vastly, on the results obtained by more traditional,

methods. The development of algebraic formulae or numerical algorithms

for finding such a compensator, when it exists, is considered in the context

of Galois Theory and the "homotopy continuation method".

These geometric methods are also extended to the multimode case, r >.l.

Among the results obtained are the assertion that provided r S max(m,p), the

generic r-tuple may be arbitrarily pole-assigned and, a fortiori, stabilized.

This generalizes the only known results, due to Murray*Saeks-(m =p =1) and

to Vidyasagar-Viswanadham, which were obtained in the case r =2 and improves

on these results, even when , r = 2, by giving an upper bound on the order q

when the condition r < max(m;p). In the case r =1, this implies the celebrated

Brasch-Pearson Theorem, while if min(m,p) = 1 both the condition r< max(m,p)

and the estimate on q are sharp.

Subsequent work will be directed toward closing the gap between the

necessary and the sufficient conditions obtained here, for both the classical

case r = 1 and the multimode case r >.2, by more sophisticated algebraic, geometric 	 t

techniques, and towards analyzing the problem of stabilizing a parameterized

.family G^(s) of systems where h is a slowly-varying parameter, not assumed to

be independent of time as in the a E{ ,...,rl, representing a degradation of 	 i

a component in the plant Go(s).
}

Game,
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61.	 INTRODUCTIONS, NOTATION, AND THE STA.TEi'ENTS OF THE r^Kvc== S

-1	 t	 t	 T	 o	 D to A_ wh ich This manuscr . p , rear •es^r ^s	 ^.ro or	 _he thre e	l _c._r_^ .♦,. 
r I gave at this Advanced St udy Institute and, for this reason,

` shall	 give two introductions. 	 (The third lecture is historic_l
and may be found in "Introductory Chapter," this volume.) 	 In

' the first four sections,	 I shall discuss recent work in alc dr.;c 
and geometric system theory ;:hick centers arrund the question
"What can be done using state or output feedback." 	 To fix the
ideas, it is at least initially sufficient to consider a system
o	 as being defined by the s ate-s p ace equations

k(t)	 Fx(t) + Gu(t)	 y(t) _ Hx(t)

c	 _ *Research partially supported by the t,ASA-A,"ES under Grant
ENG-79-09459 and by the NSF under Grant IISG-2265. F
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•	 or by the transfer function ( the zero initial state Laplace 	 l
t	 _	 transform)

Y^(x) - T(s)u(s), T(s) - H(sI-F)-1G
G

`

	

	 which relates the input vector u E U . km to the corresponding
output y C Y V , without explicit mention of the (internal
notions of) state_ x C X ea k n . Thus (1.1)' is an external
description of Q as one Flight see in Ohm's law, where (1.1)
is an internal description (i.e., involving states) of 7, as
one might see in the non-autonomous differential equations for
an RLC network being driven by an applied current u(t) and
generating a voltage y(t).

Now, feedback engineering is perhaps the second or third
oldest profession and needs little introduction. Indeed, any
list of well-known examples of feedback systems should include
the oil lamp of Philon, the water clock of Gaza, Christiaan
Huygens' construction of a regulator for clock mechanisms, and
the centrifugal governor for steam engines, developed by James
Watt, followed by a plethora of more sophisticated modern says-
tems. In each of these example, some output--or function of
the state--of the system is used to control the evolution of
the state in future time and a rather basic question is to deter-
mine how much control over the state one can obtain by feeding
back the output as an input. For a vehicle driven by a steam
engine, one would like to produce a uniform motion in the vehicle
by such a feedback law and this is where the mathematics begins
to play a role. In an often cited paper [ 341, J. C. 1' .1ax;vel l
linked the intrinsic deviation, of some feedback systems, from.

uniform notion to the instability of the corresponding differ-
ential equations. Plow, a feedback law in the linear context is
just a linear map

K : Y -► U

and the corresponding closed loop system has dynamics given by

1(t)	 (F - GKH)x(t) + Gu(t)

y(t) = Hx(t) (1,.2)

or, in external terms, by

T(s)(I + KT(x))
-1
 - N(s)(D(s) + KN(s))^l

where N(s)D(s)
-1
 is a coprime factorization of T(s) into poly-

nomial matrices. The instability, or rather stability, question
is thus whether

\	 .I

.a



j

3
ORIGINAL PAGE is
OF POOR QUALITY

Xd(K) = det(sI - F + GKH)	 (1.3)

has its roots in the left-half plane. Naturally, the inverse
problem is deeper and more applicable: can one find K so that
(1.3) has it roots in the left-half plane? itore generally,
can one adjust arbitrarily via output feedback, the natural
frequencies of (1.1)? Since the eigenvalues of F are the
poles of T(s) (provided n is minimal), one refers to this
problem as pole-placement. For the sake of completeness, thi's
is stated as:

Problem A. Analyze as explicitly as possible the algebraic map

XQ . 
kmp ♦ k 

defined by regarding the right hand side of (1.3), via its
coefficients in s, as a point in kn . In particular, is X?
surjective (pole placement), what are the topological or geo-
metric properties of XQ , or of image?

In §2, I shall given an exposition of the infinitesimal
analysis of Xa, viz. a calculation of the Jacobian " dX a on

kmp and on a certain submanifold M c k mp . This uses the fact
that X	 is a polynomial but, except over algebraically closed
ground Fields, makes more use of differential calculus than of
algebraic geometry. However, one of the new results is a ?roof
and sharpening of Kimura's generic pole-placement theorem [29].
This is a simple, geometric proof (taken from [51) of an honest
output pole-placement theorem under the hypothesis m + p - l >_ n
used by Kimura. The final topic in this section is a classifi-
cation, due to Brockett [31, of the Lie algebras {F,GH; W asso-

ciated to a transfer function T(s) for m = p = 1, as well
as a multi-input-output generalization, with application to
Problem A even in the case of time-varying feedback K(t).

In §3, the geometric foundation for §4 is developed, the
starting point being the interpretation of graph T(s) as a
curve of m-dimensional subspaces of l m+p ; i.e., as an al ge-
braic curve in the Grassmannian Variety Grass(m,m+p)--due Co

a

i

a

Hermann-Martin. This geometric approach is actually very close
in spirit to Kimura's original proof of this theorem. In this
setting, the degree of the curve so obtained is the intersection
of this curve with a hyperplane, as in B6zout's Theorem, and the
Theorem of Hermann-Martin asserts that the points of one such 	 I,,
intersection are predisely the poles of T(s).

In §4, the output feedback group is brou-ght into play,
whereas in §3 only the identity element is considered. From
this point of view, placing poles by output feedback is the same

F
s w.
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as prescribing points of intersection of the curve with a hyper-
plane.	 This inverse problem in geometry has a long history,
making contact with several basic themes in algebraic geometry,
and in this context 	 Xa	 may be regarded as the restriction of
a central projection, about which several important facts are
known.	 From this "central projection lemma", much in the way
of Problem A can be deduced, containing in particular some
rather surprising results- -especially in view of negative results
previously obtained.	 For example, although over 	 T	 all is weld,
Willems and Hesselink [ 451 have shown that over	 R,	 for	 m - p
2	 and	 n - 4,	 for generic	 a	 it is a fact that XC 	misses an
open set.	 Using the Schubert calculus in the case	 mp = n
Brodkett and the author [51 have shown that, for 	 m = 2,	 p =

2r - 1 (a Mersenne number),	 Xa	 is generically onto (over R),
although these may be the only such cases (up to symmetries and
excluding the scalar cases).

In the remaining sections, I consider linear systems de pend-
ing on parameters and the corresponding questions of pole place- -
ment and stabilization by state feedback.	 Such parameter depend-
ence arises quite of+:en, through dependence on physical parar-
eters such as altitude or attitude of an aircraft or as the value
of a resistor, etc. 	 In these cases,	 (F,G,H)	 have entries in
an appropriate ring of functions on the parameter space 	 A	 and
conversely linear systems defined over rings can be viewed as	 a
linear systems depending on parameters- - in a slightly more.gen-
eral sense.	 Two remarkable examples are:	 first, the represen-
tation of linear delay-differential systems, via convolution
with finite measures on	 R,	 as linear systems defined over a
polynomial Sing [271 and second, the representatign of half-plane
digital fil ters as linear systems defined over	 z ,	 also due to
Kamen [281.	 Thus, one may pose the problem of pole-placement
over a ring R, commutative with identity, such as a ring of func-
tions. a

In section 5, I review some of the known positive results,
starting with Morse l s theorem for P.I.O.'s, a result of the Ai
author's for very special systems defined over polynomial rings
(or, more generally, projective free rings), and in -5 6	 turn to
the recent counterexamples to the general question for certain
rings, linking the arithmetic aspects of R with pole -placement.	 _

x

In section 7, I turn to the more modest question, which is
however sufficient for applications:

Problem B.	 If	 (F(a),G(k))	 is defined over an algebra of func-
ons and	 s :s tabilizable for each fixed 	 a,	 does there existb	 i

KW	 defined over the same algebra, such that the closed loop
system (1.2) is stable for each	 X?

J
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In that section, I use a lemma of D. Delchamps' on smooth-
ness of solutions to a smooth family of Riccati equations to
obtain an affi mat *vt answer to Problem 0 in case where
(F(a),G(a)) is C"^ k 2 0, and controllable for each x.

In closing, I would like to apologize for having omitted,
primarily for reasons of time and space, recent work which might
belong under such a title. Some of the work by Rosenbrock,
Fuhrmann, et al. on dynamic conpensation is reported in their
lectures, while related work has recently appeared in the thesis
of T. Djaferis [151, Djaferis and flitter [351, and in Emre [161.
It is my intention to report elsewhere on the work of Postle-
thwaite-MacFarlane [371, et al., which develops root-locus
techniques for square multi-input, multi-output systems with
respect to scalar gain K - XI. One should also mention recent
work by Sastry-Desoer [431, which evaluates the asymptotic
values of the unbounded root loci, for generic systems.

52. KIMURA'S THEORE?:, INFINITESIMAL ANALYSIS OF 	 LIE
ALGEBRAIC INVARIANTS OF x.

Now, in order to compute the rank of

dXo :TO(kmp ) -,TX(2), where X = det(sI - F),

It is efficient to change coordinates by use of the frequency

domain. Thus, if N(s)O(s) -1 = T(s) = H(sI-F) -l G is a coprime
factorization of the transfer function T(s) and if -K:Y - ► U
is the output gain, the closed loop transfer function is as given
in (1.2)':

T-K(s) - T(s)(I- KT(s))
-1
 = N(s)(D(s) - KN(s))-1

(2.0)

Thus, to solve p(s) _ XQ(K), with K E 11 a subset of
matrices, i s to solve for rational functions

p ( s )/det D(s) = det(I KT(s)) 	 (2.1)

with K E M. With this change of coordinates on kn, x 
takes the form:

K•. 1 + f:ci(-KT(s)) 	 (2.2`)
i=1	 _

where the ci(R) are the characteristic coefficients of R.
i..
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Ignoring the constant term, X. is given to first order as

X,(K) - tr(-KT(s)) _ <-K,T(s)>

and, since T(s)' is rational, the acobian is given by the
formula

dx,,(K) . (<-K,HFiG>)i-0 '	 (2.3)

From ( 2.3) one recovers the calculation

dXQ is eurjective whenever the sankeZ matrices

HG, HFG,...,HFn- IG are independent,

which ( since the Hankel matrices are vectors in k mP ) refines
the necessary condition, mp z n, for surjectivity of
Indeed, R. Hermann and C. Martin combined this calculation with
the dominant morphism theorem to obtain, for k - Q,

Theorem ([23]). If mp ?. n, then for aZmost aZZ (F,G,H) tre
wra'— geof X,, is open and dense.

Several remarks are in order. first, in any such theorem,
the "almost all (F,G,H)" hypothesis is necessary. Above, the
affine algebraic set which must be excluded is contained in t .he
vari ety defined by the vanishin g of all minors of order n o
the mp X n matrix (,HG,...,HFn'lG). But this is as it shculd
be, for in general such conditions must in particular exclude
systems which are equivalent to lower order systems, e.g.,
rank G = 1, where image XQ is a line. Second, it is in fact

true that, for almost all (F,G,H), XQ is closed. And finally,

over 1R, J. Willems and W. Hesselink [451 have proved that, -'or
m - p = 2, for almost all (F,G,H), image Xc is not dense,

which illustrates the absence of the "fundamental openness
principle" over R.

;y

There is, however, a similar result over It, under stronger
hypothesis, due to H. Kimura.	 i

Theorem ([297). If m + p - 1 >_ n, then for generic (F,G,H) {
image x

- 
is open and dense.

In the latter part of this lecture, I shal l turn to Kimura's
proof, which is quite long. Here, I shall follow a georetric
line of reasoning [ 51 starting from (2.3). First of all,.notice_
that m + p - I = dim H, where M` c 1RmP is the submanifold of
rank 1 matrices. Surprisingly, it's enough to restrict XQ to
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M and we wish to compute dXo acting on TKM. In (2.3)1

this has the effect of restricting K to be of the form

tax+0 (y+d), for x E ,m - (0), y E Rp {0}, K . txy rbnk 1,
and we therefore consider the vectors

dXv(txjy3 ) 	 (y.I1r'Gxj )n-1
	(2.4)

r	 J
where F = F + GKH. As before, one sees that, if m + p l z n,
then generically in (F,G,H) there exists matrices -xjyj,

3 = 1,...,n such that the vectors (2.4) are linearly independent.
In particular, 

X 	
is surjective to first order and hence, by

the implicit function theorem, image X  contains an open set.

Moreover, since c i (KT(s)) = 0 for i a c whenever K has rank

one, XQ is equal, along M. to 1 + dXa and is therefore sur-

jective! Note that, by combining this observation with (2.1)-
(2.2), one can develop an algorithm for the solution of (2.1).

More recently, If. Kimura [301 has improved the bound to
m'+ p + K1 - 1 z n, where K1 is the largest Kronecker index,

subject to the constraint m Z ul (the largest observability	 '.

index), p >_ K1 . This, too, has an amplification to a pole-

placement theorem.

Now, as an example of an invariant of XQ, which plays a
role in the output feedback problem but which is not captured
by our previous calculations, we consider a Lie algebra deter-
mined by a. Explicitly, by choosing a minimal realization	 j
(F,G,H) of a scalar transfer function T(s), one may form

{F,GH}^--the Lie subalgebra of gQ(n, R) generated b.<	 j

F and GH. In this way, one obtains not only 
20 

but also a

representation, p:10 -# gk(n,111), and by the state-space iso

morphism theorem, any other realization (F',G',H') give rise
to an equivalent representation p'.	 Of course, 21 is also

invariant under output feedback, since F + KGH is contained
in T for any scalar K, and this accounts for its importance

in the output feedback problem. And symmetries in the represen -
tation p: g	 gZ(n, R) reflect symmetries in the closed-locp

characteristicequation. for example, if T(s) - 1/s 2 , then
it's not hard to see that o .T = sZ(2, 1R) - sp(1, R) , wh^i ch
reflects the equivalent facts ghat tr(F + KGH) = 0, for all
K. and that the closed-loop characteristic polynomialis always	 c

3

Y
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an even function. These ideas were developed by R. Broc ,, in
(3). (61 leading to his classification of those Zo which can
occur:

Theorem, (131). The foZZowing is a Ziet of the Zcr which can
occur together smith the corresponding syrretry properties:

Ra	symmetries
r ^ i

. 1. sp nR
	

T(s) - T(-s)

2. sp n , R + R
	

T(s) = T(-s+ a), for some a

3, sz(n, R)
	

tr(F) - tr(GH) = 0, and none
of the above hold

4. gz(n, R)	 I none of the above hold

One should also note that this classification gives the
same information for time-varying gains K(t). Now, the multi-
variable case is handled, in part, by a reduction to the scalar
case by a lemma (see [21) reminiscent of Heymann's Leiria. That
is, for (F,G,H) minimal, there exists a gain K and input and
output channels g and h such that (F + GKH,g,h) is a,
minimal triple. And, if one defines Y to be the smallest Lie

subalgebra of g2(n,lR) containing {F + GKH:K arbitrary~,
this reduction enables one to prove:

The orem U41). if rank T(s) a 2. then Zo is either
st(n. R) or gR(n, R), deaending on the vanishing o f trF
and tr(HG).

53. BEZOUT'S THEOREM, THE THEOREM OF HERMANN-141ARTIN.

There are important external symmetries too, which arise as
subgroups of the (output) feedback group. Novi as far as I am
aware, the applications of algebraic geometry to linear sys*_an
theory arise from Laplace transform techniques, from the exist-
ence of algebraic groups actions in the form of symmetry arou:s,
and from the interrelation between these 2,,points of view.
Indeed, perhaps one o.ti. the least understood contributiotis in
the Hermann-Martin series is the recognition of the Laplace rars-
form as an intertwining map between the actions of the state and
output feedback groups at the state-space level and the classical
actions of these groups as linear fractional transfor .rations.
This observation is the Starting point for our global analysis-of
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To fix the ideas, I shall begin with a review of Kimura's
proof of his theorem, in the case 	 m - 1, p n 2 = n.	 Here,
one has

ql(s)	 q,(s)
—^^ q2(s) N( s)

T(s) _ with _ ---- (3,1)•
q2 (s) ----- D(s )
-75 p(s) ,^	 3

a coprime factorization of 	 T(s).	 If	 a l ,	 X2	 are complex num-

bers, then the method of proof is to select a non-zero vector
from each of the lines

N(Xi)

C;

o(ai)

Geometrically, one has the set-up in Fig. 3.1 where we denote
the line through

NW

D(X)

by	 TW.	 This is as it should be, for a choice of coorime
fk-ctors is only unique up to multiplication by a non-zero scalar.
I claim that if one takes the plan	 n	 spanned by	 T(a l )	 and

T(7►2 )
1
	then	 n = graph( - K),	 where	 K	 is a gain for which the

closed-loop poles equals	 {a1 ,h2 }.	 Notice that to say	 jX,,X2}
is the polar set of	 T	 is to say	 a ,a	 are the roots of	 p

1	 2
in (3.1).	 Thus,	 in this case, the linear 	 T(a i )	 lie in the

Y-plane (Fig.	 3_.1)	 and so	 K = 0.	 This, however,	 is	 even far
from explaining the minus sign, which occurs for grow-
theoretic reasons.	 Since the geometry of lines in	 Q	 is of
issue, it's more efficient to rephrase the observation rade
above in terms of projective geometry.	 That is, the transfer
function gives a map,

T: C* -+ p2 t

of the extended complex line	 (T( m ) = U)	 to the projective	 !
plane.	 The lines in the Y-plane-form the projective line 	 10,
em^edded in	 F 2 ,	 while	 T W)	 is a curve in	 1) .	 Moreover,
since	 p-	 has degree 2,	 T	 is a curve of degree 2 and i ntersects

z	
^^
^

r

e	
^,

r
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the line .Pl twice, as it should according to Bdzout's Theorem
(see Fig, 3.2).

U
^	 h

T(712)

T(al)

i
Y

Figure 3.1

' the projec-
ti ve plane TW)

4:
P

1

Figure 3.2 y

In fact, the game reasonin g shows that, for an...	 such 	 Ty with	 n
arbitrary, the %Wlillan degree of T

with
equals the degree of tie

curve	 T

T l (T(T*) n P 1 ) = sing(T) (3.2)	 i
I,

If we now choose any other plane 	 Y 1 in	 23,	 complementary to U,

then	
Y,

determines another line in P2	 and by,adzout's Theorem.	 r'

s
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(or by a little algebra), T(C*) intersects this line in n-
points. On the other hand, such a plane 

Y1 
is the rg aph of

a linear map -K:Y -+ U ( and conversely) and from this point of
view, Bdzout's Theorem asserts that the McMillan degree is pre -
served under output feedback, assuming the claim made above.
However, the claim is now fairly easy to see. For, any K may
be regarded as an element of GL(U ® Y) via the representation,

.I	 0
p:K ♦ Y	 E GL(U (DY)	 (3.3)

K	 IU

and GL(U 9 Y) acts on P 2 (the points in P 2 regarded as
lines in U 6 Y).	 One therefore has two possibly distinct
actions of K on T: the first is the standard output .feedback
transformation T , TK given in (1.2)', and the second is

obtained by composing the map T:T* -. P2 with the classical

action pK:P 2 ♦ F 2. As one can see, pK leaves theline U
fixed and therefore KQT is a rational function, vanishing at
•	 i.e., ^KoT is a transfer function. Explicitly,,by corbin
ing (3.3) with (1.2)' one has

I
Y	0	 N	 t^	 Kp KoT =	 _	 = T	 (3.4)
K IU 0	 O+KN

In particular, one may now compute (3.2) acted on by K in two
ways:

sing(TK) 	
(TK)-

1{TK(Q*) n P  = T-1 (T(T*) n (-K) Pl)

(3.5)

where (-K) P l is the linear P 1 (= the plane Y in 1 3 ) acted

on by p(- K) (= graph of -K:Y -+ U in Q )! Thus, in order to
compute the closed loop poles, sing(T K), one can alternativ=ly 	 e
keep the curve T (see Fig. 3.2) fixed and, instead, move P'
through the inverse "rotation" -K.

;r

This proves the claim but in a more general setting, viz.
in (3.3) and (3.4) U and Y could just as well be an m-p lane
and a p-plane, with GL(U e Y) acting as linear transformation
on the space of m-planes = Grass(m,U m Y). In this setting , t.^e
generalization of (3.2) is due to R. Hermann and C. Martin, %-.,ho
interpreted the t•icMillan degree as an intersection number ((241).
The codimension 1 sybvariety of Grass^m,U + Y) which plays the
role of the line P	 in the plane P	 is the Schubert variety

3

i

A
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of m-planes:
-	

cm_{I•l:wnYfmi	 (3.6)

That is,	 W E c(Y)	 if, and only if,	 11	 meets	 Y	 in at least
a line.	 The beautiful (and useful for our purposes) theorem of

•	 R. Hermann-C. Martin is

T-1 (T(V) n a(Y)) = sing(T)	 (3.7)

I	 [Alternatively, the extended plane	 t*	 is the Riemann sphere

52 (or F1 )	 and
1

IT (P )] E Tr2
 
(Grass (m,U S Y) mi a

Corresponds to the McMillan degree, where the isomorphism is
canonical, by virtue of the Hurewi cz isomorphism and a choice of

F	
Complex structure.]	 As before we can act on (3.6) with 	 K,	 in
two ways, to obtain

T- 1 (T(t*) n cy (-KY)) = sing(T K ).	 (3.7)

Now, as an illustration of these geometric ideas and in
order to return to some of Kimura's algebraic techniques, i shall
prove a little pole-placement theorem for state-feedback, i.e., 
for the case	 p = n.	 [This combinatorial	 theorem is a special
case of a theorem of Rado ([ 381) which also generalizes rh.
Hall's Theorem.	 Moreover, an elegant application of Rado's
Theorem to pole-placement appears, for the first time 	 in Hautus's
proof of pole-assignment by state feedback ([19]), published in
1970.	 I was mistaken in my lectures in ascribing it solely to
Kimura.]	 What I wish to give is a proof of the !•lonham-Simon-
Mitter-Heymann-Kalman Theorem for distinct poles 	

Xl'""`'n}.
The principal lemma in {291 is in fact a celebrated theorem in
combinatorics, in disguise.	 Kimura calls a collection
V16 00.,Vn , 	 of subspaces of a vector space	 V,	 normal just in

case one can select vectors	 v i E V i	such that	 {vl,.,.,vn)	 is

independent.	 The lemma asserts that a collection of subspaces
is normal if, and only if, the (general position) condition (*)
is satisfied;

for each selection	 V i	,...,V i	 of distinct Vi's,
1	 k

dim	 + ... + V i 	 z k	 (*)
\Vi`	 1	 k

Notice, however, that (*) is precisely the diversity. condition
in Ph. Hall's theorem on distinct 'representatives, modified to
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incTide, the set (orsubspace) function dim(-)--which, after all,
do;; satisfy a form of the inclusion-exclusion principle.

In order to apply this result to multivariabie state-feedback
consider, for X 1 1.001an distinct, the subspaces T(X1)9...9T(an)

of U ® X. where T(s) _ (sI-F) -1 G. By Lemma 2 of E291,

dim(T(Xil ) + ... + T(aik)) 2 Rk

where Z  = dim sp(G,FG,...,Fk-lG) are the dual Kronecker

indices and hence 
I  

a k. Following Kimura, we may select inde-

pendent vectors v i E T(X i ) and as before define the gain K by

the equation

gr(K) = sp{v1,...,vn} c U ® X
Then,

n
det(sI	 F + GK) = T1 (s ai)

i =l

And if {A1"'•'an} is self-conjugate, gr(K) can be taken to

be self-conjugate.

14. GLOBAL ANALYSIS OF X6 , THE CENTRAL PROJECTION LE;',';A, POLE
k

PLACEMENT BY OUTPUT FEEDBACK OVER R AND C.
P

Theorem. If mp :s n, then gerericaZZy X  is a proper map. In

particular, over d (or any aZgebraicaZZy cZosed rN.,2Z image

X0,
is a subvariety of 

Qn 
Over R, XQ estEnds to a rr

j
"
;Smn -+ sn of spheres and image Xa is Euclidean dosed ,n

itn

If mp s n, then X	 is no longer proper--i.e., C e I,n

F

	

	 a compact set implies X-I(C) c kmp is compact, although one can 	 ry

still prove that image Xo is (generically) closed.

Proof. The proof begins with a study of the nap

i	
T;d*	 Grass(m,U 6) Y)	 .s	 ,

Now, GL(U m Y) acts transitively on n-planes in U 9 Y and
so parameterizes Grass(m,U ® Y), i.e., there is a map

•
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,a

w:GL(U 0 Y) -► Grass(m,U ® Y)

n:g -• GU

corresponding to the choice of the m-plane U. 7r, however, s
an overparameterization since there are many g's which fix J.
In fact, in terms of the decomposition

kM'p=U®Y

the subgroup of g's which fix U has the form,

	

GL(Y)	 0

	

s	 (4.1)g 
E Hom(Y,U)	 GL(U)

the output feedback group! By dividing out by 9, we get an
honest (i.e., 1-1) parameterization of Grass(m,U 9 Y),

Grass(m,U + Y) c* GL(U 9 Y)/,7

This extends the picture in (3.4) quite a bit. In fact, the main
idea of the proof is to extend Xa by evaluating the left-hand
siide of (3.7) for all g E GL(U ® Y); that is, we keep T fixed,
as a curve in Grass(m,U ® Y),_ and intersect it will all c(gY),
for g E GL(U ® Y) . Plow, when g E .F	 gY is compl ernentary to
U and is, in fact, the graph of some linear map KY 	 U'. In
particular, for such a g

T-1(T(T*) 
n a( gY)) = sing Tg-1
	

spec(F-GKH)	 (4.2)
!

is an unordered set {XS . •an} of points in T* = P l . That is

(A1,.•.,xn} E P l x ,,,x P l /S n = pn , the so--called svrmetric oro-
duct. For g E 9 , each a i is finite, by virtue of (4.2), and 	 A

{a ,...,a } E In c Pn
1	 n

Here t /S n 	dn , where the isomorphism is simply
u

(a1,...,an}	 (c i m )i=1	 1

with c  the elementary symmetric functions. In summary, we have
our old picture in this new -,etting,

:o(gY) ♦ 7- 1 (T(Q*) n a ( gY)) E !Ln c pn ,
via	 -1

g 4 sing(T g ) _ (ci (F + GKII))i=1'	 A
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By conservation of difficulty, one needs more than this restate-
Ment of the problem and it is at this point that we consider
a(gY) for any g E GL(U ® Y) or, what is the same a(Y') for
a p-plane Y' not necessari ly complementary to U.

Lemma A. c(Y`) either contains TZ* or intersects it (cc:att r^
m ut-t p city) in e=ctZy n points. In the Zatter case, suer: a
point is infinite if, and onZy if, Y' is not complementary to
U.

Proof. The first part of the lemma is an elementary applica-
tion	 value distribution theory and can be found in Chern,
"Complex Manifolds with Potential Theory," D. van Nostrand under
the topic: "Holomorphic Curves in a Grassmannian." The second
part is, in fact, the condition U E a(V) and follows from the
definition (3.6).

To facilitate the discussion, I shall refer to a p-plane Y'
as a generalized feedback (law) while a p-plane Y' cer.;ole-entary
to U will be referred to as a classical feedback (law). ;tie
idea is therefore to extend 

X 	
in (4.3) to all "generalized

feedbacks," i.e., to all points in the dual Grassr :nnian,
Grass(p,U C5 Y). That is, we wish to define

XQ :Gras s (P, U ® Y) -► pn	 (4,4)

via	 -

Y' -. T-1 (TQ* n a(Y')) •

Remark.	 Consider the scalar case and restrict at tention to read
-ins.gaK.	 Then, the real Grassmannian is the space of lines in

IR	 i.e., the circle	 S l	 and

S1 -+ Fn

is precisely the root-locus map!

Now the 'fact that	 XQ	 is defined at	 E 5	 is just the ;	
W	

t

fact that	 XQ H = ( zeros of T ( s)).	 For	 m,p	 arbitrary the

recent formula of Kailath et al. 	 [251, which computes the differ-
ence between the nunber of closed loop poles of	 T ( s)	 and the
number of open - loop zeroes in terms of the left and right Kroneck er
indices of	 T(s),	 shows that there r+ay not be enou gh open loco
zeroes to account for the asymptotic root loci 	 XQ (k)	 as

K -+ m E S p ,	 although this may be the case if 	 m = P.	 In the
Grassmannian

Aa
com actification	 K -^	 ^•p	 takes on an entirely new

meaning, as	 m, is replaced by the whole subvariety

p

AOL

r_

i

1



a(U) c Grass(p,U m Y). This gives much more freedom in the manner
in which K "becomes infinite (and this is important for potential
applications, allowing for various channels in the gain to grow
at various rates) and Lemma B shows that as K "becomes infinite"
the root locus X M (still) apporaches an n-tuple of points in

the extended complex plane, as in the classical case, for generic
systems provided mp n. The case mp s n is illustrated below

U	 gr(Kn)'

gr(K2)

gr(Kl )

Y

gr(Ki ) -► a p-plane Y  not

conplementary to U

k

Q(grK2) o(grKn)



, ,,

The explicit obstruction to this asymptotic extension is in fact
explained in the lemma, there can exist p-planes Y' such that
a(Y') = TT*. Indeed, if mp > n, examples exist in great pro-
fusion.

Lemma B. If mp :5'n,  then for aZmost aZZ (F,G,H), o(Y') n T(t*)
in n pointa, for aZZ p-pZanee Y'.

Proof. First of all, the set of (F,G,H) for which there
exists a Y' with a(Y') m T(C*) is closed in the variety of
all (F,G,}I). In fact, if	 [('F,G,H ) l is the corresponding

point in the moduli space Em
9p
 then the subset

V c En.p x Grass(p,U a Y)

defined via

V - {([F,G,H1,Y'):a(Y') m T(T*))

is a subvariety.	 Since	 Grass(p,U (P Y)	 is projective (compact)

f
and	 Em

9p
	is quasi-projective	 ([13],[22])	 n1:	

Em^p	
x

Grass(p,U a Y) -+	 Em
vp
	is closed.	 In particular,	 r l (V)	 is

closed in	 Em^ p ,	 but	 n l (V)	 is precisely the variety.we wish
i

to delete in the lemma.	 To show that, if	 mp :9 n,	 rl(V)	 i s a

proper subvariety, one may appeal to the duality

Grass(m,U a Y) cu Grass(p,U 9 Y)

which is related to the duality between inputs and outputs. 	 By
Lemma A, to say	 a(Y') = T(T*)	 is to say in particular

T(al),...,T(an),	 T(-) £ a(Y')	 (4.5)

for	 X 
	 distinct, finite points.	 However, to say	 T(\) E a(Y')

in'Grass(m,U O Y)	 is to say	 Y' E a(T(X))	 in	 Grass(p,U ® Y),
by the symmetry of the definition (3.6).	 But	 a(T(%))	 is codiren
sion 1 in	 Grass(p,U (D Y) 	 and hence of dimension	 mp-1.	 ;nd
(4.5) is the assertion

n

Y' e	 n a(T(a i )) n a(T(m))	 •
i=

Since the Schubert varieties	 o	 are hyperplane secti>ons v i----* °-

i

L,,	 'A

I	 `W
r

i
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Plucker imbedding, dim ni;l c(U i ) z mp - R (this is not true

for arbitrary varieties see Section I of this introductory

Chapter). On the other hand, generically one has dim nL, c(Ui)

S mp - 1. Therefore Y' must lie, generically, on a subvariety
of dimension mp - (n+l), which is impossible unless mp > n. 	 j

It is worth remarking that this gives an independent proof
that, in case mp > n, 

X 	
is generically almost onto, assuming

the field is algebraically closed. Indeed, using an output feed-
back invariant version of (2.3) one can give explicitly, the equa-
tions defining the generic properly given above.

Returning to the proof of the theorem, by our lemmata, we
can generically extend the map XQ to the root-locus map

3^:Grass(P,U (B Y ) -- IP

In particular, XQ is a proper map and by the second part of

Lemma A, )(
a 

is also proper, i.e., since

image XQ =image XQ n Tn	 (4.6)

Furthermore, since the real Grassmannian is canonically i,-bed^:ed
in the complex Grassmannian as a compact submanifold, ;<: reair,s

proper over R. Since the £-sphere is the 1-point compactificati,;n

of IR	 Xo extends to a map of spheres. And, by virtue of

(46), image XQ is a subvariety of 
Tn 

and its real points form

a closed subspace of IR	 ti

In case mp > n, one cannot extend X 	 to the root-locus

map as above.	 owever, one can replace the Grassmannian by the
closure of the graph of the rational function XQ , viz.

X
a 

graph X 
Q 

c Grass ( p,U (B Y) x Pn

And one replaces the map XQ by the proejction onto the 2nd fac-
tor,

ir2:XQ -► Pn

The analog of (4.6) still holds, although one must work a bit 	
a

harder. In this case, one may still deduce the Theorem, ,exceot
for the statement that XQ is proper. This no longer is valid,

.*i

,4

i
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as 'XC1 (p) is a subvariety of positive dimension in affine space
and 'therefore admits unbounded analytic functions.

Remarks. Both cases can be treated in a more unified fashion, 	 R'
but relying on slightly more sophisticated ideas. Denoted by P
the Plucker imbedding

P:Grass(m,U O Y) -OP N

of the Grassmannian and suppose for simplicity that if 	
R	

Y.-
f,Xl,...,an}	 Sing T, for a transfer function T;Pi-#Grass(m,l1ezY)
then T(X i ) are distinct-points in Grass(m,U (B Y) and hence so

are the points V i - P(T(a i )) in TN. By duality, each point V i 	z

corresponds to linear functional Li on QN+I1	 and hence to a
 4

hyperplane H i in FN, the dual projective space. finally,

denote by Hn+l (and L n+l ) the hyperplane (and functional) corre

sponding to the point P(G(-)) and by B, the variety
n+

B	 n H i 	in	 FN
i=1

Following Lemma A t we consider the central projection with base,
locus B,

.,N	 n;P - B P

defined via

O(x) = [L
i 
(x)]in homogeneous coordinates_.

Restricted to P(Grass (p,U ® Y)) - P(Grass(p,U 9 Y)) n B,
one recovers	

J
X:Grass ( p,U 9 Y) 	 B 1 Grass(p,U 9 Y) --P

as a central projection, with Lemma B asserting that in the cor
rect dimension range X has no base lower on Grass(p,U ® Y).
This admits a particularly nice exploitation of Schubert calculus,
especially in the case	 mp = n (see [51). For in that case,
generically

X:Grass( p ,U 0 Y) -' Pn
I

is globally defined and dim Grass(P,U + Y) = mp - n = dim Pp.
The degree of X is the degree of the subvariety

#^ r
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P(Grass ( p.0 + 'f)) c IP

R	 Since X is a central projection, and this is well-known ([311)
to be

1! 2! 	 (P-1)! m )t
deg X ' m. m+ ! ... m+p	 ! -	 {4.7)

Briefly, what this entails is first the observaVon that the sys-
tem of n equations in mp unknowns,

X(K) = p(s) ,

can be expressed as an intersection of n hypersurfaces in mp
space and these hypersurfaces are well-studied. That i 	 regard-

ing p , via its rots, as a point (X
1 0

406 9 X ) E P l ) (n , one

can view p as n H^ of n hyperplanes, HX denoting the
i=l	 i

hyperplane of (al,...$An) such that X  = X. for some i. -

In this setting, X-l(p) has tha form

X 1 (n H^.)	 n X 
1 (H^)	 n c(T(si))

i=l	 i=1	 i=1

provided 1 i	T(s i ) lies on the curve TOP 
1
). Now, the Schubert

calculus enables one to express such intersections in terms of
basic, or Schubert, varieties. In particular, if mp = n then
a repeated use of one such expression, Pieri's formula, allows us
to count the number of points in

n
n a( T(si)),
i=1

f

t;	 M

µ	 i

9

counting multiplicities, as deg X in (4.7). Thus, the main point
of all this is that the output feedback map as a system of equa-
tions is actually a well-studied, classical system: of equations--
about which much is known (see (311). As a corollary, one can
show that when deg X is odd the map

X	 R
:Grass (PIU ® Y) -, IT  

i's surjective, hence we can place poles with real gains! It has
been shown ([11) that deg X is odd if, and only if, either
min(m,p) = 1 or m i n	 p) = 2 and max(m,p) = 2r-1, a ttersEnne
number.

The_ orem ([51). Assume mp = n. rt is possible genericaZZ in
a to place any self-conjugate set of poles by real -out put feed-	 i
back provided either min(m,p) = 1 or min(m,p) 2 and

{

o-

1
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tyx(m,p) = 2r-1.

We note that Willems and Hesselink { [453) have 1hown that,
generically in c, in XU misses an open set in 1R*,  if m s

p = 2. This is in harmon y with our result but whether the sur-
pri singly combinatorial conditions in this theorem are necessary
is at present an open question. On the more positive side, exten-
sions and corollaries of the central projection lemma give rise
to sufficient conditions for generic stabilizability in the more
general setting mp z n. These take the form of inequalities

Cm.pan
where 

Cm.p 
is a function of m and P. These are, however,

too complicated to give here.

15. POLE P! ACEMEt1T OVER RIfIGS, SOtIE POSITIVE RESULTS: t C SE'S
THEOREM, A11D FEEDBACK ItIVARIXITS

In this section and in the last two, I shall be concerned
with the general question of what can be done, particularly in
the way of stabilizability and pole-placement, with state feed.
back where the coefficients of the s ystem lie in a commutative
rin	 R with	 . It is very easy to motivate the stUcy a` s . a i-
ability of several classes of systems defined over rings and

this has, in turn, motivated the study of general pole-assicnatii-
ity questions over an arbitrary R. This route to stabili_abill;.y
has the potential advantage (at least over floetherian R) of ro-
viding finite procedures for obtaining a desired gain. Ho-,.ever,
it is fair to 'say that, at this point in time, general pole
assignability questions are, in all honesty, primarily ratnemati-
cal questions about the algeN(,raic structure of dynamical s_:st_ms,
and the reader who wishes to may skip to 97, which deals with the
more modest question of stabilizabilit.,y. On the other hane,
pole-assignability questions over a ring are of theoreti cal in ter-
est in their own right and, as recent work has shown, such cues-
tions are much harder than anyone had first suspected--even the
elementary examples involve non-trivial topological and ari ^-etic
obstructions. We begin with a quick review of the main problems
and motivating examples, for the realization theory of such sys-
tems we should refer to Professor Rouchaleau's lectures U403).

R is a commutative ring with 1, X = R (n) and U	 R(m)

4A	 are free R-modules. It is meaningful to distinguish between two
verions of the question: First, the problem of solving the sys-
tem of equations, for K C Hom-(X.U).

,•l

i

i

1

.iy

a.	aii

s..:
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'	 where	 F:X -* X, G : U ^• X	 are fined, is referred to as coefficient
assignability (over R). 	 Second, if

n

p(s) -	 n (s-ri)i-1
with	

r 
	 E R.	 then to solve 5.1 for 	 K	 is to solve: a problem

of pole, or zero, assignability over	 R.

In the general situation, one may think of	 ( X,U,F,G)	 as
r

the data defining the discrete-time system,

x(t+l) = Fx(t) + Gu(t) 	 (5.2)

On the other hand, in specific situations, this data may represent
continuous time systems. 	 Explicitly, if one considers a controlled
heat equation

au
at = Du +f	 N

.	 on the n-torus	 Irn ,	 then it is rather natural	 (and frequently

done) to discretize (*) in the spatial variable relative to a grid

in	 Tn ,	 obtaining a "lumped approximation." 	 If one chooses the

grid	 G	 of points of order	 z	 on	 Irn ,	 then N reduces to a
R

linear control system with coefficients in the group algebra

L (Gt )	 or the group	 G R a 4n	(see [71).

One important class of eCamples is the class of systems cerend-

'	 ing on parameters, say in a C 	 Fashion,

1(t) - F(X)x(t) + G(a)u(t),	 a C U 
c Rte

where	 a	 is the value of a resistor, or an altitute or attitude.
Another class of examples arises in the algebraic theory of delay-
differential systems, where a system,

5

is re arded as a system defined over a ring of convolution opera-
g([24],[361).tors	 Explicitly, consider the system

A(t) = Fox(t) + F l x(t-l) + Gu(t)	 (5.3)-

Introducing the convolution operator,

(04(t) _ x(t-l)

c
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a(t) n F(d)*x(t) + G*u(t)

where F • F  + F1d is defined over R n R[d1, as is G More

generally, a delay-differential system, involving only the com-
mensurate delays by 1,2,... seconds, may be regarded as a system

e( t )	 F(d)*x(t) + G(d)*u(t)	 (5.4)

defined over R n 1R[61. The non-commensurate case, of course,
leads to a change of scalars R c R[d1,...,dN).

In both of these latter cases, it is important to know
whether there exists a gain K, preferably efined over R,
such that the closed loop system (F+ GK,G) is asymptotically
stable in an appropriate functional analytic sense. In the
first case, since ideally K ought to depend on the system
(F,G), it is clear that if (F(X) G(X)) is Ck for 0 s kK5'w,
in a E U then	 ought to be C	 Kin X as well, i.e., 
ought to be defined over the ring R = C k (U). Now, in the second
case, to ask that K be defined over R - R[d1,...,dNI is

natural from the point of view that K should be constructible
from the same components as the system (F,G). And, if one can
place the poles of (F,G) over R, then for each c > O,3K	 {
de:fin7d over R such that (F + GK,G) exponentially stable
(in L ) with order c ([271, Theorem B)	 On the other hand, one
should remark that, especially in light of 86, the functional
approach has been far more successful ([141,[321) in obtaining
pole-placement results, at the expense of using more general
operators K (eg. convolution with continuous measures).

Now, motivated by work of A. S. Horse ([36]) on delay
differential systems, one is led to the

Definition 5.1. The system a a (F,G), defined over R. is
reachable ovar 9 ;just in case rho controllabili.ty operator

C	 (B,AB,...)	 U -. X	 (5.5)
Jul

tia surjectzve.

As observed in [441, if a is coefficient assignable, then
a is reachable. To see this, setting max(R) - 1-104 a maximal

ideal of R), recall (see Introductory Chapter) that C i;s sur-
3ective if, and only if,

C: m U -+ X	 mod(M)
isl
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is surjective for all M E max(R). For a defined over R,
denote by a(M) the system (F,G) over the field R/M, obtained
by reducing (X,U,F,G) modulo 1 .1 E max(R). Now, if a is coef-
ficient assignable over R, then Q(M) is coefficient assignable
over R/M and therefore reachable over R/M for any M C max(R).
as we wished to show. Similarly, zero-assignability implies

• •reachability and the converse, for R a P.I.D., is due to
A. S. Morse.

,.l

Theorem 5.2 ([36]) A reachable system o = (F,G), defined over
1RLXJ, is zero a„sigr:able.

Indeed, Morse's proof applies to reachable systems defined
over a P.I.O. and, in this setting, is the best result know at
present.

In order to study the coefficient assignability question
over R,• it is useful to bring in the group of symmetries for
state feedback and the Rosenbrock pencil. Explicitly, consider
the pencil of equations

sx(x) = Fx(s) + Gu(s) 	 L°	 (5.6)

where x(s) = Zx i s i , u(s) = Zu i s i , are polynomial "vectors

with coeffieicnets in the modules X,U, respectively. Thus, the
pencil (5.6) is a "fornal Laplace transform" of (5.2) and, once
again, this transform intertwines the action on systems of the
state feedback group with a classical action. It is more precise
to regard x(s) as an element of the R[s] module X[s] =X S&,-"Cs:
and u(s) as an element of U[s]. Then, the Rosenbrock pencil
takes the form

R:(X a U)[s]	 X[s]

(x(s),u(s))	 (Fx(s) - sIx(s) + Gu(s))	 (5.7)

and 12 is surjective if, and only if, (F,G) is reachable over
R. In this case, we are led to the exact sequence,

0 -: ker R -+ (X a U){sl	 X [ s I	 0	 (5.8)

where the submodule ker R is, at least formally, the Laplace
transform of solutions to (5.2) with zero initial data. Now,
just as in the case R = k, one may show that the strict eauiva-
lence of 2 such pencils	 1 and IR	 in the sense of linear alge- 	 i

bra, implies the equivalence (under state feedback) of the syst'ETMS
a1 and c2 That is, to say 12 1 ^W R2' is to say there -exists

C:(X O U)Es] -+ (X ® U)[s]

NIL-

^t

o-
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and	 D:X[s]	 X[s]

I

Al	

,.

x

invertible maps of R[s]-modules, such that

DR IC = R2 ,	 (5.9)

and such that C,D are independent of s (i.e. extended from R-
module naps). Since R 1 (and R2) has block diagonal form, it

follows from comparing degrees (with respect to s) in (5.9)
that C decomposes, with respect to (X 9 U)Es) ca X[s] W U(s),
as

	

D-1	
0

C =	 t	 (5.10)

	

KD`t	B

where B E GL(U) and K E Hom(X,U). In particular, 0,0, and K
give the desired equivalence of 

a1 
and 

a2 
modulo the state

feedback group .WS (R). Conversely, this familiar triangular

matrix representation of iFs (R) shows that an equivalence god

js (R) induces a strict equivalence of R 1 with R2 (see [261).

This is summarized in the classical and well-known proposition:

Theorem 5.3 _he Roserbrock pencil 1R of a, up to strict
equivaZence, is a con—jZete invariant for a modulo the stcde
feedback group Fs(R).

4	
Now, over a field, Kronacker has given a classification

for matrix pencils in terms of the degrees of minimal basis vec-
tors for the submodule ker R c (X 9 U)[s]. These degrees consti-
tute a partition

m
n  = n,	 n  >_ n 2 a ... an 

M  
a 0	 (5.11.)

of dim(X), and in this way one obtains a complete set or invari-
ants for a modulo s (k), see Professor Rosenbrock's lectures 	 '.

{[391, esp. W. flow, for general R, one may replace the
arithmetic data (5.11) by the isomorphism class of the subroduies,

P

	0 -► ker R	 (X ® U) [s] ,	 (5.12)

and in some cases this isomorphism class is expressible in a more
intrinsic form.

Suppose R	 k[X 1 ,...9A 1	 with k algebraically closed.
Since R ih (5.7) is surjective R-module map of free R-modules,

a
k
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it is not too hard to see that ker R is projective as an R-module
-	 and has finite rank, since X and U have finite rank. Recalling

the connection between projective modules and vector bundles (see
Introductory Chapter, Section III), it is quite plausible to seek
a vector bundle characterizinn the data (5.12). Indeed, consider
them-vector bundle on 0 x^A l whose fiber over (X,$) is the
vector space

ker[F(X) - sI, G(X)l c kn ® km
	

(5.13)

Now, since all m-vector bundles on /AN xjA i are isomorphic (by
the Quillen-Suslin Theorem) provided we allow isomorphisms depend-

i'ng on s 6 A l , (5.13) is not fine enough. However, the notion
of strict equivalence (i.e., independence of s) suggests an
order of growth at s - - reminiscent of Lionville's Theorem.
That is, by homogenizing all of the above we construct a bundle

W. on /AN x P 1 , whose fiber over (X,[s,t)) is given by

ker[tF(a)	 sI.t G(X)J c kn e km.

Theorem 5.4 ([10]) Zlne bw.dZe W. is a complete invariant for
c modulo stage feedback.

Remarks. For N - 0, this was studiedby R. Hermann and C. Martin,
wore ated the Kronecker invariants (5.11) to the Grothendieck
invariants of Wo, thereby proving Theorem 5.4. For N > 0, if
one forms the transfer function for the triple (F(X),G(.t),I),
then just as in the earlier sections one obtains a map

T:/AN x 1P 1 -► Grass (m, k n ® km)

exhibiting (5.13)' as the pullback along the transfer function of
the (topological) universal bundle, and Theorem 5.4 follot-.,s from
Riemann-Roc (see Professor Martin's Lectures, [ J).

Now, if c is independent of X then Wa is independent

of X, i.e. W	 is a pullback along the second projection

p2WAi, x P1 -► P of a bundle on IP	 And, Theorem 5.4 asserts

that the converse in true. Thus, if W 	 is a pullback, then a

is coefficient assignable--since this result is valid for a
defined over the field k. On the other hand, one can express
this condition more explicitly. For each a, a gives rise to a
system a(x), by evaluation of X. over the field k and therefore
to pointwise Kronecker indices,

m
^ni(X) _ n{a)'- n' 
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1 	 .

E

Corollary 5.5	 If the	 n i (a) = n i 	 are constant in A. then	 c
is feedback, equivaZent to a constant system. 	 In particular,	 o
is coefficient assignable.

,

Proof.	 It follows from the main theorem of C. C. Hanna's
thesis	 8J, that constancy in	 a	 of the (Kronecker)-Grothendieck
indices implies

WQ °e Ep l (Vj ) a p2(Wj)

J
where	 Vj	 is a vector bundle on	 /Ati

	and	 W	 is a bundle on	 P1.

,

By the Quillen-Suslin Theorem, 	 Vj	 is trivial and therefore

WQ 	z p2 (W	 p2(FWj)	 (5.14)

J	 J
m

Moreover,	 E lel	 mi	 ZO(n i ).	 (5.14), however, is enough for our
J	 -

purposes.	 tt

Example 5.6	 The use of the Quillen-Suslin Theorem is, 	 in fact,
.	 essential.	 Consider the folloaing readable pair, defined over

R = C(S2 ).	 Define	 U c, R (3)	 as the module of smooth sections

r	 of a rank 3, trivial vector bundle on 	 52--viz., the restriction

of the tangent bundle	 T( 3 )	 to	 Sz.	 If	 X	 is the R-module of a..,
smooth sections of	 T(S` )	 i.e. smooth vector fields on 	 S 2 , then
X c U.	 In fact,

U cd X (D R(1)

where	 R (l)	 is the module of sections of the normal bundle to

P

S2 a IR	 Inarticular, we are led to the reachable 	 airp	 p -^
o= (F,G)	 defined by	 G = Proj i :U -, X,	 and	 F = Id:X -• X.	 One

easily checks that for	 p E S ,	 the pointwise Kronecker indices"
of	 a	 are given by

^	 (nl(x),n2(x))	 _	 (1,1),	 for	 x E S2,

noting that	 max C7(S 2 ) = S2	in the canonical way. 	 However, the
spectrum of	 (F,G)	 is not arbitrarily assignable, supples I
fK:X -+ U	 such that	 spec(F + GK) = (0,1}.	 Then	 F + GK	 is a

projection on	 X	 and its kernel and ima ge give rise to a decom- A

position,	 X = M l 0 M2 ,	 corresponding to a-decomposition'

T(S2 ) 	 L, (DL

L

__	
...	 ..	 .	 ...	 _..^...._......_.	 ..	 ..	 .	 ,.	 ,.	 ..ter. C
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of the tangent bundle into line subbundles. Now, since dilnLi- 1,
_	 each Li is an integrable distribution and, by Frobenius' theorem,

Li forms a codimension one folition on S 2 , as it were, imply-

ing that X(S2 ) -. 0, contrary to fact.

On the other hand, if one supposes that X and its projec-
tive submodules are free, then it becomes harder (see §6) to	 x
construct a "counterexample" to pole-assignability for reachable
pairs. Moreover, as several authors ([11],[21b],[41]) have noted
since Corollary 5.5 appeared, under these conditions on the	 Y
state module X, a reachable pair (F,G) is coefficient assign-
able whenever the pointwise Kronecker indices (nl(t1),...,nm(iM))

of a(M) are constant in 14 E max(R). More generally, if
max(R) is given the Stone-Jacobson-Zariski topology, where the
basic closed sets have the form

h(I) - 01:I a M), for I and ideal of R

i	 ^ ♦

then a is coefficient assignable whenever the pointwise Kronecker
indices are locally constant. Recall that a ring R is said to.
be "projective-free" just in case each finitely generated projec-
tive module over R is free, thus the Quillen-Suslin Theorem
asserts that R = k[x 1 9 ... ,xNI is projective free.

Proposition 5 Suppose R is projective-free am. a = (F,G) is
a reachable s! ste,^r wi:h free state module and ZoccZ !. coNstcrt
Kronecker invariants, then a is coefficient assigrzaole.

Remarks.

1. The basic idea in the proof is to note first that con-
stancy of the pointwise Kronecker indices (nl(m),...,nm(M)) is
equivalent to constancy of the rank

rj (M) = rank(G(M),F(M)G(ti),...,FJ-1(t1)G(,'.1))

(as the rj ( ti) form the dual partition to the partition En i (11) = n

of n) and that hypothesis on R now implies the freeness of the
projective modules

n
(0)	 span(G)	 span(G,FG)	 ...	 span(G,GF,...,F G)=.A.

A careful choice of basis now puts a = (F,G) in a standard
canonical form, in which form coefficient assignability is immedi-

	

ate. for a very careful proof, see [21b]. 	 j
i

2. This is also'the route taken in [11]. However, the pro-
posed extension (by working locally and then trying to patch local
solutions) of this argument to cover arbitrary R and projective
X is incorrect--as Example 5.6 amply demonstrates.

s

t	 `;
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3. I would like to raise the question; Can Proposition 5,7
be improved upon by assuming only that

m
in i (M) = constant	 ?

=1
I3	 .

This is much more applicable, and I know of no counterexample.

We close this section with a few corollaries to Proposition
5.7.

ti

Corollary 5.8 (Sontag) 	 If	 R	 is sem•.:ZocaZ, then to say	 a	 is
reachable is to say	 a	 is coefficient assignable.

Proof (1411)	 A semi-local ring has only finitely many naxi-
mal ideals,als, by definition.	 Thus,	 max(R)	 is discrete and every
function is locally constant.

k Corollary 5.9	 Brockett and Willems \	 if	 R	 is the group a'.aecra
of a finite abet an group, then to say	 c	 is reachable is Do
say	 a	 is coefficient assignable.

This follows, although not historically (1171),_from. 	 Corol-
lary 5.8 or from somewhat deeper considerations. 	 That is, one
measure of the complexi ty of calculations in	 R	 is the structure
of set of primes of	 R,

spec(R)•= {P:P a prime ideal of 	 R)
i

and in particular of the Krull dimension of 	 R--i.e., the least

A

upper bound of the lengths of chains of prime ideals of 	 R	 (see
Introductory Chapter, Section VI).	 mote that any P.I.D.	 has
dimension 1, whereas a field has dimension 0.

.,hen .,o sayj	 Corol lary .5.10	 If	 R	 has rfruZt dimension	 0,	 y	 ^	 ^y	 a ^

is reachable over	 R	 is to say	 a	 is coefficient ass .gn.:b ,e. g

One example of such a ring, in addition to the group algebras
i	 of Corollary 5.9, is furnished by the class of Boolean rings. 1

Indeed, for any ring of dimension 	 0,	 max(R)	 is a Boolean space `+
and based on the general	 (sheaf-theoretic) structure theory for
such rings, we may apply Proposition 5.7.

The present state of affairs is rather intriguing. 	 Morse's
Theorem suggests that zero assignability is perha ps related to
reachability for rings, of Krull dimension 1, while Example 6.`1
shows that reachability does not imply zero assignability in
dimension 2.

7
y

y

'i
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16. THE COUNTEREXAMPLES OF BUMBY, SONTAG, SUSSMANN AND VASCONCEj OS.	 =`'/l1

In this section we present recent counterexamples (M) to
zero assignability (,over R[x,yl) and to coefficient assignabil-
ity (over a, or TINT). Indeed, all that we do here is for sys-
tems a with rank X = 2. Note that, in this case, as an easy
consequence ([101, Corollary 4.2) of the results in §5, one knows

• -for R a polynomial ring or the ring a:

Let n - 2 or 3, and suppose G(M) has constant
rank for all M E max(R). Then a - (F,G) is 	 r

reachable if, and only if, a is coefficient
assignable.	 (*)

j	 Example 6.1 Let R = RC xl , x2 1 and consider a= (F,G)

f

	

- 1 	 x1+X2 x^+x2- 1 + x^+X

F(x1 ,x2 ) _	 GO^1,a2) -
S

1	 1	 x2-xk x2- x1 + 1-x^- x2

Notice that a is reachable over R  = T[x1,x21. Indeed, it is

easy to compute the Kronecker indices (nl(a),n2(X)) of a.

Consider the algebraic sets in T2,

V^ 	 {(xl,x2);x^ + x2 = 1}

V2 = 
{(x19x2):x2 

= O}

With this notation,
(2,0) if a E V 1 U V2

(1 11) otherwise	 a

In either case, n(a) = n l (a) + n2  2, so a ,is reachable

over R¢. However, one cannot find K(X,,x2 ) defined over R

such that

det(sI - ( F+GK))	 s (s+l)	 k

For then, as it were, the submodule

(2)ker(F + GK) c R
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01

is complemented and hence gives rise to a splitting of R-modules

R(2) d n  ® M_ 1 	(6.3)

with each M  free of rank 1. But, to say N o is free is to
'say there exists u E R (2) , a unimodular element a posteriori,

such that V = F-I Gu is a generator for Mo . Computing along

the real points of V^	 viz. S1,
i

V, (A)'	 a2 X2	 uI(a19X2)

VW _	 _	 (6.4)

v2 M.	 -a, 	 u2(X,,a2)

is a non-zero tangent vector field to Sl , extendable throughout

'R2. By the Poincard-Bendixson Theorem, v(a) has a zero inside
the unit disc, contradicting unimodularity.

Next, consider the question of coefficient assignability for
2x2 systems over a P.I.D. As an example, consider the following
system a defined over R = 2Z.

Example 6.2

a

1

0	 0 1	 0 l
F= G=

3	 1 0	 a y

For	 p	 a prime, the Kronecker indices of	 a(p)	 are given by

if p	 is even, 11(2,0)
(n1(p).n2(p))

(1,1)	 if p	 is odd.

Consider the monic polynomial,	 p(s) = s 2 + 1,	 noting that
neither Theorem 5.2 nor Corollary 5.5' apply.	 In fact, the sys-
tem of Diophantine equations 'I

tr(F + GK) = 1 (6.4a) T

k	
det(f + GK)	 1 (6.4b)

has no solution

i	
K= x	

y e M2(a)
W	 v

I
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To see this ., substitute a solution of (6.4a) into (5.4b), obtain-
1ng

100w2 + lOw - 1 = (-^y)(3 + lov)

or

(1OOw2 + 1Ow - 1) =_ 0 mod(3 + lOv) 	 (6.5)

Now (6.5) has a solution if and only if the discriminant a _
500 is a square modulo 13 + 10vj, if and only if 5 is a square
modulo 13 + lOvj. It can be shown using Quadratic Reciprocity
that this occurs if, and only if, 3 is a square modulo 5, con-
trary to fact.

One may construct a similar counterexample over 1R[xl; in
contrast, all reachable 2 X 2 systems over ¢.[x] are coeffi-
cient assignable ([8']). More generally, if R is a P.I.D.,
then following the matrix operations in [`36], (F,G) may be
taken (modulo state feedback) in the form

0 0	 1	 0
F=	 ,	 G=

b 1	 0 c

where (b,c) = 1. Now following [81, if f(s) = s2 - as ± s,
then arguing as above leads to the condition; if there exists
K E M2(F) satisfying

.P

det(sI - F - GK)	 f(s),	 (6.6)

then a 
2

- 46 is a square mod(p), for any irreducible p divid-
ing b + cv. That is, the solvability of (6.6) implies

the monic f(s) splits modulo p, for each
prime p1b + cv,	 (6.7)	 It

This is in harmony with Morse's Theorem--where f(s) is assured
to split over R. And, if R has the property for p E max(R),
char(R/(p)) # 2, then (6.1) is also sufficient, giving a refine--
ment of Morse's Theorem in the 2 x2 case. It appears that the
general case lies much deeper. Moreover, the criterion (6.7;
involve the unknown quantity v and for this reason is not
always easy to apply. As a final remark, we may include a

a
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but. of course, special care must be taken in including the
prime p = 2.

V. STABILIZABILITY OF PARAt1ETERIZED FAMILIES, DELCHAMP'S
LEDp1A

Consider a parameterized family of linear systems,

A(t) - F(a)s(t) + G(A)u(t), x(O,A) = xo (X),	 (7.1)

real analytic in a E A, an open subset of 1RN (although we
could, of course, take A to be a real analytic submanifold of
RN ). We seek a real analytic K(a) such that the force-free
closed-loop system

A(t) _ (F(a) + G(a)K(l))x(t) 	 -(7.2)

is asymptotically stable, for all A. It is natural to find
such a K(a) by solving a variational problem, in this case a
quadratic optimal control problem leading to an algebraic Ricoati
equation for K(a). Plow, a lemma of D. Delchamps' a pplies the
implicit function theorem--on the manifold of controllable pairs
(F,G)--to show that such a KW can be chosen real analytic in
A. This also applies to C k -families, for k ;-,- 1, and by a
little global reasoning we extend this to continuous families
as hell	 We begin by giving an exposition of these ideas.

First, suppose A = RN and a = (F(a),G(X)) is controllable
for all A. If the Kronecker indices (nl(A),...,nm(1)) of a
are constant, then we can place the spectrum of F(; A.) arbitrarily
(modulo the constraint that the eigenvalues Torm a self-conjucate
set), and thus, in particular, find a stabilizing K(A) as in
(7.2). In order to motivate vrhat follows, we offer another
proof of this fact. Set

C(n,m) = {(F,G):(F,G) is controllable, Fnxm'Gnxm

and denote the state feedback group of Fs = FS(R). Thus, one
has a real algebraic group action

V

SFs x C(n,m) -, C(n,m) 	 (7.3)
t	

with finitely many orbits

O(F,G) _ 
{g (F,G): g e ,Fs)

3

f.
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parameterized by the partition
m

n i =n + n  2n2 a... Znm Z0

of the McMillan degree n into the Kronecker indices. Now, a
real analytic family a = (F(A),G(X)), for X E A, is given by
a real analytic function,

fQ :A-, C(n,m) ,	 (7.4)

and conversely. In this context, to say that the Kronecker
indices are constant is to say that the function

f(,:A-+ O(F,G) c C(n,m)

has its range in a single orbit of the action (7.3). Thus, if

'^tC ir(F.G)	 tg ES: g (F,G) = (FG)}

one has a real analytic map, for (F,G) a point on	 Q ,

fa:A -+ 6's	 F A G) .	 ('7.5)

A study of the topology of dT %.lt'(F ^ G) was begun in t4], where

(for example) formulae, in terms of the Kronecker indices, for the
number of connected components and for the dimension of 'S/.7e(F,n)

are given. Here, we need only know that 6 is a homogeneous
space which is the base of an.xr(F G) fiber bundle •'`s -+ 6#-1F C.

A
w

)

In particular, fQ in (7.5) induces an .xl(F+G)`-bundle on A.
viz.

2Q ♦1l	 (7.6)
l

and to say (7.6) is trivial is, of course, to say that by using 	 -
real analytic state feedback one can put (F(a),G(a)) into a
canonical form which is independent of X. For example, by
choosing .7e to be the isotropy subgroup of the Brunovsky normal
fora one obtains a global Brunovsky forma In any case, coeffi-
cient assi nability follows from the result over a field. Assur;- 	 1.
ing A = IR , such a bundle is trivial and therefore (F(a),G(X))
is coefficient assignable over the ring R = &'(10).

With this notation in mind, consider the variational problem
on C(n,m), where L(a) is an arbitrary real analytic, positive

s
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definite form in a E C(p.m): minimize the functional

n • I W(t)L(Q)s(t) + u(t)u'(t))dt
0

along trajectories (s(t),u(t)) of the system a

t4t) - Fx(t) + Gu(t)

initialized at some (fixed) real analytic state vector, x o = xa.

It is well-known that for a single system a = (F,G) the
minimizing control is given by

vGM _ -G'K(R)exp{(F-GG'K(a))t} xQ

where Ka is the unique positive definite solution to algebraic
Riccati equation

a

F'K(a) + K(a)F - K(a)GG'K(a) + 4(a) = 0 	 (7.7)

D. Delchamps has shown me a proof that K(a) is real analytic 	 1
in t, we only need consider the case L(a) = I. In this case,
V = (positive definite symmetric forms on R n } and consider the
real analytic map n

C(n.m) x V -► C(n,m)

restricted to the subvariety X 	 {(a,K) satisfying (1.7)}. 1

Lemma 7.1 (Delchamps) X is a submanifold and n Jx is a sub-

mission, which 0-dimensional fibers. in pa_rti=Zar, -., is a
reaZ anaZytic di;feomorphism with inverse K(a) = (a,Ka).

Now consider the universal family of systems, a =
(F(a),G(a)) E C(n,m), parameterized by the real analytic mani-
fold C(n,m). Since for each fixed a, the choice of state 	 t ?

1

feedback K(a) = G 1 (a)K(Q) renders the closed-Loop system

k(t) _ (F(a) + G(a)K(a))

3

asymptotically stable Delchamps Lemma implies the existence of
a stabilizing gain, for all a, analytic in a. In particular,
if A c C(n,m) is a submanifol,; then restricting K one obtains
a stabilizing gain for (F(a),G(a))XE 	 analytic in X. More

m
generally,	 z

i

a
.4

^	
3
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Proposition 7.2 If (F(X),G(a)) is Ck in A, k 0, then

there exists a gain R(X) I, C  in A, for which the cZosed-
Zoop system

AM s MA) + G( A )K( X )) x( t )	 (7.8)

is asymptoticaZZy stable, for aZZ X. In fact, R is a function
of the system (F(X),G(X)).

Proof. (F(X),G(X)) defines a Ck-function

f:A -► C(n,m)

as in (7.4). By composing the real analytic gain R(a) with f

one obtains a C k-gain, rendering (7,8) stable for all X.

Remarks.

1. What is surprising here is that the Co case cones out
so easily, indeed much more is true--for example, similar conclu-
sions hold for Lipschitz continuous functions or L°° functions
on a finite measure space, by applying the Gel'fand representa--
tion to the anach algebra L'°(X) ((121). In fact, similar cues-
tions for R arise in recent work by E. Kamen on ' hal f-plane
digital filters.

2. D, Delchamps proved a more general form of Lemma 71 i_n
order to construct a metric, the Riccati metric, on the state
bundle of the moduli space {(F,G,H)}/GL(n,R) and to study its
properties. Some of his work will appear in the proceedin g s of
this conference, published by the AMS.

3. Constancy of the Kronecker indices is, of course, a
very stringent assumption, and it is interesting to studythe
limiting behavior of the (n i (X)). Thus, if the (n i (X))are

generically constant, then

e
	

z	 °.4

R

a

i

SrQ :A -► Closure( 0 1 ) a C(n,m)

where U1 is the orbit corresponding to the generic value of the

(ni (X)). As one can see by examining the matrices (F(X),G(.X)),

the partition (N) occurs as a limit, or spe-c:'ialization, of the

F	 partition ( n i ) only . if (fi i ) ? ( n i ) in the Rosenbrock ordering

a nl . fil + A2 ;_̂ ' nl + n2 ,...,	 (8) a

as one may observe in Example 6.1. From the vector bundle point
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of view, this illustrates the r	 c f Shatz ((43)) that the
Grothendieck decomposition of Wo, rises in the Harder-
Narasimhan ordering under specialization ((43)). It has been
proven (independently) by Hazewinkel, Kalman, and Martin that
on Closure (on ) iff A z n in the ubiquitous, or preferably
the natural, ordering (*),
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Abstract

Classical control theory is concerned with the topics in our

title in the context of single-input/single-output systems. There

is now a large and growing literature on the extension ofthese ide

to the multi-input/multi-output case. This development has posed
X 4.0 _U1certain difficulties, some due to die barins c miture, u	 ^ ji	 V1119

and some, we would argue, due to an inadequate reflection on what

the multivariable problem calls for. In this paper vie describe what

seem to us to be the natural multivariable analogues of these

concepts from classical control theory. A rather satisfactory

generalization of the Nyquist Criterion will be described, and a

clear analog of the asymptotic properties of the root locus will be

obtained in the "multi-parameter" case. However, an example is

given which illustrates the quite surprising fact that the root locus

map is not always continuous at infinite gains. This calls for a

new ingredient, a compactification of the space of gains, and perhaps

the most interesting new feature in this circle of ideas comes in
111	 4	 A 4 444	 1 + 4 ,M +1,	 + ithe area 01 pole placeme t.	 Z V1W UJIL

variable case, but by establishing a correspondence with a classical

set of problem in geometry we are able to understand its main aspects

and to derive results on pole-placement by output feedback over the

Teal field.

PRECEDING PAGE BLANK NOT FILMED
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1. Introduction

It is commonly felt that the standard ideas involved in the

classical techniques of mot locus and Nyquist stability do not have

natural generalizations to the multivariable case and that although

partial generalizations of various kinds exist, those methods which

are most useful are often the most ad hoc. In this paper we want to

develop this circle of ideas emphasizing on one hand that there does

exist one, rather natural (from a mathematical point of view),

generalization of the Nyquist stability criterion and one rather

natural generalization of mot locus. Unfortunately, these mathe-

matical generalizations require constructions in higher dimensional

spaces and so some of the graphical appeal is lost. However, by

starting with the right "pure" generalization it is easier to

understand what is being gained and lost when one adopts one or more

of the somewhat specialized techniques such as one finds in the

literature of multivariable design.

1
3

a

What we will show here is that the natural analog of the
a

Nyquist locus is a curve which is plotted not in the complex plane

(or the Riemann sphere) but rather in a certain "Grassmann space"
3

,consisting of m-dimensional subspaces of an m+p dimensional space

where m is the number of inputs and p the number of outputs. Thus,

this curve is a curve in an mp dimensional space. A feedback gain k
i

corresponds to a choice of p-dimensional subspace, i.e., a point

in a dual Grassmann space. The analog of the Nyquist locus passing	
k

I
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through the point -1/'k is that of the curve of m-dimensional

subspaces intersecting the.p-dimensional subspace gr(k) in a

nontrivial way. Using some elementary ideas from algebraic

geometry, we are able to state a generalized hyquist theorem

relating the number of poles in the right half-plane after

feedback to the number before feedback and to a winding number.

Root-locus theory also fits into this analysis in a natural

way. With m and p as above, the gain is thought of as a point in

the space of p-dimensional subspaces of an (m+ p) -dimensional

space. The root locus itself is the point set consisting of all

possible closed loop poles. We show that if the number of gains (- mp)

is less than or equal to the number of poles ( n) then there

is--generically--a version of the asymptotic (k -+ -) analysis

which one does in single variable root locus theory. Hrnaever,

even in this case there is not just one "infinite gain" and this,

in part, explains the controversial-nature of chat a zero of a

multivariable system should be.

Both the hyquist ideas and the root-locus ideas have recently

proved useful in understanding the pole placement problem for

output feedback. We discuss this problem from the point of view

outlined above and give some new results based on earlier work

done by algebraic geometers in connection with the Schubert

calculus

e

1

'a

F,
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2. The Nyquist Locus

The point of view we use here results in a very natural and

clean generalization of the hyquist criterion. Hrnvever, it does

involve the geometry of the so-called Grassmann manifolds in an

essential way. Since this is essential, and at the same time,

not yet too familiar to many people working in automatic control,( x
we begin with some background notation and ideas.

Let	 denote the set of all complex n-tuples, regarded as a

vector space in the obvious way. The set of all complex lines in

can be thought of as equivalence classes [xl , ... ,xn] of points

in 0= {0} with (xi ,x2 ,. .xn) being equivalent to (yl ,y2 , ... ,yn)
if and only if there exists a E C-{A} such that ax = y. This is

called n-1 dimensional projective space and is denoted by Pn-1
3

Likewise, we can consider the set of all complex tvo-dimensional

subspaces in fin . These can be identified with equivalence classes

of pairs of linearly independent vectors in Vin , {x,x'} whereby two

pairs (x,x'j and {y,y'} are regarded as being equivalent if they

span the same two-dimensional subspace. More generally, we may

consider equivalence classes of p linearly independent vectors in

'	 Qn, say {x1 ,x2, .,xP ),with the understanding that two such sets
tr 	 a

of vectors are equivalent if and only if they span the same sub- 9

space of e. This set of p-planes in n-space will be denoted by

Grass(p,n). Of course, if p= 1 we recover our previous construction,

Grass(l,n) = Fn 1 . Grass(p,n) actually admits the structure of an
-3

analytic manifold and also that of a nonsingular algebraic variety.

i

'r	 }r
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This is the Grassmann manifold of p planes in n-space and we will

need to concern ourselves with its geometry.

To being with, the dimension of Grass(p,n) is np-p 2 . To see

this, think of.Grass (p,n) as being a collection of equivalence

classes in the space of n by p matrices of rank p with two such

being equivalent if for some nonsingular p by p matrix we have

M1P = NLl

Since the n by p matrices of full rank form an np-dimensional

manifold, and since the equivalence relation identifies with one

point a p2-dimensional family of points, we see that Grass(p,n) is

a manifold of dimension np-p 2 . A second important point is the

inherent duality between Grass(p,n) and Grass(n-p,n). The formula

dim Grass (n-p,n) = n(n-p) - (n-p ) 2 = np-p2 = dim Grass(p,n)

suggests a possible identification between these spaces. In fact,

they do define the same abstract analytic manifold and Grass(n-p,n)

is called the dual of Grass(p,n). The reason for this terminology

will become apparent: it turns out that a point x E Grass(p,n)

canonically determines a hypersurface a(x) in Grass(n-p,n).

E	 7

In ordinary calculus a curve is usually a mapping from some

interval I a IR to some real manifold. Di. For our present purposes

}(
}1	 it seems best : to take the viewpoint found. in .algebraic geometry

and to call an analytic mapping of any Riemann surface into a

"i	 (complex) analytic manifold a cza ve. Of course, this means that
^^	

1

t

C 



a curve is an object of real dimension 2 (or complex dimension one).

For example, any rational function gives us a curve since it maps

the Riemann sphere into itself. 	 Complex, nonsingular, algebraic

varieties are special kinds of complex analytic manifolds which

enjoy the property that they can be covered by coordinate charts

` such that coordinates in overlapping meighborhoods are related by

rational maps.	 An aZgebraic curve is then a mapping of some Riemann

surface into an algebraic variety which can be defined by rational

functions.

Classically, the Nyquist locus is defined as the image of the

imagainary axis in C under the mapping pg: C`- ► C defined by

t
^g(S) - 

g(s)	
s

'mere is, however, an alternative way of thinking about this which

more readily suggests the generalization we want to use. 	 Consider

t the fact that g(s)u = y, which can be written as

[g (s),- 1 ]	 u	 =	 0

Y

In this form, it defines a mapping of the complex plane ¢ into the

r
set of (complex) lines in ¢2 according to the rule

^
@F

s 	 F.► Ker[g(s),-l]

Moreover, if we add a point at infinite to	 to get the Riemann

sphere then this same relation gives a mapping of the Riemann
ri}
f	 3r

2sphere into the space of (complex) lines in 	 i.e., a mapping
a..

C
4

i

{
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of the Riemann sphere into Pl .	 Incidentally, and we will make

f

use of this point of view later, this makes it clear that the
]F

4

Riemmm sphere and the complex projective space P1 are the same

space.

'the basic multivariable feedback equation

`
t.3

G(s)u = y	 u	 -Ky

!o

j#
F

which we prefer to write as

G(s)	 -Ip u 0
3_

IM 	 K y 0

have a solution if and only if the kernels of [G(s),-I p] and

[Im,K] intersect in a nontrivial way.	 Following the innovative

paper of Heimann anc. Martin [11], we now define the Phjquist Zoous

of a p by m	 transfer function G(s) to be the points, on the
t

algebraic curve in Grass (m ,m +p) given by

s- H Ker[G(s),-Y ]
p

which are the images of points on the imaginary axis, Re s 	 0.

4
z

This conclusion has the distinct advantage that the Nyquist contour

is the image of the closed imaginary axis, which is a circle in

y in a space where the transfer function takes its values, viz., the

Grassmannian Grass (m,m + p) : 	 It is important to notice that in

general this space is formally different from, but dual to, the

space Grass (p,m + p) where the gains live (i.e., except when m ,,op). . R
^
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Remark. Note that the curve in Grass (m,m + p) defined by

I
s F* Image	

m

G(s)

is the same as the curve defined above, since

f Image	 m«	 p	 = 0
y	 G(s)]	 y

As in many aspects of linear algebra, we find it convenient for

some purposes to work with kernels and for other purposes to

work with spans. In particular, to get our definition to

t

3

specialize to the usual Nyquist locus the need only choose to
s

represent nines in C2 by

y
l	 f i

span
g(s)

r

In the paper cited above [ll], Hermann and Martin interpreted r

the M61illan degree and the Kronecker indices of systems in terms

of this algebraic curve. In tht next section we show how these

ideas lead to a clean generalization of the Nyquist criterion,
t

and in Section 6 we will use a geometric reinterpretation of the

pole placement problem based on these ideas.

Finally, these ideas also play an important role in our study
f

of root loci since at a very primitive level, the Grassmannian
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setting allows us to precisely define what we mean by an infinite

Rain and to study the corresponding questions about asymptotic

and limiting behavior in the presence of compactness. This

description of an infinite gain is new in the control theory

literature and is important in all that follows. Therefore, we

will devote the remainder of this section town exposition (see

[4]) of this circle of ideas.

Since a real gain K may be regarded as a point K E MW , the

real vector space of matrices, it is perhaps at first glance

tempting to use the usual Euclidean picture of a single point

at infinity, with the convention that whenever JJKJJ -, - , K

approaches infinity. If mp > 1, this is somewhat unnatural, since

for examle,

X 0 ,., 1
7	 K	 = K

0 a 0	 1

both tend to infinity in this sense but, as relations u = Ky

{	 between outputs and inputs impose different limiting behavior on

the closed loop systems. ?

L	 Explicitly,	 u =	 y isI the 'linear relation j

=	
yl

(1/ x) ul = yl z
or

u2_ =	
y2 (1/X) u2 . y2

a

and, therefore, as a	 K, approaches the linear constraint
ti

it
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yl y2 u 0

among the input-output variables ui ,u2 ,yl , and 
Y2.In 

Section 5,

a physical interpretation of such limiting constraints is offered,

but for now it is important to observe that, as linear constraints

among the input-output variables, the families K  and K, have

different asymptotic behavior. For, as the reader can check, as

A + ^, Kx approaches the linear relation

u2 - y2 a 0

It is therefore desirable to allow for many points at infinity,

precisely so as to account for differences in the limiting behavior

of the constrained relations u n Kxy. With this basic consideration

in mind, it is natural to study the set--or as it turns out, the3

manifold--of linear relations between u and y. More geometrically,

setting U 	 and Y n MP , the gain relation u . Ky is represented

'by its graph, viz., the p-plane

gr(K)	 ((Ky py) : y E Y) c U6Y 4

3

Of course, not overt' p-plane in U D Y _ space can be represented as a
 t^

graph of d linear function h: Y •r U, since such a p-plane is
x

fk	 necessarily wiplemontary to U. 1hinki:ng of a p -plane V as a point

in the real. Grassmannian. Crass (p, m * p) , we have t3,o alternatives

}	 (i) V is the graph of a linear function (or gain) K; Y -* U,

(ii) V E a (U)	 (W idimCil n u)	 1, W C GrassR(p, m + p)) .

k

I
7
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In the first case V E RmP and in the second case V lies in c(U)

--the set of infinite gains. It should be clear geometrically that

RP = Grass (p,m + p)-a (U) is dense and that every limiting value

V E v(U) represents a linear constraint between u and y, just as

in the example above.

For any m-plane W in (m +p)-space  we can define the subset

: ! 1) of Grass 3R(p, m + p) defined by

a(W) _ {V I dim (IV n V) ;, 1 ; W E Grass ,(m, m + p) )

j	 such a hypersurface is known as a Schubert hypersurface (associated

II

	

	 to W). In this language a(U) is the Schubert hype-91urface of

infinite gains [4], [15]. Similar remarks apply to complex gains

in the setting of complex p-planes in ep , i.e., in Grass (,(p,m+ P).
I

1.'e shall now eliminate the subscripts IR and C, since whether

we are working with real planes or complex planes should be clear

from the context.

E	 le If m	 = 1 we are ro sin th	 'd t'	 fxamp	 p ,	 p po g e consi era ion o

Grass(1,2) = Pl , the space of lines through 0 in ]R 2 , which is a

circle since each line is parameterized by the angle it makes with
I

the Y- axis. Note that in this special case a(U) _ M is just the

line M itself, as is shown in the figure below.
a
I,

U

n

V graph (K)

6

4	 Y	 <:
I

{

i	 Figure 2.1	 x
s	

.,

t;



Therefore, if m = p - i t Pl - c (U) = R and a (U) represents the point at

infinity, in the standard euclidean sense.

More generally, if m = p and K is invertible then it , is easy to check

that the graph of the function K^ My - u, approaches {U} as k goes to
x

infinity. This implies that the closed loop poles approach the opera loop 	
'r

a

zeroes, as is well known. However, dim a(U) = mp-1 and therefore there

exists (if mp > 1) a continuum of possible limiting values in a(U) - {U},

each corresponding to limiting values of more general 1-parameter families 	 j

KV As we shall see in Sections 4 and 5, for non-degenerate G(s) to each

of these infinite gains one can still assign an unordered n-tuple of limit

nnintc nn the Riemnnn cnh pre nnA nhtnin ncvmntntir Pynrpccinnc fnv the
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3.	 The General Nyquist Criterion

The basic equality which lies at the heart of Nyquist's application

of the principle of the argument to study stability is

k
W l p+ v

r,

if where V1 is the number of closed-loop poles in the right half-plane, V
f;

Jt is the number of open loop poles in the right half-plane, and p is a
-

winding number -- the number of times the Nyquist locus encircles the -1/k

t point in the clockwise direction.	 Although special techniques are readily

developed to enable one to handle the case where the Nyquist locus is

unbounded i in its primitive form one assumes that the Nyquist locus avoids

two points, the point at 00 and the point -1/k. 	 In the multivariable	 version
a	 .R

we present here U and V will have virtually the same meaning; 	 the Nyquist	 •

locus itself will be as defined above. 	 The definition of the winding

number p will now be given.

As we have seen ti i feedback stability problem ia	 concerned witlr the

pair of equations

G(s)	 -IF u ,,

[001
(3.1)

} IM	 K y

;, Since ambiguity arises when for some value of s-iw 	 this pair has a
f

nontrivial solution we must eliminate	 this possibility.	 Regarding the

d{
kernel of [Im,K) as a point in Grass(p ^m+p) suggests that we introduce

the Schubert hypersurface

a(Ker[lm ,K))	 (WIW E Grass(m,m+p)c w n Ker[T m ,K]	 C}

since in order to have 'a nontrivial solution of the above equations we need

to have an intersection betweenthe Nyquist locus and `a(Ker[Im,fi]).

i
4
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Our first result describes pole-placement by output feedback in terms

of intersection properties.

Theorem 3.1: The closed-loop poles corresponding to a feedback .gain matrix

K occur at the points s  where the algebraic curve

Ker(G(s),- Ip) a Grass(m,m+p) intersects the Schubert hypersurface a(Ker[Im,K)).

Proof: This is simply a reinterpretation of equation (3.1) above. The

closed-loop poles are values of s where (3.1) has a nontrivial solution but

this occurs where Ker[G(s),-I p ] and 9[Ker(Im,K)] intersect.

We now turn to the Nyquist criterion itself. In order to make sense

out of the concept of a winding number we need to be sure we are working

in a space in which the equivalence classes of homotopic closed curves can

be put in one to one correspondence with the integers in such a way as to

preserve the basic idea that traversing a closed curve r and then a closed

curve r' should result in a winding number which is the sum of the respective

winding numbers v(r)+\)(r,) and that traversing a closed curve r in the opposite

direction should result in the negative of the winding number associated with

the original orientation. More precisely, the fundamental group of the

bpace should be isomorphic to 7L, the additive group of the integers. We

use trl to denote the fundamental group of a space (see [231, [91).

Lemma 3.2: For 1-1,2, let Q i a Grass(p,p+m) be Schubert hypersurfaces

of the form described above derived from m-planes W and W' which satisfy

j dim(W n W') - min(O,p-m). (That is, they intersect on a subspace of smallest

possible dimension.) Then the fundamental group of Grass(p,p +m)-6 U-Q2 is

isomorphic to Z.

k.

n'

u
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This lemma is, except for language, the same as the following one

which is the.form we will actually use in the proof of the Nyquist Criterion.

The notation a (n,C) refers to the set of all nonsingular n by n complex

matrices--the general linear group of dimension n.

Lemma 3.2 Let K be a fixed m by p complex matrix of rank r. Then the set

of all p by m matrices G such that

G	 -Ip

det	 0 0

I	 K
m

L2is a connected complex manifold diffeomorphic to Gf. (r,C) x emp-r

f	 In particular, if r :^ 1, the fundamental group of this manifold is

isomorphic to Z.

Proof of Lemma 3.2: The proof follows from the fact that the above matrix

is invertible if and only if KG +1 is invertible or, equivalently, GK + Ip

is invertible. Let P and Q be invertible matrices such that
,a

I r 	0
def

PKQ _	 E

i
0	 Q

Then det(GK + I )	 det(Q 1GP_1 F +1 ). Thus we see that the upper left
P 
	

p

-	 r by r minor of Q 1GP l is such that when added to I= the result is a

-1	 1	 i
nonsingular matrix, the other components of Q GP being completely

arbitrary. Thus we see that the admissible G's are in one to one corre-

spondence with the choice of a nonsingular r by r matrix and a point in

a mp-r 2-dimensional vector space. It is well known [7] that 
7  

of

Gt(r,C) is isomorphic to Z for every r 1. In fact, the determinant

i

W
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mapping of a(m,C) into the nonzero complex numbers

C*, given by det: G$(r,C) ♦ C*, gives a means of determining when two

closed curves in G (m,C) are homotopic--they are if the image curves encircle

zero in C* the same number of times.

We adopt the following convention. If r is a curve in Grass(m,m+p)-a1 
U o2

as in the lemma, if al = a[Ker(Im ,0)1 and a2 = CF[Ker(Im,K)], then we define	 x

the winding number of r with respect to a2 to be the net increase in argument of	
c

G	 -I
P

d t	 det(GK+Ip)	 det(KG+Im)

I	 K
m

as W increases from -- to -, divided by 21T.

With these preliminaries in hand, we now give a graphical test for

stability which generalizes the classical result of Nyquist [18]. s

Of course it is important to observe that when counting poles in the right

half-plane one counts the multiplicity of a given pole according to its

contribution to the McMillan degree of G(s).

Theorem 3.3: Suppose that G(s) is a proper matrix valued rational

function with no poles on Re s = 0 and suppose that the Nyquist locus does

not intersect the Schubert hypersurface Q[Ker(Im,K)] defined by the gain

matrix K. Let p be the number of closed loop poles in Re s > 0 and let v be r

the number of poles of G(s) in Re s > 0. Then

P = p+V	 t

where p is the number of times the Nyquist locus encircles the Schubert
i	 S

hYpersurface Q[Ker(Im,K)] in the positive direction.	 ]
Y

3
i

7
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Proof: To begin with we observe that for a given minimal triple (A,B,C) and

a given R we have (G(s) C(Is-A)-1B)

det(G (s)K+Ip )	 det(KG (s)+Im)

det(Is-A-BKC)/det(Is-A)

Moreover, by the principle of the argument

A zeros [det(GK+I)] - # poles [det (GK+I)] * net change in argument (3.2)
of det (GK+I) /2Tr

along the jw axis, where on the left hand side only contributions arising in

the right half-plane. Thus we see that the number closed -loop poles in Re s > 0

minus the number of open loop poles in Re s > 0 is the change in argument in

det(GK + I). But from the proof of Lemma 3 . 2', this is the number of encirclements

the Nyquist locus makes around the Schubert hypersurface v(Ker [ Im,K]).

w'

i

Figure 3,1: Illustrating the Nyquist Criterion

Remark: This result retains what is in our opinion the basic assets

of the classical Nyquist criterion, viz. the result involves a fixed curve

obtained from the open loop transfer function which does not need to be

changed with changes in the gain. However, formula (3.2) does represent 	
x

the easiest route in calculatingthe appropriate winding number and has been 	 +	 a

used extensively in the square case with scalar gain K^ _ XI (see [1], [9],

[20]) and in the nonsquare case by Callier 'and Desoer ([5]):

•
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4. Feedback, Nondegeneracy, and Zeros

Changes of basis in input space, change of basis in output space,

and the operation u F+ u - Ky (feedback), taken together yield a group

of operations on transfer functions. We call this the feedback group.

Triples (T,S,K) act on G(s) to giver
f

TG(s) (KG(s) + S)-1	 -

We denote the group by F and note that it may be represented as a

subgroup of GQ(IIMP c Ge(ep), given in block :Evan by

T	 0
F _	 T6M(IRP SE GO ( )

K	 S

Now, any transformation in GC(I;P+p ) acts by change of basis on an

m plane W to give another m plane W', and in this way the subgroup F

acts on Grass (m,m + p) --as the subgroup which fixed the m-plane

U c YOU. It is important to note [8] that,

I	 0	 G(s)1	 G(s)
p	 F }	 J

M	 m	 Im KG(s)

it i
so that the two actions:

(i) K acting on G(s) by output feedback

G(s) F' G(s) (KG(s) + I) _1

ii 	 (ii) K acting on G(s) by composition (as in (4.1))

h	
K

G	 G: IP -► Grass (m,m+p) -► Grass (m,m + p)'
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are the same. That is, given a transfer function G(s) and again K,

we can either apply the output gain, obtaining the closed loop plant

GK(s) 
def G

(s) (KG(s) + I)
_ 1 s (G(s)K + I) -lG(s)

and hence a new curve in Grass(m,m + p) corresponding to GK, or we can

take the curve G(s) in Grass (m,m+ p) , apply the "rotation" (4.1) cor-

responding to K, and get a new "rotated" curve in Grass (m,m +p).  This

new curve is the curve corresponding to GK. In particular, to describe

the closed loop poles, we can either rotate first obtaining GK (s) and

intersect with the fixed Schubert hypersurface a[Ker(O,I m)], or fix

the curve G(s) and intersect with the Schubert hypersurface a[Ker(-K,I,,)],

which we get by "rotating' a[Ker(O,I m)] through the inverse "rotation"

defined by -K as in Equation 4.1. This gives`an alternative proof of

'Theorem 3.1.

It is also important to notice that _F acts on the Schubert hyper-

surface in Grass (m,m +p) as well; that is, each F E F transforms the

Schubert hypersurface a6V) to the Schubert hypersurface a(RV). For

this reason, it is clear that the following definition is invariant

under output feedback.

Definition 4.1 G(s) is nondegenerate if, and only if, no Schubert

hypersurface a6l) in Grass(m,m+p) contain s the curve G(s)-.

M2

1	 ,

Since nondegeneraty plays an important role in what follows, it is

therefore worthwhile to derive alternate forms for nondegeneracy.

Suppose W is a p-plane in e
n+p , so that IV is defined as the common zeros

of independent linear functionals ol ,,...,^m on e"P. Let g (s) denote
I



j-th column of the matrix	 G(s)
G(s)

IM

Now, to say that the span of G(s 0) intersects W non-trivially is to say
M

that some non-trivial linear combination, i^lagi (s0), lies in W. That is,

M
( Elaigi (s 0)) = 0,	 for j = 1 0 ... ,m

or, the rational function

	

ON) = det(^j (gi)) (s0) '_ 0	 (4.2)

Now, a different choice of defining equations changes D(s) by a non-zero

multiplicative factor. Since so is arbitrary, nondegeneracy of G(s) is

equivalent to

for any 4^(s) .	 (D (s) ^ 0	 (4.,3)

A third equivalent form is that for no matrix [K l ,K2 ] of rank min(m,p) is

G(s)	 -I p
det	 =	 0

Kl	 K2

For example, any scalar transfer function is nondegenerate, since

for a, $ not both 0,

O(s) = aG(s) + E 0

only if G(s) is constant. However, if m > 1, any m x m. diagonal (or even

block diagonal) transfer function is degenerate. And, since nondegeneracy

o,
:t

x
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is feedback-invariant, any system which may be decoupled is degenerate.

For example,

1/(s2-1)	 0	
b

G(s)
0	 1/ (s2-4)

t	 is degenerate.If yl,y2 ,u1 u2 denote the coordinates cm a column
A

vector in C4 , the choice ^1 (v) = y
21

0
2 (v) 	 uZ leads to

0 r

0(s)	 det	 = 0
r

	
1/(s 2 4)	 1

On the other hand, the generic 2x 2 transfer function with Ma illan

degree 4 is non-degenerate. 	 Indeed, part of our interest in non-degeneracy
q

stems from this property.	 If n is the McMillan degree of a system, we have

Theorem 4.2	 If mp 4 n, non-degeneracy is generic.	 If mp >n, then every

transfer function is degenerate.

By generic we mean that the set of non-degenerate systems is the

complement of a set defined by algebraic equations in the space of minimal

n2+nm+np
realizations {(A,B,C)) c ]R 	 .	 Since G(s) a a(V) is an algebraic

constraint and the space Grass (p,m+ p) is compact, degeneracy is defined.:

by algebraic conditions, so in.order to prove genericity it is enough to

find one G(s) rdiich is non-degenerate. 	 Nmv suppose V or, equivalently,
R"

{^1 ,..., m} is given.	 To say G(1P	 a a(V) is to say, in particular, that

G(s1),...,G(sn),G(-) 	 E a(V)•, for s i E (C,

We may assume the m-planes G(s i) are in general position, so that each

r^	 j

4	 ..
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det(h(gj)) 
(Si) - 

Q

places a non -trivial constraint on V. These are, dually, n independent

condition,  V which lies in a variety, Grass(p,m+p)., of dimension mp.

The additional constraint,

det(h(9j )) (m) - o

then constrains V to lie on an algebraic subset X of Grass (p,m +p) of

dimension

dim X 4 mp - (n + 1)	 (4.5)

so that X is empty if mp C n. However, by a special property of

Schubert hypersurfaces, which should not be interpreted as a general

fact (see (22] p. 57), (4.5) is an equality for planes in general

position. Therefore, if mp > n, X	 which, together with the follow-

ing lemma, proves the last statement. In case m= p =1, the lemma

x	 asserts that every nonconstant rational function takes on any given

b

value the same number of times.

i	 —

a' Lemma 4.3 a(V) either contains the algebraic curve G(s) or intersects

it (counting multiplicity) in exactly n points. In the latter case, at

least one such point is infinite if, and only if, V is not complementary to U.

Proof The first part of the lemma can be found in (6]. As for the

second part, if V is complementary to U, then V gr(K), for some

K: Y -# U, and the points of intersection are the poles of G K (s) which

are all finite frequencies The converse follows from a duality between
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W"

Grass (m,m + p) and Grass(p,m + p) and the inherent duality in the statement

"V is not complementary to U." That is, to say

V E ct(U) c Grass(P,m+P)

is to say- U E a(V) -a Grass (m,m+ p) . Therefore, if V is not complementary

to U, then G(m) w U £ a (V) is in the intersection G(P' ) n a(V) . 	 Q.E.D.

This concept is of great importance in studying asymptotic root

loci and pole-placement by output feedback. a

Preparatory to our treatment of root-locus, we discuss the question

of hoer to define what one might mean by the zeroes of a multivariable

system. Our approach will agree with most other authors in the case where

G(s) is square, but in the rectangular case we argue that it is best to

focus attention on a locus of all "potential zeroes" rather .plan a finite

set of points. To state our results in a clean way we need a little

.further notation. If p(s) is a nonzero polynomial of degree < n, then

by [p(s)]n we understand an equivalence class consisting of all polynomials

of the form ap(s) with a ^ 0. Since multiplying p(s) by a does not

change its zeroes, we see that [p(s)] n defines a set of n unordered points

in the Riemann sphere. (Note that [Os2 + S+ 1] 2 , for example, ¢Defines the

point set {-,-U .) On the other hand, each equivalence class defines a

line in st
n+1 

(or C
n+l) 

and hence a point in a projective space Fn

namely the line span (Pn,Pn- 1 ... ,PO)

Definition 4.3 Let (A,B,C) be a minimal triple. Let G(s) = C(Is-A.) -1B

be a nondegenerate p by m matrix of proper rational functions having

Md1illan degree n. If m 3 p, then we say that a point {[q(s)] n I is a right
1

zero poZynomiaZ_of G(s) if there exists an m by p matrix K of rank p such

A
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6

that q(s) - a det(G(s)K) det(Is -A) for some a 0 0. We say that { [q(s)]r)

is a Zeft zero poZynomaZ of G(s) if q(s) divides det(Is-A)det(G(s)K) for

ill m by p matrices of rank p and q(s) is of maximal degree relative to

all polynomials with this property. I£ m k< p, then we say that {[q(s)]n}

is a Zeft zero poZynomiaZ for G(s) if it is a right zero polynomial for

G I (s); we say that {[q(s)] r }  is a right zero polynomiaZ if it is a left

zero polynomial for GI(s).

As remarked above, [q(s)] n is the same as a point in e and we know

that the set of m by p matrices K having rank p < m is associated with an

equivalence class [K] = {KP: P E GQ(p)} which defines a point in Grass(p,m).

Thus the above definition of left zeros (_right zeros) gives us for

m g p (m 
.3 

p) a mapping of Grass (m,p) to e (Grass (p,m) to ]Pn ) . Thus

we see that the set of zero polynomials is, except in the case m = p, a

whole locus of points and not just a finite set.

One desirable property that our definition has is revealed by the

consideration of feedback. Suppose p . m, we say that G(s) is feedback

equivalent to (G(s)Kl + I) -IG(s). Now, if for some K we have

det(G(s)K) det(Is-A)	 ag(s)

then an easy calculation shows that the polynomial
s

det(G(s)K1+I)
-1det((Is-A) +BK1C)•detG(s)K•

det(G(s)K • det(Is-A)	 ag(s)

Theorem 4.4 Let G(s) be nondegenerate, then each left (respectively,

right) zero polynomial is invariant with respect to output feedback.
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S. Root Loci

In this section it is our aim to lay some of the foundations for a

general study of multi input, multi output root loci. Quite specifically,

we are interested in the asymptotic behavior of closed loop poles with

respect to high gain feedback and, in particular, in making sense of the

concept of infinite gain. We note that, through the work of many authors,

the situation where one studies a (generic) square transfer function G(s)

and the l-parameter family of gains (XI: X E 3R) is well understood and

indeed reflects many of the properties familiar in the scalar input-

output setting, e.g., the closed loop poles approach the open loop zeros.

However, this family of gains is rather special and it is rather widely

appreciated that for obvious practical considerations one would prefer a

theory of high gain feedback which allows more flexibility in the choice

of gain.

To fix the ideas, if G(s) is a transfer function and K is a gain then

X(K) denotes the unordered n-tuple of closed loop poles, or what is the

same the n-vector of'coefficients of the closed loop characteristic poly-

nomial. One general question we have in mind is, given a 1-parameter

family K  of gains describe the limit X(KX) as an unordered n-tuple, and

describe the asymptotic behavior of the closed loop poles as a + -. In

particular, in what sense does this limit exist? For-example,-if

Ea(U) and 
Z  

4 K.0
, does lim X(KX) lim XMX)?

k-►m	ate°'

Explicitly, consider 	
1/(s2_1)	

0
G(s)

0	 1/(s2-4)

r
R

}

y
}

i

{

t 	 5

E

k
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a	 . j

Ko + K 1
1

Now, K. and t  - K 1 x approach the same infinite gain K , viz., the linear

relation Y2 - u2 = 0 (reflecting the fact that for X >> 0 each frequency

s behaves approximately like a pole for any input with u2(s) # 0). However,

the asymptotics are not determined by the highest,order term! Indeed,

X(K^) + [ (s2- 2 ) (s 2- 3) ] , X(K^)	 [(s 2- 1 ) (s2- 4 ) ]

while the zeros of G(s) are all infinite. We also note that the 1-parameter

families	
0	 a	 -a	 a2:

L _ L X

0	 1	 0	 0

also approach K, yet

X(L^	 [s4- 4s 2- 3]	 X (LA) _ [ (s 2- 4) (s2- 1-a)]- 
[s2

-4]4

i	 .

Roughly speaking, this discontinuity reflects the fact that, in the

lindt, each s0 E P1 deserves to be called a pole of the "closed loop

system with infinite gain." More precisely, given any frequency s 0 E E,

any E > 0, and any c > 0, there exists an input u with Jju(s 0)jj < e and an

N(c,E) » 0, such that Ily(s 0)^^ 	 IIGXu(s 0)I! > c, for a > N(c,e). One	 K

cannot satisfy this condition unless u 2 (s0) 0, and for this reason the

discontinuity of X at K is tied up with the degeneracy of G(s) In fact,

j	 the equations u2 = y2 = 0 defining KW in U @Y are precisely the equations

68
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used in Section 4 to show that G(s) is degenerate. moreover, these

constraints reflect that fact.that, only under the condition u 2 0

(and therefore y2 = 0), will the limiting "transfer function"

lim G,(s) yield a finite output from a finite input.
k

x
We shall say that asymptotic root loci exist for G(s) provided we

can assign unordered n-tuple X(K) of points on the Riemann sphere to

any gain K (finite or infinite_, as in Section 2) so that X is continuous

at each infinite gain.

Theorem 5.1 G(s) is nondeganerate if and only if asymptotic root loci

exist, for all infinite gains K. In this case, as K. - ► K. at least

one closed loop pole becomes infinite.

Proof: The key to this proof is to assign to each p-plane V in (m +p)

space an unordered n-tuple of points on 3P 1 in an unambiguous way. If

V = graph(-K) for a finite gain K, Theorem 3.1 asserts that

X(K) G 1 (G(IP ) n a(V))

so it is natural to define, for any VE Grass (p,m+p),

XM G-i (G ( II'1 ) n am)

where V may represent an infinite gain. According to Lemma. 4.3, either

G(P' ) n am in exactly n points, or G(P1) a a (V) , in which case G is

I	 degenerate, by definition.

69
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Therefore, if Km is an infinite gain, then Km = V for some p-plane

V, and we may define
i

X(K.) = G- 1 (G(]P1 ) n a(V))

And, with this definition, the continuity of X follows from the continuous

dependence of roots on the coefficients of a defining equation. Conversely,

it is easy to see that the continuity of X implies nondegene racy. The

second claim in the theorem follows the second statement in LemTa 4.3. Q.E.D.

In particular, the asymptotic root loci corresponding to the polynomial

famil y	 gains,	 = K + K a+,... , +K 
d Y the asY^Xd> of g	 Ka	 0 1	 is determined b 	 totics of

the highest order term. This is not, of course, true when G(s) is degenerate.

In order to compute this asymptotic value, one must compute lien graph(?.Kd))
X+00

in Grass (p,m + p) Let V1 = image Kd c U, and V2 = ker Kd c Y, thus

V (Kd) = V1 8 V2 I im graph (XKd)

r,
E
k

r'	
1

I

f
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i
Corollary 5.3: If KX o+K1A+... +KdX is a polynomial family of gains,

and if G (s) is non-degenerate, then the asymptotic root loci are given by

lim X(KX)	 lim X(XKd) = X(V(Ka))	 (5.1)
X-"	 ^-►^

In particular, the `asymptotic values of the root loci are determined by the•

highest order term.

Now suppose K  is maximal rank. If m p, then as we have seen in §2,

graph(XKd) -► U c U & Y, so that

lim X(K) = X(U) s G-
1 (G(IP 1  n a(u))X-I.-

But, to say G( s0) a a(U) is to say

	

G (s )	 0
span	 °	 n span	 (0)

I	 I
M	 m

or, that there exists u ^ 0 so that the equations

N(s0)w = 0 , u = D(s0)w

A

i
a

^P

are satisfied. That is, G has a zero at s° . This is the well -known fact

that the closed loop poles approach the open loop zeroes, as X + ^,

provided det G (s) 4 0. However, to say det G (s) = 0 is to say G is
q

degenerate, in fact it is to say that G(s) c 6(U). More generally
s

if m , p , V(Kd) c U, i.-e. V(Kd ) a Grass(p,m) and X(KX) approaches a right

zero of G(s):

Corollary 5.4: If G(s) is nondegenerate and if KX o+K1X+...+Kdad with.	 _	
.iy

4

Kd maximal rank, then X(K^) approaches the right zero [det(G(s)Kd)(det(sI-A)]n

if m :0 p, and X(KX) approaches the left zero [det(sI -A)det (KaG(s))] n if

p -c m. In either case, the closed loop poles approach the open loop zeroes.
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Now, by a straight forward modification of tha square case ([171, (19], 	 I

or (241), the number T of closed loop poles which approach infinity is there-

fore generically given by n-r where r is the rank of the matrix

KdCAn-1B	 .,. KdCAB KdCB
	

<4

R

Z(Kd) -
 KdCAB	 0

KdCB	 0	 0

and one may ask for the rate of growth of these n. poles, with an eye

toward sketching the root-locus plots corresponding to the family

KX = Ko+Kla+...+KdXd . According to Corollary 5.3 the most rapidly

increasing asymptotic arise from the highest order term inK
A
 and there

are at most rank CB of these branches.

I

	

	 Indeed, one may obtain all of the asymptotic expansions of s(a),

a -► in terms of Puiseux expansions at (-,-) on the Riemann surface

defining s(X)--this is essentially the technique employed in [20] in

the case of scalar gain XI. That is, consider the subset X c P l x pi
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We shall assume that X is a manifold near ( m,-) and as usual we

shall use coordinates 
a ands near m E 

Pl . Consider the projection

Pl: X -► Pl defined on XD via

73

J

Pl : CA ' s) -)- X
	

(5.3)

By the illicit function theorem, if the tangent line to ( m,-) E X

is not vertical, there exists an analytic inverse to pl near

Equivalently, there exists an absolutely convergent local expansion

s _
i=
F 

0
ai (j) 1 	 (5.4)

for each local branch of X at 	 If the tangent to (-,-) is

vertical (as depicted in Figure 5.1), then such an expansion is no

longer possible. However, since X is nonsingular at 	 one

cannot have a horizontal tangent, and applying similar reasoning to

the second projection, there exists an absolutely convergent local

expansion

a	 E bi (s)1	 (5.4)=n

for every local branch of X. 	 )

Choosing one such branch, let n j denote the order at of

in (5.4) 1 . Solving for s
, one obtains the absolutely convergent

Puiseux expansion

1 i n .
s	

E cl (^)
=1

	

7,	 y

r	 r wqt	 Y	 ..	 .	 •. ...	 .n. «. }-,..	 .. .. y	 .	 _.	 ,..+	 .. .. .a	 .. .. ..	 t.	 r	 .. a ,.r	 w	 m._	 .'^...r'	 ,t(Y"

d
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or equivalently, the asynptotic expression (if cl # 0)

S = dl 
nj 

a	 +	 d2 n3 ^2	 + ...

where (if cl # 0) one has n  such expressions for this branch. In

particular, the unbounded closed loop poles are given asymptotically as

N
s a 

d V X	
for some integer N

and, taken together, approach infinity in several superimposed Butten;orth

patterns. Such an expansion is also valid when (-,p) is a singular point.

Now, Puiseux also derived (1850) a method, based on Newton's

polygon, for explicitly determining the leading exponents i/nj

which appear in (5.5) for each branch. In the case at hand, we consider

F(a,$) = det(sI-A+ BK XC)	 E aij X1sj	(5.6)

and construct the Newton polygon of F. That is, in the (a,$)-plane

construct the smallest convex polygon containing each (i,j) for which

aij # 0, as in the figure below.

s , ,.
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Now, each edge of this polygon which faces infinity will contribute

to a family of branches in the following fashion; we shall be rather

explicit here since the literature usually treats the derivation of the

Pui.seux expansions in a neighborhood of (0,0), using the edges of the

Newton polygon which face the origin. Indeed, choose the points Pl,P2

where Pl - (XO ,0) is the point on the Newton polygon closest to the origin,

and P2 is the remaining vertex on the edge L l , facing infinity, issuing

from P1 . Let -pl/ql be, in lowest common form, the slope of L l , and

define ml by the equation

y(P2 P1)/ x (P2: Pl)	 mlpl/mlgl	 (5.7)

I%L	 I ,

x

Then, there are ml "cycles" of branches of s(X) each giving rise to an

expansion, for j- 1,...,pl

s = pl Xql 1 dlj	
+	

d27 P

1 - 1 
+ .. .

where each dlj ^ 0 and differ from one another by 
a pl- th root of unity,

and may be obtained from (5.6) by substitution.:

Next, one may continue in exactly the same way with the vektices

P
21
P3 of the next edge L2 (as in Figure 5.2) which faces infinity,

eventually obtaining all branches of s(X) which tend to m with x. lie

note that this algorithm, viz., the method of Puiseux, does not require

eigenvalue/eigenvector calculations, and in fact requires only rational

operations.

It is, of course, generically the case that mi . 1 for each edge Li

and, in the literature ([17],[19],[21]), if q i 1 the root loci are said 	 y
A

t	 ^ 
•	 d

i

t	 ;
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to be of im`eger order. For KX -JAI, the integer order case has been

studied in great detail and the powers pi are known, generically, to

k	 equal the rbrse structural invariants [19] of the system or, again

r
generically, the Smith-McMillan invariants of G(s) at - [24). In such	 y

cases, the leading coefficient of the asymptotic expansion (5.5)' is

easily expressible in terms of the Markcv parameters of G(s) and these
ry"

results generalize to the non-square case and to polynomial gains

KX - K0 + ... + Kaad

As an example, we calculate the leading term of the highest order

asymptotic by appealing to the return-difference determinant

det(I +K^G(s)) 0 0	 (5.8)	
j
a

which also defines the algebraic curve (5.6). Developing G(s)

Co
G(s)

	

	 E Gi/sl
i=1

in a Laurent expansion and equating terms, we find that the leading

coefficients of the highest order asynTTptotic are given as

d 	 eigenvalue of KdGl	 (5.9)

and in particular pmin = rank (KdCB), generalizing the Owens and

Sastry-Desoer formulae (see esp. [21], VI).

1
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6. ?ole Placement by Output Feedback

The inverse problem of placing the eigenvalues of a linear system

by output feedback . has been studied by many people. The literature

includes the work by Kimura [11, DA] and Willems and Hesselink [26]

which we will have occasion to refer to below. Other references to the

11;;-Ilrature will be found in these papers. Here we undertake a systematic

general study of the pole placement problem with a view toward clarifying

the geometrical content of the problem. In doing so we are lead to the

rather astounding formula

d(.m,p) 
• 1!2 !...(p-1)!1!2!.	 (m-1)!(mp)!

1!2! ... (m+p-1)

giving the number of different (in general complex) gains which yield the

same set of poles. This, rather unexpectedly large,number emphasizes the

nonlinear nature of the pole placement problem and suggests that it is

probably rather difficult to solve algorithmically. It turns out that

d(m,p) is odd if and only if either min(m , p) - l or min(m,p) _ 2 and

max(m ,p) = 2k-1 and in these cases we are able to show that typically there

exists at least one real solution to the pole placement problem.

We also give a new and insightful proof (and strengthening) of a result

of Kimura iQ] on placing poles in the case where the number of inputs plu&

outputs exceeds the number of poles to be placed. This new proof is

completely transparent and yields a set of relatively simple equations which define

the desired gain.

Let G (s) be a p by m matrix of real proper rational functions. If

K is an m by p matrix of real or complex numbers then

GK (s) _ (G(s)K+I)-1G(s)	 (6.1)

A

l	 ^
's

a
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is said to be obtained from G(s) by output feecmack. In this section

we are concerned with the question of finding K so that the numerator

coefficients of the rational function

w

det(G(s )K+I) - X(K) /X(0)	 (6.2)

take on prescribed values. The map of the space of m by p matrices K

into the space of monic polynomials X(s) will be called the pole pZacement

map.

By counting dimensions, it is -.4ear that mp n is a necessary condition

for pole-placement, over either the real or complex field, and throughout

this section we consider the first non-trivial case, mp - n.

In what follows, G(s) is a non-degenerate transfer function and

es a gain matrix k represents the corresponding p- plane in m+ s aceR denotes	 g	 ,	 P	 P	 $ P P	 ( P) P 

i.e. k E Grass(p,m+p). We begin our study over the complex numbers.

By virtue of Theorem 3.1, the pole-placement problem in the present

setting is the inverse problem of passing a Schubert hypersurface v(k)
a

through the curve G(s) at the prescribed set of points G(X1),...,G(an).

That is, given a set of n points {X1'^2+...fin} in L' find k, a	 i

p-dimensional subspace in C
M+p

, such that k intersects then, m-dimensional s^

subspaces in Grass(m,m+p) defined by evaluating the map of IP (C) into

Grass(m,p+m) defined by the transfer function G(s) at (al,a2,...kn). To

see this, note that {(u,y)i -u+Kv = 0} defines a p -dimensional subspace

! in Cam . It intersects the m-dimensional subspace {(u,y)lGu+y - 01

1	 if and only if there exists z such that GKz+z _ 0. A moments thought shows

f
that this is the same as finding K such that

det(G( ki)K+ 	 0;	 1	 1,2,...n 	(6.3)

78
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This tacitly assumes that Xi are regular points of G(s); otherwise one

must use a coprime factorization of G(s).
'.4

As we mentioned above, the collection of all m dimensional subspaces

in an (m+^)-dimensional space is an mp-dimensional space. If we are given

a points in this space when can we expect. to find a p-plane which intersects

all n m-planes? Schubert invented a calculus to solve such intersection

theoretic questions and his ideas subsequently came to play a sizeable

role in algebraic geometry, e.g. Hilbert's 15th problem is devoted to the

Schubert calculus [ll. For our present purposes it is enough to know that

given mp m-dimensional subspaces in CM+p there exists (generically)

d(m,p) _ (1!2! ... (p-1)I(1!2! ... (m-1)!(mp)! 	 M,4)1!2! ... (m+p-1)!

p-dimensional subspaces which intersect them all. 	 (See Chapter IV,

Section 7 of (12] or [15].)

At this point it is important to note that, by the second statement

in Lemma 5.2, ifa l,...,an are all finite then the only p-planes V which

intersect all the m-planes G(X1),...,G (Xn) are finite, i . e. V k for some

gain K. Thus, for a generic choice of finite X... , 1n , there exist d(m,p)
N

distinct complex gains K for which

n	 y
X(K)	 n (s-ki)

p	 i-1	
Y

Now, by Theorem 5.1 one can define X at infinite gains. V as well, obtaining

X(V) E IPn	 (unordered n-tuples of points on IP1). This latter identification

was treated in some detail in Section 4, and it extends the identification

en - {unordered n-tuples of points in 	 }

obtained by factoring monic polynomials
n

sn+cla
n-1

+... +cn	n (s-Xi)
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R' In particular, X extends to a continuous (by Theorem 5,1) function

X	 Gras s (p ,m+p) ; ZPn	(6.5)

E

Now, we know X has a dense image by the Schubert calculus and, since

Grass (p,m+p) is compact, X is onto.	 But then

r ' X	 Cmp + Cn

is also onto, by the second part of Lemma 5.2	 Since Xis algebraic

we have shown

Theorem 6.1:	 Let G(s) be a non-degenerate p by m transfer function of

McMillan degree n = mp.	 For all choices (^1,...,^n) we can find d(m,p)

solutions (counted with multiplicity) to the pole-placement problem,

det(G(l,,)K+I)	 0,	 i	 1,...,n	 (6.6)

Moreover, for the generic n-tuple, the solutions to (6.6) are distinct.

It is known in the literature {[10],[26]) that for mp 3 n and for

generic G(s), one can place almost all poles over 	 - by the dominant

morphism theorem. 	 The full surjectiv'ity of	 X, as well as the formula

(6.4) for the "degree" of	 X, are both new: 	 Notice that if m = p = 2,
Y

`s n - 4, then d(m,p) = 2 so that in some sense the problem is quadratic and

one might expect real solutions "only half of the time". 	 Indeed, this
N

was shown in [26] and we give an independent proof here, based on the following

result.

Theorem 6.2	 Necessary and sufficient conditions to be able to solve the

real system of equations

Ax+bQ(x)	 y	 (6.7)
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for all u E le where Q(s) is quadratic is that A is invertible,

Q(A lb) - 0 and ;2xl-x--A-'b - 0 .

Proof; Clearly to be able to solve for all v the columns of (A,b) must

span Rn . If A is singular, then we can change coordinates to z - Px in

such away that the equations take the form

z  + biQ(z) - vi

bnQ(z) n

If these were to be solvable for all v, then b  would be nonzero and we

could use the last equation to eliminate Q(z) from the others yielding

J = vi i=1,2,...,n-1 and bnQ(z)	 n. 'This set fixes the values of zi

i.1,...,n-1, but Q(z) for Q(z)a quadratic does not map 3tl onto Ml for all

values of zi , i=1,2,...,n-1 as one easily sees,

Now suppose that A is invertible. In this case a linear transforma-

tion reduces the quation to the form

xi + e1Q(xl) = vl

i.

i

where el is the first standard basis vector in	 If vl = ael , then xi

`

	

	 waist be of the form 
ael

 and we see that to solve a + Q (ae l) = a for all

values of a, we must have Q(el) 0. In terms of the original coordinates,

this means Q(A-1b) = 0 is a necessary condition. \ow consider v l = ael +-v0,

In this case, xl $el + vo ) and we must solve

a+Q(0el +V as

i
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N
since	 Q(el) _ ;0, if

N

r'	

0

Er

el

then we can choose v0 so that Q($el + vo) is independent of 0 and hence

g + Q(sel + v0) - a can not be solvable for all v0 and a.	 Again, in terms

r
E

of the original coordinates this means

F'

"I
x 	 = 0 1

A-lb

IfI	 is not zero, we can choose 6 so that-y + Q(yel +6v0) is
ax

_ el

independent of y. 	 This establishes the neces;=ity of the conditions.

{ Sufficing is easily seen and we leave it to the reader.

Corollary 6.3	 If Q(x) is non-degenerate, then (6.7) is solvable for

all v if, and only if, b= 0.

e This result, together with the formula J

(G._I) (2)	K	
)(2)	 _	 det(GK+ I)	 (6.8)

I

means we cannot place the closed-loop roles of G(s) arbitrarily unless
E

G(s) satisfies certain conditions. 	 In fact since

<[det G(s)	 [k[klk4-k 3k2],kl ,k2 ,k3 , k4 ,1>	 det(G(s)R + I)	 (6,B) ,
3

x

the quadratic form Q(w,z,y,z) = wz-yz in (6.8) is non-degenerate we must have
i

det G(s) = 0.	 Thus solvability of (6.8) for all monic polynomials of degree

4, amounts to a non-trivial constraint on G(s).	 Thi	 implies the main result

of Wil'lems-Hesselink [26]

i4
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1.
t

Corollary 6.4: If G(s) is a non-degenerate 2 x 2 transfer function with

McMillan degree 4, then the set of closed loop polynomials which cannot be

r	 achieved by output feedback is a non-empty open subset of P4 .

Zhis set is open since the image of X: Grass(2,4) -► P,4^ 	 is compact and,

by virtue of the second part of Theorem 5.1, has a closed intersection with
,R

	

	
R4 c P]R, the subspace of polynomials  having finite roots. Notice that if

detG(s) ° 0, then

det(I + KG(s)) - 1 + tr(KG(s))

is linear in K and so to say this correspondence is not surjective is

to say there exists K 0 such that tr(KG(s)) - 0. That is, thinking of

tr(K•) as a linear functional on the space of 2 x2 matrices, this

'	 implies that G(s) c V a IR4 , for V some subspace of ^4 . This constraint

fails to hold for the generic G(s) satisfying detG(s) a 0, indeed

- s+l	 0	 (s-1) (s-2)

G(s)	
(s-1) (s-2) -1

f	 s+2	 0	 0	 (s -3) (s -4)

satisfies detG(s) = 0 but there exists no proper V m G(s), for all s.

In particular, one can place poles over P for the generic G(s) which
a

}Y	 satisfies detG(s) = 0. By Theorem 6.2, these conditions are necessary

.,	 for pole-placement as well.

Corollary 6.5 Let G(s) be a real 2 x 2 transfer function of WMlillan

1 Plegree 4. One can place poles arbitrarily by output feedback if, and

only if, detG(s) = 0, and no real linear combination of the gi j vanishes,

. I
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Remark: . If one imbeds Grass(2,4) CIP5 by the Plucker imbedding, (6.7)

gives the equation for pole-placement in the so-galled Plucker coordinates.

(6.7)' represents the fact that in the Plucker coordinates these equations

amount to 4 linear equations - representing the constraint that the hyper-

plane in IP
5 corresponding to K pass through the 4 points G(Xl),...,G(X4)

and the single quadratic constraint which defines (the dual) G(2,4) as a

quadric in (the dual) IP S . This is quite general, the Plucker equations

define Grass(p,m+p) CIP N as the intersection of quadrics - for example,

if m - 2, p - 3 and n = 6, the pole placement equations become 6 linear

equations and 3 quadratic equations. In this case, however, they are

always solvable over IR since, in this case, the remarkable formula (6.4)

gives d(2,3) = 5. Thus, for non-degenerate 2 by 3 transfer functions of

McMillan degree 6, we can always place poles arbitrarily over IR.

In general if mp = n then the Schubert calculus tells us that there are,

generically, a certain number of feedback gains K1,K2, ... l yd which satisfy

r	 det(G(Xi)Kj+I) - 0	 i-1,2,...n

s,

a

F	 ^

I
r

1

and hence place the poles at the locations k
l $X3 , ...

 An. Suppose that G(s)

is real for s real and suppose that the Gi = G(ai) appear in complex

conjugate pairs. Then if K is a solution K, is also; the complex

solutions occur in complex conjugate pairs. If the total number of solutions

is odd then, of course, one solution must be real. We know that for typical

values of Gi in IRmxp there are solutions. However the set of self-

conjugate G  is not open in Cm+px ... x CM+p (n factors) and so we must

reason with some care in order to show that for typical self-conjugate-sets

of 
{Gi

} we have d(m,p) roots.
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Theorem 6.6: Suppose G(s) is nondegenerate. If mp - n and d(m,p) is odd

then there exists an open dense set of self-conjugate G  such that

det(GiK+I) - 0	 1 . 1,2....n	 (6.9)

has a real solution. Moreover d(m,p) is odd if and only if min(p,m) 0 1

or min(p,m) - 2 and max(p,m) . 2k-1 for some k 2,3,...

Pr, oof: Let J(Ki) denote the Jacobian of the pole placement map evaluated

at Ki. Suppose that (Gi}i-1 is given and suppose that the pole placement

map has d(m,p) inverse images Kl,K2, ... Kd , then

^ - det J (K1) det J (K2) ... det J (Kd )

is a function of G1 ,G2 , Gn but not a function of K. We know that ^ is

nonzero generically. It is also an analytic function of the entries of Gi.

'us if it vanishes identically for, say, an open subset of real Gi's then

err vanishes identically which is a contradiction.

I. Berstein [2 ] proves that d(m,p) is odd if and only if the

given conditions are satisfied.	 Q.E.D.

Corollary 6.7	 Suppose G(s) is a 3 X2, or a 2X 3, nondegenerate transfer

function. Then, the McMillan degree of G is less than or equal to 6, and

the poles of G may be placed arbitrarily ever IR if, and only if, the degree

equals G.
y

As a final remark, the well known formula for det(A +B) when B_is of

rank one provides some insight into the pole placement problem. If ;b and
X

y	
c are vectors and K = bc', then

det(G(s)K+I) =_det(G(s)bc'+I)

. c'G(s)b + 1

J	

^	 ,

k

t
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Regarding the space of monic polynomials 'X(s) `'sn+pn-
lsn-l+...po as an

n-dimensional vector space and writing

c'G(s)b - q(s) /p(s)

we see that by inserting a scale factor in front of b the whole pencil

of polynomials

X(s) - p(s)+kq(s)

may be achieved.	 This line of thinking leads easily to the following

strengthening of Kimura's result [131.	 (It is stronger than Kimura's

results because we show that the pole placement map is onto and not just

almost onto.)

F !

Theorem 6.7:	 Given G(s) of McMillan degree n the image of the pole

placement map is the whole space if for any given polynomial q of degree

' n-1 or less there exists vectors c and b such that

` c'G(s)b = q(s)/p(s)

Moreover, if G(s) = C(Is-A) -1B with A, B, C chosen generically this

condition will be satisfied provided m+p-n , 1.

Proof:	 Consider the set of all transfer functions c'G(s)b with
k

j(cjj - 1 and (jbjj = 1. 	 Under the hypothesis this set intersects every

line passing through zero in the real vector space of all polynomials

- of degree n-1 or less.	 Using the above argument we see that this means

that the pole placement map is onto.

i To see that this condition is generically satisfied, we note that

it is equivalent to asking that n polynomials in the vectors G(s)b and y

n
G(s)c should be independent over 1R. 	 Clearly this is generically true.
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Abstract

In this note we discuss the continuity of the closed loop

poles of a Linear multivariable system with respect to a-multidimensional
a

polynomial family of direct output gains K(1,...ar). 	 This is based on,

^,. and contains an exposition of, the geometric formulation for including y

`.` infinite gains which was developed in the lectures [2] and extended

and applied in [1] to the study of output feedback systems. 	 This has 1

been a basic tool in recent work on the classical problem of pole-

,f placement by output feedback and it (1) the lack of iio t'inLity of the

root-loci, in certain situations, was discussed with special emphasis

on the complex case. 	 Here, after presenting two somewhat surprising

counterexamples to this continuity, we give in Theorem 1 and the

ensuing discussion necessary and sufficient conditions for continuity ±

of the root-loci at a real infinite gain.:	 This should have significant

4-pact on the problem of constructing graphical tests for the stability

j,

of systems subject to 2-dimensional variations in the gain parameter. ?

u

,i
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1. In the past decade, in one sense a fairly conclusive theory for

sketching the root-loci of a (square) mxm, strictly proper rational

transfer function G(s), as a function of the 1-parameter direct output

gain K(A) - XI, has been developed (see, e.g. [5), [61). The root-loci,

or closed-loop poles, consist of n algebraic functions sl(X),...,sn(X)

which evolve (as X -► -) on the m sheets of a Riemann surface X,

branched over the Riemann sphere. Explicitly, we first take X  c Q x C

to be the locus defined by the return-difference determinant

a	
(1.1)0 = F(X s) = det(I+K(X)G(s)) OLCP(s)

where OLCP(s) denotes the open-loop characteristic polynomial of (a

minimal realization of) G(s).. Since we are interested in the behavior

near X _ we adjoin such points, S 2 = C U {-), and consider the

Riemann surface X - Xo a S2 
x

S2 together with the 2 natural projections

!t pl(X,$) _ X and p 2 (X,$) _ s which each exhibit. X as a branched cover

m

is pi	 X -► S 2 i	 1,.2

of the Riemann sphere with n (respectively, m) sheets.	 Since
n

F(n,$) = CLCP(X,$), for fixed Xo the n points sl(Xo),...,sn(Xo}	 x

'E

coincide with the closed-loop poles determined
t

by K(ao).

Just as in the classical case (i.e., m = 1), the method for
1€

sketching the root-loci consists of determining:

	

_ 1

	 (i) the initial values s l (0), .,sn(0) which are of course	 "I

	

I	 the open-loop poles;

(ii) the final values sl(-),...,sn,(pD) which in this case are the

open loop zeroes provided det G(s) 1 0; and
{

x
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(iii) the angles o departure (X « -) and angles of approach

(0 << X) on the appropriate sheets of X.

We ahall return to a discussion of (1i) presently, but remark Mss,

the determination of (iii) is a classical problem in algebraic function

theory, solved by Puiseux in 1850. Explicitly,-suppose we are interested

in the behavior of-those s 
i 
M which tend to - with X. These can occur

in several groups, or cycles, correspon ,^,ing to the infinite branches of

X over the point a	 Choosing one such branch, we can obtain a

Puiseux expansion for s as a 94inction of

1/q	 2/qJ
s	

J
a31(^) 	 + aj2 (-)	 +	 (1.2)

J
i

which converges absolutely in a neighborhood of 	 0. Here,

j indexes the algebraic function s  in this particular cycle. Inverting

(1.2) one obtains the asymptotic expansion

s
j 
(a) = ajl j a	 + a 2 q4 2 + ... 	 (1.3)

which determines the angle of approach of s j M as	 For example,

if ajl 0 0 then s  M tends to infinity asymptotically as a q
j
-th root

of unity. In other words, this cycle of root-loci tends to - in a

Butterworth pattern and thus the 'root-loci tend to - in superimposed

Butterworth patterns. It is a happy fact that the leading fractional

powers appearing in (1.2) can be read off, in a glance, from the Newton

diagram of X - that is, from the Newton diagram of the polynomial F(X,$)

Moreover, the leading coefficients in (1.2) can be obtained from

}	 SUbstituting (1.3) into (1,1) and equating coefficients.

r

1 e

j^
a.	 '

s
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2. Quite clearly.* the analysis above extends to the Important case of

1-parameter families K(X) of gains which vary polynomially with X. The

extension to nonsquare G(s) involves considerably more thought, especially

vis-a-vis (ii), requiring a careful development of the concept of

infinite gain and leading naturally to questions concerning the

robustness of the asymptotic expansions (1.3) and of the root loci

themselves. In this sense, the root-locus theory is far from complete

and, since robustness; is likely to play an important role in the

analysis of 2-parameter families of gains, we present here a theory of

robustness based on the notions of infinite gain presented in [11

and [2]. We shall now give 2 rather surprising examples of this lack of

robustness, the first is adapted from the single variable discussion in [1].

i	 ld

Example l Consider the transfer function and the 2-parameter family

of gains, respectively, defined by

[/(s 2
-1)	 Q	 ' 1-0a

G(s) _	 ,	 K(a, U) _
0	 1rcS^._4)	 u2a-u 	 ua-1

We shall compute the root-loci, as a function of (X,U), along the 2

asymptotic curves, Y l; u 0 and Y2 ua = 1, in the direction of

increasing X. Along Y1 , we see that the root-loci is constant and 	 1

coincides with the roots of s 2 (s 2-5), yet along y 2 the root-loci is

constant, given by the roots of (s2-1)(s2-4). Furthermore, along

Y3 : u27t = 1 which is also asymptotic to yl ,'the root-loci depend on X and
	

^i

tend to the roots of s 4-5s2-1. This example shows that the final values

of the root-logus are not continuous with respect to the gain! Furthermore,
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it can occur that .along one curve a system appears stable in the high

gain limit but along a slightly perturbed curve, the system is unstable

for high gains. We note that this pathology is not due to:

(1) inequalities m > p or p < m, or to

(2) the absence of diagonal dominance in G(s), or to

(3) the vanishing of det G(s).

The second example is deceptively trivial.

Example 2.	 Given G(s) and K(X,u) defined by

	

1

	 11/
s	a
	 ¢

G(s) _K(a,U)
1 	 D	 X-2?,2u

Along 'yl we have the root locus given by s(a) _ -X, yet along y 2 one

computes s(X`, E 0.

C,

N.B. The condition det G(s) - 0 is generic (indeed, always satisfied)

for 2x2 transfer functions of McMillan degree 1.

These examples can be interpreted in the following context.

A polynomial family of (mxp) gains 
K(X 1' " `'fir) is said to have dimension

r just in case the Jacobian of the function K Mr -M7p is not

identically zero. Thus, dim K ^', mp. Here, and in the following sections,

G(s) is a pxm real transfer function }raving McMillan degree n and the

variety 
Em^F 

of all such functions is coordinatized by the Hankel

parameters of G(s) as in [3]. In particular, a generic set of G is a.

9	
complement of a proper subvariety in the corresponding space of Hankel matrices.

w

iz	 ^
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Theorem 1. If dim K 9 n, then for the generic transfer function G

and any curve Y in IR r along which K tends to infinity, the root-loci

are continuous: 'That is, for 
y  

asymptotic to Y the root-loci agree

in the high gain limit. If dim'K > n, then there exists some curve y

in (Er along which the root loci are discontinuous. Moreover, there

exists some real family K for which Y may be taken to be real.

Note that Example 1 illustrates the necessity of the generic

hypothesis on G in the first statement, while Example 2 illustrates

the remaining assertions.

3.	 Returning to Example 1, we investigate the asymptotic behavior of

the gain K(a,U) itself along 'y l .	 Here, u	 K(a,u)y is the linear

relation

u1 = y
1 
+Xy 2	u2 	 -y2	 (3.1)

or, equivalently, for X # 0

ul /^	 y l/X + Y2 ,	 u2 	 -y 2	 (3, 1)'
s

As X	 this linear relation approaches the linear relation r

o = y 2 .	 u2 = -y2 	 (3.2)

t

_Y a

?	 that is, the linear relation (also ofrank 2), u2 = y 2 = 0.	 It is
7

.a

easily seen that this relation is also the limit of K(a,u) along Y 2 and Y3'

The system-theoretic interpretation of the discontinuity at this infinite

gain is simply that for a >> 0 each frequency s e Q	 behaves like an

approximate pole, so that "in the limit" each s e C	 deserves to be called

a pole.	 Explicitly, given any s o a	 any e > 0 and any-c > 0 there

sr^

^p

r

4	 •r
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exists an input u with 11u(so )11 < e and an N(c,e) >> 0, such that the^

resulting output y(s o) of the closed-loop system corresponding to

K(X) defined by (3.1) satisfies

1 y	 )11 > c	 for	 X > N(c,e)^(so

For this condition to be satisfied, one must choose u 2 ( so )	 0 which

will then amplify Ql(s 0 ) and hence y^ i (so) in the closed loop equations.

In this light, the infinite gain constraints ( 3.2) reflect the fact

that, only under the condition u2 = 0 (and therefore Y2 = 0). will

01

the limiting "transfer function" yield a finite output from a finite

input.

4. We can make this precise in the language of classical algebraic

geometry. Consider, for K : IRp IRm , the graph of K as a dimensional

subspace

gr (K)	 (y, Ky) y e IRp 	IRp 0+ IRm

We may also consider K as a linear map, K t	 p -,, C m and ttierefore

define gr(K ) as a subspace of Q? P S 0 m . of coursegr(Ke

determines K T T . Now consider the set Grass(p,m+p) of all p-planes in

(Ep (D r_1 m This set may be naturally regarded as a compact manifold,

indeed a variety (see [41), the Grassmannian variety. The generic p-plane

to 4"m a C Y (D C m	 ^	 1is complementary 	 and is therefore the graph of some

linear function K C p	 Cm. In this way, Grass(p,m+p) is a compactification

LA
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rx{{'

of the space of (finite) gains and therefore has dimension mp. For example,
4r	 4

	

x	 the 2-plane in 61 defined by (3.2) is an (infinite) point of Grass(2,4)

which iG not the graph of a linear gain Ky - u, but which is the limit

of the 2-planes gr(K(X) Q,) where K(X) is defined by (3.1). Thus,

Grass(p,m+p) is a model for the space of finite and infinite gains,	
p

c
with p-planes V c (Lp E (I' m falling into these 2 classes according

to whether V is complementary to Cr 
m or not. We shall denote this

latter subvariety by a( m).

Figure 1
ia

In Figure 1, we have depicted an infinite gain V 6 Q(C m) together

with 2 asymptotic sequences Yl ,y2 of finite gains approaching V in the

(high gain) limit,	 1

77

	

x	 I

tt4

	

' 	 5. In this model for including high gain limits, we can ask whether
R

	

F t=	 the root-loci are continuous at infinite gains. Referring to Figure 1

and examples 1 and 2, it is not hard to see the difficulty involved.

In the standard context of this problem, the methods by which the root-

	

l4	 loci are defined at V is by choosing some sequence, say Y, approaching V

and defining the root-loci as the corresponding limiting n-tuple on

the Riemann sphere (which exists, by Bolzano-ldeierstrass). The analytical
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question which remains is whether this limit is independent of y.

This was determined in [1] and [2] by defining the root-loci at V

intrinsically - in the case when the limits will agree.

Lemma ([1]) Let K be a finite gain, defined over IR or E, and

let 0_ ^ 1,,^m} be a set of linear functionals which define

gr(KQ) c r p Q Q,m. Then the poles of the closed-loon system

G(s)(I-KG(s)) 1 are the ,,zeroes of the rational function

F^(s) = det(Y gj (s)))	 (5.1)

where gj (s) t is the j-th row of [G(s), Im ] .
i

N.B.	 (5.1) is proportional to the return-difference determinant

det(I-KG(s)), in particular its zeroes are independent of the choice

of (- a fact which	 ^n also be checked directly.

Turning to infinite gains V, choose	 _ (^1 ,,..,m}	 so that
m

V _	 n ker ^i , and form	 F (s) exactly, as above. 	 Provided FID(s)
=1

does not vanish identically, we may define the infinite root-locus

X(V) as the n zeroes, finite or infinite,of F
(D
(s).	 Moreover, continuity

of the root-loci at V follows from the continuity of the roots of a-
a

(non-zero) polynomial on its coefficients. 	 However, when F
(D
(s) = 0

,..
this is nonsense,

k
Theorem 2	 ([11,	 [21)	 The root-loci are continuous at an infinite gain 	 s

i

V if, and only if, F (s)	 0-

6.	 Example 1'.	 Consider the infinite gain V defined by (3.2), thus
2

V =	 n	 ker	 where, for example,
=1	
i 

w#	 ,

j

E	 ;

r

^w
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yyl +y2 + ul + u2) - y 2+	 ^2 (yl+ y 2+ ul • u2) ` u2 (6. 1)

while N

x gi(s)t	
(1/(s 2-1),0,1,0) and g 2 (s)t .^ (0,1/(s 2-4),0,1) (6.2)

Thus, f

0
	 Ms 2_4

df

F^(s)	 det 0
0

as claimed.
9

Example 2'.	 Along	 •Y l , K(X,u) _ XI 2 so that u	 K(X)y is simply
{

' u 	 _ aui ,	 or u i/a a yi 	 for a # 0 (6.3)

In the limit X	 we obtain the infinite gain V	 C p defined by

y 1 = 0, for t	 1,2 or equivalently by the linear functionals

^ i (yl
9
y2

9u1'
u 2) a yi (6.3)'

Thus

t.
F^(s) _ det G(s) = 0 (6.4)

Example 3.	 For any square system G(s), the root loci corresponding to

cs
K(a) = XIm will be continuous at V = lim K(a), defined as in (6._3)',

a ►^

if and only if the well-known condition det G(s) 1 0 is satisr'i^d.

Alternatively, the technical condition that open-loop zeroes should

exist coincides with the condition that these particular final values

r	 . of the root locus should be independent of the high gain limit

r ^(

`	 1 V= lim	 aK	 det K^ 0

This gives additional insight into the condition (6.+) as well as

Theorem 2.	 As a special case (m=1), note that root loci are always

continuous in the scalar case for nonzero g(s). ij

a
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7.	 Now, to derive Theorem l from Theorem2 we note that ([2], Lemma 4.A)

F^(s) = 0 if, and only if, F^ (s i) _ 0 for	 =1,...,n+1 and where si are ,.

distinct points in fit'.	 Furthermore, for any fixed s o and V s Grass (p,m+p)
V

arbitrary, the equation F (D ( so)	 0 defines a hypersurface on Grass(p,m+p) -

indeed, a Schubert hypersurface ( see [1],	 [21).	 For generic G these may

be chosen iii general position for distinct si and therefore ( [ 7], p. 57)

! for any sv,bvariety X e Grass (p,m+p) the intersection

n+1
1	 {V: F ( s i)	 o) n X

i=1

is emTity if, and only if, dim X < n.	 Finally, the condition dim K S n -

on a family of gains K (X1,...,_X	 is the condition that the algebraic
x

dimension over C of K( 	 r) c Grass(p,m+p) is less than or equal to n,

but over C this coincides with the geometric dimension of X = K 	 r).

This shows that if r > n, there exists some point V of discontinuity

K( C r) c Grass(p,m+p).	 However, V must also be a point of discontinuity

since we may choose the n+l points s. to be real, and in that case
i

G(s i ) n V 0 (0) iff G(si) _n V # (o)

Indeed,

G(si)	 n V n V 0 (o)	 for i= 1,...,n+1. yy

Choosing a real p -plane w, such that V n V	 w, one has

G(s.)	 C w	 (o)	 for	 i = 1,._..,n+l

1
and hence for all s. 	 Such a w is therefore a point of discontinuity k

z

for the root-locus map and also lies in the closure of the family
•	 a

K	 IRmp -► IRmP

defined by KW = x.
A

^	 j
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ABSTRACT

We consider questions of pole placement and stabilization for

generic linear systems with prescribed state, input and output

dimensions, where the controller must be implemented by linear

memoryless output .feedback. We present a criterion, in terms of

a special pole-placement property, for generic stabilizability and

apply this to describe constraints on the dimensions which are

j

	

	 consistent with generic stabilizability. We also discuss the

rationality and solvability by radicals of stabilizing or pole

positioning gains, and we describe how decision algebra can

theoretical) handle existencey	 questions for .generic systems.
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1. INTRODUCTION

In this paper, we are concerned with questions of pole-assignability

and stabilizability for real linear input-output systems

dx
at 

Fx +Gu

y	 Hx	 (1.1)

or

x(t+1) = Fx(t) + Gu(t)

y(t)	 _ Hx(t)	 (1.1)'

where we allow constant gains u = Ky as feedback. The equations of

pole-assignability are real polynomials and it is natural to attempt to

solve these equations by eliminating the unknown variable K. Similar

remarks apply to the equations of stabilizability which include, however,

algebraic inequalities arising for example from the Routh-Hurwitz criteria.

In what follows, we shall use various results from classical algebraic

geometry, including elimination theory and the Schubert calculus of

enumerative geometry, which apply to the equations of pole.-placement.
e9

j	 Put geometrically, elimination theory consists in the _study of a

r	 projection

p 1	 X x Y -► X	 (1.2)

restricted to an algebraic, or semialgebraic, set Z c X x Y, where X

E	 and Y can be taken to real or complex vector spaces, e.g. X = RN,

`	 Y = R. The main problem in elimination theory consists in finding a
F
f
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Pi (Z) _ {x:Sy such that (x , y)EZ`)

in terms of Z. A basic example is given by

Z . { (x , Y)	 x - Y2)

which is algebraic but for which p l (Z) is only semialgebraic 1

take real coefficients*.

1

3

g	 a

Y	
.

i

t	 r

In relation to the pole assignability question for a presci

F, G, H. we can identify the entries if K with the space Y

the coefficients of the closed loop characteristic polynomial, call

them Pi. ..,, pn, with X. Then

n	 _
Z -{(p l , .,., pn , K): det(sI-F - GKH) - sn + G pisn i}

iml

and pole assignability of a generic closed-loop polynomial holds if

and only if p j (Z) coincides with all of 0 save a proper subvariety.

Among the results we obtain using classical algebraic geometry

are:, the condition mp g n is necessary for the stabilizability

Of thegeneric (.F, G, H). This condition is well known to be necessary

for pole-assignability of the generic (F, G, H), and our result raises

the question as to whether or not, in terms; of the values, m, n, p,

these two questions might not be equivalent. As unlikely as this may

be, at the time we write there is no counterexample (although there is

evidence in this direction for m -2, n -9,  and p -6,, see 151). We

also show that if a stabilizing gain exists, then such a gain can be

found by a rational procedure. On the .other hand, we show that if

s
*SemialAebraic sets are defined in Section 3. eauation (3.4).

iV̂ 	 a
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mp -n a rational procedure for finding a gain K which assigns a given

characteristic polynomial (assuming such a K exists) does not exist

unless min(m,p) w 1, in which case a linear formula can be found.

Moreover using square roots as well as rational operations only helps

if min(nt,p`) . max(m,p) - 2. This is of course in contrast with pole

assignment by state feedback, and answers in the negative,a question

raised in [1].

F

	

	 We also argue that one can in principle determine by rational

calculations whether, given m, no p, generic F, G, H are pole

assignable, generically pole assignable, or stabilizable. We say "in

principle" since the number of calculations required is enormous. 	 d

We useseveral tools to prove the results. One of the theorems

J due to Tarski-Seidenberg, which asserts that if Z is semialgebraic,
s

then p,(Z) is semialgebraic. This theorem can be used iteratively to

reduce the question of the existence of a solution x e Rn to a set of

semialgebraic equations to the question of existence of a solution to

another set of semialgebraic equations in for example, the unknown8	 q	 ,	 P

x l a R. Such existence can be decided by a rational procedure in the

coefficients of the resulting semialgebraic equations. The Tarski-

Seidenberg theorem is extremely qualitative, and "worst-case" analysis
n

([7J) shows that such a decision procedure takes at least 2k steps,

where k > 0 is a constant and n is the length of the input formula_.

We also use a classical form of elimination theory, over C:

i	 if Z c C  x CM is :defined by equations which are homogeneous in y,'

then pi(Z) c CN is definable by polynomial equations. In particular,

pl (Z) 13 closed.
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A topological form of this elimination theorem also holds over Ilt, 	 and
5

is crucial in snowing that ( for mp +,n) the image of the pole -placementr
E

`	 map ;ts Euclidean closed in Mn for the generic system ([4 ]).	 Our

proof of Theorem 1 relies on this result.
t

We must also use rather explicit elimination arguments which
k,

j	 have ,appeared in the literature. 	 Among these are the works by Willems-

k	 Hessel,ink (23] and, more recently, Morse-Wolovich-Anderson [19] which x

treat the case m -p -2, and m m 2, p -3.	 These authors, after i

considerable calculation, obtain a single explicit equation in a single

`	 unknown and it is ossible to obtain somep	 quantitative and qualitative
r

results from the form of the equations.	 Finally, we use the results of

Brockett-Byrnes	 [ 3 ] who determined the degree of this equation, for

general	 m, p,	 using methods of the Schubert calculus. 	 This calculus

was developed in the 19th century in order to deduce the degree of the

final equat ion one would obtain in certain problems of enumerative

geometry, without going through the elimination theory first. 	 It is a

fortunate fa,zt that the return difference equation corresponds to a

classical equation of enumerative geometry, enabling one to determine

this degree as a function of	 m	 and	 p,

v
^• a



ORIGINAL, PACES

OF POOR QUALITY

113

2. STATEMENTS OF THE HAIN RESULTS

Let us suppose that (F, G, H) is a triple of matrices which

correspond to either a discrete or a continuous time system having

m inputs, n states, and p outputs. We consider the questions,

for m, n, p fixed:

Question l: is it true that for all (F, G, H), except perhaps

those contained in a proper algebraic set, one can arbitrarily assign

the (closed- loop) eigersvalues of F + GKH by suitable choice of output.

feedback K?

Question 2: Is it true that one can stabilize all (F, G, H),

except perhaps those contained in a proper algebraic set, by some

output feedback K?

Concerning Question 1, it is known Q13], [23]) that mp Zi n is

a necessary condition on the parameters m, n, p. In Section 3 we

derive a stabilizability criterion as a limiting form of the equivalence

of generic stabilizability for continuous and for discrete time systems.

This can be thought of as an equivalence between generic stabilizability

and the generic existence to an output feedback deadbeat control problem

for nondegenerate systems (in the sense of [3] [41):

9

Theorem 1: If mp K n, t?e following statements are equivalent:

i)	 m,n,p are such that the generic (F,G,H) is stabilizable 1

m,n,p are such that for any nondegenerate (F,G,H) there

exists a gain K such that the closed 'loop polynomial is sn
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E

This result holds for mp y n as 'well, with nondegenerate replaced

by the weaker term	 generic.	 Since we do not need the general result

here, we shall only prove i-t in the case mp C n.	 From Theorem 1 we

obtain,
>,

3

Theorem 2:	 mp Z! n	 is necessary for generic stability.

f Jn

This result of course implies that 	 mp ;^ n	 is necessary	 for

Question 1 as well, but also raises the question as to whether the

answers to questions 1 and 2 might not agree, as functions of the

parameters	 m, n,	 and	 p.	 On the one hand, if	 max(m,p) ? n	 then

generically either	 G	 or	 H	 is of rank	 n	 so that one is in the
n

state feedback situation where the answer to Question 1, and therefore

to Question 2, is well known to be in the affirmative under the generic

hypothesis of reachability.	 On the other extreme, Theorem 2 shows that

for	 mp < n	 the answer to both questions is in the negative, so that explicit
t	 j

calculations for	 mp — n	 are therefore quite interesting.	 However,

' aside from a few special cases, our knowledge is incoc ►plete.

Example 1	 (m =p =2): 	 If	 n = 4,	 it has been shown by Willems-Hesselink i

([231)	 that pole placement does not hold for an open subset of	 (F, G, H).
a

w In	 [3 ]	 it is shown that pole placement does not hold unless the
µ

l

transfer function	 T(s) = H(sI - F)	 G	 has rank	 1.	 In particular, -	 Y

pole placement does not hold for 	 (F,G,H) in an open, dense set.	 In a	 r

[ 191,	 necessary and sufficient conditions for generic pole placement,

for a particular system of this dimension are derived.
k

Thus, by Kimura's	 Theorem [16J	 and the Willems-Hesselink counter-

example, the answer to Question 1 is yes if, and only if, 	 n < 3.

T

t
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In [231 it is asserted that a modification by P. Molander of the

techniques in [231 shows that the answer to Question 2 is in the

negative if n = 4. Thus, the answers to Questions l and 2, if

m = p = 2, are yes if, and only if, n <-3. Since this result is

unpublished, in section 4 we present a verification of Molander's

conclusion as a corollary to our generic stabilizability criteron.

'This of course gives another proof of the Willems-Hesselink theorem.

Theorem 3 (Molander): There is a nonempty open set of (nondegenerate)

2 x 2 systems of degree 4 which are not stabilizable by constant

output gain feedback.

115

Example 2 (m 2,

to Question 1, and

provided mp > n.

these, values of m

p = 2k-1): It is known in this case that the answer

therefore to Question 2, is in the affirmative ([3

By Theorem 2, the answer to both questions, for

,p, is therefore yes if, and only if mp > n.

Example 3. (m = 2, p = 4) At present, one is able to deduce from the

results proved in [ 3 1 and more refined topological methods that

the answer to Question 1, and therefore to Question 2, is in the

`	 affirmative whenever n < 7. Theorem 2 then asserts that the only case
y	 —

Es;	
which remains to be analyzed is n = 8, where it has been conjectured ([6])

t.	 1

that the answer to Question 1 is in the negative.

[
We should mention, however, that there are eases (e.g. m 2, p = 6,

n = 9) where generic stabilizability is mown to hold, but where

Question 1 remains unanswered ([5])

iA'i
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. Until now, we have only discussed the existence of solutions to

the problems of pole­,^ositioning and stabilization. Equally important

is the consideration of what kind of algorithm might exist for finding

a gain K which places the poles, or stabilizes the system, provided

such a gain exists. In Sections 5 and 6 we analyze each of these

questions and prove

Theorem 4: Suppose there exists a gain which stabilizes the

system (F, G, H), Then, one can find such a K by an algorithm

which is rational in the coefficients-of (F, G, H).

In [1 ] the question was raised as to whether rational formulae

exist for a gain K which places the closed loop characteristic

at p(s)	 sn +Plsn-1PC	 +... +P	 That is, provided such a
n

gain K exists, can one find K as a rational function of

(F t G 9 H 1 p 19 ... 9 p )? This holds for the case of state feedback and,
n

in particular, where min(m,p) = I and max(m,p) ^: n. In this case,

a linear formula for K follows from consideration of the phase-variable

canonical form. However, as the equation obtained by Willems-Hesselink

(see also [3 1, [19]) shows for the case m =p =2, n =4, there exist

precisely 2 gains (possibly a complex conjugate pair) counted with A

multiplicity which place a given real monic polynomial
J

4s +p1s' +	 + P4-

Moreover, the coefficients of such a 2 x2 gain K are given by the

solution formula for a quadratic equation. Thus, in general, a rational

formula doe g not exist. If mp- n, we can give a more precise answer

to the question raised in [1
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Theorem 5: If mp -n, the following statements are equivalent

for the generic (F,G,H) and monic polynomial p(s):

(a) there exists a rational formula, in the coefficients of

p(s) and entries of (F,G,H), for some K which places the

closed loop polynomial at p(s);

(b) there exists a linear formula, in the coefficients of p(s)

and entries of (F,G,H), for such a K;

(c) min(m,p) -1 and max(m,p) -n.

Theorem 6: If mp - n, the following statements are equivalent

for the generic (F,G,H) and monic polynomial p(s):

(a) There exists a formula,involving rational expressions and

square roots, for some K which places the closed; loop

polynomial at p(s);

(b) either min(m,p) - 1 or min(m,p) - max(m,p) - 2.

117

i

i"

Indeed, if mp = n we conjecture that the only cases for which

there exists formulae for K involving rational operations and radicals

are

i) min(m,p)	 1 and max (m, p ) _ n; or

ii) min(m,p) s max (m , p)	 2.	 I

This conjecture appears natural in the light of our techniques
.1

(Section 6), which are an application of Galois ,theory and of the

methods used in [3 ] enabling one to express the number dm
op
 of

(perhaps complex) gains K which place the poles of a given generic

nondegenerate) system at a-given monic polynomial if mp n. In fact

t
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i

I

j

/

d	
= 1C... (P-1)L(mp)al

mo p	m!	 (m+P-1)1

This agrees with the Willems-Hesselink calculation 	 ([20]), that d2 2 = 2
t	 o

,»

and with the recent calculation made by Morse-Wolovich -Anderson ([19])

that d2 3 = d3 2 .5*.

Our methods for proving Theorem 4 rely quite heavily on the
r

{

Tarski-Seidenberg Theorem 	 (Prop. 3.2),	 In the course of the proof we

need several other results from "decision algebra". 	 With these results

in hand, it only requires modest additional effort to show that the
f

question raised in this paper, i.e _. whether or not Questions 1 and 2

equivalent for any fixed 	 m,n,p	 triple, can in fact be answered, sare

by decision algebra.	 This is shown in the Appendix.

The actual application of a decision algebra based checking procedure

is of course extremely impractical to implement but we should emphasize bra

that, at present, this is the only method which is even in principle

capable of answering this equivalence question for arbitrary	 m,n,p.

For this reason, we feel it is worthwhile to give a proof of this {

statement.
f`

a

a

*Based on our techniques and those in [12], the authors of [6] have

s	 confirmed our conjecture in the case m -2, p -3 by showing that the Galois,
group of the output feedback problem is the full symmetric group, S5.

a

i

t

,^

r
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3. PROOF OF THEOREMS 1 and 2:

We shall begin by proving that, for m, n, p fixed, stabilizabilityfor'

the generic (F, G, H) E Rn2+n(M+P) is equivalent to the property that

(s-P)n, p E R, may be assigned as the closed loop characteristic

polynomial for the g enericg	 (F, G, H) E Rn2+n(m+p)	 It is intuitivelyof 

clear that Question 2 should not distinguish between continuous time

and discrete time stabilizability. This follows from the first lemma

where e = 1 and p 0.

Lemma 3.1: The following statements ate equivalent:

i) m,n,p are such that for all (F, G, H) _- except perhaps

those contained in a proper algebraic set —there exists a

stabilizing gain K.

ii) m,n,p are such that for all (F, G, H) - except perhaps

those contained in a proper algebraic set- for all real p and

all E > 0, there exists a gain K such that the eigenvalues of 	 ^?

F + GKH are contained in an E-disc centered about p.

Proof: We first note that to say (1.1) is stabilizable is to

say the system
t

x Fx+Gu, y = Hx+Ju,	 (3.1)

with J arbitrary but fixed is stabilizable. For, if K is a

stabilizing .gain for (l.l), and I - KJ is nonsingular, _then the gain

u Ky_, where

K = (I - KJ) 'K,

'^	 3

j
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I . If I - KJ is singular, we may choose K -sufficiently

that K is a well -defined stabilizing gain for (3.1).

er the conformal transformation

Nom.

rational matrix valued function

where W (z) is the open loop transfer function,

W(z) _ H(zI - F )
-1

G+J	 (3.3)

A

Now let K be a gain such that the closed -loop poles of

	

}I	 ^

a 'W(z) (I +KW(z))-1

are at z l ,	 ., zn . Then, generically, the poles o(z 1 ), ..., ^(,zn)

of
r

V(z)(I+KV(z))-1

will be finite. Since

	

t `	 Re[z] < 0	 if, and only if, J$( z) -Pj <E

K stabilizes W(z) with respect to Re[z] < 0 if, and only if,

it stabilizes V(z) with respect to the a-disc centred about p.

E

f
6-

I
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We claim that, consequently, a generic (F,G,H,J) is stabilizable with
N N N N

respect to Re[z] <0 if, and only if, a generic (F,G,H,J), is stabilizable

with respect to the a-disc B(p;s). Assuming the claim, by our first

observation the "direct part" J may be omitted, and the Lemma is

proved.*

To verify the claim, we first develop W(z) in a 'Laurent series

Co

W(z) - J + I Liz i
i=1

and form the n x n, p x m-block Hankel matrix s

h 	 [Li+j-1]

Then W(z) determines, and is determined by, a point in the set

`m,p =,{(J,Ll,...,L2n) :rank hw=n}

`lenis, 
by definition, an open subset of an algebraic set of matrices.

mop

Moreover, .JfPn is the image of the rational map
m,P

11 : ,A( c IR n
2+n (m+p)+mP }

m,P

defined on the open dense set -lie of minimal systems by r

II(F,G,H,J)	 (J,Ll,...,L2n)	 r

P[	
where of course,

00

H(sI-F)
-1G

+J _ J+

	

	 L.z-
	

i
i=1 1

•	 i
*Argument along these lines has been developed independently by
J.C. Willems,
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Therefore,	 Jemnsp is irreducible, as the image of an irreducible

algebraic set Q21- 1). 	 In this language, we have:

(i)	 @ induces, via (3.2), a rational map 8
s{

n	 n`7(fm.`gym. P	 P

with singularities on the algebraic set

N : W has a pole at 1), since V(z) . 4^(W ( z)) =WOW)

`	 is proper if,, and only if, W(l) is finite.

(ii)	 image 1).	 ,n	 - {hV :V has a pole at E+ p} for similarM, 

p

reasons as in M.

Furthermore, since stability of minimal systems is an input-output

property, if 2 is a self-conjugate subset of	 then

(iii)	 the set

U- {Q _ (F,G,H,J) e,Qis stabilizable with respect to	 }

is open and dense in ill, if and only if,

R(U) '= Jr,
m)P

is open and dense in " em,p'

The claim then follows from ( i),	 (ii), and (iii),
Q.E.D.

Remark:	 A similar, perhaps well-known, result is that for
z

fixed	 m,n,p	 stabilizability is generic if, and only if, for generic

(F,G,H)	 there exists a gain	 K	 such that the closed-loop spectrum .y

lies in	 Re [ s] < a or	 Re[s] > a,	 with	 a ER	 arbitrary.
1

The next proof relies on the following result which it stated in
i

t	 the notation of (1.2).	 For f, g polynomials, set: {

E_
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U(fi) . (xCe :: fi (x) > p,	 Vi},

V(gi} _ (x-ERn: gi(x) Z: 0,
	 Vi}.
	 (3.4)

A subset 
.Z.c 

R  is called semialgebraic if it is finite union of finite

intersections of sets of the form (3.4). For example, the algebraic set

Z_(xtRn g(x)_0)
r

is semialgebraic. A subset of the form U(f,} is called a basic open

semialgebraic set, and those of the form V(gi} are called basic closed

semialgebraic sets.

Proposition 3.2: If Z c X x Y is a semialgebraic set, then

p l (Z) c X is a semialgebraic set. Thus, the existence of Y such that

p 1 (xo, Y) - xo

can be checked by a finite number of rational operations in xo'.

This theorem is of course a version of the'Tarski-Seidenberg Theorem.

It is worth noting that a recent improvement on this result has been made

(['gj, [ 91), viz. if it is known that pl(Z) is Euclidean closed (or open),

then p l (Z) is a finite union of basic closed (or open) semialgebraic

f	 _sets	 Of course, pl(Z) is not necessarily closed, even if Z is closed.
j
i

Lemma 3.3 If mp :9 n then the following statements are

equivalent
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i) m,n,p are such that the generic (F,G,H) is stabilizable.

ii) m,n,p are such that for all real p and for the generic

(F,G,H), there exists a gain K such that the closed loop

characteristic polynomial is (s-p)n.

Proof Statement (ii) obviously implies (i). For the converse,

consider the function, for o - (F,G,H) ,

X6 : Rmp + Mn , defined via

XQ(K) _ (pl ...,pn )	 (3.5)	 y

where

s  + plsn-1 + ... + pm det (sI - F GKH)

1

If statement (i) holds, then for each r there exists an open

n Z	nm	 np	 N such that for (F,G,H)  E Udense subset Ur c IR x IR x JR = IRr

(p l , .... pn) E image (X0)

where the roots of sn + p
1

s
n-1 

+ ,,+pn lie in a 1/r-disc centered

about p. By the Baire category theorem,

Co
a

u - n Ur
r-1

is a dense subset of RN such that for (F,G,H) E U,
,a

(pl, • • , pn) E image (X6)

where
5

	

sn + 
plsn- l
	n

	

+...+pn	(s-p),
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Now, according to Theorem, Section 4, of [ 4 ] provided mp < n there

exists an open dense subset W 
a 
RN - the set of nondegenerate systems

such that image (X) is Euclidean closed for (F,G,H) a W. Thus, if

( F, G, x) e u - u , n w

then

(PI, ... pn) a image QCF)

Now, any real gain K may be regarded as a point in Itmp and we may

consider the real algebraic set

.,	 Vp = {(F,G,H,K) : det(sI-F-GKH) a (s-p)n} a IlZN x Etm
p

.	 (3.6)
f

By the Tarski-Seidenberg Theorem (Proposition 3.2)

f	
Pi (Vp) c N 

the projection onto the first factor, is a semialgebraic set in 3t ;

i.e., p1 (Vp) is defined by a finite set of equations and inequations 	 g

as in (3.4).

Since
3

U c pl (Vp)	 ?RN

is dense, it follows that p l (Vp) may be defined by algebraic conch 4ions

(perhaps disjunctive).
t
s,

;a

k
^d
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f1 (F,G,H) > 0,...,fr(F,G,H) > 0

from which it follows that p l (Vp) is open and dense. Since

(F,G,H) a p 1 (Vp) if, and only if, there exists a K such that the

closed loop characteristic polynomial is (s-P ) n , the lemma is proved.

Q.E.D.

For the more precise assertion in part (ii) of Theorem 1, we

need the following.

Lemma 3.4: For any p - (p 1 , ... ,pn) E IRn , the subset

Vp = {o= (F,G,H) EW : X.,(K) =p for some K}

is closed in W.

.i
{

Remark: The corresponding assertion for (F,G,H) minimal can be

a

false. This is quite analogous to the fact that the set 	 j

^I
r

{x E IR : 3y E IR such that xy - l}	
t

is not closed in IR, whale the set
-r

{x E IR - {D } : 3y E IR such that xy =1 }

is closed in the open dense subset W = 3R {0} cM.	 'd

K
Proof: As in {4), we may think of K E Mmp as a point in Grass(p,m+p)

$_	 the set of p-plane in Iltm+p - via the assignment

K	 graph (K) _ {( y .Ky)} c lipee.	
#

r.

d

i
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It is known (see e .g. [4] and references cited therein) that Grass(p,mfp)

may be regarded as a compact manifold of dimension up. Moreover,

Grass (p + m+p ) ' lmp U Q(00)

where CM is the closed subset defined by

a(-)-{n E Grass(p,m+p) :-dim(n n e) ^- 1}

That is, IT E a(O0) if, and only if, n is not complemental, to U. 	 Thus,

n t a(-) if, and only if,

n = graph (K) , for some linear K : IRp -► Rm

On the other hand, one may regard the monic polynomial

p (s) - s  + p1sn-l+...+pn.

as a,point (pl,...,pn) E Bn and therefore ([4]) as a point, via the

dihomogeneous coon nates
a

[p l , ... ,pn ,11 E ]RPn,
C

in real projective n-space. Of course, IR - Grass(l,n+l) by definition.

According to ([4], Remarks, p. 103), for nondegenerate Q the map Xa

extends continuously to a map

Grass(p,m+p) -} 3RF

satisfying:

a	

'^

XCUD _ [p l ' . .-, pn 01	 (3.7a)

,
1

9
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Matters being so, consider the continuous function 	 1

n

X W x Grass(p,m+P) MI?

€	 defined via

X(F,G,H,n) = X(a,TI) = XQ(II)

Therefore, if p = [1,0,...,0,1] corresponds to p(s) = sn,

Z = -1 ( ) I': x Grass ( ,m+p )X P	 P	 a

7

is a closed subset. Since Grass (p,r.+p) is compact,

Pl(z)'aw

u
is closed and, by virtue of (3.6),

p i (Z)_ {Q a (F, G, H) : XQ (K) = p , for some K} = V 

Q.E.D. i.

i

On the other hand, u n w c Vp is dense in W by the Baire Category

Theorem, and therefore,

V_ = W 1

p

from which (ii), and Theorem 1, follows,c*

Q.E.D.

i
We now turn to a proof of Theorem 2. Clearly, it suffices to

k
r
k	 ^

i
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E

-onsider the cast mp s n; thus, the preceding lemmata and Theorem 1

are applicable..

Consider, then, the algebraic set of nilpotent n x n real matrices
f4

S

(N Nk . 0, for some k)

r	 and the algebraic set V. V obtained by setting p -0 in (3.6). We
E
E
s , 	 define the polynomial mapping

0 ti '^ 
e, np imp , ,n2 x -,nm . ep(3.8)

via
r

VNN G,H,g) - (N - GKN,G,lt)

From Theorem 1, we have:

129

Lemma 3.5: If mp g n and if the generic system is stabilizable,

the image of ^ contains an open, dense set.

a

Denotes by o1l the algebraic set of n X  complex matrices.	 It is

known (see e.g.	 [171, (201)	 that .-V is an irreducible algebraic set

., Therefore there exists an open dense subset U of oY which is itself ^ r

P 4 a complex manifold and therefore has a dimension.	 Indeed ([171,	 [201),
Et

t
E

d ims M	 n -n

gg
1^ <3

The points of b are called simple, and one of the thorny points
a,;

in real algebraic geometry 0181) is that in general an irreducible

t. real algebraic 'set V may contain none of the simple points of V^.

}

4



This, for example, is the reason for the failure of the Hilbert

Nullstellensatz over IR, and the most well known example of this

phenomenon is

WM _ {(x, y ) : x2
+y2 = 0}

If VIR co,,; Ftains a simple point of V., then for example dim,,(V1R)

is defined as above and

dim 
IR

(VIR 	 dim C (VC )	 (3.9)

It is an elementary computation to check that the real matrix

0 1
"r

0 0

N

A l

0

is a simple point of ./V. Thus, dim N exists. We will now give a

self-contained proof of

3

Lemma 3.6: dim
IR

( 3Y)	 n2 -n.	
a

G

k	 Proof: Since the 'matrix N consists of a single Jordan block, the

t	 dimension of the centralizer
t

Z(N) a {T E GL (n, 3R) TN NT}

i is n, according to the Frobenius dimension formula Q15] Vol. II,

Thm. 19, p. 111). Now consider the orbit of N under'GL(n,IR)

r

z
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'}F

Jz	

1

ev(N) _ {TNT l : T E GL(n,IR)} cwGL(n,310 /Z (N)

r;
In particular,

}	 dimes 6(N)	 dimGL (n, IIt) - dimZ (N) n2' n

We claim e (N) - 3V from which follows:4

1	 M -*is irreducible, since 6(N) is irreducible; and

(ii) dimes 6(N) - dimIR ( 3V), by the closed orbit lemma and (3.9) .

a,

Following [20], note that if N i is any nilpotent Jordan canonical form,

H;	 then clearly there is a 1-parameter diagonal subgroup T^ E GL(n,]R) such

_y
that

Therefore, 6(N)

Q.E.D.

Now suppose that m, n, and p are such that the generic system

is stabilizable, and mp, n. By Lemma 3.5 and ([211, Thm. 7, p. 60)

one has
Y/

'J.

dim n +n(m+p) +mp ;t n2 +n(m+p)	 (3.10)

In the light of Lemma 3.6 and (3-10), 	
f

n2-	 2n+mp 7A n

yielding
t

i
a

mp ^i n

In conclusion, if mp < n then mp =n is necessary for generic stabilizability,	 a

whence Theorem 2.
Q.E.D.

4"
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4.	 Proof of Theorert 3.

.	 In the proof of Theorem l (c£. Lemma 3.2), 	 we made use of certain

}Y	 facts concerning	 pxm	 systems of degree 	 n	 which also allow us to
p

show, together with Theorem 1, that for 	 n = 4,	 m = p = 2, generic

stabilizability is not possible. 	 Specifically:

(i)	 if	 mp < n, then the class W	 of nondegenerate systems
2*	

np
is open and dense in e	 x Mmn	x]R	 ;	 and

(ii)	 for any monic polymonial	 p(s)	 of degree,	n, the set

Vp	{(F,G,H) E	 W:	 det(sI-F-GKH)	 p(s)	 r;	 for some Kt ^±

is closed in	 W	 (Lemma 3.4).

F

In light of Theorem 1, if 	 p(s) = sn	then generic stabilizability
x

implies that	 Vp	 is dense and closed in	 W, hence coincides with 	 W.

Therefore, to find one nondegenerate system for which	 p(s)	 is not	 3

assignable as a closed loop polynomial is to prove that stabilizability

is not generic.

We shall now give a "frequency domain" criterion [3 J 	 (which can

be taken as a definition, compare[ 4 1) 	 for nondegeneracy.	 If	 T(s)

is the transfer function

T(s)	 H(sI-F)
-1G	

(4.1)

of the system, denote	 by	 t i (s)	 the i-th column of the	 (p+m)xm matrix.

T(s)

I
I ^::
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If ^(y,u) is a complex linear functional on Cp 6 CID,
I

then we can form the scalar rational function

l

^(ti (s))	 for i - 1,...,m

Now suppose 0 - {^1,. 4p ) is any linearly independent set of linear

functionals on 1,m+ )-space, and form the determinant

0(s) = det $(t3 (s))	 (4.-2)

1
3
3

(F,G,H) is said to be nondegenerate provided
I

3

a

O(s) ^ 0	 ins	 (4,3)

for any choice of m.

Remark 1. If (F,G , H) is scalar, then ( F,G,H) is nondegenerate

since (4.2-(4.3) reduces, for 0(u,y)	 au + by, to

ag(s)+b00 ins

2. The zeroes of the set 0_ 
{ ^1' " ''gym)	

defines a

p-plane in (u,y)-space which is the graph either of a	 a
3

linear function u = Ky, i.e. a finite constant gain, or

of a linear relation between u and y, , i.e. an infinite

constant gain. The zeroes of (4.2) are then, modulo

pole-zero cancellation, the closed loop poles at this

gain and (4.3) just asks that these zeroes be finite in	
a

number, i.e. that the root-locus map X be defined and

continuous at this gain.

t

6
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Example 4. Suppose m = p 2, n 4, and consider

ff
I

G=	 , H _ Cl
	

pl
0	 L	 JJ

and

0	 0	 0	 1

0	 0	 1	 0
r'.	 F _

1	 0	 0	 -1
i	 1

0	 -1	 0	 0

We claim (F,G,H) is nondegenerate, to this end we compute (clearing

denominators)

s3-1	 -s
	s 	 s3

s 4+s -1	 0

	

0	 s4+s-1	
{

and consider 2 linear functionals

	

1(y,u)	 alyl+a2y2+a3u1+a4u2, ^2(u,y)=blyl+b2y2+b3u1+b4u2
S

Thus,

,^	 a

a11(s) 
a12(s)

{	 m(s)	 det [^i (t (s)]	 det	 (4,4)j	
^21(s) a22(s^

a

I

y
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where

1
a	 (s) - a s4 + a s 3 + (a +a )s -a -a,
11	 3	 1	 3	 3

f

a12(s) - a4s4 + a2s3 + (a4-al )s +a4
(4.5)

a21(s)	 b3s 4 + bls 3 + (b2 -b 3 )s +b3-bl,

a22(s)	 b4s4 + b2s3 + (b -b l)s +b4
/

ti

Now,	 (4.4) vanishes just in case there exists 	 cs - a priori depending

}r, on	 s - such that

csall (s) = a21(s)

(4.6)

csa12 (s)	 a22(s)

t

for all but finitely	 s E 0.	 Comparing coefficients shows that	 cs
t

is constant for all but finitely	 many	 and hence all, s	 and therefore

an inspection of (4.5)-(4.6) shows that

c	 1	 ^2

". contradicting linear independence of the functionals

n
;t

Recall, in the proof ofLemma 3 . 3 the fact that image (X) is

closed for all nondegenerate (F',G,H) was used rather crucially.	 Ifr

xl	 x2 }
K

X3	 x4

I{



136

	

	 ORIGINAL PAGE a
OF POOR QUALITY

it is readily verified that

det(sI-F-GKH) a s4 + (-xl-x4 )s3 + (x1x4-x2x3)s2

+ (1-x2 + x3 )s + (1+x1)

5

By the quadratic formula, it is easily verified that image(X)

is a closed senrialgebraic set. Furthermore, if (4.7) is to be
i"

s4, we require

xl + x4
 x1 

x
4 x2 x3
	 x2 + x3 1 + xl = 0	 (4.7)'

whence

x2x3 - 1
	 x2 1 + x3

a

whence

x3+x3 +1 	 0	 (4.8)

This equation (4.8) cannot be satisfied by any real x3 , i.e. :there

is no real gain producing closed loop poles at s - 0. Since (F,G,H)

is nondegenerate our previous remar'ks imply Theorem 3, thereby

{	 verifying Molander's conclusion:

a

rt

i
9

k
t
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5.	 PROOF OF THEOREM' 4:

In addition to the Tarski-Seidenberg Theorem (Proposition 3.2),

we shall also need a somewhat different result from decision algebra,

which deals with the question of describing the set of x  for which

pll (xo) n 2	 {xo ) xY; i.e. for which (xo,y) E Z for all y. In the

course of deriving this result we also will state. the Tarski-Seidenberg

theorem in what is perhaps a more familiar form, ([151 Vol. III, [22]).

Notational conventions are as follows; x, y, z denote collections
1

of indeterminates, with each of x, y, z considered to be shorthand for

a number of indeterminates x l , ..., xn etc. Particular real values

taken by these quantities will be denoted by x, y, z; p, q, .r, s,

perhaps with subscripts will denote polynomials in x, y, z with real

coefficients. We shall regard p(x, y) - 0 or q(x, y) L 0 as examples

of equations or inequations, (i.e. descriptions of problems for which

solutions are sought, should they exist), and we shall regard p(x, y) _ 0
A

or q(x, y) ;-> 0 as examples of equalities or inequalities (i.e. state-

ments of fact that can be verified by arithmetic, and which show that

x, y are solutions of p(x, y) = 0 or q(x, y) z 0).

We shall reserve script letters S, T, etc. to denote collections

of a-finite number of equations and inequations or equalities and t

inequalities of the following type. S(x) is an abbreviation for:
t

either 
{pil 

(x) -0 and 
q 
j l (x) >0 and 

rkl 
(x) s 0 and sa (x) a 0}.a

or	 {p12 (x) =0 and q
j
 2 (x) >0 and rk2 (x) x0 and s  (x) a 0)	 1

or

or	 {p t(x) -0 and q j t (x) >0 and rkt (x) x 0 and 
szt 

(x) a 0)

ML

r



where it is understood that pia (x) -0 is shorthand for pla(x) -0 and

PZa (x) - 0	 and	 ...	 and.	 pisa (x) -0,	 and similarly for	
qJa	

etc.	
k

Naturally,	 S(x)	 is an abbreviation for the associated set of equalities	
x	

`.

and inequalities.	 We can talk of the problem of solving	 S(x)	 and of	 K

S(x)	 holding, or of	 x	 being a solution of	 S(x).

The above type of	 S(x)	 is more or less standard in decision Algebra.

However, we shall sometimes use a simple modification.	 Each	 sa$ ? 0	 is

a disjunction:	 sa$ > 0	 or	 s 	 0.	 This means that any	 S(x)	 and

r:
thus any	 S(x)	 can be rewritten to exclude inequations or inequalities

of the	 >_	 type.

_ Lemma 5.1:	 The statement	 S(x)	 does not hold is equivalent to a	 i

statement	 SW	 holds where	 3(x),	 termed the negator of 	 S,	 is

F

itself a collection of equations and inequations of the standard

€orm.

` ProOJ;	 "S(x)	 holds"	 is a disjunction ("or" statement) of

conjunctions ("and" statements) of formulas of the type	 p(x) -0,

q(x) >0,	 r(x) x 0	 and	 s(x) ? 0.	 Hence	 "S(x)	 does not hold"	 is	 s

a conjunction of disjunctions of negations of these formulas, i.e. of 

p(x)r-0,	 -q(x) L-0,	 r(x) -0	 and	 -s(x) >0.	 Any conjunction of disjunctions

can be rearranged as a`disjunction of conjunctions, and in this way,

f
S(x)	 is defined.

{ Obviously,	 S =s.

Next, we recall the main result of decision algebra, the Tarski-

t

Seidenberg theorem. 	 We break it into two parts.

f

IL - N
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Proposition 5.2:	 A) Consider an equation /inequation set

is	 S(x, y)• Then one can determine by a finite number of rational

calculations a second such set 	 T (y)	 such that	 T(y)	 holds if

I

A	 n	 n..

and only if there exists at least one	 x	 such that	 S(x, y)

R holds. -	
ll,,

( B)	 The solvability of any equation / inequation
1

set	 ^(y)	 is determinable by a finite number of rational

calculations.
a

t,

We remark that the set	 T ( y)	 in part & may be empty:	 this would

1.
imply that there are no pairs 	 x, y	 for which	 S(x, y)	 holds.

Proposition 5.3:	 Consider an equation/inequation set	 S(x, y).

Then the set of values	 y	 of	 y	 such that for all x, S(x, y)

holds, is definable by an equationfinequation set	 T(y).

Proof	 Let	 8 (x_, y)	 be the negator of	 S(x, y),	 existing by

Lemma 561.	 By Proposition 5.2A, 	 we can find	 T(y)	 such that	 T(y)

holds if and only if there exists at least one 	 x	 such that	 S(x, v)

holds.	 Let	 T	 be the negator of 	 T.	 Then	 T(y)	 holds if and only if

there exists no	 x	 such that	 S(x, y)	 holds, i.e. if and only if for

all	 x,	 S(x, Y)	 holds,
^	 z

The following algorithm, in conjunction with Propositions 5.2 and

5.3, gives a proof of Theorem 4.	 We find it convenient to break this

a into two Farts.

k
tx

^k
E	 ^^
F

^

t
s

d

t
f

.	 x
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Part I: Find a cube containing a stabilizing gain K.

1.1 Choose N> 0, and consider the semialgebraic set

Z c Rmp-1 x R

defined by Z - Z1 n Z2 r with

Z1 . {Kt det(sl -F -GKH) is Hurwitz),

Z Z	{K:	 E(kij ) 2 < N).

From the Routh-Hurwitz criterion, it follows that 	 Za	 is a

(basic open) semialgebraic set and it is then clear that 	 Z	 is semi-

algebraic.	 Using Proposition 5.2 inductively, we can decide by rational

operations whether there exists a gain 	 K e Z.	 If	 Z	 go to Step

II.l.	 Otherwise, go to step I.2. 4

r
1.2	 Replace	 N	 by	 2N	 and go to Step I.l.	 Since q stabilizing j

gain exists by 'hypothesis, we will eventually	 move to Part II_.

Part II:	 Find a cube contained in the set of stabilizing gains	 K.

II.I	 We suppose there is a stabilizing gain 	 K	 in the cube

IlK Ii  < N.	 Using Proposition 5.3 inductively, we can decide by rational

operations whether all such	 K	 are stabilizing.	 If so, choose any	 K

such that	 11KII	 < N.	 If not, go to step II.2.

11.2	 Divide the cube into	 2mp	 cubes with sides of length	 N.

Return to step 1.1 with this list of cubes.

This algorithm will stop at some stage, since the set of stabilizing

gains is open and therefore contains a cube of sufficiently small size.
i

j
Q.E.D.

1



i

w

E

Example 5. One might ask whether ones P.ual bound the number of steps

program simply in terms of m, n, p. The answer is no, as we now

illustrate. Consider the open loop system with transfer function

W(S) =1
s +as +bs

where a,b > 0. For negative feedback with gain k, the closed loop

characteristic polynomial is s 3 +as 2 +bs +k and therefore is Hurwitz

if, and only if, k c (0, ab). It follows that the size of a cube (here,

an interval) contained in the open set of stabilizing gains can be made

arbitrarily small by suitable choice of ab. In turn, the number of steps

in Part II of the algorithm can be made arbitrarily large, though for

fixed (a, b) it is of course finite.

9

,a

1
J

w
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6. PROOF OF THEOREMS 5 AND 6;

Since we have already demonstrated the existence of linear formulae

for the appropriate values of m, n-, p, it is enough to show that these

are the only values for which such formulae can exist. Moreover, it

sufficesto prove this last assertion over E - R(^). Consider the closed

.

	

loop characteristic coefficient map X, defined in (3.4), extended to 	 ,	 ^'

gains with complex coefficients

X(C : Cmp`	 L"	 (6 .1)

9
where (F, G, H) is understood to be a generic, but fixed, system with

n =mp. We first analyze the question as to whether there exists a

formula for (k id) E X-1 (p) which is rational in the coordinates of

n
p = (pR) e C . Thus, we consider the field K, of all rational

t
expressions (or functions) in the p V and the field K2 of all

rational functions in the (kid):

K 1 _ E ( pQ ) ► 	 K2	 T (k id )	 (6. 2)

Since X. is polynomial, if f E K, then fox. a K 2	For generic
I

(F, G, H), image XC	 contains an open set ([13]) so that

^a
foXC _ 0 ^ f _ 0.	 (6.3)

By virtue of (6.3), we can think of K1, as a subfield of K 2 , i.e.

K1 
= XEK, c K 2	 (6.4)

where X Ef _ fox., and an easy dimension argument shows that (6.4) is

a finite field extension. That is K 2i as a vector space over the



ORIGINAL PAGE I
OF POOR QUALITY 143

field of scalars K l , is finite dimensional. For example, to say

rational formulae for (kid ) C X-1(p.) exist is to say the dimension

of this vector space

d	 [K2 : K,1	 diNj (lax)	 (6.5)

is equal to 1 0 i.e. Ki - K 2 . We shall now give a formula for 6, in

terms of m, P. In [4 ] it was shown that X.
C
 is proper and it follows
 1

from the proof in [4 1 that
l

R1	 XCR1 c R2

is an integral ring extension, where

R1 - C(pt),	 R2 - C[kij].

In this case ('since the field C has characteristic zero), 6 is

given by the number d of solutions, counted with multiplicity, to the

equation

X C- (K)

[18 ]pp.116-117). On the other hand, d has been computed using

methods of the Schubert calculus in [3 ] to be

d	 1!	 (p-1) ! (mp)1
m!	 (m+p-1)i

Thus, Theorem 5 follows from the following elementary observation.

]

Lei=a 6.1: In (§.6), d	 1 4-b min (m,p)	 1

l

if

.I

K1
R ^
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i
f	

As for Theorem 6, from the explicit form of the solution to the
i

r pole-placement equations, derived via elimination methods by Willems-
i

Hesselink [ 23), it is clear that (over IR or IC) quadratic formulae
i

and rational expressions are sufficient to express K as a function of

(pl,..•,pn) for generic (F,G,H) when m-p-2, and n - 4. We shall now

prove that, except for the linear cases min(m,p) - 1, this is the only

case when formula - involving square roots and rational operations -

for K in terms of (p19 ... ,pn) exist.

To this end, we consider a Galois extension

K1	
K,	 (6.9)

that is,a minimal normal extension of K l - C(p ) which contains

all of the roots to the equation

XC (K) = (p } •	 (6.10)

If a solution expressible by square roots and rational operations

alone exists, then

d
, _ { K

K11

is a power of 2 Q2	 On the other hand, by Artin's Theorem of }

the Primitive Element	 [21, we may regard K2 c K and therefore

d _ [K 2 K1 1 divides	 [ K	 K1]

5
0	 <9

from which it follows that

'd

F d	
dMIP

= 2r for some	 r. 1

Theorem 6 therefore follows from the following result:

t

L.Ji_,.._ 	 _	 __	 _..	
_	

._ .......^_.^......	 -..
__	 -

._	 ,.^
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Lemma 6.2: If min(m,p);i2 and m +p?S, then d mop is divisible

by an odd prime.

Remark: It is known [14] that any prime q <, min(m,p)+l
2

divides d MVP , so that only the cases min(m,p)- 2, 3 or 4 remain.

The proof we present here, however, is valid for all m,p and is based

on an application of the strong form of Bertrand's postulate ([11],

p. 373) shown to us by W.H. Gustafson.

Proof: By the strong form of Bertrand's postulate, there is a

prime q satisfying

m + p - 1 < q < 2 (m+p) - 4,	 (6.11)

under the hypothesis m +p^5. Clearly, q does not divide the denominator

of d	 On the other hand, if min(m,p)^2, thenm9p

mp > q

so that q divides the numerator of d M,P* Hence, q Id 
m9p

Q.E.D.

Al

A

H
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APPENDIX: "IN PRINCIPLE" ANSWERS TO QUESTIONS 1 AND 2 BY DECISION ALGEBRA

In [1 j, indications of the applicability of decision algebra

to problems of systems theory were given. In particular, it was shown a

that one can determine, at least in principle, by rational operations

whether a given system (F, G, H) can be stabilized. We shall extend	
!

i	 l

these results to show that one can answer Questions 1 and 2 by rationalii

operations using decision theoretic techniques, but we emphasize that

such results are very qualitative. In fact, a "worst -case" analysis
n

([ 71) shows that any decision procedure takes at least 2k steps,

where k > 0 is a constant and n is the length of the input formula.
r

However, in the absence of any other technique which allows one

for example, even in principle, to distinguish between Questions 1 and

2, we thought it worthwhile to point out that this is a question which

can be answered by the Tarski-Seidenberg theory. An interesting special
s

case is whetheror not we can place poles for generic 2 x 4 systems	 !

with McMillan degree 8. One does know that there exist 14 complex

{
solutions to the pole-placement equations, but at present one does not

know whether any of these are real.

The new ingredient here is the consideration of the generic system

-r (F, G, H)	 rather than a particular choice of system

^	 l
(Fo,	 Go,	 H.o),

and we shall need to present some further results from decision algebra.	 E4

l
t The notation is as in Section 5.

Lemma A.1:	 Consider an a uation ine uation set x

Then there exists a set 	 T(y)	 such that	 T(y) holds if and only

J
if for all	 i,	 there exists	 x	 depending on	 y, z	 with

€ S(x, y, i)	 holding.

y

f	 2
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e

Proof By Proposition 5.1', there exists R(y, z) such that

R(y, z) holds if and only if S(x, y, z) is solvable, i.e. if and

only if there exists at least one x, depending on y and z, such

that S(x, y, z) holds. By Proposition 5.3, there exists T(y)

such that T(y) holds if and only if R(y, z) holds for all z.

Then clearly, T(y) holds if and only if for all i, there exists

x such that S(x, y, z) holds.

In Proposition 5.3 and Lemma A.l, the set T(y) may be empty.

The following Lemma replaces the "all x" in Proposition 5.3 by

"almost all", and in this sense may enable one to get a practical

result when the T(y) of this proposition is empty.

Lemma A.2: Consider an equation/inequation set S(x, y).

Then there exists an equation/inequation set T(y) such

that T(y) holds if and only if S(x, y) holds for all

x save a set contained in a proper variety depending on

Y.

Proof: Given a polynomial p(x, y), it is clear that there

exists a possibly empty P(y) such that P(y) holds if and only

if p(x, y) is the zero polynomial, i.e. p(x, y) = 0 for all x.

Further if	 (x ^) 0 for all x save those 1 in in a properP , Y	 y B

variety, p(x, y)	 0 for all X.

Given a polynomial r(x, y), it is clear that there exists R(y)

such that R(y) holds if and only if r(x, y) x 0 is solved by all

x save those on a proper variety depending on Y.

a

7

I
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Given a polynomial s(x, y), it is clear that there exists S(y)

such that B(y) holds if and only if s(x, y} < 0 for some x. ' Hence

S(y) holds if and only if s(", 	 L 0 for all x. Further, if

s(x, y) Z 0 for all x save those in a proper variety, s(x, y) >_ 0

for all x.

Given a polynomial q(x, y), it is clear that there exists X

Q 1 (y) such that q(x, y) 2:0 for all x and Q 2 (y) such that

q(x,'y) z 0 for all x save those in a proper variety. Let Q(y)

denote the conjunction of Q 1 (y) and Q2(y). Then Q( y) holds if

and only if q(x, y) > 0 for all x save those in a proper variety

depending on y.

Suppose now that S(x, y) is the disjunction of equation/inequation

sets Si (x, y) where each Si (x, y) is a conjunction of

pai(x,Y)	 0	 gs i (x .Y) > 0	 ryi (x,Y) x 0	 sa i (x,y) > 0

s

By the discussion above, it is clear that there exists T
i (y)such

that Ti(y) holds if and only if S(x, y) holds for all x save

those in a proper variety depending on y. T(y) is obtained as xhe

disjunction of the Ti (y),	 i

Now consider the system (1.1), subject to output feedback u = Ky.

The coefficients of the closed loop characteristic polynomial, as a

r
function of K, give rise to the polynomial mapping (3.4)

4

X: Rmp Rn

and we writeX	 to emphasize the dependence on the open loop
(F,O.H)

system (1.1)	 Then, Question 1 asks whether X	 is surjective	
g

k	 ^
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for the generic (F,G,H) and we claim that this question can be ans

within the scope of decision algebra. To this end, let X . Rmp
r

Y . Rn 
+nm+np 

and Z - Rn, so that (K, (F,G,H), (p t)) c X x Y x Z

and consider the algebraic subset W c X x Y x Z defined by the equ

S(X, Yr Z):	 X(F,G,H)(K) . (p Z )	 (A.1)

4

By Lemma A.1, there exists an equation/inequation set T in

y = (F, G, H} such that T(y) holds if and only if for all i, i.e.

for all pQ, there exists x, i.e. a value of K. such that

S(x, y, z) holds, i.e. such that (A.1) holds.

Let T(y) denote the negator of T, and write T(y) as a

disjunction of conjunctions Ti . As observed in Section 4, we can	 -	 x.:

assume without loss of generality that each Ti contains equations

pai (y) - 
0, and inequations ga i (y)-> 0 and r

-yi
(y) x 0, without

inequations of the type s di (y) >_ 0. We can determine, see Proposition

5.2B, whether any Ti defines an eKmpty set of solutions; if so, we	 3

discard it.

Now with Ti of the form just noted, and with each possessing a

solution, we can readily answer Question 1.

	

If T(F, G, H) holds for any i, pole positionability for all	 -

a  via choice of K is not possible, and conversely. It follows

that if each Ti includes one or more equalities, then the set of	 !ti

F, G, H for which pole-positionability is not possible lies within a

proper variety, and that for almost all F, G, H, pole positionability

for all pQ can be achieved.

On the other hand, if T i contains no equalities then it is

LL
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clear that these exists a neighbourhood of any one solution of T (y)

which consists entirely of solutions. (The fact that Ti contains

no inequations of the type s61 (y) ? 0 is crucial). In this case,

n n ^
it cannot be true that for almost all F, G, H, pole positionability

can be achieved for all p  .

This :analysis of the Ti answers Question 1.

Now one can also ask whether image X is almost all of e, for

almost all (F, G, H). Let us identify K with x and F, G, H and

the pR with y, Equations (A.1) yield a collection S(x, y) of

polynomial equations. By Proposition 5.2A, there exists

n	 n
T(y)	 T(F, G, H, p Q) such that T(y) holds if and only if S(x, y)

is solvable. Using arguments like those above, it is easy to check

whether or not the set of y for which T(y) is true is containedin

a proper variety. If it is, then and only then will it be true that

for almost all F, G, H, the map X is almost onto Rn.

We shall now turn to an analysis of Question 2.

If the closed loop characteristic polynomial has all roots in the

I

r

A.

half plane Re[s] < 0, certain polynomial inequalities in the pi

obtainable from the Hurwitz determinants, see [4], must hold, and

conversely. Accordingly, we have

 Pi(F, G, H, K)	 pi	 i	 1, ..., n
..	 ry

(A.2)	 Y
x

q^(p i )-> 0	 j	 1 9 ,.., n_

Identify K and p with x and F, G, H, with y. Regard (A.2)
i

as an equation/inequation set S(x, y) By Tarski-Seidenberg A, there	 i

i
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I
exists	 T(y)	 such that ) = T(, G,T(AY)	 F H) 	 holds if and only if (A,2)

can be satisfied by some K, pi.	 If the set of	 y such that?'(y) holds

6F
is contained in a proper variety, then and only then Question '2 has an

affirmative answer.	 The discussion of Question 1 described how one

could check whether the set of	 y	 such that	 T(y) holds is or is not
z

contained in a proper variety.}
1

k

I
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Abstract

In this paper the local behaviour of Root Loci around zeros and

poles is investigated. This is done by relating the Newton diagrams

which arise in the local analysis to the McMillan structure of the

open-loop system by means of what we shall call the McMillan polygon.

This geometric construct serves to clarify the precise relationship

between the McMillan structure, the principal structure, and the

branching patterns of the root loci. In addition, several rules are

obtained which are useful in the construction of the root loci of

multivariable control systems. 	 a
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The well known root locus method for SISO feedback-systems, as first

proposed by Evans [4], gives a set of simple rules which permit the graphical

estimation of the=loci of the'closed-loop poles as a function of the feedback

gain.

When trying to generalise this method several problems arise. First of

all, the orders of the Butterworth patterns, which determine the branching

pattern of the root loci at the open-loop poles and zeros, do not always d

correspond to the McMillan orders of the system. Secondly, Butterworth patterns

of noninteger order have been observed 	 in [13,21] and this has led to several

open questions concerning the nature of the actual branching patterns.
n

As far as the authors are aware, only when a simple null structure F	

p

condition is put on the system, has a satisfactory analysis been presented

and this has primarily been concerned with the problem of determining the

asymptotic behaviour of the root loci [7,8,11,17]. In this paper we show that

the aforementioned condition is also necessary and we analyse what happens

in absence of the condition. The principal tool in this analysis is the

Newton diagram, which has been pioneered in this context by Postlethwaite [25],

Postlethwaite and MacFarlane [15] in the case of square systems and scalar gain 1

K(X) = aI (the case of r_onsquare systems and polynomial gain K(X) is treated in [21),

and which has also been used to a large extent in the recent book by Hahn [23],

to which the referee was kind enough to draw our attention. 	 It seems remarkable

that Newton polygons, which were introduced three centuries ago by Newton [10]

as a graphical tool to compute the exponents of the leading terms in fractional

power series expansions, have received so little attention as -a tool for developing

i i	 PRECEDING PAGE BLANK NOT FILMED
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asymptotic expansions. Newton first derived the binomial series for fractional

powers of (1- x) by regarding such a function as a root of the algebraic

equation

n	 •l

y rf(x) =o

In general, he gave an algorithm - based on the Newton polygon - for finding

F'	 the branches of any algebraic relation 	 ry
E

1	
A

f(x,y) = o	 9

According to Abhyankar [1], this method was apparently forgotten until it ;

was revived by Puiseux '[16] in 1850.

At any rate, the method of the Newton polygon is a simple and efficient

t
algorithm for determining the branching patterns of root loci, and it

9

requires only rational operations. For a feedback system, the relationship

between the Newton diagrams which arise for both finite and infinite branches

of the root loci, and the McMillan orders of the open loop system seems to be

best expressed geometricall y . Accordingly, we introduce the McMillan poly;on

of a system and relate this to the corresponding Newton. polygon. This gives

rise to a geometric explanation of several points which have often seemed to

require a very sophisticated and detailed analysis. 	 We shall also derive a

4 -	 number of rules which we believe will be helpful when estimating the j

behaviour of multivarAable root loci.

For simplicity, we have considered throughout this paper the case of ;a

a squa,.e transfer function G(s) "acted" on by the proportional gain

K(X) = XI, subject to the condition det G(s) 1 0.	 The main results

do hold, mutatis mutandis, for rectangular G(s) and polynomial gain

K(a) - subject, however, to an important constraint. 	 Explicitly, if

2

158
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r	 r
K(^)	

Ko
+K1A+, ..+KrA	 •	 r ^ 1_,

{ °:

then one would .expect the asymptotic limit of the closed-loop poles to

coincide with the limit of the closed-loc}p poles obtained by using the
i^

highest order term	 t!

K(X)	
Krar

F

ly

provided KrG(s) has maximal rank.	 Of course, the asymptotic rates of

f the root-loci will change due to a r factot, but this change is easily
E ^

accounted for and does not affect the limiting values of the root loci,

viz. the McMillan zeroes of K G(s)." If mp ;9 n, then for generic G(s)
i

r
y the highest order term K rX	 does d&-ermine the limiting values of the

root-loci.	 Perhaps surprisingly, ff mp >en this is not the case: 	 for

every G(s) there exist maximal rank Kr foia which this is not the case,

even if r	 1.	 Indeed several examples 6"V'this discontinuity are given

in [2) and [3].	 For any given Kr and G(s?S, there exists an explicit

algebraic criterion for this degeneracy -Cd occur ([2], 	 [31).	 In the

case of square G(s) and maximal rank K , ' phis turns out to be the familiarr
k`

constraint	 '•r
j

14 det G(s)	 = 0'.

In general, the condition for the results given below to extend to the

rectangular (and polynomial) cases is that the root-locus map be non-

21
degenerate for XKr .	 Again in the cases treated below, this amounts

to:	 det G(s)	 0.

[ PC-'.'

I
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2. Statement of the problem and main results.

Consider the feedback system of Figure 1, with

i

u E IItm 	 y E ^m

G,(s) E IR(s)
mxm

, strictly proper,	 with det Go (s)	 0 r

t KE3Rmxm^	 aEIIt+ t

r	 u	 y
F _	 G o (S)

J

K

i

Figure 1.

The open loop system G.(s) is assumed to be linear, time invariant and finite

dimensional. If {N(s),D(s)} 	 is a left coprime factorisation of G,(s), the

the open, respectively closed loop characteristic polynomials are given by
{

OLCP(s) = det [D(s)] (l)

CUP (s,a) _ det [D (s) +	 N(s) K] (2)
k

r

and both are related by the return-difference 	 determinant

r(s,a) = det [ Im + X G(s) K] (3)
#
9

CLCP(s,a)

OLCP (s

As the feedback gain X varies, the closed loop poles are given by the
E _
r

algebraic functions si (a), defined as the zeros of the closed loop characte-
°.

ristic polynomial. The root locus is the locus of these solutions as a runs
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through the positive real line [O,coJ.
I

A graphical estimation of the loci, very simply stated, should allow

one to answer the natural questions	 (i) where do the loci start

(ii) where do the loci end ; (iii) how do they behave in between.

In the present setting (K(X)=XI), the answer to the first two questions has

been known for some time and is the same as in the SISO^casa : the closed

loop poles start at the open loop poles and move to the open loop zeros.

However, only in answering the third question does the precise meaning of

this statement.become clear. The behaviour of the root loci in between the

initial and final points is estimated by means of a number of rules and the

most important rule predicts the local behaviour at the poles and zeros }
More precisely, it predicts the angles of approach and departure at the

finite points and also predicts the asymptotic directions.

I

M

1. .

k



CLCP(s,g) - E cj 
gi

As stated earlier the main tool used in analysing the branching

behaviour is the Newton polygon, Consider the closed loop characteristic

polynomial, where X is substituted for 1/g :

CLCP(s,X) . det [D(s) + X N(s) K

CLCP(s,g) - det [g D(s) + N(s) K

cij gi sj	(5),

C	 with CLCP(s,g)	 1/am CLCP(s,X)	 (6).

Instead of the expression (5), it is also possible to express the CLCP at

any point of interest s, as

Yew .

1

Definition 2.1.

The Newton polygon of the closed loop characteristic polynomial at

the point s, is the polygon obtained as the •convex hull of the points (i,j)

where i and j are the exponents of the nonzero terms c j gi (s-s,) j in (7).o

iDefinition 2.2.

The Newton boundary is the lower boundary of she Newton polygon.n

As an example consider the polynomial J

{. r(s,g) _ s 3 + s
4 g 3 + s g + s2 g 2

+ s g4 + g 3	 g2 (g)

`. s Denoting the exponents of s and g by s

and g respectively, we get at s-0, the

f Newton polygon and boundary (thick lit:O
:,. of Figure 2.

°
SW / SE

g

E Figure 2.
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The Newton boundary determines the leading exponents of the Puiseux

expansions the SW boundary corresponds to expansions of (s,g) around (0,0), the

SE boundary to expansions around (0,-). More precisely, the negative reciprocals of

the slopes of the line segments of the SW and SE Newton boundaries yield the branching

patterns of the arriving and departing branches_ respectively, at the poinf`s,.

In the example above there is one second order And one . -first order pattern

for the arriving branches : s 2 '^ ± a. r 9 s3 'L S g. There is one first1,

order pattern for the departing branches	 s4 N Y leg ti Y X

Definition 2.3.

The McMillan polygon of a transfer matrix G(s), at -a pole-zero location

s„ is obtained as convex hull of the points (m-,6p - c), where m is the

size of G(s), 6p the polar degree of s, and ci the maximum content at s, of

the [ixi] minors of G(s).	 o

For the definition of the content of a rational m t i a d it	 1hia r x	 n s re ations	 p -.

with the McMillan structure we refer to [19,20,22]. Recall that the following i

simple relationships hold : let Ql denote the McMillan orders of s„ arranged

in decreasing order (for a pole Q is positive, for a,zero a is negative),

Thus the polar degree and the zero degree are given by }

o	 aap	 ^	 of (9)i s. t . Q
i
 >0

z	
i s.t. 6i <0 5

r
The i-minor content satisfies

-,

ci _ X i
	 Q, (11)

5	 j=1

(	 whence	 _ 6Z
	

6; - cm (12),`°

i

I. - tey..

ti
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Definition 2.4.

The McMillan boundary is the lower boundary of the McMillan polygon. e

As an example considerthe 4x4 transfer matrix, whose McMillan form at a,

is given by	 1/(s-s,)

G(s) 
tiso	

1	
(13)

(s-s°)2

i	 k

The polar degree is 1, the zero degree

is 3 and the contents are : co 	 0,

cl = 1, c2 = 1, c3 = 0,	
4 = 

- 2.

The McMillan polygon and boundary

(thick line) are shown in figure 3.

y^

Before stating the first result, we recall the simple null structure

assumptions that were used in several papers [7,11,17], in the course of

deriving computational methods for the evaluation of the exponents and

coefficients of the leading term in the Puiseux expansion. Around the point

s	 it is shown in . [7,11,17] that, as far as the asymptotic expansions of

a.

t	 the root loci is concerned, the system is equivalent to a block diagonal

'matrix
Q1 1/sil	 -

Q2 1/s it
	

K.

E G. (s) K ny	 (14)0

i
QZ 1/s Z

provided the matrices Q have simple null structure. It is easy to see (cfr.

section III) that the above equivalence also holds at finite pole-zero

locations
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G, (9) K ti	 (15).

	

a.	 .

QZ(a-s,)iz

Theorem 2.1.

The branch pattern of the root loci at a pole or zero (including

infinity) consists of a superposition of,Butterwortfi patterns, with orders

equal to the McMillan orders at that point if, and only if, the matrices Qi

which arise when block-diagonalizing-the transfer matrix as in (15) have

simple null structure. Furthermore this condition is generically satisfied..

proof	 cfr. section III	 a

The above theorem determines those conditions under which the orders

of the Butterworth patterns formed by the branches at a pole-zero location

correspond to the McMillan orders. Explicitly, it shows that the simple

.null structure conditions not only are sufficient, but necessary as well.

In view of the definitions above, Theorem 2.1 also can be interpreted as

giving necessary and sufficient conditions for the Newton and McMillan

boundaries to coincide.	 €

As an immediate consequence of the semicontinuity of the Newton boundary,

the following important result holds.

r Theorem 2.2.

The Newton boundary of an invertible system, subject to a full rank

f feedback

	

	 x	 omatri is contained within the McMillan polygon of the system.

Theorem 2.2 thus gives a priori bounds on the possible branching

patterns which can arise when the conditions of Theorem 2.1 are not satisfied. z

For the example of Figure 3, all additional Newton boundaries are given in

3.
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Figure 4. Indeed, for a given McMillan structure it can now be investigated

which of the possible Newton boundaries actually correspond to some feedback

system. A conjecture in this spirit-has been made by Owens (11) for the

asymptotic branches of the root loci : " The mx;m linear, time-invariant,

invertible system G(s), having McMillan orders Iq	 {nit...,nm) at -, can

only have zeros of orders equal to arithmetic me-ans of s!-hse',s of N."

This conjecture, however, turns out to be too strong. The fcllowing example

shows that different orders are possible

2

z	 Z

z I	
G(s)	 4	 where z formally represents s-s, in

z	 0
expansions at s,, or 1/s at m.	 (16)

The McMillan polygon and the

Newton boundary for the scalar

feedback matrix XI 2 are shown

in figure 5. Clearly, the	 j

pattern (2,3) is not obtained

as an arithmetic mean of (1,4).

g
Indeed, in general the following

Figure S. is true
1

Corot Zary 2.3. j
i

For a given McMillan structure, every possible Newton boundary, in

the sense of Theorem 2.2, corresponds to some invertible linear system G(s)

subject to a scalar feedback XI 	 o
m,

Corollary 2.3 shows that the class of possible Newton boundaries is much	 j

wider than the one suggested by Owens. Returning to the example of Figure

4, Corollary 2.3 guarantees the existence of systems that havethe Newton
a

t^)
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boundaries of the diagrams I through 9 of figure 4. For example

i 1	 z.-1	 0	 0	 1	
Z-1	 0	 0

0	 0	 1	 0 0	 0	 1	 0
01 0	 z	 0	 z ' G9 0	 0	 0	 z (17) .

0	 0	 0	 z2 0	 z	 0	 0

For the general construction of these examples we refer to the proof of the
r

corollary in section III. At this point it is worth remarking that the 3 ,.r

existence of so-called"noninteger order" branch patterns is in harmony with

this analysis.	 In particular, in this case the end points of aline segment

with noninteger slop will have integer coordinates for which there will exist

a number, equal to an integer multiple of q, of p/qth order patterns, where

t	 p and q are coprime { cfr[2])
x

Instead of fixing only the McMillan structure and varying the transfer

matrix, the following more practical problem can be considered: 	 for a given

transfer matrix, which Newton boundaries correspond to some choice of the

feedback matrix?	 A first result in this sense was stated by Kouvaritakis

and 3haked [ 7].	 In the present terminology, this may be stated as:
M

Coro Z Zary 2.4.

For any system, the McMillan boundary is attai.,able as the Newton boundary ?

through an appropriate choice of the feedback matrix. 	 o
i

In section III, it will be shown how this result easily follows from the

proof of Theorem 2.1, and that it holds for both finite and infinite
a#

branches of root loci.

The next result formalises the intuition behind the conjecture made

y^

by Owens [13]:
a

i
,x
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Corollary 2.5.

When the 9yacem is diagonalisable by a suitable choice of the feedback

matrix and by constant similarity transformations, then branch patterns

correspo-riding to arithmetic means of the McMillan orders are attainable

through an appropriate choice of the feedback matrix. 	 a

Some hypotheses on G(s) are necessary in order that the above result holds,

as the example (16) shows. Clearly the transfer matrix (16) is not diagonal-

isable by constant tran§formations. A.straightforward calculation shows that

only the patterns (1,4) and (2,3) are attainable, e.g. the straight line of

figure 3, corresponding to the arithmetic mean (5/2,5/2) is not attainable.

On the other hand, the conditions of Corollary 2.5 are not necessary

as the following example shows. Consider

z	 2
z

G(z) _	
(18).

0	 z3

The McMillan polygon is shown

in figure 6. Although the system

is not diagonalisable, both

g	 the patterns (1,3) end (2,2)

Figure 6.
are attainable.-	

i

	To conclude this section we will show how the above results simplify	 *'

in the case of scalar systems. Due, to the linearity of the CLCr with respect	 }

z	 z	 to the feedback gain, the

6"
d'

`	 z	 p	 McMillan polygon reduces to
s

one line segment. As .' a result	 I

&	 g	 the Newton boundary always

F

Figure 7.	 must coincide with the McMillan
t	 -
f

^;	 r
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boundary and the root loci always branch according to the McMillan orders.

Furthermore, poles and zeros never coincide, which is also reflected in tEe

McMillan polygons of figure 7 : the boundary is either downsloping for a -,

zero or upwardsloping for a pole.

'this simplicity of the McMillan polygon for scalar systems ultimately

accounts for the existence of necessary and sufficient conditions for rules such as}

(18 j	 1. the center of gravity rule :Z si M	 -	 constant
A

i

2.	 the product rule 	 T7 s i (A) n+	 a

to hold. However, one can easily generalise the sufficiency of these rules

using the McMillan polygon.

Proposition 2.6.

r'	 The center of graNrity of the root locus remains fixed if the system

has m zeros at infinity, each of order at least equal to 2.	 o

Proposition 2.7.

In order for the product of the closed loop poles to vary propor-

tionally to Xm it is sufficient that there are m poles at the origin, each

of M?Millen order at least equal to 1. 	 c

In appendix A, it will be shown how some further insight can be gained Jf

from the McMillan polygons. As a specific application, propositions 2.6

and 2.7 will be proved in appendix: B. Finally appendix C will introduce a

further	 boundary,	 investigate itsnotion, namely the principal 	 and	 relation-

ship with the Newton boundary.

1

f

f

y
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3. Proofs of the main results.

Theorem 2.1.

The branch pattern o f the root loci at a pole or a zero (including

infinity) consists of a superposition of Butterworth patterns, with orders

equal to the McMillan orders at that point if, and only if, the matrices Q 

which arise when block-diagonalizing the transfer matrix as in (15), have

k

	 simple null structure. Furthermore this condition is generically satisfied.

Proof
t

(i) Sufficiency.

The closed loop characteristic polynomial satisfies
r.	

CLCP(s,X) = r(s,X) • •OLCP(s)	 (21),

or after a change of variables X 1/g
i

CLCP(s,g) = det[ g I m + G(s) ]	 OLCP(s)

	= r(s,g) ' OLCP(s)	 (22),

In (22) we set, for notational convenience,

G(s)	 G,(s) K	 (23).

Of course the McMillan structures of G(s) and G.(s) are the same. Expanding
r

the first factor in the righthand side of (22)

CLCP (s 4) = OLCP(s) ' gm + OLCP(s) • tr{G(s)] • g 1 + ..

+ OLCP(s) • det[G(s)]	 (24).`

At the point of interest s„ the OLCP can be written as

OLCP (s) _ (s - s,) p • p ( s)	 with p(se)	 0	 (25).

_	 Recall also that the zero-polynomial satisfies
k	 '^

zG (s) _ OLCP(s)	 det[G(s)]	 (26),

]
a
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Again, at the point of interest s ° , this can be written as

0

zG (s) - (s - S.) 6
;

• q (s) , with q (s ° ) #P

In (25) and (27), 8p and 8z represent the polar, and zero degree of se,

respectively. Substituting (25) and (27) in (24) gives

e 	 e

CLCP( s,g) - (s — se )^P • p(s) . gm + ... + (s — s,)az•q(s)

From	
P(se) 0 0 ,	 q(s e) 0 0 `]

it follows that the Taylor expansions

p(s) = Fi=0 p i (s - s ° ) i 	, (f (s)	 Fj-0 q j (s -s	 (29)9 I

have non zero leading coefficients J

po	 0	 r	 qe	 0 (30) .

s - s°
Part of the Newton diagram of s	 .

equation (28) hence looks as

r
in figure 8, where (.) stands

(O,dZ)
for the exponent associated

with the variable (.)	 Since
p _

g	 we are investigating the local

Figure 8.
behaviour around s=s ° , g=0,00

only the lowest points in the diagran,.are ofinterest. In view of (30), the}

lowest points on the lines 9=0 and g=m are dZ and Sp, respectively. This

fixes the initial and final points of the Newton boundary.

Next we will compute the lowest exponents in (s- se) along the inter-

t` mediary lines g = 1,... ,m-1. Consider the return-difference

r(s, g) _ gm + tr[G(s)] 
gm-i+

... + det[G(s)]	 (31).

From (21) or (24) it follows that in lieu of the CLOP, we may also use the

x

a
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return-difference (31) to compute the lowest exponents; i.e. the difference

of degree in (s -s,) between (24) and (31) is fixed and equal to dp.

Now, consider the Laurent expansion of (23) at s,

G(s) - G1 (s - s,)^ l + G2 (s - s,)^ 2 + ...	 (32),

with	 -0 1 < 
-.a

2 <	 ...

Uur determination of the lowest degree terms in the characteristic coefficients

"	 ri[G(s)],	 i=l,...,m,(here ri (T)	 is the coefficient of	
n-i 

in det[&I - T],

so that r i [G(s)] is the sum of the principal i-minors of G(s) ) is identical
i
3

to Owens method of dynamic transformations for computing the asymptotic

directions [11]. Owens showed that the local expansions of G(s) are the same
a

as the expansions for
;

L(s- so) T 
l 

G(s) T	 (33),
{

where L(s- s,) is a unimodular "left dynamic" transformation which preserves

the structure of G(s) at (s- s.), or equivalently has no poles at s, 	 (for

asymptotic directions s- s._is replaced by 1/s). T is a constant similarity

transformation. Briefly this result was derived in the following way

consider

E	 det[gIm + G(s)] = det[ gIm + L(s- s,) T 1 G(s) T L-1 (s - s,)	 (34)•

E
By;Schur's lemma, the local expansions of the root loci of G(s) and

a
^^

L(s- s,)T 1G(s)T, at s, coincide	 (cfr [11],formulas	 (38)...(45); it is

however our belief	 that at most one dynamic transformation is needed. That

is, in the equation (38) of [11],	 the effect of the left transformation

cancels and in fact only the effect of the right transformation is actually

used). Recall, the essence of such dynamic transformations is that by

suitable choice of T and L(s- s.), the Laurent coefficients

E	 y +^
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{ G1, G2 ,	 }

may be put into upper triangular form

Ql 0 0...	 Q2 K fit...	 Q4 K K ..

0 0 0	 0 Q3 0	 ,	 0 Q5.K	 ,..	 (35)
0 0 0	 0 0 0.	 0 0 Q6..

In order for the transformations to exist, however, the blocks 
Q1' Q3' Q6 9 " t

are assumed to have simple null structure. From (35), it is now clear

how to construct the lower boundary of the Newton polygon. Let

rank [Q1 ] - p 	 , rank [Q3] - p 2 , etc.	 (36)

Along the following vertical lines we get as minimal ex-,ponents

B = m' pl --^-0 s - s, _ - al pl + dp

s-s,g = m pl - p2 --^ s - s, _ of pl - Q2 p2 + 6p
	 (37)..

r

(0	

0)Z,

The corresponding Newton

- - — — — — — — — (m,	 °) diagram is shown in figure
p

-alp 1 9.. At this point the a

d relationship between the
^

-^2p2 Newton and the McMillan_Q
3P 3 - I

r boundary also becomes 	 i

Figure 9.
.clean. As is shown by

Vandooren et al [191, the rank increments pi of the following Toeplitz

matrices

G 
	 G2 G3 Gz,

G  G2

= `1,2,...

Gl
Z
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determine the McMillan structure of the system .(23) at (s- s.) . Explicitly,

the McMillan structure is given by

-Q	 a	 -a	 -Q
diag	 { (:3 - S.)	 1, ... , (s - so)	 1,	 (S - S.)	 , ... r (S - S o)	 2 ^ .. }

P I-times	 pi-times	 (39).

Under simple null structure assumption the rank increments p i , are, however,

equal to the ranks p i introduced for the Newton boundary, since the Toeplitz 	 a^

Matrices ( 38) take on the special formfY° 

^) 	 1Ql 0	 0	
Q2 -X
	 Q4 K

0	 0	 0•	 0	 Q 3 0	 0	 QS 0

0	 0	 0	 10	 0	 0.	 0	 0	 Q6

Q	 0	 0	 Q2 
K

0	 0	 0	 0
	 0 3 0

0	 0	 Oj	 LO	 0	 0	
a

a

4l 0

	 0	 (40).'
i

0	 0	 0

0	 0	 0

F.	 In terms of the contents of the rational matrix G(s), it also follows ([171)

that
-

ca(Gpi ) 	 Ql pl = - 61 pl
(41)•	 Y	 #

c,(Gp1+p2 ) _ - Ql pl
 - a2 

p 2 = - ctl pl - 
a2 p2

Along the vertical lines corresponding to the abscisses m-pi,  the Newton

and the McMillan boundaries coincide. Since these points are the vertices

F
N
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of the boundaries, they have to coincide entirely. Note that.indeed,only the

vertices of the linear segments of the McMillan boundary were considered..

Whether or not an intermediate integer point (i, j) corresponding to some non

zero coefficient cij actually occurs on such a line segment cannot be inferred

from (35). However, as far as the oiders are concerned, those intermediary

points are irrelevant.

Finally, we should also remark that due to the property

dp ` F -ai < 01 v
i P i (	 (42) .

it follows that the McMillan boundary has to touch the g-axis.

(ii) Necessity.

Recall that Owens method of triangularizing the system matrix

inductively considers higher order terms in the Laurent expansion. Suppose now

that at some point in this algorithm, say at the k-th Laurent term, the

submatrix Q t does not have simple null structure. The transformed transfer

matrix at this point looks like

11

i
i

i
-F

diag { Ql , Q2 ,	 , QZ}

f where Q Z can be put into Jordan form

QZ	 1

J1	 0 1
where QZ has full rank and J i	•1

Z	 0 y

Clearly, the rank of 
Q 

satisfies
Z

PZ dt - i Z	where dZ stands for the size of QZ	 (43)

r
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From the results of Vandooren et al. , it follows that the vertex of the

McMillan boundary will occur

	

z	 at the abscis corresponding

to p t . However, no nonzero

principal minors with the

0
McMillan content exist. By

convexity of the Newton polygon

	

/	 the Newton boundary hence must

g
lie above the McMillan boundary

	

Figure 10.	
as is shown in figure 10.

ar	 '
raw 1

(iii) Genericity

First we shall make precise what is meant by generic. Intuitively, this

means that almost all systems have this property. Algebraically, generi,city

is defined in the following way. Let Em
9p
 denote the set of all systems

with m inputs, p ouputs and McMillan degree n. By passing to the Markov, or

Hankel, parameters

i
G(s) = I	 H s_i
	

(44)
ii=1 

we get a new parameterization of 
Em9P 

viz. we think of G(s) as being
n	 a

determined by the string

G	 1' 2'	 2n 
E

	

	
a

of pxm matrices. A generic property is then a property P for which the

set Sp of systems which do not have P is defined by polynomial equations,i.e.

'a
HG E SP	 <=> fk ( HG ) - 0	 (46)

f	
for some set of polynomials fk . For example, the property that the (truncated)

Er

'
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Hankel matrix
n

HG 	 Hi+j-1 ^i,j=l

has rank n is a generic property. And, the simple null. structure hypothesis

is also generic in exactly this sense. Since the zero set of a set of.

polynomials has empty interior, a generic property holds for an open,

'	 dense set of systems, 	 e

Theorem 2.2.

The Newton boundary of an invertible system, subject to a full rank

feedback matrix, is contained within the McMillan polygon of the system.

Proof

The proof of the second part of Theorem 2.1 shows that the McMillan

boundary forms a lower.boundary for the Newton polygon. Since the Newton

polygon is convex and since the initial and final points (0,62);(m,6p) resp.

are the same for every Newton polygon the result follows immediately. 	 o

Coro IZary 2.3.

For a given McMillan structure, every possible Newton boundary, in

the sense of Theorem 2.2, corresponds to some invertible linear system G(s),

subject to a scalar feedback XIm.
a

Proof
s-s°	

Gonsider a McMillan polygon
(0162)

as in Figure 11, and suppose

d 3 	 S3P1	 we want to find a system whose
------	 (m,6

p
S 2	dl S1	Newton boundary is given by

i	 the _segments Si of figure 11.

g	 Formally the segments S i are

Figure 11.	
defined as those subsegments i

7

E	 a
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t
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1	 •'

1	 •• z -om-1

1 n

(47)
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of the Newton boundary that link points with integer coordinates. Each segment

is characterised by a dimension P i and by a degree di . Consider the transfer

matrix

Myw

t	 ^^

1
ia

.;j

l	 _Z
where

P .+•P	 -1

ni	di + F i i+1 6	 (48).
J=Pi+l

In words we take a matrix with McMillan terms just off the main diagonal.

Per segment we introduce a term to adjust the degree of the corresponding

E	 block, such as to agree with the change in ordinate along the segment.

It can be checked that
f

1. The matrix has 'McMillan structure (al . a2 ,	 , gym)

2. The matrix (47) has the Newton, boundary corresponding to the

I
segments Sig,

Corollary 2.4.

Through an appropriate choice of the feedback matrix, the Mc.:illan

boundary always is attainable for every system.

As in the proof of Theorem 2.1, we will againapply the algorithm

{.
{	 -

k
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of Owens, nacrely triangularise the system by dynamic transformations`

G(s) ---0 L(s - s,) T-1 G(s) T	 (49) .

If the matrices Q  occuring on the block diagonal (cfr.(14)), have simple

null structure, then the Newton and McMillan boundaries will coincide. So

suppose that for some Laurent coefficient GV the submatrix Q  does not

have simple null structure. Explicitly, the dynamic transformations and the

transformed system matrix take on the forms

L1 4	 } r

L =	 ,	 r = p l+ ...pl-1	(54,)
L2 I^ r } m-r

H'
	

H21
LTlGT - 	l(51),

H	 H
3	 4

where the entries of the first r rows, below the diagonal, have a degree in
h

(s- s.) that is sufficiently large to be irrelevant in the local analysis
ri

around the point s,. The lowest degree term in H 4 is by construction

M	
QZ (s - s,) z	 (52)	

a

i

Multiplying (51) on the right by a suitable permutation matrix
z

[ I r
K=(5)	

I
_	 3

D	 K

will render QZK simple null. Furthermore, since

_1	 H2K
LT-GTK

3 
x4x

9

it follows that the properties of the first r columns are not changed,

therefore the inductive hypothesis of the algorithm is maintained.
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It remains to check that the permutation matrix (53) corresponds to a choice

EE
E	 of the feedback matrix. This, however, follows from the constancy of the

entries of the similarity transformation T
'y	 w

L(s - s.)	 -1 G(s) T K	 =	 L(s - s,) 
T-1 

G(s)	 T	 (54) ,

where

t^	 TKT-1	
o a	

e 

m,

CoroZZw -y 2.5.

When the system is diagonalizable by a suitable choice of the feedback,

w	 matrix and by constant similarity transformations, the	 branch patterns

corresponding to arithmetic means of the McMillan orders are attainable

through an appropriate choice of the feedback matrix.

Proof
a

z	
By assumption

(s - s o)
-Q1

ti	 T-1G(s) T
	 '^ '. (55)•

so

Cr
(s - sa) - m

-61 <	 <	 -Qm
i

i

{{{	 First consider the case where Butterworth patterns do correspond to

the McMillan orders, except for two patterns of orders CrZ and a	 that are to be
K

replaced by two patterns of (CZ +a- k) /2 -th order. This is achieved by permuting
a

the corresponding entries in (55), which becomes after reordering

(s - s,)
i

• 0 	 (s	 s,),Z (56)
(s- s,)-ak	0.

':

.,	 o

(s ^- s,)	 m__
t
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It is easily checked that the matrix (56) has the desired Newton boundary.

The permutation: matrix P corresponds to a feedback matrix

K - T  T-1 	 (57).
1

In general the transfer matrix (55) can be put in the form

diag {Q1 , Q,	 ...	 Qq }	 (58) ,

{

^., where
Q1

0	 (s - s,)-

t
Qi

_Qi j
qi-1i

(s - s ° ) -agi	 0

# by some permutation matrix, which corresponds to a feedback matrix according

to equation (57). The Newton boundary of the system (58) has segments,that

correspond to branches of orders equal to the arithmetic mean of the

McMillan orders that occur in the blocks Q 1*	 o
e

Remark.0

For notational simplicity the system was assumed to be diagonalisable.

It can be checked, howe^.-3r, that it is sufficient that the off diagonal

terms have a degree in (.; -s.) 	 is high enough, such as to be of no
ix

.which

importance in the local analysis. From the results so far it can be seen that,

Rt for instance,max { d
z
°, S°}, certainly is an upper bound.

p

Ex

'"
L,

^^ a
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APPENDIX A : Some further properties of root loci.

1. The asymptotic behaviour.

The results of section II can,be specialised to analyse the asymptotic

behaviour of a strictly proper, invertible system. The McMillan structure at

infinity is defined as the McMillan structure at the origin'after'performing

the substitution s • 1/z ({20],[22]). As in ([ll]), the Laurent expansion

reduces to a Taylor expansion in,the variable z

G(z) = G1 z + G2 z 2 + ......	 (59)1

where the G  are the usual Markov parameters. Because of the pioperness of

the sytem, there are no poles at infinity,i.e.6 - 0, which is reflected

in the absence of negative powers in (59). fin terms of the McMillan polygon

z
this implies that there is no

SE boundary. A typical 'McMillan

polygon is shown in Figure

12. From this diagram it is

clear 600 poles must go to
9

infinity, for all full rank

Figure 12.	
feedback matrices. y

Uniform rank systems are defined by the generic condition that the	 4

first term in the Laurent expansion must have full rank. As a result the 	 v'

z	 (0,d°D)	 McMillan polygon collapses to 	 #y
z

a straight line. The Newton	
a

I

boundary hence coincides,for
1

9	 all full rank feedback matrices,	 j,y

Figure 13.	 with the 'tcaillan boundary

f	 °^
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illustrating the robustness of , uniform rank systems.-

a

183

2. Branching behaviour at finite poles and zeros..

s-s° A typical McMillan polygon at '±
a.
z a finite pole-zero location

is shown in figure 14. Non-
i

coincidence of the Newton and

McMillan boundaries	 not only
a

I

implies that the branching

f

R
G Figure 14. behaviour is different from

t .
the one predicted by the McMillan orders, but also implies that the

total number of branches can be less than V t V. Indeed, a factor ( s- s°)

with i equal to the distance of the Newton boundary to the g -axis, is

common to all coefficients and hence
t^

CLCP(s,8) _ (s- s, ) i p '( s ' g) (60).

As a result there is a fixed point of multiplicity i 	 i arriving and i

t departing branches disappear. In Appendix C	 we shall return to this

i

.^_ phenomenon.

j
r

F

C
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APPENDIX B : Proof of propositions 2.6 and 2.7

Before proceding to the proof of the propositions, recall that in

section II two Newton diagrams, nl. one for g and one for 1/g, were combined.

In the same way, we can combine the Newton diagrams for s and 1/s. For

strictly proper systems, this gives rise to a Newton , polygon as in figure 15.

n	 The NW-boundary corresponds

NW

	

	 to the asymptotic behaviour

(zeros at infinity). The

SW boundary corresponds

to the arrival of the root

SWSE ¢	 loci at the zero s=0, and
M

_	 m	 the SE boundary to the
z

	

Figure 15.	 departure at the pole s-0.

Proof (Center of gravity and product rutes)

i
Because the open loop system is assumed to be strictly proper, the

n s `—	 CLCP will be monic in the
t

variable s. As a result a

necessary and sufficient

f	 condition for the center of

gravity rule to hold, is that 	 l;

the coefficient of sn-1 does

{	
g	

not depend on X. This is
1	 m	 i

	

Figure 16.	 depicted in Figure 16 : the k

'

	

	 upper shaded area should not intersect the Newton polygon. A sufficient_

condition for this to be true, clearly is that the NW boundary of the

k.	 . ^q



q
:r not less	 than 2 (1).	 a

.a

it

t

t

}

r 7;

E

E
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McMillan polygon , which contains the Newton polygon, has a slope at least

equal to 2.

A necessary and sufficient condition for the product rule to hold, is

that the coefficient of s° only depends on X m . This condition again can be

displayed graphically the lower shaded area of figure 16 should not inter-

sect the McMillan polygon. A sufficient condition for this to be true

clearly is that the SW boundary is absent and that the SE boundary has a

slope at 'east equal to 1.	 G

Remark

The conditions of propositions 2.6 and 2.7 are only sufficient. In

view of the results of section II, these propositions could be rephrased

as': "A necessary and sufficient condition for the center of gravity

(product) rule to hold, for	 all full rank feedback matrices K, is

that the open loop system has m zeros (poles) at infinity (s-0), each
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APPENDIX C	 The principal polygon.

Consider again the return difference
t
3

det(g Im + G(s) )	 gm + tr G(s) gel +	 + det-G(s)

Each coefficient constists of a sum of all principal minors bf a certain	 4

dimension. The relationship between the McMillan and Newton boundaries hence

can also be explained in the following way : if the i-minor content of G(s)

at s, is c,(Gi ), then generically some principal i-minors will have a

F	 ` content c,(Gi). Furthermore, generically no cancelations will occur when
t	 ,

summing these principal minors. As a result both boundaries gorierically

coincide and the two phenomenon that can cause a difference between the
{

boundaries, are :(1) the content of every principal minor is smaller than 	 p
f

ti
the i-minor content,(2) cancelations occur when adding the principal

minors.

Definition C.1 ([20,22])

The content of a rational function g(s) at s=q, is : +k, if g(s)

has a pole of order k at s=q -k, if g(s) has a zero of order k at s=q. -o

Definition C. 2.

The principal i-minor content of-a rational matrix G(s) at q,

denoted b	
i

y pcq {G ), is defined to be the maximum of the contents at q of the

principal i-minors of G(s).	 a

Definition C.3. 3

The principal polygon of a transfer matrix is defined in the same way

as the McMillan polygon, but replacing contents by principal contents. o 	 !'
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Definition C.4.

The principal boundary is the lower boundary of the principal polygon.o

Proposition C.1.'

The Newton boundary is contained within the principal polygon.

proof

	Follows immediately from the-introduntary discussion.	 o

Remark

Unlike the McMillan boundary, the points generating the principal

	

boundary need not in general lie on the principal boundary. 	 o-

The importance of the principal polygon is that, for low dimensional

systems, it allows one to estimate the Newton polygon by hand: one

only has to scan through the principal minors. We emphasize, however that in

accordance with (2) quoted above, the actual Newton boundary might be

different from the principal boundary. As a result the principal structure

cannot predict the number of fixed points of the root loci, as one might have

thought (see also [24], esp. pp. 26 and 56). The following example

illustrates this: consider

w

	

s 2 /(s+s,) 3	 1/s	 0
G(s) _	 1/s	 0	 _1/s

0	 1/s	 D

with 2
s

det[gI+G(s) ]	 g3 +g
2
	+ g(1/s2 _ 1/s

2
 ) + 1C(s+s,)3

(s+so)3

_	 1	 [ (s+s,) 3g3 + g 2 s 2 + 1]	 1

{s+s,)3

and
CLCP(s,g) _ s 2 [ (s+s,) 3g3+ (3s,+1)s 2g2 + 1 ]

i
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In Figure 17 the Newton and the principal boundaries are shown. From inspection

of the Newton boundary it follows that there is a fixed point, s 2 =0. This

fixed point is, however, not predicted by the principal boundary.

To summarize, the principal polygon can be helpful to estimate the

Newton polygon and this estimate will be better than the McMillan

polygon. However, the principal structure is not invariant under

multiplication by the feedback matrix, nor need the estimate actually

coincide with the Newton boundary.

s

i

,^ Q	 Newton	 8
j z 	 p

i	 a

	principal 
g	 i

Figure 17.
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ABSTRACT

A necessary and sufficient condition -ror simultaneous

stabilization has been obtained for an r-tuple of m input p output

plants under the restriction 	 r <	 m+p	 , min(m,p) = 1.	 In particular

F if	 r	 <	 m+p ,	 a generic r-tuple is stabiliza ble and if r = m+p,only

t̀
a semialgebraic set [2] of plants is stabilizable. The general case

p^,

min(m,p)	 >	 1	 can be vectored down to -the above case so that in

general a sufficient condition 	 " r	 <	 max(m,p) "	 may be written

down for generic simultaneous stabilization. This generalization

supports special cases due to Saeks et al	 [6] for m=p=1, r=2

and Vidyasagar et al	 [12] for max(m,p) > 1, r=2 	 .

4

ti

J

7

i

i

x



be arbitrarily large but finite and

is an open semi-algebraic subset of
no
S is dense in S, so that simultaneous

min (m,p) =l , r < m + p.
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1

We consider a set of r real,linear,time-invariant,proper

dynamical systems,each of a given fixed Mcmillan degree ni , i-1,r with m

inputs and p outputs and ask the f0 lowing question:

When does there exist a non-switching, m input, p output

real,linear,time invariant,proper compefisator of arbitrary large but

fixed. Mcmillan degree q, which stabilizes each of the r given plants ?

in this paper we give an answer to the above question for

min(m,p)-1 and r < m + p . In fact an r-tuple of m n(m,p)> 1 plants can

be vectored down to the min(m,p)-1 case ( as shown by Stevens [101) so

that in this way one obtains a sufficient condition for generic,simultaneous

stabilization given by ' r < max(m,p) '. This inequality however has also

been derived by Ghosh and Byrnes (5]. Note that one can use this inequality

to prove corollary 4.3 due to Vidyasagar and Viswanadham [121 on a result

about the generic stabilizability of a pair of multi input-output plants.

ii	 »

Coming back to the case m n(m,p) -1, we topologize the set 'S'

of r-tuples of plants in the topology-of section-2. If q is apriorily fixed

we know that (see [4] ) the set b' of r--tuples of plants which admit a

stabilizing compensator is an open semialgebraic [2] subset of S. A

semialgebraic set is a finite union and intersection of sets defined by

algebraic equations and inequations, and it is a classical result by Tsrski (11]

and Seidenberg [91, that the property of being semialgebraic is preserved by

a rational map. Indeed it was a pioneering idea of Anderson et al [11 to

apply these concepts in system theory and show that the set of plants

which can be stabilized by some non-dynamic compensator is an open

`semi-algebraic subset in the space of all plants.

In this paper we allow q ti
n.

show that for min(m,p)=l, r < a,+p 	 S

S. Moreover for r < m+p , we show that

stabilizability is generic for the case

a
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Without any loss of generality, we assume that m > , p. Consider

an r-tuple of 1 x m plants to be stabilized by an m x 1 compensator. In

section 4, the solvability of the generic simultaneous stabilizability problem

has been shown equivalent to a problem of interpolation by rational

functions. These problems have been described in section 4 as PR1 ,PR2,PR3.

Indeed we have the following general theorems :

ORIGINAL PAGE IS
Theorem 4.1	

OF POOR QUALITY

Undef-generic hypothesis (3.5), an r-tuple (r < m+l) of

1 x m plants is generically simultaneously stabilizable.

i

a

f k
f	 ^^!F

Theorem 4.5

Under generic hypothesis (3.5), an r-tuple (r = &r l) of

1	 x	 is	 simultaneously stabilizable plants form a semialgebraic

set.

Theorem 4.7

Under generic hypothesis (3.5), an r-tuple (r 	 > m+l) of

a

1	 x	 m plants is simultaneous ly stabilizable iff the problem
e

1

PR3	 (see section 4,case III ) has a solution.

The above theorems have been proved by using an interpolation
j

result due to Youla et al	 [14,corollary Z,ppl65] referred to i n this paper $

as "Youla's lemma". Notice the important distinction between r < b+1 and

r	 > m+l. This might be expected from the necessary and sufficient condition
derived in [5]. As an illustration of the results obtained in section 4,

we consider in Example 4.6 the case r=3,-..i=2,p=l and obtain the semialgebraic 	 _

set of stabilizable plants.

o

In section 5, we 'analyse the case m = p	 1. For r : 1,

ofco*arse the problem always has a solution. For r - 2 the statement of

corollary 5.3 can be used to describe the semialgebraic set of plants that

may be stabilized by soma 	 .is reproves results due to
7

Saeks et al (8], Vidya_agar et al [12]. For r 	 >	 3, the problem of My

simultaneous stabilization reduces to the problem of existence of a

}}
i
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stable,minimum phase compensator as described by corollary 5.4 . Thus a

necessary condition for simultaneous stabilizability of three single input

single output plants may be obtained (see theorem 4.8) and we have the

folklore example 5.5 of a triplet of simultaneously unstabilizable single

input single output plants every pair of which, however, may be simultaneo-

usly stabilized. (see [15))
N	 .

2. BASIC SET UP AND NOTATIONS

For details about the basic mathematical set up, the reader

is referred to Vidyasagar et al [12],[13], Saeks et al [7],[8] and

Desoer et al [3]. The following notations are used ;

H . Rung of all Stable rational functions with real coeffici
J	 Set of multiplicative units in H.

F . Quotients field of H [ 6, pp 88-90]

C+ a Closed right half complex plane.
R+ . Non-negative real line including infinity.

As per the above notation, H is az integral domain and the

class of single input single output unstable systems considered are the

elements of the quotient field F of H.
Thus every single input single output plant can be written as

n/d where n,d E H. An r-tuple of m input l output plant of Mcmillan degre

n ran be written as

[ npl)/ d p	 r(2`/ dp 	, .,...	 n(m)/ dp 	J	 (2.1)
i	 J	 i	 i

where np i) _, dp	 E H , and Mcmillan degree of n (i) , dp < n ,i,1,2,..,m

]

NJ-1,2,	 ..	 r. Hence an r tuple of plants may be topologized in	 IR for

N	 r ({ n+l)	 ( m+l) - l ]. ( see	 [5] for details.	 ) y

A 1 input m output compensator of Mcmillan degree q can be

# written as
4

[	 n (1)	 / d	 n(`) n(m)	
d	

I 	 (2.2_)% d
C .	 c.	 r,.

J

,
c 	

C.	 cj
1

3
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where n (i) , do E H and Mcmillan degree of n (i) , d o < qj	 j	 j	 j
i . 1,2, ..., m	 j	 1,2,...,r. with the restriction

n (i) / d 	 n(i) / , d	 J,k-1 , 2,...,r	 (2'.3)
C °k	 Ck

For notational simplicity, we define the following quantities

Fix integers r,m and s, 1 < s < min (r, m+2)

Let nlj)	 npi)	 •	 T1(m+l) = dp

	

j	 j

j-1,2,...,(r-s+1). Define recursively the following

(i)	 (1)	 (i+l)	 (1)	 (i+l)
ns1 , j ° ns 1-1,1 ns 1-1, j-1,j 	

n45 1, j•+•1 ps
-
1,1

(m+1) 	 (1)
nsl.j
	

nsl 
1,j+1 s,-1

where,	 ^s p ns
1
l) 1,1 ^s

1
 -1	 ^l	 1	

(2.4)

1 

for all,	 i	 1,2,.....,m ; s l 	1,^,.....,s	 j - 1.2,....., r-s+l .

4#

x

3. THE SIMULTANEOUS ST%BIL:ZATION PROBLEM

Following Vidyasager et al [13], a necessary and sufficient

condition for simultaneous stabilization of r plants given by (2.1) by a

compensator (2.2),(2.3) is the solvability of the Equations

M	
Vi i ) (i)

6

Z n	 n	 + d	 d	 =	 A.	 (3.1)
i=1 Fj	 °j	 Fj cj

(i)for dcj , ncj -E H	 and	 A. E J ; for all i	 1,2,...,m;
.i

J	 1,2,...,r	 with the restriction (2,3) x

In the notation of (2.4), the equation (3.1) may be written

as
..1

ORIGINAL PAGE IS
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Y (i) n(i) + m+l	 o(i) ^(i) + Q	 . 0	 (3.2)s,j	 s ,j	 s ► 	 s,j	 s
is	 i r1+1

where r  - m-s+2 ; j	 1,2, ,.,.. , r-s+l

and the condition (2.3) may be written as the following

n (i
l )	 (il)	 (i2)	 (i2)

Ya ►51 ^ Ys +j2 	 1,2,.... ► rl and Os ►
jl / ^SI j 2 ' i

2 ^ rl+l,...tm+l-

are the same for i t , i2 in the respective domains and for a fixed

Ji ' 32 ( 1 4 ji'j2 < r-s+1 )	
(3.3)

By (3.1) we have the following

SIMULTANVUS STABILIZATION	 w a Y S ij E H;	 AM E i
W

Aj E	 J	 satisfying	 (3.2),(3.3) for	 swl	 (3.4) x

The purpose of this section is to show that (3.4) is true for

all	 s	 1,2, ..., min(r,m+2) 	 under the following generic assumption

For a fixed s, such that	 I <	 s	 < min(;r,m+2)

rl
(1)	 and. ^ (1)	 have no root in common in C+	

for every 	 2 E {1,2,...S. j	
1 jf

jj1s, 2

••. r-s+l }	 jl	 "	 j 2	
(3.5)

f

Note that is particular for r < m461 , s =	 r 9
(3.2) is just a single equation as opposed to r

equations in (3.1) .	 We have the following Lemma

L'EMM'A 3.1

Under hypothesis	 (3.5), the set of equations	 (31.2),(3.3' has

a solution for j = 1,2 for	 Y
(i) ,	 A (i ^ 	 iff	 the equation	 (3,6)	 given
s.J	 S,j

below have a solution for sorp 	G	 A!	 E	 Ys y^	 E	 H.

(1)
E.s nJ,l

r

(l)	
1	 M(1)	 (i) 	 (1)	 (i)n (l)
	

+	 E,	 Ys'l	 I ns,l n S,2	 11	 'ts'l )	 (3.6)Es S,2
i= 2

El	 "(i')	 (11(1) n(i)	 _	 n O	 r( i )	 }#+
zrl^a	 s,l	 s,l	 S,..	 s,2	 s,1 j

I

s^	 {

`. 4

..;, I
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THEOREM 3.1

	

Under the generic hypothesis (3.5), a yet of r, 'l k m plants	 1T

is simultaneously stabilizable by a non-switching compensator iff (3.2),
(3.3) have a solution for y (i) i - 1,2, ...	 rl and A(' ) i- r1+1,....

, j	 j,.., m+l	 Vs - 1,2,...,min(r,m+2).

Proof

We prove this theorem by induction over s. Note that the
s

theorem is true for s = 1 by (3.1) Assume that the theorem is true for

some s. To prove the theorem for +1, the strtegy is as follows

Consider the par of equations defined by (3.2) for j-1

and j = 
j 
	 1 < jl < r-s+l . There would be or-s pairs of equations

and by lemma 31, each pair can be reduced to a single equation (of the

type 3.6	 Thus under the generic hypothesis 3.5 the set of equationsaYP (	 ))	 8	 YP	 (	 )	 q

(3.2) is equivalent to a set-of equations obtained by replacing s by

s+l in (3.2) upto multiplication by a stable,minimum phase rational

function.

4. THE INTERPOLATION PROBLEM

Our result on simultaneous stabilization (Theorem 3.1) can be
F	

posed as an interpolation problem. We pose the interpolation problem for

each of the following cases seperately
a

Case I	 ( r < m + 1 )

Choose the maximum value r cf s. From (3.2) rl m-r+2, j=1

so that (3.2) may be written as

F
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s ^	 `

iff

4

	(1) (1)	 r	 (i){i)	 (1) M

	

Ys 1 So l1	 [ i E2 YS ' l ns' 1 + irl+l ^s l ns l + Dls ]

Since Yell E K , wY4t have the following interpolation problem

PR 1
I

(4.1)

ORIGINAL PAGE IS
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+	 (2)

1

l	
(i) + E

Z	
{i)	 A(i)

[ iW3 
YS,1 ns'l	 i-r +l S

o l ^ 
(i)

S o l	 l ^s	 ns,l

at those points so E 
C+ 

where ns ll vanishes.

•.. #

i

Proof of Theorem 4.1 ( Solution of PP. 1 )

.Assume, 4l = 1 tlm 	1 i - r l+1,	 m+1,

Ys i i	 1 i - 3,4, ..... r1

The problem thus reduces to obtaining-V(2 ) E H which_interp

olates a symmetric set of complex tuples. It is therefore sufficient

to choose a real polynomial Ys2) of sufficiently large degree,

COP( LEAFY r•.'

A sufficient condition for simultaneous $eneric stabilizati-

on for min(m ,p) > 1 is given by r < max(m,p)

Proof
Giver, a set of r, p X m ( m ? p, say) transfer functions, with simple

poles, G1' G2....,Gr	
plant Gi has the decomnosttion

Gi =	 E	 1j
j =1

j
where n is the Mcri.11an degree of Gi , T. is a rank one matrix of order

P X m and nl ,1.2 4.. in are the ,poles of Gi . Now consider an ariitr

ary non-zero 1 X p rector v such that v.T1 ¢ 0 d i=l,..,r; j=1,..,n1-a 11s^.
a —

consider the a,apping Gl 1—+ Gi __ v' G d 1=1 ' ' • r

Since G constitute a set of r? 1 X m plants they can be

eneric n ll y simultaneou c]v 5tabili 7nINle b, some co ensator if

r < max(m,p) + 1 ( By Theorem 4.1). Moreover the generic: condition in

Gi pulls back to that in C4• Finally (see [51) any r tup,le of pi^:rts have,
k.

a constant gain output feedback K such that the closed loop systems have
i

d;stinct simp le poles.	 ;[
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COROLLARY 4.3 ( Vidyasagar,Viswanadham [ 12 1 )

A pair of max(m,p) > 1 plants is generically, simultane

y stabilizable.

Proof	 Immediate from corollary 4.2

Case I I	 ( r	 m+ 1)

Choose the maximum value r of s. Hence s r	 m + 1

rl	 1, j = 1 and (3.2) may be written as

Y (1)	 n(1)	
+ mE A

(1)	 11 (1)	 d S	 0	 (4.2)
m+l,l m+1,1	 i=2	 m+1,1 ''m+l,l 1 m+l

Since	 E H , we have the following interpolation problem

1
a

PR 2	 " Find Q (2)	 E J, which intersects
m+1,1

E	 m+l

E A 	 + p	 ] / n(2)
i 3 m+1,1.	 sc+l,1	 1	 m+l	 m+1,1	 1

Y

x{

at those points s 0 E C
+ 

where 
nRr+l,1 

vanishes

Solution of PR 2

We wart conditions on the plant parameters for which PR 2

has a solution. First of all we consider the following lemma j

t

LEMMA 4.4	 ^..

+	 Let C 1 ,F2, t 	E H be giver and let s l , s 2 , ... ,st
E C be a symmetric set of • complh numbers. Teen 3 Li

such that
1	 -^

0	 j=1,...,t	 (4.3)	
+

i=1 susj

i

1
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if and only if, 3 non -zero real numbers rl 1 , r2 1 , ...... ,rt l 	such that

ti
1

	

E	 r 1
	

_	 0	 (4.4)

	

1-1	 i	 i SMS

Vhere s
31 

E { s
l 

, 3 2 , " " . st 
} n R+	 such that ri

i 
1 has the

same sign for fixed i and Y J1

Proof
Writing (4.3) as

tl

pl

	

ISMS	
E 0 	 / ^ 	 (4.5)

	

j	
i=2	 s-s

j

it may be concl-ided that (4.5) holds if and only if 3 Al E J , which

interpolates the points	 t

E	 C	 E;. /	 )	 (4.6)
isL i 1	 1	 SO

S 
By Youla's lemma [14] a necessary-  and sufficient condition is givers by

the following	 j	 tl
1

	

3 ^i i=2 1 ...,t 1 such that rl	 - E pi 
E/ 1 s=s.	1-2 	 L	 J l

have the same sign, d j l such that sj E {sits2, ....... r

l
S	 } n	 P,{ ^^	 (4.7)t

From the condition (4.7) we -have

	

	
a

tl
L2	 _ rJ11 •rl - E pi E J / ^2	 sus	 (4 ' 8)	 }

s-s,	 - 3	 j	 F

We 'apply Youla's lemma repeatedly and	 the proof follows.

PROOF OF THEOREM 4.5
1.

g

We now obtain tl-" solution of the interpolation problem PR

By Lemma 4. 4, i% i, c ._ar -V'.-.at a necessary and sufficient

Condi tion is the existence or on-zero revel nu: bers ri 1 such that;'.
t
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m+l

E	
rj l	 n(i)	 +	 r3 1	 ^

rf'

i	 m+l,l	 m+2	 m+l
b	 (4.9)

1.-2	
Sys

jl

h V	 j l	 such that	 s.	 E	 { s., ' n I	 ....	 , s t )	 n	 R♦ ; where s i E C+
1

such that,	 no) ,1	 ( s i )	 =	 0	 (4.10)

k̂
P

and where for a fixed	 i , ril has the same sign for all jT

'	 Let us define	
e	 e	 e	 e

1	 (2)	 2	 (3)	 m	 (m+1)	 m+l
V ( s )	o	 L	 ^.-1)	 nm+1,1'(-1)
	 nm+l,l ,. .	 ,.,(-1)	 nM+1X1' (-1)	 ID+l]

,rf.
It is now straightforward to show the following (see [4] for details)

r SIMULTANEOUS STABILIZATION	 -,,-%	 9	 integers

el ,	 e 2	 ....	 em+l	
such that all the vectors

V(s. )	 (s .	 as defined in	 4.10) have at least one
^1	 ^1

(4.11)
negative component.

The above condition clearly defines a semialgebraic condition.

4
J

EXAMPLE	 4.6

For nr-2,p= 1 , r=3 consider the triplet of plants

[ n 1 /d	 n2 /d	 j,f_ n1 / d	 n2 /d	 M n 	 /d	 n2 /d
P 3P1	 P 1	 R1	 P1	 P2	 P 2 	 P2	 P 2	 P3	 P3	 P3 e

n l ^d	
n2 

^d	 X 
nl 

^ d	 2 ^ d 	 X n 1	 2

n c	 c2	 c3^dc3	 nc3/dc3 ^'

i
3
aC 1	 c 1	 c1	 c 1	 c2	 c2

2 ,
r

i.e.	 n^	
/.dc	

=	 n^	 /	 do	 i	 # j	 s = 1 ,2;	 i	 jE{1,2,3}
w

i	 1	 J

For simultaneous stabilization we need to solve the equation (see (4.2)

n	 +	 n	 +	 n	 6• K
1	 13	 2	 2321

for	 0	 E	 J	 6	 E	 K
w

1	 2

_	 2
=

9

nP	 np,	 -n p 	 nPwhere	
nij	 i,j

V

and	 K	 _	 dPl `^ 23	 +	 dP2	
"^1	

+	

dF3	
nl`

a
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Let s1,s2 , s3,,....,st be the set of points in R + where

K vanishes. By (4.11) the set of simultaneously unsrabiliaable plants is

given by the following condition

For every triplet e l , e2 , e3 E { 0,1 }

e	 e2	 e3

	

(-l) l

 

'n 21 ) > o , (-1)	 n 13 (s t ) > 0 . (-1)	 T32(st) > 0
3	 !	 1

	for some t1 E	 {1,2..........t}

f

Case III	 ( r > m + 1 )

p'R

Choose the maximum value m+2 of S. Then (3.2) reduces

to
m+l O M

E ^m+2 nm+2 3 + 	j %+2 r o	 (4.12)
i^l	 '

where we have normalized G^2 k to satisfy.,

L1 (i)	 u(i)
M+ 2,j	 m+2,k	

d i	 1,2......m+1 and j,k E {1,2,..,r-m-1}

i

From (4;12) we may now state the interpolation problem as

follows

^^ (2)

	

FR 3	 Find 6
m+2 

E J which intersects

;m+1
[ - ^j ^m+2 - E am+2 nm+2, j /n 2,j
	

(4.13)
i 3

+
at those points s0 E C	 and only,those in the closed right hal

	

plane 	„	 nm+2, J'
(1)	 vanishes	 d j _ 1,2 ...... r-m-1

_ where

Proof of Theorem 4.7

Imu-•di ate from the arcument given abOve.

f=
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Note
A solution of PR 3 would involve finding a stable, minimum

phase rational function, 	 6(2)	 ,
which intersects the graphs of r-m-1

rational functions, given bv (4.14) as specified in the statement of PR3

In particular, since 
A(2)is 

stable we have the following

Theorem 4.8 (Necessary condition)

A necessary condition for simultaneous stabilization of r .

plants [r > m+p ,	 min (m,p) = 1] is given by the existence of non-zero

real numbers	 ri l 	such that

m+l	 jl	
M

jl

•	
E2	 ri , j nm+2, j	 + rm+2,j	 ^m+2 (3)S=S

.	 j
V j - 1,2,	 ...	 r-m-1	 1

V j	 such that	 S O)1 E	 e	 and	 n	 (( 1)	 s (j )) - 0
j.	 1 m+21j

and where for a fixed ' i'	 rj^ has the same sign for all j,

J,	 defined above	 and for a fixed j,	 r
2,j	

has the same sign for all a

j l	 as defined above.

Proof )
Straightforward and follows from the proof of Theorem 4.5

(see	 [4] for details)

S.	 THE SINGLE INPUT SINGLE OUTPUT CASE

The case m--p=1	 has been studied extensively by Saeks et al 5

[7], [8] 	 and also by Vidyasagar et al	 [12]-. For our purposes we restate

Theorem 3.1 for this special case and reprove as corollaries, some of the

results known. Refer back to the plants and compensators in the notation

of (2.1)	 ,	 (2.2) and (2.3). f

'a
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Theorem 5.1

For m x p = 1, SIMULTANEOUS STABILIZA"ION	 c->

" the following set of e4uations in H, has a solution for A i E J

i	 1,2,....,r	 and n (l) , do E H
1	 1

r > 2)	 Al nl i + A2 n21	 Ai 11 12 	 i=1,2,... ,r-2	 (5.1)

r : 
2 , n(l) 

1121 + dp 	 dp 
Al	(5,2)

1	 2	 1

( r = l) n0) `11 0 	+ d^ dp = a1	 (5.3)
1	 1	 1	 1

where	 nij '= n (1) dP . 	n(l) dP i 	i ^ j	 (5.4)
J	 3

Proof

The proof is immediate from that of Theorem 3.1 (see [4] for

details)

^ '•1

Coru'llary 5.2	 ( Saeks et al [81 )

A necessary and sufficient condition for a pair of single

input single output plants to be simultaneously Ztabilizable is given by

the following condition

" dp / dp	 has the same si gn for all sOE R+
2	 1 s 	 0

where n21 
vanishes

Proof

Writi ng (5.2) as n(l)( dP Al - dp ) / 1121 and

	

1	 1	 2	 t

using the argument of Theorem 4.5 the result follows.

Corollary ,5.3	 (Assume r > 2)
Let p i , i=1,2,...,r be generic plants (satisfying (3.5))

with co rime representation	 `I 1	 There ,, 	ere  	 a corpep	 ',^_nsator ►vni ct,^
Pi
	 pi- 

simultaneously stabilizes the r plants ^i,i'=1,..,r iff there exists a

y
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stable, minimum phase dynamic compensator 	 p 2 / A	 which places the poles
of	 n2,'/ nli	 at those points in	 C+ 	where	 nis v.nishes and places thes

y

rest of the poles in the left half plane. d 	 i • 1,2,...,r-2

Proof
a	

1

'	 Imrjediate from (5.1) and section 4 case III.

Note	 Even for r=3	 the existence criterion cf a stable, minimum

phase compensator satisfying the above condition is not known.

t

A

Example 5.5

In this example we construct a triplet of plants which are

stabilizable in pair but unstabilizable simultaneously.

Let	 s+	 1	 s+	 3	 s+	 A
.	 p1 .	 p2.	 P3. ^1

s-	 2	 s-	 1	 s+	 B

From Corollary 5.2	 and Theorem 4.8 the required algebraic conditions

f	 which A,B need to satisfy may be constructed. The choice A--1.1,8--4.5

satisfies these conditions. The details have been omitted.

6. CONCLUSION

1

This paper addresses the question of simultaneous stabiliza-

tion under the restriction min(m,p)-1, r < m+p. A sufficient condition for

simultaneous stabilization has been obtained by using these techniques,

for the general case min(m,p) > 1.The case min(m,p)-1, r > m+p still

remains open. Future research might be in the direction of finding an

appropriate necessary condition for mi.n(m,p) ? 1. 4
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17.	 APPENDIX I

R Proof of Lemma 3.1

Scaling (3.2) for j=1,2, with	 A	 _ -1	 and by a slightly

tedious but straightforward algebraic manipulation the following set of

equations have been obtained c '•'
at

r	 m+1

Y (1)	 I	 -	 ^	 Y (1)	 n (i)	 -	 E	 ^(i) 
n ti)	 )	 n(1)

Sol	
9.1 (I1)

j 8,1 s	 i=2	 311 1;W•+1	
s,1	 s,1

1
a

Ys,2	
W(s)	

=	 Ysil	 ns1S	
i = i,.. .... rl (I2)

bsi2	 W(s)	 ^s^	
nsllS	

i	 rl+l,.....,m+l (13)

where,	
rl ^

!i w(.)	 _	
(1)	 (i)(1)	 M(1)	 W

ns^ 2 +
E2	

YS,1	 [ ns^l	 ns ,2	 -	 ns ^ 2 	 ns,l I

`

s	
i=2

m+1+	 £	

d(i)	 (1)	
O	 (1)	 (i)

[	 T1S ^ l	 ns ^ 2	 -	 ns ^ 2	 ns ]	 (I4) tS'l	 1i-ri+l

x

Sufficiency

By 	 3	 Y ii	 E	 H	 i-2,3,.. , rl; Asii E	 H	 i-rl+l, ... ,m+I a
i

which satisfies (3.6)

From (I2),(I3)	 and (.3.6) we have

1' Ysi2	 -	 Ysii	 A-1 	E	 H	 i=1,...,rl (15)

}` 0(i) 	 A (i)	 1	 E	 H ; i-r +1,.....,m+l
s- 9 2	 s,l	 1

(16) a

^S"j E ^"+provided
ETo show that	

Y(11r
H , let s^ E C+	 be such that

S'_

ns11 (s^)	 0	 From (I4) and(3.6)	 W(s0 )	 0 and
•

r	 m+l
l

'(1) (i)	 (i)MMw(s) 	 n	 i-	 E	 Y	 n	 -	 E	 o	 n	 ]	 (17) 3
s'2

0	 s	
i=2	

s,l	 s ' 1	 i-r1+1'
	 8,1 8'1

Ff By generic assumption (3.5),	 ^(	 0	 so that
^
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_	 1 (i){i)	 _	 (i)	 (i)^a	 1=2
E Ys.l ns 9 l	 i=rl+l

EM AW 
ns,l^	 ^ 0 (I7)

B s
0

G By (11)•(17) y(	 E Hall

Necessity	 .

Assume that (3.2) has a solution. Define 	 by (3 . 6). We

•want to show that G E J

•	 Let r'0 E C+ be such that	 ,.

►.	 Tls 1 (s0)	 0	 (18)

`Since by assumption 'y	 E H, we have the equation I7 from I1. By (I8),S,l
(I7), and (3.6) W(s ) = 0. Let	 E C+s	 be such that ^ (s ) _ 0. If s> 1

(I3) ♦ either W(s l) =0 or	 1 Gsi2 ( s1) = 0. However since Asi2 E i
i

we have W(s l)	 0 . If s=l, on the other hand ^s ( sl) cannot vanish

by definition. Thus we conclude that G E H

1
To show that G_1 E 1 H we proceed as follows

Let s2 E C+ be such that W(s 2) _ 0. Then either ^S (s2) _ 0 or

_ 0 for if not by (12), (I3)ns,l (s2) 	 j

Ysi(fi^` 0	 3 = 1 1 .... , rl	 (19)

G 
s'ls'^
(i) (	 0 1	 z

1
 +1,....,m+l	 (I10)
 ^	 1^

However by (3.2),(19), (I10) we have G j(s2) 0 which is absurd since	 ?

A 
j 

E J. Hence 67
1 

E 8
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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

The "simultaneous stabilization problem" - in either discrete or

continuous time - consists in answering the following question:

Given an r-tuple G1 (s),...,Gr(s) of p X m proper transfer

functions, does there exist a compensator K(s) such that the closed-

loop systems G1 (s)(I + K (s)G1(s)) '1,...sGr(s) (I + K(s)Gr (s))-1 are

(internally) stable?

As pointed out in [ 131, this question arises in reliability theory,

where G2(s),...,Gr (s) represents a plant. G 1 (s) operating in various
modes of failure and K(s) is a nonswitching stabilizing compensator.

Of course, for the same reason, it is important in the stability analysis

and design of a plant which can be switched into various operating modes.

The simultaneous stabilization problem can also apply to the stabilization

of a nonlinear system which has been linearized at severalequilibria.

Finally, it has been shown [14], [201 that to solve the case r- 2 is

to solve the well-known problem considered by Youla et al in [21]: When

can a single plant be stabilized by a stable compensator? This corres-

pondence also serves to give some measure of the relative depth of this

problem.

In order to describe the results obtained via this correspondence,

we need some notation. First, set n i - McMillan degree of Gi(s). In
the scalar input-output setting (m- p- 1), we regard each

2n 	
Gi(s) as a

point in It i+1 , viz. if

Gi (s) =p i ( s)/q i (s),  where

ni 	ni 1 ni
pi(s)-aoi+... + an is , and gi (s)=bli +...+bnis	 +s

i

n

PREOEIjiNG pang RLANW NOT FILMED
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+1......	 ithen G (s) corresponds to the vector '(ao	 ani ,bli'" .,b
ni) IR i,

Moreover, since pi and qi jare relatively prime, this vector lies

in the open dense set Rat(n i) c IR	 (see [ 31 for the strictly

proper case). In [14], Saeks and Murray used the techniques of fractional

representations [ 81 and the correspondence mentioned above to give

explicit inequalities defining the open set

U c Rat(n1) X Rat(n2)

^. i

of pairs (G1(s),G2(s)) which are simultaneously stabilizable. In

[20] Vidyasagar and Viswanadham showed, using similar techniques, that

provided max(m,p)> 1 the open set U of pairs (G1(s),G2(s)) which.

can be stabilized is in fact dense.

This can be made precise by topologizing a point Gi (s) in the set

n
{p X m Gi (s) ; degree Gi (s) - ni}

>P

as a vector in IR (ni+1)(mp)via its Hankel parameters: If

Co
Gi (s) = L Hips-j

J.0

then Gi (s) corresponds to the n +1 p X m block matrices 
{H i0'" .'Hi,n+l}

which determines G(s). It is known that 
"n	

is an _(n(m + p) + mp)-manifold

2	 5	 1 h h thi i of i ortant here '+that is(see [ 7 ], [l J  [ ]). a t oug	 s s n	 mp

important is that IID.p is a topological space.

One of our main results concerns the generic stabilizability problem;

that is,

Question 1.1. Fix m,p,r, and ni . Is the s et U of r-tuples
ti

G1(s),...,Gr (s) which can be simultaneously stabilized open and dense

Gnl x .. X ^nrin m,P	 m,p
x	 -;

i

f:
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It is also important to ask, for reasons of global robustness of

algorithms finding such a compensator, for compensators with a fixed

degree of complexity.

Question 1.2. Fix m,p,r, and ni . What is the minimal value of q

(if one exists) for which the set W  of r-tuples which can be simul-

taneously stabilized, by a compensator of degree 6 q, is open and dense

inn 
1 P 

x ... x Lnrmp

It should be noted that, in the case r- 1, Question 1.2 is an
outstanding, unsolved, classical problem. In this paper, we prove:

Theorem 1.1. In either discrete or continuous time, a sufficient condi-

tion for generic simultaneous stabilizability is

max (m,p)	 r	 (1.1)

Indeed, if (l.l) holds, then the generic r-tuple can be stabilized by

a compensator of degree less than or equal to q, where q satisfies:

r
q [max(m,p) +1- r],

	

	 ni - max(m, p )	 (1.2)
i=1

'

	

	 In the case r - 1, it is unknown whether generic stabilizability

implies generic pole-assignability; that is, whether or not these

properties of m',n, and p are really different (see [ 4]). Perhaps

t	 not surprisingly then, Theorem 1 . 1 follows from:
i

1

4

4

k

^k
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Theorem 1.2. A sufficient condition for generic simultaneous pole-

assignability is (1.1), where the compensator K(s) can be taken to

be of degree q satisfying (1.2).

Here, simultaneous pole -assignability means the assignability of

r sets of self-conjugate sets of numbers Isli ,...,sni+q,i } c ^.

In fact sharper bounds on q can be obtained (see [18], [11]). Our

proof relies on the recent pole-placement techniques derived for r- 1
by P.K. Stevens in his thesis [18], which contains an improvement on

existing results in the literature, see also [ 9], [17]. We shall prove

Theorem 1.2 only in the strictly proper case; the proper case involves

more technical arguments from algebraic geometry which can be found in

[11]. We shall, however, give an independent proof of Theorem 1.1 in

the nonstrictly proper case, based on'the equivalence of generic stabili-

zability and existence of a solution to a generic "deadbeat control"

problem, which we can solve if (1.1) is satisfied. This argument

extends the argument given in [ 4] for the case r 1 and q -0.

Note that if r- 1,  then (1.1) is always satisfied in which case
(1.2) implies

-6

Corollary 1.3. (Srasch -Pearson [ 2 ]). The generic p Xm plant G(s)
of degree n can be stabilized by a compensator of order q, where q

satisfies

f

(q+1) max (m,p)	 n	 (1.3)

If r- 2 and max(m,p) >1, then (1.1) is again satisfied, so we" 	 {
obtain rather easily:

J



l

Corollary 1.4. (Vidyasagar-Viswanadham [20]). If r- 2 and max (m,p) > 1,

then the generic pair (G1(s),G2(s)) is simultaneously stabilizable.

R	 Moreover, in this case we know an upper bound on the order of the

required compensator. For example, if m. p 2, r- 2, then q can be

taken to satisfy

q 3 n  +n,, - 2

On the other hand, in [20] the explicit conditions defining the closed

set

Cn1 X cn2 - U

m, p	MOP

of pairs not simultaneously stabilizable were derived. Such conditions

can be derived from our proof, but instead we refer to [10], where

Theorem 1.1 (excepting (1.2)) is proved by interpolation methods also

yielding a set of explicit conditions in the range r < max(m,p).

Finally, we prove that the condition (1.1) is sharp in the following

sense.

1̂1

,^	

4 1

1

1

Theorem 1.5. If .min(m,p') . 1, then for fixed m,p,r and n  the following

statements are equivalent for proper plants:

r
(i) q E IN satisfies q (max(m,p) +1-r)+ a	 ni;

=1

(ii) the generic r-tuple G1(s),...,Gr) is simultaneously

stabilizable
 degree 

	 in discrete or continuous time by a compensator

1.	 1

(iii) thep	
i

generic. r-tu :e G1(s),...,Gr(s) is simultaneously

stabilizable in discrete or continuous time.
f

a
x
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In the strictly proper case it follows that (i)-(iii) is also

equivalent to generic simultaneous pole assignability. This holds in

the proper case as well, but requires a separate argument [111.

Corollary 1.6. If min(m,p) - 1 and r <, max(m,p) then tht^ generic

r-tuple is simultaneously stabilizable by a compensator of order

precisely given by the least integer q satisfying (1.2).

As a further corollary, we obtain one of the results obtained by

Saeks and Murray in [ ], see also (151:

Corollary 1.7. (Saeks-Murray). Suppose m -p- 1 and r -2. Simultaneous

stabilizability is not a generic property.

We remark that these results hold also over the field C of

complex numbers - in particular, the complex analogue of Corollary 1.7

dispels a folklore conjecture concerning simultaneous stabilization

using compensators with complex coefficients.

Finally, over any field, the method of proof of Theorem 1.2 gives

linear equations for a compensator simultaneously placing r(n +q) poles

when the generic hypothesis is satisfied.

2.	 POLE PLACEMENT AND THE GENERALIZED SYLVESTOR MATRIX:	 A PROOF OF
THEOREM 1.2

In this section we proceed to prove Theorem 1.2.	 Note that

Theorem 1.1 and Corollaries 1.3 and 1.4 follow immediately in the

strictly proper case from this theorem. Without any loss of ge^nerality

we can assume that	 m >, p, for, if	 K(s) tstabilizes	 G (s)
tthen	 K (s)
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stabilizes Gi(s).

Suppose, first of all, that p w 1, so that we are given a bet of
r, m input l output plants of McMillan degree 4 n represented as

	

n k 
i	

n k i	 n k	 i
Cj 1p'splis 	

i
=0 .i	 , 0.0.0.0.... , in0p°p-1T36 (2.l)

Lopm+

n k	 i	 n 
k	 i	

n k	 i
i

	

pis 	 i apm+pis	 i Opm+p,is

for k -•1,2,...,4. A 1 input, m output, compensator of McMillan degree

4 q is represented as

	

i	
L	 i	 L	 i

1-0	 3
alis
	0 	

am+ l is

	j

o..+Pi'i 
	 i 0am+pis	 i 0am+pisi

Note that in (2.1) and (3.2) the coefficients p hi V k and aji

has been defined up to a nonzaro scale factor. Moreover, for a strictly

proper plant or compensator, p
jni 

= 0, ajq . 0 d j _ 1, .... m+p - 1, k = 1,.0 .,r.

The associated return difference equation, det(T + K(s)Gk (s) . 0

is given by

TVs)	 ill[ilopji
k si 	

a isi(2,3)

V k = 1,2,...,r

A generic r-tuple of plants define a mapping X, via equation (2.3),

between the plant parameters and the coefficient of the return difference

polynomials given by

	

	 a

r



. 	
..	 ..	_ 

	 ^'

.. mow•
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p0	 .	 .	 .	 .	 . pn

P

P4	 P n.X (A0,...,Aq) 	 (Af),...,Aq) . (25)

Po	 Fn
t

where
{

s

Ai	 (ali p a2i '	 •..	 , am+pi ) (2.6)

1	
1	 r

pli	 pli,
	

pli

Pi
l	

2	
r

p21	 p21.
	 .	 .	 . p 2 (2.7)

1	 2	 r
pm+pi	 pm+pi.	 pm+pi

The matrix in the right hand side of (2.5) is classically known as j

the generalized Sylvestor matrix and is of order 	 (q+1) (m+p) X r(n+q+1).

For	 r= 1	 its rank has been analyzed by Bitmead, Kailath, Kung in [ 1 ]. i

In, particular, for a generic plant, it is known to have full rank. For
1
f

r 41, we have the following:
:.	 a

Lemma 2.1.	 The generalized Sylvestor matrix is of full rank for -a generic

r-tuple.

i

a

Proof : , See Appendix I.
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Lemma 2.2. Assume min(m,p) - 1. A sufficient condition for generic
pole assignment, for an r tuple of strictly proper plants by -a proper

compensator is given by

231

r
(q+l)(m+p _r) a L ni-r+l

iml
(2. 8)

r
e	 a.^

Proof: We prove this Lemma assuming for notational convariarce that

ni . n d i = 1, ... ,r and analyze the mapping X as defined by (2. 4)

(2.5). Assume

am+p, q' -1 , pm+p , n 
= 1 d k = 1,

and that the coefficient of sn+q in all the r return difference

polynomials (2.3) has been normalized to 1.

Thus a sufficient condition for generic pole assignment is that X'
	 g

is onto. Here the mapping	 a

	

X'	
IR(q+1) (m+p) - 1 ,} 3R (n+q)	 (2.9)	

I

is given by

PO .	 . . . pn

PO	 pn

X(AO,...,Aq_,A'') _ (Ao,... , Aq_,A1)	 • po	 pn	 (2,10)

.:	 p0	 pn

i

where

A' _ (a a,...,a

	

q	 lq 2q	 m+p-lq

and pi is obtained from pi by deleting its (m+p) th row.

i
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By Lemma 2.1 the matrix in the right-hand side of (2.10) is of

full rank for a generic r-tuple of plants, and has the order

(q +1)(m+  p - 1) x r(n +q).  Therefo-ce , a sufficient condition for

generic pole placement is given by

(q+1)(m+p)-1 : r(n+q)	 (2.11)

which is same as (2.8) for n  - n d i -1,

The proof of Theorem 1.2 now proceeds by a redtiction to the case

min(m,p) - 1, which has been treated in Lemmas 2.1-2.2. This procedure,

which is called 'vectoring down", is adopted from the case r -1,
studied in P.K. Stevens thesis [181.

Lemma 2.3. Given an r-tuple of p xm plants Gi (s) of degrees ni,

each with distinct simple poles, there is an open dense set of 1 xp
vectors v E Mp such that vGi(s) has degree ni.

.7

Proof: If r -1, their we may expand G(s)

c
n Ri

G(s)	 iLl s-7+i

in a partial fraction expansion, where Xi E t and each R. has rank 1.-

Now, the set U1 of real vectors v such that vRl 40 is clearly open	 R

and dense in	 IItp. Defining U 2 ,...,Un similarly, set
n

V - n Ui. Thus, V is an open dense set of vectors with the required
i-1

property.

If r >1, one obtains, as above, sets V19 ... ,V r in 3Rp having	 4
n

an open dense intersection	
Vi'	 Q.E.D..

-

K



2
ORIGINAL PAGE (,
" POOR QUALITY

Lemma 2.4. Given an r-tuple of p x m plants Gi (s) there exists a
constant gain output feedback k such that the closed loop systems

Gi (s)(I + kGi (s))
-1
 have distinct simple poles.

Proof: For i - 1, the set W1 of K such that the closed loop system

has simple poles is the complement in M7 of an algebraic set. It

is well known [ 2] that this set is nonempty; therefore, W1 is open
r

and dense. Taking any K in the open dense set n W gives t^e
i=l i	

'

desired conclusion.	 Q.E.D.

Thus, choosing any (v , K) E IRP x 27 we have a mapping from an

an open dense set

(v, k): 
I  x ... XInP-^In X...xIn
mop	 l

(D(v^k)(Gi(s))i=] _ (vG i (s)0 + KGi(s))-1)i=1

which is rational in the Hankel parameters (Hij ) of (Gi). Applying

Lemmas 2.1-2.2 to the case min(m,p) - 1, i.e. 	 Lm,l
n x , x InM'11

gives - via composition with (D - an open dense set of

In x ... x Gn	 which can be simultaneously pole-assigned.	 3
m' p	 m:P	 Q.E.D.

3. GENERIC STABILIZABILITY CONDITION OF AN r-TUPLE OF PROPER PLANTS
A

In this section we proceed to prove Theorem 1.1 independent of

Theorem 1 . 2. We first show that the following three statements are

equivalent.	
e
.]]]]jj

b

3

1
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1. A generic r-tuple of proper plants is stabilizable with respect

to the open left half plane by a proper compensator of degree 4 q.

II. A generic r-tuple of proper plants is stabilizable with respect to

the interior of the unit disc, by a proper compensator of degree 4 q.

E
M

III. A generic r-tuple of proper plants is pole assignable at the

origin by a proper compensator of degree 4 q.

Lemma 3.1.	 I <-> II

t

Proof; Consider the conformal transformation

VS) _ (s +1)/(s-1)
	

(31)

which maps the r-tuple of proper plants gl,g2,...,gr onto the r-tuple

of proper plants g1,...,g I where gi(s) - gi (^ (s)) except for the

algebraic set of plants satisfying - "gi (s) has a pole at s= 1 for

some i = 1,...,r". The proof now follows from the two facts.

1. c(s) maps the open left half plane onto the interior of the unit

disc.

2. The mapping

r (gl, ... , gr) E--^ ( g...... g=)

$;

	

	 and its inverse, map the generic r-tuple of proper plants to the

generic r-tuple of proper plants.
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Lemma 3.2.	 lI <_> III

Proof: Sufficiency is clear and follows by an analagous argument of

Lemma 3.1 with ^(s) = s + a, a > 0, a E Bt .
F

To prove necessity, we have the following: For each r -1,2,...

(shown easily by assuming statement II and considering ^(s) -as, a >0,

a E M). 3 an open dense set of Ur of r-tuple of plants for which
there exist a compensator of degree f q which places the poles in the

interior of the disc Dr of radius l/r centered at the origin.
Consider the set

`,1

r	 ^

U=nU
q r=1	 r

Clearly, U is a dense set by the Baire Category Theorem [13]. Since

K the mapping	 X	 given by (2.4 is linear, it has a closed image. 	 Moreover,

every r-tuple of plants in 	 U	 admits a sequence of compensators which

places the poles arbitrary close to the origin. 	 Since image of	 X	 is

closed,	 U	 is contained in a set 	 V	 of all r-tuple of plants for which

there exists a compensator which places the poles at the origin.	 By

the Tarski [ 19]- Seidenberg [16] theory of elimination over	 M,	 V	 is

indeed defined by union and /or intersection of sets given by polynomial a

F equations or inequations 	 fa >0, f^ = 0.	 Finally, since	 U	 is dense
in	 V,	 f^ (U) - 0 -> fa =,0	 so that	 V	 is defined by strict polynomial
inequalities.	 Hence	 V	 is open.	 Moreover, since	 U	 is dense, V	 is >

I
u also dense.

i

Lemma 3.3.	 For a generic r-tuple	 (r 9 m+p)	 of	 min(m,p) = 1	 plants
D

. III <_> (q+1(m+p-r) 3 r(n-1)+1

i
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Proof: The only nontrivial part is to prove sufficiency for the case

r(n+q) < (q+l)(m+p) < r(n+q+l)

(The other cases follow easily from the fact that the associated.

Sylvestor's matrix is of full rank for a generic t-tuple.)

R

	

	

To prove sufficiency, for the above case we want to show that the
vector

(0,0 .......... 0 , s i ,s 29 ........ sr)

4- r (n + q) ---► 4 -	 r __..

indeed belongs to the image of X (defined by (2. 5)) for some
a1 00, 1=1,...,r.

Partition the Sylvestor 0 s matrix in (2.5 as [S 1S 2 ] where S 1 is
of order (q +1)(m +p) X r(n +q). Clearly we are solving the pair of

equations

[Ao,...,AgIS1 - [0,....,0]	 (3.2)

[Ao,...,Aq]S2 = [sl , ... I s r ]	 (3.3)

We claim that for a generic r-tuple of plants (3.2) has a solution for

a nonzero vector Aq for otherwise if Aq -0 we have

[Ao,...,A 1 ]Si - (0,...,0)	 (3,4)
G:	 q-

9

[	 where Si is of order q(m+P) xr(n+q) obtained by deleting the last
.-	 m+p rows of S	 From (3.4) (A ,...,A	 ) = 0 since S'	 .1	 0	 q-1	 —	 1 is of full

rank generically. Thus the only solution of (3.2) is the zero vector 	
x

iwhich is a contradiction since the kernel of S 1 is at least of dimension

1. On the other hand, for Aq # 0,, for a generic r-tuple of plants	
j

the right-hand side of (3.3) is a vector none of whose entries are zero.

jjEEiL i 	 _"f
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Theorem 1.1 then follows from Lemma 3.1, 3.2, 3.3 and the

vectoring down technique used in the proof of Theorem 1.2 in

Section 2.

4. PROOF OF THEOREM! 1.5

To say there exists q E N satisfying (1.2) is to max(m,p)

t	 Thus, (ii) follows from (i) by Theorem 1.1.
t

(ii) s> (iii) since .(iii) is weaker than (ii).

By Lemma 3 . 1, in order to prove (iii) -> (i) it suffices to assume

that GI (s),...,GT(s) are simultaneously stabilizable in continuous

time.

Proposition 4.1. The generic (m +1)-tuple of 1 x m proper continuous
time plants of degree n is not simultaneously stabi ,izable by a proper

compensator of finite (but not a priori bounded) degree.

Proof: Consider the domain of (simultaneous) stability

`	 ni+q

1J	 {(cil'...,cln,. , cr n )	 I ci sJ has all roots in Dl}
'	 =0	 .J

	

r	 3	 ^^

nl+q	 nr+q

and its convex hull Q(0) c IR	 x .., x IR	 Clearly, a necessary
r condition for generic simultaneous stabilizability is

J
"j

image( X n ) n om o 0,

for an open dense set of 	 Since
N

y
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r

k

n(o) c {( cij ) : cii>0}

it will suffice to prove:

Lemma 4.2. If r = m+p, then there exists an open set of r-tuples

n such that image ( Xn) contains no vector with only positive entries.

We fix the value of q and construct the associated Sylvestor
matrix S. We claim that the open set 'E of plants defined by

E 
0 

{(P0' P19' . . ' Pn)IP0-lPi b j -1,...,n has all the entries negatived

cannot be stabilized by a proper compensator of degree q.

Suppose the above is not true, then there exist n E E, such that

image( X n ) n P (a) o o

or in other words Sala >0 d i = l r(n+q + 1) and

i
a S	 a	 (4.1)

has a solution. Writing S as

S p [Sr	
S°]

F

r	 where

PO P 	 P
q

S 	 0	 PO ...... Pq_1
	(4.2)

i

and P j = 0 for all J> n

p



Equation (4.1) can be written as

1
as	 [I	

(	 S' -1 S"]	 a	 (4.3)

where	 S' -1	 is given as follows

X^	 Xl	......	 X9,``*

-1
S

x0	 ......	 Xq-1

. ..............	 ....

XO

where	 XO UP-1

_ Xr

-(P
1 

P2.	 •,Pr+1) Xr-1 Xr+1 V r=0,...,q-1
i

X 

Pj 	POlPj	j = 1,..,,q

The identity mat';ix of order	 (q+1)(m +p)	 in (4. 3) forces	 a'	 to have

all the entries positive.	 Moreaver, since 	 n E E,S' -1 S"	 has all its

entries negative so that	 a'(S' -1 S")	 has all the entries negative which

is a contradiction since 	 a	 is a positive vector.

Finally it is shown that	 E	 is not an empty set.	 For a fixed

POPO	
choose the vector 	 d	 to be so that	 P*-18	 has all its entries

negative.	 Let

m + p --=r

r

tj
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so that

(P*,P1,.., ,Pn) E E

t

Q.E.D.
+^

Remark:	 If image (	 j	 is affine h	 er lane	 then the necessa ry conditionX 	 yP	 P	 ,

image( X) C sl ( a)	 0

` of course is sufficient, i.e. implies

! image( X ) n a f 0n

This fact was used by Chen, together with

Lemma 4,3.	 (Chen	 [ 6 1)	 If	 r	 1, n(0)	 {(cl,...,c^j	 ci >'0)
I

i 	 g

to give precise conditions for stabilizability in the case

r a 1, q . 0, min(m,p) = 1, and	 max(m,p) - n - 1.	 This technique can be
adapted in the cases	 r *A 1	 to give explicit conditions - in certain

cases - defining the open set of simultaneously stabilizable plants 1

when	 r > max(m,p), see [11].

Note that Corollary 1.6 now follows from our previous results on w
the generic rank of the generalized Sylvestor matrix, while Corollary 1.7

follows either from Theorem 1 . 5 or Proposition 4.1,

t
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APPENDIX I: PROOF OF LEMMA 2.1

	

The generalized Sylvestor matrix is co-ordinatized by r(n + 1)(m +,p)	 !

parameters, and it is sufficient to show the existence of one principal

minor with nonvanishing determinant.

By reordering the rows and columns, the generalized Sylvestor matrix

can be written as

i

where

Qi ffi [P il'Pi2,•••'Pir1
	

(2)
	

•i

9

P
j0 

pjl	 Pjn	 0k	 k	 k

P (3)(q+1) jk "	 • •	 •	
r

0	 k •'• k	 k
Pj0 Pjl . . . . . Pjn

Re 	 (n+q+1) lip

i

in the notation of (2.7). Moreover, each p jk is referred to as a

'block' of S.

Define a set M of matrices as follows: "m belongs to M

provided m is obtainable from one of the matricesp jk in (3)

either by deleting the first al columns or the last a2 rows

al , a2 ^ 0.

Proposition A•1. Every element m of M has the property that there

exists a principal minor P E M of m, a coordinate pm and an integer

jm such that pmjm	 is a summand in det m where j is the order	 a
p	

m

of the minor,
S
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i

Proof: Clear from the structure of pjk•

The following is an algorithm to construct a principal minor

with nonidentically-vanishing determinant.

F

Algorithm:	 f

Set	 S * S	 ,	 Initialize	 0

1. Set_ C +1.

2. Look at	 P11 .	 Obtain the principal minor 	 m	 of	 P 11 , satisfying

± Proposition 1.	 If there is more than one possible choice, choose

the one containing the first column. 	 Define	 aE = pm	and	 j 
E = 

jm.

3. Delete the rows and columns corresponding to the coordinate	 pm	from

S.	 Renumber the blocks of the resulting matrix and call it 	 S.

(Every block of	 S	 is to be identified as a minor of the correspond-

ing block in	 S	 obtained by row or column deletion.)

4. Do the same "delete" operation as in step 3 in 	 S.

5. If	 S	 is empty, terminate.	 Otherwise go to 6.

6. Set	 k =.

Construct the principal minor	 mp	of	 S	 by choosing those elements

of	 S	 whose corresponding row and column has been deleted in Step 6.
A

Proposition A.2.	 During the execution of the above algorithm, 	 S	 can

always be decomposed into blocks belonging to 	 M.

Proof:	 Clearly	 S	 satisfies the above proposition, since each block

j
pjk

belongs to	 M.	 Each iteration of the algorithm deletes either the
a



first al columns of the first block column of S or the last a2

rows of the first block row of S. The proposition thus follows from

the definition of M.

Proposition A.3. 
M  

constructed in Step 6 of the algorithm has a

.	 nonidentically-vanishing determinant.

Proof: We prove the proposition by showing that det mp has a summand
k J

given by n aii ^ in the notation of the algorithm. This is clear,
iml

however, by observing that in the 
nth 

iteration the matrix S has a
k j 

principal minor, the determinant of which has the summand n ai
iM E

where k is defined in Step 6 of the algorithm.

0

k

i

^9
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'
0.	 Tuning Natural Frequencies by Feedback

C	 ^E

Consider a linear control system

- -
dx

Ax(t) +Bu(t)	 y = Cx	 (0.1)

A

dt
}

a

defined for	 x E 1kn ,	 with control	 u(t) E ltm 	 for each	 t, and output or

}

w

observation vector	 y EIRp .	 A, B, and C are real matrices of the

appropriate sizes. 	 The oldest problem in mathematical control theory

([ 1J,	 [ 2'1,	 [211) is to understand the extent to which linear feedback,
i

i.e. a linear function

u = -Ky, ,	 (0.2,)

can alter the dynamical characteristics of (0.1); specifically, the

d location of the eigenvalues of the perturbed system

dx =	 (A- BKC)x(t)	 (0.1)'dt

For example, a very important problem arising in applications is

whether or not a real matrix	 K	 can be found which stabilizes (0.3).

This condition is necessary and sufficient for theexistence of asymp-

totically constant output solutions to the "closed -loop" system

dt _ (A - BKC)x(t) +Bu(t)	 y = Cx,

4



k »

E

t4.
	

F

f

f

i and is for this reason part of the analysis and design of engineering

systems which generate constant motion [21]. It is also an important

problem to produce, via feedback, periodic motions of prescribed fre-

quency or to eliminate such motions ([1 ], [2 ]).

These considerations, as well as many others, motivate the follow-

ing additive inverse spectral problem:

248
I

Question 0.1 Given (A,B,C) can one find, for any self- conjugate set

{sl , ... , sn } c C a real m x p matrix such that

spec(A -BKC) - {sl, ... ,sn}

Since the eigenvalues of A arise as the poles of the function

G(s) = C(sl -A) 
-1 
B 
	 (0.3)

for an open, dense set of (A,B,C), see [ 7], this problem is often

referred to as "pole-placement". It corresponds to the physical

problem of tuning the natural frequencies of the system (0.1) by

feedback (0.2).

Evidently, for A,B,C fixed,

det(sI - A+BKC) = s n +c l (K)sn-1 + ... + cn(K)

is a system of real algebraic (in fact, polynomial) equations 	 1

cl (K) = cl,...,cn(K) = cn

in K, and Question 0.1 asks if these can be solved for all c.

Alternatively, define the function (for A,B,C fixed)

X IItmP + B;n (0.4a)
ORIGINAL PAGE IS
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via
73

X(K)	 (cl(K),...,Cn(K))	 (0.4b)

A

Question 0.1 then asks whether, for fixed (A,B,C), X is a surjection.

In this paper, I will present some new results in real algebraic
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geometry as well as their application to this problem. These results

extend many of the existing results on this problem, some of which I

shall now review.

Fixst, note that mp >, n is clearly necessary. Using an elemen-

tary argument, viz. the dominant morphism theorem, R. Hermann and C.F.

Martin proved

Proposition 0.1 [15] If mp >,n, then for generic (A,B,C) the complexi

fied map

n	 ORIGINAL. PAGE IS
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has an open dense image.

Using, the "high-gain" techniques introduced in [10}, one can

improve this result to

Proposition 0.2 [12] If mp >, n, the complexified map Xt is surjective._

As it turns out, over ^ it is sufficient to prove Proposition

0.2 in the case mp = n and in this case it is known [ 10] that X¢ is

prz,per for generic A,B,C. Indeed, Brockett and Byrnes showed that

its degree is given by a formula well known in several areas of

mathematics. The Cauchy-Riemann, equations imply that degX t actually

counts the honest number (with multiplicity) of solutions to (0.4) over

t. Thus, this formula has the advantage of gi .ving 'sufficient conditions

for 
XIR 

to be surjective, viz. whenever degX t is odd ( see Corollary 0,5).

e ti,

y

Theorem 0.3 ( 81 If mp = n, then for :generic A,B,C (explicitly, for

nondegenerate A,B,C in the sense of [ 8], [10]) one has ,

_ 1:. .(P-1)'(mp)'
degX^	 m'	 (m+ -1)	

(0.5)
P 

}	 In general, the real difficulties, so to speak, emerge when one

asks that K be real. In Section 2, I present sufficient conditions

for a system of real algebraic equations to have a solution. In the

case at hand, this criterion produces constants _
cm,P

 - as well as	
3{	 i7

f

effectively computable lower bounds cm , p - yielding for generic A,B,C:	 z

i- x

Vii(
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Here we define	 k E14 by 2 k < m + p s 2k+1	
and then set

2k+1 - 1
	 if min (m,p) - 2, max(m,p)	 2k - 1

c ^	 2k+1
 - 2	 if min(m,p) = 2, max(m,p)	 2k - 1	 (0.6)

mop	 2k+1 - l	 if min(m,p) = 3,m+p	 2k + 1 }	 ,.

2k+1	
otherwise

•
This theorem has several corollaries. 	 For example, over the complex'

r

field the analogous inequalities assert that mp Zt n is necessary and

sufficient that XC be surjective for generic (A,B,C).	 Over the vEal

field, the crude lower bounds c'yield

Corollary 0.5	 (Brockett-Byrnes [8 1)	 If mp = n, then the conditions

min(m,p)	 1	 or	 min(m,p)	 2	 and	 max(m,p) = 2r'1	 (0,7)

;;
a

are sufficient that X be surjective for generic (A,B,C).

s

Remark:	 This, however, is only one of the results obtained in [ 8) 	 on

stabilizability and pole-assignment. 	 For example, an explicit

characterization of the open dense set of (A,B,C) for which Corollary

0.5 is valid is given as well.

I also obtain a stronger version (viz. surjectivity) of :.

Corollary 0.6	 (Kimura [ 19])	 If m + p - 1 a n, then image X contains an

open dense set in IRn ,	 for generic (A,B,C).

s	 1

1.	 Systems of Real Algebraic Equations

Our interest is in the following basic problem. 	 Consider the

system of equations

f i (x)	 y i 	x 	 IRN	1	 1,...,n	 (l.l)

n	 Nwhich is to be solved for all y E IR	 subject to the -constraint x EXcIR

d

t ^	 ^
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k

	

	 where X is the real algebraic set defined (not necessarily as a com-

plete intersection) by equations

ORIGINAL PAGE IS	 (1.2)
OF POOR QUALITY

That is, we ask whether f ; X -. Mn is surjective. in what follows we

shall assume

*	 di = deg ( f i )	 is odd, for i - 1,...,n	 (H1)

We note that (H1) is not a restriction on the class of problems consi-

dered, only on the form of the equations. For, by the introduction of

"slack variables", we can render any set of equations in a form satisfy-

ing (Hl).
I

Example 1.1	 To solve y - p (x), x E IR,	 is to solve the "slack equations"

f(x1:x2) = y	 ,	 B(xl , x2)	 0 (1.3)

where

f (xV x2 ) = x 2	g(xl , x2)	 x2- P (xl)

Thus, we ask for surjectivity of
_s

f ; X- IR

where XaIR	 is a curve, viz. the graph of p. 4

We shall also need another hypothesis. 	 One can express any

polynomial F on 1RN	 as

F = Fh + Fr

where. F 	 is homogeneous, and deg(F r ) <deg(Fh).	 Consider the algebraic

sets j

n	 n
Zf _ n (fi)	 (0)	 Xh_= n (gl) -1 ( 0) (1.4)

i=1	 i=1

A
We ask that the "base locus" condition

g

f

L^ .

f
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g

I

be satisfied, where throughout this note we mean geometric dimension.

Remark: (H2) implies the (obvious) necessary condition for surjecti-

vity of f

dim X 3 n	 (1.5) .,

On the other hand, if (1.5) is satisfied, then the generic f (with di

fixed) satisfies 	 (H2).	 For example, f in (1.3)'	 always satisfies (H2). f
rr}

Y^R

k	 Example 1.2	 (no constraints)	 If X - Bt ,	 then Bezout's Theorem on

CPN implies the existence of real solutions (possibly at infinity) to

'	 (1.1) for any f satisfying (Hl). 	 If N = n, then (H2) is the condition

that the base locus of the rational map f be empty and therefore, for

finite y, a finite solution always exists.

Example 1.3	 (compact constraints) 	 If X is a compact real algebraic

set, no f can be sur,jective.

Example 1.3 of course cannot occur over t, since complex varieties

admit unbounded hulomorphic functions. 	 The main theme which we suggest

is that the topology of the real algebraic set (1.2) influences quite

strongly the solubility of equations ('1.1) defined on these sets. 	 And,

the topology ofcomplex algebraic varieties is so remarkably well-

behaved that this issue does not arise over t.

2.	 The Main Theorems on Real Algebraic Geometry

The key to distinguishing, for example, the real algebraic sets

arising in Example 1.2 and 1.3 is to 'study their behaviour at infinity.
n

To this end, we consider the inclusion of the closure

i	 X C-+	 IR IP N	(2.1)

of X in IR IP N ,	 where IRN c1R IP N	via the standard construction £

(x1 ► ... 9 X	 -+	 [xl,...,xN,l]
a
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4	 Berstein and Ganes ( 6) introduced a homotopy invariant of maps, the

category of a map, defined in our setting as

R

cat(i) - min.card. (Ua): (Ua) an open cover of X such that

ORIGINAL PAGE I3	 N

	

i I	 • U -+ ZR II' is null homotopic
OF POOR QUALITY	 U 'a a

Note that in Examples 2 and 3, cat(i) is N +1 and l respectively. We

can now state our basic existence theorem:

Theorem 2.1 If cat(i) >n, then (1.1)-(1.2) is solvable for any f

{	 satisfying (Hl) and (H2). Indeed, for any y E R 

	

dim f-1 (y) 3 cat(i) -n -1
	

(2.2)

F

If dim X- n, then f is in fact proper in light of (H2), and (2.2)

asserts that f is a finite-to-one surjection. If X is smooth, then f

has a well-defined degree, deg f. U ging characteristic classes, one
IR

sees that (2.2) works at least as well as mod(2) methods:

Proposition 2.2 If deg 
lR

f is odd and X is smooth, cat(i) -n +1. In

particular, if degIR f is odd, rl (X) contains a subgroup of index 2 (and

therefore X is not simply-connected) and the mod(2) Bett{ numbers

Ri (X) are nonzero for i - 0,...,n.

Remark: This last topological conclusion is of course reminiscent of

the Kahler conditions. We denote by X C , i V etc. the objects one

obtains by complexifying. If X  is smooth, then the Kahler conditions

together with a theorem.of Eilenberg (13] imply

a

Y
E

t

cat(i	 >.dime XC
7q

i with equality if X	 is simply connected (18),	 (25). In particular, 3

cat(i C) >n is implied by (H2) and is thus superfluous over C, illus-

trating our philosophy.	 In this sense, cat(i 	 seems to play the role A

of dimC for zeal algebraic sets. Moreover, cat(iC ) >n is implied by

` the condition

rank Jf(xo) = n	 for some x  E X
i.

1

i
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In this case, the dominant morphi_sm theorem asserts that (l.l) is

solvable for almost all y E t 	 !u_) is a stronger hypothesis, but
strengthens this theorem. Thus, Theorem 2-.1 may be thought of as a

"dominant morphism theorem" over 7.

Further connections between deg IR(f) and the topology of,X can be
derived in several cases.

Theorem 2.3 Suppose X is a smooth orientable n-manifold.

(i) If n is odd, then

deg^(f) is odd t-> cat(i) = n + 1 	 ORIGINAL PA(;e 13
OF POOR QUALITY

(ii) If n is even, deg IR(f) = 0.

Remark: In Example 1.1, we have 2 cases. If deg(p) is odd, then

degRf _ 1, cat(i} _ 2 and ker(i *) 22Z e a = n l (X). If deg(p) is even,

deg(f) =,0, cat(i) = 1 and of course R 1 (X) {0). Nontrivial applications
will be indicated in Sections 3 and 4,

u

1j£
yj{{

9

k

Assertion (ii) has a corollary which seems .r.)f independent interest.

i

Corollary 2-.4 Suppose X^ is smooth and has odd degree in tr 	 Af

dim t (X^) is even, then XI is not orientable.

I now consider the simplest case compatible with the conclusion of

Proposition 2.2. The following result can be obtained from Theorem 2.1 	 4

using an ` analogue of the Hopf Degree Theorem,for maps to ]R r 
n

(see

(24) and also [ 5 ], [25])•	
99

Proposition 2.5 Suppose X is smooth, nonorientable, dimX is even,	 .

and 11 {X) =?L 2 . Then'

deg,,,(f) is odd !=> cat(i) =n+1

Theorem 2.1 applies however in the non-equidimensional eases, and

even when X has singularities - in particular it applies in the absence

of mod(2) orientability of X.

In fact, in Section 4 I give an example, with X singular, where

Theorem 2.1 gives a better result than the mod(2) theory. This example



255

arises in an finalysis of Question 0.1.
P

f

t' 
P	 3.	 Applications to Inverse. EiRenvalue ProblemsE

ORIGINAL. PAC,;e 19
OF POOR QUALITY

I
r

	

	 As has been indicated above, any system of real algebraiq equa-

tions can be put in. the form (1.1)-(1.2), where f satisfies (Hl), but

major technical problems remain in the application of Theorem 2.1 -

especially the calculation of cat(i) or even explicit knowledge of the
I'

embedding X c IItr 	 One class of problems for which there is a quite

natural transformation of the basic equations into the desired form

arise in the study of inverse spectral problems.

If Ao is a fined n x n real matrix, consider the effect on spec(A0)

of an additive perturbation A
o +A, where AE k - an algebraic set of

matrices, such as the diagonal or the rank one matrices. The inverse

spectral problem asks, in part, whether the resulting map

2 A : A- ,n, XA (A) -characteristic coeff's of Aa+A	 (3.1)
o	 `o

is surjective. Quantitatively, one has the Weinstein-Aronezajn formula

det(I +A(sI - A o ) 1 ) = 4(s)	 (3.2)

I	 k.

where 4)(s) is rational,; vanishing on spec(A+A 0 ), having poles on

spec(A0 ), and satisfying '(-) -1. In particular, 4 , (s 0 ) - 0 whenever

so f spec(A0 ) and so E spec(A+Ao) . The vanishing of (3.2) also has a

geometric interpretation in- Grass 
IR 

(n,2n), where we,th nk of A as a

point (and X as a subset) via the correspondence

A -* graph(A)	 (3.3)
y^

For s o fixed, we can consider dually -the hypersurface o(so)CGrassF(n,2n)

defined by

o(s o ) (W : dim(W n graph(s 0 I - A
0

)-1) 1)	 (3.4)	 I	 I

Then, vanishing of (3.2) is the equation of incidence

graph(A)  E Q(s)	 (3.5)
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and, since Q(so) is a hyperplane section for the-Plucker imbedding

.9 n t Grass (n, 2n)	 IR SN 	(3.6)

ORIGINAL PAGE 1.
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the inverse eigenvalue equations
}

I 1	 4^(sl) = 0.0s 0	 (3.6)'

become linear in the Plucker coordinates of graph(A), which are to be

solved in IR IP N subject to the constraints	 Ate,:

graph(A0 ) E X c Grass (n,2n)	 V.

Theorem 3.1 The mapping (3.1) is the restriction of a central projec-

tion

1I : MP N - Bn -► IR P 

to X e X c Grass (n, 2n) . Thus, on an of fine open IR N containing X the

equations (3.1) take the farm (1.1)-(1.2) and the inclusion (2.1) is

the composition of X e Grass (n, 2n) with the Plucker imbedding .y n ,n•

.a

Corollary 3.2 If dim} = n is even and if the base locus condition is

satisfied, then deg R (h) = 0 if X is orientable:

In the next two examples, Theorem 3.1 is illustrated in well-known

inverse eigenvalue problems. Although less sophisticated arguments

suffice in each case, these are given in the way of illustrations of a

unified viewpoint and also as a preliminary to Section 4.

Example 3.3 (rank 1 perturbations) Let Ao be a 2 X 2  matrix and consi

der the algebraic set

c	 X	 {A : rank A t I ." 	 (IR)

As above, X e Grass (2,4) via the correspondence

A i— graph (A) c IR 2 (P IRZ

Indeed, if V denotes 2-plane in IR2 9 IR 2 then



7	 r

x {v : dim v n (m2 0 (0)> a 1?

since to say A has rank C1 is to say,

ker A	 graph(A) n IR2 ® {0}

257

(3.7)

ORIGINAL PAGE 19
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has dimension 3 1.	 In particular, X is a singula , Schubert	 hypersur-

face in Grass (2,4).	 In order to compute cat(i) note that

Grass (2,4) -X is a chart on Grass (2,4); that is,

t	 Grasses (2,4) - K - IR	 (3.8)

'.1

By Lefschetz Duality, the inclusion

X	 Grass (2,4)
a

induces an isomorphism

Hl (Grass ( 2 , 4 ); 2Z	 -• H i (X;M	 ,	 i = 0,. • .,32 )

In particular, the mod(2) Betti numbers of X are

^o = 1
	 Q1 = 1	 32	 2	 and	 83 = 2

By Eilenberg [13], cat(.ìa2	°i)	 is bounded below by the height ht(wi),2

in the ring H*(X;MZ), of the nonzero element w l of Hl (X;71 2 ).	 From the

Schubert calculus (120], 	 [22]) one knows that	 wi # 0 and therefore

cat( ^2 2 ' i ) - 3 s,

Finally,	 from (3.2) one sees that,	 for generic Ao ,	 the base locus

condition is satisfied.

:^ similar calculation for arbitrary n gives a proof of the well-

known

7

Corollary, 3.3	 For generic real Ao and any self-conjugate subset
i

{sl,..,,sn) a	 there exists an A of rank c1 such that

spec{Ao +A.1	_	 (s i ,...,	 n
Û.
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Example 3.4 (diagonal perturbations) Let Ao be a 2 x2 real matrix and
consider the algebraic set of diagonal matrices

X.. {A A - diag(a 1 a 2 ) , a  E IR)

Again, the correspondence A F--► graph (A) induces an inclusion

X c Grass (2,4). Moreover, X is the intersection of 2 Schubert hyper-
I

surfaces {

0
1 

_ {V : dim (v n span {e l , e3 }) 1} , and	 ORIGINAL PAGE "'F'"'F'I
OF POOR QUALITY i

C; _ {V : dim(v n span{e 2 , e 4 }) 3 1!

where e l , e29 e39 e4 are the standard basis vectors in IR 	 Elementary

geometry shows

—	 1	 1X	 0
1
 n a 2 = ]RIP x IR IP

so that X is a 2-torus. The base locus condition is satisfied for all

A and therefore
o

deg]R ( XA )	 0
o

9

for all Ao , according to "orollary 3.2. This is in harmony with the

fact that, e.g., Xo fails to be surjective.

More generally, for any n X is an n-torus. over

X	 tip x ... X tip and one has

cat(i^)	 n+1

from which one deduces the well-known result: i

Corollary 3.4 (114}, { 31) For an arbitrary n -n real or complex 	 j

matrix Ao and an arbitrary subset {sl,,,,,sn} c Q, there exists a

diagonal matrix A 	 diag(al,...,an), with a  E	 such that

spec(A * +A)	 {sl,' " ,sn} t

r
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4.	 Pole Placement_bv Output-Feedback

I now turn to the problem of arbitrarily tuning the natural fre-

quencies of a control system (A0 ,B0 ,C0 ) by use of output feedback F

(Section 0).	 In this setting X is given as

X {B KC B	 x m, C p x n are fixed}0 0 : 0 n	 o	 ORIGINAL PAGE 1

Of POOR QUAL11Y

For generic B o , Co }+ is itself a Grassmannian

X . Grass
IR

 (p,m+p) c Grass (n,2n)

I

is the Plucker imbedding, and the base locus condition is satisfied

for generic (A0 ,BoV C0 ). (See [111.)

In this setting. Theorems 2.1-3.1 assert that c m,p M cat( 
9m9p) >n

implies arbitrary eigenvalue placement (Theorem 0.4). Eilenberg's

Theorem asserts that cat(	 vp ) is bounded from below by the height of

the first Stiefel-Whitney class

cat( 90 m,p )'ht(w l ) in H*(Crass(p,m+p) ' M 2 )
	

(4,1)

d

This height has recently been calculated by Hiller [171 and by Stong r

[261, but the sufficient conditions which these estimates yield also
a

follow, by Poincare duality, 	 from mod(?) intersection theory. 	 Indeed,
i

starting with the interpretation of the vanishing, of (3.2) as an

equation in the Schubert calculus, we can obtain these same results by i

constraining the perturbation variety A c X to be a Schubert variety
'j

2 c Crass(p,m +p) and applying Pieri's formula [ 9 j.

These calculations can be refined using Lefschetz Duality and

Theorem 2.1 as in Example 3.3.	 In the above notation, the inclusion of
Y

the Schubert h ypersurface (for s real)

C(s) c-= Crass ( p , p +m)

ind uces a	 isomo rphism in cohomolo 	 except of course for	 m. degreed	 n	 p	 gy	 p	 B	 p

Although Poincare duality fails to hold for 0(s), Theorem 2.1 applies

to X restricted to c(s) and one can therefore improve the estimate in b

(3.7) by one, in all cases except min(m,p) a 2,'max(m,p)	 2 r -1 where

ht(wl )	 mp	 ( 5 J, by first "placing a pole at s" and then considering

;l
^	 9
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the remaining n- 1 constraints. Combining the calculations made in

[17.], [26) with this observation leads to the definition of c' 	 in
m,P

(0.6). Combining this computation with Theorem 2 . 1, we obtain a proof

of Theorem 0.4.
f

p	 The first case not treated by Theorem 0.4 (or by Corollary 0.5) is

the case m = p -2, n =4. This had already been stulied by Willems and
Hesselink in [27), where they showed that for generic (A,B,C), image

t

	

	
(x) misses an open set of infinite Lebesque measure in IR 	 This has

since been checked in various ways [8], [23) but it is interesting to

note that one can see this result, within theresent framework, bP	 Y

either part (ii) of Theorem 2.3 or by the real algebraic methods pre

t	 sented in [4 ]. Explicitly, take s l , s2 , s 3 and-s 4 E C so that

s i = s1+2	
IR and consider the submanifold of real points

Grass (2,4) c Grass t(2,4) 	 (4.2)

Following the technique in [4 ), note first that

0 0 [Grass 
IR

(2,4) ] E H 4 ( Grass t (2,4) ; 7l)

This can be seen from the fact that multiplication by v'-__l maps the

tangent bundle T (Grass
IR

(2,4)) to the normal bundle of (4.2). Since

Grass 
IR

(2,4) is orientable, the self-intersection number of

(Grass 
3R

(2,01, in H * ( Grass t (2,4); 7L) can be calculated as the Euler

characteristic of Grassi (2,4); i.e. as 2. For generic (A,B,C) there

I

<

Y'7

i
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'	 exists a real k placing the eigenvalues s ,.. . ,s4 if, and only if,
there is a point in

i
-	 -
a(s l ) n a(s 2 ) n Grass (2,4) c Grass ( 2 ,4)

	Pi	 Moreover, we have the formula

deg W= #Wsl) n a(s 2 ) n Grass ( 2 ,4)) E 

for deg (X) inthe integers. An elementary calculation in,
IR

H'* (Grass C (2,4) ?Z) shows that

x

	

,^	 deg (X) = 0	
-

IR
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Remark: From the classification of smooth functions in this dimension

range, one can then see that X is not surjective, but this requires

more elaborate argument.

This technique will apply whenever Grass (p,m+p) is orientable

and has a nonzero Euler characteristic, viz. whenever m and p are even,

reducing the calculation of deg ,R (X) to a problem in the Schubert

calculus. In the present setting, this calculation may be avoided by

appealing to Theorem 2.3-part (ii); i.e.

Corollary 4.1 If m,p E 22Z and mp = n, then for generic (A,B,C),

deg 3R (X} = 0	
ORIGIVAL PAGE IS
OF POOR QUALITY
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t	 Abstract

In this paper, we give new results concerning
pole-assignability by static and dynamic output feed-
back. based on the interpretation of transfer func-
tions, feedback laws, poles and zeroes ((3 ], (5).
[12]. [19)) in terms of the incidence geometry of
w-planes and p-planes in (m+p)-space. As an illustra-
tion of the most basic ideas, we give a short proof
of the Brasch-Pearson Theorem. A more careful analysis
of this proof yields a significant extension of this
theorem, which we then considerably sharpen in the
ease of pole-assignment by constant gain output feed
back. As a final application we introduce a root-
locus design technique for non-square systems:
seroplacement by pre- or post-compensation. This
zeroplacement problem is then analyzed by methods
similar to those developed for pole placement by
output feedback,

1. Exact Pole-Assignability: "Vectoring Down"

The first problem we consider is: Given a real
p x a transfer function G(s) with McMillan degree
6(G) o n, what is the minimal q such that for any
!elf-conjugate subset {sl,...,sn+q)r-C,  there exist a

res,l compensator K(s) of order q which places 'the
poles of the closed loop system at o i l ... Isn+q? We

consider also those poles which have been cancelled
In the closed loop transfer function

G(s)(I+K(s)G(s))-1 by expressing the closed-loop
system in state space form. We shall illustrate our
techniques by giving a new, elementary proof of the
well-known Brasch-Pearson Theorem [2 ), before giving
sore delicate improvements on this theorem and on the
existing results on pole placement by constant gain
output feedback.

Given v E e, as in (19), we can "vector down"
G(s) by passing the input channels through v, i.e. we
can form the new p x 1 transfer function G(s)v. A
partial fraction decomposition shows that the poles of

F	
G(s)v are among the poles of G(s); moreover,

. Lemma 1.1: For fixed G(s), there is an open

dense set Vice of v such that 6(G) - 6(G-v) -n.
Remark: This follows from our results in

section 2,.ve see Lemma 2.2 below. If G(s) -(sI-A)-1B,

with (A l l) controllable, then Lesser 1.1 is a well-
known consequence of Heymann's Lemma, viz. that
(A,Bv) is controllable for almost any input channel
By

Nov suppose a self-conjugate subset (all ... ,snq}

e t is given. Choosing v as in Lemma 1.1, we seek a
1 x p compensator K(s) such that if

G(s)V= N(s)D(s) -1 and K(s) - Q(s)-1P(s)

are coprime factorizations, then

Q(s)D(si+ P(s)N(s) 0 0<- >@C  ( sit .... an+q } (1.1)

By equating coefficients on the left-hand side of
(1.1), we obtain a linear map - the generalized
Sylvestor resultant [1];

S
4
 : IIt(q+l)(p+1) y R(n+q+l)	 (1.2)

Pole-assignability by a compensator of the form vK(s)
Is therefore equivalent to surjectivity of Sq , whose

rank is given in a simple, beautiful formula ( 1]s

	

rank Sq - (p+l)(q+l) - I (q+l-vi )	 (1.3)
vi<q+l

where (vi) are the observability indices of G(s)v -

or, what is the same, of G(s) for v as in Lemma 1.1.
We then easily have:

Theorem 1.2: Suppose G(s) has observability
indices (v ). Then G(s) can ba arbitrarily pole-
assigned with a compensator of order q where q
satisfies

(q+l)p -	 I (q+l-vi ) ;In	 (1.4)
vi<q+l

By duality, the same result holds, mutatis mutandis,
for controllability indices (K I)

Choosing, for example, q - vMAX 1 we obtain

C (q+l- vi) -	 I (q+l-vi) -p(q+l) -n	 (1.5)
vi<q+l	 vItq+l

1

a

*This work was partially supported by the National 	 Combining (1.4)-(1.5), we have

Science Foundation under Grant No. ECS-81-21428,
NASA under Grant No. NSG-2265, and Air Force of 	 Corollary 1.3 (Brasch-Pearson [ 2 ]): Choose

Scientific Research under Grant No. AFOSR-81-0054,	 q - min(sc	 ,v	 )-1. Then G(s) can be arbitrarily	 #
max max

pole-assigned using a compensator of order q. 	 j
**This work was partially supported by the National
Science Foundation under Grant No. ECS-21428.	 Since the left-hand side of (1.4) is an increas-

ing function of q, achieving its maximum at q )'mx-1
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Theorem 1.2 is in fact equivalent to Corollary 1.3. 	 compare 1 121 And also ( 91• The right-hand side

2. Generic Pole Assignability by 	 Z

deralizas in the case of non -simple poles tot
Output Compensation	

^ 
«k Le_ m& 2. 2 (1191) : 6 (G(&))- 6(wtG (s)) if, and

„	 i.%^,1>
ti^lf , v in not orthogonal to col.span G(s) ne, for

Im this section we examine the vectoring down 	 ole of G(s).
process more closely, investigating the effect of
preprocessing by a vector v which is not in general	 Since G(s) can have only finitely many poles,
position in the sense of Lemma I.I. We illustrate	 >iss 1.1 follows by induction. Moreover, it follows
this in the "generic" case. Our main result is then. h-o ^^easily from Lange 1.2 (for example) that given a p x •
a strengthening of the Brasch-Pearson result for 	 -- =P 	sfer function G(s), with p 49m, one can place
generic (A,B,C). More precisely, a property P of 	 s+s= f(E^l+ 1 self-conjugate .poles {si ) using a compensa-
triples (A,B,C) is generic provided it is satisfied by	 `	 J
all (A ,B,C) except , perhaps those which lie in afor of order 0, i.e. a constant gain output feedback

ptepet al^!ebraic subset of 3t n2+n(a" ) that is a	
,.e 1f

r1C. She proof of Theorem 2.1 now proceeds as
f3llovs:

subset X defined by real poly:iomial equations 

(1) given el,...,an+q place the self -conjugate_` {(A,B.C) : p r (a1j .bkR .c^) -0 s-0.1.:..}	
^	

^J

subset (after reordering) al , .... a 2	 1 +1
our main theorem ( (191 and also (183) is then: 	 by output feedback.	 L

Theorem 2.1: The generic triple (A.B,C) is output ___3 ( ii) choose w E XP orthogonal to the planes
pole-assignability at the generic set of poles (e.g...	 col . span G (s ),...,col.spanG ( s r1'distinct) by a compensator of order q satisfying 	 - 1	 2[ 2

=1 J+1).

4y

..f..

r fah t•

(q+l) (max (m,p)) +min(m.p) - 1 , 2rn1
jj

+1	 (2.1) Th^i^, wtC (s) is of McMillan degree n - 2IL
rr	 t

J
- 1.	 By

4. l

Acre, as is customary ( 161,
rra
[b] for a,b E 2Z

r
Loses 1.2, if w tG(s) has the generic set of contrail-

f b abailty indices, yr can place the remaining poles b y a
devotes the greatest integer less than or equal to 	 __cntcogpsnsator of order q, where q satisfies'
a/b.	 srr, c_cur.

n (9+1) a n - 2
r	 1
11 -	 (2.6)The proof reposes an 	 omore careful snalysis 'ef ? J

1
•_:,

the effect of "vectoring down" on the poles of G(s). t„ ., 
l llingSuppose first that G(s) has distinct simple poles„	 • that p - min(m.p) and a - max(m,p). (2.6)

and consider the partial fraction expansion
.
u$ ies Theorem 2.1.

Q.E.D.

G(s) -	
Ri	

t2 . 2)
l	 3.	 Generic Pole Assignability by Cons tant

i
Gain Output Feedback

Then, G(s)v (or wtG(s)) will have a pole at a 	 if, and °T '	 If m - p - 2, n - 4 then Theorem 2.Z asserts that

ionly if, R v (or wtR
ttW generic (A,B,C) can be (generically ) pole-assigned i

i	
i) does not vanish.	 More by A compensator of order q -1. 	 By the main result of

generally, suppose , without loss of generality. that Wil4•ems-Hesselink 1 221	 (see also ( 3 1,	 115)), we know
p F a and consider the coprime factorization that one cannot generically assign poles by a compen-

i bit's of order 0.	 ?hum, the bound in ( 2.1) - or in
1	 "`%_	 e 'Brasch-Pearson Theorem - is the best bound possible

qhe necessary order of complexity of the pole-

leading to the matrix
forx	 gning compensator required 	 a generic system.

Nonetheless, since the proof of Theorem 2.1, as well
N(a) as the original proof of the Brasch-Pearson Theorem

`
G(s) - ^2.V (14).. employed a q-th order compensator of a very

D(s) "vectored5 peldial form (viz. a	 -up" compensator) it is
' rattier likely that the bound in Theorem 2.1 is not

' If G(s) has a simple pole at sip as in (2.1), then' sh*p in all cases.	 Indeed. if n is even then the
t	 t	 p	 pw R 00 if, and only if, v E	 Lt	 e C	 is orthogonal

well-known result of Kimura 1141 asserts that_	 de. A
to the row span of R1 in Cp .	 Equivalently, thinking

it	
m + p - 1 ;i n 	 (3.1)

,	 1

of column span G (s) as an a-dimensional subspace ^of is Ilufficient for generic pole -assignability of the
e + to, we have generic system, while (2.1) only guarantees that

1mWV:;tn is sufficient.	 As it turns out, a more deli-
tp	 cys analysis of the geometric interpretation ( 2.5) of

w	 - 0 <->w1 column span G(a) n C 	 ZZ :4^"' '
R

€ -
l poles, allows one to sharpen ( 3.1) and .many ocher

f existing results on polo assignability. 	 Among the new
Such incidence conditions ar:z familiar from the results one can prove by these rethods is the following. 1
earlier work of Kimura (141 on pole placement. and_ +^^..	 k	 k+1the algebraic geometric results of Hermann -Martin 11?i; nrfine kE Ii by 2	 < n +p t 2	 and set

` and have come to play a eiznhlu role in the geometric }
theory of pole-assignability (131.	 14 1.	 (51.	 (191)•
Note. in particular. that

col.span G(s- ) n tp f {Oh <.	 a
	

Is	 pole of G(s) (2.5)i
ORIGINAL Pty:-.E 15
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State the matrices

1	 N(s)

-K	 p(s)

are of full rank (at each a E t), (3.2) 1 implies that

I	 N(s )
dim col.span	 n col.span	

1	 1	 (3.3)
-K	 D(sl)

Thus, to say K Places the poles of G(s) at all +•••so

is to say that the p-plane
I

tol.spsn	 c ep • e	 (3.4)
1<

Intersects each _-3- the n m-planes

"(:X)

 
col.span	 c:CPO to , i - 1,...,n	 (3.5)

i

nontrivially. This line of reasoning was the basis
of the original proof of Corollary 3.3, noting
especially 'that -if up - n o then the number of complex
p-plates (3.4) satisfying (3.3) for i - 1,...,a is
finite. In fact this number,

t wF

ORIGINAL PAGE f$
t,	

t~	 OF POOR QUALITY

r	
2k+1-1 if min(a.p) Z, max(s op) 0 2k - 1

e^^p
2k+1-2 if min(m,p) - 2, msx(t p) ­2 k  - l

2k+1-1 if min(m,p) - 3, •+p-2k+1

2k+1 otherwise

theoraw 3.1: cmop 3 2[n—l
1 
+1 implies arbitrary

pole assignability for the generic triple (A,B.C).

Motu that, in an y ease,

m+p-1 # %.P 9 up	 (3.1

The left-hand inequality implies a strengthened form
of;

Corollary 3.2 (Kimura ) : m+p - 1 a n implies
generic pole-assignability for the generic system
(A,D,C)

She right-hand inequality reflects the necessary
Condition (22) mp ^n for pole-assignability, and one
can ask when em,p - up. Of course if win (morQ a 1, then

up in is sufficient for pole -assignability of the
generic system. On the other hand, mp 4n is not
sufficient if min (m,p) w max (s,p) - 2. The csee
esop s op occurs precisely in the cases discovered in

131:
1

Corollary 3.3 (Brockect-Byrnes): 	 The generic
p, K n system of degree n is pole-assignable provided was derived by Schubert in his study of the enumera-
mp a n and Live geometry of planes (1 3 1).	 The Brockett-Byrnes

r Theorem follows from determining when (3.6) is odd.
min(m,p) • l or min(m,p) ` 2 and max(m,p) - 2 - 1

The second ingredient in the proof of Theorem
In ( 3	 one can find an explicit charactbrization 3.1 is a new development 1131. (20) in the Schubert

of the generic property alluded to above; see also calculus, enabling us to relax the condition mp - o n
1151 in the cases min(m,p) - 2, msx(m,p) - 2,3. while still retaining quantitative analogues of (3.6) -

see also (4 1 for an independent derivation using the
zFor example, consider a 3 x 3 system G(s).	 The classical methods of enumerative geometry. 	 Those )	 J

technique of "vectoring down" yields, as does Corollary results yield sufficient conditions involving either
3.2, that generic pole-assignability holds provided c-	 or c	 - 1.
the (!.-Millan degree of G(s) does not exceed 5. 	 on sop	 sop
the other hand, if M is a 2 x 2 ratrix chosen generi-
cally, MG(s) is a 3 x2 transfer function satisfying Finally, the condition c mop i n	 an be derived i

by developing a modified enumerative geometry for
60(s)) - 6(MG(s)) p-planes which satisfy (3.3) -for a single, fixed seal }

Pole (see 16 1).
Applying Corollary 3.3, we see that arbitrary pole-
assignability is possible provided 6(G(s)) 96. 4.	 Results
Theorem 3.1 asserts, however, that arbitrary pole- j
assignability holds provided 6(G(s)) r. 7. 	 This claim There is a geometric interpretation of multi- 1
tan also be deduced from Corollary 3.3 in the sane variable zeroes 1191 which is quite analogous to the
way that Theorem 2.1 follows from Lemma 1.2. 	 Indeed, geometric interpretation (2.5) of poles.	 The litera-
this example illustrates the spirit of the proof of ture on multivariable zeroes is too extensive to be {
Theorem 3.1, which we shall now sketch• surveyed here; following Verghese (211 9 we will think,

Intuitively, of a zero as an "absorbed motion."
first, note that to aay s l is a pole of the Suppose p t m; then_a pair (s,u)f Ce x (C% (0)) is a

closed-loop system G(s)(I+KG(s))-1 is to say zero provided theTe exists a p-plane V e C m such that

det(D(o )+KN(s l	 0	 (3.2)
u f col. span(

N(s)
n V	 (4.1)

L D(a)
or, equivalently ( 3 1,

Zeroes, then, are also characterized by an incidence
N(s

1
relation.	 AN an application, suppose G(s) Is a px s

deL	 D (3.2)^

CK
non-squre tran!,fer function..	 1n order to analyze a

 D(a l ) the fredhack properties of C(s), it is often useful
to "sqt ire-dawn" G(s) by rither pro- or pest-emslti-
s4l lr:^timi,	 ohtaining n, squ;iry s ystem Mo(sz), or G(1)D1. a
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Is this setting, one may employ multivariable root-
locus methnds - such as (17) - to analyze the stability
of resulting closed-loop systems. Since, in the square
ease, the root-loci move from the open-loop poles to
the open-loop zeroes (under full rank feedback,
provided det(MG(s)) f 0 or det(G(s)M) 0 0, it is of
considerable interest to choose N all that the
"squared-dovni9 system has as many zeroes as possible
In the left half-plane. Thus, we consider the zero-

`	 placement problem:

!

	

	 Can one place e , (G(s)) zeroes of G(s) arbitrarily
by output feedback?

Here, e(G(s)) denotes the "content" of G(s),
vhith equals the total number of poles of G(s) minus
the total number of zeroes (1211). Due to the geome-
tric characterization (4.1) of zeroplacement as a
Problem in enumerative geometry, we can apply the

_	 previous results with appropriate changes 119):

Theorem 4.1: If cij is defined as in section 3,

o

	

	 °sax(m,p)-min(m,p),min(m,p) 3 c(G(s))

implies zeroplacement-for the generic G(s).

We remark that if n - mp is large, then pole-
placement is impossible, while in this range zero-

;

	

	 placement can be ;effectively incorporated into a
soot-locus design technique.

Remark: Similar techniques apparently can be
applied to quite general feedback problems. For
example, the results of section 2 have recently been
applied to the problems of simultaneous pole-assigna-
bility and simultaneous stabilizability of a set of
r p x n plants GI(s),...,Cr(a) yielding, for example,

the result that the generic r-tuple of plants may be
simultaneously stabilized provided r F max(m,p) (see

1101. fill).
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ABSTRACT

k	 The problems of determining the minimal order of a stabilizing compensator for a

fixed linear, multivariable system and for the generic p; k m system of fixed degree

are considered. An elementary geometric argument gives sufficient conditions for

the generic stabilizability by a compensator of order ir q. A more delicate

geometric argument, involving pole-placement in the high gain limit, is then used

to derive necessary conditions, obtained jointly with B.D.O. Anderson, for the

lower bound q ; 1. Taken together, these results determine the minimal order in

certain low dimensional cases. The _general upper bound, however, is not always

tight and in many cases can be improved upon by more powerful techniques. For

example, based. on a geometric 'model for finite and infinite gains, sufficient

conditions for q = 0 are derived in this paper in terms of a'topological invariant

(of the "gain space") introduced by Ljusternick and Synirel'mann in the calculus of

variations. Using the Schubert calculus, an estimate of the ijusternick-

gnirel'mann category is obtained, yielding a stabilizability criterion which, to

my knowledge, contains the previous results in the literature on stabilizability

by constant gain output feedback, as special cases.

j

i

0. INTRODUCTION

The purposes of feedback in system theory are manifold, including (for

example) stabilization, decoupling, optimization, and increased insensitivity to	
a

Perturbations. Indeed, the study of the possible effects of feedbacks on the 	 a
i

dynamical characteristics of a control system engaged the interests of the	 j

earli,i^st quantitative research efforts in mathematical control theory ([ 11, [ 21,

[311)• Recently, the study of "high gain feedback" has been formalized in several

ways leading to a robust extension ([361, [371) of the elegant (A,B)-invariant

subspdce theory, which is capable of answering questions such as "alwost distur-

bance decoupling", and to new results in the classical problem of pole-
'j

*Research partially supported by the NASA under Grant No. NSG-2265, the National
Science Foundation under Grant No. ECS-81-21428, the Air Force Office of Scienti-
fic Research under Grant No. AFOSR-81-0054, and the Office of Naval Research
under JSEP Contract No. N00014-15-G-0648.	 I
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assignability by output feedback ((7 J, [8]_), in this paper, I would like to

illustrate the algebraic-geometric aspects of the analysis of high-gain feedback

in the less understood context of stabilization by static and dynamic output'
feedback. More precisely, I would like to begin by focusing on a specific

problem, which is representative of a genre of classical linear system theory.

Question 0.1. Given a p x-m rational transfer function G(s), strictly proper with

McMillan degree

d(G) - n,

what is the minimum degree, q -6(K), of a proper compensator K(s) which (intern-

ally, in the sense of (38J) stabilizes G(s) in closed-Loop;

v(s) 
n+
	 u(s)	

G(s)
	 y(s)

K (s)	 ORIGINAL. PAGE IS
OF POOR QUALITY

Equivalently, we ask that the (n+q) ,-poles (i.e., including the cancelled poles) of

G(s)(I-K(s)G(s))'1 lie in the left-half plane.

There are several reasons to ask for an upper bound for q, not the least of

which is the desire to stabilize G(s) with a compensator having at most a certain

degree of complexity, Second, the set of m xp compensators of order <q is

naturally an algebraic set of finite dimension, viz. q(m+p)_+mp, Indeed, the set

E(n,p,m)* of compensators of order q can be parameterized as a smooth finite-

dimensional manifold ({131, [251). Thus, he techniques of calculus on finite+	 q	 i

dimensional manifolds can be used on E*(n,m,p) in developing algorithms for find-

ing a stabilizing compensator.

I will also consider the question of whether a given G(s) can,be arbitrarily

closely approximated (say, uniformly in se CIP l ) by a transfer function of the

same degree which is stabilizable by a compensator of degree q. Since stabiliz-

able systems form an open set, this is rhen equivalent to the question:
,	 1

(question 0.2	 Is the set Uq of p x m systems G(s) of degree n, which are

(internally) stabilizable by a compensator of degree q, open and dense in the

space -E(n,m,p) of all p x m systems of degree n?

To make this precise, one need only know how to regard E*(n,m,p) as a
00

C	 -i
topological space. Develop G(s) in its Laurent expansion G(s) _ G1Lis ,
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Li p xm real matrices. Since d{G) -n, G(s) determines and is determined by the

entries of

h  = (L1,...IL2n) E IR2nmp
	 (0.1)

where h  must satisfy the constraint

L1	
L2 ...	 Ln

ORIGINAL PAGE IS
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L 	 L2n-1

Thus, E(n,m,p) is in bijection, via (0.1), with the subset Hank(n,m,p) c 
gt2nmp 

of

points satisfying (0.2)_. In this way, E(n,m,p) is regardedas a subspace of
IR	 , 

so that

Gi(s) - G(s)

if, and only if, Hankel (or Markov) parameters

(L(i),....L(i)) `' { Ll ...,L2n)

converge. Thus, the meaning of the question, is U  ( E(n,m,p) open and dense, is

clear.
9

I will refer to Questions 0.1 and 0.2 as stabilizability and generic stabili-

zability, respectively, by a compensator of degree q. I should remark that the

question of the simultaneous stabilizability of an r-tuple of plants, which arises

in problems of reliability and fault tolerance, has recently been quite success-
I

fully studied by B.K. Ghosh using extensions of these methods, see '([161, [181). 	 {

It is a pleasure to acknowledge the influence of my friends and coauthors

Brian Anderson, Ao j er Brockett, Bijoy Ghosh, and Peter Stevens on my thinking

about this problem. Indeed a great deal of this paper (cf. references) is based

on or surveys joint work with these authors. In addition, I would also like to

acknowledge interesting conversations and correspondence on this topic with Ted

n4 - f---is Banjo Mitter Steve Morse and Jans Willems:

_1,.	 STABILIZABILITY WITH DYNAMIC COMPENSATION

Let G(s) be a p Xm transfer function of degree, d(G), nand consider vE IRm

as an input channel, leading to the new p x1 transfer function G(s)v.	 According

to Brasch-Pearson j6 ], there exists v such that

d(G(s)v)	 =	 d(G(s)) (1.1)
fit

Actually	 ([121,	 [34]), the set of input channels v such that (1.1) holds is open ^'
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and dense in IRm ,	 with the same statement holding for output channels w 
t 
E (IRP)

This is easily seen in the case where G (s) has rt ` tu,^le poles, for then G(s)

admits a partial fraction decomposition
n	 R 1

G(s) _	 s-h	 +	
rank Ri 	1	 (1.2)

i=1	 i

Then, G (s)v (or w
t G

(s)) will have a pole at X. if, and only if, R iv (or w tRi) does

not vanish.	 Since the poles of G(s )v are among those of G (s), and since G(s) has

i	 finite degree, the set of such v (or w t ) is open and dense.

More generally, consider a coprime factorization G(s) = N(s ) D(s)-1 leading to

the martix

► N(s)
G(s) _ (1.3)

D(s)

If G(s) has a simple pole of s l , then w t Rl = 0, if, and only if, w E IRp c Cp is
orthogonal to the column span of R l in	 (Cp )*. 	Alternatively, regarding

column span G (s) as an m-dimensional subspace of ep (Bcm and Cp as a p-dimensional

subspace,

w	 (1:4)tRl _ {0) <_> w 1 (column span G(s) n fc p) j
Thus	 [34], if G(s) has poles at s l ,..., sr and if w E IRp	is chosen so that w is

not orthogonal to the subspaces col.sp.G( s ) C a:pp.r(	 p
l	

, ... ,col. s	 .^	 sr ) fl ^	 of

t	 [P a Cp IP Cm, then a
1

6(wtG(s)) =	 6(G(s)	 (1.5)

Lemma 1 .1.	 ([34])	 6(G(s)) = 6(wtG (s)) if, and only if, w is not orthogonal }

to (col.sp.G(s) n ep ),	 for s a pole of CP .	 Thus, the set of w satisfying (1.5) is
open and dense in IRp.

a
a

The same result of course holds for v E-mm , mutatis mutandis.	 Incidence

conditions such as (1.4) are familiar from the earlier work of Hautus [22] and "
A

Kimura [26] on pole -placement and from the seminal algebraic geometric interpre-
y

tation of transfer functions due to Hermann-Martin [ 30], and have come to play a

sizable role in the geometric theory of pole-assignability {[7 ]-[101, 	 [12],	 [34]).

Note especially that

N
col.sp . G(s.)n	 p #	 {0?	 <=> s.	 is a pole of G(s)	 (1.6)

Compare [ 26] and [30].

These concepts can be illustrated in the following:
ORIGINAL PAGE IS
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Theorem 1.2.

q satisfying
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The generic G(s) can be stabilized by a compensator of order

	

(q+l)max(m,p) + min(m,p) - 1 	 n.
	

(1.7)

(1.7) improves, by min(m,p) -1, the generic sta Uizability result which one

obtains from the generic form of the Brasch-Pearson Theorem (see [6), [141). If

q - 0, i.e. if one asks for stabilization by constant gain output feedback, (1..7)

agrees with the condition one obtains from Kimura's Theorem [26].

Proof. Let v E im. If K(s) is l`+p compensator, consider coprime factoriza-

tions

G(s)v - N(s)D(s)
-1
	and	 K(s) - Q(s) 1P(s)

Then, the return-difference determinen.t, as a function of (P,Q), is a linear

function

	

S	 IR(q+l)(p+l) . lkn+q+m+2	 (1.8)
q

Sq (P,Q) ° Q(s)D(s) +P(s)N(s)

in the coefficients of P(s), Q(s), and QD+PN. According to [ 5), the rank of

"the generalized Sylvestor resultant" is given by the beautiful formula

	

rank S 	 (q+l)(p+l) -	 (q+l-Vi)	 (1.9)
Vi{q+l

where the Vi are the observability indices of G(s)v. Therefore, for generic G(s),

S  is surjective provided

q(p+1) +p	 ,S((;(s)v) +q	 (1.10)

The proof now proceeds as follows, we assume without loss of generality that

p < m:

	

1
p
^	 M Choose si,... I sm-1 E IR and an m ` p K  placing the poles si; 	 a

^s	 (ii) Choose wt, as in Lemma 1.1, orthogonal to G(s i)n c	 x'}

(iii) Since (w t G(s)') = n -m +1, provided q satisfies (1.7) for generic G(s)

	L	 one can find K(s) with 6(K) = q placing any self-conjugate set

	

L	 -	 9

r ism,..•,sn+q) 
of poles in ]R

a

Remark 1.3.	 (Concerning Question 0.1) One can also obtain results on

minimum order compensation for a fixed, not necessarily -generic, -p x m G(s) by

using the formula (1.9) for the rank of the generalized Sylvestor resultant.

Remark 1.4.	 (Concerning the-Brasch-Pearson Theorem) A more elementary

argument [12] gives a proof of the Brasch-Pearson Theorem [6 ]. Explicitly,

X lo ^^

J

i
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simply choose v E e to 'satisfy (1.1) and use the identity (1.9) to obtain the

criterion

(q+1)p	 I,	 (q+l-vi ),a n
Vi<q+l

(1.11)

for arbitrary pole-assignability, with a dual criterion in terms of the con-

trollability indices (Ki). Choosing q- max(V i ) - 1 in (1.11), one has the asser-

tion that if G(s) is a p x m transfer function having controllability indices (Vi),,

then G(s) can be arbitrarily pole-assigned using a compensator of order q. The

proof of Theorem 1.2 is based on the argument given by Stevens (Q12], [34]) which

proves, by choosing v more carefully as above, that for generic G(s) q may be	
w.

taken to satisfy

(q+l)max(m,p) + 2 r
min(m,p)-l j 

3 n	 (1.12)
1.	 2

A form of (1.12) seems to be implicit in the algorithm described by Seraji [33].

Remark 1.5. (Concerning Related Work) I should also comment on the

interesting results obtained by Hammer (esp. [20]), based on an algebraic study

of the interplay between feedback and precompensation (see also [19], [21])

which also has application to the stability of systems. Using this theory one

can prove, for example, that if

G(s) _	 (s+l)
(s+2) (s+3)

and 2p(s) =s + as +b, with a, b, >0, then there exists a compensator K(s) such
that the (uncancelled) poles of G(s)(I+K(s)G(s))-1 are the roots of p(s) while

4 n

4

-1

6	

^}7

1

t
r

d

a

the cancelled poles are all stable. Although this seems to provide a better 	 d

result than the Brasch-Pearson Theorem, which would yield the assertion that an

arbitrary cubic can be assigned using a compensator of degree 1, these two

results cannot be compared since tl^Ly give solutions to different problems. For

r.
example, a dimension count shows that, also in Hammer's result, d(K) >, l  for an

open dense set of such quadratic p(s). Moreover, and more crucial for the

solution of Questions 0.1 and 0.2, no upper bound on d(K) is given in [20].

2. NECESSARY CONDITIONS FOR STABILTZABIL ITY

In this section, I will sketch a_proof of a theorem, obtained jointly with

B.D.O. Anderson [11], asserting that mp n is a necessary condition for generic

stabilizability by constant gain feedback. Together with Theorem 1.2 this yields,

for example, that the minimum order of a stabilizing compensator for the generic

-	 2 x p system of degree 2p +1 is 1. Before proceeding to the theorem, I will give	 `?
k

some low-dimensional examples illustrating the tightness of the estimate _(1.7)

ILA'
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For example, it follows from [18] that (1.7) gives the minimum order of stabiliz-

ing compensator if min,(m,p) - 1.

Example 2.1. Suppose min (m,p) - 2. By the above remarks, (1.7) provides the

generic minimum order of a stabilizing compensator provided either m+p - 1 ^l n or
mp + 1= n holds. The case mp = n is rather interesting. If m = p = 2, one deduces
that the minimum order compensator satisfying d(K) = q <l from (1.7). On the

other hand, in [11] a proof is giver of an unpublished result, attributed to
P. Molander, which is equivalent to 6(K)= q ^i 1. Thus, in this case (1.7) is
tight provided n ^< 5, If m = 2, p- 2 r - 1, then (1.7) again yields b(K) < 1, while
the pole-placement results obtained in [ 7] implies t`(K) =-0 whenever min(m,p) =2,

max(m,p) =2 r  - 1.

Theorem 2.2. Q11]) mp ^tn is necessary for generic stabilizability by

constant gain output feedback.

Proof. All compensators are assumed to have degree 0. First of all, it is

intuitive - from the algebra i c system theoretic perspective - that generic

stabilizability in continuous time is equivalent to generic stabilizability.

Indeed [11], the generic system is stabilizable with respect to Re[z) <0 if, and
only if, the generic p x m system of degree n is stabilizable with respect to the
disc ID(0;P) = {JzJ <P}•

Assuming that stabilizability is generic, 	 the set

Ur = {(A,B,C)	 : C(sI- A) -1B is stabilizable with respect to ID(0;1/r}

is open and dense in IRN ,	 N=n 2  + n (m+p) . 	 By the Baire Category Theorem, U = n ur
r=1

is dense in IRN .	 Now consider the algebraic subset of IRNxIRmp,

V = {(A,B,C;K)	 :	 spec(A-BKC) = {0;	 (2,2)

N	 mp	 N
,.	 If p l	IR	 x IR	 -* IR	 is the projection,	 p l (x,y) = x,	 on the first factor, then

V =p (V)  is a semialgebraic set by the Tarski-Seidenberg Theorem.	 That is, V is

described by the conditions,
a

f i (A,B,C)	 0	 gj (A,B,C) 0	 (2..3)

for f i ,gj polynomials in the entries of (A,B,C). 	 I claim that UeV.	 Explicitly,
this follows from

Lemma 2.3.	 ([8 ])	 If mp	 n then the polynomial function for a = (A,B,C)

X	 IRmp-* IR	 defined by
ORIGJf^AL PAGE IS
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has a closed image for an open .dense subset of 6 E RN . ORIGINAL- PAGE 13
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Indeed, a £ U if, and only if, for every c >0 3 K C such that

i	 spec(A-BKCC) c TD (0; . Taking E = 1/k, for a£ U there exists K  E Itmp such that

XQ (Kk ) -► coeff's of { sn ). By Lemma 2.2, there exists K  lkmp such that Xa(K)
coeff's of sn , for generic QE ]RN.

Nota Bene 2.4. If m = p= 1, then image X  is a straight line in e, so that

Lemma 2.2 is valid for all GE 10. Kimura [261 contains an example, pp. 514-515:

Example 3, of a 2 x2 system a of degree 3 for which image X  is not a closed set.

Since it suffices to prove the theorem if mp <n we can assume, without loss
of generality, that U c V. In particular, any _f i in (2.2) must vanish identically,

since U is dense. Thus, V is open and dense in 1RN.

Now consider the algebraic subset of n x n real matrices

-* = {N : N is nilpotent)

It is known [281 that ^ is an irreducible algebraic subset of dimension n 2 - n.
Matters being so, generic stabilizability (for mp 5n) implies that the function

3Y `
x IRnm f IRnp x .imp i 

IR
nX IRnm x IRnpn

defined via

4)(N,B,C,K) = (N+BKC,B,C)

has an image containing an open, dense subset. In this case, then

(n2-n) +nm+np+mp n2+nm+np

Equivalently,	
I

mp	 n	 Q.Q.D.

1
3

Corollary 2.5. If min(m,p) 2 and n mp +1, then the minimal order of a

stabilizing compensator for the generic system is q = 1.

3. A GEOMETRIC MODEL FOR HIGH GAIN FEEDBACK

As has been remarked (Nota Bene 2.4), Lemma 2.3 fails to hold if the generi-

city hypothesis is violated. The major point involved here is the dichotomy:

Suppose for a = (A,B,C) fixed one has gain K r such that the roots of A - BKC lie in

M(O;1/r) . As r --, either
}

(i) Kr -K as r «^, in which case XQ (Kr) a XQ (K) ; or	 1

(ii) Kr ^^.
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only in the latter case can s  fail to lie in image X^. To analyze this case, I

would like to make the statement, Kr -► ro , explicit in terms of feedback. Now,

feedback, u - Ky, is just a bilinear relation between inputs u and outputs y,
with a special property, viz, that u is a function, Ky, of y. If K  is a

1-parameter family of feedback laws, say

ul	 1,y 1 ORiGiNA L PAGE "63

OF POOR QUALITY	 (3.1)
r.	 u2 = Ay 

then passing to the limit,	 also defines a bilinear relation between inputs

and outputs, viz.

0 y
1	 (3.1)'

0 = y2

Note that the equations (3.1) and (3.1)' both define 2-dimensional subspaces of

IR4 = Y ®U	 (3.1) corresponds to the subspace graph(K^) , where u = KXy = Xy, while
(3,1)' corresponds to the graph of a bilinear relation which is not a function
u - Ky for any K :Y -U. In this spirit, I shall consider a feedback law, including
"high gain limits", as the graph of bilinear relation R on Y X U of rank p, i.e.

as a p-plane, viz. graph(R), in YOU.

1

x ^

Of course, not every p-plane V is of the form graph(K), for such a V must be

complementary to the subspace IRm c IRp O 1Rm. In this sense, the space of all

p-planes in Mm+p Grass(p,m+p) contains the space of feedback laws K, qua

graph(K), as an open dense subspace and one can interpret those p-planes V such

that

dim (V n IRM t 1	 (3.2)

as infinite gains or as high gain limits.

Following [7 ], [8 ], I shall describe how one might assign a set of "closed-

loop" poles to the p-plane graph(R)
"i

j,

	

	 Modulo-zero cancellations, the poles of 
GK 

(s)are given by the return differ-

ence equation

I	 G(s)

0	 det(1 -KG(s) <=> det	 = 0	 (3.3)

K	 I

Thus, to say s is a pole of GK (s)is to say

I	 G(s)	 }

dim col.span	 n col.span	 l	 (3.3)'	 ?

K	 I	 T.

I -A
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col. span	 s graph (K) c ]R + IIt
-K

is a p-plane in Mt +P . Note, if K- 0 then (3.3)' reduces to the Hermann-Martin

identity (1.6).

By definition p-planes V satisfying (3.2) are called infinite gains, those

not satisfying (3.2) are finite gains, in the ordinary sense. In this language,
A

Lemma 2.3 follows from the complex analogue of

3.1. The High Gain Lemma. For generic G(s), if s l ,...,sn E IR are such that

n
n Q(s i )	 0 in Grass(p,m+p)
i=1

then this intersection contains a finite gain.

Thus, the High Gain Lemma asserts intuitivel y that if s l ,...,sn can be placed

in the high gain limit, then s l ,...,s n can be placed by a finite gain. If the

root-locus map XG were continuous at infinity, stabilizability in the high gain
limit would imply stabilizability by finite gain. However, if mp >n, Xo is never

continuous at oo [ 9] and therefore, cf. Theorem 2.2, in most cases of interest
one requires a more subtle argument - such as 3.1. Details will appear in a

future paper.

4. STABILIZABILITY BY STATIS OUTPUT FEEDBACK

Using (3.3) one can interpret the vanishing of the return-difference determi-

nant geometrically; in terms of the compact manifold Grass(p,m+p), There is a

classical topological invariant of any space X, discovered by Ljusternick and

gnirel'mann [29) in the calculus of variations, which will play a sizable role

in the present analysis. Explicitly, consider any covering (Ua) of X by open sets

Ua which are contractible in X and define L-S cat(X) to be the minimum cardinality

of such a cover. Set

	

{	 k(m,p)	 L-S cat(Grass(p,m+p)) 1 	 (4.1)

	

r.'	 Theorem 4.1. k(m,p) ^i n implies generic stabilizability.

Pf,. If one defines G(si ) c Grass(p,m+p), for s  F_IR U {-f and for G(s) fixed, via

G(sl) _ {V ; dim(V n graph(G(s i )) '; 1}

then Q{si ) is a hypersurface in Grass(p,m+p). Clearly-

,
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Lemma 4.2. Grass (p,m+p) - Q(s i )	 lRmp.

Now, to say K places the poles of G K (s) at the distinct real numbers

sl , ... sn is tonsay (3.3), or equivalently ( 3-3) 1 , holds for each s -s V That
is, graph(K) e nQ(si) cGrass(p,m+p), and in particular,

i= l
n

	

no (s d 0 0	 ORIGINAL PAGE 13	
(4:2)

tt
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Lemma 4.3. Suppose s l ,...,sn EIR. Then k (m,p) nn implies (4.2) for any

t	 G(s).

Proof. If (%Q(s i ) # 0, then (Ui ) =1 covers Grass(p,m+p)
i=1

where. Ui =Crass(p,m+p) -a(s i ). Since Ui=lRmp , one has L-S cat (Grass (p,m+p)) <n

and therefore., by definition (4.1), one obtains the contradiction k(m,p) <n.

This tautology does not imply, ny choosing s i <0, stabilizability by finite

gains, for none of the points V of na(s i) 'might be of the form graph(K).
i=1

For generic G(s), however, there exists a finite gain by the High Cain Lemma.

In the next section, I will give some applications of Theorem 4.1.

5. APPLICATIONS TO GENERIC STABILIZABILITY BY CONSTANT GAIN FEEDBACK

First, define the integer s by

2s < m+ p < 2s+1	 (5. 1)

Corollary 6.1. If min(m,p) = 2, then
smax(m ,p) +2 -1 ^p n

implies generic stabilizability. 	 i

For max(m,p) <5, the bound in Corollary 5.1 coincides with the pole-placement
a

	

	 i
bounds which one can derive, in various cases, from the literature ([7 ), [101,

se is that generic'	
a

+f	
[26], [27^)• However, for max(m,p) 6, Corollary 5.1 as 	 g

stabilizability holds provided n C 9 in contrast to the best known value, `viz. 8,

for pole-placement [27].
^s

Corollary 5.2. If min(m,p) = 3, then the following equalities imply generic

D stabilizability:
3e

}s	 s+.2.	 r-1 	 s+l	 r

	

(1) 2	 3(2 )- 4 >n	 if m+p=2	 -2 +1;

as+2	 r-1	 s+1 r	 r-1

	

(ii) 2	 -3(2	 )-2+tin, if m+p=2	 -2 +2+t, 0,<t ,,<2	 -2,

4

1M^

F

ry

M

j



(iii) 2s+2 _ 5 ^, n if m+p - 2s+1.
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Corollary 5.3+ If min(m,p) - 4, then the following inequalities imply generic

stabilizability:

(i) 2s+1 +2 s --7;n	 , if m+p	 2s+1

(ii) 2s+1 +2s +2r+1 +j-7, if m+p - 2s +2r +j+1, where s>r^0

and 0;j  <2r - 1.

In fact, one can always assert that

m+ p -1 < k (m. p ) < mp	 (5.2)

The .left-hand side of (5.2) implies that Theorem 4.1 will do at least as well as

any stabilizability result derived from Kimura's Theorem [26] while the right-

hand side apparently reflects Theorem 2.2.

Proofs, Eilenberg's Theorem [15] asserts, in the case at hand, that

k(m,p) ^i nil (H*(Grass(p,m+p) 6, M2))	
(5.3)

The cohomology ring H*(Grass(p,ml-p);TL 2) is given in terms of generators and

relations as

R = 2Z [wit...,wm,vl,...,vm]/I , I =	 wivj	 (5.4)
i+j=r

and nit (R) is the maximum number of nontrivial terms in a nonzero produce in R.

It follows from the Schubert calculus ([4 ], p. 130) that one can always find a

nontrivial product of m+p -1 Schubert generators in (5.4), thereby proving the
left-hand side of (5.2). The right-hand side follows from the general; fact [24]

cat(X) 5 dim X +1 for any path connected, paracompact space X.

The corollaries now follow from calculations [ 31, [231, [35] of the order

of nilpotency for the rings in (5.4), in the range 2': min(m,p) 4

r

	

	 It should be remarked that the calculation of the order of nilpotency of the

rings (5.4) is entirely "e-Igorithmic for fixed m and,p and in this way a table,

giving values of n a', a function of m and p, for which generic stabilizability

will hold, can be constructed. Taken together, Corollaries 5.1-5.3 yield such a

table for m+p <9.

K

i.

a
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